xref: /linux/mm/vmalloc.c (revision 7aacf86b75bc5523d20fd9127104384fce51ce9c)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(p4d, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106 {
107 	p4d_t *p4d;
108 	unsigned long next;
109 
110 	p4d = p4d_offset(pgd, addr);
111 	do {
112 		next = p4d_addr_end(addr, end);
113 		if (p4d_clear_huge(p4d))
114 			continue;
115 		if (p4d_none_or_clear_bad(p4d))
116 			continue;
117 		vunmap_pud_range(p4d, addr, next);
118 	} while (p4d++, addr = next, addr != end);
119 }
120 
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
122 {
123 	pgd_t *pgd;
124 	unsigned long next;
125 
126 	BUG_ON(addr >= end);
127 	pgd = pgd_offset_k(addr);
128 	do {
129 		next = pgd_addr_end(addr, end);
130 		if (pgd_none_or_clear_bad(pgd))
131 			continue;
132 		vunmap_p4d_range(pgd, addr, next);
133 	} while (pgd++, addr = next, addr != end);
134 }
135 
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 	pte_t *pte;
140 
141 	/*
142 	 * nr is a running index into the array which helps higher level
143 	 * callers keep track of where we're up to.
144 	 */
145 
146 	pte = pte_alloc_kernel(pmd, addr);
147 	if (!pte)
148 		return -ENOMEM;
149 	do {
150 		struct page *page = pages[*nr];
151 
152 		if (WARN_ON(!pte_none(*pte)))
153 			return -EBUSY;
154 		if (WARN_ON(!page))
155 			return -ENOMEM;
156 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 		(*nr)++;
158 	} while (pte++, addr += PAGE_SIZE, addr != end);
159 	return 0;
160 }
161 
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 	pmd_t *pmd;
166 	unsigned long next;
167 
168 	pmd = pmd_alloc(&init_mm, pud, addr);
169 	if (!pmd)
170 		return -ENOMEM;
171 	do {
172 		next = pmd_addr_end(addr, end);
173 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 			return -ENOMEM;
175 	} while (pmd++, addr = next, addr != end);
176 	return 0;
177 }
178 
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
181 {
182 	pud_t *pud;
183 	unsigned long next;
184 
185 	pud = pud_alloc(&init_mm, p4d, addr);
186 	if (!pud)
187 		return -ENOMEM;
188 	do {
189 		next = pud_addr_end(addr, end);
190 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 			return -ENOMEM;
192 	} while (pud++, addr = next, addr != end);
193 	return 0;
194 }
195 
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198 {
199 	p4d_t *p4d;
200 	unsigned long next;
201 
202 	p4d = p4d_alloc(&init_mm, pgd, addr);
203 	if (!p4d)
204 		return -ENOMEM;
205 	do {
206 		next = p4d_addr_end(addr, end);
207 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 			return -ENOMEM;
209 	} while (p4d++, addr = next, addr != end);
210 	return 0;
211 }
212 
213 /*
214  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215  * will have pfns corresponding to the "pages" array.
216  *
217  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218  */
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 				   pgprot_t prot, struct page **pages)
221 {
222 	pgd_t *pgd;
223 	unsigned long next;
224 	unsigned long addr = start;
225 	int err = 0;
226 	int nr = 0;
227 
228 	BUG_ON(addr >= end);
229 	pgd = pgd_offset_k(addr);
230 	do {
231 		next = pgd_addr_end(addr, end);
232 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 		if (err)
234 			return err;
235 	} while (pgd++, addr = next, addr != end);
236 
237 	return nr;
238 }
239 
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 			   pgprot_t prot, struct page **pages)
242 {
243 	int ret;
244 
245 	ret = vmap_page_range_noflush(start, end, prot, pages);
246 	flush_cache_vmap(start, end);
247 	return ret;
248 }
249 
250 int is_vmalloc_or_module_addr(const void *x)
251 {
252 	/*
253 	 * ARM, x86-64 and sparc64 put modules in a special place,
254 	 * and fall back on vmalloc() if that fails. Others
255 	 * just put it in the vmalloc space.
256 	 */
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 	unsigned long addr = (unsigned long)x;
259 	if (addr >= MODULES_VADDR && addr < MODULES_END)
260 		return 1;
261 #endif
262 	return is_vmalloc_addr(x);
263 }
264 
265 /*
266  * Walk a vmap address to the struct page it maps.
267  */
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
269 {
270 	unsigned long addr = (unsigned long) vmalloc_addr;
271 	struct page *page = NULL;
272 	pgd_t *pgd = pgd_offset_k(addr);
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *ptep, pte;
277 
278 	/*
279 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 	 * architectures that do not vmalloc module space
281 	 */
282 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
283 
284 	if (pgd_none(*pgd))
285 		return NULL;
286 	p4d = p4d_offset(pgd, addr);
287 	if (p4d_none(*p4d))
288 		return NULL;
289 	pud = pud_offset(p4d, addr);
290 
291 	/*
292 	 * Don't dereference bad PUD or PMD (below) entries. This will also
293 	 * identify huge mappings, which we may encounter on architectures
294 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
295 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
296 	 * not [unambiguously] associated with a struct page, so there is
297 	 * no correct value to return for them.
298 	 */
299 	WARN_ON_ONCE(pud_bad(*pud));
300 	if (pud_none(*pud) || pud_bad(*pud))
301 		return NULL;
302 	pmd = pmd_offset(pud, addr);
303 	WARN_ON_ONCE(pmd_bad(*pmd));
304 	if (pmd_none(*pmd) || pmd_bad(*pmd))
305 		return NULL;
306 
307 	ptep = pte_offset_map(pmd, addr);
308 	pte = *ptep;
309 	if (pte_present(pte))
310 		page = pte_page(pte);
311 	pte_unmap(ptep);
312 	return page;
313 }
314 EXPORT_SYMBOL(vmalloc_to_page);
315 
316 /*
317  * Map a vmalloc()-space virtual address to the physical page frame number.
318  */
319 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
320 {
321 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
322 }
323 EXPORT_SYMBOL(vmalloc_to_pfn);
324 
325 
326 /*** Global kva allocator ***/
327 
328 #define VM_LAZY_FREE	0x02
329 #define VM_VM_AREA	0x04
330 
331 static DEFINE_SPINLOCK(vmap_area_lock);
332 /* Export for kexec only */
333 LIST_HEAD(vmap_area_list);
334 static LLIST_HEAD(vmap_purge_list);
335 static struct rb_root vmap_area_root = RB_ROOT;
336 
337 /* The vmap cache globals are protected by vmap_area_lock */
338 static struct rb_node *free_vmap_cache;
339 static unsigned long cached_hole_size;
340 static unsigned long cached_vstart;
341 static unsigned long cached_align;
342 
343 static unsigned long vmap_area_pcpu_hole;
344 
345 static struct vmap_area *__find_vmap_area(unsigned long addr)
346 {
347 	struct rb_node *n = vmap_area_root.rb_node;
348 
349 	while (n) {
350 		struct vmap_area *va;
351 
352 		va = rb_entry(n, struct vmap_area, rb_node);
353 		if (addr < va->va_start)
354 			n = n->rb_left;
355 		else if (addr >= va->va_end)
356 			n = n->rb_right;
357 		else
358 			return va;
359 	}
360 
361 	return NULL;
362 }
363 
364 static void __insert_vmap_area(struct vmap_area *va)
365 {
366 	struct rb_node **p = &vmap_area_root.rb_node;
367 	struct rb_node *parent = NULL;
368 	struct rb_node *tmp;
369 
370 	while (*p) {
371 		struct vmap_area *tmp_va;
372 
373 		parent = *p;
374 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
375 		if (va->va_start < tmp_va->va_end)
376 			p = &(*p)->rb_left;
377 		else if (va->va_end > tmp_va->va_start)
378 			p = &(*p)->rb_right;
379 		else
380 			BUG();
381 	}
382 
383 	rb_link_node(&va->rb_node, parent, p);
384 	rb_insert_color(&va->rb_node, &vmap_area_root);
385 
386 	/* address-sort this list */
387 	tmp = rb_prev(&va->rb_node);
388 	if (tmp) {
389 		struct vmap_area *prev;
390 		prev = rb_entry(tmp, struct vmap_area, rb_node);
391 		list_add_rcu(&va->list, &prev->list);
392 	} else
393 		list_add_rcu(&va->list, &vmap_area_list);
394 }
395 
396 static void purge_vmap_area_lazy(void);
397 
398 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
399 
400 /*
401  * Allocate a region of KVA of the specified size and alignment, within the
402  * vstart and vend.
403  */
404 static struct vmap_area *alloc_vmap_area(unsigned long size,
405 				unsigned long align,
406 				unsigned long vstart, unsigned long vend,
407 				int node, gfp_t gfp_mask)
408 {
409 	struct vmap_area *va;
410 	struct rb_node *n;
411 	unsigned long addr;
412 	int purged = 0;
413 	struct vmap_area *first;
414 
415 	BUG_ON(!size);
416 	BUG_ON(offset_in_page(size));
417 	BUG_ON(!is_power_of_2(align));
418 
419 	might_sleep();
420 
421 	va = kmalloc_node(sizeof(struct vmap_area),
422 			gfp_mask & GFP_RECLAIM_MASK, node);
423 	if (unlikely(!va))
424 		return ERR_PTR(-ENOMEM);
425 
426 	/*
427 	 * Only scan the relevant parts containing pointers to other objects
428 	 * to avoid false negatives.
429 	 */
430 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
431 
432 retry:
433 	spin_lock(&vmap_area_lock);
434 	/*
435 	 * Invalidate cache if we have more permissive parameters.
436 	 * cached_hole_size notes the largest hole noticed _below_
437 	 * the vmap_area cached in free_vmap_cache: if size fits
438 	 * into that hole, we want to scan from vstart to reuse
439 	 * the hole instead of allocating above free_vmap_cache.
440 	 * Note that __free_vmap_area may update free_vmap_cache
441 	 * without updating cached_hole_size or cached_align.
442 	 */
443 	if (!free_vmap_cache ||
444 			size < cached_hole_size ||
445 			vstart < cached_vstart ||
446 			align < cached_align) {
447 nocache:
448 		cached_hole_size = 0;
449 		free_vmap_cache = NULL;
450 	}
451 	/* record if we encounter less permissive parameters */
452 	cached_vstart = vstart;
453 	cached_align = align;
454 
455 	/* find starting point for our search */
456 	if (free_vmap_cache) {
457 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
458 		addr = ALIGN(first->va_end, align);
459 		if (addr < vstart)
460 			goto nocache;
461 		if (addr + size < addr)
462 			goto overflow;
463 
464 	} else {
465 		addr = ALIGN(vstart, align);
466 		if (addr + size < addr)
467 			goto overflow;
468 
469 		n = vmap_area_root.rb_node;
470 		first = NULL;
471 
472 		while (n) {
473 			struct vmap_area *tmp;
474 			tmp = rb_entry(n, struct vmap_area, rb_node);
475 			if (tmp->va_end >= addr) {
476 				first = tmp;
477 				if (tmp->va_start <= addr)
478 					break;
479 				n = n->rb_left;
480 			} else
481 				n = n->rb_right;
482 		}
483 
484 		if (!first)
485 			goto found;
486 	}
487 
488 	/* from the starting point, walk areas until a suitable hole is found */
489 	while (addr + size > first->va_start && addr + size <= vend) {
490 		if (addr + cached_hole_size < first->va_start)
491 			cached_hole_size = first->va_start - addr;
492 		addr = ALIGN(first->va_end, align);
493 		if (addr + size < addr)
494 			goto overflow;
495 
496 		if (list_is_last(&first->list, &vmap_area_list))
497 			goto found;
498 
499 		first = list_next_entry(first, list);
500 	}
501 
502 found:
503 	if (addr + size > vend)
504 		goto overflow;
505 
506 	va->va_start = addr;
507 	va->va_end = addr + size;
508 	va->flags = 0;
509 	__insert_vmap_area(va);
510 	free_vmap_cache = &va->rb_node;
511 	spin_unlock(&vmap_area_lock);
512 
513 	BUG_ON(!IS_ALIGNED(va->va_start, align));
514 	BUG_ON(va->va_start < vstart);
515 	BUG_ON(va->va_end > vend);
516 
517 	return va;
518 
519 overflow:
520 	spin_unlock(&vmap_area_lock);
521 	if (!purged) {
522 		purge_vmap_area_lazy();
523 		purged = 1;
524 		goto retry;
525 	}
526 
527 	if (gfpflags_allow_blocking(gfp_mask)) {
528 		unsigned long freed = 0;
529 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
530 		if (freed > 0) {
531 			purged = 0;
532 			goto retry;
533 		}
534 	}
535 
536 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
537 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
538 			size);
539 	kfree(va);
540 	return ERR_PTR(-EBUSY);
541 }
542 
543 int register_vmap_purge_notifier(struct notifier_block *nb)
544 {
545 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
546 }
547 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
548 
549 int unregister_vmap_purge_notifier(struct notifier_block *nb)
550 {
551 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
552 }
553 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
554 
555 static void __free_vmap_area(struct vmap_area *va)
556 {
557 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
558 
559 	if (free_vmap_cache) {
560 		if (va->va_end < cached_vstart) {
561 			free_vmap_cache = NULL;
562 		} else {
563 			struct vmap_area *cache;
564 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
565 			if (va->va_start <= cache->va_start) {
566 				free_vmap_cache = rb_prev(&va->rb_node);
567 				/*
568 				 * We don't try to update cached_hole_size or
569 				 * cached_align, but it won't go very wrong.
570 				 */
571 			}
572 		}
573 	}
574 	rb_erase(&va->rb_node, &vmap_area_root);
575 	RB_CLEAR_NODE(&va->rb_node);
576 	list_del_rcu(&va->list);
577 
578 	/*
579 	 * Track the highest possible candidate for pcpu area
580 	 * allocation.  Areas outside of vmalloc area can be returned
581 	 * here too, consider only end addresses which fall inside
582 	 * vmalloc area proper.
583 	 */
584 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
585 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
586 
587 	kfree_rcu(va, rcu_head);
588 }
589 
590 /*
591  * Free a region of KVA allocated by alloc_vmap_area
592  */
593 static void free_vmap_area(struct vmap_area *va)
594 {
595 	spin_lock(&vmap_area_lock);
596 	__free_vmap_area(va);
597 	spin_unlock(&vmap_area_lock);
598 }
599 
600 /*
601  * Clear the pagetable entries of a given vmap_area
602  */
603 static void unmap_vmap_area(struct vmap_area *va)
604 {
605 	vunmap_page_range(va->va_start, va->va_end);
606 }
607 
608 static void vmap_debug_free_range(unsigned long start, unsigned long end)
609 {
610 	/*
611 	 * Unmap page tables and force a TLB flush immediately if pagealloc
612 	 * debugging is enabled.  This catches use after free bugs similarly to
613 	 * those in linear kernel virtual address space after a page has been
614 	 * freed.
615 	 *
616 	 * All the lazy freeing logic is still retained, in order to minimise
617 	 * intrusiveness of this debugging feature.
618 	 *
619 	 * This is going to be *slow* (linear kernel virtual address debugging
620 	 * doesn't do a broadcast TLB flush so it is a lot faster).
621 	 */
622 	if (debug_pagealloc_enabled()) {
623 		vunmap_page_range(start, end);
624 		flush_tlb_kernel_range(start, end);
625 	}
626 }
627 
628 /*
629  * lazy_max_pages is the maximum amount of virtual address space we gather up
630  * before attempting to purge with a TLB flush.
631  *
632  * There is a tradeoff here: a larger number will cover more kernel page tables
633  * and take slightly longer to purge, but it will linearly reduce the number of
634  * global TLB flushes that must be performed. It would seem natural to scale
635  * this number up linearly with the number of CPUs (because vmapping activity
636  * could also scale linearly with the number of CPUs), however it is likely
637  * that in practice, workloads might be constrained in other ways that mean
638  * vmap activity will not scale linearly with CPUs. Also, I want to be
639  * conservative and not introduce a big latency on huge systems, so go with
640  * a less aggressive log scale. It will still be an improvement over the old
641  * code, and it will be simple to change the scale factor if we find that it
642  * becomes a problem on bigger systems.
643  */
644 static unsigned long lazy_max_pages(void)
645 {
646 	unsigned int log;
647 
648 	log = fls(num_online_cpus());
649 
650 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
651 }
652 
653 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
654 
655 /*
656  * Serialize vmap purging.  There is no actual criticial section protected
657  * by this look, but we want to avoid concurrent calls for performance
658  * reasons and to make the pcpu_get_vm_areas more deterministic.
659  */
660 static DEFINE_MUTEX(vmap_purge_lock);
661 
662 /* for per-CPU blocks */
663 static void purge_fragmented_blocks_allcpus(void);
664 
665 /*
666  * called before a call to iounmap() if the caller wants vm_area_struct's
667  * immediately freed.
668  */
669 void set_iounmap_nonlazy(void)
670 {
671 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
672 }
673 
674 /*
675  * Purges all lazily-freed vmap areas.
676  */
677 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
678 {
679 	struct llist_node *valist;
680 	struct vmap_area *va;
681 	struct vmap_area *n_va;
682 	bool do_free = false;
683 
684 	lockdep_assert_held(&vmap_purge_lock);
685 
686 	valist = llist_del_all(&vmap_purge_list);
687 	llist_for_each_entry(va, valist, purge_list) {
688 		if (va->va_start < start)
689 			start = va->va_start;
690 		if (va->va_end > end)
691 			end = va->va_end;
692 		do_free = true;
693 	}
694 
695 	if (!do_free)
696 		return false;
697 
698 	flush_tlb_kernel_range(start, end);
699 
700 	spin_lock(&vmap_area_lock);
701 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
702 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
703 
704 		__free_vmap_area(va);
705 		atomic_sub(nr, &vmap_lazy_nr);
706 		cond_resched_lock(&vmap_area_lock);
707 	}
708 	spin_unlock(&vmap_area_lock);
709 	return true;
710 }
711 
712 /*
713  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
714  * is already purging.
715  */
716 static void try_purge_vmap_area_lazy(void)
717 {
718 	if (mutex_trylock(&vmap_purge_lock)) {
719 		__purge_vmap_area_lazy(ULONG_MAX, 0);
720 		mutex_unlock(&vmap_purge_lock);
721 	}
722 }
723 
724 /*
725  * Kick off a purge of the outstanding lazy areas.
726  */
727 static void purge_vmap_area_lazy(void)
728 {
729 	mutex_lock(&vmap_purge_lock);
730 	purge_fragmented_blocks_allcpus();
731 	__purge_vmap_area_lazy(ULONG_MAX, 0);
732 	mutex_unlock(&vmap_purge_lock);
733 }
734 
735 /*
736  * Free a vmap area, caller ensuring that the area has been unmapped
737  * and flush_cache_vunmap had been called for the correct range
738  * previously.
739  */
740 static void free_vmap_area_noflush(struct vmap_area *va)
741 {
742 	int nr_lazy;
743 
744 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
745 				    &vmap_lazy_nr);
746 
747 	/* After this point, we may free va at any time */
748 	llist_add(&va->purge_list, &vmap_purge_list);
749 
750 	if (unlikely(nr_lazy > lazy_max_pages()))
751 		try_purge_vmap_area_lazy();
752 }
753 
754 /*
755  * Free and unmap a vmap area
756  */
757 static void free_unmap_vmap_area(struct vmap_area *va)
758 {
759 	flush_cache_vunmap(va->va_start, va->va_end);
760 	unmap_vmap_area(va);
761 	free_vmap_area_noflush(va);
762 }
763 
764 static struct vmap_area *find_vmap_area(unsigned long addr)
765 {
766 	struct vmap_area *va;
767 
768 	spin_lock(&vmap_area_lock);
769 	va = __find_vmap_area(addr);
770 	spin_unlock(&vmap_area_lock);
771 
772 	return va;
773 }
774 
775 /*** Per cpu kva allocator ***/
776 
777 /*
778  * vmap space is limited especially on 32 bit architectures. Ensure there is
779  * room for at least 16 percpu vmap blocks per CPU.
780  */
781 /*
782  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
783  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
784  * instead (we just need a rough idea)
785  */
786 #if BITS_PER_LONG == 32
787 #define VMALLOC_SPACE		(128UL*1024*1024)
788 #else
789 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
790 #endif
791 
792 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
793 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
794 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
795 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
796 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
797 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
798 #define VMAP_BBMAP_BITS		\
799 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
800 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
801 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
802 
803 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
804 
805 static bool vmap_initialized __read_mostly = false;
806 
807 struct vmap_block_queue {
808 	spinlock_t lock;
809 	struct list_head free;
810 };
811 
812 struct vmap_block {
813 	spinlock_t lock;
814 	struct vmap_area *va;
815 	unsigned long free, dirty;
816 	unsigned long dirty_min, dirty_max; /*< dirty range */
817 	struct list_head free_list;
818 	struct rcu_head rcu_head;
819 	struct list_head purge;
820 };
821 
822 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
823 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
824 
825 /*
826  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
827  * in the free path. Could get rid of this if we change the API to return a
828  * "cookie" from alloc, to be passed to free. But no big deal yet.
829  */
830 static DEFINE_SPINLOCK(vmap_block_tree_lock);
831 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
832 
833 /*
834  * We should probably have a fallback mechanism to allocate virtual memory
835  * out of partially filled vmap blocks. However vmap block sizing should be
836  * fairly reasonable according to the vmalloc size, so it shouldn't be a
837  * big problem.
838  */
839 
840 static unsigned long addr_to_vb_idx(unsigned long addr)
841 {
842 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
843 	addr /= VMAP_BLOCK_SIZE;
844 	return addr;
845 }
846 
847 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
848 {
849 	unsigned long addr;
850 
851 	addr = va_start + (pages_off << PAGE_SHIFT);
852 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
853 	return (void *)addr;
854 }
855 
856 /**
857  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
858  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
859  * @order:    how many 2^order pages should be occupied in newly allocated block
860  * @gfp_mask: flags for the page level allocator
861  *
862  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
863  */
864 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
865 {
866 	struct vmap_block_queue *vbq;
867 	struct vmap_block *vb;
868 	struct vmap_area *va;
869 	unsigned long vb_idx;
870 	int node, err;
871 	void *vaddr;
872 
873 	node = numa_node_id();
874 
875 	vb = kmalloc_node(sizeof(struct vmap_block),
876 			gfp_mask & GFP_RECLAIM_MASK, node);
877 	if (unlikely(!vb))
878 		return ERR_PTR(-ENOMEM);
879 
880 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
881 					VMALLOC_START, VMALLOC_END,
882 					node, gfp_mask);
883 	if (IS_ERR(va)) {
884 		kfree(vb);
885 		return ERR_CAST(va);
886 	}
887 
888 	err = radix_tree_preload(gfp_mask);
889 	if (unlikely(err)) {
890 		kfree(vb);
891 		free_vmap_area(va);
892 		return ERR_PTR(err);
893 	}
894 
895 	vaddr = vmap_block_vaddr(va->va_start, 0);
896 	spin_lock_init(&vb->lock);
897 	vb->va = va;
898 	/* At least something should be left free */
899 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
900 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
901 	vb->dirty = 0;
902 	vb->dirty_min = VMAP_BBMAP_BITS;
903 	vb->dirty_max = 0;
904 	INIT_LIST_HEAD(&vb->free_list);
905 
906 	vb_idx = addr_to_vb_idx(va->va_start);
907 	spin_lock(&vmap_block_tree_lock);
908 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
909 	spin_unlock(&vmap_block_tree_lock);
910 	BUG_ON(err);
911 	radix_tree_preload_end();
912 
913 	vbq = &get_cpu_var(vmap_block_queue);
914 	spin_lock(&vbq->lock);
915 	list_add_tail_rcu(&vb->free_list, &vbq->free);
916 	spin_unlock(&vbq->lock);
917 	put_cpu_var(vmap_block_queue);
918 
919 	return vaddr;
920 }
921 
922 static void free_vmap_block(struct vmap_block *vb)
923 {
924 	struct vmap_block *tmp;
925 	unsigned long vb_idx;
926 
927 	vb_idx = addr_to_vb_idx(vb->va->va_start);
928 	spin_lock(&vmap_block_tree_lock);
929 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
930 	spin_unlock(&vmap_block_tree_lock);
931 	BUG_ON(tmp != vb);
932 
933 	free_vmap_area_noflush(vb->va);
934 	kfree_rcu(vb, rcu_head);
935 }
936 
937 static void purge_fragmented_blocks(int cpu)
938 {
939 	LIST_HEAD(purge);
940 	struct vmap_block *vb;
941 	struct vmap_block *n_vb;
942 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
943 
944 	rcu_read_lock();
945 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
946 
947 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
948 			continue;
949 
950 		spin_lock(&vb->lock);
951 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
952 			vb->free = 0; /* prevent further allocs after releasing lock */
953 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
954 			vb->dirty_min = 0;
955 			vb->dirty_max = VMAP_BBMAP_BITS;
956 			spin_lock(&vbq->lock);
957 			list_del_rcu(&vb->free_list);
958 			spin_unlock(&vbq->lock);
959 			spin_unlock(&vb->lock);
960 			list_add_tail(&vb->purge, &purge);
961 		} else
962 			spin_unlock(&vb->lock);
963 	}
964 	rcu_read_unlock();
965 
966 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
967 		list_del(&vb->purge);
968 		free_vmap_block(vb);
969 	}
970 }
971 
972 static void purge_fragmented_blocks_allcpus(void)
973 {
974 	int cpu;
975 
976 	for_each_possible_cpu(cpu)
977 		purge_fragmented_blocks(cpu);
978 }
979 
980 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
981 {
982 	struct vmap_block_queue *vbq;
983 	struct vmap_block *vb;
984 	void *vaddr = NULL;
985 	unsigned int order;
986 
987 	BUG_ON(offset_in_page(size));
988 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
989 	if (WARN_ON(size == 0)) {
990 		/*
991 		 * Allocating 0 bytes isn't what caller wants since
992 		 * get_order(0) returns funny result. Just warn and terminate
993 		 * early.
994 		 */
995 		return NULL;
996 	}
997 	order = get_order(size);
998 
999 	rcu_read_lock();
1000 	vbq = &get_cpu_var(vmap_block_queue);
1001 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1002 		unsigned long pages_off;
1003 
1004 		spin_lock(&vb->lock);
1005 		if (vb->free < (1UL << order)) {
1006 			spin_unlock(&vb->lock);
1007 			continue;
1008 		}
1009 
1010 		pages_off = VMAP_BBMAP_BITS - vb->free;
1011 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1012 		vb->free -= 1UL << order;
1013 		if (vb->free == 0) {
1014 			spin_lock(&vbq->lock);
1015 			list_del_rcu(&vb->free_list);
1016 			spin_unlock(&vbq->lock);
1017 		}
1018 
1019 		spin_unlock(&vb->lock);
1020 		break;
1021 	}
1022 
1023 	put_cpu_var(vmap_block_queue);
1024 	rcu_read_unlock();
1025 
1026 	/* Allocate new block if nothing was found */
1027 	if (!vaddr)
1028 		vaddr = new_vmap_block(order, gfp_mask);
1029 
1030 	return vaddr;
1031 }
1032 
1033 static void vb_free(const void *addr, unsigned long size)
1034 {
1035 	unsigned long offset;
1036 	unsigned long vb_idx;
1037 	unsigned int order;
1038 	struct vmap_block *vb;
1039 
1040 	BUG_ON(offset_in_page(size));
1041 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1042 
1043 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1044 
1045 	order = get_order(size);
1046 
1047 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1048 	offset >>= PAGE_SHIFT;
1049 
1050 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1051 	rcu_read_lock();
1052 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1053 	rcu_read_unlock();
1054 	BUG_ON(!vb);
1055 
1056 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1057 
1058 	spin_lock(&vb->lock);
1059 
1060 	/* Expand dirty range */
1061 	vb->dirty_min = min(vb->dirty_min, offset);
1062 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1063 
1064 	vb->dirty += 1UL << order;
1065 	if (vb->dirty == VMAP_BBMAP_BITS) {
1066 		BUG_ON(vb->free);
1067 		spin_unlock(&vb->lock);
1068 		free_vmap_block(vb);
1069 	} else
1070 		spin_unlock(&vb->lock);
1071 }
1072 
1073 /**
1074  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1075  *
1076  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1077  * to amortize TLB flushing overheads. What this means is that any page you
1078  * have now, may, in a former life, have been mapped into kernel virtual
1079  * address by the vmap layer and so there might be some CPUs with TLB entries
1080  * still referencing that page (additional to the regular 1:1 kernel mapping).
1081  *
1082  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1083  * be sure that none of the pages we have control over will have any aliases
1084  * from the vmap layer.
1085  */
1086 void vm_unmap_aliases(void)
1087 {
1088 	unsigned long start = ULONG_MAX, end = 0;
1089 	int cpu;
1090 	int flush = 0;
1091 
1092 	if (unlikely(!vmap_initialized))
1093 		return;
1094 
1095 	might_sleep();
1096 
1097 	for_each_possible_cpu(cpu) {
1098 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1099 		struct vmap_block *vb;
1100 
1101 		rcu_read_lock();
1102 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1103 			spin_lock(&vb->lock);
1104 			if (vb->dirty) {
1105 				unsigned long va_start = vb->va->va_start;
1106 				unsigned long s, e;
1107 
1108 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1109 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1110 
1111 				start = min(s, start);
1112 				end   = max(e, end);
1113 
1114 				flush = 1;
1115 			}
1116 			spin_unlock(&vb->lock);
1117 		}
1118 		rcu_read_unlock();
1119 	}
1120 
1121 	mutex_lock(&vmap_purge_lock);
1122 	purge_fragmented_blocks_allcpus();
1123 	if (!__purge_vmap_area_lazy(start, end) && flush)
1124 		flush_tlb_kernel_range(start, end);
1125 	mutex_unlock(&vmap_purge_lock);
1126 }
1127 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1128 
1129 /**
1130  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1131  * @mem: the pointer returned by vm_map_ram
1132  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1133  */
1134 void vm_unmap_ram(const void *mem, unsigned int count)
1135 {
1136 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1137 	unsigned long addr = (unsigned long)mem;
1138 	struct vmap_area *va;
1139 
1140 	might_sleep();
1141 	BUG_ON(!addr);
1142 	BUG_ON(addr < VMALLOC_START);
1143 	BUG_ON(addr > VMALLOC_END);
1144 	BUG_ON(!PAGE_ALIGNED(addr));
1145 
1146 	debug_check_no_locks_freed(mem, size);
1147 	vmap_debug_free_range(addr, addr+size);
1148 
1149 	if (likely(count <= VMAP_MAX_ALLOC)) {
1150 		vb_free(mem, size);
1151 		return;
1152 	}
1153 
1154 	va = find_vmap_area(addr);
1155 	BUG_ON(!va);
1156 	free_unmap_vmap_area(va);
1157 }
1158 EXPORT_SYMBOL(vm_unmap_ram);
1159 
1160 /**
1161  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1162  * @pages: an array of pointers to the pages to be mapped
1163  * @count: number of pages
1164  * @node: prefer to allocate data structures on this node
1165  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1166  *
1167  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1168  * faster than vmap so it's good.  But if you mix long-life and short-life
1169  * objects with vm_map_ram(), it could consume lots of address space through
1170  * fragmentation (especially on a 32bit machine).  You could see failures in
1171  * the end.  Please use this function for short-lived objects.
1172  *
1173  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1174  */
1175 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1176 {
1177 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1178 	unsigned long addr;
1179 	void *mem;
1180 
1181 	if (likely(count <= VMAP_MAX_ALLOC)) {
1182 		mem = vb_alloc(size, GFP_KERNEL);
1183 		if (IS_ERR(mem))
1184 			return NULL;
1185 		addr = (unsigned long)mem;
1186 	} else {
1187 		struct vmap_area *va;
1188 		va = alloc_vmap_area(size, PAGE_SIZE,
1189 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1190 		if (IS_ERR(va))
1191 			return NULL;
1192 
1193 		addr = va->va_start;
1194 		mem = (void *)addr;
1195 	}
1196 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1197 		vm_unmap_ram(mem, count);
1198 		return NULL;
1199 	}
1200 	return mem;
1201 }
1202 EXPORT_SYMBOL(vm_map_ram);
1203 
1204 static struct vm_struct *vmlist __initdata;
1205 /**
1206  * vm_area_add_early - add vmap area early during boot
1207  * @vm: vm_struct to add
1208  *
1209  * This function is used to add fixed kernel vm area to vmlist before
1210  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1211  * should contain proper values and the other fields should be zero.
1212  *
1213  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1214  */
1215 void __init vm_area_add_early(struct vm_struct *vm)
1216 {
1217 	struct vm_struct *tmp, **p;
1218 
1219 	BUG_ON(vmap_initialized);
1220 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1221 		if (tmp->addr >= vm->addr) {
1222 			BUG_ON(tmp->addr < vm->addr + vm->size);
1223 			break;
1224 		} else
1225 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1226 	}
1227 	vm->next = *p;
1228 	*p = vm;
1229 }
1230 
1231 /**
1232  * vm_area_register_early - register vmap area early during boot
1233  * @vm: vm_struct to register
1234  * @align: requested alignment
1235  *
1236  * This function is used to register kernel vm area before
1237  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1238  * proper values on entry and other fields should be zero.  On return,
1239  * vm->addr contains the allocated address.
1240  *
1241  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1242  */
1243 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1244 {
1245 	static size_t vm_init_off __initdata;
1246 	unsigned long addr;
1247 
1248 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1249 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1250 
1251 	vm->addr = (void *)addr;
1252 
1253 	vm_area_add_early(vm);
1254 }
1255 
1256 void __init vmalloc_init(void)
1257 {
1258 	struct vmap_area *va;
1259 	struct vm_struct *tmp;
1260 	int i;
1261 
1262 	for_each_possible_cpu(i) {
1263 		struct vmap_block_queue *vbq;
1264 		struct vfree_deferred *p;
1265 
1266 		vbq = &per_cpu(vmap_block_queue, i);
1267 		spin_lock_init(&vbq->lock);
1268 		INIT_LIST_HEAD(&vbq->free);
1269 		p = &per_cpu(vfree_deferred, i);
1270 		init_llist_head(&p->list);
1271 		INIT_WORK(&p->wq, free_work);
1272 	}
1273 
1274 	/* Import existing vmlist entries. */
1275 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1276 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1277 		va->flags = VM_VM_AREA;
1278 		va->va_start = (unsigned long)tmp->addr;
1279 		va->va_end = va->va_start + tmp->size;
1280 		va->vm = tmp;
1281 		__insert_vmap_area(va);
1282 	}
1283 
1284 	vmap_area_pcpu_hole = VMALLOC_END;
1285 
1286 	vmap_initialized = true;
1287 }
1288 
1289 /**
1290  * map_kernel_range_noflush - map kernel VM area with the specified pages
1291  * @addr: start of the VM area to map
1292  * @size: size of the VM area to map
1293  * @prot: page protection flags to use
1294  * @pages: pages to map
1295  *
1296  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1297  * specify should have been allocated using get_vm_area() and its
1298  * friends.
1299  *
1300  * NOTE:
1301  * This function does NOT do any cache flushing.  The caller is
1302  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1303  * before calling this function.
1304  *
1305  * RETURNS:
1306  * The number of pages mapped on success, -errno on failure.
1307  */
1308 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1309 			     pgprot_t prot, struct page **pages)
1310 {
1311 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1312 }
1313 
1314 /**
1315  * unmap_kernel_range_noflush - unmap kernel VM area
1316  * @addr: start of the VM area to unmap
1317  * @size: size of the VM area to unmap
1318  *
1319  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1320  * specify should have been allocated using get_vm_area() and its
1321  * friends.
1322  *
1323  * NOTE:
1324  * This function does NOT do any cache flushing.  The caller is
1325  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1326  * before calling this function and flush_tlb_kernel_range() after.
1327  */
1328 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1329 {
1330 	vunmap_page_range(addr, addr + size);
1331 }
1332 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1333 
1334 /**
1335  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1336  * @addr: start of the VM area to unmap
1337  * @size: size of the VM area to unmap
1338  *
1339  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1340  * the unmapping and tlb after.
1341  */
1342 void unmap_kernel_range(unsigned long addr, unsigned long size)
1343 {
1344 	unsigned long end = addr + size;
1345 
1346 	flush_cache_vunmap(addr, end);
1347 	vunmap_page_range(addr, end);
1348 	flush_tlb_kernel_range(addr, end);
1349 }
1350 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1351 
1352 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1353 {
1354 	unsigned long addr = (unsigned long)area->addr;
1355 	unsigned long end = addr + get_vm_area_size(area);
1356 	int err;
1357 
1358 	err = vmap_page_range(addr, end, prot, pages);
1359 
1360 	return err > 0 ? 0 : err;
1361 }
1362 EXPORT_SYMBOL_GPL(map_vm_area);
1363 
1364 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1365 			      unsigned long flags, const void *caller)
1366 {
1367 	spin_lock(&vmap_area_lock);
1368 	vm->flags = flags;
1369 	vm->addr = (void *)va->va_start;
1370 	vm->size = va->va_end - va->va_start;
1371 	vm->caller = caller;
1372 	va->vm = vm;
1373 	va->flags |= VM_VM_AREA;
1374 	spin_unlock(&vmap_area_lock);
1375 }
1376 
1377 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1378 {
1379 	/*
1380 	 * Before removing VM_UNINITIALIZED,
1381 	 * we should make sure that vm has proper values.
1382 	 * Pair with smp_rmb() in show_numa_info().
1383 	 */
1384 	smp_wmb();
1385 	vm->flags &= ~VM_UNINITIALIZED;
1386 }
1387 
1388 static struct vm_struct *__get_vm_area_node(unsigned long size,
1389 		unsigned long align, unsigned long flags, unsigned long start,
1390 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1391 {
1392 	struct vmap_area *va;
1393 	struct vm_struct *area;
1394 
1395 	BUG_ON(in_interrupt());
1396 	size = PAGE_ALIGN(size);
1397 	if (unlikely(!size))
1398 		return NULL;
1399 
1400 	if (flags & VM_IOREMAP)
1401 		align = 1ul << clamp_t(int, get_count_order_long(size),
1402 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1403 
1404 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1405 	if (unlikely(!area))
1406 		return NULL;
1407 
1408 	if (!(flags & VM_NO_GUARD))
1409 		size += PAGE_SIZE;
1410 
1411 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1412 	if (IS_ERR(va)) {
1413 		kfree(area);
1414 		return NULL;
1415 	}
1416 
1417 	setup_vmalloc_vm(area, va, flags, caller);
1418 
1419 	return area;
1420 }
1421 
1422 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1423 				unsigned long start, unsigned long end)
1424 {
1425 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1426 				  GFP_KERNEL, __builtin_return_address(0));
1427 }
1428 EXPORT_SYMBOL_GPL(__get_vm_area);
1429 
1430 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1431 				       unsigned long start, unsigned long end,
1432 				       const void *caller)
1433 {
1434 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1435 				  GFP_KERNEL, caller);
1436 }
1437 
1438 /**
1439  *	get_vm_area  -  reserve a contiguous kernel virtual area
1440  *	@size:		size of the area
1441  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1442  *
1443  *	Search an area of @size in the kernel virtual mapping area,
1444  *	and reserved it for out purposes.  Returns the area descriptor
1445  *	on success or %NULL on failure.
1446  */
1447 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1448 {
1449 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1450 				  NUMA_NO_NODE, GFP_KERNEL,
1451 				  __builtin_return_address(0));
1452 }
1453 
1454 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1455 				const void *caller)
1456 {
1457 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1458 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1459 }
1460 
1461 /**
1462  *	find_vm_area  -  find a continuous kernel virtual area
1463  *	@addr:		base address
1464  *
1465  *	Search for the kernel VM area starting at @addr, and return it.
1466  *	It is up to the caller to do all required locking to keep the returned
1467  *	pointer valid.
1468  */
1469 struct vm_struct *find_vm_area(const void *addr)
1470 {
1471 	struct vmap_area *va;
1472 
1473 	va = find_vmap_area((unsigned long)addr);
1474 	if (va && va->flags & VM_VM_AREA)
1475 		return va->vm;
1476 
1477 	return NULL;
1478 }
1479 
1480 /**
1481  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1482  *	@addr:		base address
1483  *
1484  *	Search for the kernel VM area starting at @addr, and remove it.
1485  *	This function returns the found VM area, but using it is NOT safe
1486  *	on SMP machines, except for its size or flags.
1487  */
1488 struct vm_struct *remove_vm_area(const void *addr)
1489 {
1490 	struct vmap_area *va;
1491 
1492 	might_sleep();
1493 
1494 	va = find_vmap_area((unsigned long)addr);
1495 	if (va && va->flags & VM_VM_AREA) {
1496 		struct vm_struct *vm = va->vm;
1497 
1498 		spin_lock(&vmap_area_lock);
1499 		va->vm = NULL;
1500 		va->flags &= ~VM_VM_AREA;
1501 		va->flags |= VM_LAZY_FREE;
1502 		spin_unlock(&vmap_area_lock);
1503 
1504 		vmap_debug_free_range(va->va_start, va->va_end);
1505 		kasan_free_shadow(vm);
1506 		free_unmap_vmap_area(va);
1507 
1508 		return vm;
1509 	}
1510 	return NULL;
1511 }
1512 
1513 static void __vunmap(const void *addr, int deallocate_pages)
1514 {
1515 	struct vm_struct *area;
1516 
1517 	if (!addr)
1518 		return;
1519 
1520 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1521 			addr))
1522 		return;
1523 
1524 	area = remove_vm_area(addr);
1525 	if (unlikely(!area)) {
1526 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1527 				addr);
1528 		return;
1529 	}
1530 
1531 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1532 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1533 
1534 	if (deallocate_pages) {
1535 		int i;
1536 
1537 		for (i = 0; i < area->nr_pages; i++) {
1538 			struct page *page = area->pages[i];
1539 
1540 			BUG_ON(!page);
1541 			__free_pages(page, 0);
1542 		}
1543 
1544 		kvfree(area->pages);
1545 	}
1546 
1547 	kfree(area);
1548 	return;
1549 }
1550 
1551 static inline void __vfree_deferred(const void *addr)
1552 {
1553 	/*
1554 	 * Use raw_cpu_ptr() because this can be called from preemptible
1555 	 * context. Preemption is absolutely fine here, because the llist_add()
1556 	 * implementation is lockless, so it works even if we are adding to
1557 	 * nother cpu's list.  schedule_work() should be fine with this too.
1558 	 */
1559 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1560 
1561 	if (llist_add((struct llist_node *)addr, &p->list))
1562 		schedule_work(&p->wq);
1563 }
1564 
1565 /**
1566  *	vfree_atomic  -  release memory allocated by vmalloc()
1567  *	@addr:		memory base address
1568  *
1569  *	This one is just like vfree() but can be called in any atomic context
1570  *	except NMIs.
1571  */
1572 void vfree_atomic(const void *addr)
1573 {
1574 	BUG_ON(in_nmi());
1575 
1576 	kmemleak_free(addr);
1577 
1578 	if (!addr)
1579 		return;
1580 	__vfree_deferred(addr);
1581 }
1582 
1583 /**
1584  *	vfree  -  release memory allocated by vmalloc()
1585  *	@addr:		memory base address
1586  *
1587  *	Free the virtually continuous memory area starting at @addr, as
1588  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1589  *	NULL, no operation is performed.
1590  *
1591  *	Must not be called in NMI context (strictly speaking, only if we don't
1592  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1593  *	conventions for vfree() arch-depenedent would be a really bad idea)
1594  *
1595  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1596  */
1597 void vfree(const void *addr)
1598 {
1599 	BUG_ON(in_nmi());
1600 
1601 	kmemleak_free(addr);
1602 
1603 	if (!addr)
1604 		return;
1605 	if (unlikely(in_interrupt()))
1606 		__vfree_deferred(addr);
1607 	else
1608 		__vunmap(addr, 1);
1609 }
1610 EXPORT_SYMBOL(vfree);
1611 
1612 /**
1613  *	vunmap  -  release virtual mapping obtained by vmap()
1614  *	@addr:		memory base address
1615  *
1616  *	Free the virtually contiguous memory area starting at @addr,
1617  *	which was created from the page array passed to vmap().
1618  *
1619  *	Must not be called in interrupt context.
1620  */
1621 void vunmap(const void *addr)
1622 {
1623 	BUG_ON(in_interrupt());
1624 	might_sleep();
1625 	if (addr)
1626 		__vunmap(addr, 0);
1627 }
1628 EXPORT_SYMBOL(vunmap);
1629 
1630 /**
1631  *	vmap  -  map an array of pages into virtually contiguous space
1632  *	@pages:		array of page pointers
1633  *	@count:		number of pages to map
1634  *	@flags:		vm_area->flags
1635  *	@prot:		page protection for the mapping
1636  *
1637  *	Maps @count pages from @pages into contiguous kernel virtual
1638  *	space.
1639  */
1640 void *vmap(struct page **pages, unsigned int count,
1641 		unsigned long flags, pgprot_t prot)
1642 {
1643 	struct vm_struct *area;
1644 	unsigned long size;		/* In bytes */
1645 
1646 	might_sleep();
1647 
1648 	if (count > totalram_pages)
1649 		return NULL;
1650 
1651 	size = (unsigned long)count << PAGE_SHIFT;
1652 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1653 	if (!area)
1654 		return NULL;
1655 
1656 	if (map_vm_area(area, prot, pages)) {
1657 		vunmap(area->addr);
1658 		return NULL;
1659 	}
1660 
1661 	return area->addr;
1662 }
1663 EXPORT_SYMBOL(vmap);
1664 
1665 static void *__vmalloc_node(unsigned long size, unsigned long align,
1666 			    gfp_t gfp_mask, pgprot_t prot,
1667 			    int node, const void *caller);
1668 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1669 				 pgprot_t prot, int node)
1670 {
1671 	struct page **pages;
1672 	unsigned int nr_pages, array_size, i;
1673 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1674 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1675 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1676 					0 :
1677 					__GFP_HIGHMEM;
1678 
1679 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1680 	array_size = (nr_pages * sizeof(struct page *));
1681 
1682 	area->nr_pages = nr_pages;
1683 	/* Please note that the recursion is strictly bounded. */
1684 	if (array_size > PAGE_SIZE) {
1685 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1686 				PAGE_KERNEL, node, area->caller);
1687 	} else {
1688 		pages = kmalloc_node(array_size, nested_gfp, node);
1689 	}
1690 	area->pages = pages;
1691 	if (!area->pages) {
1692 		remove_vm_area(area->addr);
1693 		kfree(area);
1694 		return NULL;
1695 	}
1696 
1697 	for (i = 0; i < area->nr_pages; i++) {
1698 		struct page *page;
1699 
1700 		if (fatal_signal_pending(current)) {
1701 			area->nr_pages = i;
1702 			goto fail_no_warn;
1703 		}
1704 
1705 		if (node == NUMA_NO_NODE)
1706 			page = alloc_page(alloc_mask|highmem_mask);
1707 		else
1708 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1709 
1710 		if (unlikely(!page)) {
1711 			/* Successfully allocated i pages, free them in __vunmap() */
1712 			area->nr_pages = i;
1713 			goto fail;
1714 		}
1715 		area->pages[i] = page;
1716 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1717 			cond_resched();
1718 	}
1719 
1720 	if (map_vm_area(area, prot, pages))
1721 		goto fail;
1722 	return area->addr;
1723 
1724 fail:
1725 	warn_alloc(gfp_mask, NULL,
1726 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1727 			  (area->nr_pages*PAGE_SIZE), area->size);
1728 fail_no_warn:
1729 	vfree(area->addr);
1730 	return NULL;
1731 }
1732 
1733 /**
1734  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1735  *	@size:		allocation size
1736  *	@align:		desired alignment
1737  *	@start:		vm area range start
1738  *	@end:		vm area range end
1739  *	@gfp_mask:	flags for the page level allocator
1740  *	@prot:		protection mask for the allocated pages
1741  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1742  *	@node:		node to use for allocation or NUMA_NO_NODE
1743  *	@caller:	caller's return address
1744  *
1745  *	Allocate enough pages to cover @size from the page level
1746  *	allocator with @gfp_mask flags.  Map them into contiguous
1747  *	kernel virtual space, using a pagetable protection of @prot.
1748  */
1749 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1750 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1751 			pgprot_t prot, unsigned long vm_flags, int node,
1752 			const void *caller)
1753 {
1754 	struct vm_struct *area;
1755 	void *addr;
1756 	unsigned long real_size = size;
1757 
1758 	size = PAGE_ALIGN(size);
1759 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1760 		goto fail;
1761 
1762 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1763 				vm_flags, start, end, node, gfp_mask, caller);
1764 	if (!area)
1765 		goto fail;
1766 
1767 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1768 	if (!addr)
1769 		return NULL;
1770 
1771 	/*
1772 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1773 	 * flag. It means that vm_struct is not fully initialized.
1774 	 * Now, it is fully initialized, so remove this flag here.
1775 	 */
1776 	clear_vm_uninitialized_flag(area);
1777 
1778 	kmemleak_vmalloc(area, size, gfp_mask);
1779 
1780 	return addr;
1781 
1782 fail:
1783 	warn_alloc(gfp_mask, NULL,
1784 			  "vmalloc: allocation failure: %lu bytes", real_size);
1785 	return NULL;
1786 }
1787 
1788 /**
1789  *	__vmalloc_node  -  allocate virtually contiguous memory
1790  *	@size:		allocation size
1791  *	@align:		desired alignment
1792  *	@gfp_mask:	flags for the page level allocator
1793  *	@prot:		protection mask for the allocated pages
1794  *	@node:		node to use for allocation or NUMA_NO_NODE
1795  *	@caller:	caller's return address
1796  *
1797  *	Allocate enough pages to cover @size from the page level
1798  *	allocator with @gfp_mask flags.  Map them into contiguous
1799  *	kernel virtual space, using a pagetable protection of @prot.
1800  *
1801  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1802  *	and __GFP_NOFAIL are not supported
1803  *
1804  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1805  *	with mm people.
1806  *
1807  */
1808 static void *__vmalloc_node(unsigned long size, unsigned long align,
1809 			    gfp_t gfp_mask, pgprot_t prot,
1810 			    int node, const void *caller)
1811 {
1812 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1813 				gfp_mask, prot, 0, node, caller);
1814 }
1815 
1816 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1817 {
1818 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1819 				__builtin_return_address(0));
1820 }
1821 EXPORT_SYMBOL(__vmalloc);
1822 
1823 static inline void *__vmalloc_node_flags(unsigned long size,
1824 					int node, gfp_t flags)
1825 {
1826 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1827 					node, __builtin_return_address(0));
1828 }
1829 
1830 
1831 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1832 				  void *caller)
1833 {
1834 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1835 }
1836 
1837 /**
1838  *	vmalloc  -  allocate virtually contiguous memory
1839  *	@size:		allocation size
1840  *	Allocate enough pages to cover @size from the page level
1841  *	allocator and map them into contiguous kernel virtual space.
1842  *
1843  *	For tight control over page level allocator and protection flags
1844  *	use __vmalloc() instead.
1845  */
1846 void *vmalloc(unsigned long size)
1847 {
1848 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1849 				    GFP_KERNEL);
1850 }
1851 EXPORT_SYMBOL(vmalloc);
1852 
1853 /**
1854  *	vzalloc - allocate virtually contiguous memory with zero fill
1855  *	@size:	allocation size
1856  *	Allocate enough pages to cover @size from the page level
1857  *	allocator and map them into contiguous kernel virtual space.
1858  *	The memory allocated is set to zero.
1859  *
1860  *	For tight control over page level allocator and protection flags
1861  *	use __vmalloc() instead.
1862  */
1863 void *vzalloc(unsigned long size)
1864 {
1865 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1866 				GFP_KERNEL | __GFP_ZERO);
1867 }
1868 EXPORT_SYMBOL(vzalloc);
1869 
1870 /**
1871  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1872  * @size: allocation size
1873  *
1874  * The resulting memory area is zeroed so it can be mapped to userspace
1875  * without leaking data.
1876  */
1877 void *vmalloc_user(unsigned long size)
1878 {
1879 	struct vm_struct *area;
1880 	void *ret;
1881 
1882 	ret = __vmalloc_node(size, SHMLBA,
1883 			     GFP_KERNEL | __GFP_ZERO,
1884 			     PAGE_KERNEL, NUMA_NO_NODE,
1885 			     __builtin_return_address(0));
1886 	if (ret) {
1887 		area = find_vm_area(ret);
1888 		area->flags |= VM_USERMAP;
1889 	}
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL(vmalloc_user);
1893 
1894 /**
1895  *	vmalloc_node  -  allocate memory on a specific node
1896  *	@size:		allocation size
1897  *	@node:		numa node
1898  *
1899  *	Allocate enough pages to cover @size from the page level
1900  *	allocator and map them into contiguous kernel virtual space.
1901  *
1902  *	For tight control over page level allocator and protection flags
1903  *	use __vmalloc() instead.
1904  */
1905 void *vmalloc_node(unsigned long size, int node)
1906 {
1907 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1908 					node, __builtin_return_address(0));
1909 }
1910 EXPORT_SYMBOL(vmalloc_node);
1911 
1912 /**
1913  * vzalloc_node - allocate memory on a specific node with zero fill
1914  * @size:	allocation size
1915  * @node:	numa node
1916  *
1917  * Allocate enough pages to cover @size from the page level
1918  * allocator and map them into contiguous kernel virtual space.
1919  * The memory allocated is set to zero.
1920  *
1921  * For tight control over page level allocator and protection flags
1922  * use __vmalloc_node() instead.
1923  */
1924 void *vzalloc_node(unsigned long size, int node)
1925 {
1926 	return __vmalloc_node_flags(size, node,
1927 			 GFP_KERNEL | __GFP_ZERO);
1928 }
1929 EXPORT_SYMBOL(vzalloc_node);
1930 
1931 #ifndef PAGE_KERNEL_EXEC
1932 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1933 #endif
1934 
1935 /**
1936  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1937  *	@size:		allocation size
1938  *
1939  *	Kernel-internal function to allocate enough pages to cover @size
1940  *	the page level allocator and map them into contiguous and
1941  *	executable kernel virtual space.
1942  *
1943  *	For tight control over page level allocator and protection flags
1944  *	use __vmalloc() instead.
1945  */
1946 
1947 void *vmalloc_exec(unsigned long size)
1948 {
1949 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1950 			      NUMA_NO_NODE, __builtin_return_address(0));
1951 }
1952 
1953 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1954 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1955 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1956 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1957 #else
1958 #define GFP_VMALLOC32 GFP_KERNEL
1959 #endif
1960 
1961 /**
1962  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1963  *	@size:		allocation size
1964  *
1965  *	Allocate enough 32bit PA addressable pages to cover @size from the
1966  *	page level allocator and map them into contiguous kernel virtual space.
1967  */
1968 void *vmalloc_32(unsigned long size)
1969 {
1970 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1971 			      NUMA_NO_NODE, __builtin_return_address(0));
1972 }
1973 EXPORT_SYMBOL(vmalloc_32);
1974 
1975 /**
1976  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1977  *	@size:		allocation size
1978  *
1979  * The resulting memory area is 32bit addressable and zeroed so it can be
1980  * mapped to userspace without leaking data.
1981  */
1982 void *vmalloc_32_user(unsigned long size)
1983 {
1984 	struct vm_struct *area;
1985 	void *ret;
1986 
1987 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1988 			     NUMA_NO_NODE, __builtin_return_address(0));
1989 	if (ret) {
1990 		area = find_vm_area(ret);
1991 		area->flags |= VM_USERMAP;
1992 	}
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL(vmalloc_32_user);
1996 
1997 /*
1998  * small helper routine , copy contents to buf from addr.
1999  * If the page is not present, fill zero.
2000  */
2001 
2002 static int aligned_vread(char *buf, char *addr, unsigned long count)
2003 {
2004 	struct page *p;
2005 	int copied = 0;
2006 
2007 	while (count) {
2008 		unsigned long offset, length;
2009 
2010 		offset = offset_in_page(addr);
2011 		length = PAGE_SIZE - offset;
2012 		if (length > count)
2013 			length = count;
2014 		p = vmalloc_to_page(addr);
2015 		/*
2016 		 * To do safe access to this _mapped_ area, we need
2017 		 * lock. But adding lock here means that we need to add
2018 		 * overhead of vmalloc()/vfree() calles for this _debug_
2019 		 * interface, rarely used. Instead of that, we'll use
2020 		 * kmap() and get small overhead in this access function.
2021 		 */
2022 		if (p) {
2023 			/*
2024 			 * we can expect USER0 is not used (see vread/vwrite's
2025 			 * function description)
2026 			 */
2027 			void *map = kmap_atomic(p);
2028 			memcpy(buf, map + offset, length);
2029 			kunmap_atomic(map);
2030 		} else
2031 			memset(buf, 0, length);
2032 
2033 		addr += length;
2034 		buf += length;
2035 		copied += length;
2036 		count -= length;
2037 	}
2038 	return copied;
2039 }
2040 
2041 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2042 {
2043 	struct page *p;
2044 	int copied = 0;
2045 
2046 	while (count) {
2047 		unsigned long offset, length;
2048 
2049 		offset = offset_in_page(addr);
2050 		length = PAGE_SIZE - offset;
2051 		if (length > count)
2052 			length = count;
2053 		p = vmalloc_to_page(addr);
2054 		/*
2055 		 * To do safe access to this _mapped_ area, we need
2056 		 * lock. But adding lock here means that we need to add
2057 		 * overhead of vmalloc()/vfree() calles for this _debug_
2058 		 * interface, rarely used. Instead of that, we'll use
2059 		 * kmap() and get small overhead in this access function.
2060 		 */
2061 		if (p) {
2062 			/*
2063 			 * we can expect USER0 is not used (see vread/vwrite's
2064 			 * function description)
2065 			 */
2066 			void *map = kmap_atomic(p);
2067 			memcpy(map + offset, buf, length);
2068 			kunmap_atomic(map);
2069 		}
2070 		addr += length;
2071 		buf += length;
2072 		copied += length;
2073 		count -= length;
2074 	}
2075 	return copied;
2076 }
2077 
2078 /**
2079  *	vread() -  read vmalloc area in a safe way.
2080  *	@buf:		buffer for reading data
2081  *	@addr:		vm address.
2082  *	@count:		number of bytes to be read.
2083  *
2084  *	Returns # of bytes which addr and buf should be increased.
2085  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2086  *	includes any intersect with alive vmalloc area.
2087  *
2088  *	This function checks that addr is a valid vmalloc'ed area, and
2089  *	copy data from that area to a given buffer. If the given memory range
2090  *	of [addr...addr+count) includes some valid address, data is copied to
2091  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2092  *	IOREMAP area is treated as memory hole and no copy is done.
2093  *
2094  *	If [addr...addr+count) doesn't includes any intersects with alive
2095  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2096  *
2097  *	Note: In usual ops, vread() is never necessary because the caller
2098  *	should know vmalloc() area is valid and can use memcpy().
2099  *	This is for routines which have to access vmalloc area without
2100  *	any informaion, as /dev/kmem.
2101  *
2102  */
2103 
2104 long vread(char *buf, char *addr, unsigned long count)
2105 {
2106 	struct vmap_area *va;
2107 	struct vm_struct *vm;
2108 	char *vaddr, *buf_start = buf;
2109 	unsigned long buflen = count;
2110 	unsigned long n;
2111 
2112 	/* Don't allow overflow */
2113 	if ((unsigned long) addr + count < count)
2114 		count = -(unsigned long) addr;
2115 
2116 	spin_lock(&vmap_area_lock);
2117 	list_for_each_entry(va, &vmap_area_list, list) {
2118 		if (!count)
2119 			break;
2120 
2121 		if (!(va->flags & VM_VM_AREA))
2122 			continue;
2123 
2124 		vm = va->vm;
2125 		vaddr = (char *) vm->addr;
2126 		if (addr >= vaddr + get_vm_area_size(vm))
2127 			continue;
2128 		while (addr < vaddr) {
2129 			if (count == 0)
2130 				goto finished;
2131 			*buf = '\0';
2132 			buf++;
2133 			addr++;
2134 			count--;
2135 		}
2136 		n = vaddr + get_vm_area_size(vm) - addr;
2137 		if (n > count)
2138 			n = count;
2139 		if (!(vm->flags & VM_IOREMAP))
2140 			aligned_vread(buf, addr, n);
2141 		else /* IOREMAP area is treated as memory hole */
2142 			memset(buf, 0, n);
2143 		buf += n;
2144 		addr += n;
2145 		count -= n;
2146 	}
2147 finished:
2148 	spin_unlock(&vmap_area_lock);
2149 
2150 	if (buf == buf_start)
2151 		return 0;
2152 	/* zero-fill memory holes */
2153 	if (buf != buf_start + buflen)
2154 		memset(buf, 0, buflen - (buf - buf_start));
2155 
2156 	return buflen;
2157 }
2158 
2159 /**
2160  *	vwrite() -  write vmalloc area in a safe way.
2161  *	@buf:		buffer for source data
2162  *	@addr:		vm address.
2163  *	@count:		number of bytes to be read.
2164  *
2165  *	Returns # of bytes which addr and buf should be incresed.
2166  *	(same number to @count).
2167  *	If [addr...addr+count) doesn't includes any intersect with valid
2168  *	vmalloc area, returns 0.
2169  *
2170  *	This function checks that addr is a valid vmalloc'ed area, and
2171  *	copy data from a buffer to the given addr. If specified range of
2172  *	[addr...addr+count) includes some valid address, data is copied from
2173  *	proper area of @buf. If there are memory holes, no copy to hole.
2174  *	IOREMAP area is treated as memory hole and no copy is done.
2175  *
2176  *	If [addr...addr+count) doesn't includes any intersects with alive
2177  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2178  *
2179  *	Note: In usual ops, vwrite() is never necessary because the caller
2180  *	should know vmalloc() area is valid and can use memcpy().
2181  *	This is for routines which have to access vmalloc area without
2182  *	any informaion, as /dev/kmem.
2183  */
2184 
2185 long vwrite(char *buf, char *addr, unsigned long count)
2186 {
2187 	struct vmap_area *va;
2188 	struct vm_struct *vm;
2189 	char *vaddr;
2190 	unsigned long n, buflen;
2191 	int copied = 0;
2192 
2193 	/* Don't allow overflow */
2194 	if ((unsigned long) addr + count < count)
2195 		count = -(unsigned long) addr;
2196 	buflen = count;
2197 
2198 	spin_lock(&vmap_area_lock);
2199 	list_for_each_entry(va, &vmap_area_list, list) {
2200 		if (!count)
2201 			break;
2202 
2203 		if (!(va->flags & VM_VM_AREA))
2204 			continue;
2205 
2206 		vm = va->vm;
2207 		vaddr = (char *) vm->addr;
2208 		if (addr >= vaddr + get_vm_area_size(vm))
2209 			continue;
2210 		while (addr < vaddr) {
2211 			if (count == 0)
2212 				goto finished;
2213 			buf++;
2214 			addr++;
2215 			count--;
2216 		}
2217 		n = vaddr + get_vm_area_size(vm) - addr;
2218 		if (n > count)
2219 			n = count;
2220 		if (!(vm->flags & VM_IOREMAP)) {
2221 			aligned_vwrite(buf, addr, n);
2222 			copied++;
2223 		}
2224 		buf += n;
2225 		addr += n;
2226 		count -= n;
2227 	}
2228 finished:
2229 	spin_unlock(&vmap_area_lock);
2230 	if (!copied)
2231 		return 0;
2232 	return buflen;
2233 }
2234 
2235 /**
2236  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2237  *	@vma:		vma to cover
2238  *	@uaddr:		target user address to start at
2239  *	@kaddr:		virtual address of vmalloc kernel memory
2240  *	@size:		size of map area
2241  *
2242  *	Returns:	0 for success, -Exxx on failure
2243  *
2244  *	This function checks that @kaddr is a valid vmalloc'ed area,
2245  *	and that it is big enough to cover the range starting at
2246  *	@uaddr in @vma. Will return failure if that criteria isn't
2247  *	met.
2248  *
2249  *	Similar to remap_pfn_range() (see mm/memory.c)
2250  */
2251 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2252 				void *kaddr, unsigned long size)
2253 {
2254 	struct vm_struct *area;
2255 
2256 	size = PAGE_ALIGN(size);
2257 
2258 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2259 		return -EINVAL;
2260 
2261 	area = find_vm_area(kaddr);
2262 	if (!area)
2263 		return -EINVAL;
2264 
2265 	if (!(area->flags & VM_USERMAP))
2266 		return -EINVAL;
2267 
2268 	if (kaddr + size > area->addr + area->size)
2269 		return -EINVAL;
2270 
2271 	do {
2272 		struct page *page = vmalloc_to_page(kaddr);
2273 		int ret;
2274 
2275 		ret = vm_insert_page(vma, uaddr, page);
2276 		if (ret)
2277 			return ret;
2278 
2279 		uaddr += PAGE_SIZE;
2280 		kaddr += PAGE_SIZE;
2281 		size -= PAGE_SIZE;
2282 	} while (size > 0);
2283 
2284 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2285 
2286 	return 0;
2287 }
2288 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2289 
2290 /**
2291  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2292  *	@vma:		vma to cover (map full range of vma)
2293  *	@addr:		vmalloc memory
2294  *	@pgoff:		number of pages into addr before first page to map
2295  *
2296  *	Returns:	0 for success, -Exxx on failure
2297  *
2298  *	This function checks that addr is a valid vmalloc'ed area, and
2299  *	that it is big enough to cover the vma. Will return failure if
2300  *	that criteria isn't met.
2301  *
2302  *	Similar to remap_pfn_range() (see mm/memory.c)
2303  */
2304 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2305 						unsigned long pgoff)
2306 {
2307 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2308 					   addr + (pgoff << PAGE_SHIFT),
2309 					   vma->vm_end - vma->vm_start);
2310 }
2311 EXPORT_SYMBOL(remap_vmalloc_range);
2312 
2313 /*
2314  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2315  * have one.
2316  */
2317 void __weak vmalloc_sync_all(void)
2318 {
2319 }
2320 
2321 
2322 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2323 {
2324 	pte_t ***p = data;
2325 
2326 	if (p) {
2327 		*(*p) = pte;
2328 		(*p)++;
2329 	}
2330 	return 0;
2331 }
2332 
2333 /**
2334  *	alloc_vm_area - allocate a range of kernel address space
2335  *	@size:		size of the area
2336  *	@ptes:		returns the PTEs for the address space
2337  *
2338  *	Returns:	NULL on failure, vm_struct on success
2339  *
2340  *	This function reserves a range of kernel address space, and
2341  *	allocates pagetables to map that range.  No actual mappings
2342  *	are created.
2343  *
2344  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2345  *	allocated for the VM area are returned.
2346  */
2347 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2348 {
2349 	struct vm_struct *area;
2350 
2351 	area = get_vm_area_caller(size, VM_IOREMAP,
2352 				__builtin_return_address(0));
2353 	if (area == NULL)
2354 		return NULL;
2355 
2356 	/*
2357 	 * This ensures that page tables are constructed for this region
2358 	 * of kernel virtual address space and mapped into init_mm.
2359 	 */
2360 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2361 				size, f, ptes ? &ptes : NULL)) {
2362 		free_vm_area(area);
2363 		return NULL;
2364 	}
2365 
2366 	return area;
2367 }
2368 EXPORT_SYMBOL_GPL(alloc_vm_area);
2369 
2370 void free_vm_area(struct vm_struct *area)
2371 {
2372 	struct vm_struct *ret;
2373 	ret = remove_vm_area(area->addr);
2374 	BUG_ON(ret != area);
2375 	kfree(area);
2376 }
2377 EXPORT_SYMBOL_GPL(free_vm_area);
2378 
2379 #ifdef CONFIG_SMP
2380 static struct vmap_area *node_to_va(struct rb_node *n)
2381 {
2382 	return rb_entry_safe(n, struct vmap_area, rb_node);
2383 }
2384 
2385 /**
2386  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2387  * @end: target address
2388  * @pnext: out arg for the next vmap_area
2389  * @pprev: out arg for the previous vmap_area
2390  *
2391  * Returns: %true if either or both of next and prev are found,
2392  *	    %false if no vmap_area exists
2393  *
2394  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2395  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2396  */
2397 static bool pvm_find_next_prev(unsigned long end,
2398 			       struct vmap_area **pnext,
2399 			       struct vmap_area **pprev)
2400 {
2401 	struct rb_node *n = vmap_area_root.rb_node;
2402 	struct vmap_area *va = NULL;
2403 
2404 	while (n) {
2405 		va = rb_entry(n, struct vmap_area, rb_node);
2406 		if (end < va->va_end)
2407 			n = n->rb_left;
2408 		else if (end > va->va_end)
2409 			n = n->rb_right;
2410 		else
2411 			break;
2412 	}
2413 
2414 	if (!va)
2415 		return false;
2416 
2417 	if (va->va_end > end) {
2418 		*pnext = va;
2419 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2420 	} else {
2421 		*pprev = va;
2422 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2423 	}
2424 	return true;
2425 }
2426 
2427 /**
2428  * pvm_determine_end - find the highest aligned address between two vmap_areas
2429  * @pnext: in/out arg for the next vmap_area
2430  * @pprev: in/out arg for the previous vmap_area
2431  * @align: alignment
2432  *
2433  * Returns: determined end address
2434  *
2435  * Find the highest aligned address between *@pnext and *@pprev below
2436  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2437  * down address is between the end addresses of the two vmap_areas.
2438  *
2439  * Please note that the address returned by this function may fall
2440  * inside *@pnext vmap_area.  The caller is responsible for checking
2441  * that.
2442  */
2443 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2444 				       struct vmap_area **pprev,
2445 				       unsigned long align)
2446 {
2447 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2448 	unsigned long addr;
2449 
2450 	if (*pnext)
2451 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2452 	else
2453 		addr = vmalloc_end;
2454 
2455 	while (*pprev && (*pprev)->va_end > addr) {
2456 		*pnext = *pprev;
2457 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2458 	}
2459 
2460 	return addr;
2461 }
2462 
2463 /**
2464  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2465  * @offsets: array containing offset of each area
2466  * @sizes: array containing size of each area
2467  * @nr_vms: the number of areas to allocate
2468  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2469  *
2470  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2471  *	    vm_structs on success, %NULL on failure
2472  *
2473  * Percpu allocator wants to use congruent vm areas so that it can
2474  * maintain the offsets among percpu areas.  This function allocates
2475  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2476  * be scattered pretty far, distance between two areas easily going up
2477  * to gigabytes.  To avoid interacting with regular vmallocs, these
2478  * areas are allocated from top.
2479  *
2480  * Despite its complicated look, this allocator is rather simple.  It
2481  * does everything top-down and scans areas from the end looking for
2482  * matching slot.  While scanning, if any of the areas overlaps with
2483  * existing vmap_area, the base address is pulled down to fit the
2484  * area.  Scanning is repeated till all the areas fit and then all
2485  * necessary data structres are inserted and the result is returned.
2486  */
2487 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2488 				     const size_t *sizes, int nr_vms,
2489 				     size_t align)
2490 {
2491 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2492 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2493 	struct vmap_area **vas, *prev, *next;
2494 	struct vm_struct **vms;
2495 	int area, area2, last_area, term_area;
2496 	unsigned long base, start, end, last_end;
2497 	bool purged = false;
2498 
2499 	/* verify parameters and allocate data structures */
2500 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2501 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2502 		start = offsets[area];
2503 		end = start + sizes[area];
2504 
2505 		/* is everything aligned properly? */
2506 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2507 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2508 
2509 		/* detect the area with the highest address */
2510 		if (start > offsets[last_area])
2511 			last_area = area;
2512 
2513 		for (area2 = 0; area2 < nr_vms; area2++) {
2514 			unsigned long start2 = offsets[area2];
2515 			unsigned long end2 = start2 + sizes[area2];
2516 
2517 			if (area2 == area)
2518 				continue;
2519 
2520 			BUG_ON(start2 >= start && start2 < end);
2521 			BUG_ON(end2 <= end && end2 > start);
2522 		}
2523 	}
2524 	last_end = offsets[last_area] + sizes[last_area];
2525 
2526 	if (vmalloc_end - vmalloc_start < last_end) {
2527 		WARN_ON(true);
2528 		return NULL;
2529 	}
2530 
2531 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2532 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2533 	if (!vas || !vms)
2534 		goto err_free2;
2535 
2536 	for (area = 0; area < nr_vms; area++) {
2537 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2538 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2539 		if (!vas[area] || !vms[area])
2540 			goto err_free;
2541 	}
2542 retry:
2543 	spin_lock(&vmap_area_lock);
2544 
2545 	/* start scanning - we scan from the top, begin with the last area */
2546 	area = term_area = last_area;
2547 	start = offsets[area];
2548 	end = start + sizes[area];
2549 
2550 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2551 		base = vmalloc_end - last_end;
2552 		goto found;
2553 	}
2554 	base = pvm_determine_end(&next, &prev, align) - end;
2555 
2556 	while (true) {
2557 		BUG_ON(next && next->va_end <= base + end);
2558 		BUG_ON(prev && prev->va_end > base + end);
2559 
2560 		/*
2561 		 * base might have underflowed, add last_end before
2562 		 * comparing.
2563 		 */
2564 		if (base + last_end < vmalloc_start + last_end) {
2565 			spin_unlock(&vmap_area_lock);
2566 			if (!purged) {
2567 				purge_vmap_area_lazy();
2568 				purged = true;
2569 				goto retry;
2570 			}
2571 			goto err_free;
2572 		}
2573 
2574 		/*
2575 		 * If next overlaps, move base downwards so that it's
2576 		 * right below next and then recheck.
2577 		 */
2578 		if (next && next->va_start < base + end) {
2579 			base = pvm_determine_end(&next, &prev, align) - end;
2580 			term_area = area;
2581 			continue;
2582 		}
2583 
2584 		/*
2585 		 * If prev overlaps, shift down next and prev and move
2586 		 * base so that it's right below new next and then
2587 		 * recheck.
2588 		 */
2589 		if (prev && prev->va_end > base + start)  {
2590 			next = prev;
2591 			prev = node_to_va(rb_prev(&next->rb_node));
2592 			base = pvm_determine_end(&next, &prev, align) - end;
2593 			term_area = area;
2594 			continue;
2595 		}
2596 
2597 		/*
2598 		 * This area fits, move on to the previous one.  If
2599 		 * the previous one is the terminal one, we're done.
2600 		 */
2601 		area = (area + nr_vms - 1) % nr_vms;
2602 		if (area == term_area)
2603 			break;
2604 		start = offsets[area];
2605 		end = start + sizes[area];
2606 		pvm_find_next_prev(base + end, &next, &prev);
2607 	}
2608 found:
2609 	/* we've found a fitting base, insert all va's */
2610 	for (area = 0; area < nr_vms; area++) {
2611 		struct vmap_area *va = vas[area];
2612 
2613 		va->va_start = base + offsets[area];
2614 		va->va_end = va->va_start + sizes[area];
2615 		__insert_vmap_area(va);
2616 	}
2617 
2618 	vmap_area_pcpu_hole = base + offsets[last_area];
2619 
2620 	spin_unlock(&vmap_area_lock);
2621 
2622 	/* insert all vm's */
2623 	for (area = 0; area < nr_vms; area++)
2624 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2625 				 pcpu_get_vm_areas);
2626 
2627 	kfree(vas);
2628 	return vms;
2629 
2630 err_free:
2631 	for (area = 0; area < nr_vms; area++) {
2632 		kfree(vas[area]);
2633 		kfree(vms[area]);
2634 	}
2635 err_free2:
2636 	kfree(vas);
2637 	kfree(vms);
2638 	return NULL;
2639 }
2640 
2641 /**
2642  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2643  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2644  * @nr_vms: the number of allocated areas
2645  *
2646  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2647  */
2648 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2649 {
2650 	int i;
2651 
2652 	for (i = 0; i < nr_vms; i++)
2653 		free_vm_area(vms[i]);
2654 	kfree(vms);
2655 }
2656 #endif	/* CONFIG_SMP */
2657 
2658 #ifdef CONFIG_PROC_FS
2659 static void *s_start(struct seq_file *m, loff_t *pos)
2660 	__acquires(&vmap_area_lock)
2661 {
2662 	spin_lock(&vmap_area_lock);
2663 	return seq_list_start(&vmap_area_list, *pos);
2664 }
2665 
2666 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2667 {
2668 	return seq_list_next(p, &vmap_area_list, pos);
2669 }
2670 
2671 static void s_stop(struct seq_file *m, void *p)
2672 	__releases(&vmap_area_lock)
2673 {
2674 	spin_unlock(&vmap_area_lock);
2675 }
2676 
2677 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2678 {
2679 	if (IS_ENABLED(CONFIG_NUMA)) {
2680 		unsigned int nr, *counters = m->private;
2681 
2682 		if (!counters)
2683 			return;
2684 
2685 		if (v->flags & VM_UNINITIALIZED)
2686 			return;
2687 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2688 		smp_rmb();
2689 
2690 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2691 
2692 		for (nr = 0; nr < v->nr_pages; nr++)
2693 			counters[page_to_nid(v->pages[nr])]++;
2694 
2695 		for_each_node_state(nr, N_HIGH_MEMORY)
2696 			if (counters[nr])
2697 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2698 	}
2699 }
2700 
2701 static int s_show(struct seq_file *m, void *p)
2702 {
2703 	struct vmap_area *va;
2704 	struct vm_struct *v;
2705 
2706 	va = list_entry(p, struct vmap_area, list);
2707 
2708 	/*
2709 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2710 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2711 	 */
2712 	if (!(va->flags & VM_VM_AREA)) {
2713 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2714 			(void *)va->va_start, (void *)va->va_end,
2715 			va->va_end - va->va_start,
2716 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2717 
2718 		return 0;
2719 	}
2720 
2721 	v = va->vm;
2722 
2723 	seq_printf(m, "0x%pK-0x%pK %7ld",
2724 		v->addr, v->addr + v->size, v->size);
2725 
2726 	if (v->caller)
2727 		seq_printf(m, " %pS", v->caller);
2728 
2729 	if (v->nr_pages)
2730 		seq_printf(m, " pages=%d", v->nr_pages);
2731 
2732 	if (v->phys_addr)
2733 		seq_printf(m, " phys=%pa", &v->phys_addr);
2734 
2735 	if (v->flags & VM_IOREMAP)
2736 		seq_puts(m, " ioremap");
2737 
2738 	if (v->flags & VM_ALLOC)
2739 		seq_puts(m, " vmalloc");
2740 
2741 	if (v->flags & VM_MAP)
2742 		seq_puts(m, " vmap");
2743 
2744 	if (v->flags & VM_USERMAP)
2745 		seq_puts(m, " user");
2746 
2747 	if (is_vmalloc_addr(v->pages))
2748 		seq_puts(m, " vpages");
2749 
2750 	show_numa_info(m, v);
2751 	seq_putc(m, '\n');
2752 	return 0;
2753 }
2754 
2755 static const struct seq_operations vmalloc_op = {
2756 	.start = s_start,
2757 	.next = s_next,
2758 	.stop = s_stop,
2759 	.show = s_show,
2760 };
2761 
2762 static int vmalloc_open(struct inode *inode, struct file *file)
2763 {
2764 	if (IS_ENABLED(CONFIG_NUMA))
2765 		return seq_open_private(file, &vmalloc_op,
2766 					nr_node_ids * sizeof(unsigned int));
2767 	else
2768 		return seq_open(file, &vmalloc_op);
2769 }
2770 
2771 static const struct file_operations proc_vmalloc_operations = {
2772 	.open		= vmalloc_open,
2773 	.read		= seq_read,
2774 	.llseek		= seq_lseek,
2775 	.release	= seq_release_private,
2776 };
2777 
2778 static int __init proc_vmalloc_init(void)
2779 {
2780 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2781 	return 0;
2782 }
2783 module_init(proc_vmalloc_init);
2784 
2785 #endif
2786 
2787