1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/vmalloc.h> 48 49 #include "internal.h" 50 #include "pgalloc-track.h" 51 52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 54 55 static int __init set_nohugeiomap(char *str) 56 { 57 ioremap_max_page_shift = PAGE_SHIFT; 58 return 0; 59 } 60 early_param("nohugeiomap", set_nohugeiomap); 61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 63 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 64 65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 66 static bool __ro_after_init vmap_allow_huge = true; 67 68 static int __init set_nohugevmalloc(char *str) 69 { 70 vmap_allow_huge = false; 71 return 0; 72 } 73 early_param("nohugevmalloc", set_nohugevmalloc); 74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 75 static const bool vmap_allow_huge = false; 76 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 77 78 bool is_vmalloc_addr(const void *x) 79 { 80 unsigned long addr = (unsigned long)kasan_reset_tag(x); 81 82 return addr >= VMALLOC_START && addr < VMALLOC_END; 83 } 84 EXPORT_SYMBOL(is_vmalloc_addr); 85 86 struct vfree_deferred { 87 struct llist_head list; 88 struct work_struct wq; 89 }; 90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 91 92 /*** Page table manipulation functions ***/ 93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 94 phys_addr_t phys_addr, pgprot_t prot, 95 unsigned int max_page_shift, pgtbl_mod_mask *mask) 96 { 97 pte_t *pte; 98 u64 pfn; 99 unsigned long size = PAGE_SIZE; 100 101 pfn = phys_addr >> PAGE_SHIFT; 102 pte = pte_alloc_kernel_track(pmd, addr, mask); 103 if (!pte) 104 return -ENOMEM; 105 do { 106 BUG_ON(!pte_none(ptep_get(pte))); 107 108 #ifdef CONFIG_HUGETLB_PAGE 109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 110 if (size != PAGE_SIZE) { 111 pte_t entry = pfn_pte(pfn, prot); 112 113 entry = arch_make_huge_pte(entry, ilog2(size), 0); 114 set_huge_pte_at(&init_mm, addr, pte, entry, size); 115 pfn += PFN_DOWN(size); 116 continue; 117 } 118 #endif 119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 120 pfn++; 121 } while (pte += PFN_DOWN(size), addr += size, addr != end); 122 *mask |= PGTBL_PTE_MODIFIED; 123 return 0; 124 } 125 126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 127 phys_addr_t phys_addr, pgprot_t prot, 128 unsigned int max_page_shift) 129 { 130 if (max_page_shift < PMD_SHIFT) 131 return 0; 132 133 if (!arch_vmap_pmd_supported(prot)) 134 return 0; 135 136 if ((end - addr) != PMD_SIZE) 137 return 0; 138 139 if (!IS_ALIGNED(addr, PMD_SIZE)) 140 return 0; 141 142 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 143 return 0; 144 145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 146 return 0; 147 148 return pmd_set_huge(pmd, phys_addr, prot); 149 } 150 151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 152 phys_addr_t phys_addr, pgprot_t prot, 153 unsigned int max_page_shift, pgtbl_mod_mask *mask) 154 { 155 pmd_t *pmd; 156 unsigned long next; 157 158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 159 if (!pmd) 160 return -ENOMEM; 161 do { 162 next = pmd_addr_end(addr, end); 163 164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 165 max_page_shift)) { 166 *mask |= PGTBL_PMD_MODIFIED; 167 continue; 168 } 169 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 171 return -ENOMEM; 172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 173 return 0; 174 } 175 176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 177 phys_addr_t phys_addr, pgprot_t prot, 178 unsigned int max_page_shift) 179 { 180 if (max_page_shift < PUD_SHIFT) 181 return 0; 182 183 if (!arch_vmap_pud_supported(prot)) 184 return 0; 185 186 if ((end - addr) != PUD_SIZE) 187 return 0; 188 189 if (!IS_ALIGNED(addr, PUD_SIZE)) 190 return 0; 191 192 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 193 return 0; 194 195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 196 return 0; 197 198 return pud_set_huge(pud, phys_addr, prot); 199 } 200 201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 202 phys_addr_t phys_addr, pgprot_t prot, 203 unsigned int max_page_shift, pgtbl_mod_mask *mask) 204 { 205 pud_t *pud; 206 unsigned long next; 207 208 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 209 if (!pud) 210 return -ENOMEM; 211 do { 212 next = pud_addr_end(addr, end); 213 214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 215 max_page_shift)) { 216 *mask |= PGTBL_PUD_MODIFIED; 217 continue; 218 } 219 220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 221 max_page_shift, mask)) 222 return -ENOMEM; 223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 224 return 0; 225 } 226 227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 228 phys_addr_t phys_addr, pgprot_t prot, 229 unsigned int max_page_shift) 230 { 231 if (max_page_shift < P4D_SHIFT) 232 return 0; 233 234 if (!arch_vmap_p4d_supported(prot)) 235 return 0; 236 237 if ((end - addr) != P4D_SIZE) 238 return 0; 239 240 if (!IS_ALIGNED(addr, P4D_SIZE)) 241 return 0; 242 243 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 244 return 0; 245 246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 247 return 0; 248 249 return p4d_set_huge(p4d, phys_addr, prot); 250 } 251 252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 253 phys_addr_t phys_addr, pgprot_t prot, 254 unsigned int max_page_shift, pgtbl_mod_mask *mask) 255 { 256 p4d_t *p4d; 257 unsigned long next; 258 259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 260 if (!p4d) 261 return -ENOMEM; 262 do { 263 next = p4d_addr_end(addr, end); 264 265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 266 max_page_shift)) { 267 *mask |= PGTBL_P4D_MODIFIED; 268 continue; 269 } 270 271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 272 max_page_shift, mask)) 273 return -ENOMEM; 274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 275 return 0; 276 } 277 278 static int vmap_range_noflush(unsigned long addr, unsigned long end, 279 phys_addr_t phys_addr, pgprot_t prot, 280 unsigned int max_page_shift) 281 { 282 pgd_t *pgd; 283 unsigned long start; 284 unsigned long next; 285 int err; 286 pgtbl_mod_mask mask = 0; 287 288 might_sleep(); 289 BUG_ON(addr >= end); 290 291 start = addr; 292 pgd = pgd_offset_k(addr); 293 do { 294 next = pgd_addr_end(addr, end); 295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 296 max_page_shift, &mask); 297 if (err) 298 break; 299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 300 301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 302 arch_sync_kernel_mappings(start, end); 303 304 return err; 305 } 306 307 int vmap_page_range(unsigned long addr, unsigned long end, 308 phys_addr_t phys_addr, pgprot_t prot) 309 { 310 int err; 311 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 313 ioremap_max_page_shift); 314 flush_cache_vmap(addr, end); 315 if (!err) 316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 317 ioremap_max_page_shift); 318 return err; 319 } 320 321 int ioremap_page_range(unsigned long addr, unsigned long end, 322 phys_addr_t phys_addr, pgprot_t prot) 323 { 324 struct vm_struct *area; 325 326 area = find_vm_area((void *)addr); 327 if (!area || !(area->flags & VM_IOREMAP)) { 328 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 329 return -EINVAL; 330 } 331 if (addr != (unsigned long)area->addr || 332 (void *)end != area->addr + get_vm_area_size(area)) { 333 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 334 addr, end, (long)area->addr, 335 (long)area->addr + get_vm_area_size(area)); 336 return -ERANGE; 337 } 338 return vmap_page_range(addr, end, phys_addr, prot); 339 } 340 341 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 342 pgtbl_mod_mask *mask) 343 { 344 pte_t *pte; 345 346 pte = pte_offset_kernel(pmd, addr); 347 do { 348 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 349 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 350 } while (pte++, addr += PAGE_SIZE, addr != end); 351 *mask |= PGTBL_PTE_MODIFIED; 352 } 353 354 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 355 pgtbl_mod_mask *mask) 356 { 357 pmd_t *pmd; 358 unsigned long next; 359 int cleared; 360 361 pmd = pmd_offset(pud, addr); 362 do { 363 next = pmd_addr_end(addr, end); 364 365 cleared = pmd_clear_huge(pmd); 366 if (cleared || pmd_bad(*pmd)) 367 *mask |= PGTBL_PMD_MODIFIED; 368 369 if (cleared) 370 continue; 371 if (pmd_none_or_clear_bad(pmd)) 372 continue; 373 vunmap_pte_range(pmd, addr, next, mask); 374 375 cond_resched(); 376 } while (pmd++, addr = next, addr != end); 377 } 378 379 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 380 pgtbl_mod_mask *mask) 381 { 382 pud_t *pud; 383 unsigned long next; 384 int cleared; 385 386 pud = pud_offset(p4d, addr); 387 do { 388 next = pud_addr_end(addr, end); 389 390 cleared = pud_clear_huge(pud); 391 if (cleared || pud_bad(*pud)) 392 *mask |= PGTBL_PUD_MODIFIED; 393 394 if (cleared) 395 continue; 396 if (pud_none_or_clear_bad(pud)) 397 continue; 398 vunmap_pmd_range(pud, addr, next, mask); 399 } while (pud++, addr = next, addr != end); 400 } 401 402 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 403 pgtbl_mod_mask *mask) 404 { 405 p4d_t *p4d; 406 unsigned long next; 407 408 p4d = p4d_offset(pgd, addr); 409 do { 410 next = p4d_addr_end(addr, end); 411 412 p4d_clear_huge(p4d); 413 if (p4d_bad(*p4d)) 414 *mask |= PGTBL_P4D_MODIFIED; 415 416 if (p4d_none_or_clear_bad(p4d)) 417 continue; 418 vunmap_pud_range(p4d, addr, next, mask); 419 } while (p4d++, addr = next, addr != end); 420 } 421 422 /* 423 * vunmap_range_noflush is similar to vunmap_range, but does not 424 * flush caches or TLBs. 425 * 426 * The caller is responsible for calling flush_cache_vmap() before calling 427 * this function, and flush_tlb_kernel_range after it has returned 428 * successfully (and before the addresses are expected to cause a page fault 429 * or be re-mapped for something else, if TLB flushes are being delayed or 430 * coalesced). 431 * 432 * This is an internal function only. Do not use outside mm/. 433 */ 434 void __vunmap_range_noflush(unsigned long start, unsigned long end) 435 { 436 unsigned long next; 437 pgd_t *pgd; 438 unsigned long addr = start; 439 pgtbl_mod_mask mask = 0; 440 441 BUG_ON(addr >= end); 442 pgd = pgd_offset_k(addr); 443 do { 444 next = pgd_addr_end(addr, end); 445 if (pgd_bad(*pgd)) 446 mask |= PGTBL_PGD_MODIFIED; 447 if (pgd_none_or_clear_bad(pgd)) 448 continue; 449 vunmap_p4d_range(pgd, addr, next, &mask); 450 } while (pgd++, addr = next, addr != end); 451 452 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 453 arch_sync_kernel_mappings(start, end); 454 } 455 456 void vunmap_range_noflush(unsigned long start, unsigned long end) 457 { 458 kmsan_vunmap_range_noflush(start, end); 459 __vunmap_range_noflush(start, end); 460 } 461 462 /** 463 * vunmap_range - unmap kernel virtual addresses 464 * @addr: start of the VM area to unmap 465 * @end: end of the VM area to unmap (non-inclusive) 466 * 467 * Clears any present PTEs in the virtual address range, flushes TLBs and 468 * caches. Any subsequent access to the address before it has been re-mapped 469 * is a kernel bug. 470 */ 471 void vunmap_range(unsigned long addr, unsigned long end) 472 { 473 flush_cache_vunmap(addr, end); 474 vunmap_range_noflush(addr, end); 475 flush_tlb_kernel_range(addr, end); 476 } 477 478 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 479 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 480 pgtbl_mod_mask *mask) 481 { 482 pte_t *pte; 483 484 /* 485 * nr is a running index into the array which helps higher level 486 * callers keep track of where we're up to. 487 */ 488 489 pte = pte_alloc_kernel_track(pmd, addr, mask); 490 if (!pte) 491 return -ENOMEM; 492 do { 493 struct page *page = pages[*nr]; 494 495 if (WARN_ON(!pte_none(ptep_get(pte)))) 496 return -EBUSY; 497 if (WARN_ON(!page)) 498 return -ENOMEM; 499 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 500 return -EINVAL; 501 502 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 503 (*nr)++; 504 } while (pte++, addr += PAGE_SIZE, addr != end); 505 *mask |= PGTBL_PTE_MODIFIED; 506 return 0; 507 } 508 509 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 510 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 511 pgtbl_mod_mask *mask) 512 { 513 pmd_t *pmd; 514 unsigned long next; 515 516 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 517 if (!pmd) 518 return -ENOMEM; 519 do { 520 next = pmd_addr_end(addr, end); 521 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 522 return -ENOMEM; 523 } while (pmd++, addr = next, addr != end); 524 return 0; 525 } 526 527 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 528 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 529 pgtbl_mod_mask *mask) 530 { 531 pud_t *pud; 532 unsigned long next; 533 534 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 535 if (!pud) 536 return -ENOMEM; 537 do { 538 next = pud_addr_end(addr, end); 539 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 540 return -ENOMEM; 541 } while (pud++, addr = next, addr != end); 542 return 0; 543 } 544 545 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 546 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 547 pgtbl_mod_mask *mask) 548 { 549 p4d_t *p4d; 550 unsigned long next; 551 552 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 553 if (!p4d) 554 return -ENOMEM; 555 do { 556 next = p4d_addr_end(addr, end); 557 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 558 return -ENOMEM; 559 } while (p4d++, addr = next, addr != end); 560 return 0; 561 } 562 563 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 564 pgprot_t prot, struct page **pages) 565 { 566 unsigned long start = addr; 567 pgd_t *pgd; 568 unsigned long next; 569 int err = 0; 570 int nr = 0; 571 pgtbl_mod_mask mask = 0; 572 573 BUG_ON(addr >= end); 574 pgd = pgd_offset_k(addr); 575 do { 576 next = pgd_addr_end(addr, end); 577 if (pgd_bad(*pgd)) 578 mask |= PGTBL_PGD_MODIFIED; 579 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 580 if (err) 581 return err; 582 } while (pgd++, addr = next, addr != end); 583 584 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 585 arch_sync_kernel_mappings(start, end); 586 587 return 0; 588 } 589 590 /* 591 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 592 * flush caches. 593 * 594 * The caller is responsible for calling flush_cache_vmap() after this 595 * function returns successfully and before the addresses are accessed. 596 * 597 * This is an internal function only. Do not use outside mm/. 598 */ 599 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 600 pgprot_t prot, struct page **pages, unsigned int page_shift) 601 { 602 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 603 604 WARN_ON(page_shift < PAGE_SHIFT); 605 606 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 607 page_shift == PAGE_SHIFT) 608 return vmap_small_pages_range_noflush(addr, end, prot, pages); 609 610 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 611 int err; 612 613 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 614 page_to_phys(pages[i]), prot, 615 page_shift); 616 if (err) 617 return err; 618 619 addr += 1UL << page_shift; 620 } 621 622 return 0; 623 } 624 625 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 626 pgprot_t prot, struct page **pages, unsigned int page_shift) 627 { 628 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 629 page_shift); 630 631 if (ret) 632 return ret; 633 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 634 } 635 636 /** 637 * vmap_pages_range - map pages to a kernel virtual address 638 * @addr: start of the VM area to map 639 * @end: end of the VM area to map (non-inclusive) 640 * @prot: page protection flags to use 641 * @pages: pages to map (always PAGE_SIZE pages) 642 * @page_shift: maximum shift that the pages may be mapped with, @pages must 643 * be aligned and contiguous up to at least this shift. 644 * 645 * RETURNS: 646 * 0 on success, -errno on failure. 647 */ 648 static int vmap_pages_range(unsigned long addr, unsigned long end, 649 pgprot_t prot, struct page **pages, unsigned int page_shift) 650 { 651 int err; 652 653 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 654 flush_cache_vmap(addr, end); 655 return err; 656 } 657 658 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 659 unsigned long end) 660 { 661 might_sleep(); 662 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 663 return -EINVAL; 664 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 665 return -EINVAL; 666 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 667 return -EINVAL; 668 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 669 return -E2BIG; 670 if (start < (unsigned long)area->addr || 671 (void *)end > area->addr + get_vm_area_size(area)) 672 return -ERANGE; 673 return 0; 674 } 675 676 /** 677 * vm_area_map_pages - map pages inside given sparse vm_area 678 * @area: vm_area 679 * @start: start address inside vm_area 680 * @end: end address inside vm_area 681 * @pages: pages to map (always PAGE_SIZE pages) 682 */ 683 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 684 unsigned long end, struct page **pages) 685 { 686 int err; 687 688 err = check_sparse_vm_area(area, start, end); 689 if (err) 690 return err; 691 692 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 693 } 694 695 /** 696 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 697 * @area: vm_area 698 * @start: start address inside vm_area 699 * @end: end address inside vm_area 700 */ 701 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 702 unsigned long end) 703 { 704 if (check_sparse_vm_area(area, start, end)) 705 return; 706 707 vunmap_range(start, end); 708 } 709 710 int is_vmalloc_or_module_addr(const void *x) 711 { 712 /* 713 * ARM, x86-64 and sparc64 put modules in a special place, 714 * and fall back on vmalloc() if that fails. Others 715 * just put it in the vmalloc space. 716 */ 717 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 718 unsigned long addr = (unsigned long)kasan_reset_tag(x); 719 if (addr >= MODULES_VADDR && addr < MODULES_END) 720 return 1; 721 #endif 722 return is_vmalloc_addr(x); 723 } 724 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 725 726 /* 727 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 728 * return the tail page that corresponds to the base page address, which 729 * matches small vmap mappings. 730 */ 731 struct page *vmalloc_to_page(const void *vmalloc_addr) 732 { 733 unsigned long addr = (unsigned long) vmalloc_addr; 734 struct page *page = NULL; 735 pgd_t *pgd = pgd_offset_k(addr); 736 p4d_t *p4d; 737 pud_t *pud; 738 pmd_t *pmd; 739 pte_t *ptep, pte; 740 741 /* 742 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 743 * architectures that do not vmalloc module space 744 */ 745 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 746 747 if (pgd_none(*pgd)) 748 return NULL; 749 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 750 return NULL; /* XXX: no allowance for huge pgd */ 751 if (WARN_ON_ONCE(pgd_bad(*pgd))) 752 return NULL; 753 754 p4d = p4d_offset(pgd, addr); 755 if (p4d_none(*p4d)) 756 return NULL; 757 if (p4d_leaf(*p4d)) 758 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 759 if (WARN_ON_ONCE(p4d_bad(*p4d))) 760 return NULL; 761 762 pud = pud_offset(p4d, addr); 763 if (pud_none(*pud)) 764 return NULL; 765 if (pud_leaf(*pud)) 766 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 767 if (WARN_ON_ONCE(pud_bad(*pud))) 768 return NULL; 769 770 pmd = pmd_offset(pud, addr); 771 if (pmd_none(*pmd)) 772 return NULL; 773 if (pmd_leaf(*pmd)) 774 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 775 if (WARN_ON_ONCE(pmd_bad(*pmd))) 776 return NULL; 777 778 ptep = pte_offset_kernel(pmd, addr); 779 pte = ptep_get(ptep); 780 if (pte_present(pte)) 781 page = pte_page(pte); 782 783 return page; 784 } 785 EXPORT_SYMBOL(vmalloc_to_page); 786 787 /* 788 * Map a vmalloc()-space virtual address to the physical page frame number. 789 */ 790 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 791 { 792 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 793 } 794 EXPORT_SYMBOL(vmalloc_to_pfn); 795 796 797 /*** Global kva allocator ***/ 798 799 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 800 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 801 802 803 static DEFINE_SPINLOCK(free_vmap_area_lock); 804 static bool vmap_initialized __read_mostly; 805 806 /* 807 * This kmem_cache is used for vmap_area objects. Instead of 808 * allocating from slab we reuse an object from this cache to 809 * make things faster. Especially in "no edge" splitting of 810 * free block. 811 */ 812 static struct kmem_cache *vmap_area_cachep; 813 814 /* 815 * This linked list is used in pair with free_vmap_area_root. 816 * It gives O(1) access to prev/next to perform fast coalescing. 817 */ 818 static LIST_HEAD(free_vmap_area_list); 819 820 /* 821 * This augment red-black tree represents the free vmap space. 822 * All vmap_area objects in this tree are sorted by va->va_start 823 * address. It is used for allocation and merging when a vmap 824 * object is released. 825 * 826 * Each vmap_area node contains a maximum available free block 827 * of its sub-tree, right or left. Therefore it is possible to 828 * find a lowest match of free area. 829 */ 830 static struct rb_root free_vmap_area_root = RB_ROOT; 831 832 /* 833 * Preload a CPU with one object for "no edge" split case. The 834 * aim is to get rid of allocations from the atomic context, thus 835 * to use more permissive allocation masks. 836 */ 837 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 838 839 /* 840 * This structure defines a single, solid model where a list and 841 * rb-tree are part of one entity protected by the lock. Nodes are 842 * sorted in ascending order, thus for O(1) access to left/right 843 * neighbors a list is used as well as for sequential traversal. 844 */ 845 struct rb_list { 846 struct rb_root root; 847 struct list_head head; 848 spinlock_t lock; 849 }; 850 851 /* 852 * A fast size storage contains VAs up to 1M size. A pool consists 853 * of linked between each other ready to go VAs of certain sizes. 854 * An index in the pool-array corresponds to number of pages + 1. 855 */ 856 #define MAX_VA_SIZE_PAGES 256 857 858 struct vmap_pool { 859 struct list_head head; 860 unsigned long len; 861 }; 862 863 /* 864 * An effective vmap-node logic. Users make use of nodes instead 865 * of a global heap. It allows to balance an access and mitigate 866 * contention. 867 */ 868 static struct vmap_node { 869 /* Simple size segregated storage. */ 870 struct vmap_pool pool[MAX_VA_SIZE_PAGES]; 871 spinlock_t pool_lock; 872 bool skip_populate; 873 874 /* Bookkeeping data of this node. */ 875 struct rb_list busy; 876 struct rb_list lazy; 877 878 /* 879 * Ready-to-free areas. 880 */ 881 struct list_head purge_list; 882 struct work_struct purge_work; 883 unsigned long nr_purged; 884 } single; 885 886 /* 887 * Initial setup consists of one single node, i.e. a balancing 888 * is fully disabled. Later on, after vmap is initialized these 889 * parameters are updated based on a system capacity. 890 */ 891 static struct vmap_node *vmap_nodes = &single; 892 static __read_mostly unsigned int nr_vmap_nodes = 1; 893 static __read_mostly unsigned int vmap_zone_size = 1; 894 895 static inline unsigned int 896 addr_to_node_id(unsigned long addr) 897 { 898 return (addr / vmap_zone_size) % nr_vmap_nodes; 899 } 900 901 static inline struct vmap_node * 902 addr_to_node(unsigned long addr) 903 { 904 return &vmap_nodes[addr_to_node_id(addr)]; 905 } 906 907 static inline struct vmap_node * 908 id_to_node(unsigned int id) 909 { 910 return &vmap_nodes[id % nr_vmap_nodes]; 911 } 912 913 /* 914 * We use the value 0 to represent "no node", that is why 915 * an encoded value will be the node-id incremented by 1. 916 * It is always greater then 0. A valid node_id which can 917 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id 918 * is not valid 0 is returned. 919 */ 920 static unsigned int 921 encode_vn_id(unsigned int node_id) 922 { 923 /* Can store U8_MAX [0:254] nodes. */ 924 if (node_id < nr_vmap_nodes) 925 return (node_id + 1) << BITS_PER_BYTE; 926 927 /* Warn and no node encoded. */ 928 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); 929 return 0; 930 } 931 932 /* 933 * Returns an encoded node-id, the valid range is within 934 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is 935 * returned if extracted data is wrong. 936 */ 937 static unsigned int 938 decode_vn_id(unsigned int val) 939 { 940 unsigned int node_id = (val >> BITS_PER_BYTE) - 1; 941 942 /* Can store U8_MAX [0:254] nodes. */ 943 if (node_id < nr_vmap_nodes) 944 return node_id; 945 946 /* If it was _not_ zero, warn. */ 947 WARN_ONCE(node_id != UINT_MAX, 948 "Decode wrong node id (%d)\n", node_id); 949 950 return nr_vmap_nodes; 951 } 952 953 static bool 954 is_vn_id_valid(unsigned int node_id) 955 { 956 if (node_id < nr_vmap_nodes) 957 return true; 958 959 return false; 960 } 961 962 static __always_inline unsigned long 963 va_size(struct vmap_area *va) 964 { 965 return (va->va_end - va->va_start); 966 } 967 968 static __always_inline unsigned long 969 get_subtree_max_size(struct rb_node *node) 970 { 971 struct vmap_area *va; 972 973 va = rb_entry_safe(node, struct vmap_area, rb_node); 974 return va ? va->subtree_max_size : 0; 975 } 976 977 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 978 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 979 980 static void reclaim_and_purge_vmap_areas(void); 981 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 982 static void drain_vmap_area_work(struct work_struct *work); 983 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 984 985 static atomic_long_t nr_vmalloc_pages; 986 987 unsigned long vmalloc_nr_pages(void) 988 { 989 return atomic_long_read(&nr_vmalloc_pages); 990 } 991 992 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 993 static struct vmap_area * 994 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) 995 { 996 struct vmap_area *va = NULL; 997 struct rb_node *n = root->rb_node; 998 999 addr = (unsigned long)kasan_reset_tag((void *)addr); 1000 1001 while (n) { 1002 struct vmap_area *tmp; 1003 1004 tmp = rb_entry(n, struct vmap_area, rb_node); 1005 if (tmp->va_end > addr) { 1006 va = tmp; 1007 if (tmp->va_start <= addr) 1008 break; 1009 1010 n = n->rb_left; 1011 } else 1012 n = n->rb_right; 1013 } 1014 1015 return va; 1016 } 1017 1018 /* 1019 * Returns a node where a first VA, that satisfies addr < va_end, resides. 1020 * If success, a node is locked. A user is responsible to unlock it when a 1021 * VA is no longer needed to be accessed. 1022 * 1023 * Returns NULL if nothing found. 1024 */ 1025 static struct vmap_node * 1026 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) 1027 { 1028 struct vmap_node *vn, *va_node = NULL; 1029 struct vmap_area *va_lowest; 1030 int i; 1031 1032 for (i = 0; i < nr_vmap_nodes; i++) { 1033 vn = &vmap_nodes[i]; 1034 1035 spin_lock(&vn->busy.lock); 1036 va_lowest = __find_vmap_area_exceed_addr(addr, &vn->busy.root); 1037 if (va_lowest) { 1038 if (!va_node || va_lowest->va_start < (*va)->va_start) { 1039 if (va_node) 1040 spin_unlock(&va_node->busy.lock); 1041 1042 *va = va_lowest; 1043 va_node = vn; 1044 continue; 1045 } 1046 } 1047 spin_unlock(&vn->busy.lock); 1048 } 1049 1050 return va_node; 1051 } 1052 1053 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 1054 { 1055 struct rb_node *n = root->rb_node; 1056 1057 addr = (unsigned long)kasan_reset_tag((void *)addr); 1058 1059 while (n) { 1060 struct vmap_area *va; 1061 1062 va = rb_entry(n, struct vmap_area, rb_node); 1063 if (addr < va->va_start) 1064 n = n->rb_left; 1065 else if (addr >= va->va_end) 1066 n = n->rb_right; 1067 else 1068 return va; 1069 } 1070 1071 return NULL; 1072 } 1073 1074 /* 1075 * This function returns back addresses of parent node 1076 * and its left or right link for further processing. 1077 * 1078 * Otherwise NULL is returned. In that case all further 1079 * steps regarding inserting of conflicting overlap range 1080 * have to be declined and actually considered as a bug. 1081 */ 1082 static __always_inline struct rb_node ** 1083 find_va_links(struct vmap_area *va, 1084 struct rb_root *root, struct rb_node *from, 1085 struct rb_node **parent) 1086 { 1087 struct vmap_area *tmp_va; 1088 struct rb_node **link; 1089 1090 if (root) { 1091 link = &root->rb_node; 1092 if (unlikely(!*link)) { 1093 *parent = NULL; 1094 return link; 1095 } 1096 } else { 1097 link = &from; 1098 } 1099 1100 /* 1101 * Go to the bottom of the tree. When we hit the last point 1102 * we end up with parent rb_node and correct direction, i name 1103 * it link, where the new va->rb_node will be attached to. 1104 */ 1105 do { 1106 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 1107 1108 /* 1109 * During the traversal we also do some sanity check. 1110 * Trigger the BUG() if there are sides(left/right) 1111 * or full overlaps. 1112 */ 1113 if (va->va_end <= tmp_va->va_start) 1114 link = &(*link)->rb_left; 1115 else if (va->va_start >= tmp_va->va_end) 1116 link = &(*link)->rb_right; 1117 else { 1118 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 1119 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 1120 1121 return NULL; 1122 } 1123 } while (*link); 1124 1125 *parent = &tmp_va->rb_node; 1126 return link; 1127 } 1128 1129 static __always_inline struct list_head * 1130 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 1131 { 1132 struct list_head *list; 1133 1134 if (unlikely(!parent)) 1135 /* 1136 * The red-black tree where we try to find VA neighbors 1137 * before merging or inserting is empty, i.e. it means 1138 * there is no free vmap space. Normally it does not 1139 * happen but we handle this case anyway. 1140 */ 1141 return NULL; 1142 1143 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 1144 return (&parent->rb_right == link ? list->next : list); 1145 } 1146 1147 static __always_inline void 1148 __link_va(struct vmap_area *va, struct rb_root *root, 1149 struct rb_node *parent, struct rb_node **link, 1150 struct list_head *head, bool augment) 1151 { 1152 /* 1153 * VA is still not in the list, but we can 1154 * identify its future previous list_head node. 1155 */ 1156 if (likely(parent)) { 1157 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1158 if (&parent->rb_right != link) 1159 head = head->prev; 1160 } 1161 1162 /* Insert to the rb-tree */ 1163 rb_link_node(&va->rb_node, parent, link); 1164 if (augment) { 1165 /* 1166 * Some explanation here. Just perform simple insertion 1167 * to the tree. We do not set va->subtree_max_size to 1168 * its current size before calling rb_insert_augmented(). 1169 * It is because we populate the tree from the bottom 1170 * to parent levels when the node _is_ in the tree. 1171 * 1172 * Therefore we set subtree_max_size to zero after insertion, 1173 * to let __augment_tree_propagate_from() puts everything to 1174 * the correct order later on. 1175 */ 1176 rb_insert_augmented(&va->rb_node, 1177 root, &free_vmap_area_rb_augment_cb); 1178 va->subtree_max_size = 0; 1179 } else { 1180 rb_insert_color(&va->rb_node, root); 1181 } 1182 1183 /* Address-sort this list */ 1184 list_add(&va->list, head); 1185 } 1186 1187 static __always_inline void 1188 link_va(struct vmap_area *va, struct rb_root *root, 1189 struct rb_node *parent, struct rb_node **link, 1190 struct list_head *head) 1191 { 1192 __link_va(va, root, parent, link, head, false); 1193 } 1194 1195 static __always_inline void 1196 link_va_augment(struct vmap_area *va, struct rb_root *root, 1197 struct rb_node *parent, struct rb_node **link, 1198 struct list_head *head) 1199 { 1200 __link_va(va, root, parent, link, head, true); 1201 } 1202 1203 static __always_inline void 1204 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1205 { 1206 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1207 return; 1208 1209 if (augment) 1210 rb_erase_augmented(&va->rb_node, 1211 root, &free_vmap_area_rb_augment_cb); 1212 else 1213 rb_erase(&va->rb_node, root); 1214 1215 list_del_init(&va->list); 1216 RB_CLEAR_NODE(&va->rb_node); 1217 } 1218 1219 static __always_inline void 1220 unlink_va(struct vmap_area *va, struct rb_root *root) 1221 { 1222 __unlink_va(va, root, false); 1223 } 1224 1225 static __always_inline void 1226 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1227 { 1228 __unlink_va(va, root, true); 1229 } 1230 1231 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1232 /* 1233 * Gets called when remove the node and rotate. 1234 */ 1235 static __always_inline unsigned long 1236 compute_subtree_max_size(struct vmap_area *va) 1237 { 1238 return max3(va_size(va), 1239 get_subtree_max_size(va->rb_node.rb_left), 1240 get_subtree_max_size(va->rb_node.rb_right)); 1241 } 1242 1243 static void 1244 augment_tree_propagate_check(void) 1245 { 1246 struct vmap_area *va; 1247 unsigned long computed_size; 1248 1249 list_for_each_entry(va, &free_vmap_area_list, list) { 1250 computed_size = compute_subtree_max_size(va); 1251 if (computed_size != va->subtree_max_size) 1252 pr_emerg("tree is corrupted: %lu, %lu\n", 1253 va_size(va), va->subtree_max_size); 1254 } 1255 } 1256 #endif 1257 1258 /* 1259 * This function populates subtree_max_size from bottom to upper 1260 * levels starting from VA point. The propagation must be done 1261 * when VA size is modified by changing its va_start/va_end. Or 1262 * in case of newly inserting of VA to the tree. 1263 * 1264 * It means that __augment_tree_propagate_from() must be called: 1265 * - After VA has been inserted to the tree(free path); 1266 * - After VA has been shrunk(allocation path); 1267 * - After VA has been increased(merging path). 1268 * 1269 * Please note that, it does not mean that upper parent nodes 1270 * and their subtree_max_size are recalculated all the time up 1271 * to the root node. 1272 * 1273 * 4--8 1274 * /\ 1275 * / \ 1276 * / \ 1277 * 2--2 8--8 1278 * 1279 * For example if we modify the node 4, shrinking it to 2, then 1280 * no any modification is required. If we shrink the node 2 to 1 1281 * its subtree_max_size is updated only, and set to 1. If we shrink 1282 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1283 * node becomes 4--6. 1284 */ 1285 static __always_inline void 1286 augment_tree_propagate_from(struct vmap_area *va) 1287 { 1288 /* 1289 * Populate the tree from bottom towards the root until 1290 * the calculated maximum available size of checked node 1291 * is equal to its current one. 1292 */ 1293 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1294 1295 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1296 augment_tree_propagate_check(); 1297 #endif 1298 } 1299 1300 static void 1301 insert_vmap_area(struct vmap_area *va, 1302 struct rb_root *root, struct list_head *head) 1303 { 1304 struct rb_node **link; 1305 struct rb_node *parent; 1306 1307 link = find_va_links(va, root, NULL, &parent); 1308 if (link) 1309 link_va(va, root, parent, link, head); 1310 } 1311 1312 static void 1313 insert_vmap_area_augment(struct vmap_area *va, 1314 struct rb_node *from, struct rb_root *root, 1315 struct list_head *head) 1316 { 1317 struct rb_node **link; 1318 struct rb_node *parent; 1319 1320 if (from) 1321 link = find_va_links(va, NULL, from, &parent); 1322 else 1323 link = find_va_links(va, root, NULL, &parent); 1324 1325 if (link) { 1326 link_va_augment(va, root, parent, link, head); 1327 augment_tree_propagate_from(va); 1328 } 1329 } 1330 1331 /* 1332 * Merge de-allocated chunk of VA memory with previous 1333 * and next free blocks. If coalesce is not done a new 1334 * free area is inserted. If VA has been merged, it is 1335 * freed. 1336 * 1337 * Please note, it can return NULL in case of overlap 1338 * ranges, followed by WARN() report. Despite it is a 1339 * buggy behaviour, a system can be alive and keep 1340 * ongoing. 1341 */ 1342 static __always_inline struct vmap_area * 1343 __merge_or_add_vmap_area(struct vmap_area *va, 1344 struct rb_root *root, struct list_head *head, bool augment) 1345 { 1346 struct vmap_area *sibling; 1347 struct list_head *next; 1348 struct rb_node **link; 1349 struct rb_node *parent; 1350 bool merged = false; 1351 1352 /* 1353 * Find a place in the tree where VA potentially will be 1354 * inserted, unless it is merged with its sibling/siblings. 1355 */ 1356 link = find_va_links(va, root, NULL, &parent); 1357 if (!link) 1358 return NULL; 1359 1360 /* 1361 * Get next node of VA to check if merging can be done. 1362 */ 1363 next = get_va_next_sibling(parent, link); 1364 if (unlikely(next == NULL)) 1365 goto insert; 1366 1367 /* 1368 * start end 1369 * | | 1370 * |<------VA------>|<-----Next----->| 1371 * | | 1372 * start end 1373 */ 1374 if (next != head) { 1375 sibling = list_entry(next, struct vmap_area, list); 1376 if (sibling->va_start == va->va_end) { 1377 sibling->va_start = va->va_start; 1378 1379 /* Free vmap_area object. */ 1380 kmem_cache_free(vmap_area_cachep, va); 1381 1382 /* Point to the new merged area. */ 1383 va = sibling; 1384 merged = true; 1385 } 1386 } 1387 1388 /* 1389 * start end 1390 * | | 1391 * |<-----Prev----->|<------VA------>| 1392 * | | 1393 * start end 1394 */ 1395 if (next->prev != head) { 1396 sibling = list_entry(next->prev, struct vmap_area, list); 1397 if (sibling->va_end == va->va_start) { 1398 /* 1399 * If both neighbors are coalesced, it is important 1400 * to unlink the "next" node first, followed by merging 1401 * with "previous" one. Otherwise the tree might not be 1402 * fully populated if a sibling's augmented value is 1403 * "normalized" because of rotation operations. 1404 */ 1405 if (merged) 1406 __unlink_va(va, root, augment); 1407 1408 sibling->va_end = va->va_end; 1409 1410 /* Free vmap_area object. */ 1411 kmem_cache_free(vmap_area_cachep, va); 1412 1413 /* Point to the new merged area. */ 1414 va = sibling; 1415 merged = true; 1416 } 1417 } 1418 1419 insert: 1420 if (!merged) 1421 __link_va(va, root, parent, link, head, augment); 1422 1423 return va; 1424 } 1425 1426 static __always_inline struct vmap_area * 1427 merge_or_add_vmap_area(struct vmap_area *va, 1428 struct rb_root *root, struct list_head *head) 1429 { 1430 return __merge_or_add_vmap_area(va, root, head, false); 1431 } 1432 1433 static __always_inline struct vmap_area * 1434 merge_or_add_vmap_area_augment(struct vmap_area *va, 1435 struct rb_root *root, struct list_head *head) 1436 { 1437 va = __merge_or_add_vmap_area(va, root, head, true); 1438 if (va) 1439 augment_tree_propagate_from(va); 1440 1441 return va; 1442 } 1443 1444 static __always_inline bool 1445 is_within_this_va(struct vmap_area *va, unsigned long size, 1446 unsigned long align, unsigned long vstart) 1447 { 1448 unsigned long nva_start_addr; 1449 1450 if (va->va_start > vstart) 1451 nva_start_addr = ALIGN(va->va_start, align); 1452 else 1453 nva_start_addr = ALIGN(vstart, align); 1454 1455 /* Can be overflowed due to big size or alignment. */ 1456 if (nva_start_addr + size < nva_start_addr || 1457 nva_start_addr < vstart) 1458 return false; 1459 1460 return (nva_start_addr + size <= va->va_end); 1461 } 1462 1463 /* 1464 * Find the first free block(lowest start address) in the tree, 1465 * that will accomplish the request corresponding to passing 1466 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1467 * a search length is adjusted to account for worst case alignment 1468 * overhead. 1469 */ 1470 static __always_inline struct vmap_area * 1471 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1472 unsigned long align, unsigned long vstart, bool adjust_search_size) 1473 { 1474 struct vmap_area *va; 1475 struct rb_node *node; 1476 unsigned long length; 1477 1478 /* Start from the root. */ 1479 node = root->rb_node; 1480 1481 /* Adjust the search size for alignment overhead. */ 1482 length = adjust_search_size ? size + align - 1 : size; 1483 1484 while (node) { 1485 va = rb_entry(node, struct vmap_area, rb_node); 1486 1487 if (get_subtree_max_size(node->rb_left) >= length && 1488 vstart < va->va_start) { 1489 node = node->rb_left; 1490 } else { 1491 if (is_within_this_va(va, size, align, vstart)) 1492 return va; 1493 1494 /* 1495 * Does not make sense to go deeper towards the right 1496 * sub-tree if it does not have a free block that is 1497 * equal or bigger to the requested search length. 1498 */ 1499 if (get_subtree_max_size(node->rb_right) >= length) { 1500 node = node->rb_right; 1501 continue; 1502 } 1503 1504 /* 1505 * OK. We roll back and find the first right sub-tree, 1506 * that will satisfy the search criteria. It can happen 1507 * due to "vstart" restriction or an alignment overhead 1508 * that is bigger then PAGE_SIZE. 1509 */ 1510 while ((node = rb_parent(node))) { 1511 va = rb_entry(node, struct vmap_area, rb_node); 1512 if (is_within_this_va(va, size, align, vstart)) 1513 return va; 1514 1515 if (get_subtree_max_size(node->rb_right) >= length && 1516 vstart <= va->va_start) { 1517 /* 1518 * Shift the vstart forward. Please note, we update it with 1519 * parent's start address adding "1" because we do not want 1520 * to enter same sub-tree after it has already been checked 1521 * and no suitable free block found there. 1522 */ 1523 vstart = va->va_start + 1; 1524 node = node->rb_right; 1525 break; 1526 } 1527 } 1528 } 1529 } 1530 1531 return NULL; 1532 } 1533 1534 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1535 #include <linux/random.h> 1536 1537 static struct vmap_area * 1538 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1539 unsigned long align, unsigned long vstart) 1540 { 1541 struct vmap_area *va; 1542 1543 list_for_each_entry(va, head, list) { 1544 if (!is_within_this_va(va, size, align, vstart)) 1545 continue; 1546 1547 return va; 1548 } 1549 1550 return NULL; 1551 } 1552 1553 static void 1554 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1555 unsigned long size, unsigned long align) 1556 { 1557 struct vmap_area *va_1, *va_2; 1558 unsigned long vstart; 1559 unsigned int rnd; 1560 1561 get_random_bytes(&rnd, sizeof(rnd)); 1562 vstart = VMALLOC_START + rnd; 1563 1564 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1565 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1566 1567 if (va_1 != va_2) 1568 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1569 va_1, va_2, vstart); 1570 } 1571 #endif 1572 1573 enum fit_type { 1574 NOTHING_FIT = 0, 1575 FL_FIT_TYPE = 1, /* full fit */ 1576 LE_FIT_TYPE = 2, /* left edge fit */ 1577 RE_FIT_TYPE = 3, /* right edge fit */ 1578 NE_FIT_TYPE = 4 /* no edge fit */ 1579 }; 1580 1581 static __always_inline enum fit_type 1582 classify_va_fit_type(struct vmap_area *va, 1583 unsigned long nva_start_addr, unsigned long size) 1584 { 1585 enum fit_type type; 1586 1587 /* Check if it is within VA. */ 1588 if (nva_start_addr < va->va_start || 1589 nva_start_addr + size > va->va_end) 1590 return NOTHING_FIT; 1591 1592 /* Now classify. */ 1593 if (va->va_start == nva_start_addr) { 1594 if (va->va_end == nva_start_addr + size) 1595 type = FL_FIT_TYPE; 1596 else 1597 type = LE_FIT_TYPE; 1598 } else if (va->va_end == nva_start_addr + size) { 1599 type = RE_FIT_TYPE; 1600 } else { 1601 type = NE_FIT_TYPE; 1602 } 1603 1604 return type; 1605 } 1606 1607 static __always_inline int 1608 va_clip(struct rb_root *root, struct list_head *head, 1609 struct vmap_area *va, unsigned long nva_start_addr, 1610 unsigned long size) 1611 { 1612 struct vmap_area *lva = NULL; 1613 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1614 1615 if (type == FL_FIT_TYPE) { 1616 /* 1617 * No need to split VA, it fully fits. 1618 * 1619 * | | 1620 * V NVA V 1621 * |---------------| 1622 */ 1623 unlink_va_augment(va, root); 1624 kmem_cache_free(vmap_area_cachep, va); 1625 } else if (type == LE_FIT_TYPE) { 1626 /* 1627 * Split left edge of fit VA. 1628 * 1629 * | | 1630 * V NVA V R 1631 * |-------|-------| 1632 */ 1633 va->va_start += size; 1634 } else if (type == RE_FIT_TYPE) { 1635 /* 1636 * Split right edge of fit VA. 1637 * 1638 * | | 1639 * L V NVA V 1640 * |-------|-------| 1641 */ 1642 va->va_end = nva_start_addr; 1643 } else if (type == NE_FIT_TYPE) { 1644 /* 1645 * Split no edge of fit VA. 1646 * 1647 * | | 1648 * L V NVA V R 1649 * |---|-------|---| 1650 */ 1651 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1652 if (unlikely(!lva)) { 1653 /* 1654 * For percpu allocator we do not do any pre-allocation 1655 * and leave it as it is. The reason is it most likely 1656 * never ends up with NE_FIT_TYPE splitting. In case of 1657 * percpu allocations offsets and sizes are aligned to 1658 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1659 * are its main fitting cases. 1660 * 1661 * There are a few exceptions though, as an example it is 1662 * a first allocation (early boot up) when we have "one" 1663 * big free space that has to be split. 1664 * 1665 * Also we can hit this path in case of regular "vmap" 1666 * allocations, if "this" current CPU was not preloaded. 1667 * See the comment in alloc_vmap_area() why. If so, then 1668 * GFP_NOWAIT is used instead to get an extra object for 1669 * split purpose. That is rare and most time does not 1670 * occur. 1671 * 1672 * What happens if an allocation gets failed. Basically, 1673 * an "overflow" path is triggered to purge lazily freed 1674 * areas to free some memory, then, the "retry" path is 1675 * triggered to repeat one more time. See more details 1676 * in alloc_vmap_area() function. 1677 */ 1678 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1679 if (!lva) 1680 return -1; 1681 } 1682 1683 /* 1684 * Build the remainder. 1685 */ 1686 lva->va_start = va->va_start; 1687 lva->va_end = nva_start_addr; 1688 1689 /* 1690 * Shrink this VA to remaining size. 1691 */ 1692 va->va_start = nva_start_addr + size; 1693 } else { 1694 return -1; 1695 } 1696 1697 if (type != FL_FIT_TYPE) { 1698 augment_tree_propagate_from(va); 1699 1700 if (lva) /* type == NE_FIT_TYPE */ 1701 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1702 } 1703 1704 return 0; 1705 } 1706 1707 static unsigned long 1708 va_alloc(struct vmap_area *va, 1709 struct rb_root *root, struct list_head *head, 1710 unsigned long size, unsigned long align, 1711 unsigned long vstart, unsigned long vend) 1712 { 1713 unsigned long nva_start_addr; 1714 int ret; 1715 1716 if (va->va_start > vstart) 1717 nva_start_addr = ALIGN(va->va_start, align); 1718 else 1719 nva_start_addr = ALIGN(vstart, align); 1720 1721 /* Check the "vend" restriction. */ 1722 if (nva_start_addr + size > vend) 1723 return vend; 1724 1725 /* Update the free vmap_area. */ 1726 ret = va_clip(root, head, va, nva_start_addr, size); 1727 if (WARN_ON_ONCE(ret)) 1728 return vend; 1729 1730 return nva_start_addr; 1731 } 1732 1733 /* 1734 * Returns a start address of the newly allocated area, if success. 1735 * Otherwise a vend is returned that indicates failure. 1736 */ 1737 static __always_inline unsigned long 1738 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1739 unsigned long size, unsigned long align, 1740 unsigned long vstart, unsigned long vend) 1741 { 1742 bool adjust_search_size = true; 1743 unsigned long nva_start_addr; 1744 struct vmap_area *va; 1745 1746 /* 1747 * Do not adjust when: 1748 * a) align <= PAGE_SIZE, because it does not make any sense. 1749 * All blocks(their start addresses) are at least PAGE_SIZE 1750 * aligned anyway; 1751 * b) a short range where a requested size corresponds to exactly 1752 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1753 * With adjusted search length an allocation would not succeed. 1754 */ 1755 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1756 adjust_search_size = false; 1757 1758 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1759 if (unlikely(!va)) 1760 return vend; 1761 1762 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); 1763 if (nva_start_addr == vend) 1764 return vend; 1765 1766 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1767 find_vmap_lowest_match_check(root, head, size, align); 1768 #endif 1769 1770 return nva_start_addr; 1771 } 1772 1773 /* 1774 * Free a region of KVA allocated by alloc_vmap_area 1775 */ 1776 static void free_vmap_area(struct vmap_area *va) 1777 { 1778 struct vmap_node *vn = addr_to_node(va->va_start); 1779 1780 /* 1781 * Remove from the busy tree/list. 1782 */ 1783 spin_lock(&vn->busy.lock); 1784 unlink_va(va, &vn->busy.root); 1785 spin_unlock(&vn->busy.lock); 1786 1787 /* 1788 * Insert/Merge it back to the free tree/list. 1789 */ 1790 spin_lock(&free_vmap_area_lock); 1791 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1792 spin_unlock(&free_vmap_area_lock); 1793 } 1794 1795 static inline void 1796 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1797 { 1798 struct vmap_area *va = NULL; 1799 1800 /* 1801 * Preload this CPU with one extra vmap_area object. It is used 1802 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1803 * a CPU that does an allocation is preloaded. 1804 * 1805 * We do it in non-atomic context, thus it allows us to use more 1806 * permissive allocation masks to be more stable under low memory 1807 * condition and high memory pressure. 1808 */ 1809 if (!this_cpu_read(ne_fit_preload_node)) 1810 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1811 1812 spin_lock(lock); 1813 1814 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1815 kmem_cache_free(vmap_area_cachep, va); 1816 } 1817 1818 static struct vmap_pool * 1819 size_to_va_pool(struct vmap_node *vn, unsigned long size) 1820 { 1821 unsigned int idx = (size - 1) / PAGE_SIZE; 1822 1823 if (idx < MAX_VA_SIZE_PAGES) 1824 return &vn->pool[idx]; 1825 1826 return NULL; 1827 } 1828 1829 static bool 1830 node_pool_add_va(struct vmap_node *n, struct vmap_area *va) 1831 { 1832 struct vmap_pool *vp; 1833 1834 vp = size_to_va_pool(n, va_size(va)); 1835 if (!vp) 1836 return false; 1837 1838 spin_lock(&n->pool_lock); 1839 list_add(&va->list, &vp->head); 1840 WRITE_ONCE(vp->len, vp->len + 1); 1841 spin_unlock(&n->pool_lock); 1842 1843 return true; 1844 } 1845 1846 static struct vmap_area * 1847 node_pool_del_va(struct vmap_node *vn, unsigned long size, 1848 unsigned long align, unsigned long vstart, 1849 unsigned long vend) 1850 { 1851 struct vmap_area *va = NULL; 1852 struct vmap_pool *vp; 1853 int err = 0; 1854 1855 vp = size_to_va_pool(vn, size); 1856 if (!vp || list_empty(&vp->head)) 1857 return NULL; 1858 1859 spin_lock(&vn->pool_lock); 1860 if (!list_empty(&vp->head)) { 1861 va = list_first_entry(&vp->head, struct vmap_area, list); 1862 1863 if (IS_ALIGNED(va->va_start, align)) { 1864 /* 1865 * Do some sanity check and emit a warning 1866 * if one of below checks detects an error. 1867 */ 1868 err |= (va_size(va) != size); 1869 err |= (va->va_start < vstart); 1870 err |= (va->va_end > vend); 1871 1872 if (!WARN_ON_ONCE(err)) { 1873 list_del_init(&va->list); 1874 WRITE_ONCE(vp->len, vp->len - 1); 1875 } else { 1876 va = NULL; 1877 } 1878 } else { 1879 list_move_tail(&va->list, &vp->head); 1880 va = NULL; 1881 } 1882 } 1883 spin_unlock(&vn->pool_lock); 1884 1885 return va; 1886 } 1887 1888 static struct vmap_area * 1889 node_alloc(unsigned long size, unsigned long align, 1890 unsigned long vstart, unsigned long vend, 1891 unsigned long *addr, unsigned int *vn_id) 1892 { 1893 struct vmap_area *va; 1894 1895 *vn_id = 0; 1896 *addr = vend; 1897 1898 /* 1899 * Fallback to a global heap if not vmalloc or there 1900 * is only one node. 1901 */ 1902 if (vstart != VMALLOC_START || vend != VMALLOC_END || 1903 nr_vmap_nodes == 1) 1904 return NULL; 1905 1906 *vn_id = raw_smp_processor_id() % nr_vmap_nodes; 1907 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); 1908 *vn_id = encode_vn_id(*vn_id); 1909 1910 if (va) 1911 *addr = va->va_start; 1912 1913 return va; 1914 } 1915 1916 /* 1917 * Allocate a region of KVA of the specified size and alignment, within the 1918 * vstart and vend. 1919 */ 1920 static struct vmap_area *alloc_vmap_area(unsigned long size, 1921 unsigned long align, 1922 unsigned long vstart, unsigned long vend, 1923 int node, gfp_t gfp_mask, 1924 unsigned long va_flags) 1925 { 1926 struct vmap_node *vn; 1927 struct vmap_area *va; 1928 unsigned long freed; 1929 unsigned long addr; 1930 unsigned int vn_id; 1931 int purged = 0; 1932 int ret; 1933 1934 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1935 return ERR_PTR(-EINVAL); 1936 1937 if (unlikely(!vmap_initialized)) 1938 return ERR_PTR(-EBUSY); 1939 1940 might_sleep(); 1941 1942 /* 1943 * If a VA is obtained from a global heap(if it fails here) 1944 * it is anyway marked with this "vn_id" so it is returned 1945 * to this pool's node later. Such way gives a possibility 1946 * to populate pools based on users demand. 1947 * 1948 * On success a ready to go VA is returned. 1949 */ 1950 va = node_alloc(size, align, vstart, vend, &addr, &vn_id); 1951 if (!va) { 1952 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1953 1954 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1955 if (unlikely(!va)) 1956 return ERR_PTR(-ENOMEM); 1957 1958 /* 1959 * Only scan the relevant parts containing pointers to other objects 1960 * to avoid false negatives. 1961 */ 1962 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1963 } 1964 1965 retry: 1966 if (addr == vend) { 1967 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1968 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 1969 size, align, vstart, vend); 1970 spin_unlock(&free_vmap_area_lock); 1971 } 1972 1973 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 1974 1975 /* 1976 * If an allocation fails, the "vend" address is 1977 * returned. Therefore trigger the overflow path. 1978 */ 1979 if (unlikely(addr == vend)) 1980 goto overflow; 1981 1982 va->va_start = addr; 1983 va->va_end = addr + size; 1984 va->vm = NULL; 1985 va->flags = (va_flags | vn_id); 1986 1987 vn = addr_to_node(va->va_start); 1988 1989 spin_lock(&vn->busy.lock); 1990 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 1991 spin_unlock(&vn->busy.lock); 1992 1993 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1994 BUG_ON(va->va_start < vstart); 1995 BUG_ON(va->va_end > vend); 1996 1997 ret = kasan_populate_vmalloc(addr, size); 1998 if (ret) { 1999 free_vmap_area(va); 2000 return ERR_PTR(ret); 2001 } 2002 2003 return va; 2004 2005 overflow: 2006 if (!purged) { 2007 reclaim_and_purge_vmap_areas(); 2008 purged = 1; 2009 goto retry; 2010 } 2011 2012 freed = 0; 2013 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 2014 2015 if (freed > 0) { 2016 purged = 0; 2017 goto retry; 2018 } 2019 2020 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 2021 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 2022 size); 2023 2024 kmem_cache_free(vmap_area_cachep, va); 2025 return ERR_PTR(-EBUSY); 2026 } 2027 2028 int register_vmap_purge_notifier(struct notifier_block *nb) 2029 { 2030 return blocking_notifier_chain_register(&vmap_notify_list, nb); 2031 } 2032 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 2033 2034 int unregister_vmap_purge_notifier(struct notifier_block *nb) 2035 { 2036 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 2037 } 2038 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 2039 2040 /* 2041 * lazy_max_pages is the maximum amount of virtual address space we gather up 2042 * before attempting to purge with a TLB flush. 2043 * 2044 * There is a tradeoff here: a larger number will cover more kernel page tables 2045 * and take slightly longer to purge, but it will linearly reduce the number of 2046 * global TLB flushes that must be performed. It would seem natural to scale 2047 * this number up linearly with the number of CPUs (because vmapping activity 2048 * could also scale linearly with the number of CPUs), however it is likely 2049 * that in practice, workloads might be constrained in other ways that mean 2050 * vmap activity will not scale linearly with CPUs. Also, I want to be 2051 * conservative and not introduce a big latency on huge systems, so go with 2052 * a less aggressive log scale. It will still be an improvement over the old 2053 * code, and it will be simple to change the scale factor if we find that it 2054 * becomes a problem on bigger systems. 2055 */ 2056 static unsigned long lazy_max_pages(void) 2057 { 2058 unsigned int log; 2059 2060 log = fls(num_online_cpus()); 2061 2062 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 2063 } 2064 2065 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 2066 2067 /* 2068 * Serialize vmap purging. There is no actual critical section protected 2069 * by this lock, but we want to avoid concurrent calls for performance 2070 * reasons and to make the pcpu_get_vm_areas more deterministic. 2071 */ 2072 static DEFINE_MUTEX(vmap_purge_lock); 2073 2074 /* for per-CPU blocks */ 2075 static void purge_fragmented_blocks_allcpus(void); 2076 static cpumask_t purge_nodes; 2077 2078 static void 2079 reclaim_list_global(struct list_head *head) 2080 { 2081 struct vmap_area *va, *n; 2082 2083 if (list_empty(head)) 2084 return; 2085 2086 spin_lock(&free_vmap_area_lock); 2087 list_for_each_entry_safe(va, n, head, list) 2088 merge_or_add_vmap_area_augment(va, 2089 &free_vmap_area_root, &free_vmap_area_list); 2090 spin_unlock(&free_vmap_area_lock); 2091 } 2092 2093 static void 2094 decay_va_pool_node(struct vmap_node *vn, bool full_decay) 2095 { 2096 struct vmap_area *va, *nva; 2097 struct list_head decay_list; 2098 struct rb_root decay_root; 2099 unsigned long n_decay; 2100 int i; 2101 2102 decay_root = RB_ROOT; 2103 INIT_LIST_HEAD(&decay_list); 2104 2105 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 2106 struct list_head tmp_list; 2107 2108 if (list_empty(&vn->pool[i].head)) 2109 continue; 2110 2111 INIT_LIST_HEAD(&tmp_list); 2112 2113 /* Detach the pool, so no-one can access it. */ 2114 spin_lock(&vn->pool_lock); 2115 list_replace_init(&vn->pool[i].head, &tmp_list); 2116 spin_unlock(&vn->pool_lock); 2117 2118 if (full_decay) 2119 WRITE_ONCE(vn->pool[i].len, 0); 2120 2121 /* Decay a pool by ~25% out of left objects. */ 2122 n_decay = vn->pool[i].len >> 2; 2123 2124 list_for_each_entry_safe(va, nva, &tmp_list, list) { 2125 list_del_init(&va->list); 2126 merge_or_add_vmap_area(va, &decay_root, &decay_list); 2127 2128 if (!full_decay) { 2129 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); 2130 2131 if (!--n_decay) 2132 break; 2133 } 2134 } 2135 2136 /* 2137 * Attach the pool back if it has been partly decayed. 2138 * Please note, it is supposed that nobody(other contexts) 2139 * can populate the pool therefore a simple list replace 2140 * operation takes place here. 2141 */ 2142 if (!full_decay && !list_empty(&tmp_list)) { 2143 spin_lock(&vn->pool_lock); 2144 list_replace_init(&tmp_list, &vn->pool[i].head); 2145 spin_unlock(&vn->pool_lock); 2146 } 2147 } 2148 2149 reclaim_list_global(&decay_list); 2150 } 2151 2152 static void purge_vmap_node(struct work_struct *work) 2153 { 2154 struct vmap_node *vn = container_of(work, 2155 struct vmap_node, purge_work); 2156 struct vmap_area *va, *n_va; 2157 LIST_HEAD(local_list); 2158 2159 vn->nr_purged = 0; 2160 2161 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { 2162 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 2163 unsigned long orig_start = va->va_start; 2164 unsigned long orig_end = va->va_end; 2165 unsigned int vn_id = decode_vn_id(va->flags); 2166 2167 list_del_init(&va->list); 2168 2169 if (is_vmalloc_or_module_addr((void *)orig_start)) 2170 kasan_release_vmalloc(orig_start, orig_end, 2171 va->va_start, va->va_end); 2172 2173 atomic_long_sub(nr, &vmap_lazy_nr); 2174 vn->nr_purged++; 2175 2176 if (is_vn_id_valid(vn_id) && !vn->skip_populate) 2177 if (node_pool_add_va(vn, va)) 2178 continue; 2179 2180 /* Go back to global. */ 2181 list_add(&va->list, &local_list); 2182 } 2183 2184 reclaim_list_global(&local_list); 2185 } 2186 2187 /* 2188 * Purges all lazily-freed vmap areas. 2189 */ 2190 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, 2191 bool full_pool_decay) 2192 { 2193 unsigned long nr_purged_areas = 0; 2194 unsigned int nr_purge_helpers; 2195 unsigned int nr_purge_nodes; 2196 struct vmap_node *vn; 2197 int i; 2198 2199 lockdep_assert_held(&vmap_purge_lock); 2200 2201 /* 2202 * Use cpumask to mark which node has to be processed. 2203 */ 2204 purge_nodes = CPU_MASK_NONE; 2205 2206 for (i = 0; i < nr_vmap_nodes; i++) { 2207 vn = &vmap_nodes[i]; 2208 2209 INIT_LIST_HEAD(&vn->purge_list); 2210 vn->skip_populate = full_pool_decay; 2211 decay_va_pool_node(vn, full_pool_decay); 2212 2213 if (RB_EMPTY_ROOT(&vn->lazy.root)) 2214 continue; 2215 2216 spin_lock(&vn->lazy.lock); 2217 WRITE_ONCE(vn->lazy.root.rb_node, NULL); 2218 list_replace_init(&vn->lazy.head, &vn->purge_list); 2219 spin_unlock(&vn->lazy.lock); 2220 2221 start = min(start, list_first_entry(&vn->purge_list, 2222 struct vmap_area, list)->va_start); 2223 2224 end = max(end, list_last_entry(&vn->purge_list, 2225 struct vmap_area, list)->va_end); 2226 2227 cpumask_set_cpu(i, &purge_nodes); 2228 } 2229 2230 nr_purge_nodes = cpumask_weight(&purge_nodes); 2231 if (nr_purge_nodes > 0) { 2232 flush_tlb_kernel_range(start, end); 2233 2234 /* One extra worker is per a lazy_max_pages() full set minus one. */ 2235 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); 2236 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; 2237 2238 for_each_cpu(i, &purge_nodes) { 2239 vn = &vmap_nodes[i]; 2240 2241 if (nr_purge_helpers > 0) { 2242 INIT_WORK(&vn->purge_work, purge_vmap_node); 2243 2244 if (cpumask_test_cpu(i, cpu_online_mask)) 2245 schedule_work_on(i, &vn->purge_work); 2246 else 2247 schedule_work(&vn->purge_work); 2248 2249 nr_purge_helpers--; 2250 } else { 2251 vn->purge_work.func = NULL; 2252 purge_vmap_node(&vn->purge_work); 2253 nr_purged_areas += vn->nr_purged; 2254 } 2255 } 2256 2257 for_each_cpu(i, &purge_nodes) { 2258 vn = &vmap_nodes[i]; 2259 2260 if (vn->purge_work.func) { 2261 flush_work(&vn->purge_work); 2262 nr_purged_areas += vn->nr_purged; 2263 } 2264 } 2265 } 2266 2267 trace_purge_vmap_area_lazy(start, end, nr_purged_areas); 2268 return nr_purged_areas > 0; 2269 } 2270 2271 /* 2272 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 2273 */ 2274 static void reclaim_and_purge_vmap_areas(void) 2275 2276 { 2277 mutex_lock(&vmap_purge_lock); 2278 purge_fragmented_blocks_allcpus(); 2279 __purge_vmap_area_lazy(ULONG_MAX, 0, true); 2280 mutex_unlock(&vmap_purge_lock); 2281 } 2282 2283 static void drain_vmap_area_work(struct work_struct *work) 2284 { 2285 mutex_lock(&vmap_purge_lock); 2286 __purge_vmap_area_lazy(ULONG_MAX, 0, false); 2287 mutex_unlock(&vmap_purge_lock); 2288 } 2289 2290 /* 2291 * Free a vmap area, caller ensuring that the area has been unmapped, 2292 * unlinked and flush_cache_vunmap had been called for the correct 2293 * range previously. 2294 */ 2295 static void free_vmap_area_noflush(struct vmap_area *va) 2296 { 2297 unsigned long nr_lazy_max = lazy_max_pages(); 2298 unsigned long va_start = va->va_start; 2299 unsigned int vn_id = decode_vn_id(va->flags); 2300 struct vmap_node *vn; 2301 unsigned long nr_lazy; 2302 2303 if (WARN_ON_ONCE(!list_empty(&va->list))) 2304 return; 2305 2306 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 2307 PAGE_SHIFT, &vmap_lazy_nr); 2308 2309 /* 2310 * If it was request by a certain node we would like to 2311 * return it to that node, i.e. its pool for later reuse. 2312 */ 2313 vn = is_vn_id_valid(vn_id) ? 2314 id_to_node(vn_id):addr_to_node(va->va_start); 2315 2316 spin_lock(&vn->lazy.lock); 2317 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); 2318 spin_unlock(&vn->lazy.lock); 2319 2320 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 2321 2322 /* After this point, we may free va at any time */ 2323 if (unlikely(nr_lazy > nr_lazy_max)) 2324 schedule_work(&drain_vmap_work); 2325 } 2326 2327 /* 2328 * Free and unmap a vmap area 2329 */ 2330 static void free_unmap_vmap_area(struct vmap_area *va) 2331 { 2332 flush_cache_vunmap(va->va_start, va->va_end); 2333 vunmap_range_noflush(va->va_start, va->va_end); 2334 if (debug_pagealloc_enabled_static()) 2335 flush_tlb_kernel_range(va->va_start, va->va_end); 2336 2337 free_vmap_area_noflush(va); 2338 } 2339 2340 struct vmap_area *find_vmap_area(unsigned long addr) 2341 { 2342 struct vmap_node *vn; 2343 struct vmap_area *va; 2344 int i, j; 2345 2346 /* 2347 * An addr_to_node_id(addr) converts an address to a node index 2348 * where a VA is located. If VA spans several zones and passed 2349 * addr is not the same as va->va_start, what is not common, we 2350 * may need to scan extra nodes. See an example: 2351 * 2352 * <----va----> 2353 * -|-----|-----|-----|-----|- 2354 * 1 2 0 1 2355 * 2356 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed 2357 * addr is within 2 or 0 nodes we should do extra work. 2358 */ 2359 i = j = addr_to_node_id(addr); 2360 do { 2361 vn = &vmap_nodes[i]; 2362 2363 spin_lock(&vn->busy.lock); 2364 va = __find_vmap_area(addr, &vn->busy.root); 2365 spin_unlock(&vn->busy.lock); 2366 2367 if (va) 2368 return va; 2369 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2370 2371 return NULL; 2372 } 2373 2374 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 2375 { 2376 struct vmap_node *vn; 2377 struct vmap_area *va; 2378 int i, j; 2379 2380 /* 2381 * Check the comment in the find_vmap_area() about the loop. 2382 */ 2383 i = j = addr_to_node_id(addr); 2384 do { 2385 vn = &vmap_nodes[i]; 2386 2387 spin_lock(&vn->busy.lock); 2388 va = __find_vmap_area(addr, &vn->busy.root); 2389 if (va) 2390 unlink_va(va, &vn->busy.root); 2391 spin_unlock(&vn->busy.lock); 2392 2393 if (va) 2394 return va; 2395 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2396 2397 return NULL; 2398 } 2399 2400 /*** Per cpu kva allocator ***/ 2401 2402 /* 2403 * vmap space is limited especially on 32 bit architectures. Ensure there is 2404 * room for at least 16 percpu vmap blocks per CPU. 2405 */ 2406 /* 2407 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 2408 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 2409 * instead (we just need a rough idea) 2410 */ 2411 #if BITS_PER_LONG == 32 2412 #define VMALLOC_SPACE (128UL*1024*1024) 2413 #else 2414 #define VMALLOC_SPACE (128UL*1024*1024*1024) 2415 #endif 2416 2417 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 2418 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 2419 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 2420 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 2421 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 2422 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 2423 #define VMAP_BBMAP_BITS \ 2424 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 2425 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 2426 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 2427 2428 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 2429 2430 /* 2431 * Purge threshold to prevent overeager purging of fragmented blocks for 2432 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 2433 */ 2434 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 2435 2436 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 2437 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 2438 #define VMAP_FLAGS_MASK 0x3 2439 2440 struct vmap_block_queue { 2441 spinlock_t lock; 2442 struct list_head free; 2443 2444 /* 2445 * An xarray requires an extra memory dynamically to 2446 * be allocated. If it is an issue, we can use rb-tree 2447 * instead. 2448 */ 2449 struct xarray vmap_blocks; 2450 }; 2451 2452 struct vmap_block { 2453 spinlock_t lock; 2454 struct vmap_area *va; 2455 unsigned long free, dirty; 2456 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2457 unsigned long dirty_min, dirty_max; /*< dirty range */ 2458 struct list_head free_list; 2459 struct rcu_head rcu_head; 2460 struct list_head purge; 2461 }; 2462 2463 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2464 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2465 2466 /* 2467 * In order to fast access to any "vmap_block" associated with a 2468 * specific address, we use a hash. 2469 * 2470 * A per-cpu vmap_block_queue is used in both ways, to serialize 2471 * an access to free block chains among CPUs(alloc path) and it 2472 * also acts as a vmap_block hash(alloc/free paths). It means we 2473 * overload it, since we already have the per-cpu array which is 2474 * used as a hash table. When used as a hash a 'cpu' passed to 2475 * per_cpu() is not actually a CPU but rather a hash index. 2476 * 2477 * A hash function is addr_to_vb_xa() which hashes any address 2478 * to a specific index(in a hash) it belongs to. This then uses a 2479 * per_cpu() macro to access an array with generated index. 2480 * 2481 * An example: 2482 * 2483 * CPU_1 CPU_2 CPU_0 2484 * | | | 2485 * V V V 2486 * 0 10 20 30 40 50 60 2487 * |------|------|------|------|------|------|...<vmap address space> 2488 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2489 * 2490 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2491 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2492 * 2493 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2494 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2495 * 2496 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2497 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2498 * 2499 * This technique almost always avoids lock contention on insert/remove, 2500 * however xarray spinlocks protect against any contention that remains. 2501 */ 2502 static struct xarray * 2503 addr_to_vb_xa(unsigned long addr) 2504 { 2505 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus(); 2506 2507 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2508 } 2509 2510 /* 2511 * We should probably have a fallback mechanism to allocate virtual memory 2512 * out of partially filled vmap blocks. However vmap block sizing should be 2513 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2514 * big problem. 2515 */ 2516 2517 static unsigned long addr_to_vb_idx(unsigned long addr) 2518 { 2519 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2520 addr /= VMAP_BLOCK_SIZE; 2521 return addr; 2522 } 2523 2524 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2525 { 2526 unsigned long addr; 2527 2528 addr = va_start + (pages_off << PAGE_SHIFT); 2529 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2530 return (void *)addr; 2531 } 2532 2533 /** 2534 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2535 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2536 * @order: how many 2^order pages should be occupied in newly allocated block 2537 * @gfp_mask: flags for the page level allocator 2538 * 2539 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2540 */ 2541 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2542 { 2543 struct vmap_block_queue *vbq; 2544 struct vmap_block *vb; 2545 struct vmap_area *va; 2546 struct xarray *xa; 2547 unsigned long vb_idx; 2548 int node, err; 2549 void *vaddr; 2550 2551 node = numa_node_id(); 2552 2553 vb = kmalloc_node(sizeof(struct vmap_block), 2554 gfp_mask & GFP_RECLAIM_MASK, node); 2555 if (unlikely(!vb)) 2556 return ERR_PTR(-ENOMEM); 2557 2558 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2559 VMALLOC_START, VMALLOC_END, 2560 node, gfp_mask, 2561 VMAP_RAM|VMAP_BLOCK); 2562 if (IS_ERR(va)) { 2563 kfree(vb); 2564 return ERR_CAST(va); 2565 } 2566 2567 vaddr = vmap_block_vaddr(va->va_start, 0); 2568 spin_lock_init(&vb->lock); 2569 vb->va = va; 2570 /* At least something should be left free */ 2571 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2572 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2573 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2574 vb->dirty = 0; 2575 vb->dirty_min = VMAP_BBMAP_BITS; 2576 vb->dirty_max = 0; 2577 bitmap_set(vb->used_map, 0, (1UL << order)); 2578 INIT_LIST_HEAD(&vb->free_list); 2579 2580 xa = addr_to_vb_xa(va->va_start); 2581 vb_idx = addr_to_vb_idx(va->va_start); 2582 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2583 if (err) { 2584 kfree(vb); 2585 free_vmap_area(va); 2586 return ERR_PTR(err); 2587 } 2588 2589 vbq = raw_cpu_ptr(&vmap_block_queue); 2590 spin_lock(&vbq->lock); 2591 list_add_tail_rcu(&vb->free_list, &vbq->free); 2592 spin_unlock(&vbq->lock); 2593 2594 return vaddr; 2595 } 2596 2597 static void free_vmap_block(struct vmap_block *vb) 2598 { 2599 struct vmap_node *vn; 2600 struct vmap_block *tmp; 2601 struct xarray *xa; 2602 2603 xa = addr_to_vb_xa(vb->va->va_start); 2604 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2605 BUG_ON(tmp != vb); 2606 2607 vn = addr_to_node(vb->va->va_start); 2608 spin_lock(&vn->busy.lock); 2609 unlink_va(vb->va, &vn->busy.root); 2610 spin_unlock(&vn->busy.lock); 2611 2612 free_vmap_area_noflush(vb->va); 2613 kfree_rcu(vb, rcu_head); 2614 } 2615 2616 static bool purge_fragmented_block(struct vmap_block *vb, 2617 struct vmap_block_queue *vbq, struct list_head *purge_list, 2618 bool force_purge) 2619 { 2620 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2621 vb->dirty == VMAP_BBMAP_BITS) 2622 return false; 2623 2624 /* Don't overeagerly purge usable blocks unless requested */ 2625 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2626 return false; 2627 2628 /* prevent further allocs after releasing lock */ 2629 WRITE_ONCE(vb->free, 0); 2630 /* prevent purging it again */ 2631 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2632 vb->dirty_min = 0; 2633 vb->dirty_max = VMAP_BBMAP_BITS; 2634 spin_lock(&vbq->lock); 2635 list_del_rcu(&vb->free_list); 2636 spin_unlock(&vbq->lock); 2637 list_add_tail(&vb->purge, purge_list); 2638 return true; 2639 } 2640 2641 static void free_purged_blocks(struct list_head *purge_list) 2642 { 2643 struct vmap_block *vb, *n_vb; 2644 2645 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2646 list_del(&vb->purge); 2647 free_vmap_block(vb); 2648 } 2649 } 2650 2651 static void purge_fragmented_blocks(int cpu) 2652 { 2653 LIST_HEAD(purge); 2654 struct vmap_block *vb; 2655 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2656 2657 rcu_read_lock(); 2658 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2659 unsigned long free = READ_ONCE(vb->free); 2660 unsigned long dirty = READ_ONCE(vb->dirty); 2661 2662 if (free + dirty != VMAP_BBMAP_BITS || 2663 dirty == VMAP_BBMAP_BITS) 2664 continue; 2665 2666 spin_lock(&vb->lock); 2667 purge_fragmented_block(vb, vbq, &purge, true); 2668 spin_unlock(&vb->lock); 2669 } 2670 rcu_read_unlock(); 2671 free_purged_blocks(&purge); 2672 } 2673 2674 static void purge_fragmented_blocks_allcpus(void) 2675 { 2676 int cpu; 2677 2678 for_each_possible_cpu(cpu) 2679 purge_fragmented_blocks(cpu); 2680 } 2681 2682 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2683 { 2684 struct vmap_block_queue *vbq; 2685 struct vmap_block *vb; 2686 void *vaddr = NULL; 2687 unsigned int order; 2688 2689 BUG_ON(offset_in_page(size)); 2690 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2691 if (WARN_ON(size == 0)) { 2692 /* 2693 * Allocating 0 bytes isn't what caller wants since 2694 * get_order(0) returns funny result. Just warn and terminate 2695 * early. 2696 */ 2697 return NULL; 2698 } 2699 order = get_order(size); 2700 2701 rcu_read_lock(); 2702 vbq = raw_cpu_ptr(&vmap_block_queue); 2703 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2704 unsigned long pages_off; 2705 2706 if (READ_ONCE(vb->free) < (1UL << order)) 2707 continue; 2708 2709 spin_lock(&vb->lock); 2710 if (vb->free < (1UL << order)) { 2711 spin_unlock(&vb->lock); 2712 continue; 2713 } 2714 2715 pages_off = VMAP_BBMAP_BITS - vb->free; 2716 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2717 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2718 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2719 if (vb->free == 0) { 2720 spin_lock(&vbq->lock); 2721 list_del_rcu(&vb->free_list); 2722 spin_unlock(&vbq->lock); 2723 } 2724 2725 spin_unlock(&vb->lock); 2726 break; 2727 } 2728 2729 rcu_read_unlock(); 2730 2731 /* Allocate new block if nothing was found */ 2732 if (!vaddr) 2733 vaddr = new_vmap_block(order, gfp_mask); 2734 2735 return vaddr; 2736 } 2737 2738 static void vb_free(unsigned long addr, unsigned long size) 2739 { 2740 unsigned long offset; 2741 unsigned int order; 2742 struct vmap_block *vb; 2743 struct xarray *xa; 2744 2745 BUG_ON(offset_in_page(size)); 2746 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2747 2748 flush_cache_vunmap(addr, addr + size); 2749 2750 order = get_order(size); 2751 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2752 2753 xa = addr_to_vb_xa(addr); 2754 vb = xa_load(xa, addr_to_vb_idx(addr)); 2755 2756 spin_lock(&vb->lock); 2757 bitmap_clear(vb->used_map, offset, (1UL << order)); 2758 spin_unlock(&vb->lock); 2759 2760 vunmap_range_noflush(addr, addr + size); 2761 2762 if (debug_pagealloc_enabled_static()) 2763 flush_tlb_kernel_range(addr, addr + size); 2764 2765 spin_lock(&vb->lock); 2766 2767 /* Expand the not yet TLB flushed dirty range */ 2768 vb->dirty_min = min(vb->dirty_min, offset); 2769 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2770 2771 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2772 if (vb->dirty == VMAP_BBMAP_BITS) { 2773 BUG_ON(vb->free); 2774 spin_unlock(&vb->lock); 2775 free_vmap_block(vb); 2776 } else 2777 spin_unlock(&vb->lock); 2778 } 2779 2780 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2781 { 2782 LIST_HEAD(purge_list); 2783 int cpu; 2784 2785 if (unlikely(!vmap_initialized)) 2786 return; 2787 2788 mutex_lock(&vmap_purge_lock); 2789 2790 for_each_possible_cpu(cpu) { 2791 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2792 struct vmap_block *vb; 2793 unsigned long idx; 2794 2795 rcu_read_lock(); 2796 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2797 spin_lock(&vb->lock); 2798 2799 /* 2800 * Try to purge a fragmented block first. If it's 2801 * not purgeable, check whether there is dirty 2802 * space to be flushed. 2803 */ 2804 if (!purge_fragmented_block(vb, vbq, &purge_list, false) && 2805 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2806 unsigned long va_start = vb->va->va_start; 2807 unsigned long s, e; 2808 2809 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2810 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2811 2812 start = min(s, start); 2813 end = max(e, end); 2814 2815 /* Prevent that this is flushed again */ 2816 vb->dirty_min = VMAP_BBMAP_BITS; 2817 vb->dirty_max = 0; 2818 2819 flush = 1; 2820 } 2821 spin_unlock(&vb->lock); 2822 } 2823 rcu_read_unlock(); 2824 } 2825 free_purged_blocks(&purge_list); 2826 2827 if (!__purge_vmap_area_lazy(start, end, false) && flush) 2828 flush_tlb_kernel_range(start, end); 2829 mutex_unlock(&vmap_purge_lock); 2830 } 2831 2832 /** 2833 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2834 * 2835 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2836 * to amortize TLB flushing overheads. What this means is that any page you 2837 * have now, may, in a former life, have been mapped into kernel virtual 2838 * address by the vmap layer and so there might be some CPUs with TLB entries 2839 * still referencing that page (additional to the regular 1:1 kernel mapping). 2840 * 2841 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2842 * be sure that none of the pages we have control over will have any aliases 2843 * from the vmap layer. 2844 */ 2845 void vm_unmap_aliases(void) 2846 { 2847 unsigned long start = ULONG_MAX, end = 0; 2848 int flush = 0; 2849 2850 _vm_unmap_aliases(start, end, flush); 2851 } 2852 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2853 2854 /** 2855 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2856 * @mem: the pointer returned by vm_map_ram 2857 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2858 */ 2859 void vm_unmap_ram(const void *mem, unsigned int count) 2860 { 2861 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2862 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2863 struct vmap_area *va; 2864 2865 might_sleep(); 2866 BUG_ON(!addr); 2867 BUG_ON(addr < VMALLOC_START); 2868 BUG_ON(addr > VMALLOC_END); 2869 BUG_ON(!PAGE_ALIGNED(addr)); 2870 2871 kasan_poison_vmalloc(mem, size); 2872 2873 if (likely(count <= VMAP_MAX_ALLOC)) { 2874 debug_check_no_locks_freed(mem, size); 2875 vb_free(addr, size); 2876 return; 2877 } 2878 2879 va = find_unlink_vmap_area(addr); 2880 if (WARN_ON_ONCE(!va)) 2881 return; 2882 2883 debug_check_no_locks_freed((void *)va->va_start, 2884 (va->va_end - va->va_start)); 2885 free_unmap_vmap_area(va); 2886 } 2887 EXPORT_SYMBOL(vm_unmap_ram); 2888 2889 /** 2890 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2891 * @pages: an array of pointers to the pages to be mapped 2892 * @count: number of pages 2893 * @node: prefer to allocate data structures on this node 2894 * 2895 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2896 * faster than vmap so it's good. But if you mix long-life and short-life 2897 * objects with vm_map_ram(), it could consume lots of address space through 2898 * fragmentation (especially on a 32bit machine). You could see failures in 2899 * the end. Please use this function for short-lived objects. 2900 * 2901 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2902 */ 2903 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2904 { 2905 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2906 unsigned long addr; 2907 void *mem; 2908 2909 if (likely(count <= VMAP_MAX_ALLOC)) { 2910 mem = vb_alloc(size, GFP_KERNEL); 2911 if (IS_ERR(mem)) 2912 return NULL; 2913 addr = (unsigned long)mem; 2914 } else { 2915 struct vmap_area *va; 2916 va = alloc_vmap_area(size, PAGE_SIZE, 2917 VMALLOC_START, VMALLOC_END, 2918 node, GFP_KERNEL, VMAP_RAM); 2919 if (IS_ERR(va)) 2920 return NULL; 2921 2922 addr = va->va_start; 2923 mem = (void *)addr; 2924 } 2925 2926 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2927 pages, PAGE_SHIFT) < 0) { 2928 vm_unmap_ram(mem, count); 2929 return NULL; 2930 } 2931 2932 /* 2933 * Mark the pages as accessible, now that they are mapped. 2934 * With hardware tag-based KASAN, marking is skipped for 2935 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2936 */ 2937 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2938 2939 return mem; 2940 } 2941 EXPORT_SYMBOL(vm_map_ram); 2942 2943 static struct vm_struct *vmlist __initdata; 2944 2945 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2946 { 2947 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2948 return vm->page_order; 2949 #else 2950 return 0; 2951 #endif 2952 } 2953 2954 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2955 { 2956 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2957 vm->page_order = order; 2958 #else 2959 BUG_ON(order != 0); 2960 #endif 2961 } 2962 2963 /** 2964 * vm_area_add_early - add vmap area early during boot 2965 * @vm: vm_struct to add 2966 * 2967 * This function is used to add fixed kernel vm area to vmlist before 2968 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2969 * should contain proper values and the other fields should be zero. 2970 * 2971 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2972 */ 2973 void __init vm_area_add_early(struct vm_struct *vm) 2974 { 2975 struct vm_struct *tmp, **p; 2976 2977 BUG_ON(vmap_initialized); 2978 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2979 if (tmp->addr >= vm->addr) { 2980 BUG_ON(tmp->addr < vm->addr + vm->size); 2981 break; 2982 } else 2983 BUG_ON(tmp->addr + tmp->size > vm->addr); 2984 } 2985 vm->next = *p; 2986 *p = vm; 2987 } 2988 2989 /** 2990 * vm_area_register_early - register vmap area early during boot 2991 * @vm: vm_struct to register 2992 * @align: requested alignment 2993 * 2994 * This function is used to register kernel vm area before 2995 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2996 * proper values on entry and other fields should be zero. On return, 2997 * vm->addr contains the allocated address. 2998 * 2999 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3000 */ 3001 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 3002 { 3003 unsigned long addr = ALIGN(VMALLOC_START, align); 3004 struct vm_struct *cur, **p; 3005 3006 BUG_ON(vmap_initialized); 3007 3008 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 3009 if ((unsigned long)cur->addr - addr >= vm->size) 3010 break; 3011 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 3012 } 3013 3014 BUG_ON(addr > VMALLOC_END - vm->size); 3015 vm->addr = (void *)addr; 3016 vm->next = *p; 3017 *p = vm; 3018 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 3019 } 3020 3021 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 3022 struct vmap_area *va, unsigned long flags, const void *caller) 3023 { 3024 vm->flags = flags; 3025 vm->addr = (void *)va->va_start; 3026 vm->size = va->va_end - va->va_start; 3027 vm->caller = caller; 3028 va->vm = vm; 3029 } 3030 3031 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 3032 unsigned long flags, const void *caller) 3033 { 3034 struct vmap_node *vn = addr_to_node(va->va_start); 3035 3036 spin_lock(&vn->busy.lock); 3037 setup_vmalloc_vm_locked(vm, va, flags, caller); 3038 spin_unlock(&vn->busy.lock); 3039 } 3040 3041 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 3042 { 3043 /* 3044 * Before removing VM_UNINITIALIZED, 3045 * we should make sure that vm has proper values. 3046 * Pair with smp_rmb() in show_numa_info(). 3047 */ 3048 smp_wmb(); 3049 vm->flags &= ~VM_UNINITIALIZED; 3050 } 3051 3052 static struct vm_struct *__get_vm_area_node(unsigned long size, 3053 unsigned long align, unsigned long shift, unsigned long flags, 3054 unsigned long start, unsigned long end, int node, 3055 gfp_t gfp_mask, const void *caller) 3056 { 3057 struct vmap_area *va; 3058 struct vm_struct *area; 3059 unsigned long requested_size = size; 3060 3061 BUG_ON(in_interrupt()); 3062 size = ALIGN(size, 1ul << shift); 3063 if (unlikely(!size)) 3064 return NULL; 3065 3066 if (flags & VM_IOREMAP) 3067 align = 1ul << clamp_t(int, get_count_order_long(size), 3068 PAGE_SHIFT, IOREMAP_MAX_ORDER); 3069 3070 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 3071 if (unlikely(!area)) 3072 return NULL; 3073 3074 if (!(flags & VM_NO_GUARD)) 3075 size += PAGE_SIZE; 3076 3077 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0); 3078 if (IS_ERR(va)) { 3079 kfree(area); 3080 return NULL; 3081 } 3082 3083 setup_vmalloc_vm(area, va, flags, caller); 3084 3085 /* 3086 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 3087 * best-effort approach, as they can be mapped outside of vmalloc code. 3088 * For VM_ALLOC mappings, the pages are marked as accessible after 3089 * getting mapped in __vmalloc_node_range(). 3090 * With hardware tag-based KASAN, marking is skipped for 3091 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3092 */ 3093 if (!(flags & VM_ALLOC)) 3094 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 3095 KASAN_VMALLOC_PROT_NORMAL); 3096 3097 return area; 3098 } 3099 3100 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 3101 unsigned long start, unsigned long end, 3102 const void *caller) 3103 { 3104 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 3105 NUMA_NO_NODE, GFP_KERNEL, caller); 3106 } 3107 3108 /** 3109 * get_vm_area - reserve a contiguous kernel virtual area 3110 * @size: size of the area 3111 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 3112 * 3113 * Search an area of @size in the kernel virtual mapping area, 3114 * and reserved it for out purposes. Returns the area descriptor 3115 * on success or %NULL on failure. 3116 * 3117 * Return: the area descriptor on success or %NULL on failure. 3118 */ 3119 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 3120 { 3121 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3122 VMALLOC_START, VMALLOC_END, 3123 NUMA_NO_NODE, GFP_KERNEL, 3124 __builtin_return_address(0)); 3125 } 3126 3127 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 3128 const void *caller) 3129 { 3130 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3131 VMALLOC_START, VMALLOC_END, 3132 NUMA_NO_NODE, GFP_KERNEL, caller); 3133 } 3134 3135 /** 3136 * find_vm_area - find a continuous kernel virtual area 3137 * @addr: base address 3138 * 3139 * Search for the kernel VM area starting at @addr, and return it. 3140 * It is up to the caller to do all required locking to keep the returned 3141 * pointer valid. 3142 * 3143 * Return: the area descriptor on success or %NULL on failure. 3144 */ 3145 struct vm_struct *find_vm_area(const void *addr) 3146 { 3147 struct vmap_area *va; 3148 3149 va = find_vmap_area((unsigned long)addr); 3150 if (!va) 3151 return NULL; 3152 3153 return va->vm; 3154 } 3155 3156 /** 3157 * remove_vm_area - find and remove a continuous kernel virtual area 3158 * @addr: base address 3159 * 3160 * Search for the kernel VM area starting at @addr, and remove it. 3161 * This function returns the found VM area, but using it is NOT safe 3162 * on SMP machines, except for its size or flags. 3163 * 3164 * Return: the area descriptor on success or %NULL on failure. 3165 */ 3166 struct vm_struct *remove_vm_area(const void *addr) 3167 { 3168 struct vmap_area *va; 3169 struct vm_struct *vm; 3170 3171 might_sleep(); 3172 3173 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 3174 addr)) 3175 return NULL; 3176 3177 va = find_unlink_vmap_area((unsigned long)addr); 3178 if (!va || !va->vm) 3179 return NULL; 3180 vm = va->vm; 3181 3182 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 3183 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 3184 kasan_free_module_shadow(vm); 3185 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 3186 3187 free_unmap_vmap_area(va); 3188 return vm; 3189 } 3190 3191 static inline void set_area_direct_map(const struct vm_struct *area, 3192 int (*set_direct_map)(struct page *page)) 3193 { 3194 int i; 3195 3196 /* HUGE_VMALLOC passes small pages to set_direct_map */ 3197 for (i = 0; i < area->nr_pages; i++) 3198 if (page_address(area->pages[i])) 3199 set_direct_map(area->pages[i]); 3200 } 3201 3202 /* 3203 * Flush the vm mapping and reset the direct map. 3204 */ 3205 static void vm_reset_perms(struct vm_struct *area) 3206 { 3207 unsigned long start = ULONG_MAX, end = 0; 3208 unsigned int page_order = vm_area_page_order(area); 3209 int flush_dmap = 0; 3210 int i; 3211 3212 /* 3213 * Find the start and end range of the direct mappings to make sure that 3214 * the vm_unmap_aliases() flush includes the direct map. 3215 */ 3216 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 3217 unsigned long addr = (unsigned long)page_address(area->pages[i]); 3218 3219 if (addr) { 3220 unsigned long page_size; 3221 3222 page_size = PAGE_SIZE << page_order; 3223 start = min(addr, start); 3224 end = max(addr + page_size, end); 3225 flush_dmap = 1; 3226 } 3227 } 3228 3229 /* 3230 * Set direct map to something invalid so that it won't be cached if 3231 * there are any accesses after the TLB flush, then flush the TLB and 3232 * reset the direct map permissions to the default. 3233 */ 3234 set_area_direct_map(area, set_direct_map_invalid_noflush); 3235 _vm_unmap_aliases(start, end, flush_dmap); 3236 set_area_direct_map(area, set_direct_map_default_noflush); 3237 } 3238 3239 static void delayed_vfree_work(struct work_struct *w) 3240 { 3241 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 3242 struct llist_node *t, *llnode; 3243 3244 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 3245 vfree(llnode); 3246 } 3247 3248 /** 3249 * vfree_atomic - release memory allocated by vmalloc() 3250 * @addr: memory base address 3251 * 3252 * This one is just like vfree() but can be called in any atomic context 3253 * except NMIs. 3254 */ 3255 void vfree_atomic(const void *addr) 3256 { 3257 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 3258 3259 BUG_ON(in_nmi()); 3260 kmemleak_free(addr); 3261 3262 /* 3263 * Use raw_cpu_ptr() because this can be called from preemptible 3264 * context. Preemption is absolutely fine here, because the llist_add() 3265 * implementation is lockless, so it works even if we are adding to 3266 * another cpu's list. schedule_work() should be fine with this too. 3267 */ 3268 if (addr && llist_add((struct llist_node *)addr, &p->list)) 3269 schedule_work(&p->wq); 3270 } 3271 3272 /** 3273 * vfree - Release memory allocated by vmalloc() 3274 * @addr: Memory base address 3275 * 3276 * Free the virtually continuous memory area starting at @addr, as obtained 3277 * from one of the vmalloc() family of APIs. This will usually also free the 3278 * physical memory underlying the virtual allocation, but that memory is 3279 * reference counted, so it will not be freed until the last user goes away. 3280 * 3281 * If @addr is NULL, no operation is performed. 3282 * 3283 * Context: 3284 * May sleep if called *not* from interrupt context. 3285 * Must not be called in NMI context (strictly speaking, it could be 3286 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 3287 * conventions for vfree() arch-dependent would be a really bad idea). 3288 */ 3289 void vfree(const void *addr) 3290 { 3291 struct vm_struct *vm; 3292 int i; 3293 3294 if (unlikely(in_interrupt())) { 3295 vfree_atomic(addr); 3296 return; 3297 } 3298 3299 BUG_ON(in_nmi()); 3300 kmemleak_free(addr); 3301 might_sleep(); 3302 3303 if (!addr) 3304 return; 3305 3306 vm = remove_vm_area(addr); 3307 if (unlikely(!vm)) { 3308 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 3309 addr); 3310 return; 3311 } 3312 3313 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 3314 vm_reset_perms(vm); 3315 for (i = 0; i < vm->nr_pages; i++) { 3316 struct page *page = vm->pages[i]; 3317 3318 BUG_ON(!page); 3319 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 3320 /* 3321 * High-order allocs for huge vmallocs are split, so 3322 * can be freed as an array of order-0 allocations 3323 */ 3324 __free_page(page); 3325 cond_resched(); 3326 } 3327 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 3328 kvfree(vm->pages); 3329 kfree(vm); 3330 } 3331 EXPORT_SYMBOL(vfree); 3332 3333 /** 3334 * vunmap - release virtual mapping obtained by vmap() 3335 * @addr: memory base address 3336 * 3337 * Free the virtually contiguous memory area starting at @addr, 3338 * which was created from the page array passed to vmap(). 3339 * 3340 * Must not be called in interrupt context. 3341 */ 3342 void vunmap(const void *addr) 3343 { 3344 struct vm_struct *vm; 3345 3346 BUG_ON(in_interrupt()); 3347 might_sleep(); 3348 3349 if (!addr) 3350 return; 3351 vm = remove_vm_area(addr); 3352 if (unlikely(!vm)) { 3353 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 3354 addr); 3355 return; 3356 } 3357 kfree(vm); 3358 } 3359 EXPORT_SYMBOL(vunmap); 3360 3361 /** 3362 * vmap - map an array of pages into virtually contiguous space 3363 * @pages: array of page pointers 3364 * @count: number of pages to map 3365 * @flags: vm_area->flags 3366 * @prot: page protection for the mapping 3367 * 3368 * Maps @count pages from @pages into contiguous kernel virtual space. 3369 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 3370 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 3371 * are transferred from the caller to vmap(), and will be freed / dropped when 3372 * vfree() is called on the return value. 3373 * 3374 * Return: the address of the area or %NULL on failure 3375 */ 3376 void *vmap(struct page **pages, unsigned int count, 3377 unsigned long flags, pgprot_t prot) 3378 { 3379 struct vm_struct *area; 3380 unsigned long addr; 3381 unsigned long size; /* In bytes */ 3382 3383 might_sleep(); 3384 3385 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 3386 return NULL; 3387 3388 /* 3389 * Your top guard is someone else's bottom guard. Not having a top 3390 * guard compromises someone else's mappings too. 3391 */ 3392 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 3393 flags &= ~VM_NO_GUARD; 3394 3395 if (count > totalram_pages()) 3396 return NULL; 3397 3398 size = (unsigned long)count << PAGE_SHIFT; 3399 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 3400 if (!area) 3401 return NULL; 3402 3403 addr = (unsigned long)area->addr; 3404 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 3405 pages, PAGE_SHIFT) < 0) { 3406 vunmap(area->addr); 3407 return NULL; 3408 } 3409 3410 if (flags & VM_MAP_PUT_PAGES) { 3411 area->pages = pages; 3412 area->nr_pages = count; 3413 } 3414 return area->addr; 3415 } 3416 EXPORT_SYMBOL(vmap); 3417 3418 #ifdef CONFIG_VMAP_PFN 3419 struct vmap_pfn_data { 3420 unsigned long *pfns; 3421 pgprot_t prot; 3422 unsigned int idx; 3423 }; 3424 3425 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3426 { 3427 struct vmap_pfn_data *data = private; 3428 unsigned long pfn = data->pfns[data->idx]; 3429 pte_t ptent; 3430 3431 if (WARN_ON_ONCE(pfn_valid(pfn))) 3432 return -EINVAL; 3433 3434 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3435 set_pte_at(&init_mm, addr, pte, ptent); 3436 3437 data->idx++; 3438 return 0; 3439 } 3440 3441 /** 3442 * vmap_pfn - map an array of PFNs into virtually contiguous space 3443 * @pfns: array of PFNs 3444 * @count: number of pages to map 3445 * @prot: page protection for the mapping 3446 * 3447 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3448 * the start address of the mapping. 3449 */ 3450 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3451 { 3452 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3453 struct vm_struct *area; 3454 3455 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3456 __builtin_return_address(0)); 3457 if (!area) 3458 return NULL; 3459 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3460 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3461 free_vm_area(area); 3462 return NULL; 3463 } 3464 3465 flush_cache_vmap((unsigned long)area->addr, 3466 (unsigned long)area->addr + count * PAGE_SIZE); 3467 3468 return area->addr; 3469 } 3470 EXPORT_SYMBOL_GPL(vmap_pfn); 3471 #endif /* CONFIG_VMAP_PFN */ 3472 3473 static inline unsigned int 3474 vm_area_alloc_pages(gfp_t gfp, int nid, 3475 unsigned int order, unsigned int nr_pages, struct page **pages) 3476 { 3477 unsigned int nr_allocated = 0; 3478 gfp_t alloc_gfp = gfp; 3479 bool nofail = false; 3480 struct page *page; 3481 int i; 3482 3483 /* 3484 * For order-0 pages we make use of bulk allocator, if 3485 * the page array is partly or not at all populated due 3486 * to fails, fallback to a single page allocator that is 3487 * more permissive. 3488 */ 3489 if (!order) { 3490 /* bulk allocator doesn't support nofail req. officially */ 3491 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 3492 3493 while (nr_allocated < nr_pages) { 3494 unsigned int nr, nr_pages_request; 3495 3496 /* 3497 * A maximum allowed request is hard-coded and is 100 3498 * pages per call. That is done in order to prevent a 3499 * long preemption off scenario in the bulk-allocator 3500 * so the range is [1:100]. 3501 */ 3502 nr_pages_request = min(100U, nr_pages - nr_allocated); 3503 3504 /* memory allocation should consider mempolicy, we can't 3505 * wrongly use nearest node when nid == NUMA_NO_NODE, 3506 * otherwise memory may be allocated in only one node, 3507 * but mempolicy wants to alloc memory by interleaving. 3508 */ 3509 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3510 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 3511 nr_pages_request, 3512 pages + nr_allocated); 3513 3514 else 3515 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 3516 nr_pages_request, 3517 pages + nr_allocated); 3518 3519 nr_allocated += nr; 3520 cond_resched(); 3521 3522 /* 3523 * If zero or pages were obtained partly, 3524 * fallback to a single page allocator. 3525 */ 3526 if (nr != nr_pages_request) 3527 break; 3528 } 3529 } else if (gfp & __GFP_NOFAIL) { 3530 /* 3531 * Higher order nofail allocations are really expensive and 3532 * potentially dangerous (pre-mature OOM, disruptive reclaim 3533 * and compaction etc. 3534 */ 3535 alloc_gfp &= ~__GFP_NOFAIL; 3536 nofail = true; 3537 } 3538 3539 /* High-order pages or fallback path if "bulk" fails. */ 3540 while (nr_allocated < nr_pages) { 3541 if (fatal_signal_pending(current)) 3542 break; 3543 3544 if (nid == NUMA_NO_NODE) 3545 page = alloc_pages(alloc_gfp, order); 3546 else 3547 page = alloc_pages_node(nid, alloc_gfp, order); 3548 if (unlikely(!page)) { 3549 if (!nofail) 3550 break; 3551 3552 /* fall back to the zero order allocations */ 3553 alloc_gfp |= __GFP_NOFAIL; 3554 order = 0; 3555 continue; 3556 } 3557 3558 /* 3559 * Higher order allocations must be able to be treated as 3560 * indepdenent small pages by callers (as they can with 3561 * small-page vmallocs). Some drivers do their own refcounting 3562 * on vmalloc_to_page() pages, some use page->mapping, 3563 * page->lru, etc. 3564 */ 3565 if (order) 3566 split_page(page, order); 3567 3568 /* 3569 * Careful, we allocate and map page-order pages, but 3570 * tracking is done per PAGE_SIZE page so as to keep the 3571 * vm_struct APIs independent of the physical/mapped size. 3572 */ 3573 for (i = 0; i < (1U << order); i++) 3574 pages[nr_allocated + i] = page + i; 3575 3576 cond_resched(); 3577 nr_allocated += 1U << order; 3578 } 3579 3580 return nr_allocated; 3581 } 3582 3583 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3584 pgprot_t prot, unsigned int page_shift, 3585 int node) 3586 { 3587 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3588 bool nofail = gfp_mask & __GFP_NOFAIL; 3589 unsigned long addr = (unsigned long)area->addr; 3590 unsigned long size = get_vm_area_size(area); 3591 unsigned long array_size; 3592 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3593 unsigned int page_order; 3594 unsigned int flags; 3595 int ret; 3596 3597 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3598 3599 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3600 gfp_mask |= __GFP_HIGHMEM; 3601 3602 /* Please note that the recursion is strictly bounded. */ 3603 if (array_size > PAGE_SIZE) { 3604 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 3605 area->caller); 3606 } else { 3607 area->pages = kmalloc_node(array_size, nested_gfp, node); 3608 } 3609 3610 if (!area->pages) { 3611 warn_alloc(gfp_mask, NULL, 3612 "vmalloc error: size %lu, failed to allocated page array size %lu", 3613 nr_small_pages * PAGE_SIZE, array_size); 3614 free_vm_area(area); 3615 return NULL; 3616 } 3617 3618 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3619 page_order = vm_area_page_order(area); 3620 3621 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3622 node, page_order, nr_small_pages, area->pages); 3623 3624 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3625 if (gfp_mask & __GFP_ACCOUNT) { 3626 int i; 3627 3628 for (i = 0; i < area->nr_pages; i++) 3629 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3630 } 3631 3632 /* 3633 * If not enough pages were obtained to accomplish an 3634 * allocation request, free them via vfree() if any. 3635 */ 3636 if (area->nr_pages != nr_small_pages) { 3637 /* 3638 * vm_area_alloc_pages() can fail due to insufficient memory but 3639 * also:- 3640 * 3641 * - a pending fatal signal 3642 * - insufficient huge page-order pages 3643 * 3644 * Since we always retry allocations at order-0 in the huge page 3645 * case a warning for either is spurious. 3646 */ 3647 if (!fatal_signal_pending(current) && page_order == 0) 3648 warn_alloc(gfp_mask, NULL, 3649 "vmalloc error: size %lu, failed to allocate pages", 3650 area->nr_pages * PAGE_SIZE); 3651 goto fail; 3652 } 3653 3654 /* 3655 * page tables allocations ignore external gfp mask, enforce it 3656 * by the scope API 3657 */ 3658 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3659 flags = memalloc_nofs_save(); 3660 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3661 flags = memalloc_noio_save(); 3662 3663 do { 3664 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3665 page_shift); 3666 if (nofail && (ret < 0)) 3667 schedule_timeout_uninterruptible(1); 3668 } while (nofail && (ret < 0)); 3669 3670 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3671 memalloc_nofs_restore(flags); 3672 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3673 memalloc_noio_restore(flags); 3674 3675 if (ret < 0) { 3676 warn_alloc(gfp_mask, NULL, 3677 "vmalloc error: size %lu, failed to map pages", 3678 area->nr_pages * PAGE_SIZE); 3679 goto fail; 3680 } 3681 3682 return area->addr; 3683 3684 fail: 3685 vfree(area->addr); 3686 return NULL; 3687 } 3688 3689 /** 3690 * __vmalloc_node_range - allocate virtually contiguous memory 3691 * @size: allocation size 3692 * @align: desired alignment 3693 * @start: vm area range start 3694 * @end: vm area range end 3695 * @gfp_mask: flags for the page level allocator 3696 * @prot: protection mask for the allocated pages 3697 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3698 * @node: node to use for allocation or NUMA_NO_NODE 3699 * @caller: caller's return address 3700 * 3701 * Allocate enough pages to cover @size from the page level 3702 * allocator with @gfp_mask flags. Please note that the full set of gfp 3703 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3704 * supported. 3705 * Zone modifiers are not supported. From the reclaim modifiers 3706 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3707 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3708 * __GFP_RETRY_MAYFAIL are not supported). 3709 * 3710 * __GFP_NOWARN can be used to suppress failures messages. 3711 * 3712 * Map them into contiguous kernel virtual space, using a pagetable 3713 * protection of @prot. 3714 * 3715 * Return: the address of the area or %NULL on failure 3716 */ 3717 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3718 unsigned long start, unsigned long end, gfp_t gfp_mask, 3719 pgprot_t prot, unsigned long vm_flags, int node, 3720 const void *caller) 3721 { 3722 struct vm_struct *area; 3723 void *ret; 3724 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3725 unsigned long real_size = size; 3726 unsigned long real_align = align; 3727 unsigned int shift = PAGE_SHIFT; 3728 3729 if (WARN_ON_ONCE(!size)) 3730 return NULL; 3731 3732 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3733 warn_alloc(gfp_mask, NULL, 3734 "vmalloc error: size %lu, exceeds total pages", 3735 real_size); 3736 return NULL; 3737 } 3738 3739 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3740 unsigned long size_per_node; 3741 3742 /* 3743 * Try huge pages. Only try for PAGE_KERNEL allocations, 3744 * others like modules don't yet expect huge pages in 3745 * their allocations due to apply_to_page_range not 3746 * supporting them. 3747 */ 3748 3749 size_per_node = size; 3750 if (node == NUMA_NO_NODE) 3751 size_per_node /= num_online_nodes(); 3752 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3753 shift = PMD_SHIFT; 3754 else 3755 shift = arch_vmap_pte_supported_shift(size_per_node); 3756 3757 align = max(real_align, 1UL << shift); 3758 size = ALIGN(real_size, 1UL << shift); 3759 } 3760 3761 again: 3762 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3763 VM_UNINITIALIZED | vm_flags, start, end, node, 3764 gfp_mask, caller); 3765 if (!area) { 3766 bool nofail = gfp_mask & __GFP_NOFAIL; 3767 warn_alloc(gfp_mask, NULL, 3768 "vmalloc error: size %lu, vm_struct allocation failed%s", 3769 real_size, (nofail) ? ". Retrying." : ""); 3770 if (nofail) { 3771 schedule_timeout_uninterruptible(1); 3772 goto again; 3773 } 3774 goto fail; 3775 } 3776 3777 /* 3778 * Prepare arguments for __vmalloc_area_node() and 3779 * kasan_unpoison_vmalloc(). 3780 */ 3781 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3782 if (kasan_hw_tags_enabled()) { 3783 /* 3784 * Modify protection bits to allow tagging. 3785 * This must be done before mapping. 3786 */ 3787 prot = arch_vmap_pgprot_tagged(prot); 3788 3789 /* 3790 * Skip page_alloc poisoning and zeroing for physical 3791 * pages backing VM_ALLOC mapping. Memory is instead 3792 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3793 */ 3794 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3795 } 3796 3797 /* Take note that the mapping is PAGE_KERNEL. */ 3798 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3799 } 3800 3801 /* Allocate physical pages and map them into vmalloc space. */ 3802 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3803 if (!ret) 3804 goto fail; 3805 3806 /* 3807 * Mark the pages as accessible, now that they are mapped. 3808 * The condition for setting KASAN_VMALLOC_INIT should complement the 3809 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3810 * to make sure that memory is initialized under the same conditions. 3811 * Tag-based KASAN modes only assign tags to normal non-executable 3812 * allocations, see __kasan_unpoison_vmalloc(). 3813 */ 3814 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3815 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3816 (gfp_mask & __GFP_SKIP_ZERO)) 3817 kasan_flags |= KASAN_VMALLOC_INIT; 3818 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3819 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3820 3821 /* 3822 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3823 * flag. It means that vm_struct is not fully initialized. 3824 * Now, it is fully initialized, so remove this flag here. 3825 */ 3826 clear_vm_uninitialized_flag(area); 3827 3828 size = PAGE_ALIGN(size); 3829 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3830 kmemleak_vmalloc(area, size, gfp_mask); 3831 3832 return area->addr; 3833 3834 fail: 3835 if (shift > PAGE_SHIFT) { 3836 shift = PAGE_SHIFT; 3837 align = real_align; 3838 size = real_size; 3839 goto again; 3840 } 3841 3842 return NULL; 3843 } 3844 3845 /** 3846 * __vmalloc_node - allocate virtually contiguous memory 3847 * @size: allocation size 3848 * @align: desired alignment 3849 * @gfp_mask: flags for the page level allocator 3850 * @node: node to use for allocation or NUMA_NO_NODE 3851 * @caller: caller's return address 3852 * 3853 * Allocate enough pages to cover @size from the page level allocator with 3854 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3855 * 3856 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3857 * and __GFP_NOFAIL are not supported 3858 * 3859 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3860 * with mm people. 3861 * 3862 * Return: pointer to the allocated memory or %NULL on error 3863 */ 3864 void *__vmalloc_node(unsigned long size, unsigned long align, 3865 gfp_t gfp_mask, int node, const void *caller) 3866 { 3867 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3868 gfp_mask, PAGE_KERNEL, 0, node, caller); 3869 } 3870 /* 3871 * This is only for performance analysis of vmalloc and stress purpose. 3872 * It is required by vmalloc test module, therefore do not use it other 3873 * than that. 3874 */ 3875 #ifdef CONFIG_TEST_VMALLOC_MODULE 3876 EXPORT_SYMBOL_GPL(__vmalloc_node); 3877 #endif 3878 3879 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3880 { 3881 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3882 __builtin_return_address(0)); 3883 } 3884 EXPORT_SYMBOL(__vmalloc); 3885 3886 /** 3887 * vmalloc - allocate virtually contiguous memory 3888 * @size: allocation size 3889 * 3890 * Allocate enough pages to cover @size from the page level 3891 * allocator and map them into contiguous kernel virtual space. 3892 * 3893 * For tight control over page level allocator and protection flags 3894 * use __vmalloc() instead. 3895 * 3896 * Return: pointer to the allocated memory or %NULL on error 3897 */ 3898 void *vmalloc(unsigned long size) 3899 { 3900 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3901 __builtin_return_address(0)); 3902 } 3903 EXPORT_SYMBOL(vmalloc); 3904 3905 /** 3906 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3907 * @size: allocation size 3908 * @gfp_mask: flags for the page level allocator 3909 * 3910 * Allocate enough pages to cover @size from the page level 3911 * allocator and map them into contiguous kernel virtual space. 3912 * If @size is greater than or equal to PMD_SIZE, allow using 3913 * huge pages for the memory 3914 * 3915 * Return: pointer to the allocated memory or %NULL on error 3916 */ 3917 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3918 { 3919 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3920 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3921 NUMA_NO_NODE, __builtin_return_address(0)); 3922 } 3923 EXPORT_SYMBOL_GPL(vmalloc_huge); 3924 3925 /** 3926 * vzalloc - allocate virtually contiguous memory with zero fill 3927 * @size: allocation size 3928 * 3929 * Allocate enough pages to cover @size from the page level 3930 * allocator and map them into contiguous kernel virtual space. 3931 * The memory allocated is set to zero. 3932 * 3933 * For tight control over page level allocator and protection flags 3934 * use __vmalloc() instead. 3935 * 3936 * Return: pointer to the allocated memory or %NULL on error 3937 */ 3938 void *vzalloc(unsigned long size) 3939 { 3940 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3941 __builtin_return_address(0)); 3942 } 3943 EXPORT_SYMBOL(vzalloc); 3944 3945 /** 3946 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3947 * @size: allocation size 3948 * 3949 * The resulting memory area is zeroed so it can be mapped to userspace 3950 * without leaking data. 3951 * 3952 * Return: pointer to the allocated memory or %NULL on error 3953 */ 3954 void *vmalloc_user(unsigned long size) 3955 { 3956 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3957 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3958 VM_USERMAP, NUMA_NO_NODE, 3959 __builtin_return_address(0)); 3960 } 3961 EXPORT_SYMBOL(vmalloc_user); 3962 3963 /** 3964 * vmalloc_node - allocate memory on a specific node 3965 * @size: allocation size 3966 * @node: numa node 3967 * 3968 * Allocate enough pages to cover @size from the page level 3969 * allocator and map them into contiguous kernel virtual space. 3970 * 3971 * For tight control over page level allocator and protection flags 3972 * use __vmalloc() instead. 3973 * 3974 * Return: pointer to the allocated memory or %NULL on error 3975 */ 3976 void *vmalloc_node(unsigned long size, int node) 3977 { 3978 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3979 __builtin_return_address(0)); 3980 } 3981 EXPORT_SYMBOL(vmalloc_node); 3982 3983 /** 3984 * vzalloc_node - allocate memory on a specific node with zero fill 3985 * @size: allocation size 3986 * @node: numa node 3987 * 3988 * Allocate enough pages to cover @size from the page level 3989 * allocator and map them into contiguous kernel virtual space. 3990 * The memory allocated is set to zero. 3991 * 3992 * Return: pointer to the allocated memory or %NULL on error 3993 */ 3994 void *vzalloc_node(unsigned long size, int node) 3995 { 3996 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3997 __builtin_return_address(0)); 3998 } 3999 EXPORT_SYMBOL(vzalloc_node); 4000 4001 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 4002 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4003 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 4004 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 4005 #else 4006 /* 4007 * 64b systems should always have either DMA or DMA32 zones. For others 4008 * GFP_DMA32 should do the right thing and use the normal zone. 4009 */ 4010 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4011 #endif 4012 4013 /** 4014 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 4015 * @size: allocation size 4016 * 4017 * Allocate enough 32bit PA addressable pages to cover @size from the 4018 * page level allocator and map them into contiguous kernel virtual space. 4019 * 4020 * Return: pointer to the allocated memory or %NULL on error 4021 */ 4022 void *vmalloc_32(unsigned long size) 4023 { 4024 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 4025 __builtin_return_address(0)); 4026 } 4027 EXPORT_SYMBOL(vmalloc_32); 4028 4029 /** 4030 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 4031 * @size: allocation size 4032 * 4033 * The resulting memory area is 32bit addressable and zeroed so it can be 4034 * mapped to userspace without leaking data. 4035 * 4036 * Return: pointer to the allocated memory or %NULL on error 4037 */ 4038 void *vmalloc_32_user(unsigned long size) 4039 { 4040 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4041 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 4042 VM_USERMAP, NUMA_NO_NODE, 4043 __builtin_return_address(0)); 4044 } 4045 EXPORT_SYMBOL(vmalloc_32_user); 4046 4047 /* 4048 * Atomically zero bytes in the iterator. 4049 * 4050 * Returns the number of zeroed bytes. 4051 */ 4052 static size_t zero_iter(struct iov_iter *iter, size_t count) 4053 { 4054 size_t remains = count; 4055 4056 while (remains > 0) { 4057 size_t num, copied; 4058 4059 num = min_t(size_t, remains, PAGE_SIZE); 4060 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 4061 remains -= copied; 4062 4063 if (copied < num) 4064 break; 4065 } 4066 4067 return count - remains; 4068 } 4069 4070 /* 4071 * small helper routine, copy contents to iter from addr. 4072 * If the page is not present, fill zero. 4073 * 4074 * Returns the number of copied bytes. 4075 */ 4076 static size_t aligned_vread_iter(struct iov_iter *iter, 4077 const char *addr, size_t count) 4078 { 4079 size_t remains = count; 4080 struct page *page; 4081 4082 while (remains > 0) { 4083 unsigned long offset, length; 4084 size_t copied = 0; 4085 4086 offset = offset_in_page(addr); 4087 length = PAGE_SIZE - offset; 4088 if (length > remains) 4089 length = remains; 4090 page = vmalloc_to_page(addr); 4091 /* 4092 * To do safe access to this _mapped_ area, we need lock. But 4093 * adding lock here means that we need to add overhead of 4094 * vmalloc()/vfree() calls for this _debug_ interface, rarely 4095 * used. Instead of that, we'll use an local mapping via 4096 * copy_page_to_iter_nofault() and accept a small overhead in 4097 * this access function. 4098 */ 4099 if (page) 4100 copied = copy_page_to_iter_nofault(page, offset, 4101 length, iter); 4102 else 4103 copied = zero_iter(iter, length); 4104 4105 addr += copied; 4106 remains -= copied; 4107 4108 if (copied != length) 4109 break; 4110 } 4111 4112 return count - remains; 4113 } 4114 4115 /* 4116 * Read from a vm_map_ram region of memory. 4117 * 4118 * Returns the number of copied bytes. 4119 */ 4120 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 4121 size_t count, unsigned long flags) 4122 { 4123 char *start; 4124 struct vmap_block *vb; 4125 struct xarray *xa; 4126 unsigned long offset; 4127 unsigned int rs, re; 4128 size_t remains, n; 4129 4130 /* 4131 * If it's area created by vm_map_ram() interface directly, but 4132 * not further subdividing and delegating management to vmap_block, 4133 * handle it here. 4134 */ 4135 if (!(flags & VMAP_BLOCK)) 4136 return aligned_vread_iter(iter, addr, count); 4137 4138 remains = count; 4139 4140 /* 4141 * Area is split into regions and tracked with vmap_block, read out 4142 * each region and zero fill the hole between regions. 4143 */ 4144 xa = addr_to_vb_xa((unsigned long) addr); 4145 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 4146 if (!vb) 4147 goto finished_zero; 4148 4149 spin_lock(&vb->lock); 4150 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 4151 spin_unlock(&vb->lock); 4152 goto finished_zero; 4153 } 4154 4155 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 4156 size_t copied; 4157 4158 if (remains == 0) 4159 goto finished; 4160 4161 start = vmap_block_vaddr(vb->va->va_start, rs); 4162 4163 if (addr < start) { 4164 size_t to_zero = min_t(size_t, start - addr, remains); 4165 size_t zeroed = zero_iter(iter, to_zero); 4166 4167 addr += zeroed; 4168 remains -= zeroed; 4169 4170 if (remains == 0 || zeroed != to_zero) 4171 goto finished; 4172 } 4173 4174 /*it could start reading from the middle of used region*/ 4175 offset = offset_in_page(addr); 4176 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 4177 if (n > remains) 4178 n = remains; 4179 4180 copied = aligned_vread_iter(iter, start + offset, n); 4181 4182 addr += copied; 4183 remains -= copied; 4184 4185 if (copied != n) 4186 goto finished; 4187 } 4188 4189 spin_unlock(&vb->lock); 4190 4191 finished_zero: 4192 /* zero-fill the left dirty or free regions */ 4193 return count - remains + zero_iter(iter, remains); 4194 finished: 4195 /* We couldn't copy/zero everything */ 4196 spin_unlock(&vb->lock); 4197 return count - remains; 4198 } 4199 4200 /** 4201 * vread_iter() - read vmalloc area in a safe way to an iterator. 4202 * @iter: the iterator to which data should be written. 4203 * @addr: vm address. 4204 * @count: number of bytes to be read. 4205 * 4206 * This function checks that addr is a valid vmalloc'ed area, and 4207 * copy data from that area to a given buffer. If the given memory range 4208 * of [addr...addr+count) includes some valid address, data is copied to 4209 * proper area of @buf. If there are memory holes, they'll be zero-filled. 4210 * IOREMAP area is treated as memory hole and no copy is done. 4211 * 4212 * If [addr...addr+count) doesn't includes any intersects with alive 4213 * vm_struct area, returns 0. @buf should be kernel's buffer. 4214 * 4215 * Note: In usual ops, vread() is never necessary because the caller 4216 * should know vmalloc() area is valid and can use memcpy(). 4217 * This is for routines which have to access vmalloc area without 4218 * any information, as /proc/kcore. 4219 * 4220 * Return: number of bytes for which addr and buf should be increased 4221 * (same number as @count) or %0 if [addr...addr+count) doesn't 4222 * include any intersection with valid vmalloc area 4223 */ 4224 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 4225 { 4226 struct vmap_node *vn; 4227 struct vmap_area *va; 4228 struct vm_struct *vm; 4229 char *vaddr; 4230 size_t n, size, flags, remains; 4231 unsigned long next; 4232 4233 addr = kasan_reset_tag(addr); 4234 4235 /* Don't allow overflow */ 4236 if ((unsigned long) addr + count < count) 4237 count = -(unsigned long) addr; 4238 4239 remains = count; 4240 4241 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); 4242 if (!vn) 4243 goto finished_zero; 4244 4245 /* no intersects with alive vmap_area */ 4246 if ((unsigned long)addr + remains <= va->va_start) 4247 goto finished_zero; 4248 4249 do { 4250 size_t copied; 4251 4252 if (remains == 0) 4253 goto finished; 4254 4255 vm = va->vm; 4256 flags = va->flags & VMAP_FLAGS_MASK; 4257 /* 4258 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 4259 * be set together with VMAP_RAM. 4260 */ 4261 WARN_ON(flags == VMAP_BLOCK); 4262 4263 if (!vm && !flags) 4264 goto next_va; 4265 4266 if (vm && (vm->flags & VM_UNINITIALIZED)) 4267 goto next_va; 4268 4269 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4270 smp_rmb(); 4271 4272 vaddr = (char *) va->va_start; 4273 size = vm ? get_vm_area_size(vm) : va_size(va); 4274 4275 if (addr >= vaddr + size) 4276 goto next_va; 4277 4278 if (addr < vaddr) { 4279 size_t to_zero = min_t(size_t, vaddr - addr, remains); 4280 size_t zeroed = zero_iter(iter, to_zero); 4281 4282 addr += zeroed; 4283 remains -= zeroed; 4284 4285 if (remains == 0 || zeroed != to_zero) 4286 goto finished; 4287 } 4288 4289 n = vaddr + size - addr; 4290 if (n > remains) 4291 n = remains; 4292 4293 if (flags & VMAP_RAM) 4294 copied = vmap_ram_vread_iter(iter, addr, n, flags); 4295 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 4296 copied = aligned_vread_iter(iter, addr, n); 4297 else /* IOREMAP | SPARSE area is treated as memory hole */ 4298 copied = zero_iter(iter, n); 4299 4300 addr += copied; 4301 remains -= copied; 4302 4303 if (copied != n) 4304 goto finished; 4305 4306 next_va: 4307 next = va->va_end; 4308 spin_unlock(&vn->busy.lock); 4309 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); 4310 4311 finished_zero: 4312 if (vn) 4313 spin_unlock(&vn->busy.lock); 4314 4315 /* zero-fill memory holes */ 4316 return count - remains + zero_iter(iter, remains); 4317 finished: 4318 /* Nothing remains, or We couldn't copy/zero everything. */ 4319 if (vn) 4320 spin_unlock(&vn->busy.lock); 4321 4322 return count - remains; 4323 } 4324 4325 /** 4326 * remap_vmalloc_range_partial - map vmalloc pages to userspace 4327 * @vma: vma to cover 4328 * @uaddr: target user address to start at 4329 * @kaddr: virtual address of vmalloc kernel memory 4330 * @pgoff: offset from @kaddr to start at 4331 * @size: size of map area 4332 * 4333 * Returns: 0 for success, -Exxx on failure 4334 * 4335 * This function checks that @kaddr is a valid vmalloc'ed area, 4336 * and that it is big enough to cover the range starting at 4337 * @uaddr in @vma. Will return failure if that criteria isn't 4338 * met. 4339 * 4340 * Similar to remap_pfn_range() (see mm/memory.c) 4341 */ 4342 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 4343 void *kaddr, unsigned long pgoff, 4344 unsigned long size) 4345 { 4346 struct vm_struct *area; 4347 unsigned long off; 4348 unsigned long end_index; 4349 4350 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 4351 return -EINVAL; 4352 4353 size = PAGE_ALIGN(size); 4354 4355 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 4356 return -EINVAL; 4357 4358 area = find_vm_area(kaddr); 4359 if (!area) 4360 return -EINVAL; 4361 4362 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 4363 return -EINVAL; 4364 4365 if (check_add_overflow(size, off, &end_index) || 4366 end_index > get_vm_area_size(area)) 4367 return -EINVAL; 4368 kaddr += off; 4369 4370 do { 4371 struct page *page = vmalloc_to_page(kaddr); 4372 int ret; 4373 4374 ret = vm_insert_page(vma, uaddr, page); 4375 if (ret) 4376 return ret; 4377 4378 uaddr += PAGE_SIZE; 4379 kaddr += PAGE_SIZE; 4380 size -= PAGE_SIZE; 4381 } while (size > 0); 4382 4383 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 4384 4385 return 0; 4386 } 4387 4388 /** 4389 * remap_vmalloc_range - map vmalloc pages to userspace 4390 * @vma: vma to cover (map full range of vma) 4391 * @addr: vmalloc memory 4392 * @pgoff: number of pages into addr before first page to map 4393 * 4394 * Returns: 0 for success, -Exxx on failure 4395 * 4396 * This function checks that addr is a valid vmalloc'ed area, and 4397 * that it is big enough to cover the vma. Will return failure if 4398 * that criteria isn't met. 4399 * 4400 * Similar to remap_pfn_range() (see mm/memory.c) 4401 */ 4402 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 4403 unsigned long pgoff) 4404 { 4405 return remap_vmalloc_range_partial(vma, vma->vm_start, 4406 addr, pgoff, 4407 vma->vm_end - vma->vm_start); 4408 } 4409 EXPORT_SYMBOL(remap_vmalloc_range); 4410 4411 void free_vm_area(struct vm_struct *area) 4412 { 4413 struct vm_struct *ret; 4414 ret = remove_vm_area(area->addr); 4415 BUG_ON(ret != area); 4416 kfree(area); 4417 } 4418 EXPORT_SYMBOL_GPL(free_vm_area); 4419 4420 #ifdef CONFIG_SMP 4421 static struct vmap_area *node_to_va(struct rb_node *n) 4422 { 4423 return rb_entry_safe(n, struct vmap_area, rb_node); 4424 } 4425 4426 /** 4427 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4428 * @addr: target address 4429 * 4430 * Returns: vmap_area if it is found. If there is no such area 4431 * the first highest(reverse order) vmap_area is returned 4432 * i.e. va->va_start < addr && va->va_end < addr or NULL 4433 * if there are no any areas before @addr. 4434 */ 4435 static struct vmap_area * 4436 pvm_find_va_enclose_addr(unsigned long addr) 4437 { 4438 struct vmap_area *va, *tmp; 4439 struct rb_node *n; 4440 4441 n = free_vmap_area_root.rb_node; 4442 va = NULL; 4443 4444 while (n) { 4445 tmp = rb_entry(n, struct vmap_area, rb_node); 4446 if (tmp->va_start <= addr) { 4447 va = tmp; 4448 if (tmp->va_end >= addr) 4449 break; 4450 4451 n = n->rb_right; 4452 } else { 4453 n = n->rb_left; 4454 } 4455 } 4456 4457 return va; 4458 } 4459 4460 /** 4461 * pvm_determine_end_from_reverse - find the highest aligned address 4462 * of free block below VMALLOC_END 4463 * @va: 4464 * in - the VA we start the search(reverse order); 4465 * out - the VA with the highest aligned end address. 4466 * @align: alignment for required highest address 4467 * 4468 * Returns: determined end address within vmap_area 4469 */ 4470 static unsigned long 4471 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4472 { 4473 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4474 unsigned long addr; 4475 4476 if (likely(*va)) { 4477 list_for_each_entry_from_reverse((*va), 4478 &free_vmap_area_list, list) { 4479 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4480 if ((*va)->va_start < addr) 4481 return addr; 4482 } 4483 } 4484 4485 return 0; 4486 } 4487 4488 /** 4489 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4490 * @offsets: array containing offset of each area 4491 * @sizes: array containing size of each area 4492 * @nr_vms: the number of areas to allocate 4493 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4494 * 4495 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4496 * vm_structs on success, %NULL on failure 4497 * 4498 * Percpu allocator wants to use congruent vm areas so that it can 4499 * maintain the offsets among percpu areas. This function allocates 4500 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4501 * be scattered pretty far, distance between two areas easily going up 4502 * to gigabytes. To avoid interacting with regular vmallocs, these 4503 * areas are allocated from top. 4504 * 4505 * Despite its complicated look, this allocator is rather simple. It 4506 * does everything top-down and scans free blocks from the end looking 4507 * for matching base. While scanning, if any of the areas do not fit the 4508 * base address is pulled down to fit the area. Scanning is repeated till 4509 * all the areas fit and then all necessary data structures are inserted 4510 * and the result is returned. 4511 */ 4512 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4513 const size_t *sizes, int nr_vms, 4514 size_t align) 4515 { 4516 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4517 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4518 struct vmap_area **vas, *va; 4519 struct vm_struct **vms; 4520 int area, area2, last_area, term_area; 4521 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4522 bool purged = false; 4523 4524 /* verify parameters and allocate data structures */ 4525 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4526 for (last_area = 0, area = 0; area < nr_vms; area++) { 4527 start = offsets[area]; 4528 end = start + sizes[area]; 4529 4530 /* is everything aligned properly? */ 4531 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4532 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4533 4534 /* detect the area with the highest address */ 4535 if (start > offsets[last_area]) 4536 last_area = area; 4537 4538 for (area2 = area + 1; area2 < nr_vms; area2++) { 4539 unsigned long start2 = offsets[area2]; 4540 unsigned long end2 = start2 + sizes[area2]; 4541 4542 BUG_ON(start2 < end && start < end2); 4543 } 4544 } 4545 last_end = offsets[last_area] + sizes[last_area]; 4546 4547 if (vmalloc_end - vmalloc_start < last_end) { 4548 WARN_ON(true); 4549 return NULL; 4550 } 4551 4552 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4553 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4554 if (!vas || !vms) 4555 goto err_free2; 4556 4557 for (area = 0; area < nr_vms; area++) { 4558 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4559 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4560 if (!vas[area] || !vms[area]) 4561 goto err_free; 4562 } 4563 retry: 4564 spin_lock(&free_vmap_area_lock); 4565 4566 /* start scanning - we scan from the top, begin with the last area */ 4567 area = term_area = last_area; 4568 start = offsets[area]; 4569 end = start + sizes[area]; 4570 4571 va = pvm_find_va_enclose_addr(vmalloc_end); 4572 base = pvm_determine_end_from_reverse(&va, align) - end; 4573 4574 while (true) { 4575 /* 4576 * base might have underflowed, add last_end before 4577 * comparing. 4578 */ 4579 if (base + last_end < vmalloc_start + last_end) 4580 goto overflow; 4581 4582 /* 4583 * Fitting base has not been found. 4584 */ 4585 if (va == NULL) 4586 goto overflow; 4587 4588 /* 4589 * If required width exceeds current VA block, move 4590 * base downwards and then recheck. 4591 */ 4592 if (base + end > va->va_end) { 4593 base = pvm_determine_end_from_reverse(&va, align) - end; 4594 term_area = area; 4595 continue; 4596 } 4597 4598 /* 4599 * If this VA does not fit, move base downwards and recheck. 4600 */ 4601 if (base + start < va->va_start) { 4602 va = node_to_va(rb_prev(&va->rb_node)); 4603 base = pvm_determine_end_from_reverse(&va, align) - end; 4604 term_area = area; 4605 continue; 4606 } 4607 4608 /* 4609 * This area fits, move on to the previous one. If 4610 * the previous one is the terminal one, we're done. 4611 */ 4612 area = (area + nr_vms - 1) % nr_vms; 4613 if (area == term_area) 4614 break; 4615 4616 start = offsets[area]; 4617 end = start + sizes[area]; 4618 va = pvm_find_va_enclose_addr(base + end); 4619 } 4620 4621 /* we've found a fitting base, insert all va's */ 4622 for (area = 0; area < nr_vms; area++) { 4623 int ret; 4624 4625 start = base + offsets[area]; 4626 size = sizes[area]; 4627 4628 va = pvm_find_va_enclose_addr(start); 4629 if (WARN_ON_ONCE(va == NULL)) 4630 /* It is a BUG(), but trigger recovery instead. */ 4631 goto recovery; 4632 4633 ret = va_clip(&free_vmap_area_root, 4634 &free_vmap_area_list, va, start, size); 4635 if (WARN_ON_ONCE(unlikely(ret))) 4636 /* It is a BUG(), but trigger recovery instead. */ 4637 goto recovery; 4638 4639 /* Allocated area. */ 4640 va = vas[area]; 4641 va->va_start = start; 4642 va->va_end = start + size; 4643 } 4644 4645 spin_unlock(&free_vmap_area_lock); 4646 4647 /* populate the kasan shadow space */ 4648 for (area = 0; area < nr_vms; area++) { 4649 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4650 goto err_free_shadow; 4651 } 4652 4653 /* insert all vm's */ 4654 for (area = 0; area < nr_vms; area++) { 4655 struct vmap_node *vn = addr_to_node(vas[area]->va_start); 4656 4657 spin_lock(&vn->busy.lock); 4658 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); 4659 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 4660 pcpu_get_vm_areas); 4661 spin_unlock(&vn->busy.lock); 4662 } 4663 4664 /* 4665 * Mark allocated areas as accessible. Do it now as a best-effort 4666 * approach, as they can be mapped outside of vmalloc code. 4667 * With hardware tag-based KASAN, marking is skipped for 4668 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4669 */ 4670 for (area = 0; area < nr_vms; area++) 4671 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4672 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4673 4674 kfree(vas); 4675 return vms; 4676 4677 recovery: 4678 /* 4679 * Remove previously allocated areas. There is no 4680 * need in removing these areas from the busy tree, 4681 * because they are inserted only on the final step 4682 * and when pcpu_get_vm_areas() is success. 4683 */ 4684 while (area--) { 4685 orig_start = vas[area]->va_start; 4686 orig_end = vas[area]->va_end; 4687 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4688 &free_vmap_area_list); 4689 if (va) 4690 kasan_release_vmalloc(orig_start, orig_end, 4691 va->va_start, va->va_end); 4692 vas[area] = NULL; 4693 } 4694 4695 overflow: 4696 spin_unlock(&free_vmap_area_lock); 4697 if (!purged) { 4698 reclaim_and_purge_vmap_areas(); 4699 purged = true; 4700 4701 /* Before "retry", check if we recover. */ 4702 for (area = 0; area < nr_vms; area++) { 4703 if (vas[area]) 4704 continue; 4705 4706 vas[area] = kmem_cache_zalloc( 4707 vmap_area_cachep, GFP_KERNEL); 4708 if (!vas[area]) 4709 goto err_free; 4710 } 4711 4712 goto retry; 4713 } 4714 4715 err_free: 4716 for (area = 0; area < nr_vms; area++) { 4717 if (vas[area]) 4718 kmem_cache_free(vmap_area_cachep, vas[area]); 4719 4720 kfree(vms[area]); 4721 } 4722 err_free2: 4723 kfree(vas); 4724 kfree(vms); 4725 return NULL; 4726 4727 err_free_shadow: 4728 spin_lock(&free_vmap_area_lock); 4729 /* 4730 * We release all the vmalloc shadows, even the ones for regions that 4731 * hadn't been successfully added. This relies on kasan_release_vmalloc 4732 * being able to tolerate this case. 4733 */ 4734 for (area = 0; area < nr_vms; area++) { 4735 orig_start = vas[area]->va_start; 4736 orig_end = vas[area]->va_end; 4737 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4738 &free_vmap_area_list); 4739 if (va) 4740 kasan_release_vmalloc(orig_start, orig_end, 4741 va->va_start, va->va_end); 4742 vas[area] = NULL; 4743 kfree(vms[area]); 4744 } 4745 spin_unlock(&free_vmap_area_lock); 4746 kfree(vas); 4747 kfree(vms); 4748 return NULL; 4749 } 4750 4751 /** 4752 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4753 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4754 * @nr_vms: the number of allocated areas 4755 * 4756 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4757 */ 4758 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4759 { 4760 int i; 4761 4762 for (i = 0; i < nr_vms; i++) 4763 free_vm_area(vms[i]); 4764 kfree(vms); 4765 } 4766 #endif /* CONFIG_SMP */ 4767 4768 #ifdef CONFIG_PRINTK 4769 bool vmalloc_dump_obj(void *object) 4770 { 4771 const void *caller; 4772 struct vm_struct *vm; 4773 struct vmap_area *va; 4774 struct vmap_node *vn; 4775 unsigned long addr; 4776 unsigned int nr_pages; 4777 4778 addr = PAGE_ALIGN((unsigned long) object); 4779 vn = addr_to_node(addr); 4780 4781 if (!spin_trylock(&vn->busy.lock)) 4782 return false; 4783 4784 va = __find_vmap_area(addr, &vn->busy.root); 4785 if (!va || !va->vm) { 4786 spin_unlock(&vn->busy.lock); 4787 return false; 4788 } 4789 4790 vm = va->vm; 4791 addr = (unsigned long) vm->addr; 4792 caller = vm->caller; 4793 nr_pages = vm->nr_pages; 4794 spin_unlock(&vn->busy.lock); 4795 4796 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4797 nr_pages, addr, caller); 4798 4799 return true; 4800 } 4801 #endif 4802 4803 #ifdef CONFIG_PROC_FS 4804 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4805 { 4806 if (IS_ENABLED(CONFIG_NUMA)) { 4807 unsigned int nr, *counters = m->private; 4808 unsigned int step = 1U << vm_area_page_order(v); 4809 4810 if (!counters) 4811 return; 4812 4813 if (v->flags & VM_UNINITIALIZED) 4814 return; 4815 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4816 smp_rmb(); 4817 4818 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4819 4820 for (nr = 0; nr < v->nr_pages; nr += step) 4821 counters[page_to_nid(v->pages[nr])] += step; 4822 for_each_node_state(nr, N_HIGH_MEMORY) 4823 if (counters[nr]) 4824 seq_printf(m, " N%u=%u", nr, counters[nr]); 4825 } 4826 } 4827 4828 static void show_purge_info(struct seq_file *m) 4829 { 4830 struct vmap_node *vn; 4831 struct vmap_area *va; 4832 int i; 4833 4834 for (i = 0; i < nr_vmap_nodes; i++) { 4835 vn = &vmap_nodes[i]; 4836 4837 spin_lock(&vn->lazy.lock); 4838 list_for_each_entry(va, &vn->lazy.head, list) { 4839 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4840 (void *)va->va_start, (void *)va->va_end, 4841 va->va_end - va->va_start); 4842 } 4843 spin_unlock(&vn->lazy.lock); 4844 } 4845 } 4846 4847 static int vmalloc_info_show(struct seq_file *m, void *p) 4848 { 4849 struct vmap_node *vn; 4850 struct vmap_area *va; 4851 struct vm_struct *v; 4852 int i; 4853 4854 for (i = 0; i < nr_vmap_nodes; i++) { 4855 vn = &vmap_nodes[i]; 4856 4857 spin_lock(&vn->busy.lock); 4858 list_for_each_entry(va, &vn->busy.head, list) { 4859 if (!va->vm) { 4860 if (va->flags & VMAP_RAM) 4861 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4862 (void *)va->va_start, (void *)va->va_end, 4863 va->va_end - va->va_start); 4864 4865 continue; 4866 } 4867 4868 v = va->vm; 4869 4870 seq_printf(m, "0x%pK-0x%pK %7ld", 4871 v->addr, v->addr + v->size, v->size); 4872 4873 if (v->caller) 4874 seq_printf(m, " %pS", v->caller); 4875 4876 if (v->nr_pages) 4877 seq_printf(m, " pages=%d", v->nr_pages); 4878 4879 if (v->phys_addr) 4880 seq_printf(m, " phys=%pa", &v->phys_addr); 4881 4882 if (v->flags & VM_IOREMAP) 4883 seq_puts(m, " ioremap"); 4884 4885 if (v->flags & VM_SPARSE) 4886 seq_puts(m, " sparse"); 4887 4888 if (v->flags & VM_ALLOC) 4889 seq_puts(m, " vmalloc"); 4890 4891 if (v->flags & VM_MAP) 4892 seq_puts(m, " vmap"); 4893 4894 if (v->flags & VM_USERMAP) 4895 seq_puts(m, " user"); 4896 4897 if (v->flags & VM_DMA_COHERENT) 4898 seq_puts(m, " dma-coherent"); 4899 4900 if (is_vmalloc_addr(v->pages)) 4901 seq_puts(m, " vpages"); 4902 4903 show_numa_info(m, v); 4904 seq_putc(m, '\n'); 4905 } 4906 spin_unlock(&vn->busy.lock); 4907 } 4908 4909 /* 4910 * As a final step, dump "unpurged" areas. 4911 */ 4912 show_purge_info(m); 4913 return 0; 4914 } 4915 4916 static int __init proc_vmalloc_init(void) 4917 { 4918 void *priv_data = NULL; 4919 4920 if (IS_ENABLED(CONFIG_NUMA)) 4921 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 4922 4923 proc_create_single_data("vmallocinfo", 4924 0400, NULL, vmalloc_info_show, priv_data); 4925 4926 return 0; 4927 } 4928 module_init(proc_vmalloc_init); 4929 4930 #endif 4931 4932 static void __init vmap_init_free_space(void) 4933 { 4934 unsigned long vmap_start = 1; 4935 const unsigned long vmap_end = ULONG_MAX; 4936 struct vmap_area *free; 4937 struct vm_struct *busy; 4938 4939 /* 4940 * B F B B B F 4941 * -|-----|.....|-----|-----|-----|.....|- 4942 * | The KVA space | 4943 * |<--------------------------------->| 4944 */ 4945 for (busy = vmlist; busy; busy = busy->next) { 4946 if ((unsigned long) busy->addr - vmap_start > 0) { 4947 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 4948 if (!WARN_ON_ONCE(!free)) { 4949 free->va_start = vmap_start; 4950 free->va_end = (unsigned long) busy->addr; 4951 4952 insert_vmap_area_augment(free, NULL, 4953 &free_vmap_area_root, 4954 &free_vmap_area_list); 4955 } 4956 } 4957 4958 vmap_start = (unsigned long) busy->addr + busy->size; 4959 } 4960 4961 if (vmap_end - vmap_start > 0) { 4962 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 4963 if (!WARN_ON_ONCE(!free)) { 4964 free->va_start = vmap_start; 4965 free->va_end = vmap_end; 4966 4967 insert_vmap_area_augment(free, NULL, 4968 &free_vmap_area_root, 4969 &free_vmap_area_list); 4970 } 4971 } 4972 } 4973 4974 static void vmap_init_nodes(void) 4975 { 4976 struct vmap_node *vn; 4977 int i, n; 4978 4979 #if BITS_PER_LONG == 64 4980 /* 4981 * A high threshold of max nodes is fixed and bound to 128, 4982 * thus a scale factor is 1 for systems where number of cores 4983 * are less or equal to specified threshold. 4984 * 4985 * As for NUMA-aware notes. For bigger systems, for example 4986 * NUMA with multi-sockets, where we can end-up with thousands 4987 * of cores in total, a "sub-numa-clustering" should be added. 4988 * 4989 * In this case a NUMA domain is considered as a single entity 4990 * with dedicated sub-nodes in it which describe one group or 4991 * set of cores. Therefore a per-domain purging is supposed to 4992 * be added as well as a per-domain balancing. 4993 */ 4994 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); 4995 4996 if (n > 1) { 4997 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); 4998 if (vn) { 4999 /* Node partition is 16 pages. */ 5000 vmap_zone_size = (1 << 4) * PAGE_SIZE; 5001 nr_vmap_nodes = n; 5002 vmap_nodes = vn; 5003 } else { 5004 pr_err("Failed to allocate an array. Disable a node layer\n"); 5005 } 5006 } 5007 #endif 5008 5009 for (n = 0; n < nr_vmap_nodes; n++) { 5010 vn = &vmap_nodes[n]; 5011 vn->busy.root = RB_ROOT; 5012 INIT_LIST_HEAD(&vn->busy.head); 5013 spin_lock_init(&vn->busy.lock); 5014 5015 vn->lazy.root = RB_ROOT; 5016 INIT_LIST_HEAD(&vn->lazy.head); 5017 spin_lock_init(&vn->lazy.lock); 5018 5019 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 5020 INIT_LIST_HEAD(&vn->pool[i].head); 5021 WRITE_ONCE(vn->pool[i].len, 0); 5022 } 5023 5024 spin_lock_init(&vn->pool_lock); 5025 } 5026 } 5027 5028 static unsigned long 5029 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5030 { 5031 unsigned long count; 5032 struct vmap_node *vn; 5033 int i, j; 5034 5035 for (count = 0, i = 0; i < nr_vmap_nodes; i++) { 5036 vn = &vmap_nodes[i]; 5037 5038 for (j = 0; j < MAX_VA_SIZE_PAGES; j++) 5039 count += READ_ONCE(vn->pool[j].len); 5040 } 5041 5042 return count ? count : SHRINK_EMPTY; 5043 } 5044 5045 static unsigned long 5046 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5047 { 5048 int i; 5049 5050 for (i = 0; i < nr_vmap_nodes; i++) 5051 decay_va_pool_node(&vmap_nodes[i], true); 5052 5053 return SHRINK_STOP; 5054 } 5055 5056 void __init vmalloc_init(void) 5057 { 5058 struct shrinker *vmap_node_shrinker; 5059 struct vmap_area *va; 5060 struct vmap_node *vn; 5061 struct vm_struct *tmp; 5062 int i; 5063 5064 /* 5065 * Create the cache for vmap_area objects. 5066 */ 5067 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 5068 5069 for_each_possible_cpu(i) { 5070 struct vmap_block_queue *vbq; 5071 struct vfree_deferred *p; 5072 5073 vbq = &per_cpu(vmap_block_queue, i); 5074 spin_lock_init(&vbq->lock); 5075 INIT_LIST_HEAD(&vbq->free); 5076 p = &per_cpu(vfree_deferred, i); 5077 init_llist_head(&p->list); 5078 INIT_WORK(&p->wq, delayed_vfree_work); 5079 xa_init(&vbq->vmap_blocks); 5080 } 5081 5082 /* 5083 * Setup nodes before importing vmlist. 5084 */ 5085 vmap_init_nodes(); 5086 5087 /* Import existing vmlist entries. */ 5088 for (tmp = vmlist; tmp; tmp = tmp->next) { 5089 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5090 if (WARN_ON_ONCE(!va)) 5091 continue; 5092 5093 va->va_start = (unsigned long)tmp->addr; 5094 va->va_end = va->va_start + tmp->size; 5095 va->vm = tmp; 5096 5097 vn = addr_to_node(va->va_start); 5098 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 5099 } 5100 5101 /* 5102 * Now we can initialize a free vmap space. 5103 */ 5104 vmap_init_free_space(); 5105 vmap_initialized = true; 5106 5107 vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); 5108 if (!vmap_node_shrinker) { 5109 pr_err("Failed to allocate vmap-node shrinker!\n"); 5110 return; 5111 } 5112 5113 vmap_node_shrinker->count_objects = vmap_node_shrink_count; 5114 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; 5115 shrinker_register(vmap_node_shrinker); 5116 } 5117