xref: /linux/mm/vmalloc.c (revision 74ce1896c6c65b2f8cccbf59162d542988835835)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *t, *llnode;
53 
54 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 		__vunmap((void *)llnode, 1);
56 }
57 
58 /*** Page table manipulation functions ***/
59 
60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61 {
62 	pte_t *pte;
63 
64 	pte = pte_offset_kernel(pmd, addr);
65 	do {
66 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 	} while (pte++, addr += PAGE_SIZE, addr != end);
69 }
70 
71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
72 {
73 	pmd_t *pmd;
74 	unsigned long next;
75 
76 	pmd = pmd_offset(pud, addr);
77 	do {
78 		next = pmd_addr_end(addr, end);
79 		if (pmd_clear_huge(pmd))
80 			continue;
81 		if (pmd_none_or_clear_bad(pmd))
82 			continue;
83 		vunmap_pte_range(pmd, addr, next);
84 	} while (pmd++, addr = next, addr != end);
85 }
86 
87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
88 {
89 	pud_t *pud;
90 	unsigned long next;
91 
92 	pud = pud_offset(p4d, addr);
93 	do {
94 		next = pud_addr_end(addr, end);
95 		if (pud_clear_huge(pud))
96 			continue;
97 		if (pud_none_or_clear_bad(pud))
98 			continue;
99 		vunmap_pmd_range(pud, addr, next);
100 	} while (pud++, addr = next, addr != end);
101 }
102 
103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104 {
105 	p4d_t *p4d;
106 	unsigned long next;
107 
108 	p4d = p4d_offset(pgd, addr);
109 	do {
110 		next = p4d_addr_end(addr, end);
111 		if (p4d_clear_huge(p4d))
112 			continue;
113 		if (p4d_none_or_clear_bad(p4d))
114 			continue;
115 		vunmap_pud_range(p4d, addr, next);
116 	} while (p4d++, addr = next, addr != end);
117 }
118 
119 static void vunmap_page_range(unsigned long addr, unsigned long end)
120 {
121 	pgd_t *pgd;
122 	unsigned long next;
123 
124 	BUG_ON(addr >= end);
125 	pgd = pgd_offset_k(addr);
126 	do {
127 		next = pgd_addr_end(addr, end);
128 		if (pgd_none_or_clear_bad(pgd))
129 			continue;
130 		vunmap_p4d_range(pgd, addr, next);
131 	} while (pgd++, addr = next, addr != end);
132 }
133 
134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
135 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 	pte_t *pte;
138 
139 	/*
140 	 * nr is a running index into the array which helps higher level
141 	 * callers keep track of where we're up to.
142 	 */
143 
144 	pte = pte_alloc_kernel(pmd, addr);
145 	if (!pte)
146 		return -ENOMEM;
147 	do {
148 		struct page *page = pages[*nr];
149 
150 		if (WARN_ON(!pte_none(*pte)))
151 			return -EBUSY;
152 		if (WARN_ON(!page))
153 			return -ENOMEM;
154 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
155 		(*nr)++;
156 	} while (pte++, addr += PAGE_SIZE, addr != end);
157 	return 0;
158 }
159 
160 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc(&init_mm, pud, addr);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
172 			return -ENOMEM;
173 	} while (pmd++, addr = next, addr != end);
174 	return 0;
175 }
176 
177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
178 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 
183 	pud = pud_alloc(&init_mm, p4d, addr);
184 	if (!pud)
185 		return -ENOMEM;
186 	do {
187 		next = pud_addr_end(addr, end);
188 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
189 			return -ENOMEM;
190 	} while (pud++, addr = next, addr != end);
191 	return 0;
192 }
193 
194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196 {
197 	p4d_t *p4d;
198 	unsigned long next;
199 
200 	p4d = p4d_alloc(&init_mm, pgd, addr);
201 	if (!p4d)
202 		return -ENOMEM;
203 	do {
204 		next = p4d_addr_end(addr, end);
205 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 			return -ENOMEM;
207 	} while (p4d++, addr = next, addr != end);
208 	return 0;
209 }
210 
211 /*
212  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213  * will have pfns corresponding to the "pages" array.
214  *
215  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216  */
217 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 				   pgprot_t prot, struct page **pages)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	unsigned long addr = start;
223 	int err = 0;
224 	int nr = 0;
225 
226 	BUG_ON(addr >= end);
227 	pgd = pgd_offset_k(addr);
228 	do {
229 		next = pgd_addr_end(addr, end);
230 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
231 		if (err)
232 			return err;
233 	} while (pgd++, addr = next, addr != end);
234 
235 	return nr;
236 }
237 
238 static int vmap_page_range(unsigned long start, unsigned long end,
239 			   pgprot_t prot, struct page **pages)
240 {
241 	int ret;
242 
243 	ret = vmap_page_range_noflush(start, end, prot, pages);
244 	flush_cache_vmap(start, end);
245 	return ret;
246 }
247 
248 int is_vmalloc_or_module_addr(const void *x)
249 {
250 	/*
251 	 * ARM, x86-64 and sparc64 put modules in a special place,
252 	 * and fall back on vmalloc() if that fails. Others
253 	 * just put it in the vmalloc space.
254 	 */
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 	unsigned long addr = (unsigned long)x;
257 	if (addr >= MODULES_VADDR && addr < MODULES_END)
258 		return 1;
259 #endif
260 	return is_vmalloc_addr(x);
261 }
262 
263 /*
264  * Walk a vmap address to the struct page it maps.
265  */
266 struct page *vmalloc_to_page(const void *vmalloc_addr)
267 {
268 	unsigned long addr = (unsigned long) vmalloc_addr;
269 	struct page *page = NULL;
270 	pgd_t *pgd = pgd_offset_k(addr);
271 	p4d_t *p4d;
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *ptep, pte;
275 
276 	/*
277 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 	 * architectures that do not vmalloc module space
279 	 */
280 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
281 
282 	if (pgd_none(*pgd))
283 		return NULL;
284 	p4d = p4d_offset(pgd, addr);
285 	if (p4d_none(*p4d))
286 		return NULL;
287 	pud = pud_offset(p4d, addr);
288 
289 	/*
290 	 * Don't dereference bad PUD or PMD (below) entries. This will also
291 	 * identify huge mappings, which we may encounter on architectures
292 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 	 * not [unambiguously] associated with a struct page, so there is
295 	 * no correct value to return for them.
296 	 */
297 	WARN_ON_ONCE(pud_bad(*pud));
298 	if (pud_none(*pud) || pud_bad(*pud))
299 		return NULL;
300 	pmd = pmd_offset(pud, addr);
301 	WARN_ON_ONCE(pmd_bad(*pmd));
302 	if (pmd_none(*pmd) || pmd_bad(*pmd))
303 		return NULL;
304 
305 	ptep = pte_offset_map(pmd, addr);
306 	pte = *ptep;
307 	if (pte_present(pte))
308 		page = pte_page(pte);
309 	pte_unmap(ptep);
310 	return page;
311 }
312 EXPORT_SYMBOL(vmalloc_to_page);
313 
314 /*
315  * Map a vmalloc()-space virtual address to the physical page frame number.
316  */
317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318 {
319 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320 }
321 EXPORT_SYMBOL(vmalloc_to_pfn);
322 
323 
324 /*** Global kva allocator ***/
325 
326 #define VM_LAZY_FREE	0x02
327 #define VM_VM_AREA	0x04
328 
329 static DEFINE_SPINLOCK(vmap_area_lock);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list);
332 static LLIST_HEAD(vmap_purge_list);
333 static struct rb_root vmap_area_root = RB_ROOT;
334 
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node *free_vmap_cache;
337 static unsigned long cached_hole_size;
338 static unsigned long cached_vstart;
339 static unsigned long cached_align;
340 
341 static unsigned long vmap_area_pcpu_hole;
342 
343 static struct vmap_area *__find_vmap_area(unsigned long addr)
344 {
345 	struct rb_node *n = vmap_area_root.rb_node;
346 
347 	while (n) {
348 		struct vmap_area *va;
349 
350 		va = rb_entry(n, struct vmap_area, rb_node);
351 		if (addr < va->va_start)
352 			n = n->rb_left;
353 		else if (addr >= va->va_end)
354 			n = n->rb_right;
355 		else
356 			return va;
357 	}
358 
359 	return NULL;
360 }
361 
362 static void __insert_vmap_area(struct vmap_area *va)
363 {
364 	struct rb_node **p = &vmap_area_root.rb_node;
365 	struct rb_node *parent = NULL;
366 	struct rb_node *tmp;
367 
368 	while (*p) {
369 		struct vmap_area *tmp_va;
370 
371 		parent = *p;
372 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 		if (va->va_start < tmp_va->va_end)
374 			p = &(*p)->rb_left;
375 		else if (va->va_end > tmp_va->va_start)
376 			p = &(*p)->rb_right;
377 		else
378 			BUG();
379 	}
380 
381 	rb_link_node(&va->rb_node, parent, p);
382 	rb_insert_color(&va->rb_node, &vmap_area_root);
383 
384 	/* address-sort this list */
385 	tmp = rb_prev(&va->rb_node);
386 	if (tmp) {
387 		struct vmap_area *prev;
388 		prev = rb_entry(tmp, struct vmap_area, rb_node);
389 		list_add_rcu(&va->list, &prev->list);
390 	} else
391 		list_add_rcu(&va->list, &vmap_area_list);
392 }
393 
394 static void purge_vmap_area_lazy(void);
395 
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397 
398 /*
399  * Allocate a region of KVA of the specified size and alignment, within the
400  * vstart and vend.
401  */
402 static struct vmap_area *alloc_vmap_area(unsigned long size,
403 				unsigned long align,
404 				unsigned long vstart, unsigned long vend,
405 				int node, gfp_t gfp_mask)
406 {
407 	struct vmap_area *va;
408 	struct rb_node *n;
409 	unsigned long addr;
410 	int purged = 0;
411 	struct vmap_area *first;
412 
413 	BUG_ON(!size);
414 	BUG_ON(offset_in_page(size));
415 	BUG_ON(!is_power_of_2(align));
416 
417 	might_sleep();
418 
419 	va = kmalloc_node(sizeof(struct vmap_area),
420 			gfp_mask & GFP_RECLAIM_MASK, node);
421 	if (unlikely(!va))
422 		return ERR_PTR(-ENOMEM);
423 
424 	/*
425 	 * Only scan the relevant parts containing pointers to other objects
426 	 * to avoid false negatives.
427 	 */
428 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429 
430 retry:
431 	spin_lock(&vmap_area_lock);
432 	/*
433 	 * Invalidate cache if we have more permissive parameters.
434 	 * cached_hole_size notes the largest hole noticed _below_
435 	 * the vmap_area cached in free_vmap_cache: if size fits
436 	 * into that hole, we want to scan from vstart to reuse
437 	 * the hole instead of allocating above free_vmap_cache.
438 	 * Note that __free_vmap_area may update free_vmap_cache
439 	 * without updating cached_hole_size or cached_align.
440 	 */
441 	if (!free_vmap_cache ||
442 			size < cached_hole_size ||
443 			vstart < cached_vstart ||
444 			align < cached_align) {
445 nocache:
446 		cached_hole_size = 0;
447 		free_vmap_cache = NULL;
448 	}
449 	/* record if we encounter less permissive parameters */
450 	cached_vstart = vstart;
451 	cached_align = align;
452 
453 	/* find starting point for our search */
454 	if (free_vmap_cache) {
455 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456 		addr = ALIGN(first->va_end, align);
457 		if (addr < vstart)
458 			goto nocache;
459 		if (addr + size < addr)
460 			goto overflow;
461 
462 	} else {
463 		addr = ALIGN(vstart, align);
464 		if (addr + size < addr)
465 			goto overflow;
466 
467 		n = vmap_area_root.rb_node;
468 		first = NULL;
469 
470 		while (n) {
471 			struct vmap_area *tmp;
472 			tmp = rb_entry(n, struct vmap_area, rb_node);
473 			if (tmp->va_end >= addr) {
474 				first = tmp;
475 				if (tmp->va_start <= addr)
476 					break;
477 				n = n->rb_left;
478 			} else
479 				n = n->rb_right;
480 		}
481 
482 		if (!first)
483 			goto found;
484 	}
485 
486 	/* from the starting point, walk areas until a suitable hole is found */
487 	while (addr + size > first->va_start && addr + size <= vend) {
488 		if (addr + cached_hole_size < first->va_start)
489 			cached_hole_size = first->va_start - addr;
490 		addr = ALIGN(first->va_end, align);
491 		if (addr + size < addr)
492 			goto overflow;
493 
494 		if (list_is_last(&first->list, &vmap_area_list))
495 			goto found;
496 
497 		first = list_next_entry(first, list);
498 	}
499 
500 found:
501 	if (addr + size > vend)
502 		goto overflow;
503 
504 	va->va_start = addr;
505 	va->va_end = addr + size;
506 	va->flags = 0;
507 	__insert_vmap_area(va);
508 	free_vmap_cache = &va->rb_node;
509 	spin_unlock(&vmap_area_lock);
510 
511 	BUG_ON(!IS_ALIGNED(va->va_start, align));
512 	BUG_ON(va->va_start < vstart);
513 	BUG_ON(va->va_end > vend);
514 
515 	return va;
516 
517 overflow:
518 	spin_unlock(&vmap_area_lock);
519 	if (!purged) {
520 		purge_vmap_area_lazy();
521 		purged = 1;
522 		goto retry;
523 	}
524 
525 	if (gfpflags_allow_blocking(gfp_mask)) {
526 		unsigned long freed = 0;
527 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
528 		if (freed > 0) {
529 			purged = 0;
530 			goto retry;
531 		}
532 	}
533 
534 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
535 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
536 			size);
537 	kfree(va);
538 	return ERR_PTR(-EBUSY);
539 }
540 
541 int register_vmap_purge_notifier(struct notifier_block *nb)
542 {
543 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
544 }
545 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
546 
547 int unregister_vmap_purge_notifier(struct notifier_block *nb)
548 {
549 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
550 }
551 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
552 
553 static void __free_vmap_area(struct vmap_area *va)
554 {
555 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
556 
557 	if (free_vmap_cache) {
558 		if (va->va_end < cached_vstart) {
559 			free_vmap_cache = NULL;
560 		} else {
561 			struct vmap_area *cache;
562 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
563 			if (va->va_start <= cache->va_start) {
564 				free_vmap_cache = rb_prev(&va->rb_node);
565 				/*
566 				 * We don't try to update cached_hole_size or
567 				 * cached_align, but it won't go very wrong.
568 				 */
569 			}
570 		}
571 	}
572 	rb_erase(&va->rb_node, &vmap_area_root);
573 	RB_CLEAR_NODE(&va->rb_node);
574 	list_del_rcu(&va->list);
575 
576 	/*
577 	 * Track the highest possible candidate for pcpu area
578 	 * allocation.  Areas outside of vmalloc area can be returned
579 	 * here too, consider only end addresses which fall inside
580 	 * vmalloc area proper.
581 	 */
582 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
583 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
584 
585 	kfree_rcu(va, rcu_head);
586 }
587 
588 /*
589  * Free a region of KVA allocated by alloc_vmap_area
590  */
591 static void free_vmap_area(struct vmap_area *va)
592 {
593 	spin_lock(&vmap_area_lock);
594 	__free_vmap_area(va);
595 	spin_unlock(&vmap_area_lock);
596 }
597 
598 /*
599  * Clear the pagetable entries of a given vmap_area
600  */
601 static void unmap_vmap_area(struct vmap_area *va)
602 {
603 	vunmap_page_range(va->va_start, va->va_end);
604 }
605 
606 static void vmap_debug_free_range(unsigned long start, unsigned long end)
607 {
608 	/*
609 	 * Unmap page tables and force a TLB flush immediately if pagealloc
610 	 * debugging is enabled.  This catches use after free bugs similarly to
611 	 * those in linear kernel virtual address space after a page has been
612 	 * freed.
613 	 *
614 	 * All the lazy freeing logic is still retained, in order to minimise
615 	 * intrusiveness of this debugging feature.
616 	 *
617 	 * This is going to be *slow* (linear kernel virtual address debugging
618 	 * doesn't do a broadcast TLB flush so it is a lot faster).
619 	 */
620 	if (debug_pagealloc_enabled()) {
621 		vunmap_page_range(start, end);
622 		flush_tlb_kernel_range(start, end);
623 	}
624 }
625 
626 /*
627  * lazy_max_pages is the maximum amount of virtual address space we gather up
628  * before attempting to purge with a TLB flush.
629  *
630  * There is a tradeoff here: a larger number will cover more kernel page tables
631  * and take slightly longer to purge, but it will linearly reduce the number of
632  * global TLB flushes that must be performed. It would seem natural to scale
633  * this number up linearly with the number of CPUs (because vmapping activity
634  * could also scale linearly with the number of CPUs), however it is likely
635  * that in practice, workloads might be constrained in other ways that mean
636  * vmap activity will not scale linearly with CPUs. Also, I want to be
637  * conservative and not introduce a big latency on huge systems, so go with
638  * a less aggressive log scale. It will still be an improvement over the old
639  * code, and it will be simple to change the scale factor if we find that it
640  * becomes a problem on bigger systems.
641  */
642 static unsigned long lazy_max_pages(void)
643 {
644 	unsigned int log;
645 
646 	log = fls(num_online_cpus());
647 
648 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
649 }
650 
651 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
652 
653 /*
654  * Serialize vmap purging.  There is no actual criticial section protected
655  * by this look, but we want to avoid concurrent calls for performance
656  * reasons and to make the pcpu_get_vm_areas more deterministic.
657  */
658 static DEFINE_MUTEX(vmap_purge_lock);
659 
660 /* for per-CPU blocks */
661 static void purge_fragmented_blocks_allcpus(void);
662 
663 /*
664  * called before a call to iounmap() if the caller wants vm_area_struct's
665  * immediately freed.
666  */
667 void set_iounmap_nonlazy(void)
668 {
669 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
670 }
671 
672 /*
673  * Purges all lazily-freed vmap areas.
674  */
675 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
676 {
677 	struct llist_node *valist;
678 	struct vmap_area *va;
679 	struct vmap_area *n_va;
680 	bool do_free = false;
681 
682 	lockdep_assert_held(&vmap_purge_lock);
683 
684 	valist = llist_del_all(&vmap_purge_list);
685 	llist_for_each_entry(va, valist, purge_list) {
686 		if (va->va_start < start)
687 			start = va->va_start;
688 		if (va->va_end > end)
689 			end = va->va_end;
690 		do_free = true;
691 	}
692 
693 	if (!do_free)
694 		return false;
695 
696 	flush_tlb_kernel_range(start, end);
697 
698 	spin_lock(&vmap_area_lock);
699 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
700 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
701 
702 		__free_vmap_area(va);
703 		atomic_sub(nr, &vmap_lazy_nr);
704 		cond_resched_lock(&vmap_area_lock);
705 	}
706 	spin_unlock(&vmap_area_lock);
707 	return true;
708 }
709 
710 /*
711  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
712  * is already purging.
713  */
714 static void try_purge_vmap_area_lazy(void)
715 {
716 	if (mutex_trylock(&vmap_purge_lock)) {
717 		__purge_vmap_area_lazy(ULONG_MAX, 0);
718 		mutex_unlock(&vmap_purge_lock);
719 	}
720 }
721 
722 /*
723  * Kick off a purge of the outstanding lazy areas.
724  */
725 static void purge_vmap_area_lazy(void)
726 {
727 	mutex_lock(&vmap_purge_lock);
728 	purge_fragmented_blocks_allcpus();
729 	__purge_vmap_area_lazy(ULONG_MAX, 0);
730 	mutex_unlock(&vmap_purge_lock);
731 }
732 
733 /*
734  * Free a vmap area, caller ensuring that the area has been unmapped
735  * and flush_cache_vunmap had been called for the correct range
736  * previously.
737  */
738 static void free_vmap_area_noflush(struct vmap_area *va)
739 {
740 	int nr_lazy;
741 
742 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
743 				    &vmap_lazy_nr);
744 
745 	/* After this point, we may free va at any time */
746 	llist_add(&va->purge_list, &vmap_purge_list);
747 
748 	if (unlikely(nr_lazy > lazy_max_pages()))
749 		try_purge_vmap_area_lazy();
750 }
751 
752 /*
753  * Free and unmap a vmap area
754  */
755 static void free_unmap_vmap_area(struct vmap_area *va)
756 {
757 	flush_cache_vunmap(va->va_start, va->va_end);
758 	unmap_vmap_area(va);
759 	free_vmap_area_noflush(va);
760 }
761 
762 static struct vmap_area *find_vmap_area(unsigned long addr)
763 {
764 	struct vmap_area *va;
765 
766 	spin_lock(&vmap_area_lock);
767 	va = __find_vmap_area(addr);
768 	spin_unlock(&vmap_area_lock);
769 
770 	return va;
771 }
772 
773 /*** Per cpu kva allocator ***/
774 
775 /*
776  * vmap space is limited especially on 32 bit architectures. Ensure there is
777  * room for at least 16 percpu vmap blocks per CPU.
778  */
779 /*
780  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
781  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
782  * instead (we just need a rough idea)
783  */
784 #if BITS_PER_LONG == 32
785 #define VMALLOC_SPACE		(128UL*1024*1024)
786 #else
787 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
788 #endif
789 
790 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
791 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
792 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
793 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
794 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
795 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
796 #define VMAP_BBMAP_BITS		\
797 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
798 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
799 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
800 
801 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
802 
803 static bool vmap_initialized __read_mostly = false;
804 
805 struct vmap_block_queue {
806 	spinlock_t lock;
807 	struct list_head free;
808 };
809 
810 struct vmap_block {
811 	spinlock_t lock;
812 	struct vmap_area *va;
813 	unsigned long free, dirty;
814 	unsigned long dirty_min, dirty_max; /*< dirty range */
815 	struct list_head free_list;
816 	struct rcu_head rcu_head;
817 	struct list_head purge;
818 };
819 
820 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
821 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
822 
823 /*
824  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
825  * in the free path. Could get rid of this if we change the API to return a
826  * "cookie" from alloc, to be passed to free. But no big deal yet.
827  */
828 static DEFINE_SPINLOCK(vmap_block_tree_lock);
829 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
830 
831 /*
832  * We should probably have a fallback mechanism to allocate virtual memory
833  * out of partially filled vmap blocks. However vmap block sizing should be
834  * fairly reasonable according to the vmalloc size, so it shouldn't be a
835  * big problem.
836  */
837 
838 static unsigned long addr_to_vb_idx(unsigned long addr)
839 {
840 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
841 	addr /= VMAP_BLOCK_SIZE;
842 	return addr;
843 }
844 
845 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
846 {
847 	unsigned long addr;
848 
849 	addr = va_start + (pages_off << PAGE_SHIFT);
850 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
851 	return (void *)addr;
852 }
853 
854 /**
855  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
856  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
857  * @order:    how many 2^order pages should be occupied in newly allocated block
858  * @gfp_mask: flags for the page level allocator
859  *
860  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
861  */
862 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
863 {
864 	struct vmap_block_queue *vbq;
865 	struct vmap_block *vb;
866 	struct vmap_area *va;
867 	unsigned long vb_idx;
868 	int node, err;
869 	void *vaddr;
870 
871 	node = numa_node_id();
872 
873 	vb = kmalloc_node(sizeof(struct vmap_block),
874 			gfp_mask & GFP_RECLAIM_MASK, node);
875 	if (unlikely(!vb))
876 		return ERR_PTR(-ENOMEM);
877 
878 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
879 					VMALLOC_START, VMALLOC_END,
880 					node, gfp_mask);
881 	if (IS_ERR(va)) {
882 		kfree(vb);
883 		return ERR_CAST(va);
884 	}
885 
886 	err = radix_tree_preload(gfp_mask);
887 	if (unlikely(err)) {
888 		kfree(vb);
889 		free_vmap_area(va);
890 		return ERR_PTR(err);
891 	}
892 
893 	vaddr = vmap_block_vaddr(va->va_start, 0);
894 	spin_lock_init(&vb->lock);
895 	vb->va = va;
896 	/* At least something should be left free */
897 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
898 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
899 	vb->dirty = 0;
900 	vb->dirty_min = VMAP_BBMAP_BITS;
901 	vb->dirty_max = 0;
902 	INIT_LIST_HEAD(&vb->free_list);
903 
904 	vb_idx = addr_to_vb_idx(va->va_start);
905 	spin_lock(&vmap_block_tree_lock);
906 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
907 	spin_unlock(&vmap_block_tree_lock);
908 	BUG_ON(err);
909 	radix_tree_preload_end();
910 
911 	vbq = &get_cpu_var(vmap_block_queue);
912 	spin_lock(&vbq->lock);
913 	list_add_tail_rcu(&vb->free_list, &vbq->free);
914 	spin_unlock(&vbq->lock);
915 	put_cpu_var(vmap_block_queue);
916 
917 	return vaddr;
918 }
919 
920 static void free_vmap_block(struct vmap_block *vb)
921 {
922 	struct vmap_block *tmp;
923 	unsigned long vb_idx;
924 
925 	vb_idx = addr_to_vb_idx(vb->va->va_start);
926 	spin_lock(&vmap_block_tree_lock);
927 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
928 	spin_unlock(&vmap_block_tree_lock);
929 	BUG_ON(tmp != vb);
930 
931 	free_vmap_area_noflush(vb->va);
932 	kfree_rcu(vb, rcu_head);
933 }
934 
935 static void purge_fragmented_blocks(int cpu)
936 {
937 	LIST_HEAD(purge);
938 	struct vmap_block *vb;
939 	struct vmap_block *n_vb;
940 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
941 
942 	rcu_read_lock();
943 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
944 
945 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
946 			continue;
947 
948 		spin_lock(&vb->lock);
949 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
950 			vb->free = 0; /* prevent further allocs after releasing lock */
951 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
952 			vb->dirty_min = 0;
953 			vb->dirty_max = VMAP_BBMAP_BITS;
954 			spin_lock(&vbq->lock);
955 			list_del_rcu(&vb->free_list);
956 			spin_unlock(&vbq->lock);
957 			spin_unlock(&vb->lock);
958 			list_add_tail(&vb->purge, &purge);
959 		} else
960 			spin_unlock(&vb->lock);
961 	}
962 	rcu_read_unlock();
963 
964 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
965 		list_del(&vb->purge);
966 		free_vmap_block(vb);
967 	}
968 }
969 
970 static void purge_fragmented_blocks_allcpus(void)
971 {
972 	int cpu;
973 
974 	for_each_possible_cpu(cpu)
975 		purge_fragmented_blocks(cpu);
976 }
977 
978 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
979 {
980 	struct vmap_block_queue *vbq;
981 	struct vmap_block *vb;
982 	void *vaddr = NULL;
983 	unsigned int order;
984 
985 	BUG_ON(offset_in_page(size));
986 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
987 	if (WARN_ON(size == 0)) {
988 		/*
989 		 * Allocating 0 bytes isn't what caller wants since
990 		 * get_order(0) returns funny result. Just warn and terminate
991 		 * early.
992 		 */
993 		return NULL;
994 	}
995 	order = get_order(size);
996 
997 	rcu_read_lock();
998 	vbq = &get_cpu_var(vmap_block_queue);
999 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1000 		unsigned long pages_off;
1001 
1002 		spin_lock(&vb->lock);
1003 		if (vb->free < (1UL << order)) {
1004 			spin_unlock(&vb->lock);
1005 			continue;
1006 		}
1007 
1008 		pages_off = VMAP_BBMAP_BITS - vb->free;
1009 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1010 		vb->free -= 1UL << order;
1011 		if (vb->free == 0) {
1012 			spin_lock(&vbq->lock);
1013 			list_del_rcu(&vb->free_list);
1014 			spin_unlock(&vbq->lock);
1015 		}
1016 
1017 		spin_unlock(&vb->lock);
1018 		break;
1019 	}
1020 
1021 	put_cpu_var(vmap_block_queue);
1022 	rcu_read_unlock();
1023 
1024 	/* Allocate new block if nothing was found */
1025 	if (!vaddr)
1026 		vaddr = new_vmap_block(order, gfp_mask);
1027 
1028 	return vaddr;
1029 }
1030 
1031 static void vb_free(const void *addr, unsigned long size)
1032 {
1033 	unsigned long offset;
1034 	unsigned long vb_idx;
1035 	unsigned int order;
1036 	struct vmap_block *vb;
1037 
1038 	BUG_ON(offset_in_page(size));
1039 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1040 
1041 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1042 
1043 	order = get_order(size);
1044 
1045 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1046 	offset >>= PAGE_SHIFT;
1047 
1048 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1049 	rcu_read_lock();
1050 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1051 	rcu_read_unlock();
1052 	BUG_ON(!vb);
1053 
1054 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1055 
1056 	spin_lock(&vb->lock);
1057 
1058 	/* Expand dirty range */
1059 	vb->dirty_min = min(vb->dirty_min, offset);
1060 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1061 
1062 	vb->dirty += 1UL << order;
1063 	if (vb->dirty == VMAP_BBMAP_BITS) {
1064 		BUG_ON(vb->free);
1065 		spin_unlock(&vb->lock);
1066 		free_vmap_block(vb);
1067 	} else
1068 		spin_unlock(&vb->lock);
1069 }
1070 
1071 /**
1072  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1073  *
1074  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1075  * to amortize TLB flushing overheads. What this means is that any page you
1076  * have now, may, in a former life, have been mapped into kernel virtual
1077  * address by the vmap layer and so there might be some CPUs with TLB entries
1078  * still referencing that page (additional to the regular 1:1 kernel mapping).
1079  *
1080  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1081  * be sure that none of the pages we have control over will have any aliases
1082  * from the vmap layer.
1083  */
1084 void vm_unmap_aliases(void)
1085 {
1086 	unsigned long start = ULONG_MAX, end = 0;
1087 	int cpu;
1088 	int flush = 0;
1089 
1090 	if (unlikely(!vmap_initialized))
1091 		return;
1092 
1093 	might_sleep();
1094 
1095 	for_each_possible_cpu(cpu) {
1096 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1097 		struct vmap_block *vb;
1098 
1099 		rcu_read_lock();
1100 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1101 			spin_lock(&vb->lock);
1102 			if (vb->dirty) {
1103 				unsigned long va_start = vb->va->va_start;
1104 				unsigned long s, e;
1105 
1106 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1107 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1108 
1109 				start = min(s, start);
1110 				end   = max(e, end);
1111 
1112 				flush = 1;
1113 			}
1114 			spin_unlock(&vb->lock);
1115 		}
1116 		rcu_read_unlock();
1117 	}
1118 
1119 	mutex_lock(&vmap_purge_lock);
1120 	purge_fragmented_blocks_allcpus();
1121 	if (!__purge_vmap_area_lazy(start, end) && flush)
1122 		flush_tlb_kernel_range(start, end);
1123 	mutex_unlock(&vmap_purge_lock);
1124 }
1125 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1126 
1127 /**
1128  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1129  * @mem: the pointer returned by vm_map_ram
1130  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1131  */
1132 void vm_unmap_ram(const void *mem, unsigned int count)
1133 {
1134 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1135 	unsigned long addr = (unsigned long)mem;
1136 	struct vmap_area *va;
1137 
1138 	might_sleep();
1139 	BUG_ON(!addr);
1140 	BUG_ON(addr < VMALLOC_START);
1141 	BUG_ON(addr > VMALLOC_END);
1142 	BUG_ON(!PAGE_ALIGNED(addr));
1143 
1144 	debug_check_no_locks_freed(mem, size);
1145 	vmap_debug_free_range(addr, addr+size);
1146 
1147 	if (likely(count <= VMAP_MAX_ALLOC)) {
1148 		vb_free(mem, size);
1149 		return;
1150 	}
1151 
1152 	va = find_vmap_area(addr);
1153 	BUG_ON(!va);
1154 	free_unmap_vmap_area(va);
1155 }
1156 EXPORT_SYMBOL(vm_unmap_ram);
1157 
1158 /**
1159  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1160  * @pages: an array of pointers to the pages to be mapped
1161  * @count: number of pages
1162  * @node: prefer to allocate data structures on this node
1163  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1164  *
1165  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1166  * faster than vmap so it's good.  But if you mix long-life and short-life
1167  * objects with vm_map_ram(), it could consume lots of address space through
1168  * fragmentation (especially on a 32bit machine).  You could see failures in
1169  * the end.  Please use this function for short-lived objects.
1170  *
1171  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1172  */
1173 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1174 {
1175 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1176 	unsigned long addr;
1177 	void *mem;
1178 
1179 	if (likely(count <= VMAP_MAX_ALLOC)) {
1180 		mem = vb_alloc(size, GFP_KERNEL);
1181 		if (IS_ERR(mem))
1182 			return NULL;
1183 		addr = (unsigned long)mem;
1184 	} else {
1185 		struct vmap_area *va;
1186 		va = alloc_vmap_area(size, PAGE_SIZE,
1187 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1188 		if (IS_ERR(va))
1189 			return NULL;
1190 
1191 		addr = va->va_start;
1192 		mem = (void *)addr;
1193 	}
1194 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1195 		vm_unmap_ram(mem, count);
1196 		return NULL;
1197 	}
1198 	return mem;
1199 }
1200 EXPORT_SYMBOL(vm_map_ram);
1201 
1202 static struct vm_struct *vmlist __initdata;
1203 /**
1204  * vm_area_add_early - add vmap area early during boot
1205  * @vm: vm_struct to add
1206  *
1207  * This function is used to add fixed kernel vm area to vmlist before
1208  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1209  * should contain proper values and the other fields should be zero.
1210  *
1211  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1212  */
1213 void __init vm_area_add_early(struct vm_struct *vm)
1214 {
1215 	struct vm_struct *tmp, **p;
1216 
1217 	BUG_ON(vmap_initialized);
1218 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1219 		if (tmp->addr >= vm->addr) {
1220 			BUG_ON(tmp->addr < vm->addr + vm->size);
1221 			break;
1222 		} else
1223 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1224 	}
1225 	vm->next = *p;
1226 	*p = vm;
1227 }
1228 
1229 /**
1230  * vm_area_register_early - register vmap area early during boot
1231  * @vm: vm_struct to register
1232  * @align: requested alignment
1233  *
1234  * This function is used to register kernel vm area before
1235  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1236  * proper values on entry and other fields should be zero.  On return,
1237  * vm->addr contains the allocated address.
1238  *
1239  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1240  */
1241 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1242 {
1243 	static size_t vm_init_off __initdata;
1244 	unsigned long addr;
1245 
1246 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1247 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1248 
1249 	vm->addr = (void *)addr;
1250 
1251 	vm_area_add_early(vm);
1252 }
1253 
1254 void __init vmalloc_init(void)
1255 {
1256 	struct vmap_area *va;
1257 	struct vm_struct *tmp;
1258 	int i;
1259 
1260 	for_each_possible_cpu(i) {
1261 		struct vmap_block_queue *vbq;
1262 		struct vfree_deferred *p;
1263 
1264 		vbq = &per_cpu(vmap_block_queue, i);
1265 		spin_lock_init(&vbq->lock);
1266 		INIT_LIST_HEAD(&vbq->free);
1267 		p = &per_cpu(vfree_deferred, i);
1268 		init_llist_head(&p->list);
1269 		INIT_WORK(&p->wq, free_work);
1270 	}
1271 
1272 	/* Import existing vmlist entries. */
1273 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1274 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1275 		va->flags = VM_VM_AREA;
1276 		va->va_start = (unsigned long)tmp->addr;
1277 		va->va_end = va->va_start + tmp->size;
1278 		va->vm = tmp;
1279 		__insert_vmap_area(va);
1280 	}
1281 
1282 	vmap_area_pcpu_hole = VMALLOC_END;
1283 
1284 	vmap_initialized = true;
1285 }
1286 
1287 /**
1288  * map_kernel_range_noflush - map kernel VM area with the specified pages
1289  * @addr: start of the VM area to map
1290  * @size: size of the VM area to map
1291  * @prot: page protection flags to use
1292  * @pages: pages to map
1293  *
1294  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1295  * specify should have been allocated using get_vm_area() and its
1296  * friends.
1297  *
1298  * NOTE:
1299  * This function does NOT do any cache flushing.  The caller is
1300  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1301  * before calling this function.
1302  *
1303  * RETURNS:
1304  * The number of pages mapped on success, -errno on failure.
1305  */
1306 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1307 			     pgprot_t prot, struct page **pages)
1308 {
1309 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1310 }
1311 
1312 /**
1313  * unmap_kernel_range_noflush - unmap kernel VM area
1314  * @addr: start of the VM area to unmap
1315  * @size: size of the VM area to unmap
1316  *
1317  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1318  * specify should have been allocated using get_vm_area() and its
1319  * friends.
1320  *
1321  * NOTE:
1322  * This function does NOT do any cache flushing.  The caller is
1323  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1324  * before calling this function and flush_tlb_kernel_range() after.
1325  */
1326 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1327 {
1328 	vunmap_page_range(addr, addr + size);
1329 }
1330 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1331 
1332 /**
1333  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1334  * @addr: start of the VM area to unmap
1335  * @size: size of the VM area to unmap
1336  *
1337  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1338  * the unmapping and tlb after.
1339  */
1340 void unmap_kernel_range(unsigned long addr, unsigned long size)
1341 {
1342 	unsigned long end = addr + size;
1343 
1344 	flush_cache_vunmap(addr, end);
1345 	vunmap_page_range(addr, end);
1346 	flush_tlb_kernel_range(addr, end);
1347 }
1348 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1349 
1350 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1351 {
1352 	unsigned long addr = (unsigned long)area->addr;
1353 	unsigned long end = addr + get_vm_area_size(area);
1354 	int err;
1355 
1356 	err = vmap_page_range(addr, end, prot, pages);
1357 
1358 	return err > 0 ? 0 : err;
1359 }
1360 EXPORT_SYMBOL_GPL(map_vm_area);
1361 
1362 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1363 			      unsigned long flags, const void *caller)
1364 {
1365 	spin_lock(&vmap_area_lock);
1366 	vm->flags = flags;
1367 	vm->addr = (void *)va->va_start;
1368 	vm->size = va->va_end - va->va_start;
1369 	vm->caller = caller;
1370 	va->vm = vm;
1371 	va->flags |= VM_VM_AREA;
1372 	spin_unlock(&vmap_area_lock);
1373 }
1374 
1375 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1376 {
1377 	/*
1378 	 * Before removing VM_UNINITIALIZED,
1379 	 * we should make sure that vm has proper values.
1380 	 * Pair with smp_rmb() in show_numa_info().
1381 	 */
1382 	smp_wmb();
1383 	vm->flags &= ~VM_UNINITIALIZED;
1384 }
1385 
1386 static struct vm_struct *__get_vm_area_node(unsigned long size,
1387 		unsigned long align, unsigned long flags, unsigned long start,
1388 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1389 {
1390 	struct vmap_area *va;
1391 	struct vm_struct *area;
1392 
1393 	BUG_ON(in_interrupt());
1394 	size = PAGE_ALIGN(size);
1395 	if (unlikely(!size))
1396 		return NULL;
1397 
1398 	if (flags & VM_IOREMAP)
1399 		align = 1ul << clamp_t(int, get_count_order_long(size),
1400 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1401 
1402 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1403 	if (unlikely(!area))
1404 		return NULL;
1405 
1406 	if (!(flags & VM_NO_GUARD))
1407 		size += PAGE_SIZE;
1408 
1409 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1410 	if (IS_ERR(va)) {
1411 		kfree(area);
1412 		return NULL;
1413 	}
1414 
1415 	setup_vmalloc_vm(area, va, flags, caller);
1416 
1417 	return area;
1418 }
1419 
1420 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1421 				unsigned long start, unsigned long end)
1422 {
1423 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424 				  GFP_KERNEL, __builtin_return_address(0));
1425 }
1426 EXPORT_SYMBOL_GPL(__get_vm_area);
1427 
1428 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1429 				       unsigned long start, unsigned long end,
1430 				       const void *caller)
1431 {
1432 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1433 				  GFP_KERNEL, caller);
1434 }
1435 
1436 /**
1437  *	get_vm_area  -  reserve a contiguous kernel virtual area
1438  *	@size:		size of the area
1439  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1440  *
1441  *	Search an area of @size in the kernel virtual mapping area,
1442  *	and reserved it for out purposes.  Returns the area descriptor
1443  *	on success or %NULL on failure.
1444  */
1445 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1446 {
1447 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1448 				  NUMA_NO_NODE, GFP_KERNEL,
1449 				  __builtin_return_address(0));
1450 }
1451 
1452 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1453 				const void *caller)
1454 {
1455 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1456 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1457 }
1458 
1459 /**
1460  *	find_vm_area  -  find a continuous kernel virtual area
1461  *	@addr:		base address
1462  *
1463  *	Search for the kernel VM area starting at @addr, and return it.
1464  *	It is up to the caller to do all required locking to keep the returned
1465  *	pointer valid.
1466  */
1467 struct vm_struct *find_vm_area(const void *addr)
1468 {
1469 	struct vmap_area *va;
1470 
1471 	va = find_vmap_area((unsigned long)addr);
1472 	if (va && va->flags & VM_VM_AREA)
1473 		return va->vm;
1474 
1475 	return NULL;
1476 }
1477 
1478 /**
1479  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1480  *	@addr:		base address
1481  *
1482  *	Search for the kernel VM area starting at @addr, and remove it.
1483  *	This function returns the found VM area, but using it is NOT safe
1484  *	on SMP machines, except for its size or flags.
1485  */
1486 struct vm_struct *remove_vm_area(const void *addr)
1487 {
1488 	struct vmap_area *va;
1489 
1490 	might_sleep();
1491 
1492 	va = find_vmap_area((unsigned long)addr);
1493 	if (va && va->flags & VM_VM_AREA) {
1494 		struct vm_struct *vm = va->vm;
1495 
1496 		spin_lock(&vmap_area_lock);
1497 		va->vm = NULL;
1498 		va->flags &= ~VM_VM_AREA;
1499 		va->flags |= VM_LAZY_FREE;
1500 		spin_unlock(&vmap_area_lock);
1501 
1502 		vmap_debug_free_range(va->va_start, va->va_end);
1503 		kasan_free_shadow(vm);
1504 		free_unmap_vmap_area(va);
1505 
1506 		return vm;
1507 	}
1508 	return NULL;
1509 }
1510 
1511 static void __vunmap(const void *addr, int deallocate_pages)
1512 {
1513 	struct vm_struct *area;
1514 
1515 	if (!addr)
1516 		return;
1517 
1518 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1519 			addr))
1520 		return;
1521 
1522 	area = remove_vm_area(addr);
1523 	if (unlikely(!area)) {
1524 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1525 				addr);
1526 		return;
1527 	}
1528 
1529 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1530 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1531 
1532 	if (deallocate_pages) {
1533 		int i;
1534 
1535 		for (i = 0; i < area->nr_pages; i++) {
1536 			struct page *page = area->pages[i];
1537 
1538 			BUG_ON(!page);
1539 			__free_pages(page, 0);
1540 		}
1541 
1542 		kvfree(area->pages);
1543 	}
1544 
1545 	kfree(area);
1546 	return;
1547 }
1548 
1549 static inline void __vfree_deferred(const void *addr)
1550 {
1551 	/*
1552 	 * Use raw_cpu_ptr() because this can be called from preemptible
1553 	 * context. Preemption is absolutely fine here, because the llist_add()
1554 	 * implementation is lockless, so it works even if we are adding to
1555 	 * nother cpu's list.  schedule_work() should be fine with this too.
1556 	 */
1557 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1558 
1559 	if (llist_add((struct llist_node *)addr, &p->list))
1560 		schedule_work(&p->wq);
1561 }
1562 
1563 /**
1564  *	vfree_atomic  -  release memory allocated by vmalloc()
1565  *	@addr:		memory base address
1566  *
1567  *	This one is just like vfree() but can be called in any atomic context
1568  *	except NMIs.
1569  */
1570 void vfree_atomic(const void *addr)
1571 {
1572 	BUG_ON(in_nmi());
1573 
1574 	kmemleak_free(addr);
1575 
1576 	if (!addr)
1577 		return;
1578 	__vfree_deferred(addr);
1579 }
1580 
1581 /**
1582  *	vfree  -  release memory allocated by vmalloc()
1583  *	@addr:		memory base address
1584  *
1585  *	Free the virtually continuous memory area starting at @addr, as
1586  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1587  *	NULL, no operation is performed.
1588  *
1589  *	Must not be called in NMI context (strictly speaking, only if we don't
1590  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1591  *	conventions for vfree() arch-depenedent would be a really bad idea)
1592  *
1593  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1594  */
1595 void vfree(const void *addr)
1596 {
1597 	BUG_ON(in_nmi());
1598 
1599 	kmemleak_free(addr);
1600 
1601 	if (!addr)
1602 		return;
1603 	if (unlikely(in_interrupt()))
1604 		__vfree_deferred(addr);
1605 	else
1606 		__vunmap(addr, 1);
1607 }
1608 EXPORT_SYMBOL(vfree);
1609 
1610 /**
1611  *	vunmap  -  release virtual mapping obtained by vmap()
1612  *	@addr:		memory base address
1613  *
1614  *	Free the virtually contiguous memory area starting at @addr,
1615  *	which was created from the page array passed to vmap().
1616  *
1617  *	Must not be called in interrupt context.
1618  */
1619 void vunmap(const void *addr)
1620 {
1621 	BUG_ON(in_interrupt());
1622 	might_sleep();
1623 	if (addr)
1624 		__vunmap(addr, 0);
1625 }
1626 EXPORT_SYMBOL(vunmap);
1627 
1628 /**
1629  *	vmap  -  map an array of pages into virtually contiguous space
1630  *	@pages:		array of page pointers
1631  *	@count:		number of pages to map
1632  *	@flags:		vm_area->flags
1633  *	@prot:		page protection for the mapping
1634  *
1635  *	Maps @count pages from @pages into contiguous kernel virtual
1636  *	space.
1637  */
1638 void *vmap(struct page **pages, unsigned int count,
1639 		unsigned long flags, pgprot_t prot)
1640 {
1641 	struct vm_struct *area;
1642 	unsigned long size;		/* In bytes */
1643 
1644 	might_sleep();
1645 
1646 	if (count > totalram_pages)
1647 		return NULL;
1648 
1649 	size = (unsigned long)count << PAGE_SHIFT;
1650 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1651 	if (!area)
1652 		return NULL;
1653 
1654 	if (map_vm_area(area, prot, pages)) {
1655 		vunmap(area->addr);
1656 		return NULL;
1657 	}
1658 
1659 	return area->addr;
1660 }
1661 EXPORT_SYMBOL(vmap);
1662 
1663 static void *__vmalloc_node(unsigned long size, unsigned long align,
1664 			    gfp_t gfp_mask, pgprot_t prot,
1665 			    int node, const void *caller);
1666 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1667 				 pgprot_t prot, int node)
1668 {
1669 	struct page **pages;
1670 	unsigned int nr_pages, array_size, i;
1671 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1672 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1673 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1674 					0 :
1675 					__GFP_HIGHMEM;
1676 
1677 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1678 	array_size = (nr_pages * sizeof(struct page *));
1679 
1680 	area->nr_pages = nr_pages;
1681 	/* Please note that the recursion is strictly bounded. */
1682 	if (array_size > PAGE_SIZE) {
1683 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1684 				PAGE_KERNEL, node, area->caller);
1685 	} else {
1686 		pages = kmalloc_node(array_size, nested_gfp, node);
1687 	}
1688 	area->pages = pages;
1689 	if (!area->pages) {
1690 		remove_vm_area(area->addr);
1691 		kfree(area);
1692 		return NULL;
1693 	}
1694 
1695 	for (i = 0; i < area->nr_pages; i++) {
1696 		struct page *page;
1697 
1698 		if (fatal_signal_pending(current)) {
1699 			area->nr_pages = i;
1700 			goto fail_no_warn;
1701 		}
1702 
1703 		if (node == NUMA_NO_NODE)
1704 			page = alloc_page(alloc_mask|highmem_mask);
1705 		else
1706 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1707 
1708 		if (unlikely(!page)) {
1709 			/* Successfully allocated i pages, free them in __vunmap() */
1710 			area->nr_pages = i;
1711 			goto fail;
1712 		}
1713 		area->pages[i] = page;
1714 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1715 			cond_resched();
1716 	}
1717 
1718 	if (map_vm_area(area, prot, pages))
1719 		goto fail;
1720 	return area->addr;
1721 
1722 fail:
1723 	warn_alloc(gfp_mask, NULL,
1724 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1725 			  (area->nr_pages*PAGE_SIZE), area->size);
1726 fail_no_warn:
1727 	vfree(area->addr);
1728 	return NULL;
1729 }
1730 
1731 /**
1732  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1733  *	@size:		allocation size
1734  *	@align:		desired alignment
1735  *	@start:		vm area range start
1736  *	@end:		vm area range end
1737  *	@gfp_mask:	flags for the page level allocator
1738  *	@prot:		protection mask for the allocated pages
1739  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1740  *	@node:		node to use for allocation or NUMA_NO_NODE
1741  *	@caller:	caller's return address
1742  *
1743  *	Allocate enough pages to cover @size from the page level
1744  *	allocator with @gfp_mask flags.  Map them into contiguous
1745  *	kernel virtual space, using a pagetable protection of @prot.
1746  */
1747 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1748 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1749 			pgprot_t prot, unsigned long vm_flags, int node,
1750 			const void *caller)
1751 {
1752 	struct vm_struct *area;
1753 	void *addr;
1754 	unsigned long real_size = size;
1755 
1756 	size = PAGE_ALIGN(size);
1757 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1758 		goto fail;
1759 
1760 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1761 				vm_flags, start, end, node, gfp_mask, caller);
1762 	if (!area)
1763 		goto fail;
1764 
1765 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1766 	if (!addr)
1767 		return NULL;
1768 
1769 	/*
1770 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1771 	 * flag. It means that vm_struct is not fully initialized.
1772 	 * Now, it is fully initialized, so remove this flag here.
1773 	 */
1774 	clear_vm_uninitialized_flag(area);
1775 
1776 	kmemleak_vmalloc(area, size, gfp_mask);
1777 
1778 	return addr;
1779 
1780 fail:
1781 	warn_alloc(gfp_mask, NULL,
1782 			  "vmalloc: allocation failure: %lu bytes", real_size);
1783 	return NULL;
1784 }
1785 
1786 /**
1787  *	__vmalloc_node  -  allocate virtually contiguous memory
1788  *	@size:		allocation size
1789  *	@align:		desired alignment
1790  *	@gfp_mask:	flags for the page level allocator
1791  *	@prot:		protection mask for the allocated pages
1792  *	@node:		node to use for allocation or NUMA_NO_NODE
1793  *	@caller:	caller's return address
1794  *
1795  *	Allocate enough pages to cover @size from the page level
1796  *	allocator with @gfp_mask flags.  Map them into contiguous
1797  *	kernel virtual space, using a pagetable protection of @prot.
1798  *
1799  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1800  *	and __GFP_NOFAIL are not supported
1801  *
1802  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1803  *	with mm people.
1804  *
1805  */
1806 static void *__vmalloc_node(unsigned long size, unsigned long align,
1807 			    gfp_t gfp_mask, pgprot_t prot,
1808 			    int node, const void *caller)
1809 {
1810 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1811 				gfp_mask, prot, 0, node, caller);
1812 }
1813 
1814 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1815 {
1816 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1817 				__builtin_return_address(0));
1818 }
1819 EXPORT_SYMBOL(__vmalloc);
1820 
1821 static inline void *__vmalloc_node_flags(unsigned long size,
1822 					int node, gfp_t flags)
1823 {
1824 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1825 					node, __builtin_return_address(0));
1826 }
1827 
1828 
1829 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1830 				  void *caller)
1831 {
1832 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1833 }
1834 
1835 /**
1836  *	vmalloc  -  allocate virtually contiguous memory
1837  *	@size:		allocation size
1838  *	Allocate enough pages to cover @size from the page level
1839  *	allocator and map them into contiguous kernel virtual space.
1840  *
1841  *	For tight control over page level allocator and protection flags
1842  *	use __vmalloc() instead.
1843  */
1844 void *vmalloc(unsigned long size)
1845 {
1846 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1847 				    GFP_KERNEL);
1848 }
1849 EXPORT_SYMBOL(vmalloc);
1850 
1851 /**
1852  *	vzalloc - allocate virtually contiguous memory with zero fill
1853  *	@size:	allocation size
1854  *	Allocate enough pages to cover @size from the page level
1855  *	allocator and map them into contiguous kernel virtual space.
1856  *	The memory allocated is set to zero.
1857  *
1858  *	For tight control over page level allocator and protection flags
1859  *	use __vmalloc() instead.
1860  */
1861 void *vzalloc(unsigned long size)
1862 {
1863 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1864 				GFP_KERNEL | __GFP_ZERO);
1865 }
1866 EXPORT_SYMBOL(vzalloc);
1867 
1868 /**
1869  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1870  * @size: allocation size
1871  *
1872  * The resulting memory area is zeroed so it can be mapped to userspace
1873  * without leaking data.
1874  */
1875 void *vmalloc_user(unsigned long size)
1876 {
1877 	struct vm_struct *area;
1878 	void *ret;
1879 
1880 	ret = __vmalloc_node(size, SHMLBA,
1881 			     GFP_KERNEL | __GFP_ZERO,
1882 			     PAGE_KERNEL, NUMA_NO_NODE,
1883 			     __builtin_return_address(0));
1884 	if (ret) {
1885 		area = find_vm_area(ret);
1886 		area->flags |= VM_USERMAP;
1887 	}
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL(vmalloc_user);
1891 
1892 /**
1893  *	vmalloc_node  -  allocate memory on a specific node
1894  *	@size:		allocation size
1895  *	@node:		numa node
1896  *
1897  *	Allocate enough pages to cover @size from the page level
1898  *	allocator and map them into contiguous kernel virtual space.
1899  *
1900  *	For tight control over page level allocator and protection flags
1901  *	use __vmalloc() instead.
1902  */
1903 void *vmalloc_node(unsigned long size, int node)
1904 {
1905 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1906 					node, __builtin_return_address(0));
1907 }
1908 EXPORT_SYMBOL(vmalloc_node);
1909 
1910 /**
1911  * vzalloc_node - allocate memory on a specific node with zero fill
1912  * @size:	allocation size
1913  * @node:	numa node
1914  *
1915  * Allocate enough pages to cover @size from the page level
1916  * allocator and map them into contiguous kernel virtual space.
1917  * The memory allocated is set to zero.
1918  *
1919  * For tight control over page level allocator and protection flags
1920  * use __vmalloc_node() instead.
1921  */
1922 void *vzalloc_node(unsigned long size, int node)
1923 {
1924 	return __vmalloc_node_flags(size, node,
1925 			 GFP_KERNEL | __GFP_ZERO);
1926 }
1927 EXPORT_SYMBOL(vzalloc_node);
1928 
1929 #ifndef PAGE_KERNEL_EXEC
1930 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1931 #endif
1932 
1933 /**
1934  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1935  *	@size:		allocation size
1936  *
1937  *	Kernel-internal function to allocate enough pages to cover @size
1938  *	the page level allocator and map them into contiguous and
1939  *	executable kernel virtual space.
1940  *
1941  *	For tight control over page level allocator and protection flags
1942  *	use __vmalloc() instead.
1943  */
1944 
1945 void *vmalloc_exec(unsigned long size)
1946 {
1947 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1948 			      NUMA_NO_NODE, __builtin_return_address(0));
1949 }
1950 
1951 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1952 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1953 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1954 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1955 #else
1956 #define GFP_VMALLOC32 GFP_KERNEL
1957 #endif
1958 
1959 /**
1960  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1961  *	@size:		allocation size
1962  *
1963  *	Allocate enough 32bit PA addressable pages to cover @size from the
1964  *	page level allocator and map them into contiguous kernel virtual space.
1965  */
1966 void *vmalloc_32(unsigned long size)
1967 {
1968 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1969 			      NUMA_NO_NODE, __builtin_return_address(0));
1970 }
1971 EXPORT_SYMBOL(vmalloc_32);
1972 
1973 /**
1974  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1975  *	@size:		allocation size
1976  *
1977  * The resulting memory area is 32bit addressable and zeroed so it can be
1978  * mapped to userspace without leaking data.
1979  */
1980 void *vmalloc_32_user(unsigned long size)
1981 {
1982 	struct vm_struct *area;
1983 	void *ret;
1984 
1985 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1986 			     NUMA_NO_NODE, __builtin_return_address(0));
1987 	if (ret) {
1988 		area = find_vm_area(ret);
1989 		area->flags |= VM_USERMAP;
1990 	}
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL(vmalloc_32_user);
1994 
1995 /*
1996  * small helper routine , copy contents to buf from addr.
1997  * If the page is not present, fill zero.
1998  */
1999 
2000 static int aligned_vread(char *buf, char *addr, unsigned long count)
2001 {
2002 	struct page *p;
2003 	int copied = 0;
2004 
2005 	while (count) {
2006 		unsigned long offset, length;
2007 
2008 		offset = offset_in_page(addr);
2009 		length = PAGE_SIZE - offset;
2010 		if (length > count)
2011 			length = count;
2012 		p = vmalloc_to_page(addr);
2013 		/*
2014 		 * To do safe access to this _mapped_ area, we need
2015 		 * lock. But adding lock here means that we need to add
2016 		 * overhead of vmalloc()/vfree() calles for this _debug_
2017 		 * interface, rarely used. Instead of that, we'll use
2018 		 * kmap() and get small overhead in this access function.
2019 		 */
2020 		if (p) {
2021 			/*
2022 			 * we can expect USER0 is not used (see vread/vwrite's
2023 			 * function description)
2024 			 */
2025 			void *map = kmap_atomic(p);
2026 			memcpy(buf, map + offset, length);
2027 			kunmap_atomic(map);
2028 		} else
2029 			memset(buf, 0, length);
2030 
2031 		addr += length;
2032 		buf += length;
2033 		copied += length;
2034 		count -= length;
2035 	}
2036 	return copied;
2037 }
2038 
2039 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2040 {
2041 	struct page *p;
2042 	int copied = 0;
2043 
2044 	while (count) {
2045 		unsigned long offset, length;
2046 
2047 		offset = offset_in_page(addr);
2048 		length = PAGE_SIZE - offset;
2049 		if (length > count)
2050 			length = count;
2051 		p = vmalloc_to_page(addr);
2052 		/*
2053 		 * To do safe access to this _mapped_ area, we need
2054 		 * lock. But adding lock here means that we need to add
2055 		 * overhead of vmalloc()/vfree() calles for this _debug_
2056 		 * interface, rarely used. Instead of that, we'll use
2057 		 * kmap() and get small overhead in this access function.
2058 		 */
2059 		if (p) {
2060 			/*
2061 			 * we can expect USER0 is not used (see vread/vwrite's
2062 			 * function description)
2063 			 */
2064 			void *map = kmap_atomic(p);
2065 			memcpy(map + offset, buf, length);
2066 			kunmap_atomic(map);
2067 		}
2068 		addr += length;
2069 		buf += length;
2070 		copied += length;
2071 		count -= length;
2072 	}
2073 	return copied;
2074 }
2075 
2076 /**
2077  *	vread() -  read vmalloc area in a safe way.
2078  *	@buf:		buffer for reading data
2079  *	@addr:		vm address.
2080  *	@count:		number of bytes to be read.
2081  *
2082  *	Returns # of bytes which addr and buf should be increased.
2083  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2084  *	includes any intersect with alive vmalloc area.
2085  *
2086  *	This function checks that addr is a valid vmalloc'ed area, and
2087  *	copy data from that area to a given buffer. If the given memory range
2088  *	of [addr...addr+count) includes some valid address, data is copied to
2089  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2090  *	IOREMAP area is treated as memory hole and no copy is done.
2091  *
2092  *	If [addr...addr+count) doesn't includes any intersects with alive
2093  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2094  *
2095  *	Note: In usual ops, vread() is never necessary because the caller
2096  *	should know vmalloc() area is valid and can use memcpy().
2097  *	This is for routines which have to access vmalloc area without
2098  *	any informaion, as /dev/kmem.
2099  *
2100  */
2101 
2102 long vread(char *buf, char *addr, unsigned long count)
2103 {
2104 	struct vmap_area *va;
2105 	struct vm_struct *vm;
2106 	char *vaddr, *buf_start = buf;
2107 	unsigned long buflen = count;
2108 	unsigned long n;
2109 
2110 	/* Don't allow overflow */
2111 	if ((unsigned long) addr + count < count)
2112 		count = -(unsigned long) addr;
2113 
2114 	spin_lock(&vmap_area_lock);
2115 	list_for_each_entry(va, &vmap_area_list, list) {
2116 		if (!count)
2117 			break;
2118 
2119 		if (!(va->flags & VM_VM_AREA))
2120 			continue;
2121 
2122 		vm = va->vm;
2123 		vaddr = (char *) vm->addr;
2124 		if (addr >= vaddr + get_vm_area_size(vm))
2125 			continue;
2126 		while (addr < vaddr) {
2127 			if (count == 0)
2128 				goto finished;
2129 			*buf = '\0';
2130 			buf++;
2131 			addr++;
2132 			count--;
2133 		}
2134 		n = vaddr + get_vm_area_size(vm) - addr;
2135 		if (n > count)
2136 			n = count;
2137 		if (!(vm->flags & VM_IOREMAP))
2138 			aligned_vread(buf, addr, n);
2139 		else /* IOREMAP area is treated as memory hole */
2140 			memset(buf, 0, n);
2141 		buf += n;
2142 		addr += n;
2143 		count -= n;
2144 	}
2145 finished:
2146 	spin_unlock(&vmap_area_lock);
2147 
2148 	if (buf == buf_start)
2149 		return 0;
2150 	/* zero-fill memory holes */
2151 	if (buf != buf_start + buflen)
2152 		memset(buf, 0, buflen - (buf - buf_start));
2153 
2154 	return buflen;
2155 }
2156 
2157 /**
2158  *	vwrite() -  write vmalloc area in a safe way.
2159  *	@buf:		buffer for source data
2160  *	@addr:		vm address.
2161  *	@count:		number of bytes to be read.
2162  *
2163  *	Returns # of bytes which addr and buf should be incresed.
2164  *	(same number to @count).
2165  *	If [addr...addr+count) doesn't includes any intersect with valid
2166  *	vmalloc area, returns 0.
2167  *
2168  *	This function checks that addr is a valid vmalloc'ed area, and
2169  *	copy data from a buffer to the given addr. If specified range of
2170  *	[addr...addr+count) includes some valid address, data is copied from
2171  *	proper area of @buf. If there are memory holes, no copy to hole.
2172  *	IOREMAP area is treated as memory hole and no copy is done.
2173  *
2174  *	If [addr...addr+count) doesn't includes any intersects with alive
2175  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2176  *
2177  *	Note: In usual ops, vwrite() is never necessary because the caller
2178  *	should know vmalloc() area is valid and can use memcpy().
2179  *	This is for routines which have to access vmalloc area without
2180  *	any informaion, as /dev/kmem.
2181  */
2182 
2183 long vwrite(char *buf, char *addr, unsigned long count)
2184 {
2185 	struct vmap_area *va;
2186 	struct vm_struct *vm;
2187 	char *vaddr;
2188 	unsigned long n, buflen;
2189 	int copied = 0;
2190 
2191 	/* Don't allow overflow */
2192 	if ((unsigned long) addr + count < count)
2193 		count = -(unsigned long) addr;
2194 	buflen = count;
2195 
2196 	spin_lock(&vmap_area_lock);
2197 	list_for_each_entry(va, &vmap_area_list, list) {
2198 		if (!count)
2199 			break;
2200 
2201 		if (!(va->flags & VM_VM_AREA))
2202 			continue;
2203 
2204 		vm = va->vm;
2205 		vaddr = (char *) vm->addr;
2206 		if (addr >= vaddr + get_vm_area_size(vm))
2207 			continue;
2208 		while (addr < vaddr) {
2209 			if (count == 0)
2210 				goto finished;
2211 			buf++;
2212 			addr++;
2213 			count--;
2214 		}
2215 		n = vaddr + get_vm_area_size(vm) - addr;
2216 		if (n > count)
2217 			n = count;
2218 		if (!(vm->flags & VM_IOREMAP)) {
2219 			aligned_vwrite(buf, addr, n);
2220 			copied++;
2221 		}
2222 		buf += n;
2223 		addr += n;
2224 		count -= n;
2225 	}
2226 finished:
2227 	spin_unlock(&vmap_area_lock);
2228 	if (!copied)
2229 		return 0;
2230 	return buflen;
2231 }
2232 
2233 /**
2234  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2235  *	@vma:		vma to cover
2236  *	@uaddr:		target user address to start at
2237  *	@kaddr:		virtual address of vmalloc kernel memory
2238  *	@size:		size of map area
2239  *
2240  *	Returns:	0 for success, -Exxx on failure
2241  *
2242  *	This function checks that @kaddr is a valid vmalloc'ed area,
2243  *	and that it is big enough to cover the range starting at
2244  *	@uaddr in @vma. Will return failure if that criteria isn't
2245  *	met.
2246  *
2247  *	Similar to remap_pfn_range() (see mm/memory.c)
2248  */
2249 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2250 				void *kaddr, unsigned long size)
2251 {
2252 	struct vm_struct *area;
2253 
2254 	size = PAGE_ALIGN(size);
2255 
2256 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2257 		return -EINVAL;
2258 
2259 	area = find_vm_area(kaddr);
2260 	if (!area)
2261 		return -EINVAL;
2262 
2263 	if (!(area->flags & VM_USERMAP))
2264 		return -EINVAL;
2265 
2266 	if (kaddr + size > area->addr + area->size)
2267 		return -EINVAL;
2268 
2269 	do {
2270 		struct page *page = vmalloc_to_page(kaddr);
2271 		int ret;
2272 
2273 		ret = vm_insert_page(vma, uaddr, page);
2274 		if (ret)
2275 			return ret;
2276 
2277 		uaddr += PAGE_SIZE;
2278 		kaddr += PAGE_SIZE;
2279 		size -= PAGE_SIZE;
2280 	} while (size > 0);
2281 
2282 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2283 
2284 	return 0;
2285 }
2286 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2287 
2288 /**
2289  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2290  *	@vma:		vma to cover (map full range of vma)
2291  *	@addr:		vmalloc memory
2292  *	@pgoff:		number of pages into addr before first page to map
2293  *
2294  *	Returns:	0 for success, -Exxx on failure
2295  *
2296  *	This function checks that addr is a valid vmalloc'ed area, and
2297  *	that it is big enough to cover the vma. Will return failure if
2298  *	that criteria isn't met.
2299  *
2300  *	Similar to remap_pfn_range() (see mm/memory.c)
2301  */
2302 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2303 						unsigned long pgoff)
2304 {
2305 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2306 					   addr + (pgoff << PAGE_SHIFT),
2307 					   vma->vm_end - vma->vm_start);
2308 }
2309 EXPORT_SYMBOL(remap_vmalloc_range);
2310 
2311 /*
2312  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2313  * have one.
2314  */
2315 void __weak vmalloc_sync_all(void)
2316 {
2317 }
2318 
2319 
2320 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2321 {
2322 	pte_t ***p = data;
2323 
2324 	if (p) {
2325 		*(*p) = pte;
2326 		(*p)++;
2327 	}
2328 	return 0;
2329 }
2330 
2331 /**
2332  *	alloc_vm_area - allocate a range of kernel address space
2333  *	@size:		size of the area
2334  *	@ptes:		returns the PTEs for the address space
2335  *
2336  *	Returns:	NULL on failure, vm_struct on success
2337  *
2338  *	This function reserves a range of kernel address space, and
2339  *	allocates pagetables to map that range.  No actual mappings
2340  *	are created.
2341  *
2342  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2343  *	allocated for the VM area are returned.
2344  */
2345 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2346 {
2347 	struct vm_struct *area;
2348 
2349 	area = get_vm_area_caller(size, VM_IOREMAP,
2350 				__builtin_return_address(0));
2351 	if (area == NULL)
2352 		return NULL;
2353 
2354 	/*
2355 	 * This ensures that page tables are constructed for this region
2356 	 * of kernel virtual address space and mapped into init_mm.
2357 	 */
2358 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2359 				size, f, ptes ? &ptes : NULL)) {
2360 		free_vm_area(area);
2361 		return NULL;
2362 	}
2363 
2364 	return area;
2365 }
2366 EXPORT_SYMBOL_GPL(alloc_vm_area);
2367 
2368 void free_vm_area(struct vm_struct *area)
2369 {
2370 	struct vm_struct *ret;
2371 	ret = remove_vm_area(area->addr);
2372 	BUG_ON(ret != area);
2373 	kfree(area);
2374 }
2375 EXPORT_SYMBOL_GPL(free_vm_area);
2376 
2377 #ifdef CONFIG_SMP
2378 static struct vmap_area *node_to_va(struct rb_node *n)
2379 {
2380 	return rb_entry_safe(n, struct vmap_area, rb_node);
2381 }
2382 
2383 /**
2384  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2385  * @end: target address
2386  * @pnext: out arg for the next vmap_area
2387  * @pprev: out arg for the previous vmap_area
2388  *
2389  * Returns: %true if either or both of next and prev are found,
2390  *	    %false if no vmap_area exists
2391  *
2392  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2393  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2394  */
2395 static bool pvm_find_next_prev(unsigned long end,
2396 			       struct vmap_area **pnext,
2397 			       struct vmap_area **pprev)
2398 {
2399 	struct rb_node *n = vmap_area_root.rb_node;
2400 	struct vmap_area *va = NULL;
2401 
2402 	while (n) {
2403 		va = rb_entry(n, struct vmap_area, rb_node);
2404 		if (end < va->va_end)
2405 			n = n->rb_left;
2406 		else if (end > va->va_end)
2407 			n = n->rb_right;
2408 		else
2409 			break;
2410 	}
2411 
2412 	if (!va)
2413 		return false;
2414 
2415 	if (va->va_end > end) {
2416 		*pnext = va;
2417 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2418 	} else {
2419 		*pprev = va;
2420 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2421 	}
2422 	return true;
2423 }
2424 
2425 /**
2426  * pvm_determine_end - find the highest aligned address between two vmap_areas
2427  * @pnext: in/out arg for the next vmap_area
2428  * @pprev: in/out arg for the previous vmap_area
2429  * @align: alignment
2430  *
2431  * Returns: determined end address
2432  *
2433  * Find the highest aligned address between *@pnext and *@pprev below
2434  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2435  * down address is between the end addresses of the two vmap_areas.
2436  *
2437  * Please note that the address returned by this function may fall
2438  * inside *@pnext vmap_area.  The caller is responsible for checking
2439  * that.
2440  */
2441 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2442 				       struct vmap_area **pprev,
2443 				       unsigned long align)
2444 {
2445 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2446 	unsigned long addr;
2447 
2448 	if (*pnext)
2449 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2450 	else
2451 		addr = vmalloc_end;
2452 
2453 	while (*pprev && (*pprev)->va_end > addr) {
2454 		*pnext = *pprev;
2455 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2456 	}
2457 
2458 	return addr;
2459 }
2460 
2461 /**
2462  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2463  * @offsets: array containing offset of each area
2464  * @sizes: array containing size of each area
2465  * @nr_vms: the number of areas to allocate
2466  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2467  *
2468  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2469  *	    vm_structs on success, %NULL on failure
2470  *
2471  * Percpu allocator wants to use congruent vm areas so that it can
2472  * maintain the offsets among percpu areas.  This function allocates
2473  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2474  * be scattered pretty far, distance between two areas easily going up
2475  * to gigabytes.  To avoid interacting with regular vmallocs, these
2476  * areas are allocated from top.
2477  *
2478  * Despite its complicated look, this allocator is rather simple.  It
2479  * does everything top-down and scans areas from the end looking for
2480  * matching slot.  While scanning, if any of the areas overlaps with
2481  * existing vmap_area, the base address is pulled down to fit the
2482  * area.  Scanning is repeated till all the areas fit and then all
2483  * necessary data structures are inserted and the result is returned.
2484  */
2485 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2486 				     const size_t *sizes, int nr_vms,
2487 				     size_t align)
2488 {
2489 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2490 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2491 	struct vmap_area **vas, *prev, *next;
2492 	struct vm_struct **vms;
2493 	int area, area2, last_area, term_area;
2494 	unsigned long base, start, end, last_end;
2495 	bool purged = false;
2496 
2497 	/* verify parameters and allocate data structures */
2498 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2499 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2500 		start = offsets[area];
2501 		end = start + sizes[area];
2502 
2503 		/* is everything aligned properly? */
2504 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2505 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2506 
2507 		/* detect the area with the highest address */
2508 		if (start > offsets[last_area])
2509 			last_area = area;
2510 
2511 		for (area2 = area + 1; area2 < nr_vms; area2++) {
2512 			unsigned long start2 = offsets[area2];
2513 			unsigned long end2 = start2 + sizes[area2];
2514 
2515 			BUG_ON(start2 < end && start < end2);
2516 		}
2517 	}
2518 	last_end = offsets[last_area] + sizes[last_area];
2519 
2520 	if (vmalloc_end - vmalloc_start < last_end) {
2521 		WARN_ON(true);
2522 		return NULL;
2523 	}
2524 
2525 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2526 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2527 	if (!vas || !vms)
2528 		goto err_free2;
2529 
2530 	for (area = 0; area < nr_vms; area++) {
2531 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2532 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2533 		if (!vas[area] || !vms[area])
2534 			goto err_free;
2535 	}
2536 retry:
2537 	spin_lock(&vmap_area_lock);
2538 
2539 	/* start scanning - we scan from the top, begin with the last area */
2540 	area = term_area = last_area;
2541 	start = offsets[area];
2542 	end = start + sizes[area];
2543 
2544 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2545 		base = vmalloc_end - last_end;
2546 		goto found;
2547 	}
2548 	base = pvm_determine_end(&next, &prev, align) - end;
2549 
2550 	while (true) {
2551 		BUG_ON(next && next->va_end <= base + end);
2552 		BUG_ON(prev && prev->va_end > base + end);
2553 
2554 		/*
2555 		 * base might have underflowed, add last_end before
2556 		 * comparing.
2557 		 */
2558 		if (base + last_end < vmalloc_start + last_end) {
2559 			spin_unlock(&vmap_area_lock);
2560 			if (!purged) {
2561 				purge_vmap_area_lazy();
2562 				purged = true;
2563 				goto retry;
2564 			}
2565 			goto err_free;
2566 		}
2567 
2568 		/*
2569 		 * If next overlaps, move base downwards so that it's
2570 		 * right below next and then recheck.
2571 		 */
2572 		if (next && next->va_start < base + end) {
2573 			base = pvm_determine_end(&next, &prev, align) - end;
2574 			term_area = area;
2575 			continue;
2576 		}
2577 
2578 		/*
2579 		 * If prev overlaps, shift down next and prev and move
2580 		 * base so that it's right below new next and then
2581 		 * recheck.
2582 		 */
2583 		if (prev && prev->va_end > base + start)  {
2584 			next = prev;
2585 			prev = node_to_va(rb_prev(&next->rb_node));
2586 			base = pvm_determine_end(&next, &prev, align) - end;
2587 			term_area = area;
2588 			continue;
2589 		}
2590 
2591 		/*
2592 		 * This area fits, move on to the previous one.  If
2593 		 * the previous one is the terminal one, we're done.
2594 		 */
2595 		area = (area + nr_vms - 1) % nr_vms;
2596 		if (area == term_area)
2597 			break;
2598 		start = offsets[area];
2599 		end = start + sizes[area];
2600 		pvm_find_next_prev(base + end, &next, &prev);
2601 	}
2602 found:
2603 	/* we've found a fitting base, insert all va's */
2604 	for (area = 0; area < nr_vms; area++) {
2605 		struct vmap_area *va = vas[area];
2606 
2607 		va->va_start = base + offsets[area];
2608 		va->va_end = va->va_start + sizes[area];
2609 		__insert_vmap_area(va);
2610 	}
2611 
2612 	vmap_area_pcpu_hole = base + offsets[last_area];
2613 
2614 	spin_unlock(&vmap_area_lock);
2615 
2616 	/* insert all vm's */
2617 	for (area = 0; area < nr_vms; area++)
2618 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2619 				 pcpu_get_vm_areas);
2620 
2621 	kfree(vas);
2622 	return vms;
2623 
2624 err_free:
2625 	for (area = 0; area < nr_vms; area++) {
2626 		kfree(vas[area]);
2627 		kfree(vms[area]);
2628 	}
2629 err_free2:
2630 	kfree(vas);
2631 	kfree(vms);
2632 	return NULL;
2633 }
2634 
2635 /**
2636  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2637  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2638  * @nr_vms: the number of allocated areas
2639  *
2640  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2641  */
2642 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2643 {
2644 	int i;
2645 
2646 	for (i = 0; i < nr_vms; i++)
2647 		free_vm_area(vms[i]);
2648 	kfree(vms);
2649 }
2650 #endif	/* CONFIG_SMP */
2651 
2652 #ifdef CONFIG_PROC_FS
2653 static void *s_start(struct seq_file *m, loff_t *pos)
2654 	__acquires(&vmap_area_lock)
2655 {
2656 	spin_lock(&vmap_area_lock);
2657 	return seq_list_start(&vmap_area_list, *pos);
2658 }
2659 
2660 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2661 {
2662 	return seq_list_next(p, &vmap_area_list, pos);
2663 }
2664 
2665 static void s_stop(struct seq_file *m, void *p)
2666 	__releases(&vmap_area_lock)
2667 {
2668 	spin_unlock(&vmap_area_lock);
2669 }
2670 
2671 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2672 {
2673 	if (IS_ENABLED(CONFIG_NUMA)) {
2674 		unsigned int nr, *counters = m->private;
2675 
2676 		if (!counters)
2677 			return;
2678 
2679 		if (v->flags & VM_UNINITIALIZED)
2680 			return;
2681 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2682 		smp_rmb();
2683 
2684 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2685 
2686 		for (nr = 0; nr < v->nr_pages; nr++)
2687 			counters[page_to_nid(v->pages[nr])]++;
2688 
2689 		for_each_node_state(nr, N_HIGH_MEMORY)
2690 			if (counters[nr])
2691 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2692 	}
2693 }
2694 
2695 static int s_show(struct seq_file *m, void *p)
2696 {
2697 	struct vmap_area *va;
2698 	struct vm_struct *v;
2699 
2700 	va = list_entry(p, struct vmap_area, list);
2701 
2702 	/*
2703 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2704 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2705 	 */
2706 	if (!(va->flags & VM_VM_AREA)) {
2707 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2708 			(void *)va->va_start, (void *)va->va_end,
2709 			va->va_end - va->va_start,
2710 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2711 
2712 		return 0;
2713 	}
2714 
2715 	v = va->vm;
2716 
2717 	seq_printf(m, "0x%pK-0x%pK %7ld",
2718 		v->addr, v->addr + v->size, v->size);
2719 
2720 	if (v->caller)
2721 		seq_printf(m, " %pS", v->caller);
2722 
2723 	if (v->nr_pages)
2724 		seq_printf(m, " pages=%d", v->nr_pages);
2725 
2726 	if (v->phys_addr)
2727 		seq_printf(m, " phys=%pa", &v->phys_addr);
2728 
2729 	if (v->flags & VM_IOREMAP)
2730 		seq_puts(m, " ioremap");
2731 
2732 	if (v->flags & VM_ALLOC)
2733 		seq_puts(m, " vmalloc");
2734 
2735 	if (v->flags & VM_MAP)
2736 		seq_puts(m, " vmap");
2737 
2738 	if (v->flags & VM_USERMAP)
2739 		seq_puts(m, " user");
2740 
2741 	if (is_vmalloc_addr(v->pages))
2742 		seq_puts(m, " vpages");
2743 
2744 	show_numa_info(m, v);
2745 	seq_putc(m, '\n');
2746 	return 0;
2747 }
2748 
2749 static const struct seq_operations vmalloc_op = {
2750 	.start = s_start,
2751 	.next = s_next,
2752 	.stop = s_stop,
2753 	.show = s_show,
2754 };
2755 
2756 static int vmalloc_open(struct inode *inode, struct file *file)
2757 {
2758 	if (IS_ENABLED(CONFIG_NUMA))
2759 		return seq_open_private(file, &vmalloc_op,
2760 					nr_node_ids * sizeof(unsigned int));
2761 	else
2762 		return seq_open(file, &vmalloc_op);
2763 }
2764 
2765 static const struct file_operations proc_vmalloc_operations = {
2766 	.open		= vmalloc_open,
2767 	.read		= seq_read,
2768 	.llseek		= seq_lseek,
2769 	.release	= seq_release_private,
2770 };
2771 
2772 static int __init proc_vmalloc_init(void)
2773 {
2774 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2775 	return 0;
2776 }
2777 module_init(proc_vmalloc_init);
2778 
2779 #endif
2780 
2781