1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/notifier.h> 25 #include <linux/rbtree.h> 26 #include <linux/radix-tree.h> 27 #include <linux/rcupdate.h> 28 #include <linux/pfn.h> 29 #include <linux/kmemleak.h> 30 #include <linux/atomic.h> 31 #include <linux/compiler.h> 32 #include <linux/llist.h> 33 #include <linux/bitops.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/tlbflush.h> 37 #include <asm/shmparam.h> 38 39 #include "internal.h" 40 41 struct vfree_deferred { 42 struct llist_head list; 43 struct work_struct wq; 44 }; 45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 46 47 static void __vunmap(const void *, int); 48 49 static void free_work(struct work_struct *w) 50 { 51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 52 struct llist_node *t, *llnode; 53 54 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 55 __vunmap((void *)llnode, 1); 56 } 57 58 /*** Page table manipulation functions ***/ 59 60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 61 { 62 pte_t *pte; 63 64 pte = pte_offset_kernel(pmd, addr); 65 do { 66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 67 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 68 } while (pte++, addr += PAGE_SIZE, addr != end); 69 } 70 71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 72 { 73 pmd_t *pmd; 74 unsigned long next; 75 76 pmd = pmd_offset(pud, addr); 77 do { 78 next = pmd_addr_end(addr, end); 79 if (pmd_clear_huge(pmd)) 80 continue; 81 if (pmd_none_or_clear_bad(pmd)) 82 continue; 83 vunmap_pte_range(pmd, addr, next); 84 } while (pmd++, addr = next, addr != end); 85 } 86 87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 88 { 89 pud_t *pud; 90 unsigned long next; 91 92 pud = pud_offset(p4d, addr); 93 do { 94 next = pud_addr_end(addr, end); 95 if (pud_clear_huge(pud)) 96 continue; 97 if (pud_none_or_clear_bad(pud)) 98 continue; 99 vunmap_pmd_range(pud, addr, next); 100 } while (pud++, addr = next, addr != end); 101 } 102 103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 104 { 105 p4d_t *p4d; 106 unsigned long next; 107 108 p4d = p4d_offset(pgd, addr); 109 do { 110 next = p4d_addr_end(addr, end); 111 if (p4d_clear_huge(p4d)) 112 continue; 113 if (p4d_none_or_clear_bad(p4d)) 114 continue; 115 vunmap_pud_range(p4d, addr, next); 116 } while (p4d++, addr = next, addr != end); 117 } 118 119 static void vunmap_page_range(unsigned long addr, unsigned long end) 120 { 121 pgd_t *pgd; 122 unsigned long next; 123 124 BUG_ON(addr >= end); 125 pgd = pgd_offset_k(addr); 126 do { 127 next = pgd_addr_end(addr, end); 128 if (pgd_none_or_clear_bad(pgd)) 129 continue; 130 vunmap_p4d_range(pgd, addr, next); 131 } while (pgd++, addr = next, addr != end); 132 } 133 134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 136 { 137 pte_t *pte; 138 139 /* 140 * nr is a running index into the array which helps higher level 141 * callers keep track of where we're up to. 142 */ 143 144 pte = pte_alloc_kernel(pmd, addr); 145 if (!pte) 146 return -ENOMEM; 147 do { 148 struct page *page = pages[*nr]; 149 150 if (WARN_ON(!pte_none(*pte))) 151 return -EBUSY; 152 if (WARN_ON(!page)) 153 return -ENOMEM; 154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 155 (*nr)++; 156 } while (pte++, addr += PAGE_SIZE, addr != end); 157 return 0; 158 } 159 160 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 161 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc(&init_mm, pud, addr); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 172 return -ENOMEM; 173 } while (pmd++, addr = next, addr != end); 174 return 0; 175 } 176 177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 179 { 180 pud_t *pud; 181 unsigned long next; 182 183 pud = pud_alloc(&init_mm, p4d, addr); 184 if (!pud) 185 return -ENOMEM; 186 do { 187 next = pud_addr_end(addr, end); 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 189 return -ENOMEM; 190 } while (pud++, addr = next, addr != end); 191 return 0; 192 } 193 194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 195 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 196 { 197 p4d_t *p4d; 198 unsigned long next; 199 200 p4d = p4d_alloc(&init_mm, pgd, addr); 201 if (!p4d) 202 return -ENOMEM; 203 do { 204 next = p4d_addr_end(addr, end); 205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 206 return -ENOMEM; 207 } while (p4d++, addr = next, addr != end); 208 return 0; 209 } 210 211 /* 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 213 * will have pfns corresponding to the "pages" array. 214 * 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 216 */ 217 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 218 pgprot_t prot, struct page **pages) 219 { 220 pgd_t *pgd; 221 unsigned long next; 222 unsigned long addr = start; 223 int err = 0; 224 int nr = 0; 225 226 BUG_ON(addr >= end); 227 pgd = pgd_offset_k(addr); 228 do { 229 next = pgd_addr_end(addr, end); 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 231 if (err) 232 return err; 233 } while (pgd++, addr = next, addr != end); 234 235 return nr; 236 } 237 238 static int vmap_page_range(unsigned long start, unsigned long end, 239 pgprot_t prot, struct page **pages) 240 { 241 int ret; 242 243 ret = vmap_page_range_noflush(start, end, prot, pages); 244 flush_cache_vmap(start, end); 245 return ret; 246 } 247 248 int is_vmalloc_or_module_addr(const void *x) 249 { 250 /* 251 * ARM, x86-64 and sparc64 put modules in a special place, 252 * and fall back on vmalloc() if that fails. Others 253 * just put it in the vmalloc space. 254 */ 255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 256 unsigned long addr = (unsigned long)x; 257 if (addr >= MODULES_VADDR && addr < MODULES_END) 258 return 1; 259 #endif 260 return is_vmalloc_addr(x); 261 } 262 263 /* 264 * Walk a vmap address to the struct page it maps. 265 */ 266 struct page *vmalloc_to_page(const void *vmalloc_addr) 267 { 268 unsigned long addr = (unsigned long) vmalloc_addr; 269 struct page *page = NULL; 270 pgd_t *pgd = pgd_offset_k(addr); 271 p4d_t *p4d; 272 pud_t *pud; 273 pmd_t *pmd; 274 pte_t *ptep, pte; 275 276 /* 277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 278 * architectures that do not vmalloc module space 279 */ 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 281 282 if (pgd_none(*pgd)) 283 return NULL; 284 p4d = p4d_offset(pgd, addr); 285 if (p4d_none(*p4d)) 286 return NULL; 287 pud = pud_offset(p4d, addr); 288 289 /* 290 * Don't dereference bad PUD or PMD (below) entries. This will also 291 * identify huge mappings, which we may encounter on architectures 292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 293 * identified as vmalloc addresses by is_vmalloc_addr(), but are 294 * not [unambiguously] associated with a struct page, so there is 295 * no correct value to return for them. 296 */ 297 WARN_ON_ONCE(pud_bad(*pud)); 298 if (pud_none(*pud) || pud_bad(*pud)) 299 return NULL; 300 pmd = pmd_offset(pud, addr); 301 WARN_ON_ONCE(pmd_bad(*pmd)); 302 if (pmd_none(*pmd) || pmd_bad(*pmd)) 303 return NULL; 304 305 ptep = pte_offset_map(pmd, addr); 306 pte = *ptep; 307 if (pte_present(pte)) 308 page = pte_page(pte); 309 pte_unmap(ptep); 310 return page; 311 } 312 EXPORT_SYMBOL(vmalloc_to_page); 313 314 /* 315 * Map a vmalloc()-space virtual address to the physical page frame number. 316 */ 317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 318 { 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 320 } 321 EXPORT_SYMBOL(vmalloc_to_pfn); 322 323 324 /*** Global kva allocator ***/ 325 326 #define VM_LAZY_FREE 0x02 327 #define VM_VM_AREA 0x04 328 329 static DEFINE_SPINLOCK(vmap_area_lock); 330 /* Export for kexec only */ 331 LIST_HEAD(vmap_area_list); 332 static LLIST_HEAD(vmap_purge_list); 333 static struct rb_root vmap_area_root = RB_ROOT; 334 335 /* The vmap cache globals are protected by vmap_area_lock */ 336 static struct rb_node *free_vmap_cache; 337 static unsigned long cached_hole_size; 338 static unsigned long cached_vstart; 339 static unsigned long cached_align; 340 341 static unsigned long vmap_area_pcpu_hole; 342 343 static struct vmap_area *__find_vmap_area(unsigned long addr) 344 { 345 struct rb_node *n = vmap_area_root.rb_node; 346 347 while (n) { 348 struct vmap_area *va; 349 350 va = rb_entry(n, struct vmap_area, rb_node); 351 if (addr < va->va_start) 352 n = n->rb_left; 353 else if (addr >= va->va_end) 354 n = n->rb_right; 355 else 356 return va; 357 } 358 359 return NULL; 360 } 361 362 static void __insert_vmap_area(struct vmap_area *va) 363 { 364 struct rb_node **p = &vmap_area_root.rb_node; 365 struct rb_node *parent = NULL; 366 struct rb_node *tmp; 367 368 while (*p) { 369 struct vmap_area *tmp_va; 370 371 parent = *p; 372 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 373 if (va->va_start < tmp_va->va_end) 374 p = &(*p)->rb_left; 375 else if (va->va_end > tmp_va->va_start) 376 p = &(*p)->rb_right; 377 else 378 BUG(); 379 } 380 381 rb_link_node(&va->rb_node, parent, p); 382 rb_insert_color(&va->rb_node, &vmap_area_root); 383 384 /* address-sort this list */ 385 tmp = rb_prev(&va->rb_node); 386 if (tmp) { 387 struct vmap_area *prev; 388 prev = rb_entry(tmp, struct vmap_area, rb_node); 389 list_add_rcu(&va->list, &prev->list); 390 } else 391 list_add_rcu(&va->list, &vmap_area_list); 392 } 393 394 static void purge_vmap_area_lazy(void); 395 396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 397 398 /* 399 * Allocate a region of KVA of the specified size and alignment, within the 400 * vstart and vend. 401 */ 402 static struct vmap_area *alloc_vmap_area(unsigned long size, 403 unsigned long align, 404 unsigned long vstart, unsigned long vend, 405 int node, gfp_t gfp_mask) 406 { 407 struct vmap_area *va; 408 struct rb_node *n; 409 unsigned long addr; 410 int purged = 0; 411 struct vmap_area *first; 412 413 BUG_ON(!size); 414 BUG_ON(offset_in_page(size)); 415 BUG_ON(!is_power_of_2(align)); 416 417 might_sleep(); 418 419 va = kmalloc_node(sizeof(struct vmap_area), 420 gfp_mask & GFP_RECLAIM_MASK, node); 421 if (unlikely(!va)) 422 return ERR_PTR(-ENOMEM); 423 424 /* 425 * Only scan the relevant parts containing pointers to other objects 426 * to avoid false negatives. 427 */ 428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 429 430 retry: 431 spin_lock(&vmap_area_lock); 432 /* 433 * Invalidate cache if we have more permissive parameters. 434 * cached_hole_size notes the largest hole noticed _below_ 435 * the vmap_area cached in free_vmap_cache: if size fits 436 * into that hole, we want to scan from vstart to reuse 437 * the hole instead of allocating above free_vmap_cache. 438 * Note that __free_vmap_area may update free_vmap_cache 439 * without updating cached_hole_size or cached_align. 440 */ 441 if (!free_vmap_cache || 442 size < cached_hole_size || 443 vstart < cached_vstart || 444 align < cached_align) { 445 nocache: 446 cached_hole_size = 0; 447 free_vmap_cache = NULL; 448 } 449 /* record if we encounter less permissive parameters */ 450 cached_vstart = vstart; 451 cached_align = align; 452 453 /* find starting point for our search */ 454 if (free_vmap_cache) { 455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 456 addr = ALIGN(first->va_end, align); 457 if (addr < vstart) 458 goto nocache; 459 if (addr + size < addr) 460 goto overflow; 461 462 } else { 463 addr = ALIGN(vstart, align); 464 if (addr + size < addr) 465 goto overflow; 466 467 n = vmap_area_root.rb_node; 468 first = NULL; 469 470 while (n) { 471 struct vmap_area *tmp; 472 tmp = rb_entry(n, struct vmap_area, rb_node); 473 if (tmp->va_end >= addr) { 474 first = tmp; 475 if (tmp->va_start <= addr) 476 break; 477 n = n->rb_left; 478 } else 479 n = n->rb_right; 480 } 481 482 if (!first) 483 goto found; 484 } 485 486 /* from the starting point, walk areas until a suitable hole is found */ 487 while (addr + size > first->va_start && addr + size <= vend) { 488 if (addr + cached_hole_size < first->va_start) 489 cached_hole_size = first->va_start - addr; 490 addr = ALIGN(first->va_end, align); 491 if (addr + size < addr) 492 goto overflow; 493 494 if (list_is_last(&first->list, &vmap_area_list)) 495 goto found; 496 497 first = list_next_entry(first, list); 498 } 499 500 found: 501 if (addr + size > vend) 502 goto overflow; 503 504 va->va_start = addr; 505 va->va_end = addr + size; 506 va->flags = 0; 507 __insert_vmap_area(va); 508 free_vmap_cache = &va->rb_node; 509 spin_unlock(&vmap_area_lock); 510 511 BUG_ON(!IS_ALIGNED(va->va_start, align)); 512 BUG_ON(va->va_start < vstart); 513 BUG_ON(va->va_end > vend); 514 515 return va; 516 517 overflow: 518 spin_unlock(&vmap_area_lock); 519 if (!purged) { 520 purge_vmap_area_lazy(); 521 purged = 1; 522 goto retry; 523 } 524 525 if (gfpflags_allow_blocking(gfp_mask)) { 526 unsigned long freed = 0; 527 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 528 if (freed > 0) { 529 purged = 0; 530 goto retry; 531 } 532 } 533 534 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 535 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 536 size); 537 kfree(va); 538 return ERR_PTR(-EBUSY); 539 } 540 541 int register_vmap_purge_notifier(struct notifier_block *nb) 542 { 543 return blocking_notifier_chain_register(&vmap_notify_list, nb); 544 } 545 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 546 547 int unregister_vmap_purge_notifier(struct notifier_block *nb) 548 { 549 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 550 } 551 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 552 553 static void __free_vmap_area(struct vmap_area *va) 554 { 555 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 556 557 if (free_vmap_cache) { 558 if (va->va_end < cached_vstart) { 559 free_vmap_cache = NULL; 560 } else { 561 struct vmap_area *cache; 562 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 563 if (va->va_start <= cache->va_start) { 564 free_vmap_cache = rb_prev(&va->rb_node); 565 /* 566 * We don't try to update cached_hole_size or 567 * cached_align, but it won't go very wrong. 568 */ 569 } 570 } 571 } 572 rb_erase(&va->rb_node, &vmap_area_root); 573 RB_CLEAR_NODE(&va->rb_node); 574 list_del_rcu(&va->list); 575 576 /* 577 * Track the highest possible candidate for pcpu area 578 * allocation. Areas outside of vmalloc area can be returned 579 * here too, consider only end addresses which fall inside 580 * vmalloc area proper. 581 */ 582 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 583 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 584 585 kfree_rcu(va, rcu_head); 586 } 587 588 /* 589 * Free a region of KVA allocated by alloc_vmap_area 590 */ 591 static void free_vmap_area(struct vmap_area *va) 592 { 593 spin_lock(&vmap_area_lock); 594 __free_vmap_area(va); 595 spin_unlock(&vmap_area_lock); 596 } 597 598 /* 599 * Clear the pagetable entries of a given vmap_area 600 */ 601 static void unmap_vmap_area(struct vmap_area *va) 602 { 603 vunmap_page_range(va->va_start, va->va_end); 604 } 605 606 static void vmap_debug_free_range(unsigned long start, unsigned long end) 607 { 608 /* 609 * Unmap page tables and force a TLB flush immediately if pagealloc 610 * debugging is enabled. This catches use after free bugs similarly to 611 * those in linear kernel virtual address space after a page has been 612 * freed. 613 * 614 * All the lazy freeing logic is still retained, in order to minimise 615 * intrusiveness of this debugging feature. 616 * 617 * This is going to be *slow* (linear kernel virtual address debugging 618 * doesn't do a broadcast TLB flush so it is a lot faster). 619 */ 620 if (debug_pagealloc_enabled()) { 621 vunmap_page_range(start, end); 622 flush_tlb_kernel_range(start, end); 623 } 624 } 625 626 /* 627 * lazy_max_pages is the maximum amount of virtual address space we gather up 628 * before attempting to purge with a TLB flush. 629 * 630 * There is a tradeoff here: a larger number will cover more kernel page tables 631 * and take slightly longer to purge, but it will linearly reduce the number of 632 * global TLB flushes that must be performed. It would seem natural to scale 633 * this number up linearly with the number of CPUs (because vmapping activity 634 * could also scale linearly with the number of CPUs), however it is likely 635 * that in practice, workloads might be constrained in other ways that mean 636 * vmap activity will not scale linearly with CPUs. Also, I want to be 637 * conservative and not introduce a big latency on huge systems, so go with 638 * a less aggressive log scale. It will still be an improvement over the old 639 * code, and it will be simple to change the scale factor if we find that it 640 * becomes a problem on bigger systems. 641 */ 642 static unsigned long lazy_max_pages(void) 643 { 644 unsigned int log; 645 646 log = fls(num_online_cpus()); 647 648 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 649 } 650 651 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 652 653 /* 654 * Serialize vmap purging. There is no actual criticial section protected 655 * by this look, but we want to avoid concurrent calls for performance 656 * reasons and to make the pcpu_get_vm_areas more deterministic. 657 */ 658 static DEFINE_MUTEX(vmap_purge_lock); 659 660 /* for per-CPU blocks */ 661 static void purge_fragmented_blocks_allcpus(void); 662 663 /* 664 * called before a call to iounmap() if the caller wants vm_area_struct's 665 * immediately freed. 666 */ 667 void set_iounmap_nonlazy(void) 668 { 669 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 670 } 671 672 /* 673 * Purges all lazily-freed vmap areas. 674 */ 675 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 676 { 677 struct llist_node *valist; 678 struct vmap_area *va; 679 struct vmap_area *n_va; 680 bool do_free = false; 681 682 lockdep_assert_held(&vmap_purge_lock); 683 684 valist = llist_del_all(&vmap_purge_list); 685 llist_for_each_entry(va, valist, purge_list) { 686 if (va->va_start < start) 687 start = va->va_start; 688 if (va->va_end > end) 689 end = va->va_end; 690 do_free = true; 691 } 692 693 if (!do_free) 694 return false; 695 696 flush_tlb_kernel_range(start, end); 697 698 spin_lock(&vmap_area_lock); 699 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 700 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 701 702 __free_vmap_area(va); 703 atomic_sub(nr, &vmap_lazy_nr); 704 cond_resched_lock(&vmap_area_lock); 705 } 706 spin_unlock(&vmap_area_lock); 707 return true; 708 } 709 710 /* 711 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 712 * is already purging. 713 */ 714 static void try_purge_vmap_area_lazy(void) 715 { 716 if (mutex_trylock(&vmap_purge_lock)) { 717 __purge_vmap_area_lazy(ULONG_MAX, 0); 718 mutex_unlock(&vmap_purge_lock); 719 } 720 } 721 722 /* 723 * Kick off a purge of the outstanding lazy areas. 724 */ 725 static void purge_vmap_area_lazy(void) 726 { 727 mutex_lock(&vmap_purge_lock); 728 purge_fragmented_blocks_allcpus(); 729 __purge_vmap_area_lazy(ULONG_MAX, 0); 730 mutex_unlock(&vmap_purge_lock); 731 } 732 733 /* 734 * Free a vmap area, caller ensuring that the area has been unmapped 735 * and flush_cache_vunmap had been called for the correct range 736 * previously. 737 */ 738 static void free_vmap_area_noflush(struct vmap_area *va) 739 { 740 int nr_lazy; 741 742 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 743 &vmap_lazy_nr); 744 745 /* After this point, we may free va at any time */ 746 llist_add(&va->purge_list, &vmap_purge_list); 747 748 if (unlikely(nr_lazy > lazy_max_pages())) 749 try_purge_vmap_area_lazy(); 750 } 751 752 /* 753 * Free and unmap a vmap area 754 */ 755 static void free_unmap_vmap_area(struct vmap_area *va) 756 { 757 flush_cache_vunmap(va->va_start, va->va_end); 758 unmap_vmap_area(va); 759 free_vmap_area_noflush(va); 760 } 761 762 static struct vmap_area *find_vmap_area(unsigned long addr) 763 { 764 struct vmap_area *va; 765 766 spin_lock(&vmap_area_lock); 767 va = __find_vmap_area(addr); 768 spin_unlock(&vmap_area_lock); 769 770 return va; 771 } 772 773 /*** Per cpu kva allocator ***/ 774 775 /* 776 * vmap space is limited especially on 32 bit architectures. Ensure there is 777 * room for at least 16 percpu vmap blocks per CPU. 778 */ 779 /* 780 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 781 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 782 * instead (we just need a rough idea) 783 */ 784 #if BITS_PER_LONG == 32 785 #define VMALLOC_SPACE (128UL*1024*1024) 786 #else 787 #define VMALLOC_SPACE (128UL*1024*1024*1024) 788 #endif 789 790 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 791 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 792 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 793 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 794 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 795 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 796 #define VMAP_BBMAP_BITS \ 797 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 798 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 799 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 800 801 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 802 803 static bool vmap_initialized __read_mostly = false; 804 805 struct vmap_block_queue { 806 spinlock_t lock; 807 struct list_head free; 808 }; 809 810 struct vmap_block { 811 spinlock_t lock; 812 struct vmap_area *va; 813 unsigned long free, dirty; 814 unsigned long dirty_min, dirty_max; /*< dirty range */ 815 struct list_head free_list; 816 struct rcu_head rcu_head; 817 struct list_head purge; 818 }; 819 820 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 821 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 822 823 /* 824 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 825 * in the free path. Could get rid of this if we change the API to return a 826 * "cookie" from alloc, to be passed to free. But no big deal yet. 827 */ 828 static DEFINE_SPINLOCK(vmap_block_tree_lock); 829 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 830 831 /* 832 * We should probably have a fallback mechanism to allocate virtual memory 833 * out of partially filled vmap blocks. However vmap block sizing should be 834 * fairly reasonable according to the vmalloc size, so it shouldn't be a 835 * big problem. 836 */ 837 838 static unsigned long addr_to_vb_idx(unsigned long addr) 839 { 840 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 841 addr /= VMAP_BLOCK_SIZE; 842 return addr; 843 } 844 845 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 846 { 847 unsigned long addr; 848 849 addr = va_start + (pages_off << PAGE_SHIFT); 850 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 851 return (void *)addr; 852 } 853 854 /** 855 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 856 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 857 * @order: how many 2^order pages should be occupied in newly allocated block 858 * @gfp_mask: flags for the page level allocator 859 * 860 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 861 */ 862 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 863 { 864 struct vmap_block_queue *vbq; 865 struct vmap_block *vb; 866 struct vmap_area *va; 867 unsigned long vb_idx; 868 int node, err; 869 void *vaddr; 870 871 node = numa_node_id(); 872 873 vb = kmalloc_node(sizeof(struct vmap_block), 874 gfp_mask & GFP_RECLAIM_MASK, node); 875 if (unlikely(!vb)) 876 return ERR_PTR(-ENOMEM); 877 878 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 879 VMALLOC_START, VMALLOC_END, 880 node, gfp_mask); 881 if (IS_ERR(va)) { 882 kfree(vb); 883 return ERR_CAST(va); 884 } 885 886 err = radix_tree_preload(gfp_mask); 887 if (unlikely(err)) { 888 kfree(vb); 889 free_vmap_area(va); 890 return ERR_PTR(err); 891 } 892 893 vaddr = vmap_block_vaddr(va->va_start, 0); 894 spin_lock_init(&vb->lock); 895 vb->va = va; 896 /* At least something should be left free */ 897 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 898 vb->free = VMAP_BBMAP_BITS - (1UL << order); 899 vb->dirty = 0; 900 vb->dirty_min = VMAP_BBMAP_BITS; 901 vb->dirty_max = 0; 902 INIT_LIST_HEAD(&vb->free_list); 903 904 vb_idx = addr_to_vb_idx(va->va_start); 905 spin_lock(&vmap_block_tree_lock); 906 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 907 spin_unlock(&vmap_block_tree_lock); 908 BUG_ON(err); 909 radix_tree_preload_end(); 910 911 vbq = &get_cpu_var(vmap_block_queue); 912 spin_lock(&vbq->lock); 913 list_add_tail_rcu(&vb->free_list, &vbq->free); 914 spin_unlock(&vbq->lock); 915 put_cpu_var(vmap_block_queue); 916 917 return vaddr; 918 } 919 920 static void free_vmap_block(struct vmap_block *vb) 921 { 922 struct vmap_block *tmp; 923 unsigned long vb_idx; 924 925 vb_idx = addr_to_vb_idx(vb->va->va_start); 926 spin_lock(&vmap_block_tree_lock); 927 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 928 spin_unlock(&vmap_block_tree_lock); 929 BUG_ON(tmp != vb); 930 931 free_vmap_area_noflush(vb->va); 932 kfree_rcu(vb, rcu_head); 933 } 934 935 static void purge_fragmented_blocks(int cpu) 936 { 937 LIST_HEAD(purge); 938 struct vmap_block *vb; 939 struct vmap_block *n_vb; 940 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 941 942 rcu_read_lock(); 943 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 944 945 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 946 continue; 947 948 spin_lock(&vb->lock); 949 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 950 vb->free = 0; /* prevent further allocs after releasing lock */ 951 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 952 vb->dirty_min = 0; 953 vb->dirty_max = VMAP_BBMAP_BITS; 954 spin_lock(&vbq->lock); 955 list_del_rcu(&vb->free_list); 956 spin_unlock(&vbq->lock); 957 spin_unlock(&vb->lock); 958 list_add_tail(&vb->purge, &purge); 959 } else 960 spin_unlock(&vb->lock); 961 } 962 rcu_read_unlock(); 963 964 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 965 list_del(&vb->purge); 966 free_vmap_block(vb); 967 } 968 } 969 970 static void purge_fragmented_blocks_allcpus(void) 971 { 972 int cpu; 973 974 for_each_possible_cpu(cpu) 975 purge_fragmented_blocks(cpu); 976 } 977 978 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 979 { 980 struct vmap_block_queue *vbq; 981 struct vmap_block *vb; 982 void *vaddr = NULL; 983 unsigned int order; 984 985 BUG_ON(offset_in_page(size)); 986 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 987 if (WARN_ON(size == 0)) { 988 /* 989 * Allocating 0 bytes isn't what caller wants since 990 * get_order(0) returns funny result. Just warn and terminate 991 * early. 992 */ 993 return NULL; 994 } 995 order = get_order(size); 996 997 rcu_read_lock(); 998 vbq = &get_cpu_var(vmap_block_queue); 999 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1000 unsigned long pages_off; 1001 1002 spin_lock(&vb->lock); 1003 if (vb->free < (1UL << order)) { 1004 spin_unlock(&vb->lock); 1005 continue; 1006 } 1007 1008 pages_off = VMAP_BBMAP_BITS - vb->free; 1009 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1010 vb->free -= 1UL << order; 1011 if (vb->free == 0) { 1012 spin_lock(&vbq->lock); 1013 list_del_rcu(&vb->free_list); 1014 spin_unlock(&vbq->lock); 1015 } 1016 1017 spin_unlock(&vb->lock); 1018 break; 1019 } 1020 1021 put_cpu_var(vmap_block_queue); 1022 rcu_read_unlock(); 1023 1024 /* Allocate new block if nothing was found */ 1025 if (!vaddr) 1026 vaddr = new_vmap_block(order, gfp_mask); 1027 1028 return vaddr; 1029 } 1030 1031 static void vb_free(const void *addr, unsigned long size) 1032 { 1033 unsigned long offset; 1034 unsigned long vb_idx; 1035 unsigned int order; 1036 struct vmap_block *vb; 1037 1038 BUG_ON(offset_in_page(size)); 1039 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1040 1041 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1042 1043 order = get_order(size); 1044 1045 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1046 offset >>= PAGE_SHIFT; 1047 1048 vb_idx = addr_to_vb_idx((unsigned long)addr); 1049 rcu_read_lock(); 1050 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1051 rcu_read_unlock(); 1052 BUG_ON(!vb); 1053 1054 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1055 1056 spin_lock(&vb->lock); 1057 1058 /* Expand dirty range */ 1059 vb->dirty_min = min(vb->dirty_min, offset); 1060 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1061 1062 vb->dirty += 1UL << order; 1063 if (vb->dirty == VMAP_BBMAP_BITS) { 1064 BUG_ON(vb->free); 1065 spin_unlock(&vb->lock); 1066 free_vmap_block(vb); 1067 } else 1068 spin_unlock(&vb->lock); 1069 } 1070 1071 /** 1072 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1073 * 1074 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1075 * to amortize TLB flushing overheads. What this means is that any page you 1076 * have now, may, in a former life, have been mapped into kernel virtual 1077 * address by the vmap layer and so there might be some CPUs with TLB entries 1078 * still referencing that page (additional to the regular 1:1 kernel mapping). 1079 * 1080 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1081 * be sure that none of the pages we have control over will have any aliases 1082 * from the vmap layer. 1083 */ 1084 void vm_unmap_aliases(void) 1085 { 1086 unsigned long start = ULONG_MAX, end = 0; 1087 int cpu; 1088 int flush = 0; 1089 1090 if (unlikely(!vmap_initialized)) 1091 return; 1092 1093 might_sleep(); 1094 1095 for_each_possible_cpu(cpu) { 1096 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1097 struct vmap_block *vb; 1098 1099 rcu_read_lock(); 1100 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1101 spin_lock(&vb->lock); 1102 if (vb->dirty) { 1103 unsigned long va_start = vb->va->va_start; 1104 unsigned long s, e; 1105 1106 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1107 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1108 1109 start = min(s, start); 1110 end = max(e, end); 1111 1112 flush = 1; 1113 } 1114 spin_unlock(&vb->lock); 1115 } 1116 rcu_read_unlock(); 1117 } 1118 1119 mutex_lock(&vmap_purge_lock); 1120 purge_fragmented_blocks_allcpus(); 1121 if (!__purge_vmap_area_lazy(start, end) && flush) 1122 flush_tlb_kernel_range(start, end); 1123 mutex_unlock(&vmap_purge_lock); 1124 } 1125 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1126 1127 /** 1128 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1129 * @mem: the pointer returned by vm_map_ram 1130 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1131 */ 1132 void vm_unmap_ram(const void *mem, unsigned int count) 1133 { 1134 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1135 unsigned long addr = (unsigned long)mem; 1136 struct vmap_area *va; 1137 1138 might_sleep(); 1139 BUG_ON(!addr); 1140 BUG_ON(addr < VMALLOC_START); 1141 BUG_ON(addr > VMALLOC_END); 1142 BUG_ON(!PAGE_ALIGNED(addr)); 1143 1144 debug_check_no_locks_freed(mem, size); 1145 vmap_debug_free_range(addr, addr+size); 1146 1147 if (likely(count <= VMAP_MAX_ALLOC)) { 1148 vb_free(mem, size); 1149 return; 1150 } 1151 1152 va = find_vmap_area(addr); 1153 BUG_ON(!va); 1154 free_unmap_vmap_area(va); 1155 } 1156 EXPORT_SYMBOL(vm_unmap_ram); 1157 1158 /** 1159 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1160 * @pages: an array of pointers to the pages to be mapped 1161 * @count: number of pages 1162 * @node: prefer to allocate data structures on this node 1163 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1164 * 1165 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1166 * faster than vmap so it's good. But if you mix long-life and short-life 1167 * objects with vm_map_ram(), it could consume lots of address space through 1168 * fragmentation (especially on a 32bit machine). You could see failures in 1169 * the end. Please use this function for short-lived objects. 1170 * 1171 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1172 */ 1173 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1174 { 1175 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1176 unsigned long addr; 1177 void *mem; 1178 1179 if (likely(count <= VMAP_MAX_ALLOC)) { 1180 mem = vb_alloc(size, GFP_KERNEL); 1181 if (IS_ERR(mem)) 1182 return NULL; 1183 addr = (unsigned long)mem; 1184 } else { 1185 struct vmap_area *va; 1186 va = alloc_vmap_area(size, PAGE_SIZE, 1187 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1188 if (IS_ERR(va)) 1189 return NULL; 1190 1191 addr = va->va_start; 1192 mem = (void *)addr; 1193 } 1194 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1195 vm_unmap_ram(mem, count); 1196 return NULL; 1197 } 1198 return mem; 1199 } 1200 EXPORT_SYMBOL(vm_map_ram); 1201 1202 static struct vm_struct *vmlist __initdata; 1203 /** 1204 * vm_area_add_early - add vmap area early during boot 1205 * @vm: vm_struct to add 1206 * 1207 * This function is used to add fixed kernel vm area to vmlist before 1208 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1209 * should contain proper values and the other fields should be zero. 1210 * 1211 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1212 */ 1213 void __init vm_area_add_early(struct vm_struct *vm) 1214 { 1215 struct vm_struct *tmp, **p; 1216 1217 BUG_ON(vmap_initialized); 1218 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1219 if (tmp->addr >= vm->addr) { 1220 BUG_ON(tmp->addr < vm->addr + vm->size); 1221 break; 1222 } else 1223 BUG_ON(tmp->addr + tmp->size > vm->addr); 1224 } 1225 vm->next = *p; 1226 *p = vm; 1227 } 1228 1229 /** 1230 * vm_area_register_early - register vmap area early during boot 1231 * @vm: vm_struct to register 1232 * @align: requested alignment 1233 * 1234 * This function is used to register kernel vm area before 1235 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1236 * proper values on entry and other fields should be zero. On return, 1237 * vm->addr contains the allocated address. 1238 * 1239 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1240 */ 1241 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1242 { 1243 static size_t vm_init_off __initdata; 1244 unsigned long addr; 1245 1246 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1247 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1248 1249 vm->addr = (void *)addr; 1250 1251 vm_area_add_early(vm); 1252 } 1253 1254 void __init vmalloc_init(void) 1255 { 1256 struct vmap_area *va; 1257 struct vm_struct *tmp; 1258 int i; 1259 1260 for_each_possible_cpu(i) { 1261 struct vmap_block_queue *vbq; 1262 struct vfree_deferred *p; 1263 1264 vbq = &per_cpu(vmap_block_queue, i); 1265 spin_lock_init(&vbq->lock); 1266 INIT_LIST_HEAD(&vbq->free); 1267 p = &per_cpu(vfree_deferred, i); 1268 init_llist_head(&p->list); 1269 INIT_WORK(&p->wq, free_work); 1270 } 1271 1272 /* Import existing vmlist entries. */ 1273 for (tmp = vmlist; tmp; tmp = tmp->next) { 1274 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1275 va->flags = VM_VM_AREA; 1276 va->va_start = (unsigned long)tmp->addr; 1277 va->va_end = va->va_start + tmp->size; 1278 va->vm = tmp; 1279 __insert_vmap_area(va); 1280 } 1281 1282 vmap_area_pcpu_hole = VMALLOC_END; 1283 1284 vmap_initialized = true; 1285 } 1286 1287 /** 1288 * map_kernel_range_noflush - map kernel VM area with the specified pages 1289 * @addr: start of the VM area to map 1290 * @size: size of the VM area to map 1291 * @prot: page protection flags to use 1292 * @pages: pages to map 1293 * 1294 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1295 * specify should have been allocated using get_vm_area() and its 1296 * friends. 1297 * 1298 * NOTE: 1299 * This function does NOT do any cache flushing. The caller is 1300 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1301 * before calling this function. 1302 * 1303 * RETURNS: 1304 * The number of pages mapped on success, -errno on failure. 1305 */ 1306 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1307 pgprot_t prot, struct page **pages) 1308 { 1309 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1310 } 1311 1312 /** 1313 * unmap_kernel_range_noflush - unmap kernel VM area 1314 * @addr: start of the VM area to unmap 1315 * @size: size of the VM area to unmap 1316 * 1317 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1318 * specify should have been allocated using get_vm_area() and its 1319 * friends. 1320 * 1321 * NOTE: 1322 * This function does NOT do any cache flushing. The caller is 1323 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1324 * before calling this function and flush_tlb_kernel_range() after. 1325 */ 1326 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1327 { 1328 vunmap_page_range(addr, addr + size); 1329 } 1330 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1331 1332 /** 1333 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1334 * @addr: start of the VM area to unmap 1335 * @size: size of the VM area to unmap 1336 * 1337 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1338 * the unmapping and tlb after. 1339 */ 1340 void unmap_kernel_range(unsigned long addr, unsigned long size) 1341 { 1342 unsigned long end = addr + size; 1343 1344 flush_cache_vunmap(addr, end); 1345 vunmap_page_range(addr, end); 1346 flush_tlb_kernel_range(addr, end); 1347 } 1348 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1349 1350 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1351 { 1352 unsigned long addr = (unsigned long)area->addr; 1353 unsigned long end = addr + get_vm_area_size(area); 1354 int err; 1355 1356 err = vmap_page_range(addr, end, prot, pages); 1357 1358 return err > 0 ? 0 : err; 1359 } 1360 EXPORT_SYMBOL_GPL(map_vm_area); 1361 1362 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1363 unsigned long flags, const void *caller) 1364 { 1365 spin_lock(&vmap_area_lock); 1366 vm->flags = flags; 1367 vm->addr = (void *)va->va_start; 1368 vm->size = va->va_end - va->va_start; 1369 vm->caller = caller; 1370 va->vm = vm; 1371 va->flags |= VM_VM_AREA; 1372 spin_unlock(&vmap_area_lock); 1373 } 1374 1375 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1376 { 1377 /* 1378 * Before removing VM_UNINITIALIZED, 1379 * we should make sure that vm has proper values. 1380 * Pair with smp_rmb() in show_numa_info(). 1381 */ 1382 smp_wmb(); 1383 vm->flags &= ~VM_UNINITIALIZED; 1384 } 1385 1386 static struct vm_struct *__get_vm_area_node(unsigned long size, 1387 unsigned long align, unsigned long flags, unsigned long start, 1388 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1389 { 1390 struct vmap_area *va; 1391 struct vm_struct *area; 1392 1393 BUG_ON(in_interrupt()); 1394 size = PAGE_ALIGN(size); 1395 if (unlikely(!size)) 1396 return NULL; 1397 1398 if (flags & VM_IOREMAP) 1399 align = 1ul << clamp_t(int, get_count_order_long(size), 1400 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1401 1402 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1403 if (unlikely(!area)) 1404 return NULL; 1405 1406 if (!(flags & VM_NO_GUARD)) 1407 size += PAGE_SIZE; 1408 1409 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1410 if (IS_ERR(va)) { 1411 kfree(area); 1412 return NULL; 1413 } 1414 1415 setup_vmalloc_vm(area, va, flags, caller); 1416 1417 return area; 1418 } 1419 1420 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1421 unsigned long start, unsigned long end) 1422 { 1423 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1424 GFP_KERNEL, __builtin_return_address(0)); 1425 } 1426 EXPORT_SYMBOL_GPL(__get_vm_area); 1427 1428 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1429 unsigned long start, unsigned long end, 1430 const void *caller) 1431 { 1432 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1433 GFP_KERNEL, caller); 1434 } 1435 1436 /** 1437 * get_vm_area - reserve a contiguous kernel virtual area 1438 * @size: size of the area 1439 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1440 * 1441 * Search an area of @size in the kernel virtual mapping area, 1442 * and reserved it for out purposes. Returns the area descriptor 1443 * on success or %NULL on failure. 1444 */ 1445 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1446 { 1447 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1448 NUMA_NO_NODE, GFP_KERNEL, 1449 __builtin_return_address(0)); 1450 } 1451 1452 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1453 const void *caller) 1454 { 1455 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1456 NUMA_NO_NODE, GFP_KERNEL, caller); 1457 } 1458 1459 /** 1460 * find_vm_area - find a continuous kernel virtual area 1461 * @addr: base address 1462 * 1463 * Search for the kernel VM area starting at @addr, and return it. 1464 * It is up to the caller to do all required locking to keep the returned 1465 * pointer valid. 1466 */ 1467 struct vm_struct *find_vm_area(const void *addr) 1468 { 1469 struct vmap_area *va; 1470 1471 va = find_vmap_area((unsigned long)addr); 1472 if (va && va->flags & VM_VM_AREA) 1473 return va->vm; 1474 1475 return NULL; 1476 } 1477 1478 /** 1479 * remove_vm_area - find and remove a continuous kernel virtual area 1480 * @addr: base address 1481 * 1482 * Search for the kernel VM area starting at @addr, and remove it. 1483 * This function returns the found VM area, but using it is NOT safe 1484 * on SMP machines, except for its size or flags. 1485 */ 1486 struct vm_struct *remove_vm_area(const void *addr) 1487 { 1488 struct vmap_area *va; 1489 1490 might_sleep(); 1491 1492 va = find_vmap_area((unsigned long)addr); 1493 if (va && va->flags & VM_VM_AREA) { 1494 struct vm_struct *vm = va->vm; 1495 1496 spin_lock(&vmap_area_lock); 1497 va->vm = NULL; 1498 va->flags &= ~VM_VM_AREA; 1499 va->flags |= VM_LAZY_FREE; 1500 spin_unlock(&vmap_area_lock); 1501 1502 vmap_debug_free_range(va->va_start, va->va_end); 1503 kasan_free_shadow(vm); 1504 free_unmap_vmap_area(va); 1505 1506 return vm; 1507 } 1508 return NULL; 1509 } 1510 1511 static void __vunmap(const void *addr, int deallocate_pages) 1512 { 1513 struct vm_struct *area; 1514 1515 if (!addr) 1516 return; 1517 1518 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1519 addr)) 1520 return; 1521 1522 area = remove_vm_area(addr); 1523 if (unlikely(!area)) { 1524 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1525 addr); 1526 return; 1527 } 1528 1529 debug_check_no_locks_freed(addr, get_vm_area_size(area)); 1530 debug_check_no_obj_freed(addr, get_vm_area_size(area)); 1531 1532 if (deallocate_pages) { 1533 int i; 1534 1535 for (i = 0; i < area->nr_pages; i++) { 1536 struct page *page = area->pages[i]; 1537 1538 BUG_ON(!page); 1539 __free_pages(page, 0); 1540 } 1541 1542 kvfree(area->pages); 1543 } 1544 1545 kfree(area); 1546 return; 1547 } 1548 1549 static inline void __vfree_deferred(const void *addr) 1550 { 1551 /* 1552 * Use raw_cpu_ptr() because this can be called from preemptible 1553 * context. Preemption is absolutely fine here, because the llist_add() 1554 * implementation is lockless, so it works even if we are adding to 1555 * nother cpu's list. schedule_work() should be fine with this too. 1556 */ 1557 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1558 1559 if (llist_add((struct llist_node *)addr, &p->list)) 1560 schedule_work(&p->wq); 1561 } 1562 1563 /** 1564 * vfree_atomic - release memory allocated by vmalloc() 1565 * @addr: memory base address 1566 * 1567 * This one is just like vfree() but can be called in any atomic context 1568 * except NMIs. 1569 */ 1570 void vfree_atomic(const void *addr) 1571 { 1572 BUG_ON(in_nmi()); 1573 1574 kmemleak_free(addr); 1575 1576 if (!addr) 1577 return; 1578 __vfree_deferred(addr); 1579 } 1580 1581 /** 1582 * vfree - release memory allocated by vmalloc() 1583 * @addr: memory base address 1584 * 1585 * Free the virtually continuous memory area starting at @addr, as 1586 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1587 * NULL, no operation is performed. 1588 * 1589 * Must not be called in NMI context (strictly speaking, only if we don't 1590 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1591 * conventions for vfree() arch-depenedent would be a really bad idea) 1592 * 1593 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 1594 */ 1595 void vfree(const void *addr) 1596 { 1597 BUG_ON(in_nmi()); 1598 1599 kmemleak_free(addr); 1600 1601 if (!addr) 1602 return; 1603 if (unlikely(in_interrupt())) 1604 __vfree_deferred(addr); 1605 else 1606 __vunmap(addr, 1); 1607 } 1608 EXPORT_SYMBOL(vfree); 1609 1610 /** 1611 * vunmap - release virtual mapping obtained by vmap() 1612 * @addr: memory base address 1613 * 1614 * Free the virtually contiguous memory area starting at @addr, 1615 * which was created from the page array passed to vmap(). 1616 * 1617 * Must not be called in interrupt context. 1618 */ 1619 void vunmap(const void *addr) 1620 { 1621 BUG_ON(in_interrupt()); 1622 might_sleep(); 1623 if (addr) 1624 __vunmap(addr, 0); 1625 } 1626 EXPORT_SYMBOL(vunmap); 1627 1628 /** 1629 * vmap - map an array of pages into virtually contiguous space 1630 * @pages: array of page pointers 1631 * @count: number of pages to map 1632 * @flags: vm_area->flags 1633 * @prot: page protection for the mapping 1634 * 1635 * Maps @count pages from @pages into contiguous kernel virtual 1636 * space. 1637 */ 1638 void *vmap(struct page **pages, unsigned int count, 1639 unsigned long flags, pgprot_t prot) 1640 { 1641 struct vm_struct *area; 1642 unsigned long size; /* In bytes */ 1643 1644 might_sleep(); 1645 1646 if (count > totalram_pages) 1647 return NULL; 1648 1649 size = (unsigned long)count << PAGE_SHIFT; 1650 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1651 if (!area) 1652 return NULL; 1653 1654 if (map_vm_area(area, prot, pages)) { 1655 vunmap(area->addr); 1656 return NULL; 1657 } 1658 1659 return area->addr; 1660 } 1661 EXPORT_SYMBOL(vmap); 1662 1663 static void *__vmalloc_node(unsigned long size, unsigned long align, 1664 gfp_t gfp_mask, pgprot_t prot, 1665 int node, const void *caller); 1666 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1667 pgprot_t prot, int node) 1668 { 1669 struct page **pages; 1670 unsigned int nr_pages, array_size, i; 1671 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1672 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1673 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 1674 0 : 1675 __GFP_HIGHMEM; 1676 1677 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1678 array_size = (nr_pages * sizeof(struct page *)); 1679 1680 area->nr_pages = nr_pages; 1681 /* Please note that the recursion is strictly bounded. */ 1682 if (array_size > PAGE_SIZE) { 1683 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 1684 PAGE_KERNEL, node, area->caller); 1685 } else { 1686 pages = kmalloc_node(array_size, nested_gfp, node); 1687 } 1688 area->pages = pages; 1689 if (!area->pages) { 1690 remove_vm_area(area->addr); 1691 kfree(area); 1692 return NULL; 1693 } 1694 1695 for (i = 0; i < area->nr_pages; i++) { 1696 struct page *page; 1697 1698 if (fatal_signal_pending(current)) { 1699 area->nr_pages = i; 1700 goto fail_no_warn; 1701 } 1702 1703 if (node == NUMA_NO_NODE) 1704 page = alloc_page(alloc_mask|highmem_mask); 1705 else 1706 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 1707 1708 if (unlikely(!page)) { 1709 /* Successfully allocated i pages, free them in __vunmap() */ 1710 area->nr_pages = i; 1711 goto fail; 1712 } 1713 area->pages[i] = page; 1714 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 1715 cond_resched(); 1716 } 1717 1718 if (map_vm_area(area, prot, pages)) 1719 goto fail; 1720 return area->addr; 1721 1722 fail: 1723 warn_alloc(gfp_mask, NULL, 1724 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1725 (area->nr_pages*PAGE_SIZE), area->size); 1726 fail_no_warn: 1727 vfree(area->addr); 1728 return NULL; 1729 } 1730 1731 /** 1732 * __vmalloc_node_range - allocate virtually contiguous memory 1733 * @size: allocation size 1734 * @align: desired alignment 1735 * @start: vm area range start 1736 * @end: vm area range end 1737 * @gfp_mask: flags for the page level allocator 1738 * @prot: protection mask for the allocated pages 1739 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1740 * @node: node to use for allocation or NUMA_NO_NODE 1741 * @caller: caller's return address 1742 * 1743 * Allocate enough pages to cover @size from the page level 1744 * allocator with @gfp_mask flags. Map them into contiguous 1745 * kernel virtual space, using a pagetable protection of @prot. 1746 */ 1747 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1748 unsigned long start, unsigned long end, gfp_t gfp_mask, 1749 pgprot_t prot, unsigned long vm_flags, int node, 1750 const void *caller) 1751 { 1752 struct vm_struct *area; 1753 void *addr; 1754 unsigned long real_size = size; 1755 1756 size = PAGE_ALIGN(size); 1757 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1758 goto fail; 1759 1760 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1761 vm_flags, start, end, node, gfp_mask, caller); 1762 if (!area) 1763 goto fail; 1764 1765 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1766 if (!addr) 1767 return NULL; 1768 1769 /* 1770 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1771 * flag. It means that vm_struct is not fully initialized. 1772 * Now, it is fully initialized, so remove this flag here. 1773 */ 1774 clear_vm_uninitialized_flag(area); 1775 1776 kmemleak_vmalloc(area, size, gfp_mask); 1777 1778 return addr; 1779 1780 fail: 1781 warn_alloc(gfp_mask, NULL, 1782 "vmalloc: allocation failure: %lu bytes", real_size); 1783 return NULL; 1784 } 1785 1786 /** 1787 * __vmalloc_node - allocate virtually contiguous memory 1788 * @size: allocation size 1789 * @align: desired alignment 1790 * @gfp_mask: flags for the page level allocator 1791 * @prot: protection mask for the allocated pages 1792 * @node: node to use for allocation or NUMA_NO_NODE 1793 * @caller: caller's return address 1794 * 1795 * Allocate enough pages to cover @size from the page level 1796 * allocator with @gfp_mask flags. Map them into contiguous 1797 * kernel virtual space, using a pagetable protection of @prot. 1798 * 1799 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 1800 * and __GFP_NOFAIL are not supported 1801 * 1802 * Any use of gfp flags outside of GFP_KERNEL should be consulted 1803 * with mm people. 1804 * 1805 */ 1806 static void *__vmalloc_node(unsigned long size, unsigned long align, 1807 gfp_t gfp_mask, pgprot_t prot, 1808 int node, const void *caller) 1809 { 1810 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1811 gfp_mask, prot, 0, node, caller); 1812 } 1813 1814 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1815 { 1816 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1817 __builtin_return_address(0)); 1818 } 1819 EXPORT_SYMBOL(__vmalloc); 1820 1821 static inline void *__vmalloc_node_flags(unsigned long size, 1822 int node, gfp_t flags) 1823 { 1824 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1825 node, __builtin_return_address(0)); 1826 } 1827 1828 1829 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 1830 void *caller) 1831 { 1832 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 1833 } 1834 1835 /** 1836 * vmalloc - allocate virtually contiguous memory 1837 * @size: allocation size 1838 * Allocate enough pages to cover @size from the page level 1839 * allocator and map them into contiguous kernel virtual space. 1840 * 1841 * For tight control over page level allocator and protection flags 1842 * use __vmalloc() instead. 1843 */ 1844 void *vmalloc(unsigned long size) 1845 { 1846 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1847 GFP_KERNEL); 1848 } 1849 EXPORT_SYMBOL(vmalloc); 1850 1851 /** 1852 * vzalloc - allocate virtually contiguous memory with zero fill 1853 * @size: allocation size 1854 * Allocate enough pages to cover @size from the page level 1855 * allocator and map them into contiguous kernel virtual space. 1856 * The memory allocated is set to zero. 1857 * 1858 * For tight control over page level allocator and protection flags 1859 * use __vmalloc() instead. 1860 */ 1861 void *vzalloc(unsigned long size) 1862 { 1863 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1864 GFP_KERNEL | __GFP_ZERO); 1865 } 1866 EXPORT_SYMBOL(vzalloc); 1867 1868 /** 1869 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1870 * @size: allocation size 1871 * 1872 * The resulting memory area is zeroed so it can be mapped to userspace 1873 * without leaking data. 1874 */ 1875 void *vmalloc_user(unsigned long size) 1876 { 1877 struct vm_struct *area; 1878 void *ret; 1879 1880 ret = __vmalloc_node(size, SHMLBA, 1881 GFP_KERNEL | __GFP_ZERO, 1882 PAGE_KERNEL, NUMA_NO_NODE, 1883 __builtin_return_address(0)); 1884 if (ret) { 1885 area = find_vm_area(ret); 1886 area->flags |= VM_USERMAP; 1887 } 1888 return ret; 1889 } 1890 EXPORT_SYMBOL(vmalloc_user); 1891 1892 /** 1893 * vmalloc_node - allocate memory on a specific node 1894 * @size: allocation size 1895 * @node: numa node 1896 * 1897 * Allocate enough pages to cover @size from the page level 1898 * allocator and map them into contiguous kernel virtual space. 1899 * 1900 * For tight control over page level allocator and protection flags 1901 * use __vmalloc() instead. 1902 */ 1903 void *vmalloc_node(unsigned long size, int node) 1904 { 1905 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 1906 node, __builtin_return_address(0)); 1907 } 1908 EXPORT_SYMBOL(vmalloc_node); 1909 1910 /** 1911 * vzalloc_node - allocate memory on a specific node with zero fill 1912 * @size: allocation size 1913 * @node: numa node 1914 * 1915 * Allocate enough pages to cover @size from the page level 1916 * allocator and map them into contiguous kernel virtual space. 1917 * The memory allocated is set to zero. 1918 * 1919 * For tight control over page level allocator and protection flags 1920 * use __vmalloc_node() instead. 1921 */ 1922 void *vzalloc_node(unsigned long size, int node) 1923 { 1924 return __vmalloc_node_flags(size, node, 1925 GFP_KERNEL | __GFP_ZERO); 1926 } 1927 EXPORT_SYMBOL(vzalloc_node); 1928 1929 #ifndef PAGE_KERNEL_EXEC 1930 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1931 #endif 1932 1933 /** 1934 * vmalloc_exec - allocate virtually contiguous, executable memory 1935 * @size: allocation size 1936 * 1937 * Kernel-internal function to allocate enough pages to cover @size 1938 * the page level allocator and map them into contiguous and 1939 * executable kernel virtual space. 1940 * 1941 * For tight control over page level allocator and protection flags 1942 * use __vmalloc() instead. 1943 */ 1944 1945 void *vmalloc_exec(unsigned long size) 1946 { 1947 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC, 1948 NUMA_NO_NODE, __builtin_return_address(0)); 1949 } 1950 1951 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1952 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1953 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1954 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1955 #else 1956 #define GFP_VMALLOC32 GFP_KERNEL 1957 #endif 1958 1959 /** 1960 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1961 * @size: allocation size 1962 * 1963 * Allocate enough 32bit PA addressable pages to cover @size from the 1964 * page level allocator and map them into contiguous kernel virtual space. 1965 */ 1966 void *vmalloc_32(unsigned long size) 1967 { 1968 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1969 NUMA_NO_NODE, __builtin_return_address(0)); 1970 } 1971 EXPORT_SYMBOL(vmalloc_32); 1972 1973 /** 1974 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1975 * @size: allocation size 1976 * 1977 * The resulting memory area is 32bit addressable and zeroed so it can be 1978 * mapped to userspace without leaking data. 1979 */ 1980 void *vmalloc_32_user(unsigned long size) 1981 { 1982 struct vm_struct *area; 1983 void *ret; 1984 1985 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1986 NUMA_NO_NODE, __builtin_return_address(0)); 1987 if (ret) { 1988 area = find_vm_area(ret); 1989 area->flags |= VM_USERMAP; 1990 } 1991 return ret; 1992 } 1993 EXPORT_SYMBOL(vmalloc_32_user); 1994 1995 /* 1996 * small helper routine , copy contents to buf from addr. 1997 * If the page is not present, fill zero. 1998 */ 1999 2000 static int aligned_vread(char *buf, char *addr, unsigned long count) 2001 { 2002 struct page *p; 2003 int copied = 0; 2004 2005 while (count) { 2006 unsigned long offset, length; 2007 2008 offset = offset_in_page(addr); 2009 length = PAGE_SIZE - offset; 2010 if (length > count) 2011 length = count; 2012 p = vmalloc_to_page(addr); 2013 /* 2014 * To do safe access to this _mapped_ area, we need 2015 * lock. But adding lock here means that we need to add 2016 * overhead of vmalloc()/vfree() calles for this _debug_ 2017 * interface, rarely used. Instead of that, we'll use 2018 * kmap() and get small overhead in this access function. 2019 */ 2020 if (p) { 2021 /* 2022 * we can expect USER0 is not used (see vread/vwrite's 2023 * function description) 2024 */ 2025 void *map = kmap_atomic(p); 2026 memcpy(buf, map + offset, length); 2027 kunmap_atomic(map); 2028 } else 2029 memset(buf, 0, length); 2030 2031 addr += length; 2032 buf += length; 2033 copied += length; 2034 count -= length; 2035 } 2036 return copied; 2037 } 2038 2039 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2040 { 2041 struct page *p; 2042 int copied = 0; 2043 2044 while (count) { 2045 unsigned long offset, length; 2046 2047 offset = offset_in_page(addr); 2048 length = PAGE_SIZE - offset; 2049 if (length > count) 2050 length = count; 2051 p = vmalloc_to_page(addr); 2052 /* 2053 * To do safe access to this _mapped_ area, we need 2054 * lock. But adding lock here means that we need to add 2055 * overhead of vmalloc()/vfree() calles for this _debug_ 2056 * interface, rarely used. Instead of that, we'll use 2057 * kmap() and get small overhead in this access function. 2058 */ 2059 if (p) { 2060 /* 2061 * we can expect USER0 is not used (see vread/vwrite's 2062 * function description) 2063 */ 2064 void *map = kmap_atomic(p); 2065 memcpy(map + offset, buf, length); 2066 kunmap_atomic(map); 2067 } 2068 addr += length; 2069 buf += length; 2070 copied += length; 2071 count -= length; 2072 } 2073 return copied; 2074 } 2075 2076 /** 2077 * vread() - read vmalloc area in a safe way. 2078 * @buf: buffer for reading data 2079 * @addr: vm address. 2080 * @count: number of bytes to be read. 2081 * 2082 * Returns # of bytes which addr and buf should be increased. 2083 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 2084 * includes any intersect with alive vmalloc area. 2085 * 2086 * This function checks that addr is a valid vmalloc'ed area, and 2087 * copy data from that area to a given buffer. If the given memory range 2088 * of [addr...addr+count) includes some valid address, data is copied to 2089 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2090 * IOREMAP area is treated as memory hole and no copy is done. 2091 * 2092 * If [addr...addr+count) doesn't includes any intersects with alive 2093 * vm_struct area, returns 0. @buf should be kernel's buffer. 2094 * 2095 * Note: In usual ops, vread() is never necessary because the caller 2096 * should know vmalloc() area is valid and can use memcpy(). 2097 * This is for routines which have to access vmalloc area without 2098 * any informaion, as /dev/kmem. 2099 * 2100 */ 2101 2102 long vread(char *buf, char *addr, unsigned long count) 2103 { 2104 struct vmap_area *va; 2105 struct vm_struct *vm; 2106 char *vaddr, *buf_start = buf; 2107 unsigned long buflen = count; 2108 unsigned long n; 2109 2110 /* Don't allow overflow */ 2111 if ((unsigned long) addr + count < count) 2112 count = -(unsigned long) addr; 2113 2114 spin_lock(&vmap_area_lock); 2115 list_for_each_entry(va, &vmap_area_list, list) { 2116 if (!count) 2117 break; 2118 2119 if (!(va->flags & VM_VM_AREA)) 2120 continue; 2121 2122 vm = va->vm; 2123 vaddr = (char *) vm->addr; 2124 if (addr >= vaddr + get_vm_area_size(vm)) 2125 continue; 2126 while (addr < vaddr) { 2127 if (count == 0) 2128 goto finished; 2129 *buf = '\0'; 2130 buf++; 2131 addr++; 2132 count--; 2133 } 2134 n = vaddr + get_vm_area_size(vm) - addr; 2135 if (n > count) 2136 n = count; 2137 if (!(vm->flags & VM_IOREMAP)) 2138 aligned_vread(buf, addr, n); 2139 else /* IOREMAP area is treated as memory hole */ 2140 memset(buf, 0, n); 2141 buf += n; 2142 addr += n; 2143 count -= n; 2144 } 2145 finished: 2146 spin_unlock(&vmap_area_lock); 2147 2148 if (buf == buf_start) 2149 return 0; 2150 /* zero-fill memory holes */ 2151 if (buf != buf_start + buflen) 2152 memset(buf, 0, buflen - (buf - buf_start)); 2153 2154 return buflen; 2155 } 2156 2157 /** 2158 * vwrite() - write vmalloc area in a safe way. 2159 * @buf: buffer for source data 2160 * @addr: vm address. 2161 * @count: number of bytes to be read. 2162 * 2163 * Returns # of bytes which addr and buf should be incresed. 2164 * (same number to @count). 2165 * If [addr...addr+count) doesn't includes any intersect with valid 2166 * vmalloc area, returns 0. 2167 * 2168 * This function checks that addr is a valid vmalloc'ed area, and 2169 * copy data from a buffer to the given addr. If specified range of 2170 * [addr...addr+count) includes some valid address, data is copied from 2171 * proper area of @buf. If there are memory holes, no copy to hole. 2172 * IOREMAP area is treated as memory hole and no copy is done. 2173 * 2174 * If [addr...addr+count) doesn't includes any intersects with alive 2175 * vm_struct area, returns 0. @buf should be kernel's buffer. 2176 * 2177 * Note: In usual ops, vwrite() is never necessary because the caller 2178 * should know vmalloc() area is valid and can use memcpy(). 2179 * This is for routines which have to access vmalloc area without 2180 * any informaion, as /dev/kmem. 2181 */ 2182 2183 long vwrite(char *buf, char *addr, unsigned long count) 2184 { 2185 struct vmap_area *va; 2186 struct vm_struct *vm; 2187 char *vaddr; 2188 unsigned long n, buflen; 2189 int copied = 0; 2190 2191 /* Don't allow overflow */ 2192 if ((unsigned long) addr + count < count) 2193 count = -(unsigned long) addr; 2194 buflen = count; 2195 2196 spin_lock(&vmap_area_lock); 2197 list_for_each_entry(va, &vmap_area_list, list) { 2198 if (!count) 2199 break; 2200 2201 if (!(va->flags & VM_VM_AREA)) 2202 continue; 2203 2204 vm = va->vm; 2205 vaddr = (char *) vm->addr; 2206 if (addr >= vaddr + get_vm_area_size(vm)) 2207 continue; 2208 while (addr < vaddr) { 2209 if (count == 0) 2210 goto finished; 2211 buf++; 2212 addr++; 2213 count--; 2214 } 2215 n = vaddr + get_vm_area_size(vm) - addr; 2216 if (n > count) 2217 n = count; 2218 if (!(vm->flags & VM_IOREMAP)) { 2219 aligned_vwrite(buf, addr, n); 2220 copied++; 2221 } 2222 buf += n; 2223 addr += n; 2224 count -= n; 2225 } 2226 finished: 2227 spin_unlock(&vmap_area_lock); 2228 if (!copied) 2229 return 0; 2230 return buflen; 2231 } 2232 2233 /** 2234 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2235 * @vma: vma to cover 2236 * @uaddr: target user address to start at 2237 * @kaddr: virtual address of vmalloc kernel memory 2238 * @size: size of map area 2239 * 2240 * Returns: 0 for success, -Exxx on failure 2241 * 2242 * This function checks that @kaddr is a valid vmalloc'ed area, 2243 * and that it is big enough to cover the range starting at 2244 * @uaddr in @vma. Will return failure if that criteria isn't 2245 * met. 2246 * 2247 * Similar to remap_pfn_range() (see mm/memory.c) 2248 */ 2249 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2250 void *kaddr, unsigned long size) 2251 { 2252 struct vm_struct *area; 2253 2254 size = PAGE_ALIGN(size); 2255 2256 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2257 return -EINVAL; 2258 2259 area = find_vm_area(kaddr); 2260 if (!area) 2261 return -EINVAL; 2262 2263 if (!(area->flags & VM_USERMAP)) 2264 return -EINVAL; 2265 2266 if (kaddr + size > area->addr + area->size) 2267 return -EINVAL; 2268 2269 do { 2270 struct page *page = vmalloc_to_page(kaddr); 2271 int ret; 2272 2273 ret = vm_insert_page(vma, uaddr, page); 2274 if (ret) 2275 return ret; 2276 2277 uaddr += PAGE_SIZE; 2278 kaddr += PAGE_SIZE; 2279 size -= PAGE_SIZE; 2280 } while (size > 0); 2281 2282 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2283 2284 return 0; 2285 } 2286 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2287 2288 /** 2289 * remap_vmalloc_range - map vmalloc pages to userspace 2290 * @vma: vma to cover (map full range of vma) 2291 * @addr: vmalloc memory 2292 * @pgoff: number of pages into addr before first page to map 2293 * 2294 * Returns: 0 for success, -Exxx on failure 2295 * 2296 * This function checks that addr is a valid vmalloc'ed area, and 2297 * that it is big enough to cover the vma. Will return failure if 2298 * that criteria isn't met. 2299 * 2300 * Similar to remap_pfn_range() (see mm/memory.c) 2301 */ 2302 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2303 unsigned long pgoff) 2304 { 2305 return remap_vmalloc_range_partial(vma, vma->vm_start, 2306 addr + (pgoff << PAGE_SHIFT), 2307 vma->vm_end - vma->vm_start); 2308 } 2309 EXPORT_SYMBOL(remap_vmalloc_range); 2310 2311 /* 2312 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2313 * have one. 2314 */ 2315 void __weak vmalloc_sync_all(void) 2316 { 2317 } 2318 2319 2320 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2321 { 2322 pte_t ***p = data; 2323 2324 if (p) { 2325 *(*p) = pte; 2326 (*p)++; 2327 } 2328 return 0; 2329 } 2330 2331 /** 2332 * alloc_vm_area - allocate a range of kernel address space 2333 * @size: size of the area 2334 * @ptes: returns the PTEs for the address space 2335 * 2336 * Returns: NULL on failure, vm_struct on success 2337 * 2338 * This function reserves a range of kernel address space, and 2339 * allocates pagetables to map that range. No actual mappings 2340 * are created. 2341 * 2342 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2343 * allocated for the VM area are returned. 2344 */ 2345 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2346 { 2347 struct vm_struct *area; 2348 2349 area = get_vm_area_caller(size, VM_IOREMAP, 2350 __builtin_return_address(0)); 2351 if (area == NULL) 2352 return NULL; 2353 2354 /* 2355 * This ensures that page tables are constructed for this region 2356 * of kernel virtual address space and mapped into init_mm. 2357 */ 2358 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2359 size, f, ptes ? &ptes : NULL)) { 2360 free_vm_area(area); 2361 return NULL; 2362 } 2363 2364 return area; 2365 } 2366 EXPORT_SYMBOL_GPL(alloc_vm_area); 2367 2368 void free_vm_area(struct vm_struct *area) 2369 { 2370 struct vm_struct *ret; 2371 ret = remove_vm_area(area->addr); 2372 BUG_ON(ret != area); 2373 kfree(area); 2374 } 2375 EXPORT_SYMBOL_GPL(free_vm_area); 2376 2377 #ifdef CONFIG_SMP 2378 static struct vmap_area *node_to_va(struct rb_node *n) 2379 { 2380 return rb_entry_safe(n, struct vmap_area, rb_node); 2381 } 2382 2383 /** 2384 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2385 * @end: target address 2386 * @pnext: out arg for the next vmap_area 2387 * @pprev: out arg for the previous vmap_area 2388 * 2389 * Returns: %true if either or both of next and prev are found, 2390 * %false if no vmap_area exists 2391 * 2392 * Find vmap_areas end addresses of which enclose @end. ie. if not 2393 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2394 */ 2395 static bool pvm_find_next_prev(unsigned long end, 2396 struct vmap_area **pnext, 2397 struct vmap_area **pprev) 2398 { 2399 struct rb_node *n = vmap_area_root.rb_node; 2400 struct vmap_area *va = NULL; 2401 2402 while (n) { 2403 va = rb_entry(n, struct vmap_area, rb_node); 2404 if (end < va->va_end) 2405 n = n->rb_left; 2406 else if (end > va->va_end) 2407 n = n->rb_right; 2408 else 2409 break; 2410 } 2411 2412 if (!va) 2413 return false; 2414 2415 if (va->va_end > end) { 2416 *pnext = va; 2417 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2418 } else { 2419 *pprev = va; 2420 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2421 } 2422 return true; 2423 } 2424 2425 /** 2426 * pvm_determine_end - find the highest aligned address between two vmap_areas 2427 * @pnext: in/out arg for the next vmap_area 2428 * @pprev: in/out arg for the previous vmap_area 2429 * @align: alignment 2430 * 2431 * Returns: determined end address 2432 * 2433 * Find the highest aligned address between *@pnext and *@pprev below 2434 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2435 * down address is between the end addresses of the two vmap_areas. 2436 * 2437 * Please note that the address returned by this function may fall 2438 * inside *@pnext vmap_area. The caller is responsible for checking 2439 * that. 2440 */ 2441 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2442 struct vmap_area **pprev, 2443 unsigned long align) 2444 { 2445 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2446 unsigned long addr; 2447 2448 if (*pnext) 2449 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2450 else 2451 addr = vmalloc_end; 2452 2453 while (*pprev && (*pprev)->va_end > addr) { 2454 *pnext = *pprev; 2455 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2456 } 2457 2458 return addr; 2459 } 2460 2461 /** 2462 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2463 * @offsets: array containing offset of each area 2464 * @sizes: array containing size of each area 2465 * @nr_vms: the number of areas to allocate 2466 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2467 * 2468 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2469 * vm_structs on success, %NULL on failure 2470 * 2471 * Percpu allocator wants to use congruent vm areas so that it can 2472 * maintain the offsets among percpu areas. This function allocates 2473 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2474 * be scattered pretty far, distance between two areas easily going up 2475 * to gigabytes. To avoid interacting with regular vmallocs, these 2476 * areas are allocated from top. 2477 * 2478 * Despite its complicated look, this allocator is rather simple. It 2479 * does everything top-down and scans areas from the end looking for 2480 * matching slot. While scanning, if any of the areas overlaps with 2481 * existing vmap_area, the base address is pulled down to fit the 2482 * area. Scanning is repeated till all the areas fit and then all 2483 * necessary data structures are inserted and the result is returned. 2484 */ 2485 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2486 const size_t *sizes, int nr_vms, 2487 size_t align) 2488 { 2489 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2490 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2491 struct vmap_area **vas, *prev, *next; 2492 struct vm_struct **vms; 2493 int area, area2, last_area, term_area; 2494 unsigned long base, start, end, last_end; 2495 bool purged = false; 2496 2497 /* verify parameters and allocate data structures */ 2498 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2499 for (last_area = 0, area = 0; area < nr_vms; area++) { 2500 start = offsets[area]; 2501 end = start + sizes[area]; 2502 2503 /* is everything aligned properly? */ 2504 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2505 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2506 2507 /* detect the area with the highest address */ 2508 if (start > offsets[last_area]) 2509 last_area = area; 2510 2511 for (area2 = area + 1; area2 < nr_vms; area2++) { 2512 unsigned long start2 = offsets[area2]; 2513 unsigned long end2 = start2 + sizes[area2]; 2514 2515 BUG_ON(start2 < end && start < end2); 2516 } 2517 } 2518 last_end = offsets[last_area] + sizes[last_area]; 2519 2520 if (vmalloc_end - vmalloc_start < last_end) { 2521 WARN_ON(true); 2522 return NULL; 2523 } 2524 2525 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2526 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2527 if (!vas || !vms) 2528 goto err_free2; 2529 2530 for (area = 0; area < nr_vms; area++) { 2531 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2532 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2533 if (!vas[area] || !vms[area]) 2534 goto err_free; 2535 } 2536 retry: 2537 spin_lock(&vmap_area_lock); 2538 2539 /* start scanning - we scan from the top, begin with the last area */ 2540 area = term_area = last_area; 2541 start = offsets[area]; 2542 end = start + sizes[area]; 2543 2544 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2545 base = vmalloc_end - last_end; 2546 goto found; 2547 } 2548 base = pvm_determine_end(&next, &prev, align) - end; 2549 2550 while (true) { 2551 BUG_ON(next && next->va_end <= base + end); 2552 BUG_ON(prev && prev->va_end > base + end); 2553 2554 /* 2555 * base might have underflowed, add last_end before 2556 * comparing. 2557 */ 2558 if (base + last_end < vmalloc_start + last_end) { 2559 spin_unlock(&vmap_area_lock); 2560 if (!purged) { 2561 purge_vmap_area_lazy(); 2562 purged = true; 2563 goto retry; 2564 } 2565 goto err_free; 2566 } 2567 2568 /* 2569 * If next overlaps, move base downwards so that it's 2570 * right below next and then recheck. 2571 */ 2572 if (next && next->va_start < base + end) { 2573 base = pvm_determine_end(&next, &prev, align) - end; 2574 term_area = area; 2575 continue; 2576 } 2577 2578 /* 2579 * If prev overlaps, shift down next and prev and move 2580 * base so that it's right below new next and then 2581 * recheck. 2582 */ 2583 if (prev && prev->va_end > base + start) { 2584 next = prev; 2585 prev = node_to_va(rb_prev(&next->rb_node)); 2586 base = pvm_determine_end(&next, &prev, align) - end; 2587 term_area = area; 2588 continue; 2589 } 2590 2591 /* 2592 * This area fits, move on to the previous one. If 2593 * the previous one is the terminal one, we're done. 2594 */ 2595 area = (area + nr_vms - 1) % nr_vms; 2596 if (area == term_area) 2597 break; 2598 start = offsets[area]; 2599 end = start + sizes[area]; 2600 pvm_find_next_prev(base + end, &next, &prev); 2601 } 2602 found: 2603 /* we've found a fitting base, insert all va's */ 2604 for (area = 0; area < nr_vms; area++) { 2605 struct vmap_area *va = vas[area]; 2606 2607 va->va_start = base + offsets[area]; 2608 va->va_end = va->va_start + sizes[area]; 2609 __insert_vmap_area(va); 2610 } 2611 2612 vmap_area_pcpu_hole = base + offsets[last_area]; 2613 2614 spin_unlock(&vmap_area_lock); 2615 2616 /* insert all vm's */ 2617 for (area = 0; area < nr_vms; area++) 2618 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2619 pcpu_get_vm_areas); 2620 2621 kfree(vas); 2622 return vms; 2623 2624 err_free: 2625 for (area = 0; area < nr_vms; area++) { 2626 kfree(vas[area]); 2627 kfree(vms[area]); 2628 } 2629 err_free2: 2630 kfree(vas); 2631 kfree(vms); 2632 return NULL; 2633 } 2634 2635 /** 2636 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2637 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2638 * @nr_vms: the number of allocated areas 2639 * 2640 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2641 */ 2642 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2643 { 2644 int i; 2645 2646 for (i = 0; i < nr_vms; i++) 2647 free_vm_area(vms[i]); 2648 kfree(vms); 2649 } 2650 #endif /* CONFIG_SMP */ 2651 2652 #ifdef CONFIG_PROC_FS 2653 static void *s_start(struct seq_file *m, loff_t *pos) 2654 __acquires(&vmap_area_lock) 2655 { 2656 spin_lock(&vmap_area_lock); 2657 return seq_list_start(&vmap_area_list, *pos); 2658 } 2659 2660 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2661 { 2662 return seq_list_next(p, &vmap_area_list, pos); 2663 } 2664 2665 static void s_stop(struct seq_file *m, void *p) 2666 __releases(&vmap_area_lock) 2667 { 2668 spin_unlock(&vmap_area_lock); 2669 } 2670 2671 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2672 { 2673 if (IS_ENABLED(CONFIG_NUMA)) { 2674 unsigned int nr, *counters = m->private; 2675 2676 if (!counters) 2677 return; 2678 2679 if (v->flags & VM_UNINITIALIZED) 2680 return; 2681 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2682 smp_rmb(); 2683 2684 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2685 2686 for (nr = 0; nr < v->nr_pages; nr++) 2687 counters[page_to_nid(v->pages[nr])]++; 2688 2689 for_each_node_state(nr, N_HIGH_MEMORY) 2690 if (counters[nr]) 2691 seq_printf(m, " N%u=%u", nr, counters[nr]); 2692 } 2693 } 2694 2695 static int s_show(struct seq_file *m, void *p) 2696 { 2697 struct vmap_area *va; 2698 struct vm_struct *v; 2699 2700 va = list_entry(p, struct vmap_area, list); 2701 2702 /* 2703 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2704 * behalf of vmap area is being tear down or vm_map_ram allocation. 2705 */ 2706 if (!(va->flags & VM_VM_AREA)) { 2707 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 2708 (void *)va->va_start, (void *)va->va_end, 2709 va->va_end - va->va_start, 2710 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 2711 2712 return 0; 2713 } 2714 2715 v = va->vm; 2716 2717 seq_printf(m, "0x%pK-0x%pK %7ld", 2718 v->addr, v->addr + v->size, v->size); 2719 2720 if (v->caller) 2721 seq_printf(m, " %pS", v->caller); 2722 2723 if (v->nr_pages) 2724 seq_printf(m, " pages=%d", v->nr_pages); 2725 2726 if (v->phys_addr) 2727 seq_printf(m, " phys=%pa", &v->phys_addr); 2728 2729 if (v->flags & VM_IOREMAP) 2730 seq_puts(m, " ioremap"); 2731 2732 if (v->flags & VM_ALLOC) 2733 seq_puts(m, " vmalloc"); 2734 2735 if (v->flags & VM_MAP) 2736 seq_puts(m, " vmap"); 2737 2738 if (v->flags & VM_USERMAP) 2739 seq_puts(m, " user"); 2740 2741 if (is_vmalloc_addr(v->pages)) 2742 seq_puts(m, " vpages"); 2743 2744 show_numa_info(m, v); 2745 seq_putc(m, '\n'); 2746 return 0; 2747 } 2748 2749 static const struct seq_operations vmalloc_op = { 2750 .start = s_start, 2751 .next = s_next, 2752 .stop = s_stop, 2753 .show = s_show, 2754 }; 2755 2756 static int vmalloc_open(struct inode *inode, struct file *file) 2757 { 2758 if (IS_ENABLED(CONFIG_NUMA)) 2759 return seq_open_private(file, &vmalloc_op, 2760 nr_node_ids * sizeof(unsigned int)); 2761 else 2762 return seq_open(file, &vmalloc_op); 2763 } 2764 2765 static const struct file_operations proc_vmalloc_operations = { 2766 .open = vmalloc_open, 2767 .read = seq_read, 2768 .llseek = seq_lseek, 2769 .release = seq_release_private, 2770 }; 2771 2772 static int __init proc_vmalloc_init(void) 2773 { 2774 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2775 return 0; 2776 } 2777 module_init(proc_vmalloc_init); 2778 2779 #endif 2780 2781