1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 return err; 324 } 325 326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pte_t *pte; 330 331 pte = pte_offset_kernel(pmd, addr); 332 do { 333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 334 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 335 } while (pte++, addr += PAGE_SIZE, addr != end); 336 *mask |= PGTBL_PTE_MODIFIED; 337 } 338 339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 340 pgtbl_mod_mask *mask) 341 { 342 pmd_t *pmd; 343 unsigned long next; 344 int cleared; 345 346 pmd = pmd_offset(pud, addr); 347 do { 348 next = pmd_addr_end(addr, end); 349 350 cleared = pmd_clear_huge(pmd); 351 if (cleared || pmd_bad(*pmd)) 352 *mask |= PGTBL_PMD_MODIFIED; 353 354 if (cleared) 355 continue; 356 if (pmd_none_or_clear_bad(pmd)) 357 continue; 358 vunmap_pte_range(pmd, addr, next, mask); 359 360 cond_resched(); 361 } while (pmd++, addr = next, addr != end); 362 } 363 364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 365 pgtbl_mod_mask *mask) 366 { 367 pud_t *pud; 368 unsigned long next; 369 int cleared; 370 371 pud = pud_offset(p4d, addr); 372 do { 373 next = pud_addr_end(addr, end); 374 375 cleared = pud_clear_huge(pud); 376 if (cleared || pud_bad(*pud)) 377 *mask |= PGTBL_PUD_MODIFIED; 378 379 if (cleared) 380 continue; 381 if (pud_none_or_clear_bad(pud)) 382 continue; 383 vunmap_pmd_range(pud, addr, next, mask); 384 } while (pud++, addr = next, addr != end); 385 } 386 387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 p4d_t *p4d; 391 unsigned long next; 392 int cleared; 393 394 p4d = p4d_offset(pgd, addr); 395 do { 396 next = p4d_addr_end(addr, end); 397 398 cleared = p4d_clear_huge(p4d); 399 if (cleared || p4d_bad(*p4d)) 400 *mask |= PGTBL_P4D_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (p4d_none_or_clear_bad(p4d)) 405 continue; 406 vunmap_pud_range(p4d, addr, next, mask); 407 } while (p4d++, addr = next, addr != end); 408 } 409 410 /* 411 * vunmap_range_noflush is similar to vunmap_range, but does not 412 * flush caches or TLBs. 413 * 414 * The caller is responsible for calling flush_cache_vmap() before calling 415 * this function, and flush_tlb_kernel_range after it has returned 416 * successfully (and before the addresses are expected to cause a page fault 417 * or be re-mapped for something else, if TLB flushes are being delayed or 418 * coalesced). 419 * 420 * This is an internal function only. Do not use outside mm/. 421 */ 422 void vunmap_range_noflush(unsigned long start, unsigned long end) 423 { 424 unsigned long next; 425 pgd_t *pgd; 426 unsigned long addr = start; 427 pgtbl_mod_mask mask = 0; 428 429 BUG_ON(addr >= end); 430 pgd = pgd_offset_k(addr); 431 do { 432 next = pgd_addr_end(addr, end); 433 if (pgd_bad(*pgd)) 434 mask |= PGTBL_PGD_MODIFIED; 435 if (pgd_none_or_clear_bad(pgd)) 436 continue; 437 vunmap_p4d_range(pgd, addr, next, &mask); 438 } while (pgd++, addr = next, addr != end); 439 440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 441 arch_sync_kernel_mappings(start, end); 442 } 443 444 /** 445 * vunmap_range - unmap kernel virtual addresses 446 * @addr: start of the VM area to unmap 447 * @end: end of the VM area to unmap (non-inclusive) 448 * 449 * Clears any present PTEs in the virtual address range, flushes TLBs and 450 * caches. Any subsequent access to the address before it has been re-mapped 451 * is a kernel bug. 452 */ 453 void vunmap_range(unsigned long addr, unsigned long end) 454 { 455 flush_cache_vunmap(addr, end); 456 vunmap_range_noflush(addr, end); 457 flush_tlb_kernel_range(addr, end); 458 } 459 460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 461 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 462 pgtbl_mod_mask *mask) 463 { 464 pte_t *pte; 465 466 /* 467 * nr is a running index into the array which helps higher level 468 * callers keep track of where we're up to. 469 */ 470 471 pte = pte_alloc_kernel_track(pmd, addr, mask); 472 if (!pte) 473 return -ENOMEM; 474 do { 475 struct page *page = pages[*nr]; 476 477 if (WARN_ON(!pte_none(*pte))) 478 return -EBUSY; 479 if (WARN_ON(!page)) 480 return -ENOMEM; 481 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 482 (*nr)++; 483 } while (pte++, addr += PAGE_SIZE, addr != end); 484 *mask |= PGTBL_PTE_MODIFIED; 485 return 0; 486 } 487 488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 489 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 490 pgtbl_mod_mask *mask) 491 { 492 pmd_t *pmd; 493 unsigned long next; 494 495 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 496 if (!pmd) 497 return -ENOMEM; 498 do { 499 next = pmd_addr_end(addr, end); 500 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 501 return -ENOMEM; 502 } while (pmd++, addr = next, addr != end); 503 return 0; 504 } 505 506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 507 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 508 pgtbl_mod_mask *mask) 509 { 510 pud_t *pud; 511 unsigned long next; 512 513 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 514 if (!pud) 515 return -ENOMEM; 516 do { 517 next = pud_addr_end(addr, end); 518 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 519 return -ENOMEM; 520 } while (pud++, addr = next, addr != end); 521 return 0; 522 } 523 524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 525 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 526 pgtbl_mod_mask *mask) 527 { 528 p4d_t *p4d; 529 unsigned long next; 530 531 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 532 if (!p4d) 533 return -ENOMEM; 534 do { 535 next = p4d_addr_end(addr, end); 536 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 537 return -ENOMEM; 538 } while (p4d++, addr = next, addr != end); 539 return 0; 540 } 541 542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 543 pgprot_t prot, struct page **pages) 544 { 545 unsigned long start = addr; 546 pgd_t *pgd; 547 unsigned long next; 548 int err = 0; 549 int nr = 0; 550 pgtbl_mod_mask mask = 0; 551 552 BUG_ON(addr >= end); 553 pgd = pgd_offset_k(addr); 554 do { 555 next = pgd_addr_end(addr, end); 556 if (pgd_bad(*pgd)) 557 mask |= PGTBL_PGD_MODIFIED; 558 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 559 if (err) 560 return err; 561 } while (pgd++, addr = next, addr != end); 562 563 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 564 arch_sync_kernel_mappings(start, end); 565 566 return 0; 567 } 568 569 /* 570 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 571 * flush caches. 572 * 573 * The caller is responsible for calling flush_cache_vmap() after this 574 * function returns successfully and before the addresses are accessed. 575 * 576 * This is an internal function only. Do not use outside mm/. 577 */ 578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 579 pgprot_t prot, struct page **pages, unsigned int page_shift) 580 { 581 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 582 583 WARN_ON(page_shift < PAGE_SHIFT); 584 585 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 586 page_shift == PAGE_SHIFT) 587 return vmap_small_pages_range_noflush(addr, end, prot, pages); 588 589 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 590 int err; 591 592 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 593 __pa(page_address(pages[i])), prot, 594 page_shift); 595 if (err) 596 return err; 597 598 addr += 1UL << page_shift; 599 } 600 601 return 0; 602 } 603 604 /** 605 * vmap_pages_range - map pages to a kernel virtual address 606 * @addr: start of the VM area to map 607 * @end: end of the VM area to map (non-inclusive) 608 * @prot: page protection flags to use 609 * @pages: pages to map (always PAGE_SIZE pages) 610 * @page_shift: maximum shift that the pages may be mapped with, @pages must 611 * be aligned and contiguous up to at least this shift. 612 * 613 * RETURNS: 614 * 0 on success, -errno on failure. 615 */ 616 static int vmap_pages_range(unsigned long addr, unsigned long end, 617 pgprot_t prot, struct page **pages, unsigned int page_shift) 618 { 619 int err; 620 621 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 622 flush_cache_vmap(addr, end); 623 return err; 624 } 625 626 int is_vmalloc_or_module_addr(const void *x) 627 { 628 /* 629 * ARM, x86-64 and sparc64 put modules in a special place, 630 * and fall back on vmalloc() if that fails. Others 631 * just put it in the vmalloc space. 632 */ 633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 634 unsigned long addr = (unsigned long)kasan_reset_tag(x); 635 if (addr >= MODULES_VADDR && addr < MODULES_END) 636 return 1; 637 #endif 638 return is_vmalloc_addr(x); 639 } 640 641 /* 642 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 643 * return the tail page that corresponds to the base page address, which 644 * matches small vmap mappings. 645 */ 646 struct page *vmalloc_to_page(const void *vmalloc_addr) 647 { 648 unsigned long addr = (unsigned long) vmalloc_addr; 649 struct page *page = NULL; 650 pgd_t *pgd = pgd_offset_k(addr); 651 p4d_t *p4d; 652 pud_t *pud; 653 pmd_t *pmd; 654 pte_t *ptep, pte; 655 656 /* 657 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 658 * architectures that do not vmalloc module space 659 */ 660 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 661 662 if (pgd_none(*pgd)) 663 return NULL; 664 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 665 return NULL; /* XXX: no allowance for huge pgd */ 666 if (WARN_ON_ONCE(pgd_bad(*pgd))) 667 return NULL; 668 669 p4d = p4d_offset(pgd, addr); 670 if (p4d_none(*p4d)) 671 return NULL; 672 if (p4d_leaf(*p4d)) 673 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 674 if (WARN_ON_ONCE(p4d_bad(*p4d))) 675 return NULL; 676 677 pud = pud_offset(p4d, addr); 678 if (pud_none(*pud)) 679 return NULL; 680 if (pud_leaf(*pud)) 681 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 682 if (WARN_ON_ONCE(pud_bad(*pud))) 683 return NULL; 684 685 pmd = pmd_offset(pud, addr); 686 if (pmd_none(*pmd)) 687 return NULL; 688 if (pmd_leaf(*pmd)) 689 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 690 if (WARN_ON_ONCE(pmd_bad(*pmd))) 691 return NULL; 692 693 ptep = pte_offset_map(pmd, addr); 694 pte = *ptep; 695 if (pte_present(pte)) 696 page = pte_page(pte); 697 pte_unmap(ptep); 698 699 return page; 700 } 701 EXPORT_SYMBOL(vmalloc_to_page); 702 703 /* 704 * Map a vmalloc()-space virtual address to the physical page frame number. 705 */ 706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 707 { 708 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 709 } 710 EXPORT_SYMBOL(vmalloc_to_pfn); 711 712 713 /*** Global kva allocator ***/ 714 715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 717 718 719 static DEFINE_SPINLOCK(vmap_area_lock); 720 static DEFINE_SPINLOCK(free_vmap_area_lock); 721 /* Export for kexec only */ 722 LIST_HEAD(vmap_area_list); 723 static struct rb_root vmap_area_root = RB_ROOT; 724 static bool vmap_initialized __read_mostly; 725 726 static struct rb_root purge_vmap_area_root = RB_ROOT; 727 static LIST_HEAD(purge_vmap_area_list); 728 static DEFINE_SPINLOCK(purge_vmap_area_lock); 729 730 /* 731 * This kmem_cache is used for vmap_area objects. Instead of 732 * allocating from slab we reuse an object from this cache to 733 * make things faster. Especially in "no edge" splitting of 734 * free block. 735 */ 736 static struct kmem_cache *vmap_area_cachep; 737 738 /* 739 * This linked list is used in pair with free_vmap_area_root. 740 * It gives O(1) access to prev/next to perform fast coalescing. 741 */ 742 static LIST_HEAD(free_vmap_area_list); 743 744 /* 745 * This augment red-black tree represents the free vmap space. 746 * All vmap_area objects in this tree are sorted by va->va_start 747 * address. It is used for allocation and merging when a vmap 748 * object is released. 749 * 750 * Each vmap_area node contains a maximum available free block 751 * of its sub-tree, right or left. Therefore it is possible to 752 * find a lowest match of free area. 753 */ 754 static struct rb_root free_vmap_area_root = RB_ROOT; 755 756 /* 757 * Preload a CPU with one object for "no edge" split case. The 758 * aim is to get rid of allocations from the atomic context, thus 759 * to use more permissive allocation masks. 760 */ 761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 762 763 static __always_inline unsigned long 764 va_size(struct vmap_area *va) 765 { 766 return (va->va_end - va->va_start); 767 } 768 769 static __always_inline unsigned long 770 get_subtree_max_size(struct rb_node *node) 771 { 772 struct vmap_area *va; 773 774 va = rb_entry_safe(node, struct vmap_area, rb_node); 775 return va ? va->subtree_max_size : 0; 776 } 777 778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 779 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 780 781 static void purge_vmap_area_lazy(void); 782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 783 static void drain_vmap_area_work(struct work_struct *work); 784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 785 786 static atomic_long_t nr_vmalloc_pages; 787 788 unsigned long vmalloc_nr_pages(void) 789 { 790 return atomic_long_read(&nr_vmalloc_pages); 791 } 792 793 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 794 { 795 struct vmap_area *va = NULL; 796 struct rb_node *n = vmap_area_root.rb_node; 797 798 addr = (unsigned long)kasan_reset_tag((void *)addr); 799 800 while (n) { 801 struct vmap_area *tmp; 802 803 tmp = rb_entry(n, struct vmap_area, rb_node); 804 if (tmp->va_end > addr) { 805 va = tmp; 806 if (tmp->va_start <= addr) 807 break; 808 809 n = n->rb_left; 810 } else 811 n = n->rb_right; 812 } 813 814 return va; 815 } 816 817 static struct vmap_area *__find_vmap_area(unsigned long addr) 818 { 819 struct rb_node *n = vmap_area_root.rb_node; 820 821 addr = (unsigned long)kasan_reset_tag((void *)addr); 822 823 while (n) { 824 struct vmap_area *va; 825 826 va = rb_entry(n, struct vmap_area, rb_node); 827 if (addr < va->va_start) 828 n = n->rb_left; 829 else if (addr >= va->va_end) 830 n = n->rb_right; 831 else 832 return va; 833 } 834 835 return NULL; 836 } 837 838 /* 839 * This function returns back addresses of parent node 840 * and its left or right link for further processing. 841 * 842 * Otherwise NULL is returned. In that case all further 843 * steps regarding inserting of conflicting overlap range 844 * have to be declined and actually considered as a bug. 845 */ 846 static __always_inline struct rb_node ** 847 find_va_links(struct vmap_area *va, 848 struct rb_root *root, struct rb_node *from, 849 struct rb_node **parent) 850 { 851 struct vmap_area *tmp_va; 852 struct rb_node **link; 853 854 if (root) { 855 link = &root->rb_node; 856 if (unlikely(!*link)) { 857 *parent = NULL; 858 return link; 859 } 860 } else { 861 link = &from; 862 } 863 864 /* 865 * Go to the bottom of the tree. When we hit the last point 866 * we end up with parent rb_node and correct direction, i name 867 * it link, where the new va->rb_node will be attached to. 868 */ 869 do { 870 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 871 872 /* 873 * During the traversal we also do some sanity check. 874 * Trigger the BUG() if there are sides(left/right) 875 * or full overlaps. 876 */ 877 if (va->va_start < tmp_va->va_end && 878 va->va_end <= tmp_va->va_start) 879 link = &(*link)->rb_left; 880 else if (va->va_end > tmp_va->va_start && 881 va->va_start >= tmp_va->va_end) 882 link = &(*link)->rb_right; 883 else { 884 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 885 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 886 887 return NULL; 888 } 889 } while (*link); 890 891 *parent = &tmp_va->rb_node; 892 return link; 893 } 894 895 static __always_inline struct list_head * 896 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 897 { 898 struct list_head *list; 899 900 if (unlikely(!parent)) 901 /* 902 * The red-black tree where we try to find VA neighbors 903 * before merging or inserting is empty, i.e. it means 904 * there is no free vmap space. Normally it does not 905 * happen but we handle this case anyway. 906 */ 907 return NULL; 908 909 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 910 return (&parent->rb_right == link ? list->next : list); 911 } 912 913 static __always_inline void 914 link_va(struct vmap_area *va, struct rb_root *root, 915 struct rb_node *parent, struct rb_node **link, struct list_head *head) 916 { 917 /* 918 * VA is still not in the list, but we can 919 * identify its future previous list_head node. 920 */ 921 if (likely(parent)) { 922 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 923 if (&parent->rb_right != link) 924 head = head->prev; 925 } 926 927 /* Insert to the rb-tree */ 928 rb_link_node(&va->rb_node, parent, link); 929 if (root == &free_vmap_area_root) { 930 /* 931 * Some explanation here. Just perform simple insertion 932 * to the tree. We do not set va->subtree_max_size to 933 * its current size before calling rb_insert_augmented(). 934 * It is because of we populate the tree from the bottom 935 * to parent levels when the node _is_ in the tree. 936 * 937 * Therefore we set subtree_max_size to zero after insertion, 938 * to let __augment_tree_propagate_from() puts everything to 939 * the correct order later on. 940 */ 941 rb_insert_augmented(&va->rb_node, 942 root, &free_vmap_area_rb_augment_cb); 943 va->subtree_max_size = 0; 944 } else { 945 rb_insert_color(&va->rb_node, root); 946 } 947 948 /* Address-sort this list */ 949 list_add(&va->list, head); 950 } 951 952 static __always_inline void 953 unlink_va(struct vmap_area *va, struct rb_root *root) 954 { 955 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 956 return; 957 958 if (root == &free_vmap_area_root) 959 rb_erase_augmented(&va->rb_node, 960 root, &free_vmap_area_rb_augment_cb); 961 else 962 rb_erase(&va->rb_node, root); 963 964 list_del(&va->list); 965 RB_CLEAR_NODE(&va->rb_node); 966 } 967 968 #if DEBUG_AUGMENT_PROPAGATE_CHECK 969 /* 970 * Gets called when remove the node and rotate. 971 */ 972 static __always_inline unsigned long 973 compute_subtree_max_size(struct vmap_area *va) 974 { 975 return max3(va_size(va), 976 get_subtree_max_size(va->rb_node.rb_left), 977 get_subtree_max_size(va->rb_node.rb_right)); 978 } 979 980 static void 981 augment_tree_propagate_check(void) 982 { 983 struct vmap_area *va; 984 unsigned long computed_size; 985 986 list_for_each_entry(va, &free_vmap_area_list, list) { 987 computed_size = compute_subtree_max_size(va); 988 if (computed_size != va->subtree_max_size) 989 pr_emerg("tree is corrupted: %lu, %lu\n", 990 va_size(va), va->subtree_max_size); 991 } 992 } 993 #endif 994 995 /* 996 * This function populates subtree_max_size from bottom to upper 997 * levels starting from VA point. The propagation must be done 998 * when VA size is modified by changing its va_start/va_end. Or 999 * in case of newly inserting of VA to the tree. 1000 * 1001 * It means that __augment_tree_propagate_from() must be called: 1002 * - After VA has been inserted to the tree(free path); 1003 * - After VA has been shrunk(allocation path); 1004 * - After VA has been increased(merging path). 1005 * 1006 * Please note that, it does not mean that upper parent nodes 1007 * and their subtree_max_size are recalculated all the time up 1008 * to the root node. 1009 * 1010 * 4--8 1011 * /\ 1012 * / \ 1013 * / \ 1014 * 2--2 8--8 1015 * 1016 * For example if we modify the node 4, shrinking it to 2, then 1017 * no any modification is required. If we shrink the node 2 to 1 1018 * its subtree_max_size is updated only, and set to 1. If we shrink 1019 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1020 * node becomes 4--6. 1021 */ 1022 static __always_inline void 1023 augment_tree_propagate_from(struct vmap_area *va) 1024 { 1025 /* 1026 * Populate the tree from bottom towards the root until 1027 * the calculated maximum available size of checked node 1028 * is equal to its current one. 1029 */ 1030 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1031 1032 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1033 augment_tree_propagate_check(); 1034 #endif 1035 } 1036 1037 static void 1038 insert_vmap_area(struct vmap_area *va, 1039 struct rb_root *root, struct list_head *head) 1040 { 1041 struct rb_node **link; 1042 struct rb_node *parent; 1043 1044 link = find_va_links(va, root, NULL, &parent); 1045 if (link) 1046 link_va(va, root, parent, link, head); 1047 } 1048 1049 static void 1050 insert_vmap_area_augment(struct vmap_area *va, 1051 struct rb_node *from, struct rb_root *root, 1052 struct list_head *head) 1053 { 1054 struct rb_node **link; 1055 struct rb_node *parent; 1056 1057 if (from) 1058 link = find_va_links(va, NULL, from, &parent); 1059 else 1060 link = find_va_links(va, root, NULL, &parent); 1061 1062 if (link) { 1063 link_va(va, root, parent, link, head); 1064 augment_tree_propagate_from(va); 1065 } 1066 } 1067 1068 /* 1069 * Merge de-allocated chunk of VA memory with previous 1070 * and next free blocks. If coalesce is not done a new 1071 * free area is inserted. If VA has been merged, it is 1072 * freed. 1073 * 1074 * Please note, it can return NULL in case of overlap 1075 * ranges, followed by WARN() report. Despite it is a 1076 * buggy behaviour, a system can be alive and keep 1077 * ongoing. 1078 */ 1079 static __always_inline struct vmap_area * 1080 merge_or_add_vmap_area(struct vmap_area *va, 1081 struct rb_root *root, struct list_head *head) 1082 { 1083 struct vmap_area *sibling; 1084 struct list_head *next; 1085 struct rb_node **link; 1086 struct rb_node *parent; 1087 bool merged = false; 1088 1089 /* 1090 * Find a place in the tree where VA potentially will be 1091 * inserted, unless it is merged with its sibling/siblings. 1092 */ 1093 link = find_va_links(va, root, NULL, &parent); 1094 if (!link) 1095 return NULL; 1096 1097 /* 1098 * Get next node of VA to check if merging can be done. 1099 */ 1100 next = get_va_next_sibling(parent, link); 1101 if (unlikely(next == NULL)) 1102 goto insert; 1103 1104 /* 1105 * start end 1106 * | | 1107 * |<------VA------>|<-----Next----->| 1108 * | | 1109 * start end 1110 */ 1111 if (next != head) { 1112 sibling = list_entry(next, struct vmap_area, list); 1113 if (sibling->va_start == va->va_end) { 1114 sibling->va_start = va->va_start; 1115 1116 /* Free vmap_area object. */ 1117 kmem_cache_free(vmap_area_cachep, va); 1118 1119 /* Point to the new merged area. */ 1120 va = sibling; 1121 merged = true; 1122 } 1123 } 1124 1125 /* 1126 * start end 1127 * | | 1128 * |<-----Prev----->|<------VA------>| 1129 * | | 1130 * start end 1131 */ 1132 if (next->prev != head) { 1133 sibling = list_entry(next->prev, struct vmap_area, list); 1134 if (sibling->va_end == va->va_start) { 1135 /* 1136 * If both neighbors are coalesced, it is important 1137 * to unlink the "next" node first, followed by merging 1138 * with "previous" one. Otherwise the tree might not be 1139 * fully populated if a sibling's augmented value is 1140 * "normalized" because of rotation operations. 1141 */ 1142 if (merged) 1143 unlink_va(va, root); 1144 1145 sibling->va_end = va->va_end; 1146 1147 /* Free vmap_area object. */ 1148 kmem_cache_free(vmap_area_cachep, va); 1149 1150 /* Point to the new merged area. */ 1151 va = sibling; 1152 merged = true; 1153 } 1154 } 1155 1156 insert: 1157 if (!merged) 1158 link_va(va, root, parent, link, head); 1159 1160 return va; 1161 } 1162 1163 static __always_inline struct vmap_area * 1164 merge_or_add_vmap_area_augment(struct vmap_area *va, 1165 struct rb_root *root, struct list_head *head) 1166 { 1167 va = merge_or_add_vmap_area(va, root, head); 1168 if (va) 1169 augment_tree_propagate_from(va); 1170 1171 return va; 1172 } 1173 1174 static __always_inline bool 1175 is_within_this_va(struct vmap_area *va, unsigned long size, 1176 unsigned long align, unsigned long vstart) 1177 { 1178 unsigned long nva_start_addr; 1179 1180 if (va->va_start > vstart) 1181 nva_start_addr = ALIGN(va->va_start, align); 1182 else 1183 nva_start_addr = ALIGN(vstart, align); 1184 1185 /* Can be overflowed due to big size or alignment. */ 1186 if (nva_start_addr + size < nva_start_addr || 1187 nva_start_addr < vstart) 1188 return false; 1189 1190 return (nva_start_addr + size <= va->va_end); 1191 } 1192 1193 /* 1194 * Find the first free block(lowest start address) in the tree, 1195 * that will accomplish the request corresponding to passing 1196 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1197 * a search length is adjusted to account for worst case alignment 1198 * overhead. 1199 */ 1200 static __always_inline struct vmap_area * 1201 find_vmap_lowest_match(unsigned long size, unsigned long align, 1202 unsigned long vstart, bool adjust_search_size) 1203 { 1204 struct vmap_area *va; 1205 struct rb_node *node; 1206 unsigned long length; 1207 1208 /* Start from the root. */ 1209 node = free_vmap_area_root.rb_node; 1210 1211 /* Adjust the search size for alignment overhead. */ 1212 length = adjust_search_size ? size + align - 1 : size; 1213 1214 while (node) { 1215 va = rb_entry(node, struct vmap_area, rb_node); 1216 1217 if (get_subtree_max_size(node->rb_left) >= length && 1218 vstart < va->va_start) { 1219 node = node->rb_left; 1220 } else { 1221 if (is_within_this_va(va, size, align, vstart)) 1222 return va; 1223 1224 /* 1225 * Does not make sense to go deeper towards the right 1226 * sub-tree if it does not have a free block that is 1227 * equal or bigger to the requested search length. 1228 */ 1229 if (get_subtree_max_size(node->rb_right) >= length) { 1230 node = node->rb_right; 1231 continue; 1232 } 1233 1234 /* 1235 * OK. We roll back and find the first right sub-tree, 1236 * that will satisfy the search criteria. It can happen 1237 * due to "vstart" restriction or an alignment overhead 1238 * that is bigger then PAGE_SIZE. 1239 */ 1240 while ((node = rb_parent(node))) { 1241 va = rb_entry(node, struct vmap_area, rb_node); 1242 if (is_within_this_va(va, size, align, vstart)) 1243 return va; 1244 1245 if (get_subtree_max_size(node->rb_right) >= length && 1246 vstart <= va->va_start) { 1247 /* 1248 * Shift the vstart forward. Please note, we update it with 1249 * parent's start address adding "1" because we do not want 1250 * to enter same sub-tree after it has already been checked 1251 * and no suitable free block found there. 1252 */ 1253 vstart = va->va_start + 1; 1254 node = node->rb_right; 1255 break; 1256 } 1257 } 1258 } 1259 } 1260 1261 return NULL; 1262 } 1263 1264 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1265 #include <linux/random.h> 1266 1267 static struct vmap_area * 1268 find_vmap_lowest_linear_match(unsigned long size, 1269 unsigned long align, unsigned long vstart) 1270 { 1271 struct vmap_area *va; 1272 1273 list_for_each_entry(va, &free_vmap_area_list, list) { 1274 if (!is_within_this_va(va, size, align, vstart)) 1275 continue; 1276 1277 return va; 1278 } 1279 1280 return NULL; 1281 } 1282 1283 static void 1284 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1285 { 1286 struct vmap_area *va_1, *va_2; 1287 unsigned long vstart; 1288 unsigned int rnd; 1289 1290 get_random_bytes(&rnd, sizeof(rnd)); 1291 vstart = VMALLOC_START + rnd; 1292 1293 va_1 = find_vmap_lowest_match(size, align, vstart, false); 1294 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1295 1296 if (va_1 != va_2) 1297 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1298 va_1, va_2, vstart); 1299 } 1300 #endif 1301 1302 enum fit_type { 1303 NOTHING_FIT = 0, 1304 FL_FIT_TYPE = 1, /* full fit */ 1305 LE_FIT_TYPE = 2, /* left edge fit */ 1306 RE_FIT_TYPE = 3, /* right edge fit */ 1307 NE_FIT_TYPE = 4 /* no edge fit */ 1308 }; 1309 1310 static __always_inline enum fit_type 1311 classify_va_fit_type(struct vmap_area *va, 1312 unsigned long nva_start_addr, unsigned long size) 1313 { 1314 enum fit_type type; 1315 1316 /* Check if it is within VA. */ 1317 if (nva_start_addr < va->va_start || 1318 nva_start_addr + size > va->va_end) 1319 return NOTHING_FIT; 1320 1321 /* Now classify. */ 1322 if (va->va_start == nva_start_addr) { 1323 if (va->va_end == nva_start_addr + size) 1324 type = FL_FIT_TYPE; 1325 else 1326 type = LE_FIT_TYPE; 1327 } else if (va->va_end == nva_start_addr + size) { 1328 type = RE_FIT_TYPE; 1329 } else { 1330 type = NE_FIT_TYPE; 1331 } 1332 1333 return type; 1334 } 1335 1336 static __always_inline int 1337 adjust_va_to_fit_type(struct vmap_area *va, 1338 unsigned long nva_start_addr, unsigned long size, 1339 enum fit_type type) 1340 { 1341 struct vmap_area *lva = NULL; 1342 1343 if (type == FL_FIT_TYPE) { 1344 /* 1345 * No need to split VA, it fully fits. 1346 * 1347 * | | 1348 * V NVA V 1349 * |---------------| 1350 */ 1351 unlink_va(va, &free_vmap_area_root); 1352 kmem_cache_free(vmap_area_cachep, va); 1353 } else if (type == LE_FIT_TYPE) { 1354 /* 1355 * Split left edge of fit VA. 1356 * 1357 * | | 1358 * V NVA V R 1359 * |-------|-------| 1360 */ 1361 va->va_start += size; 1362 } else if (type == RE_FIT_TYPE) { 1363 /* 1364 * Split right edge of fit VA. 1365 * 1366 * | | 1367 * L V NVA V 1368 * |-------|-------| 1369 */ 1370 va->va_end = nva_start_addr; 1371 } else if (type == NE_FIT_TYPE) { 1372 /* 1373 * Split no edge of fit VA. 1374 * 1375 * | | 1376 * L V NVA V R 1377 * |---|-------|---| 1378 */ 1379 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1380 if (unlikely(!lva)) { 1381 /* 1382 * For percpu allocator we do not do any pre-allocation 1383 * and leave it as it is. The reason is it most likely 1384 * never ends up with NE_FIT_TYPE splitting. In case of 1385 * percpu allocations offsets and sizes are aligned to 1386 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1387 * are its main fitting cases. 1388 * 1389 * There are a few exceptions though, as an example it is 1390 * a first allocation (early boot up) when we have "one" 1391 * big free space that has to be split. 1392 * 1393 * Also we can hit this path in case of regular "vmap" 1394 * allocations, if "this" current CPU was not preloaded. 1395 * See the comment in alloc_vmap_area() why. If so, then 1396 * GFP_NOWAIT is used instead to get an extra object for 1397 * split purpose. That is rare and most time does not 1398 * occur. 1399 * 1400 * What happens if an allocation gets failed. Basically, 1401 * an "overflow" path is triggered to purge lazily freed 1402 * areas to free some memory, then, the "retry" path is 1403 * triggered to repeat one more time. See more details 1404 * in alloc_vmap_area() function. 1405 */ 1406 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1407 if (!lva) 1408 return -1; 1409 } 1410 1411 /* 1412 * Build the remainder. 1413 */ 1414 lva->va_start = va->va_start; 1415 lva->va_end = nva_start_addr; 1416 1417 /* 1418 * Shrink this VA to remaining size. 1419 */ 1420 va->va_start = nva_start_addr + size; 1421 } else { 1422 return -1; 1423 } 1424 1425 if (type != FL_FIT_TYPE) { 1426 augment_tree_propagate_from(va); 1427 1428 if (lva) /* type == NE_FIT_TYPE */ 1429 insert_vmap_area_augment(lva, &va->rb_node, 1430 &free_vmap_area_root, &free_vmap_area_list); 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Returns a start address of the newly allocated area, if success. 1438 * Otherwise a vend is returned that indicates failure. 1439 */ 1440 static __always_inline unsigned long 1441 __alloc_vmap_area(unsigned long size, unsigned long align, 1442 unsigned long vstart, unsigned long vend) 1443 { 1444 bool adjust_search_size = true; 1445 unsigned long nva_start_addr; 1446 struct vmap_area *va; 1447 enum fit_type type; 1448 int ret; 1449 1450 /* 1451 * Do not adjust when: 1452 * a) align <= PAGE_SIZE, because it does not make any sense. 1453 * All blocks(their start addresses) are at least PAGE_SIZE 1454 * aligned anyway; 1455 * b) a short range where a requested size corresponds to exactly 1456 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1457 * With adjusted search length an allocation would not succeed. 1458 */ 1459 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1460 adjust_search_size = false; 1461 1462 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size); 1463 if (unlikely(!va)) 1464 return vend; 1465 1466 if (va->va_start > vstart) 1467 nva_start_addr = ALIGN(va->va_start, align); 1468 else 1469 nva_start_addr = ALIGN(vstart, align); 1470 1471 /* Check the "vend" restriction. */ 1472 if (nva_start_addr + size > vend) 1473 return vend; 1474 1475 /* Classify what we have found. */ 1476 type = classify_va_fit_type(va, nva_start_addr, size); 1477 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1478 return vend; 1479 1480 /* Update the free vmap_area. */ 1481 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1482 if (ret) 1483 return vend; 1484 1485 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1486 find_vmap_lowest_match_check(size, align); 1487 #endif 1488 1489 return nva_start_addr; 1490 } 1491 1492 /* 1493 * Free a region of KVA allocated by alloc_vmap_area 1494 */ 1495 static void free_vmap_area(struct vmap_area *va) 1496 { 1497 /* 1498 * Remove from the busy tree/list. 1499 */ 1500 spin_lock(&vmap_area_lock); 1501 unlink_va(va, &vmap_area_root); 1502 spin_unlock(&vmap_area_lock); 1503 1504 /* 1505 * Insert/Merge it back to the free tree/list. 1506 */ 1507 spin_lock(&free_vmap_area_lock); 1508 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1509 spin_unlock(&free_vmap_area_lock); 1510 } 1511 1512 static inline void 1513 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1514 { 1515 struct vmap_area *va = NULL; 1516 1517 /* 1518 * Preload this CPU with one extra vmap_area object. It is used 1519 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1520 * a CPU that does an allocation is preloaded. 1521 * 1522 * We do it in non-atomic context, thus it allows us to use more 1523 * permissive allocation masks to be more stable under low memory 1524 * condition and high memory pressure. 1525 */ 1526 if (!this_cpu_read(ne_fit_preload_node)) 1527 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1528 1529 spin_lock(lock); 1530 1531 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1532 kmem_cache_free(vmap_area_cachep, va); 1533 } 1534 1535 /* 1536 * Allocate a region of KVA of the specified size and alignment, within the 1537 * vstart and vend. 1538 */ 1539 static struct vmap_area *alloc_vmap_area(unsigned long size, 1540 unsigned long align, 1541 unsigned long vstart, unsigned long vend, 1542 int node, gfp_t gfp_mask) 1543 { 1544 struct vmap_area *va; 1545 unsigned long freed; 1546 unsigned long addr; 1547 int purged = 0; 1548 int ret; 1549 1550 BUG_ON(!size); 1551 BUG_ON(offset_in_page(size)); 1552 BUG_ON(!is_power_of_2(align)); 1553 1554 if (unlikely(!vmap_initialized)) 1555 return ERR_PTR(-EBUSY); 1556 1557 might_sleep(); 1558 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1559 1560 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1561 if (unlikely(!va)) 1562 return ERR_PTR(-ENOMEM); 1563 1564 /* 1565 * Only scan the relevant parts containing pointers to other objects 1566 * to avoid false negatives. 1567 */ 1568 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1569 1570 retry: 1571 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1572 addr = __alloc_vmap_area(size, align, vstart, vend); 1573 spin_unlock(&free_vmap_area_lock); 1574 1575 /* 1576 * If an allocation fails, the "vend" address is 1577 * returned. Therefore trigger the overflow path. 1578 */ 1579 if (unlikely(addr == vend)) 1580 goto overflow; 1581 1582 va->va_start = addr; 1583 va->va_end = addr + size; 1584 va->vm = NULL; 1585 1586 spin_lock(&vmap_area_lock); 1587 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1588 spin_unlock(&vmap_area_lock); 1589 1590 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1591 BUG_ON(va->va_start < vstart); 1592 BUG_ON(va->va_end > vend); 1593 1594 ret = kasan_populate_vmalloc(addr, size); 1595 if (ret) { 1596 free_vmap_area(va); 1597 return ERR_PTR(ret); 1598 } 1599 1600 return va; 1601 1602 overflow: 1603 if (!purged) { 1604 purge_vmap_area_lazy(); 1605 purged = 1; 1606 goto retry; 1607 } 1608 1609 freed = 0; 1610 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1611 1612 if (freed > 0) { 1613 purged = 0; 1614 goto retry; 1615 } 1616 1617 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1618 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1619 size); 1620 1621 kmem_cache_free(vmap_area_cachep, va); 1622 return ERR_PTR(-EBUSY); 1623 } 1624 1625 int register_vmap_purge_notifier(struct notifier_block *nb) 1626 { 1627 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1628 } 1629 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1630 1631 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1632 { 1633 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1634 } 1635 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1636 1637 /* 1638 * lazy_max_pages is the maximum amount of virtual address space we gather up 1639 * before attempting to purge with a TLB flush. 1640 * 1641 * There is a tradeoff here: a larger number will cover more kernel page tables 1642 * and take slightly longer to purge, but it will linearly reduce the number of 1643 * global TLB flushes that must be performed. It would seem natural to scale 1644 * this number up linearly with the number of CPUs (because vmapping activity 1645 * could also scale linearly with the number of CPUs), however it is likely 1646 * that in practice, workloads might be constrained in other ways that mean 1647 * vmap activity will not scale linearly with CPUs. Also, I want to be 1648 * conservative and not introduce a big latency on huge systems, so go with 1649 * a less aggressive log scale. It will still be an improvement over the old 1650 * code, and it will be simple to change the scale factor if we find that it 1651 * becomes a problem on bigger systems. 1652 */ 1653 static unsigned long lazy_max_pages(void) 1654 { 1655 unsigned int log; 1656 1657 log = fls(num_online_cpus()); 1658 1659 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1660 } 1661 1662 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1663 1664 /* 1665 * Serialize vmap purging. There is no actual critical section protected 1666 * by this look, but we want to avoid concurrent calls for performance 1667 * reasons and to make the pcpu_get_vm_areas more deterministic. 1668 */ 1669 static DEFINE_MUTEX(vmap_purge_lock); 1670 1671 /* for per-CPU blocks */ 1672 static void purge_fragmented_blocks_allcpus(void); 1673 1674 /* 1675 * Purges all lazily-freed vmap areas. 1676 */ 1677 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1678 { 1679 unsigned long resched_threshold; 1680 struct list_head local_pure_list; 1681 struct vmap_area *va, *n_va; 1682 1683 lockdep_assert_held(&vmap_purge_lock); 1684 1685 spin_lock(&purge_vmap_area_lock); 1686 purge_vmap_area_root = RB_ROOT; 1687 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1688 spin_unlock(&purge_vmap_area_lock); 1689 1690 if (unlikely(list_empty(&local_pure_list))) 1691 return false; 1692 1693 start = min(start, 1694 list_first_entry(&local_pure_list, 1695 struct vmap_area, list)->va_start); 1696 1697 end = max(end, 1698 list_last_entry(&local_pure_list, 1699 struct vmap_area, list)->va_end); 1700 1701 flush_tlb_kernel_range(start, end); 1702 resched_threshold = lazy_max_pages() << 1; 1703 1704 spin_lock(&free_vmap_area_lock); 1705 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1706 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1707 unsigned long orig_start = va->va_start; 1708 unsigned long orig_end = va->va_end; 1709 1710 /* 1711 * Finally insert or merge lazily-freed area. It is 1712 * detached and there is no need to "unlink" it from 1713 * anything. 1714 */ 1715 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1716 &free_vmap_area_list); 1717 1718 if (!va) 1719 continue; 1720 1721 if (is_vmalloc_or_module_addr((void *)orig_start)) 1722 kasan_release_vmalloc(orig_start, orig_end, 1723 va->va_start, va->va_end); 1724 1725 atomic_long_sub(nr, &vmap_lazy_nr); 1726 1727 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1728 cond_resched_lock(&free_vmap_area_lock); 1729 } 1730 spin_unlock(&free_vmap_area_lock); 1731 return true; 1732 } 1733 1734 /* 1735 * Kick off a purge of the outstanding lazy areas. 1736 */ 1737 static void purge_vmap_area_lazy(void) 1738 { 1739 mutex_lock(&vmap_purge_lock); 1740 purge_fragmented_blocks_allcpus(); 1741 __purge_vmap_area_lazy(ULONG_MAX, 0); 1742 mutex_unlock(&vmap_purge_lock); 1743 } 1744 1745 static void drain_vmap_area_work(struct work_struct *work) 1746 { 1747 unsigned long nr_lazy; 1748 1749 do { 1750 mutex_lock(&vmap_purge_lock); 1751 __purge_vmap_area_lazy(ULONG_MAX, 0); 1752 mutex_unlock(&vmap_purge_lock); 1753 1754 /* Recheck if further work is required. */ 1755 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1756 } while (nr_lazy > lazy_max_pages()); 1757 } 1758 1759 /* 1760 * Free a vmap area, caller ensuring that the area has been unmapped 1761 * and flush_cache_vunmap had been called for the correct range 1762 * previously. 1763 */ 1764 static void free_vmap_area_noflush(struct vmap_area *va) 1765 { 1766 unsigned long nr_lazy; 1767 1768 spin_lock(&vmap_area_lock); 1769 unlink_va(va, &vmap_area_root); 1770 spin_unlock(&vmap_area_lock); 1771 1772 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1773 PAGE_SHIFT, &vmap_lazy_nr); 1774 1775 /* 1776 * Merge or place it to the purge tree/list. 1777 */ 1778 spin_lock(&purge_vmap_area_lock); 1779 merge_or_add_vmap_area(va, 1780 &purge_vmap_area_root, &purge_vmap_area_list); 1781 spin_unlock(&purge_vmap_area_lock); 1782 1783 /* After this point, we may free va at any time */ 1784 if (unlikely(nr_lazy > lazy_max_pages())) 1785 schedule_work(&drain_vmap_work); 1786 } 1787 1788 /* 1789 * Free and unmap a vmap area 1790 */ 1791 static void free_unmap_vmap_area(struct vmap_area *va) 1792 { 1793 flush_cache_vunmap(va->va_start, va->va_end); 1794 vunmap_range_noflush(va->va_start, va->va_end); 1795 if (debug_pagealloc_enabled_static()) 1796 flush_tlb_kernel_range(va->va_start, va->va_end); 1797 1798 free_vmap_area_noflush(va); 1799 } 1800 1801 static struct vmap_area *find_vmap_area(unsigned long addr) 1802 { 1803 struct vmap_area *va; 1804 1805 spin_lock(&vmap_area_lock); 1806 va = __find_vmap_area(addr); 1807 spin_unlock(&vmap_area_lock); 1808 1809 return va; 1810 } 1811 1812 /*** Per cpu kva allocator ***/ 1813 1814 /* 1815 * vmap space is limited especially on 32 bit architectures. Ensure there is 1816 * room for at least 16 percpu vmap blocks per CPU. 1817 */ 1818 /* 1819 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1820 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1821 * instead (we just need a rough idea) 1822 */ 1823 #if BITS_PER_LONG == 32 1824 #define VMALLOC_SPACE (128UL*1024*1024) 1825 #else 1826 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1827 #endif 1828 1829 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1830 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1831 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1832 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1833 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1834 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1835 #define VMAP_BBMAP_BITS \ 1836 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1837 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1838 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1839 1840 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1841 1842 struct vmap_block_queue { 1843 spinlock_t lock; 1844 struct list_head free; 1845 }; 1846 1847 struct vmap_block { 1848 spinlock_t lock; 1849 struct vmap_area *va; 1850 unsigned long free, dirty; 1851 unsigned long dirty_min, dirty_max; /*< dirty range */ 1852 struct list_head free_list; 1853 struct rcu_head rcu_head; 1854 struct list_head purge; 1855 }; 1856 1857 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1858 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1859 1860 /* 1861 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1862 * in the free path. Could get rid of this if we change the API to return a 1863 * "cookie" from alloc, to be passed to free. But no big deal yet. 1864 */ 1865 static DEFINE_XARRAY(vmap_blocks); 1866 1867 /* 1868 * We should probably have a fallback mechanism to allocate virtual memory 1869 * out of partially filled vmap blocks. However vmap block sizing should be 1870 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1871 * big problem. 1872 */ 1873 1874 static unsigned long addr_to_vb_idx(unsigned long addr) 1875 { 1876 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1877 addr /= VMAP_BLOCK_SIZE; 1878 return addr; 1879 } 1880 1881 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1882 { 1883 unsigned long addr; 1884 1885 addr = va_start + (pages_off << PAGE_SHIFT); 1886 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1887 return (void *)addr; 1888 } 1889 1890 /** 1891 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1892 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1893 * @order: how many 2^order pages should be occupied in newly allocated block 1894 * @gfp_mask: flags for the page level allocator 1895 * 1896 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1897 */ 1898 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1899 { 1900 struct vmap_block_queue *vbq; 1901 struct vmap_block *vb; 1902 struct vmap_area *va; 1903 unsigned long vb_idx; 1904 int node, err; 1905 void *vaddr; 1906 1907 node = numa_node_id(); 1908 1909 vb = kmalloc_node(sizeof(struct vmap_block), 1910 gfp_mask & GFP_RECLAIM_MASK, node); 1911 if (unlikely(!vb)) 1912 return ERR_PTR(-ENOMEM); 1913 1914 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1915 VMALLOC_START, VMALLOC_END, 1916 node, gfp_mask); 1917 if (IS_ERR(va)) { 1918 kfree(vb); 1919 return ERR_CAST(va); 1920 } 1921 1922 vaddr = vmap_block_vaddr(va->va_start, 0); 1923 spin_lock_init(&vb->lock); 1924 vb->va = va; 1925 /* At least something should be left free */ 1926 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1927 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1928 vb->dirty = 0; 1929 vb->dirty_min = VMAP_BBMAP_BITS; 1930 vb->dirty_max = 0; 1931 INIT_LIST_HEAD(&vb->free_list); 1932 1933 vb_idx = addr_to_vb_idx(va->va_start); 1934 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1935 if (err) { 1936 kfree(vb); 1937 free_vmap_area(va); 1938 return ERR_PTR(err); 1939 } 1940 1941 vbq = &get_cpu_var(vmap_block_queue); 1942 spin_lock(&vbq->lock); 1943 list_add_tail_rcu(&vb->free_list, &vbq->free); 1944 spin_unlock(&vbq->lock); 1945 put_cpu_var(vmap_block_queue); 1946 1947 return vaddr; 1948 } 1949 1950 static void free_vmap_block(struct vmap_block *vb) 1951 { 1952 struct vmap_block *tmp; 1953 1954 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1955 BUG_ON(tmp != vb); 1956 1957 free_vmap_area_noflush(vb->va); 1958 kfree_rcu(vb, rcu_head); 1959 } 1960 1961 static void purge_fragmented_blocks(int cpu) 1962 { 1963 LIST_HEAD(purge); 1964 struct vmap_block *vb; 1965 struct vmap_block *n_vb; 1966 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1967 1968 rcu_read_lock(); 1969 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1970 1971 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1972 continue; 1973 1974 spin_lock(&vb->lock); 1975 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1976 vb->free = 0; /* prevent further allocs after releasing lock */ 1977 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1978 vb->dirty_min = 0; 1979 vb->dirty_max = VMAP_BBMAP_BITS; 1980 spin_lock(&vbq->lock); 1981 list_del_rcu(&vb->free_list); 1982 spin_unlock(&vbq->lock); 1983 spin_unlock(&vb->lock); 1984 list_add_tail(&vb->purge, &purge); 1985 } else 1986 spin_unlock(&vb->lock); 1987 } 1988 rcu_read_unlock(); 1989 1990 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1991 list_del(&vb->purge); 1992 free_vmap_block(vb); 1993 } 1994 } 1995 1996 static void purge_fragmented_blocks_allcpus(void) 1997 { 1998 int cpu; 1999 2000 for_each_possible_cpu(cpu) 2001 purge_fragmented_blocks(cpu); 2002 } 2003 2004 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2005 { 2006 struct vmap_block_queue *vbq; 2007 struct vmap_block *vb; 2008 void *vaddr = NULL; 2009 unsigned int order; 2010 2011 BUG_ON(offset_in_page(size)); 2012 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2013 if (WARN_ON(size == 0)) { 2014 /* 2015 * Allocating 0 bytes isn't what caller wants since 2016 * get_order(0) returns funny result. Just warn and terminate 2017 * early. 2018 */ 2019 return NULL; 2020 } 2021 order = get_order(size); 2022 2023 rcu_read_lock(); 2024 vbq = &get_cpu_var(vmap_block_queue); 2025 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2026 unsigned long pages_off; 2027 2028 spin_lock(&vb->lock); 2029 if (vb->free < (1UL << order)) { 2030 spin_unlock(&vb->lock); 2031 continue; 2032 } 2033 2034 pages_off = VMAP_BBMAP_BITS - vb->free; 2035 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2036 vb->free -= 1UL << order; 2037 if (vb->free == 0) { 2038 spin_lock(&vbq->lock); 2039 list_del_rcu(&vb->free_list); 2040 spin_unlock(&vbq->lock); 2041 } 2042 2043 spin_unlock(&vb->lock); 2044 break; 2045 } 2046 2047 put_cpu_var(vmap_block_queue); 2048 rcu_read_unlock(); 2049 2050 /* Allocate new block if nothing was found */ 2051 if (!vaddr) 2052 vaddr = new_vmap_block(order, gfp_mask); 2053 2054 return vaddr; 2055 } 2056 2057 static void vb_free(unsigned long addr, unsigned long size) 2058 { 2059 unsigned long offset; 2060 unsigned int order; 2061 struct vmap_block *vb; 2062 2063 BUG_ON(offset_in_page(size)); 2064 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2065 2066 flush_cache_vunmap(addr, addr + size); 2067 2068 order = get_order(size); 2069 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2070 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2071 2072 vunmap_range_noflush(addr, addr + size); 2073 2074 if (debug_pagealloc_enabled_static()) 2075 flush_tlb_kernel_range(addr, addr + size); 2076 2077 spin_lock(&vb->lock); 2078 2079 /* Expand dirty range */ 2080 vb->dirty_min = min(vb->dirty_min, offset); 2081 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2082 2083 vb->dirty += 1UL << order; 2084 if (vb->dirty == VMAP_BBMAP_BITS) { 2085 BUG_ON(vb->free); 2086 spin_unlock(&vb->lock); 2087 free_vmap_block(vb); 2088 } else 2089 spin_unlock(&vb->lock); 2090 } 2091 2092 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2093 { 2094 int cpu; 2095 2096 if (unlikely(!vmap_initialized)) 2097 return; 2098 2099 might_sleep(); 2100 2101 for_each_possible_cpu(cpu) { 2102 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2103 struct vmap_block *vb; 2104 2105 rcu_read_lock(); 2106 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2107 spin_lock(&vb->lock); 2108 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2109 unsigned long va_start = vb->va->va_start; 2110 unsigned long s, e; 2111 2112 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2113 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2114 2115 start = min(s, start); 2116 end = max(e, end); 2117 2118 flush = 1; 2119 } 2120 spin_unlock(&vb->lock); 2121 } 2122 rcu_read_unlock(); 2123 } 2124 2125 mutex_lock(&vmap_purge_lock); 2126 purge_fragmented_blocks_allcpus(); 2127 if (!__purge_vmap_area_lazy(start, end) && flush) 2128 flush_tlb_kernel_range(start, end); 2129 mutex_unlock(&vmap_purge_lock); 2130 } 2131 2132 /** 2133 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2134 * 2135 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2136 * to amortize TLB flushing overheads. What this means is that any page you 2137 * have now, may, in a former life, have been mapped into kernel virtual 2138 * address by the vmap layer and so there might be some CPUs with TLB entries 2139 * still referencing that page (additional to the regular 1:1 kernel mapping). 2140 * 2141 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2142 * be sure that none of the pages we have control over will have any aliases 2143 * from the vmap layer. 2144 */ 2145 void vm_unmap_aliases(void) 2146 { 2147 unsigned long start = ULONG_MAX, end = 0; 2148 int flush = 0; 2149 2150 _vm_unmap_aliases(start, end, flush); 2151 } 2152 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2153 2154 /** 2155 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2156 * @mem: the pointer returned by vm_map_ram 2157 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2158 */ 2159 void vm_unmap_ram(const void *mem, unsigned int count) 2160 { 2161 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2162 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2163 struct vmap_area *va; 2164 2165 might_sleep(); 2166 BUG_ON(!addr); 2167 BUG_ON(addr < VMALLOC_START); 2168 BUG_ON(addr > VMALLOC_END); 2169 BUG_ON(!PAGE_ALIGNED(addr)); 2170 2171 kasan_poison_vmalloc(mem, size); 2172 2173 if (likely(count <= VMAP_MAX_ALLOC)) { 2174 debug_check_no_locks_freed(mem, size); 2175 vb_free(addr, size); 2176 return; 2177 } 2178 2179 va = find_vmap_area(addr); 2180 BUG_ON(!va); 2181 debug_check_no_locks_freed((void *)va->va_start, 2182 (va->va_end - va->va_start)); 2183 free_unmap_vmap_area(va); 2184 } 2185 EXPORT_SYMBOL(vm_unmap_ram); 2186 2187 /** 2188 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2189 * @pages: an array of pointers to the pages to be mapped 2190 * @count: number of pages 2191 * @node: prefer to allocate data structures on this node 2192 * 2193 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2194 * faster than vmap so it's good. But if you mix long-life and short-life 2195 * objects with vm_map_ram(), it could consume lots of address space through 2196 * fragmentation (especially on a 32bit machine). You could see failures in 2197 * the end. Please use this function for short-lived objects. 2198 * 2199 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2200 */ 2201 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2202 { 2203 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2204 unsigned long addr; 2205 void *mem; 2206 2207 if (likely(count <= VMAP_MAX_ALLOC)) { 2208 mem = vb_alloc(size, GFP_KERNEL); 2209 if (IS_ERR(mem)) 2210 return NULL; 2211 addr = (unsigned long)mem; 2212 } else { 2213 struct vmap_area *va; 2214 va = alloc_vmap_area(size, PAGE_SIZE, 2215 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2216 if (IS_ERR(va)) 2217 return NULL; 2218 2219 addr = va->va_start; 2220 mem = (void *)addr; 2221 } 2222 2223 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2224 pages, PAGE_SHIFT) < 0) { 2225 vm_unmap_ram(mem, count); 2226 return NULL; 2227 } 2228 2229 /* 2230 * Mark the pages as accessible, now that they are mapped. 2231 * With hardware tag-based KASAN, marking is skipped for 2232 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2233 */ 2234 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2235 2236 return mem; 2237 } 2238 EXPORT_SYMBOL(vm_map_ram); 2239 2240 static struct vm_struct *vmlist __initdata; 2241 2242 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2243 { 2244 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2245 return vm->page_order; 2246 #else 2247 return 0; 2248 #endif 2249 } 2250 2251 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2252 { 2253 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2254 vm->page_order = order; 2255 #else 2256 BUG_ON(order != 0); 2257 #endif 2258 } 2259 2260 /** 2261 * vm_area_add_early - add vmap area early during boot 2262 * @vm: vm_struct to add 2263 * 2264 * This function is used to add fixed kernel vm area to vmlist before 2265 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2266 * should contain proper values and the other fields should be zero. 2267 * 2268 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2269 */ 2270 void __init vm_area_add_early(struct vm_struct *vm) 2271 { 2272 struct vm_struct *tmp, **p; 2273 2274 BUG_ON(vmap_initialized); 2275 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2276 if (tmp->addr >= vm->addr) { 2277 BUG_ON(tmp->addr < vm->addr + vm->size); 2278 break; 2279 } else 2280 BUG_ON(tmp->addr + tmp->size > vm->addr); 2281 } 2282 vm->next = *p; 2283 *p = vm; 2284 } 2285 2286 /** 2287 * vm_area_register_early - register vmap area early during boot 2288 * @vm: vm_struct to register 2289 * @align: requested alignment 2290 * 2291 * This function is used to register kernel vm area before 2292 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2293 * proper values on entry and other fields should be zero. On return, 2294 * vm->addr contains the allocated address. 2295 * 2296 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2297 */ 2298 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2299 { 2300 unsigned long addr = ALIGN(VMALLOC_START, align); 2301 struct vm_struct *cur, **p; 2302 2303 BUG_ON(vmap_initialized); 2304 2305 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2306 if ((unsigned long)cur->addr - addr >= vm->size) 2307 break; 2308 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2309 } 2310 2311 BUG_ON(addr > VMALLOC_END - vm->size); 2312 vm->addr = (void *)addr; 2313 vm->next = *p; 2314 *p = vm; 2315 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2316 } 2317 2318 static void vmap_init_free_space(void) 2319 { 2320 unsigned long vmap_start = 1; 2321 const unsigned long vmap_end = ULONG_MAX; 2322 struct vmap_area *busy, *free; 2323 2324 /* 2325 * B F B B B F 2326 * -|-----|.....|-----|-----|-----|.....|- 2327 * | The KVA space | 2328 * |<--------------------------------->| 2329 */ 2330 list_for_each_entry(busy, &vmap_area_list, list) { 2331 if (busy->va_start - vmap_start > 0) { 2332 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2333 if (!WARN_ON_ONCE(!free)) { 2334 free->va_start = vmap_start; 2335 free->va_end = busy->va_start; 2336 2337 insert_vmap_area_augment(free, NULL, 2338 &free_vmap_area_root, 2339 &free_vmap_area_list); 2340 } 2341 } 2342 2343 vmap_start = busy->va_end; 2344 } 2345 2346 if (vmap_end - vmap_start > 0) { 2347 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2348 if (!WARN_ON_ONCE(!free)) { 2349 free->va_start = vmap_start; 2350 free->va_end = vmap_end; 2351 2352 insert_vmap_area_augment(free, NULL, 2353 &free_vmap_area_root, 2354 &free_vmap_area_list); 2355 } 2356 } 2357 } 2358 2359 void __init vmalloc_init(void) 2360 { 2361 struct vmap_area *va; 2362 struct vm_struct *tmp; 2363 int i; 2364 2365 /* 2366 * Create the cache for vmap_area objects. 2367 */ 2368 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2369 2370 for_each_possible_cpu(i) { 2371 struct vmap_block_queue *vbq; 2372 struct vfree_deferred *p; 2373 2374 vbq = &per_cpu(vmap_block_queue, i); 2375 spin_lock_init(&vbq->lock); 2376 INIT_LIST_HEAD(&vbq->free); 2377 p = &per_cpu(vfree_deferred, i); 2378 init_llist_head(&p->list); 2379 INIT_WORK(&p->wq, free_work); 2380 } 2381 2382 /* Import existing vmlist entries. */ 2383 for (tmp = vmlist; tmp; tmp = tmp->next) { 2384 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2385 if (WARN_ON_ONCE(!va)) 2386 continue; 2387 2388 va->va_start = (unsigned long)tmp->addr; 2389 va->va_end = va->va_start + tmp->size; 2390 va->vm = tmp; 2391 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2392 } 2393 2394 /* 2395 * Now we can initialize a free vmap space. 2396 */ 2397 vmap_init_free_space(); 2398 vmap_initialized = true; 2399 } 2400 2401 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2402 struct vmap_area *va, unsigned long flags, const void *caller) 2403 { 2404 vm->flags = flags; 2405 vm->addr = (void *)va->va_start; 2406 vm->size = va->va_end - va->va_start; 2407 vm->caller = caller; 2408 va->vm = vm; 2409 } 2410 2411 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2412 unsigned long flags, const void *caller) 2413 { 2414 spin_lock(&vmap_area_lock); 2415 setup_vmalloc_vm_locked(vm, va, flags, caller); 2416 spin_unlock(&vmap_area_lock); 2417 } 2418 2419 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2420 { 2421 /* 2422 * Before removing VM_UNINITIALIZED, 2423 * we should make sure that vm has proper values. 2424 * Pair with smp_rmb() in show_numa_info(). 2425 */ 2426 smp_wmb(); 2427 vm->flags &= ~VM_UNINITIALIZED; 2428 } 2429 2430 static struct vm_struct *__get_vm_area_node(unsigned long size, 2431 unsigned long align, unsigned long shift, unsigned long flags, 2432 unsigned long start, unsigned long end, int node, 2433 gfp_t gfp_mask, const void *caller) 2434 { 2435 struct vmap_area *va; 2436 struct vm_struct *area; 2437 unsigned long requested_size = size; 2438 2439 BUG_ON(in_interrupt()); 2440 size = ALIGN(size, 1ul << shift); 2441 if (unlikely(!size)) 2442 return NULL; 2443 2444 if (flags & VM_IOREMAP) 2445 align = 1ul << clamp_t(int, get_count_order_long(size), 2446 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2447 2448 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2449 if (unlikely(!area)) 2450 return NULL; 2451 2452 if (!(flags & VM_NO_GUARD)) 2453 size += PAGE_SIZE; 2454 2455 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2456 if (IS_ERR(va)) { 2457 kfree(area); 2458 return NULL; 2459 } 2460 2461 setup_vmalloc_vm(area, va, flags, caller); 2462 2463 /* 2464 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2465 * best-effort approach, as they can be mapped outside of vmalloc code. 2466 * For VM_ALLOC mappings, the pages are marked as accessible after 2467 * getting mapped in __vmalloc_node_range(). 2468 * With hardware tag-based KASAN, marking is skipped for 2469 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2470 */ 2471 if (!(flags & VM_ALLOC)) 2472 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2473 KASAN_VMALLOC_PROT_NORMAL); 2474 2475 return area; 2476 } 2477 2478 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2479 unsigned long start, unsigned long end, 2480 const void *caller) 2481 { 2482 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2483 NUMA_NO_NODE, GFP_KERNEL, caller); 2484 } 2485 2486 /** 2487 * get_vm_area - reserve a contiguous kernel virtual area 2488 * @size: size of the area 2489 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2490 * 2491 * Search an area of @size in the kernel virtual mapping area, 2492 * and reserved it for out purposes. Returns the area descriptor 2493 * on success or %NULL on failure. 2494 * 2495 * Return: the area descriptor on success or %NULL on failure. 2496 */ 2497 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2498 { 2499 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2500 VMALLOC_START, VMALLOC_END, 2501 NUMA_NO_NODE, GFP_KERNEL, 2502 __builtin_return_address(0)); 2503 } 2504 2505 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2506 const void *caller) 2507 { 2508 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2509 VMALLOC_START, VMALLOC_END, 2510 NUMA_NO_NODE, GFP_KERNEL, caller); 2511 } 2512 2513 /** 2514 * find_vm_area - find a continuous kernel virtual area 2515 * @addr: base address 2516 * 2517 * Search for the kernel VM area starting at @addr, and return it. 2518 * It is up to the caller to do all required locking to keep the returned 2519 * pointer valid. 2520 * 2521 * Return: the area descriptor on success or %NULL on failure. 2522 */ 2523 struct vm_struct *find_vm_area(const void *addr) 2524 { 2525 struct vmap_area *va; 2526 2527 va = find_vmap_area((unsigned long)addr); 2528 if (!va) 2529 return NULL; 2530 2531 return va->vm; 2532 } 2533 2534 /** 2535 * remove_vm_area - find and remove a continuous kernel virtual area 2536 * @addr: base address 2537 * 2538 * Search for the kernel VM area starting at @addr, and remove it. 2539 * This function returns the found VM area, but using it is NOT safe 2540 * on SMP machines, except for its size or flags. 2541 * 2542 * Return: the area descriptor on success or %NULL on failure. 2543 */ 2544 struct vm_struct *remove_vm_area(const void *addr) 2545 { 2546 struct vmap_area *va; 2547 2548 might_sleep(); 2549 2550 spin_lock(&vmap_area_lock); 2551 va = __find_vmap_area((unsigned long)addr); 2552 if (va && va->vm) { 2553 struct vm_struct *vm = va->vm; 2554 2555 va->vm = NULL; 2556 spin_unlock(&vmap_area_lock); 2557 2558 kasan_free_module_shadow(vm); 2559 free_unmap_vmap_area(va); 2560 2561 return vm; 2562 } 2563 2564 spin_unlock(&vmap_area_lock); 2565 return NULL; 2566 } 2567 2568 static inline void set_area_direct_map(const struct vm_struct *area, 2569 int (*set_direct_map)(struct page *page)) 2570 { 2571 int i; 2572 2573 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2574 for (i = 0; i < area->nr_pages; i++) 2575 if (page_address(area->pages[i])) 2576 set_direct_map(area->pages[i]); 2577 } 2578 2579 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2580 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2581 { 2582 unsigned long start = ULONG_MAX, end = 0; 2583 unsigned int page_order = vm_area_page_order(area); 2584 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2585 int flush_dmap = 0; 2586 int i; 2587 2588 remove_vm_area(area->addr); 2589 2590 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2591 if (!flush_reset) 2592 return; 2593 2594 /* 2595 * If not deallocating pages, just do the flush of the VM area and 2596 * return. 2597 */ 2598 if (!deallocate_pages) { 2599 vm_unmap_aliases(); 2600 return; 2601 } 2602 2603 /* 2604 * If execution gets here, flush the vm mapping and reset the direct 2605 * map. Find the start and end range of the direct mappings to make sure 2606 * the vm_unmap_aliases() flush includes the direct map. 2607 */ 2608 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2609 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2610 if (addr) { 2611 unsigned long page_size; 2612 2613 page_size = PAGE_SIZE << page_order; 2614 start = min(addr, start); 2615 end = max(addr + page_size, end); 2616 flush_dmap = 1; 2617 } 2618 } 2619 2620 /* 2621 * Set direct map to something invalid so that it won't be cached if 2622 * there are any accesses after the TLB flush, then flush the TLB and 2623 * reset the direct map permissions to the default. 2624 */ 2625 set_area_direct_map(area, set_direct_map_invalid_noflush); 2626 _vm_unmap_aliases(start, end, flush_dmap); 2627 set_area_direct_map(area, set_direct_map_default_noflush); 2628 } 2629 2630 static void __vunmap(const void *addr, int deallocate_pages) 2631 { 2632 struct vm_struct *area; 2633 2634 if (!addr) 2635 return; 2636 2637 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2638 addr)) 2639 return; 2640 2641 area = find_vm_area(addr); 2642 if (unlikely(!area)) { 2643 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2644 addr); 2645 return; 2646 } 2647 2648 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2649 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2650 2651 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2652 2653 vm_remove_mappings(area, deallocate_pages); 2654 2655 if (deallocate_pages) { 2656 int i; 2657 2658 for (i = 0; i < area->nr_pages; i++) { 2659 struct page *page = area->pages[i]; 2660 2661 BUG_ON(!page); 2662 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2663 /* 2664 * High-order allocs for huge vmallocs are split, so 2665 * can be freed as an array of order-0 allocations 2666 */ 2667 __free_pages(page, 0); 2668 cond_resched(); 2669 } 2670 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2671 2672 kvfree(area->pages); 2673 } 2674 2675 kfree(area); 2676 } 2677 2678 static inline void __vfree_deferred(const void *addr) 2679 { 2680 /* 2681 * Use raw_cpu_ptr() because this can be called from preemptible 2682 * context. Preemption is absolutely fine here, because the llist_add() 2683 * implementation is lockless, so it works even if we are adding to 2684 * another cpu's list. schedule_work() should be fine with this too. 2685 */ 2686 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2687 2688 if (llist_add((struct llist_node *)addr, &p->list)) 2689 schedule_work(&p->wq); 2690 } 2691 2692 /** 2693 * vfree_atomic - release memory allocated by vmalloc() 2694 * @addr: memory base address 2695 * 2696 * This one is just like vfree() but can be called in any atomic context 2697 * except NMIs. 2698 */ 2699 void vfree_atomic(const void *addr) 2700 { 2701 BUG_ON(in_nmi()); 2702 2703 kmemleak_free(addr); 2704 2705 if (!addr) 2706 return; 2707 __vfree_deferred(addr); 2708 } 2709 2710 static void __vfree(const void *addr) 2711 { 2712 if (unlikely(in_interrupt())) 2713 __vfree_deferred(addr); 2714 else 2715 __vunmap(addr, 1); 2716 } 2717 2718 /** 2719 * vfree - Release memory allocated by vmalloc() 2720 * @addr: Memory base address 2721 * 2722 * Free the virtually continuous memory area starting at @addr, as obtained 2723 * from one of the vmalloc() family of APIs. This will usually also free the 2724 * physical memory underlying the virtual allocation, but that memory is 2725 * reference counted, so it will not be freed until the last user goes away. 2726 * 2727 * If @addr is NULL, no operation is performed. 2728 * 2729 * Context: 2730 * May sleep if called *not* from interrupt context. 2731 * Must not be called in NMI context (strictly speaking, it could be 2732 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2733 * conventions for vfree() arch-dependent would be a really bad idea). 2734 */ 2735 void vfree(const void *addr) 2736 { 2737 BUG_ON(in_nmi()); 2738 2739 kmemleak_free(addr); 2740 2741 might_sleep_if(!in_interrupt()); 2742 2743 if (!addr) 2744 return; 2745 2746 __vfree(addr); 2747 } 2748 EXPORT_SYMBOL(vfree); 2749 2750 /** 2751 * vunmap - release virtual mapping obtained by vmap() 2752 * @addr: memory base address 2753 * 2754 * Free the virtually contiguous memory area starting at @addr, 2755 * which was created from the page array passed to vmap(). 2756 * 2757 * Must not be called in interrupt context. 2758 */ 2759 void vunmap(const void *addr) 2760 { 2761 BUG_ON(in_interrupt()); 2762 might_sleep(); 2763 if (addr) 2764 __vunmap(addr, 0); 2765 } 2766 EXPORT_SYMBOL(vunmap); 2767 2768 /** 2769 * vmap - map an array of pages into virtually contiguous space 2770 * @pages: array of page pointers 2771 * @count: number of pages to map 2772 * @flags: vm_area->flags 2773 * @prot: page protection for the mapping 2774 * 2775 * Maps @count pages from @pages into contiguous kernel virtual space. 2776 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2777 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2778 * are transferred from the caller to vmap(), and will be freed / dropped when 2779 * vfree() is called on the return value. 2780 * 2781 * Return: the address of the area or %NULL on failure 2782 */ 2783 void *vmap(struct page **pages, unsigned int count, 2784 unsigned long flags, pgprot_t prot) 2785 { 2786 struct vm_struct *area; 2787 unsigned long addr; 2788 unsigned long size; /* In bytes */ 2789 2790 might_sleep(); 2791 2792 /* 2793 * Your top guard is someone else's bottom guard. Not having a top 2794 * guard compromises someone else's mappings too. 2795 */ 2796 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2797 flags &= ~VM_NO_GUARD; 2798 2799 if (count > totalram_pages()) 2800 return NULL; 2801 2802 size = (unsigned long)count << PAGE_SHIFT; 2803 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2804 if (!area) 2805 return NULL; 2806 2807 addr = (unsigned long)area->addr; 2808 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2809 pages, PAGE_SHIFT) < 0) { 2810 vunmap(area->addr); 2811 return NULL; 2812 } 2813 2814 if (flags & VM_MAP_PUT_PAGES) { 2815 area->pages = pages; 2816 area->nr_pages = count; 2817 } 2818 return area->addr; 2819 } 2820 EXPORT_SYMBOL(vmap); 2821 2822 #ifdef CONFIG_VMAP_PFN 2823 struct vmap_pfn_data { 2824 unsigned long *pfns; 2825 pgprot_t prot; 2826 unsigned int idx; 2827 }; 2828 2829 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2830 { 2831 struct vmap_pfn_data *data = private; 2832 2833 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2834 return -EINVAL; 2835 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2836 return 0; 2837 } 2838 2839 /** 2840 * vmap_pfn - map an array of PFNs into virtually contiguous space 2841 * @pfns: array of PFNs 2842 * @count: number of pages to map 2843 * @prot: page protection for the mapping 2844 * 2845 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2846 * the start address of the mapping. 2847 */ 2848 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2849 { 2850 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2851 struct vm_struct *area; 2852 2853 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2854 __builtin_return_address(0)); 2855 if (!area) 2856 return NULL; 2857 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2858 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2859 free_vm_area(area); 2860 return NULL; 2861 } 2862 return area->addr; 2863 } 2864 EXPORT_SYMBOL_GPL(vmap_pfn); 2865 #endif /* CONFIG_VMAP_PFN */ 2866 2867 static inline unsigned int 2868 vm_area_alloc_pages(gfp_t gfp, int nid, 2869 unsigned int order, unsigned int nr_pages, struct page **pages) 2870 { 2871 unsigned int nr_allocated = 0; 2872 struct page *page; 2873 int i; 2874 2875 /* 2876 * For order-0 pages we make use of bulk allocator, if 2877 * the page array is partly or not at all populated due 2878 * to fails, fallback to a single page allocator that is 2879 * more permissive. 2880 */ 2881 if (!order) { 2882 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2883 2884 while (nr_allocated < nr_pages) { 2885 unsigned int nr, nr_pages_request; 2886 2887 /* 2888 * A maximum allowed request is hard-coded and is 100 2889 * pages per call. That is done in order to prevent a 2890 * long preemption off scenario in the bulk-allocator 2891 * so the range is [1:100]. 2892 */ 2893 nr_pages_request = min(100U, nr_pages - nr_allocated); 2894 2895 /* memory allocation should consider mempolicy, we can't 2896 * wrongly use nearest node when nid == NUMA_NO_NODE, 2897 * otherwise memory may be allocated in only one node, 2898 * but mempolcy want to alloc memory by interleaving. 2899 */ 2900 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2901 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2902 nr_pages_request, 2903 pages + nr_allocated); 2904 2905 else 2906 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2907 nr_pages_request, 2908 pages + nr_allocated); 2909 2910 nr_allocated += nr; 2911 cond_resched(); 2912 2913 /* 2914 * If zero or pages were obtained partly, 2915 * fallback to a single page allocator. 2916 */ 2917 if (nr != nr_pages_request) 2918 break; 2919 } 2920 } 2921 2922 /* High-order pages or fallback path if "bulk" fails. */ 2923 2924 while (nr_allocated < nr_pages) { 2925 if (fatal_signal_pending(current)) 2926 break; 2927 2928 if (nid == NUMA_NO_NODE) 2929 page = alloc_pages(gfp, order); 2930 else 2931 page = alloc_pages_node(nid, gfp, order); 2932 if (unlikely(!page)) 2933 break; 2934 /* 2935 * Higher order allocations must be able to be treated as 2936 * indepdenent small pages by callers (as they can with 2937 * small-page vmallocs). Some drivers do their own refcounting 2938 * on vmalloc_to_page() pages, some use page->mapping, 2939 * page->lru, etc. 2940 */ 2941 if (order) 2942 split_page(page, order); 2943 2944 /* 2945 * Careful, we allocate and map page-order pages, but 2946 * tracking is done per PAGE_SIZE page so as to keep the 2947 * vm_struct APIs independent of the physical/mapped size. 2948 */ 2949 for (i = 0; i < (1U << order); i++) 2950 pages[nr_allocated + i] = page + i; 2951 2952 cond_resched(); 2953 nr_allocated += 1U << order; 2954 } 2955 2956 return nr_allocated; 2957 } 2958 2959 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2960 pgprot_t prot, unsigned int page_shift, 2961 int node) 2962 { 2963 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2964 bool nofail = gfp_mask & __GFP_NOFAIL; 2965 unsigned long addr = (unsigned long)area->addr; 2966 unsigned long size = get_vm_area_size(area); 2967 unsigned long array_size; 2968 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2969 unsigned int page_order; 2970 unsigned int flags; 2971 int ret; 2972 2973 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2974 gfp_mask |= __GFP_NOWARN; 2975 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2976 gfp_mask |= __GFP_HIGHMEM; 2977 2978 /* Please note that the recursion is strictly bounded. */ 2979 if (array_size > PAGE_SIZE) { 2980 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2981 area->caller); 2982 } else { 2983 area->pages = kmalloc_node(array_size, nested_gfp, node); 2984 } 2985 2986 if (!area->pages) { 2987 warn_alloc(gfp_mask, NULL, 2988 "vmalloc error: size %lu, failed to allocated page array size %lu", 2989 nr_small_pages * PAGE_SIZE, array_size); 2990 free_vm_area(area); 2991 return NULL; 2992 } 2993 2994 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2995 page_order = vm_area_page_order(area); 2996 2997 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 2998 node, page_order, nr_small_pages, area->pages); 2999 3000 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3001 if (gfp_mask & __GFP_ACCOUNT) { 3002 int i; 3003 3004 for (i = 0; i < area->nr_pages; i++) 3005 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3006 } 3007 3008 /* 3009 * If not enough pages were obtained to accomplish an 3010 * allocation request, free them via __vfree() if any. 3011 */ 3012 if (area->nr_pages != nr_small_pages) { 3013 warn_alloc(gfp_mask, NULL, 3014 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3015 area->nr_pages * PAGE_SIZE, page_order); 3016 goto fail; 3017 } 3018 3019 /* 3020 * page tables allocations ignore external gfp mask, enforce it 3021 * by the scope API 3022 */ 3023 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3024 flags = memalloc_nofs_save(); 3025 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3026 flags = memalloc_noio_save(); 3027 3028 do { 3029 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3030 page_shift); 3031 if (nofail && (ret < 0)) 3032 schedule_timeout_uninterruptible(1); 3033 } while (nofail && (ret < 0)); 3034 3035 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3036 memalloc_nofs_restore(flags); 3037 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3038 memalloc_noio_restore(flags); 3039 3040 if (ret < 0) { 3041 warn_alloc(gfp_mask, NULL, 3042 "vmalloc error: size %lu, failed to map pages", 3043 area->nr_pages * PAGE_SIZE); 3044 goto fail; 3045 } 3046 3047 return area->addr; 3048 3049 fail: 3050 __vfree(area->addr); 3051 return NULL; 3052 } 3053 3054 /** 3055 * __vmalloc_node_range - allocate virtually contiguous memory 3056 * @size: allocation size 3057 * @align: desired alignment 3058 * @start: vm area range start 3059 * @end: vm area range end 3060 * @gfp_mask: flags for the page level allocator 3061 * @prot: protection mask for the allocated pages 3062 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3063 * @node: node to use for allocation or NUMA_NO_NODE 3064 * @caller: caller's return address 3065 * 3066 * Allocate enough pages to cover @size from the page level 3067 * allocator with @gfp_mask flags. Please note that the full set of gfp 3068 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3069 * supported. 3070 * Zone modifiers are not supported. From the reclaim modifiers 3071 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3072 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3073 * __GFP_RETRY_MAYFAIL are not supported). 3074 * 3075 * __GFP_NOWARN can be used to suppress failures messages. 3076 * 3077 * Map them into contiguous kernel virtual space, using a pagetable 3078 * protection of @prot. 3079 * 3080 * Return: the address of the area or %NULL on failure 3081 */ 3082 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3083 unsigned long start, unsigned long end, gfp_t gfp_mask, 3084 pgprot_t prot, unsigned long vm_flags, int node, 3085 const void *caller) 3086 { 3087 struct vm_struct *area; 3088 void *ret; 3089 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3090 unsigned long real_size = size; 3091 unsigned long real_align = align; 3092 unsigned int shift = PAGE_SHIFT; 3093 3094 if (WARN_ON_ONCE(!size)) 3095 return NULL; 3096 3097 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3098 warn_alloc(gfp_mask, NULL, 3099 "vmalloc error: size %lu, exceeds total pages", 3100 real_size); 3101 return NULL; 3102 } 3103 3104 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3105 unsigned long size_per_node; 3106 3107 /* 3108 * Try huge pages. Only try for PAGE_KERNEL allocations, 3109 * others like modules don't yet expect huge pages in 3110 * their allocations due to apply_to_page_range not 3111 * supporting them. 3112 */ 3113 3114 size_per_node = size; 3115 if (node == NUMA_NO_NODE) 3116 size_per_node /= num_online_nodes(); 3117 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3118 shift = PMD_SHIFT; 3119 else 3120 shift = arch_vmap_pte_supported_shift(size_per_node); 3121 3122 align = max(real_align, 1UL << shift); 3123 size = ALIGN(real_size, 1UL << shift); 3124 } 3125 3126 again: 3127 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3128 VM_UNINITIALIZED | vm_flags, start, end, node, 3129 gfp_mask, caller); 3130 if (!area) { 3131 bool nofail = gfp_mask & __GFP_NOFAIL; 3132 warn_alloc(gfp_mask, NULL, 3133 "vmalloc error: size %lu, vm_struct allocation failed%s", 3134 real_size, (nofail) ? ". Retrying." : ""); 3135 if (nofail) { 3136 schedule_timeout_uninterruptible(1); 3137 goto again; 3138 } 3139 goto fail; 3140 } 3141 3142 /* 3143 * Prepare arguments for __vmalloc_area_node() and 3144 * kasan_unpoison_vmalloc(). 3145 */ 3146 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3147 if (kasan_hw_tags_enabled()) { 3148 /* 3149 * Modify protection bits to allow tagging. 3150 * This must be done before mapping. 3151 */ 3152 prot = arch_vmap_pgprot_tagged(prot); 3153 3154 /* 3155 * Skip page_alloc poisoning and zeroing for physical 3156 * pages backing VM_ALLOC mapping. Memory is instead 3157 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3158 */ 3159 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3160 } 3161 3162 /* Take note that the mapping is PAGE_KERNEL. */ 3163 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3164 } 3165 3166 /* Allocate physical pages and map them into vmalloc space. */ 3167 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3168 if (!ret) 3169 goto fail; 3170 3171 /* 3172 * Mark the pages as accessible, now that they are mapped. 3173 * The init condition should match the one in post_alloc_hook() 3174 * (except for the should_skip_init() check) to make sure that memory 3175 * is initialized under the same conditions regardless of the enabled 3176 * KASAN mode. 3177 * Tag-based KASAN modes only assign tags to normal non-executable 3178 * allocations, see __kasan_unpoison_vmalloc(). 3179 */ 3180 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3181 if (!want_init_on_free() && want_init_on_alloc(gfp_mask)) 3182 kasan_flags |= KASAN_VMALLOC_INIT; 3183 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3184 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3185 3186 /* 3187 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3188 * flag. It means that vm_struct is not fully initialized. 3189 * Now, it is fully initialized, so remove this flag here. 3190 */ 3191 clear_vm_uninitialized_flag(area); 3192 3193 size = PAGE_ALIGN(size); 3194 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3195 kmemleak_vmalloc(area, size, gfp_mask); 3196 3197 return area->addr; 3198 3199 fail: 3200 if (shift > PAGE_SHIFT) { 3201 shift = PAGE_SHIFT; 3202 align = real_align; 3203 size = real_size; 3204 goto again; 3205 } 3206 3207 return NULL; 3208 } 3209 3210 /** 3211 * __vmalloc_node - allocate virtually contiguous memory 3212 * @size: allocation size 3213 * @align: desired alignment 3214 * @gfp_mask: flags for the page level allocator 3215 * @node: node to use for allocation or NUMA_NO_NODE 3216 * @caller: caller's return address 3217 * 3218 * Allocate enough pages to cover @size from the page level allocator with 3219 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3220 * 3221 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3222 * and __GFP_NOFAIL are not supported 3223 * 3224 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3225 * with mm people. 3226 * 3227 * Return: pointer to the allocated memory or %NULL on error 3228 */ 3229 void *__vmalloc_node(unsigned long size, unsigned long align, 3230 gfp_t gfp_mask, int node, const void *caller) 3231 { 3232 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3233 gfp_mask, PAGE_KERNEL, 0, node, caller); 3234 } 3235 /* 3236 * This is only for performance analysis of vmalloc and stress purpose. 3237 * It is required by vmalloc test module, therefore do not use it other 3238 * than that. 3239 */ 3240 #ifdef CONFIG_TEST_VMALLOC_MODULE 3241 EXPORT_SYMBOL_GPL(__vmalloc_node); 3242 #endif 3243 3244 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3245 { 3246 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3247 __builtin_return_address(0)); 3248 } 3249 EXPORT_SYMBOL(__vmalloc); 3250 3251 /** 3252 * vmalloc - allocate virtually contiguous memory 3253 * @size: allocation size 3254 * 3255 * Allocate enough pages to cover @size from the page level 3256 * allocator and map them into contiguous kernel virtual space. 3257 * 3258 * For tight control over page level allocator and protection flags 3259 * use __vmalloc() instead. 3260 * 3261 * Return: pointer to the allocated memory or %NULL on error 3262 */ 3263 void *vmalloc(unsigned long size) 3264 { 3265 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3266 __builtin_return_address(0)); 3267 } 3268 EXPORT_SYMBOL(vmalloc); 3269 3270 /** 3271 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3272 * @size: allocation size 3273 * @gfp_mask: flags for the page level allocator 3274 * 3275 * Allocate enough pages to cover @size from the page level 3276 * allocator and map them into contiguous kernel virtual space. 3277 * If @size is greater than or equal to PMD_SIZE, allow using 3278 * huge pages for the memory 3279 * 3280 * Return: pointer to the allocated memory or %NULL on error 3281 */ 3282 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3283 { 3284 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3285 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3286 NUMA_NO_NODE, __builtin_return_address(0)); 3287 } 3288 EXPORT_SYMBOL_GPL(vmalloc_huge); 3289 3290 /** 3291 * vzalloc - allocate virtually contiguous memory with zero fill 3292 * @size: allocation size 3293 * 3294 * Allocate enough pages to cover @size from the page level 3295 * allocator and map them into contiguous kernel virtual space. 3296 * The memory allocated is set to zero. 3297 * 3298 * For tight control over page level allocator and protection flags 3299 * use __vmalloc() instead. 3300 * 3301 * Return: pointer to the allocated memory or %NULL on error 3302 */ 3303 void *vzalloc(unsigned long size) 3304 { 3305 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3306 __builtin_return_address(0)); 3307 } 3308 EXPORT_SYMBOL(vzalloc); 3309 3310 /** 3311 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3312 * @size: allocation size 3313 * 3314 * The resulting memory area is zeroed so it can be mapped to userspace 3315 * without leaking data. 3316 * 3317 * Return: pointer to the allocated memory or %NULL on error 3318 */ 3319 void *vmalloc_user(unsigned long size) 3320 { 3321 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3322 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3323 VM_USERMAP, NUMA_NO_NODE, 3324 __builtin_return_address(0)); 3325 } 3326 EXPORT_SYMBOL(vmalloc_user); 3327 3328 /** 3329 * vmalloc_node - allocate memory on a specific node 3330 * @size: allocation size 3331 * @node: numa node 3332 * 3333 * Allocate enough pages to cover @size from the page level 3334 * allocator and map them into contiguous kernel virtual space. 3335 * 3336 * For tight control over page level allocator and protection flags 3337 * use __vmalloc() instead. 3338 * 3339 * Return: pointer to the allocated memory or %NULL on error 3340 */ 3341 void *vmalloc_node(unsigned long size, int node) 3342 { 3343 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3344 __builtin_return_address(0)); 3345 } 3346 EXPORT_SYMBOL(vmalloc_node); 3347 3348 /** 3349 * vzalloc_node - allocate memory on a specific node with zero fill 3350 * @size: allocation size 3351 * @node: numa node 3352 * 3353 * Allocate enough pages to cover @size from the page level 3354 * allocator and map them into contiguous kernel virtual space. 3355 * The memory allocated is set to zero. 3356 * 3357 * Return: pointer to the allocated memory or %NULL on error 3358 */ 3359 void *vzalloc_node(unsigned long size, int node) 3360 { 3361 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3362 __builtin_return_address(0)); 3363 } 3364 EXPORT_SYMBOL(vzalloc_node); 3365 3366 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3367 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3368 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3369 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3370 #else 3371 /* 3372 * 64b systems should always have either DMA or DMA32 zones. For others 3373 * GFP_DMA32 should do the right thing and use the normal zone. 3374 */ 3375 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3376 #endif 3377 3378 /** 3379 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3380 * @size: allocation size 3381 * 3382 * Allocate enough 32bit PA addressable pages to cover @size from the 3383 * page level allocator and map them into contiguous kernel virtual space. 3384 * 3385 * Return: pointer to the allocated memory or %NULL on error 3386 */ 3387 void *vmalloc_32(unsigned long size) 3388 { 3389 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3390 __builtin_return_address(0)); 3391 } 3392 EXPORT_SYMBOL(vmalloc_32); 3393 3394 /** 3395 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3396 * @size: allocation size 3397 * 3398 * The resulting memory area is 32bit addressable and zeroed so it can be 3399 * mapped to userspace without leaking data. 3400 * 3401 * Return: pointer to the allocated memory or %NULL on error 3402 */ 3403 void *vmalloc_32_user(unsigned long size) 3404 { 3405 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3406 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3407 VM_USERMAP, NUMA_NO_NODE, 3408 __builtin_return_address(0)); 3409 } 3410 EXPORT_SYMBOL(vmalloc_32_user); 3411 3412 /* 3413 * small helper routine , copy contents to buf from addr. 3414 * If the page is not present, fill zero. 3415 */ 3416 3417 static int aligned_vread(char *buf, char *addr, unsigned long count) 3418 { 3419 struct page *p; 3420 int copied = 0; 3421 3422 while (count) { 3423 unsigned long offset, length; 3424 3425 offset = offset_in_page(addr); 3426 length = PAGE_SIZE - offset; 3427 if (length > count) 3428 length = count; 3429 p = vmalloc_to_page(addr); 3430 /* 3431 * To do safe access to this _mapped_ area, we need 3432 * lock. But adding lock here means that we need to add 3433 * overhead of vmalloc()/vfree() calls for this _debug_ 3434 * interface, rarely used. Instead of that, we'll use 3435 * kmap() and get small overhead in this access function. 3436 */ 3437 if (p) { 3438 /* We can expect USER0 is not used -- see vread() */ 3439 void *map = kmap_atomic(p); 3440 memcpy(buf, map + offset, length); 3441 kunmap_atomic(map); 3442 } else 3443 memset(buf, 0, length); 3444 3445 addr += length; 3446 buf += length; 3447 copied += length; 3448 count -= length; 3449 } 3450 return copied; 3451 } 3452 3453 /** 3454 * vread() - read vmalloc area in a safe way. 3455 * @buf: buffer for reading data 3456 * @addr: vm address. 3457 * @count: number of bytes to be read. 3458 * 3459 * This function checks that addr is a valid vmalloc'ed area, and 3460 * copy data from that area to a given buffer. If the given memory range 3461 * of [addr...addr+count) includes some valid address, data is copied to 3462 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3463 * IOREMAP area is treated as memory hole and no copy is done. 3464 * 3465 * If [addr...addr+count) doesn't includes any intersects with alive 3466 * vm_struct area, returns 0. @buf should be kernel's buffer. 3467 * 3468 * Note: In usual ops, vread() is never necessary because the caller 3469 * should know vmalloc() area is valid and can use memcpy(). 3470 * This is for routines which have to access vmalloc area without 3471 * any information, as /proc/kcore. 3472 * 3473 * Return: number of bytes for which addr and buf should be increased 3474 * (same number as @count) or %0 if [addr...addr+count) doesn't 3475 * include any intersection with valid vmalloc area 3476 */ 3477 long vread(char *buf, char *addr, unsigned long count) 3478 { 3479 struct vmap_area *va; 3480 struct vm_struct *vm; 3481 char *vaddr, *buf_start = buf; 3482 unsigned long buflen = count; 3483 unsigned long n; 3484 3485 addr = kasan_reset_tag(addr); 3486 3487 /* Don't allow overflow */ 3488 if ((unsigned long) addr + count < count) 3489 count = -(unsigned long) addr; 3490 3491 spin_lock(&vmap_area_lock); 3492 va = find_vmap_area_exceed_addr((unsigned long)addr); 3493 if (!va) 3494 goto finished; 3495 3496 /* no intersects with alive vmap_area */ 3497 if ((unsigned long)addr + count <= va->va_start) 3498 goto finished; 3499 3500 list_for_each_entry_from(va, &vmap_area_list, list) { 3501 if (!count) 3502 break; 3503 3504 if (!va->vm) 3505 continue; 3506 3507 vm = va->vm; 3508 vaddr = (char *) vm->addr; 3509 if (addr >= vaddr + get_vm_area_size(vm)) 3510 continue; 3511 while (addr < vaddr) { 3512 if (count == 0) 3513 goto finished; 3514 *buf = '\0'; 3515 buf++; 3516 addr++; 3517 count--; 3518 } 3519 n = vaddr + get_vm_area_size(vm) - addr; 3520 if (n > count) 3521 n = count; 3522 if (!(vm->flags & VM_IOREMAP)) 3523 aligned_vread(buf, addr, n); 3524 else /* IOREMAP area is treated as memory hole */ 3525 memset(buf, 0, n); 3526 buf += n; 3527 addr += n; 3528 count -= n; 3529 } 3530 finished: 3531 spin_unlock(&vmap_area_lock); 3532 3533 if (buf == buf_start) 3534 return 0; 3535 /* zero-fill memory holes */ 3536 if (buf != buf_start + buflen) 3537 memset(buf, 0, buflen - (buf - buf_start)); 3538 3539 return buflen; 3540 } 3541 3542 /** 3543 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3544 * @vma: vma to cover 3545 * @uaddr: target user address to start at 3546 * @kaddr: virtual address of vmalloc kernel memory 3547 * @pgoff: offset from @kaddr to start at 3548 * @size: size of map area 3549 * 3550 * Returns: 0 for success, -Exxx on failure 3551 * 3552 * This function checks that @kaddr is a valid vmalloc'ed area, 3553 * and that it is big enough to cover the range starting at 3554 * @uaddr in @vma. Will return failure if that criteria isn't 3555 * met. 3556 * 3557 * Similar to remap_pfn_range() (see mm/memory.c) 3558 */ 3559 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3560 void *kaddr, unsigned long pgoff, 3561 unsigned long size) 3562 { 3563 struct vm_struct *area; 3564 unsigned long off; 3565 unsigned long end_index; 3566 3567 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3568 return -EINVAL; 3569 3570 size = PAGE_ALIGN(size); 3571 3572 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3573 return -EINVAL; 3574 3575 area = find_vm_area(kaddr); 3576 if (!area) 3577 return -EINVAL; 3578 3579 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3580 return -EINVAL; 3581 3582 if (check_add_overflow(size, off, &end_index) || 3583 end_index > get_vm_area_size(area)) 3584 return -EINVAL; 3585 kaddr += off; 3586 3587 do { 3588 struct page *page = vmalloc_to_page(kaddr); 3589 int ret; 3590 3591 ret = vm_insert_page(vma, uaddr, page); 3592 if (ret) 3593 return ret; 3594 3595 uaddr += PAGE_SIZE; 3596 kaddr += PAGE_SIZE; 3597 size -= PAGE_SIZE; 3598 } while (size > 0); 3599 3600 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3601 3602 return 0; 3603 } 3604 3605 /** 3606 * remap_vmalloc_range - map vmalloc pages to userspace 3607 * @vma: vma to cover (map full range of vma) 3608 * @addr: vmalloc memory 3609 * @pgoff: number of pages into addr before first page to map 3610 * 3611 * Returns: 0 for success, -Exxx on failure 3612 * 3613 * This function checks that addr is a valid vmalloc'ed area, and 3614 * that it is big enough to cover the vma. Will return failure if 3615 * that criteria isn't met. 3616 * 3617 * Similar to remap_pfn_range() (see mm/memory.c) 3618 */ 3619 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3620 unsigned long pgoff) 3621 { 3622 return remap_vmalloc_range_partial(vma, vma->vm_start, 3623 addr, pgoff, 3624 vma->vm_end - vma->vm_start); 3625 } 3626 EXPORT_SYMBOL(remap_vmalloc_range); 3627 3628 void free_vm_area(struct vm_struct *area) 3629 { 3630 struct vm_struct *ret; 3631 ret = remove_vm_area(area->addr); 3632 BUG_ON(ret != area); 3633 kfree(area); 3634 } 3635 EXPORT_SYMBOL_GPL(free_vm_area); 3636 3637 #ifdef CONFIG_SMP 3638 static struct vmap_area *node_to_va(struct rb_node *n) 3639 { 3640 return rb_entry_safe(n, struct vmap_area, rb_node); 3641 } 3642 3643 /** 3644 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3645 * @addr: target address 3646 * 3647 * Returns: vmap_area if it is found. If there is no such area 3648 * the first highest(reverse order) vmap_area is returned 3649 * i.e. va->va_start < addr && va->va_end < addr or NULL 3650 * if there are no any areas before @addr. 3651 */ 3652 static struct vmap_area * 3653 pvm_find_va_enclose_addr(unsigned long addr) 3654 { 3655 struct vmap_area *va, *tmp; 3656 struct rb_node *n; 3657 3658 n = free_vmap_area_root.rb_node; 3659 va = NULL; 3660 3661 while (n) { 3662 tmp = rb_entry(n, struct vmap_area, rb_node); 3663 if (tmp->va_start <= addr) { 3664 va = tmp; 3665 if (tmp->va_end >= addr) 3666 break; 3667 3668 n = n->rb_right; 3669 } else { 3670 n = n->rb_left; 3671 } 3672 } 3673 3674 return va; 3675 } 3676 3677 /** 3678 * pvm_determine_end_from_reverse - find the highest aligned address 3679 * of free block below VMALLOC_END 3680 * @va: 3681 * in - the VA we start the search(reverse order); 3682 * out - the VA with the highest aligned end address. 3683 * @align: alignment for required highest address 3684 * 3685 * Returns: determined end address within vmap_area 3686 */ 3687 static unsigned long 3688 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3689 { 3690 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3691 unsigned long addr; 3692 3693 if (likely(*va)) { 3694 list_for_each_entry_from_reverse((*va), 3695 &free_vmap_area_list, list) { 3696 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3697 if ((*va)->va_start < addr) 3698 return addr; 3699 } 3700 } 3701 3702 return 0; 3703 } 3704 3705 /** 3706 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3707 * @offsets: array containing offset of each area 3708 * @sizes: array containing size of each area 3709 * @nr_vms: the number of areas to allocate 3710 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3711 * 3712 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3713 * vm_structs on success, %NULL on failure 3714 * 3715 * Percpu allocator wants to use congruent vm areas so that it can 3716 * maintain the offsets among percpu areas. This function allocates 3717 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3718 * be scattered pretty far, distance between two areas easily going up 3719 * to gigabytes. To avoid interacting with regular vmallocs, these 3720 * areas are allocated from top. 3721 * 3722 * Despite its complicated look, this allocator is rather simple. It 3723 * does everything top-down and scans free blocks from the end looking 3724 * for matching base. While scanning, if any of the areas do not fit the 3725 * base address is pulled down to fit the area. Scanning is repeated till 3726 * all the areas fit and then all necessary data structures are inserted 3727 * and the result is returned. 3728 */ 3729 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3730 const size_t *sizes, int nr_vms, 3731 size_t align) 3732 { 3733 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3734 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3735 struct vmap_area **vas, *va; 3736 struct vm_struct **vms; 3737 int area, area2, last_area, term_area; 3738 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3739 bool purged = false; 3740 enum fit_type type; 3741 3742 /* verify parameters and allocate data structures */ 3743 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3744 for (last_area = 0, area = 0; area < nr_vms; area++) { 3745 start = offsets[area]; 3746 end = start + sizes[area]; 3747 3748 /* is everything aligned properly? */ 3749 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3750 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3751 3752 /* detect the area with the highest address */ 3753 if (start > offsets[last_area]) 3754 last_area = area; 3755 3756 for (area2 = area + 1; area2 < nr_vms; area2++) { 3757 unsigned long start2 = offsets[area2]; 3758 unsigned long end2 = start2 + sizes[area2]; 3759 3760 BUG_ON(start2 < end && start < end2); 3761 } 3762 } 3763 last_end = offsets[last_area] + sizes[last_area]; 3764 3765 if (vmalloc_end - vmalloc_start < last_end) { 3766 WARN_ON(true); 3767 return NULL; 3768 } 3769 3770 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3771 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3772 if (!vas || !vms) 3773 goto err_free2; 3774 3775 for (area = 0; area < nr_vms; area++) { 3776 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3777 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3778 if (!vas[area] || !vms[area]) 3779 goto err_free; 3780 } 3781 retry: 3782 spin_lock(&free_vmap_area_lock); 3783 3784 /* start scanning - we scan from the top, begin with the last area */ 3785 area = term_area = last_area; 3786 start = offsets[area]; 3787 end = start + sizes[area]; 3788 3789 va = pvm_find_va_enclose_addr(vmalloc_end); 3790 base = pvm_determine_end_from_reverse(&va, align) - end; 3791 3792 while (true) { 3793 /* 3794 * base might have underflowed, add last_end before 3795 * comparing. 3796 */ 3797 if (base + last_end < vmalloc_start + last_end) 3798 goto overflow; 3799 3800 /* 3801 * Fitting base has not been found. 3802 */ 3803 if (va == NULL) 3804 goto overflow; 3805 3806 /* 3807 * If required width exceeds current VA block, move 3808 * base downwards and then recheck. 3809 */ 3810 if (base + end > va->va_end) { 3811 base = pvm_determine_end_from_reverse(&va, align) - end; 3812 term_area = area; 3813 continue; 3814 } 3815 3816 /* 3817 * If this VA does not fit, move base downwards and recheck. 3818 */ 3819 if (base + start < va->va_start) { 3820 va = node_to_va(rb_prev(&va->rb_node)); 3821 base = pvm_determine_end_from_reverse(&va, align) - end; 3822 term_area = area; 3823 continue; 3824 } 3825 3826 /* 3827 * This area fits, move on to the previous one. If 3828 * the previous one is the terminal one, we're done. 3829 */ 3830 area = (area + nr_vms - 1) % nr_vms; 3831 if (area == term_area) 3832 break; 3833 3834 start = offsets[area]; 3835 end = start + sizes[area]; 3836 va = pvm_find_va_enclose_addr(base + end); 3837 } 3838 3839 /* we've found a fitting base, insert all va's */ 3840 for (area = 0; area < nr_vms; area++) { 3841 int ret; 3842 3843 start = base + offsets[area]; 3844 size = sizes[area]; 3845 3846 va = pvm_find_va_enclose_addr(start); 3847 if (WARN_ON_ONCE(va == NULL)) 3848 /* It is a BUG(), but trigger recovery instead. */ 3849 goto recovery; 3850 3851 type = classify_va_fit_type(va, start, size); 3852 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3853 /* It is a BUG(), but trigger recovery instead. */ 3854 goto recovery; 3855 3856 ret = adjust_va_to_fit_type(va, start, size, type); 3857 if (unlikely(ret)) 3858 goto recovery; 3859 3860 /* Allocated area. */ 3861 va = vas[area]; 3862 va->va_start = start; 3863 va->va_end = start + size; 3864 } 3865 3866 spin_unlock(&free_vmap_area_lock); 3867 3868 /* populate the kasan shadow space */ 3869 for (area = 0; area < nr_vms; area++) { 3870 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3871 goto err_free_shadow; 3872 } 3873 3874 /* insert all vm's */ 3875 spin_lock(&vmap_area_lock); 3876 for (area = 0; area < nr_vms; area++) { 3877 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3878 3879 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3880 pcpu_get_vm_areas); 3881 } 3882 spin_unlock(&vmap_area_lock); 3883 3884 /* 3885 * Mark allocated areas as accessible. Do it now as a best-effort 3886 * approach, as they can be mapped outside of vmalloc code. 3887 * With hardware tag-based KASAN, marking is skipped for 3888 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3889 */ 3890 for (area = 0; area < nr_vms; area++) 3891 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3892 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3893 3894 kfree(vas); 3895 return vms; 3896 3897 recovery: 3898 /* 3899 * Remove previously allocated areas. There is no 3900 * need in removing these areas from the busy tree, 3901 * because they are inserted only on the final step 3902 * and when pcpu_get_vm_areas() is success. 3903 */ 3904 while (area--) { 3905 orig_start = vas[area]->va_start; 3906 orig_end = vas[area]->va_end; 3907 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3908 &free_vmap_area_list); 3909 if (va) 3910 kasan_release_vmalloc(orig_start, orig_end, 3911 va->va_start, va->va_end); 3912 vas[area] = NULL; 3913 } 3914 3915 overflow: 3916 spin_unlock(&free_vmap_area_lock); 3917 if (!purged) { 3918 purge_vmap_area_lazy(); 3919 purged = true; 3920 3921 /* Before "retry", check if we recover. */ 3922 for (area = 0; area < nr_vms; area++) { 3923 if (vas[area]) 3924 continue; 3925 3926 vas[area] = kmem_cache_zalloc( 3927 vmap_area_cachep, GFP_KERNEL); 3928 if (!vas[area]) 3929 goto err_free; 3930 } 3931 3932 goto retry; 3933 } 3934 3935 err_free: 3936 for (area = 0; area < nr_vms; area++) { 3937 if (vas[area]) 3938 kmem_cache_free(vmap_area_cachep, vas[area]); 3939 3940 kfree(vms[area]); 3941 } 3942 err_free2: 3943 kfree(vas); 3944 kfree(vms); 3945 return NULL; 3946 3947 err_free_shadow: 3948 spin_lock(&free_vmap_area_lock); 3949 /* 3950 * We release all the vmalloc shadows, even the ones for regions that 3951 * hadn't been successfully added. This relies on kasan_release_vmalloc 3952 * being able to tolerate this case. 3953 */ 3954 for (area = 0; area < nr_vms; area++) { 3955 orig_start = vas[area]->va_start; 3956 orig_end = vas[area]->va_end; 3957 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3958 &free_vmap_area_list); 3959 if (va) 3960 kasan_release_vmalloc(orig_start, orig_end, 3961 va->va_start, va->va_end); 3962 vas[area] = NULL; 3963 kfree(vms[area]); 3964 } 3965 spin_unlock(&free_vmap_area_lock); 3966 kfree(vas); 3967 kfree(vms); 3968 return NULL; 3969 } 3970 3971 /** 3972 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3973 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3974 * @nr_vms: the number of allocated areas 3975 * 3976 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3977 */ 3978 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3979 { 3980 int i; 3981 3982 for (i = 0; i < nr_vms; i++) 3983 free_vm_area(vms[i]); 3984 kfree(vms); 3985 } 3986 #endif /* CONFIG_SMP */ 3987 3988 #ifdef CONFIG_PRINTK 3989 bool vmalloc_dump_obj(void *object) 3990 { 3991 struct vm_struct *vm; 3992 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3993 3994 vm = find_vm_area(objp); 3995 if (!vm) 3996 return false; 3997 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 3998 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 3999 return true; 4000 } 4001 #endif 4002 4003 #ifdef CONFIG_PROC_FS 4004 static void *s_start(struct seq_file *m, loff_t *pos) 4005 __acquires(&vmap_purge_lock) 4006 __acquires(&vmap_area_lock) 4007 { 4008 mutex_lock(&vmap_purge_lock); 4009 spin_lock(&vmap_area_lock); 4010 4011 return seq_list_start(&vmap_area_list, *pos); 4012 } 4013 4014 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4015 { 4016 return seq_list_next(p, &vmap_area_list, pos); 4017 } 4018 4019 static void s_stop(struct seq_file *m, void *p) 4020 __releases(&vmap_area_lock) 4021 __releases(&vmap_purge_lock) 4022 { 4023 spin_unlock(&vmap_area_lock); 4024 mutex_unlock(&vmap_purge_lock); 4025 } 4026 4027 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4028 { 4029 if (IS_ENABLED(CONFIG_NUMA)) { 4030 unsigned int nr, *counters = m->private; 4031 unsigned int step = 1U << vm_area_page_order(v); 4032 4033 if (!counters) 4034 return; 4035 4036 if (v->flags & VM_UNINITIALIZED) 4037 return; 4038 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4039 smp_rmb(); 4040 4041 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4042 4043 for (nr = 0; nr < v->nr_pages; nr += step) 4044 counters[page_to_nid(v->pages[nr])] += step; 4045 for_each_node_state(nr, N_HIGH_MEMORY) 4046 if (counters[nr]) 4047 seq_printf(m, " N%u=%u", nr, counters[nr]); 4048 } 4049 } 4050 4051 static void show_purge_info(struct seq_file *m) 4052 { 4053 struct vmap_area *va; 4054 4055 spin_lock(&purge_vmap_area_lock); 4056 list_for_each_entry(va, &purge_vmap_area_list, list) { 4057 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4058 (void *)va->va_start, (void *)va->va_end, 4059 va->va_end - va->va_start); 4060 } 4061 spin_unlock(&purge_vmap_area_lock); 4062 } 4063 4064 static int s_show(struct seq_file *m, void *p) 4065 { 4066 struct vmap_area *va; 4067 struct vm_struct *v; 4068 4069 va = list_entry(p, struct vmap_area, list); 4070 4071 /* 4072 * s_show can encounter race with remove_vm_area, !vm on behalf 4073 * of vmap area is being tear down or vm_map_ram allocation. 4074 */ 4075 if (!va->vm) { 4076 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4077 (void *)va->va_start, (void *)va->va_end, 4078 va->va_end - va->va_start); 4079 4080 goto final; 4081 } 4082 4083 v = va->vm; 4084 4085 seq_printf(m, "0x%pK-0x%pK %7ld", 4086 v->addr, v->addr + v->size, v->size); 4087 4088 if (v->caller) 4089 seq_printf(m, " %pS", v->caller); 4090 4091 if (v->nr_pages) 4092 seq_printf(m, " pages=%d", v->nr_pages); 4093 4094 if (v->phys_addr) 4095 seq_printf(m, " phys=%pa", &v->phys_addr); 4096 4097 if (v->flags & VM_IOREMAP) 4098 seq_puts(m, " ioremap"); 4099 4100 if (v->flags & VM_ALLOC) 4101 seq_puts(m, " vmalloc"); 4102 4103 if (v->flags & VM_MAP) 4104 seq_puts(m, " vmap"); 4105 4106 if (v->flags & VM_USERMAP) 4107 seq_puts(m, " user"); 4108 4109 if (v->flags & VM_DMA_COHERENT) 4110 seq_puts(m, " dma-coherent"); 4111 4112 if (is_vmalloc_addr(v->pages)) 4113 seq_puts(m, " vpages"); 4114 4115 show_numa_info(m, v); 4116 seq_putc(m, '\n'); 4117 4118 /* 4119 * As a final step, dump "unpurged" areas. 4120 */ 4121 final: 4122 if (list_is_last(&va->list, &vmap_area_list)) 4123 show_purge_info(m); 4124 4125 return 0; 4126 } 4127 4128 static const struct seq_operations vmalloc_op = { 4129 .start = s_start, 4130 .next = s_next, 4131 .stop = s_stop, 4132 .show = s_show, 4133 }; 4134 4135 static int __init proc_vmalloc_init(void) 4136 { 4137 if (IS_ENABLED(CONFIG_NUMA)) 4138 proc_create_seq_private("vmallocinfo", 0400, NULL, 4139 &vmalloc_op, 4140 nr_node_ids * sizeof(unsigned int), NULL); 4141 else 4142 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4143 return 0; 4144 } 4145 module_init(proc_vmalloc_init); 4146 4147 #endif 4148