xref: /linux/mm/vmalloc.c (revision 704fd176204577459beadb37d46e164d376fabc3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #include "internal.h"
47 #include "pgalloc-track.h"
48 
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 
52 static int __init set_nohugeiomap(char *str)
53 {
54 	ioremap_max_page_shift = PAGE_SHIFT;
55 	return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64 
65 static int __init set_nohugevmalloc(char *str)
66 {
67 	vmap_allow_huge = false;
68 	return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 
75 bool is_vmalloc_addr(const void *x)
76 {
77 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
78 
79 	return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82 
83 struct vfree_deferred {
84 	struct llist_head list;
85 	struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 
89 static void __vunmap(const void *, int);
90 
91 static void free_work(struct work_struct *w)
92 {
93 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 	struct llist_node *t, *llnode;
95 
96 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 		__vunmap((void *)llnode, 1);
98 }
99 
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 			phys_addr_t phys_addr, pgprot_t prot,
103 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105 	pte_t *pte;
106 	u64 pfn;
107 	unsigned long size = PAGE_SIZE;
108 
109 	pfn = phys_addr >> PAGE_SHIFT;
110 	pte = pte_alloc_kernel_track(pmd, addr, mask);
111 	if (!pte)
112 		return -ENOMEM;
113 	do {
114 		BUG_ON(!pte_none(*pte));
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 		phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	return err;
324 }
325 
326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 			     pgtbl_mod_mask *mask)
328 {
329 	pte_t *pte;
330 
331 	pte = pte_offset_kernel(pmd, addr);
332 	do {
333 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 	} while (pte++, addr += PAGE_SIZE, addr != end);
336 	*mask |= PGTBL_PTE_MODIFIED;
337 }
338 
339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 			     pgtbl_mod_mask *mask)
341 {
342 	pmd_t *pmd;
343 	unsigned long next;
344 	int cleared;
345 
346 	pmd = pmd_offset(pud, addr);
347 	do {
348 		next = pmd_addr_end(addr, end);
349 
350 		cleared = pmd_clear_huge(pmd);
351 		if (cleared || pmd_bad(*pmd))
352 			*mask |= PGTBL_PMD_MODIFIED;
353 
354 		if (cleared)
355 			continue;
356 		if (pmd_none_or_clear_bad(pmd))
357 			continue;
358 		vunmap_pte_range(pmd, addr, next, mask);
359 
360 		cond_resched();
361 	} while (pmd++, addr = next, addr != end);
362 }
363 
364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 			     pgtbl_mod_mask *mask)
366 {
367 	pud_t *pud;
368 	unsigned long next;
369 	int cleared;
370 
371 	pud = pud_offset(p4d, addr);
372 	do {
373 		next = pud_addr_end(addr, end);
374 
375 		cleared = pud_clear_huge(pud);
376 		if (cleared || pud_bad(*pud))
377 			*mask |= PGTBL_PUD_MODIFIED;
378 
379 		if (cleared)
380 			continue;
381 		if (pud_none_or_clear_bad(pud))
382 			continue;
383 		vunmap_pmd_range(pud, addr, next, mask);
384 	} while (pud++, addr = next, addr != end);
385 }
386 
387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	p4d_t *p4d;
391 	unsigned long next;
392 	int cleared;
393 
394 	p4d = p4d_offset(pgd, addr);
395 	do {
396 		next = p4d_addr_end(addr, end);
397 
398 		cleared = p4d_clear_huge(p4d);
399 		if (cleared || p4d_bad(*p4d))
400 			*mask |= PGTBL_P4D_MODIFIED;
401 
402 		if (cleared)
403 			continue;
404 		if (p4d_none_or_clear_bad(p4d))
405 			continue;
406 		vunmap_pud_range(p4d, addr, next, mask);
407 	} while (p4d++, addr = next, addr != end);
408 }
409 
410 /*
411  * vunmap_range_noflush is similar to vunmap_range, but does not
412  * flush caches or TLBs.
413  *
414  * The caller is responsible for calling flush_cache_vmap() before calling
415  * this function, and flush_tlb_kernel_range after it has returned
416  * successfully (and before the addresses are expected to cause a page fault
417  * or be re-mapped for something else, if TLB flushes are being delayed or
418  * coalesced).
419  *
420  * This is an internal function only. Do not use outside mm/.
421  */
422 void vunmap_range_noflush(unsigned long start, unsigned long end)
423 {
424 	unsigned long next;
425 	pgd_t *pgd;
426 	unsigned long addr = start;
427 	pgtbl_mod_mask mask = 0;
428 
429 	BUG_ON(addr >= end);
430 	pgd = pgd_offset_k(addr);
431 	do {
432 		next = pgd_addr_end(addr, end);
433 		if (pgd_bad(*pgd))
434 			mask |= PGTBL_PGD_MODIFIED;
435 		if (pgd_none_or_clear_bad(pgd))
436 			continue;
437 		vunmap_p4d_range(pgd, addr, next, &mask);
438 	} while (pgd++, addr = next, addr != end);
439 
440 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 		arch_sync_kernel_mappings(start, end);
442 }
443 
444 /**
445  * vunmap_range - unmap kernel virtual addresses
446  * @addr: start of the VM area to unmap
447  * @end: end of the VM area to unmap (non-inclusive)
448  *
449  * Clears any present PTEs in the virtual address range, flushes TLBs and
450  * caches. Any subsequent access to the address before it has been re-mapped
451  * is a kernel bug.
452  */
453 void vunmap_range(unsigned long addr, unsigned long end)
454 {
455 	flush_cache_vunmap(addr, end);
456 	vunmap_range_noflush(addr, end);
457 	flush_tlb_kernel_range(addr, end);
458 }
459 
460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
461 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
462 		pgtbl_mod_mask *mask)
463 {
464 	pte_t *pte;
465 
466 	/*
467 	 * nr is a running index into the array which helps higher level
468 	 * callers keep track of where we're up to.
469 	 */
470 
471 	pte = pte_alloc_kernel_track(pmd, addr, mask);
472 	if (!pte)
473 		return -ENOMEM;
474 	do {
475 		struct page *page = pages[*nr];
476 
477 		if (WARN_ON(!pte_none(*pte)))
478 			return -EBUSY;
479 		if (WARN_ON(!page))
480 			return -ENOMEM;
481 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
482 		(*nr)++;
483 	} while (pte++, addr += PAGE_SIZE, addr != end);
484 	*mask |= PGTBL_PTE_MODIFIED;
485 	return 0;
486 }
487 
488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
489 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 		pgtbl_mod_mask *mask)
491 {
492 	pmd_t *pmd;
493 	unsigned long next;
494 
495 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
496 	if (!pmd)
497 		return -ENOMEM;
498 	do {
499 		next = pmd_addr_end(addr, end);
500 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
501 			return -ENOMEM;
502 	} while (pmd++, addr = next, addr != end);
503 	return 0;
504 }
505 
506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
507 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 		pgtbl_mod_mask *mask)
509 {
510 	pud_t *pud;
511 	unsigned long next;
512 
513 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
514 	if (!pud)
515 		return -ENOMEM;
516 	do {
517 		next = pud_addr_end(addr, end);
518 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
519 			return -ENOMEM;
520 	} while (pud++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
525 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 		pgtbl_mod_mask *mask)
527 {
528 	p4d_t *p4d;
529 	unsigned long next;
530 
531 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
532 	if (!p4d)
533 		return -ENOMEM;
534 	do {
535 		next = p4d_addr_end(addr, end);
536 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
537 			return -ENOMEM;
538 	} while (p4d++, addr = next, addr != end);
539 	return 0;
540 }
541 
542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 		pgprot_t prot, struct page **pages)
544 {
545 	unsigned long start = addr;
546 	pgd_t *pgd;
547 	unsigned long next;
548 	int err = 0;
549 	int nr = 0;
550 	pgtbl_mod_mask mask = 0;
551 
552 	BUG_ON(addr >= end);
553 	pgd = pgd_offset_k(addr);
554 	do {
555 		next = pgd_addr_end(addr, end);
556 		if (pgd_bad(*pgd))
557 			mask |= PGTBL_PGD_MODIFIED;
558 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
559 		if (err)
560 			return err;
561 	} while (pgd++, addr = next, addr != end);
562 
563 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 		arch_sync_kernel_mappings(start, end);
565 
566 	return 0;
567 }
568 
569 /*
570  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571  * flush caches.
572  *
573  * The caller is responsible for calling flush_cache_vmap() after this
574  * function returns successfully and before the addresses are accessed.
575  *
576  * This is an internal function only. Do not use outside mm/.
577  */
578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
579 		pgprot_t prot, struct page **pages, unsigned int page_shift)
580 {
581 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582 
583 	WARN_ON(page_shift < PAGE_SHIFT);
584 
585 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 			page_shift == PAGE_SHIFT)
587 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
588 
589 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 		int err;
591 
592 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 					__pa(page_address(pages[i])), prot,
594 					page_shift);
595 		if (err)
596 			return err;
597 
598 		addr += 1UL << page_shift;
599 	}
600 
601 	return 0;
602 }
603 
604 /**
605  * vmap_pages_range - map pages to a kernel virtual address
606  * @addr: start of the VM area to map
607  * @end: end of the VM area to map (non-inclusive)
608  * @prot: page protection flags to use
609  * @pages: pages to map (always PAGE_SIZE pages)
610  * @page_shift: maximum shift that the pages may be mapped with, @pages must
611  * be aligned and contiguous up to at least this shift.
612  *
613  * RETURNS:
614  * 0 on success, -errno on failure.
615  */
616 static int vmap_pages_range(unsigned long addr, unsigned long end,
617 		pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619 	int err;
620 
621 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 	flush_cache_vmap(addr, end);
623 	return err;
624 }
625 
626 int is_vmalloc_or_module_addr(const void *x)
627 {
628 	/*
629 	 * ARM, x86-64 and sparc64 put modules in a special place,
630 	 * and fall back on vmalloc() if that fails. Others
631 	 * just put it in the vmalloc space.
632 	 */
633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
635 	if (addr >= MODULES_VADDR && addr < MODULES_END)
636 		return 1;
637 #endif
638 	return is_vmalloc_addr(x);
639 }
640 
641 /*
642  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643  * return the tail page that corresponds to the base page address, which
644  * matches small vmap mappings.
645  */
646 struct page *vmalloc_to_page(const void *vmalloc_addr)
647 {
648 	unsigned long addr = (unsigned long) vmalloc_addr;
649 	struct page *page = NULL;
650 	pgd_t *pgd = pgd_offset_k(addr);
651 	p4d_t *p4d;
652 	pud_t *pud;
653 	pmd_t *pmd;
654 	pte_t *ptep, pte;
655 
656 	/*
657 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 	 * architectures that do not vmalloc module space
659 	 */
660 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
661 
662 	if (pgd_none(*pgd))
663 		return NULL;
664 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 		return NULL; /* XXX: no allowance for huge pgd */
666 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 		return NULL;
668 
669 	p4d = p4d_offset(pgd, addr);
670 	if (p4d_none(*p4d))
671 		return NULL;
672 	if (p4d_leaf(*p4d))
673 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 		return NULL;
676 
677 	pud = pud_offset(p4d, addr);
678 	if (pud_none(*pud))
679 		return NULL;
680 	if (pud_leaf(*pud))
681 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 	if (WARN_ON_ONCE(pud_bad(*pud)))
683 		return NULL;
684 
685 	pmd = pmd_offset(pud, addr);
686 	if (pmd_none(*pmd))
687 		return NULL;
688 	if (pmd_leaf(*pmd))
689 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
691 		return NULL;
692 
693 	ptep = pte_offset_map(pmd, addr);
694 	pte = *ptep;
695 	if (pte_present(pte))
696 		page = pte_page(pte);
697 	pte_unmap(ptep);
698 
699 	return page;
700 }
701 EXPORT_SYMBOL(vmalloc_to_page);
702 
703 /*
704  * Map a vmalloc()-space virtual address to the physical page frame number.
705  */
706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
707 {
708 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
709 }
710 EXPORT_SYMBOL(vmalloc_to_pfn);
711 
712 
713 /*** Global kva allocator ***/
714 
715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
717 
718 
719 static DEFINE_SPINLOCK(vmap_area_lock);
720 static DEFINE_SPINLOCK(free_vmap_area_lock);
721 /* Export for kexec only */
722 LIST_HEAD(vmap_area_list);
723 static struct rb_root vmap_area_root = RB_ROOT;
724 static bool vmap_initialized __read_mostly;
725 
726 static struct rb_root purge_vmap_area_root = RB_ROOT;
727 static LIST_HEAD(purge_vmap_area_list);
728 static DEFINE_SPINLOCK(purge_vmap_area_lock);
729 
730 /*
731  * This kmem_cache is used for vmap_area objects. Instead of
732  * allocating from slab we reuse an object from this cache to
733  * make things faster. Especially in "no edge" splitting of
734  * free block.
735  */
736 static struct kmem_cache *vmap_area_cachep;
737 
738 /*
739  * This linked list is used in pair with free_vmap_area_root.
740  * It gives O(1) access to prev/next to perform fast coalescing.
741  */
742 static LIST_HEAD(free_vmap_area_list);
743 
744 /*
745  * This augment red-black tree represents the free vmap space.
746  * All vmap_area objects in this tree are sorted by va->va_start
747  * address. It is used for allocation and merging when a vmap
748  * object is released.
749  *
750  * Each vmap_area node contains a maximum available free block
751  * of its sub-tree, right or left. Therefore it is possible to
752  * find a lowest match of free area.
753  */
754 static struct rb_root free_vmap_area_root = RB_ROOT;
755 
756 /*
757  * Preload a CPU with one object for "no edge" split case. The
758  * aim is to get rid of allocations from the atomic context, thus
759  * to use more permissive allocation masks.
760  */
761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762 
763 static __always_inline unsigned long
764 va_size(struct vmap_area *va)
765 {
766 	return (va->va_end - va->va_start);
767 }
768 
769 static __always_inline unsigned long
770 get_subtree_max_size(struct rb_node *node)
771 {
772 	struct vmap_area *va;
773 
774 	va = rb_entry_safe(node, struct vmap_area, rb_node);
775 	return va ? va->subtree_max_size : 0;
776 }
777 
778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
780 
781 static void purge_vmap_area_lazy(void);
782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
783 static void drain_vmap_area_work(struct work_struct *work);
784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
785 
786 static atomic_long_t nr_vmalloc_pages;
787 
788 unsigned long vmalloc_nr_pages(void)
789 {
790 	return atomic_long_read(&nr_vmalloc_pages);
791 }
792 
793 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
794 {
795 	struct vmap_area *va = NULL;
796 	struct rb_node *n = vmap_area_root.rb_node;
797 
798 	addr = (unsigned long)kasan_reset_tag((void *)addr);
799 
800 	while (n) {
801 		struct vmap_area *tmp;
802 
803 		tmp = rb_entry(n, struct vmap_area, rb_node);
804 		if (tmp->va_end > addr) {
805 			va = tmp;
806 			if (tmp->va_start <= addr)
807 				break;
808 
809 			n = n->rb_left;
810 		} else
811 			n = n->rb_right;
812 	}
813 
814 	return va;
815 }
816 
817 static struct vmap_area *__find_vmap_area(unsigned long addr)
818 {
819 	struct rb_node *n = vmap_area_root.rb_node;
820 
821 	addr = (unsigned long)kasan_reset_tag((void *)addr);
822 
823 	while (n) {
824 		struct vmap_area *va;
825 
826 		va = rb_entry(n, struct vmap_area, rb_node);
827 		if (addr < va->va_start)
828 			n = n->rb_left;
829 		else if (addr >= va->va_end)
830 			n = n->rb_right;
831 		else
832 			return va;
833 	}
834 
835 	return NULL;
836 }
837 
838 /*
839  * This function returns back addresses of parent node
840  * and its left or right link for further processing.
841  *
842  * Otherwise NULL is returned. In that case all further
843  * steps regarding inserting of conflicting overlap range
844  * have to be declined and actually considered as a bug.
845  */
846 static __always_inline struct rb_node **
847 find_va_links(struct vmap_area *va,
848 	struct rb_root *root, struct rb_node *from,
849 	struct rb_node **parent)
850 {
851 	struct vmap_area *tmp_va;
852 	struct rb_node **link;
853 
854 	if (root) {
855 		link = &root->rb_node;
856 		if (unlikely(!*link)) {
857 			*parent = NULL;
858 			return link;
859 		}
860 	} else {
861 		link = &from;
862 	}
863 
864 	/*
865 	 * Go to the bottom of the tree. When we hit the last point
866 	 * we end up with parent rb_node and correct direction, i name
867 	 * it link, where the new va->rb_node will be attached to.
868 	 */
869 	do {
870 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
871 
872 		/*
873 		 * During the traversal we also do some sanity check.
874 		 * Trigger the BUG() if there are sides(left/right)
875 		 * or full overlaps.
876 		 */
877 		if (va->va_start < tmp_va->va_end &&
878 				va->va_end <= tmp_va->va_start)
879 			link = &(*link)->rb_left;
880 		else if (va->va_end > tmp_va->va_start &&
881 				va->va_start >= tmp_va->va_end)
882 			link = &(*link)->rb_right;
883 		else {
884 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
885 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
886 
887 			return NULL;
888 		}
889 	} while (*link);
890 
891 	*parent = &tmp_va->rb_node;
892 	return link;
893 }
894 
895 static __always_inline struct list_head *
896 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
897 {
898 	struct list_head *list;
899 
900 	if (unlikely(!parent))
901 		/*
902 		 * The red-black tree where we try to find VA neighbors
903 		 * before merging or inserting is empty, i.e. it means
904 		 * there is no free vmap space. Normally it does not
905 		 * happen but we handle this case anyway.
906 		 */
907 		return NULL;
908 
909 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
910 	return (&parent->rb_right == link ? list->next : list);
911 }
912 
913 static __always_inline void
914 link_va(struct vmap_area *va, struct rb_root *root,
915 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
916 {
917 	/*
918 	 * VA is still not in the list, but we can
919 	 * identify its future previous list_head node.
920 	 */
921 	if (likely(parent)) {
922 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923 		if (&parent->rb_right != link)
924 			head = head->prev;
925 	}
926 
927 	/* Insert to the rb-tree */
928 	rb_link_node(&va->rb_node, parent, link);
929 	if (root == &free_vmap_area_root) {
930 		/*
931 		 * Some explanation here. Just perform simple insertion
932 		 * to the tree. We do not set va->subtree_max_size to
933 		 * its current size before calling rb_insert_augmented().
934 		 * It is because of we populate the tree from the bottom
935 		 * to parent levels when the node _is_ in the tree.
936 		 *
937 		 * Therefore we set subtree_max_size to zero after insertion,
938 		 * to let __augment_tree_propagate_from() puts everything to
939 		 * the correct order later on.
940 		 */
941 		rb_insert_augmented(&va->rb_node,
942 			root, &free_vmap_area_rb_augment_cb);
943 		va->subtree_max_size = 0;
944 	} else {
945 		rb_insert_color(&va->rb_node, root);
946 	}
947 
948 	/* Address-sort this list */
949 	list_add(&va->list, head);
950 }
951 
952 static __always_inline void
953 unlink_va(struct vmap_area *va, struct rb_root *root)
954 {
955 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
956 		return;
957 
958 	if (root == &free_vmap_area_root)
959 		rb_erase_augmented(&va->rb_node,
960 			root, &free_vmap_area_rb_augment_cb);
961 	else
962 		rb_erase(&va->rb_node, root);
963 
964 	list_del(&va->list);
965 	RB_CLEAR_NODE(&va->rb_node);
966 }
967 
968 #if DEBUG_AUGMENT_PROPAGATE_CHECK
969 /*
970  * Gets called when remove the node and rotate.
971  */
972 static __always_inline unsigned long
973 compute_subtree_max_size(struct vmap_area *va)
974 {
975 	return max3(va_size(va),
976 		get_subtree_max_size(va->rb_node.rb_left),
977 		get_subtree_max_size(va->rb_node.rb_right));
978 }
979 
980 static void
981 augment_tree_propagate_check(void)
982 {
983 	struct vmap_area *va;
984 	unsigned long computed_size;
985 
986 	list_for_each_entry(va, &free_vmap_area_list, list) {
987 		computed_size = compute_subtree_max_size(va);
988 		if (computed_size != va->subtree_max_size)
989 			pr_emerg("tree is corrupted: %lu, %lu\n",
990 				va_size(va), va->subtree_max_size);
991 	}
992 }
993 #endif
994 
995 /*
996  * This function populates subtree_max_size from bottom to upper
997  * levels starting from VA point. The propagation must be done
998  * when VA size is modified by changing its va_start/va_end. Or
999  * in case of newly inserting of VA to the tree.
1000  *
1001  * It means that __augment_tree_propagate_from() must be called:
1002  * - After VA has been inserted to the tree(free path);
1003  * - After VA has been shrunk(allocation path);
1004  * - After VA has been increased(merging path).
1005  *
1006  * Please note that, it does not mean that upper parent nodes
1007  * and their subtree_max_size are recalculated all the time up
1008  * to the root node.
1009  *
1010  *       4--8
1011  *        /\
1012  *       /  \
1013  *      /    \
1014  *    2--2  8--8
1015  *
1016  * For example if we modify the node 4, shrinking it to 2, then
1017  * no any modification is required. If we shrink the node 2 to 1
1018  * its subtree_max_size is updated only, and set to 1. If we shrink
1019  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1020  * node becomes 4--6.
1021  */
1022 static __always_inline void
1023 augment_tree_propagate_from(struct vmap_area *va)
1024 {
1025 	/*
1026 	 * Populate the tree from bottom towards the root until
1027 	 * the calculated maximum available size of checked node
1028 	 * is equal to its current one.
1029 	 */
1030 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1031 
1032 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1033 	augment_tree_propagate_check();
1034 #endif
1035 }
1036 
1037 static void
1038 insert_vmap_area(struct vmap_area *va,
1039 	struct rb_root *root, struct list_head *head)
1040 {
1041 	struct rb_node **link;
1042 	struct rb_node *parent;
1043 
1044 	link = find_va_links(va, root, NULL, &parent);
1045 	if (link)
1046 		link_va(va, root, parent, link, head);
1047 }
1048 
1049 static void
1050 insert_vmap_area_augment(struct vmap_area *va,
1051 	struct rb_node *from, struct rb_root *root,
1052 	struct list_head *head)
1053 {
1054 	struct rb_node **link;
1055 	struct rb_node *parent;
1056 
1057 	if (from)
1058 		link = find_va_links(va, NULL, from, &parent);
1059 	else
1060 		link = find_va_links(va, root, NULL, &parent);
1061 
1062 	if (link) {
1063 		link_va(va, root, parent, link, head);
1064 		augment_tree_propagate_from(va);
1065 	}
1066 }
1067 
1068 /*
1069  * Merge de-allocated chunk of VA memory with previous
1070  * and next free blocks. If coalesce is not done a new
1071  * free area is inserted. If VA has been merged, it is
1072  * freed.
1073  *
1074  * Please note, it can return NULL in case of overlap
1075  * ranges, followed by WARN() report. Despite it is a
1076  * buggy behaviour, a system can be alive and keep
1077  * ongoing.
1078  */
1079 static __always_inline struct vmap_area *
1080 merge_or_add_vmap_area(struct vmap_area *va,
1081 	struct rb_root *root, struct list_head *head)
1082 {
1083 	struct vmap_area *sibling;
1084 	struct list_head *next;
1085 	struct rb_node **link;
1086 	struct rb_node *parent;
1087 	bool merged = false;
1088 
1089 	/*
1090 	 * Find a place in the tree where VA potentially will be
1091 	 * inserted, unless it is merged with its sibling/siblings.
1092 	 */
1093 	link = find_va_links(va, root, NULL, &parent);
1094 	if (!link)
1095 		return NULL;
1096 
1097 	/*
1098 	 * Get next node of VA to check if merging can be done.
1099 	 */
1100 	next = get_va_next_sibling(parent, link);
1101 	if (unlikely(next == NULL))
1102 		goto insert;
1103 
1104 	/*
1105 	 * start            end
1106 	 * |                |
1107 	 * |<------VA------>|<-----Next----->|
1108 	 *                  |                |
1109 	 *                  start            end
1110 	 */
1111 	if (next != head) {
1112 		sibling = list_entry(next, struct vmap_area, list);
1113 		if (sibling->va_start == va->va_end) {
1114 			sibling->va_start = va->va_start;
1115 
1116 			/* Free vmap_area object. */
1117 			kmem_cache_free(vmap_area_cachep, va);
1118 
1119 			/* Point to the new merged area. */
1120 			va = sibling;
1121 			merged = true;
1122 		}
1123 	}
1124 
1125 	/*
1126 	 * start            end
1127 	 * |                |
1128 	 * |<-----Prev----->|<------VA------>|
1129 	 *                  |                |
1130 	 *                  start            end
1131 	 */
1132 	if (next->prev != head) {
1133 		sibling = list_entry(next->prev, struct vmap_area, list);
1134 		if (sibling->va_end == va->va_start) {
1135 			/*
1136 			 * If both neighbors are coalesced, it is important
1137 			 * to unlink the "next" node first, followed by merging
1138 			 * with "previous" one. Otherwise the tree might not be
1139 			 * fully populated if a sibling's augmented value is
1140 			 * "normalized" because of rotation operations.
1141 			 */
1142 			if (merged)
1143 				unlink_va(va, root);
1144 
1145 			sibling->va_end = va->va_end;
1146 
1147 			/* Free vmap_area object. */
1148 			kmem_cache_free(vmap_area_cachep, va);
1149 
1150 			/* Point to the new merged area. */
1151 			va = sibling;
1152 			merged = true;
1153 		}
1154 	}
1155 
1156 insert:
1157 	if (!merged)
1158 		link_va(va, root, parent, link, head);
1159 
1160 	return va;
1161 }
1162 
1163 static __always_inline struct vmap_area *
1164 merge_or_add_vmap_area_augment(struct vmap_area *va,
1165 	struct rb_root *root, struct list_head *head)
1166 {
1167 	va = merge_or_add_vmap_area(va, root, head);
1168 	if (va)
1169 		augment_tree_propagate_from(va);
1170 
1171 	return va;
1172 }
1173 
1174 static __always_inline bool
1175 is_within_this_va(struct vmap_area *va, unsigned long size,
1176 	unsigned long align, unsigned long vstart)
1177 {
1178 	unsigned long nva_start_addr;
1179 
1180 	if (va->va_start > vstart)
1181 		nva_start_addr = ALIGN(va->va_start, align);
1182 	else
1183 		nva_start_addr = ALIGN(vstart, align);
1184 
1185 	/* Can be overflowed due to big size or alignment. */
1186 	if (nva_start_addr + size < nva_start_addr ||
1187 			nva_start_addr < vstart)
1188 		return false;
1189 
1190 	return (nva_start_addr + size <= va->va_end);
1191 }
1192 
1193 /*
1194  * Find the first free block(lowest start address) in the tree,
1195  * that will accomplish the request corresponding to passing
1196  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1197  * a search length is adjusted to account for worst case alignment
1198  * overhead.
1199  */
1200 static __always_inline struct vmap_area *
1201 find_vmap_lowest_match(unsigned long size, unsigned long align,
1202 	unsigned long vstart, bool adjust_search_size)
1203 {
1204 	struct vmap_area *va;
1205 	struct rb_node *node;
1206 	unsigned long length;
1207 
1208 	/* Start from the root. */
1209 	node = free_vmap_area_root.rb_node;
1210 
1211 	/* Adjust the search size for alignment overhead. */
1212 	length = adjust_search_size ? size + align - 1 : size;
1213 
1214 	while (node) {
1215 		va = rb_entry(node, struct vmap_area, rb_node);
1216 
1217 		if (get_subtree_max_size(node->rb_left) >= length &&
1218 				vstart < va->va_start) {
1219 			node = node->rb_left;
1220 		} else {
1221 			if (is_within_this_va(va, size, align, vstart))
1222 				return va;
1223 
1224 			/*
1225 			 * Does not make sense to go deeper towards the right
1226 			 * sub-tree if it does not have a free block that is
1227 			 * equal or bigger to the requested search length.
1228 			 */
1229 			if (get_subtree_max_size(node->rb_right) >= length) {
1230 				node = node->rb_right;
1231 				continue;
1232 			}
1233 
1234 			/*
1235 			 * OK. We roll back and find the first right sub-tree,
1236 			 * that will satisfy the search criteria. It can happen
1237 			 * due to "vstart" restriction or an alignment overhead
1238 			 * that is bigger then PAGE_SIZE.
1239 			 */
1240 			while ((node = rb_parent(node))) {
1241 				va = rb_entry(node, struct vmap_area, rb_node);
1242 				if (is_within_this_va(va, size, align, vstart))
1243 					return va;
1244 
1245 				if (get_subtree_max_size(node->rb_right) >= length &&
1246 						vstart <= va->va_start) {
1247 					/*
1248 					 * Shift the vstart forward. Please note, we update it with
1249 					 * parent's start address adding "1" because we do not want
1250 					 * to enter same sub-tree after it has already been checked
1251 					 * and no suitable free block found there.
1252 					 */
1253 					vstart = va->va_start + 1;
1254 					node = node->rb_right;
1255 					break;
1256 				}
1257 			}
1258 		}
1259 	}
1260 
1261 	return NULL;
1262 }
1263 
1264 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1265 #include <linux/random.h>
1266 
1267 static struct vmap_area *
1268 find_vmap_lowest_linear_match(unsigned long size,
1269 	unsigned long align, unsigned long vstart)
1270 {
1271 	struct vmap_area *va;
1272 
1273 	list_for_each_entry(va, &free_vmap_area_list, list) {
1274 		if (!is_within_this_va(va, size, align, vstart))
1275 			continue;
1276 
1277 		return va;
1278 	}
1279 
1280 	return NULL;
1281 }
1282 
1283 static void
1284 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1285 {
1286 	struct vmap_area *va_1, *va_2;
1287 	unsigned long vstart;
1288 	unsigned int rnd;
1289 
1290 	get_random_bytes(&rnd, sizeof(rnd));
1291 	vstart = VMALLOC_START + rnd;
1292 
1293 	va_1 = find_vmap_lowest_match(size, align, vstart, false);
1294 	va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1295 
1296 	if (va_1 != va_2)
1297 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1298 			va_1, va_2, vstart);
1299 }
1300 #endif
1301 
1302 enum fit_type {
1303 	NOTHING_FIT = 0,
1304 	FL_FIT_TYPE = 1,	/* full fit */
1305 	LE_FIT_TYPE = 2,	/* left edge fit */
1306 	RE_FIT_TYPE = 3,	/* right edge fit */
1307 	NE_FIT_TYPE = 4		/* no edge fit */
1308 };
1309 
1310 static __always_inline enum fit_type
1311 classify_va_fit_type(struct vmap_area *va,
1312 	unsigned long nva_start_addr, unsigned long size)
1313 {
1314 	enum fit_type type;
1315 
1316 	/* Check if it is within VA. */
1317 	if (nva_start_addr < va->va_start ||
1318 			nva_start_addr + size > va->va_end)
1319 		return NOTHING_FIT;
1320 
1321 	/* Now classify. */
1322 	if (va->va_start == nva_start_addr) {
1323 		if (va->va_end == nva_start_addr + size)
1324 			type = FL_FIT_TYPE;
1325 		else
1326 			type = LE_FIT_TYPE;
1327 	} else if (va->va_end == nva_start_addr + size) {
1328 		type = RE_FIT_TYPE;
1329 	} else {
1330 		type = NE_FIT_TYPE;
1331 	}
1332 
1333 	return type;
1334 }
1335 
1336 static __always_inline int
1337 adjust_va_to_fit_type(struct vmap_area *va,
1338 	unsigned long nva_start_addr, unsigned long size,
1339 	enum fit_type type)
1340 {
1341 	struct vmap_area *lva = NULL;
1342 
1343 	if (type == FL_FIT_TYPE) {
1344 		/*
1345 		 * No need to split VA, it fully fits.
1346 		 *
1347 		 * |               |
1348 		 * V      NVA      V
1349 		 * |---------------|
1350 		 */
1351 		unlink_va(va, &free_vmap_area_root);
1352 		kmem_cache_free(vmap_area_cachep, va);
1353 	} else if (type == LE_FIT_TYPE) {
1354 		/*
1355 		 * Split left edge of fit VA.
1356 		 *
1357 		 * |       |
1358 		 * V  NVA  V   R
1359 		 * |-------|-------|
1360 		 */
1361 		va->va_start += size;
1362 	} else if (type == RE_FIT_TYPE) {
1363 		/*
1364 		 * Split right edge of fit VA.
1365 		 *
1366 		 *         |       |
1367 		 *     L   V  NVA  V
1368 		 * |-------|-------|
1369 		 */
1370 		va->va_end = nva_start_addr;
1371 	} else if (type == NE_FIT_TYPE) {
1372 		/*
1373 		 * Split no edge of fit VA.
1374 		 *
1375 		 *     |       |
1376 		 *   L V  NVA  V R
1377 		 * |---|-------|---|
1378 		 */
1379 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1380 		if (unlikely(!lva)) {
1381 			/*
1382 			 * For percpu allocator we do not do any pre-allocation
1383 			 * and leave it as it is. The reason is it most likely
1384 			 * never ends up with NE_FIT_TYPE splitting. In case of
1385 			 * percpu allocations offsets and sizes are aligned to
1386 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1387 			 * are its main fitting cases.
1388 			 *
1389 			 * There are a few exceptions though, as an example it is
1390 			 * a first allocation (early boot up) when we have "one"
1391 			 * big free space that has to be split.
1392 			 *
1393 			 * Also we can hit this path in case of regular "vmap"
1394 			 * allocations, if "this" current CPU was not preloaded.
1395 			 * See the comment in alloc_vmap_area() why. If so, then
1396 			 * GFP_NOWAIT is used instead to get an extra object for
1397 			 * split purpose. That is rare and most time does not
1398 			 * occur.
1399 			 *
1400 			 * What happens if an allocation gets failed. Basically,
1401 			 * an "overflow" path is triggered to purge lazily freed
1402 			 * areas to free some memory, then, the "retry" path is
1403 			 * triggered to repeat one more time. See more details
1404 			 * in alloc_vmap_area() function.
1405 			 */
1406 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1407 			if (!lva)
1408 				return -1;
1409 		}
1410 
1411 		/*
1412 		 * Build the remainder.
1413 		 */
1414 		lva->va_start = va->va_start;
1415 		lva->va_end = nva_start_addr;
1416 
1417 		/*
1418 		 * Shrink this VA to remaining size.
1419 		 */
1420 		va->va_start = nva_start_addr + size;
1421 	} else {
1422 		return -1;
1423 	}
1424 
1425 	if (type != FL_FIT_TYPE) {
1426 		augment_tree_propagate_from(va);
1427 
1428 		if (lva)	/* type == NE_FIT_TYPE */
1429 			insert_vmap_area_augment(lva, &va->rb_node,
1430 				&free_vmap_area_root, &free_vmap_area_list);
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Returns a start address of the newly allocated area, if success.
1438  * Otherwise a vend is returned that indicates failure.
1439  */
1440 static __always_inline unsigned long
1441 __alloc_vmap_area(unsigned long size, unsigned long align,
1442 	unsigned long vstart, unsigned long vend)
1443 {
1444 	bool adjust_search_size = true;
1445 	unsigned long nva_start_addr;
1446 	struct vmap_area *va;
1447 	enum fit_type type;
1448 	int ret;
1449 
1450 	/*
1451 	 * Do not adjust when:
1452 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1453 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1454 	 *      aligned anyway;
1455 	 *   b) a short range where a requested size corresponds to exactly
1456 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1457 	 *      With adjusted search length an allocation would not succeed.
1458 	 */
1459 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1460 		adjust_search_size = false;
1461 
1462 	va = find_vmap_lowest_match(size, align, vstart, adjust_search_size);
1463 	if (unlikely(!va))
1464 		return vend;
1465 
1466 	if (va->va_start > vstart)
1467 		nva_start_addr = ALIGN(va->va_start, align);
1468 	else
1469 		nva_start_addr = ALIGN(vstart, align);
1470 
1471 	/* Check the "vend" restriction. */
1472 	if (nva_start_addr + size > vend)
1473 		return vend;
1474 
1475 	/* Classify what we have found. */
1476 	type = classify_va_fit_type(va, nva_start_addr, size);
1477 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1478 		return vend;
1479 
1480 	/* Update the free vmap_area. */
1481 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1482 	if (ret)
1483 		return vend;
1484 
1485 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1486 	find_vmap_lowest_match_check(size, align);
1487 #endif
1488 
1489 	return nva_start_addr;
1490 }
1491 
1492 /*
1493  * Free a region of KVA allocated by alloc_vmap_area
1494  */
1495 static void free_vmap_area(struct vmap_area *va)
1496 {
1497 	/*
1498 	 * Remove from the busy tree/list.
1499 	 */
1500 	spin_lock(&vmap_area_lock);
1501 	unlink_va(va, &vmap_area_root);
1502 	spin_unlock(&vmap_area_lock);
1503 
1504 	/*
1505 	 * Insert/Merge it back to the free tree/list.
1506 	 */
1507 	spin_lock(&free_vmap_area_lock);
1508 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1509 	spin_unlock(&free_vmap_area_lock);
1510 }
1511 
1512 static inline void
1513 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1514 {
1515 	struct vmap_area *va = NULL;
1516 
1517 	/*
1518 	 * Preload this CPU with one extra vmap_area object. It is used
1519 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1520 	 * a CPU that does an allocation is preloaded.
1521 	 *
1522 	 * We do it in non-atomic context, thus it allows us to use more
1523 	 * permissive allocation masks to be more stable under low memory
1524 	 * condition and high memory pressure.
1525 	 */
1526 	if (!this_cpu_read(ne_fit_preload_node))
1527 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1528 
1529 	spin_lock(lock);
1530 
1531 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1532 		kmem_cache_free(vmap_area_cachep, va);
1533 }
1534 
1535 /*
1536  * Allocate a region of KVA of the specified size and alignment, within the
1537  * vstart and vend.
1538  */
1539 static struct vmap_area *alloc_vmap_area(unsigned long size,
1540 				unsigned long align,
1541 				unsigned long vstart, unsigned long vend,
1542 				int node, gfp_t gfp_mask)
1543 {
1544 	struct vmap_area *va;
1545 	unsigned long freed;
1546 	unsigned long addr;
1547 	int purged = 0;
1548 	int ret;
1549 
1550 	BUG_ON(!size);
1551 	BUG_ON(offset_in_page(size));
1552 	BUG_ON(!is_power_of_2(align));
1553 
1554 	if (unlikely(!vmap_initialized))
1555 		return ERR_PTR(-EBUSY);
1556 
1557 	might_sleep();
1558 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1559 
1560 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1561 	if (unlikely(!va))
1562 		return ERR_PTR(-ENOMEM);
1563 
1564 	/*
1565 	 * Only scan the relevant parts containing pointers to other objects
1566 	 * to avoid false negatives.
1567 	 */
1568 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1569 
1570 retry:
1571 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1572 	addr = __alloc_vmap_area(size, align, vstart, vend);
1573 	spin_unlock(&free_vmap_area_lock);
1574 
1575 	/*
1576 	 * If an allocation fails, the "vend" address is
1577 	 * returned. Therefore trigger the overflow path.
1578 	 */
1579 	if (unlikely(addr == vend))
1580 		goto overflow;
1581 
1582 	va->va_start = addr;
1583 	va->va_end = addr + size;
1584 	va->vm = NULL;
1585 
1586 	spin_lock(&vmap_area_lock);
1587 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1588 	spin_unlock(&vmap_area_lock);
1589 
1590 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1591 	BUG_ON(va->va_start < vstart);
1592 	BUG_ON(va->va_end > vend);
1593 
1594 	ret = kasan_populate_vmalloc(addr, size);
1595 	if (ret) {
1596 		free_vmap_area(va);
1597 		return ERR_PTR(ret);
1598 	}
1599 
1600 	return va;
1601 
1602 overflow:
1603 	if (!purged) {
1604 		purge_vmap_area_lazy();
1605 		purged = 1;
1606 		goto retry;
1607 	}
1608 
1609 	freed = 0;
1610 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1611 
1612 	if (freed > 0) {
1613 		purged = 0;
1614 		goto retry;
1615 	}
1616 
1617 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1618 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1619 			size);
1620 
1621 	kmem_cache_free(vmap_area_cachep, va);
1622 	return ERR_PTR(-EBUSY);
1623 }
1624 
1625 int register_vmap_purge_notifier(struct notifier_block *nb)
1626 {
1627 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1628 }
1629 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1630 
1631 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1632 {
1633 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1634 }
1635 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1636 
1637 /*
1638  * lazy_max_pages is the maximum amount of virtual address space we gather up
1639  * before attempting to purge with a TLB flush.
1640  *
1641  * There is a tradeoff here: a larger number will cover more kernel page tables
1642  * and take slightly longer to purge, but it will linearly reduce the number of
1643  * global TLB flushes that must be performed. It would seem natural to scale
1644  * this number up linearly with the number of CPUs (because vmapping activity
1645  * could also scale linearly with the number of CPUs), however it is likely
1646  * that in practice, workloads might be constrained in other ways that mean
1647  * vmap activity will not scale linearly with CPUs. Also, I want to be
1648  * conservative and not introduce a big latency on huge systems, so go with
1649  * a less aggressive log scale. It will still be an improvement over the old
1650  * code, and it will be simple to change the scale factor if we find that it
1651  * becomes a problem on bigger systems.
1652  */
1653 static unsigned long lazy_max_pages(void)
1654 {
1655 	unsigned int log;
1656 
1657 	log = fls(num_online_cpus());
1658 
1659 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1660 }
1661 
1662 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1663 
1664 /*
1665  * Serialize vmap purging.  There is no actual critical section protected
1666  * by this look, but we want to avoid concurrent calls for performance
1667  * reasons and to make the pcpu_get_vm_areas more deterministic.
1668  */
1669 static DEFINE_MUTEX(vmap_purge_lock);
1670 
1671 /* for per-CPU blocks */
1672 static void purge_fragmented_blocks_allcpus(void);
1673 
1674 /*
1675  * Purges all lazily-freed vmap areas.
1676  */
1677 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1678 {
1679 	unsigned long resched_threshold;
1680 	struct list_head local_pure_list;
1681 	struct vmap_area *va, *n_va;
1682 
1683 	lockdep_assert_held(&vmap_purge_lock);
1684 
1685 	spin_lock(&purge_vmap_area_lock);
1686 	purge_vmap_area_root = RB_ROOT;
1687 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1688 	spin_unlock(&purge_vmap_area_lock);
1689 
1690 	if (unlikely(list_empty(&local_pure_list)))
1691 		return false;
1692 
1693 	start = min(start,
1694 		list_first_entry(&local_pure_list,
1695 			struct vmap_area, list)->va_start);
1696 
1697 	end = max(end,
1698 		list_last_entry(&local_pure_list,
1699 			struct vmap_area, list)->va_end);
1700 
1701 	flush_tlb_kernel_range(start, end);
1702 	resched_threshold = lazy_max_pages() << 1;
1703 
1704 	spin_lock(&free_vmap_area_lock);
1705 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1706 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1707 		unsigned long orig_start = va->va_start;
1708 		unsigned long orig_end = va->va_end;
1709 
1710 		/*
1711 		 * Finally insert or merge lazily-freed area. It is
1712 		 * detached and there is no need to "unlink" it from
1713 		 * anything.
1714 		 */
1715 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1716 				&free_vmap_area_list);
1717 
1718 		if (!va)
1719 			continue;
1720 
1721 		if (is_vmalloc_or_module_addr((void *)orig_start))
1722 			kasan_release_vmalloc(orig_start, orig_end,
1723 					      va->va_start, va->va_end);
1724 
1725 		atomic_long_sub(nr, &vmap_lazy_nr);
1726 
1727 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1728 			cond_resched_lock(&free_vmap_area_lock);
1729 	}
1730 	spin_unlock(&free_vmap_area_lock);
1731 	return true;
1732 }
1733 
1734 /*
1735  * Kick off a purge of the outstanding lazy areas.
1736  */
1737 static void purge_vmap_area_lazy(void)
1738 {
1739 	mutex_lock(&vmap_purge_lock);
1740 	purge_fragmented_blocks_allcpus();
1741 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1742 	mutex_unlock(&vmap_purge_lock);
1743 }
1744 
1745 static void drain_vmap_area_work(struct work_struct *work)
1746 {
1747 	unsigned long nr_lazy;
1748 
1749 	do {
1750 		mutex_lock(&vmap_purge_lock);
1751 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1752 		mutex_unlock(&vmap_purge_lock);
1753 
1754 		/* Recheck if further work is required. */
1755 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1756 	} while (nr_lazy > lazy_max_pages());
1757 }
1758 
1759 /*
1760  * Free a vmap area, caller ensuring that the area has been unmapped
1761  * and flush_cache_vunmap had been called for the correct range
1762  * previously.
1763  */
1764 static void free_vmap_area_noflush(struct vmap_area *va)
1765 {
1766 	unsigned long nr_lazy;
1767 
1768 	spin_lock(&vmap_area_lock);
1769 	unlink_va(va, &vmap_area_root);
1770 	spin_unlock(&vmap_area_lock);
1771 
1772 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1773 				PAGE_SHIFT, &vmap_lazy_nr);
1774 
1775 	/*
1776 	 * Merge or place it to the purge tree/list.
1777 	 */
1778 	spin_lock(&purge_vmap_area_lock);
1779 	merge_or_add_vmap_area(va,
1780 		&purge_vmap_area_root, &purge_vmap_area_list);
1781 	spin_unlock(&purge_vmap_area_lock);
1782 
1783 	/* After this point, we may free va at any time */
1784 	if (unlikely(nr_lazy > lazy_max_pages()))
1785 		schedule_work(&drain_vmap_work);
1786 }
1787 
1788 /*
1789  * Free and unmap a vmap area
1790  */
1791 static void free_unmap_vmap_area(struct vmap_area *va)
1792 {
1793 	flush_cache_vunmap(va->va_start, va->va_end);
1794 	vunmap_range_noflush(va->va_start, va->va_end);
1795 	if (debug_pagealloc_enabled_static())
1796 		flush_tlb_kernel_range(va->va_start, va->va_end);
1797 
1798 	free_vmap_area_noflush(va);
1799 }
1800 
1801 static struct vmap_area *find_vmap_area(unsigned long addr)
1802 {
1803 	struct vmap_area *va;
1804 
1805 	spin_lock(&vmap_area_lock);
1806 	va = __find_vmap_area(addr);
1807 	spin_unlock(&vmap_area_lock);
1808 
1809 	return va;
1810 }
1811 
1812 /*** Per cpu kva allocator ***/
1813 
1814 /*
1815  * vmap space is limited especially on 32 bit architectures. Ensure there is
1816  * room for at least 16 percpu vmap blocks per CPU.
1817  */
1818 /*
1819  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1820  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1821  * instead (we just need a rough idea)
1822  */
1823 #if BITS_PER_LONG == 32
1824 #define VMALLOC_SPACE		(128UL*1024*1024)
1825 #else
1826 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1827 #endif
1828 
1829 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1830 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1831 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1832 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1833 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1834 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1835 #define VMAP_BBMAP_BITS		\
1836 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1837 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1838 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1839 
1840 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1841 
1842 struct vmap_block_queue {
1843 	spinlock_t lock;
1844 	struct list_head free;
1845 };
1846 
1847 struct vmap_block {
1848 	spinlock_t lock;
1849 	struct vmap_area *va;
1850 	unsigned long free, dirty;
1851 	unsigned long dirty_min, dirty_max; /*< dirty range */
1852 	struct list_head free_list;
1853 	struct rcu_head rcu_head;
1854 	struct list_head purge;
1855 };
1856 
1857 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1858 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1859 
1860 /*
1861  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1862  * in the free path. Could get rid of this if we change the API to return a
1863  * "cookie" from alloc, to be passed to free. But no big deal yet.
1864  */
1865 static DEFINE_XARRAY(vmap_blocks);
1866 
1867 /*
1868  * We should probably have a fallback mechanism to allocate virtual memory
1869  * out of partially filled vmap blocks. However vmap block sizing should be
1870  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1871  * big problem.
1872  */
1873 
1874 static unsigned long addr_to_vb_idx(unsigned long addr)
1875 {
1876 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1877 	addr /= VMAP_BLOCK_SIZE;
1878 	return addr;
1879 }
1880 
1881 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1882 {
1883 	unsigned long addr;
1884 
1885 	addr = va_start + (pages_off << PAGE_SHIFT);
1886 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1887 	return (void *)addr;
1888 }
1889 
1890 /**
1891  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1892  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1893  * @order:    how many 2^order pages should be occupied in newly allocated block
1894  * @gfp_mask: flags for the page level allocator
1895  *
1896  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1897  */
1898 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1899 {
1900 	struct vmap_block_queue *vbq;
1901 	struct vmap_block *vb;
1902 	struct vmap_area *va;
1903 	unsigned long vb_idx;
1904 	int node, err;
1905 	void *vaddr;
1906 
1907 	node = numa_node_id();
1908 
1909 	vb = kmalloc_node(sizeof(struct vmap_block),
1910 			gfp_mask & GFP_RECLAIM_MASK, node);
1911 	if (unlikely(!vb))
1912 		return ERR_PTR(-ENOMEM);
1913 
1914 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1915 					VMALLOC_START, VMALLOC_END,
1916 					node, gfp_mask);
1917 	if (IS_ERR(va)) {
1918 		kfree(vb);
1919 		return ERR_CAST(va);
1920 	}
1921 
1922 	vaddr = vmap_block_vaddr(va->va_start, 0);
1923 	spin_lock_init(&vb->lock);
1924 	vb->va = va;
1925 	/* At least something should be left free */
1926 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1927 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1928 	vb->dirty = 0;
1929 	vb->dirty_min = VMAP_BBMAP_BITS;
1930 	vb->dirty_max = 0;
1931 	INIT_LIST_HEAD(&vb->free_list);
1932 
1933 	vb_idx = addr_to_vb_idx(va->va_start);
1934 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1935 	if (err) {
1936 		kfree(vb);
1937 		free_vmap_area(va);
1938 		return ERR_PTR(err);
1939 	}
1940 
1941 	vbq = &get_cpu_var(vmap_block_queue);
1942 	spin_lock(&vbq->lock);
1943 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1944 	spin_unlock(&vbq->lock);
1945 	put_cpu_var(vmap_block_queue);
1946 
1947 	return vaddr;
1948 }
1949 
1950 static void free_vmap_block(struct vmap_block *vb)
1951 {
1952 	struct vmap_block *tmp;
1953 
1954 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1955 	BUG_ON(tmp != vb);
1956 
1957 	free_vmap_area_noflush(vb->va);
1958 	kfree_rcu(vb, rcu_head);
1959 }
1960 
1961 static void purge_fragmented_blocks(int cpu)
1962 {
1963 	LIST_HEAD(purge);
1964 	struct vmap_block *vb;
1965 	struct vmap_block *n_vb;
1966 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1967 
1968 	rcu_read_lock();
1969 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1970 
1971 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1972 			continue;
1973 
1974 		spin_lock(&vb->lock);
1975 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1976 			vb->free = 0; /* prevent further allocs after releasing lock */
1977 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1978 			vb->dirty_min = 0;
1979 			vb->dirty_max = VMAP_BBMAP_BITS;
1980 			spin_lock(&vbq->lock);
1981 			list_del_rcu(&vb->free_list);
1982 			spin_unlock(&vbq->lock);
1983 			spin_unlock(&vb->lock);
1984 			list_add_tail(&vb->purge, &purge);
1985 		} else
1986 			spin_unlock(&vb->lock);
1987 	}
1988 	rcu_read_unlock();
1989 
1990 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1991 		list_del(&vb->purge);
1992 		free_vmap_block(vb);
1993 	}
1994 }
1995 
1996 static void purge_fragmented_blocks_allcpus(void)
1997 {
1998 	int cpu;
1999 
2000 	for_each_possible_cpu(cpu)
2001 		purge_fragmented_blocks(cpu);
2002 }
2003 
2004 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2005 {
2006 	struct vmap_block_queue *vbq;
2007 	struct vmap_block *vb;
2008 	void *vaddr = NULL;
2009 	unsigned int order;
2010 
2011 	BUG_ON(offset_in_page(size));
2012 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2013 	if (WARN_ON(size == 0)) {
2014 		/*
2015 		 * Allocating 0 bytes isn't what caller wants since
2016 		 * get_order(0) returns funny result. Just warn and terminate
2017 		 * early.
2018 		 */
2019 		return NULL;
2020 	}
2021 	order = get_order(size);
2022 
2023 	rcu_read_lock();
2024 	vbq = &get_cpu_var(vmap_block_queue);
2025 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2026 		unsigned long pages_off;
2027 
2028 		spin_lock(&vb->lock);
2029 		if (vb->free < (1UL << order)) {
2030 			spin_unlock(&vb->lock);
2031 			continue;
2032 		}
2033 
2034 		pages_off = VMAP_BBMAP_BITS - vb->free;
2035 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2036 		vb->free -= 1UL << order;
2037 		if (vb->free == 0) {
2038 			spin_lock(&vbq->lock);
2039 			list_del_rcu(&vb->free_list);
2040 			spin_unlock(&vbq->lock);
2041 		}
2042 
2043 		spin_unlock(&vb->lock);
2044 		break;
2045 	}
2046 
2047 	put_cpu_var(vmap_block_queue);
2048 	rcu_read_unlock();
2049 
2050 	/* Allocate new block if nothing was found */
2051 	if (!vaddr)
2052 		vaddr = new_vmap_block(order, gfp_mask);
2053 
2054 	return vaddr;
2055 }
2056 
2057 static void vb_free(unsigned long addr, unsigned long size)
2058 {
2059 	unsigned long offset;
2060 	unsigned int order;
2061 	struct vmap_block *vb;
2062 
2063 	BUG_ON(offset_in_page(size));
2064 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2065 
2066 	flush_cache_vunmap(addr, addr + size);
2067 
2068 	order = get_order(size);
2069 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2070 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2071 
2072 	vunmap_range_noflush(addr, addr + size);
2073 
2074 	if (debug_pagealloc_enabled_static())
2075 		flush_tlb_kernel_range(addr, addr + size);
2076 
2077 	spin_lock(&vb->lock);
2078 
2079 	/* Expand dirty range */
2080 	vb->dirty_min = min(vb->dirty_min, offset);
2081 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2082 
2083 	vb->dirty += 1UL << order;
2084 	if (vb->dirty == VMAP_BBMAP_BITS) {
2085 		BUG_ON(vb->free);
2086 		spin_unlock(&vb->lock);
2087 		free_vmap_block(vb);
2088 	} else
2089 		spin_unlock(&vb->lock);
2090 }
2091 
2092 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2093 {
2094 	int cpu;
2095 
2096 	if (unlikely(!vmap_initialized))
2097 		return;
2098 
2099 	might_sleep();
2100 
2101 	for_each_possible_cpu(cpu) {
2102 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2103 		struct vmap_block *vb;
2104 
2105 		rcu_read_lock();
2106 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2107 			spin_lock(&vb->lock);
2108 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2109 				unsigned long va_start = vb->va->va_start;
2110 				unsigned long s, e;
2111 
2112 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2113 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2114 
2115 				start = min(s, start);
2116 				end   = max(e, end);
2117 
2118 				flush = 1;
2119 			}
2120 			spin_unlock(&vb->lock);
2121 		}
2122 		rcu_read_unlock();
2123 	}
2124 
2125 	mutex_lock(&vmap_purge_lock);
2126 	purge_fragmented_blocks_allcpus();
2127 	if (!__purge_vmap_area_lazy(start, end) && flush)
2128 		flush_tlb_kernel_range(start, end);
2129 	mutex_unlock(&vmap_purge_lock);
2130 }
2131 
2132 /**
2133  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2134  *
2135  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2136  * to amortize TLB flushing overheads. What this means is that any page you
2137  * have now, may, in a former life, have been mapped into kernel virtual
2138  * address by the vmap layer and so there might be some CPUs with TLB entries
2139  * still referencing that page (additional to the regular 1:1 kernel mapping).
2140  *
2141  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2142  * be sure that none of the pages we have control over will have any aliases
2143  * from the vmap layer.
2144  */
2145 void vm_unmap_aliases(void)
2146 {
2147 	unsigned long start = ULONG_MAX, end = 0;
2148 	int flush = 0;
2149 
2150 	_vm_unmap_aliases(start, end, flush);
2151 }
2152 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2153 
2154 /**
2155  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2156  * @mem: the pointer returned by vm_map_ram
2157  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2158  */
2159 void vm_unmap_ram(const void *mem, unsigned int count)
2160 {
2161 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2162 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2163 	struct vmap_area *va;
2164 
2165 	might_sleep();
2166 	BUG_ON(!addr);
2167 	BUG_ON(addr < VMALLOC_START);
2168 	BUG_ON(addr > VMALLOC_END);
2169 	BUG_ON(!PAGE_ALIGNED(addr));
2170 
2171 	kasan_poison_vmalloc(mem, size);
2172 
2173 	if (likely(count <= VMAP_MAX_ALLOC)) {
2174 		debug_check_no_locks_freed(mem, size);
2175 		vb_free(addr, size);
2176 		return;
2177 	}
2178 
2179 	va = find_vmap_area(addr);
2180 	BUG_ON(!va);
2181 	debug_check_no_locks_freed((void *)va->va_start,
2182 				    (va->va_end - va->va_start));
2183 	free_unmap_vmap_area(va);
2184 }
2185 EXPORT_SYMBOL(vm_unmap_ram);
2186 
2187 /**
2188  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2189  * @pages: an array of pointers to the pages to be mapped
2190  * @count: number of pages
2191  * @node: prefer to allocate data structures on this node
2192  *
2193  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2194  * faster than vmap so it's good.  But if you mix long-life and short-life
2195  * objects with vm_map_ram(), it could consume lots of address space through
2196  * fragmentation (especially on a 32bit machine).  You could see failures in
2197  * the end.  Please use this function for short-lived objects.
2198  *
2199  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2200  */
2201 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2202 {
2203 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2204 	unsigned long addr;
2205 	void *mem;
2206 
2207 	if (likely(count <= VMAP_MAX_ALLOC)) {
2208 		mem = vb_alloc(size, GFP_KERNEL);
2209 		if (IS_ERR(mem))
2210 			return NULL;
2211 		addr = (unsigned long)mem;
2212 	} else {
2213 		struct vmap_area *va;
2214 		va = alloc_vmap_area(size, PAGE_SIZE,
2215 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2216 		if (IS_ERR(va))
2217 			return NULL;
2218 
2219 		addr = va->va_start;
2220 		mem = (void *)addr;
2221 	}
2222 
2223 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2224 				pages, PAGE_SHIFT) < 0) {
2225 		vm_unmap_ram(mem, count);
2226 		return NULL;
2227 	}
2228 
2229 	/*
2230 	 * Mark the pages as accessible, now that they are mapped.
2231 	 * With hardware tag-based KASAN, marking is skipped for
2232 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2233 	 */
2234 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2235 
2236 	return mem;
2237 }
2238 EXPORT_SYMBOL(vm_map_ram);
2239 
2240 static struct vm_struct *vmlist __initdata;
2241 
2242 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2243 {
2244 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2245 	return vm->page_order;
2246 #else
2247 	return 0;
2248 #endif
2249 }
2250 
2251 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2252 {
2253 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2254 	vm->page_order = order;
2255 #else
2256 	BUG_ON(order != 0);
2257 #endif
2258 }
2259 
2260 /**
2261  * vm_area_add_early - add vmap area early during boot
2262  * @vm: vm_struct to add
2263  *
2264  * This function is used to add fixed kernel vm area to vmlist before
2265  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2266  * should contain proper values and the other fields should be zero.
2267  *
2268  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2269  */
2270 void __init vm_area_add_early(struct vm_struct *vm)
2271 {
2272 	struct vm_struct *tmp, **p;
2273 
2274 	BUG_ON(vmap_initialized);
2275 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2276 		if (tmp->addr >= vm->addr) {
2277 			BUG_ON(tmp->addr < vm->addr + vm->size);
2278 			break;
2279 		} else
2280 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2281 	}
2282 	vm->next = *p;
2283 	*p = vm;
2284 }
2285 
2286 /**
2287  * vm_area_register_early - register vmap area early during boot
2288  * @vm: vm_struct to register
2289  * @align: requested alignment
2290  *
2291  * This function is used to register kernel vm area before
2292  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2293  * proper values on entry and other fields should be zero.  On return,
2294  * vm->addr contains the allocated address.
2295  *
2296  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2297  */
2298 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2299 {
2300 	unsigned long addr = ALIGN(VMALLOC_START, align);
2301 	struct vm_struct *cur, **p;
2302 
2303 	BUG_ON(vmap_initialized);
2304 
2305 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2306 		if ((unsigned long)cur->addr - addr >= vm->size)
2307 			break;
2308 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2309 	}
2310 
2311 	BUG_ON(addr > VMALLOC_END - vm->size);
2312 	vm->addr = (void *)addr;
2313 	vm->next = *p;
2314 	*p = vm;
2315 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2316 }
2317 
2318 static void vmap_init_free_space(void)
2319 {
2320 	unsigned long vmap_start = 1;
2321 	const unsigned long vmap_end = ULONG_MAX;
2322 	struct vmap_area *busy, *free;
2323 
2324 	/*
2325 	 *     B     F     B     B     B     F
2326 	 * -|-----|.....|-----|-----|-----|.....|-
2327 	 *  |           The KVA space           |
2328 	 *  |<--------------------------------->|
2329 	 */
2330 	list_for_each_entry(busy, &vmap_area_list, list) {
2331 		if (busy->va_start - vmap_start > 0) {
2332 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2333 			if (!WARN_ON_ONCE(!free)) {
2334 				free->va_start = vmap_start;
2335 				free->va_end = busy->va_start;
2336 
2337 				insert_vmap_area_augment(free, NULL,
2338 					&free_vmap_area_root,
2339 						&free_vmap_area_list);
2340 			}
2341 		}
2342 
2343 		vmap_start = busy->va_end;
2344 	}
2345 
2346 	if (vmap_end - vmap_start > 0) {
2347 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2348 		if (!WARN_ON_ONCE(!free)) {
2349 			free->va_start = vmap_start;
2350 			free->va_end = vmap_end;
2351 
2352 			insert_vmap_area_augment(free, NULL,
2353 				&free_vmap_area_root,
2354 					&free_vmap_area_list);
2355 		}
2356 	}
2357 }
2358 
2359 void __init vmalloc_init(void)
2360 {
2361 	struct vmap_area *va;
2362 	struct vm_struct *tmp;
2363 	int i;
2364 
2365 	/*
2366 	 * Create the cache for vmap_area objects.
2367 	 */
2368 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2369 
2370 	for_each_possible_cpu(i) {
2371 		struct vmap_block_queue *vbq;
2372 		struct vfree_deferred *p;
2373 
2374 		vbq = &per_cpu(vmap_block_queue, i);
2375 		spin_lock_init(&vbq->lock);
2376 		INIT_LIST_HEAD(&vbq->free);
2377 		p = &per_cpu(vfree_deferred, i);
2378 		init_llist_head(&p->list);
2379 		INIT_WORK(&p->wq, free_work);
2380 	}
2381 
2382 	/* Import existing vmlist entries. */
2383 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2384 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2385 		if (WARN_ON_ONCE(!va))
2386 			continue;
2387 
2388 		va->va_start = (unsigned long)tmp->addr;
2389 		va->va_end = va->va_start + tmp->size;
2390 		va->vm = tmp;
2391 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2392 	}
2393 
2394 	/*
2395 	 * Now we can initialize a free vmap space.
2396 	 */
2397 	vmap_init_free_space();
2398 	vmap_initialized = true;
2399 }
2400 
2401 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2402 	struct vmap_area *va, unsigned long flags, const void *caller)
2403 {
2404 	vm->flags = flags;
2405 	vm->addr = (void *)va->va_start;
2406 	vm->size = va->va_end - va->va_start;
2407 	vm->caller = caller;
2408 	va->vm = vm;
2409 }
2410 
2411 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2412 			      unsigned long flags, const void *caller)
2413 {
2414 	spin_lock(&vmap_area_lock);
2415 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2416 	spin_unlock(&vmap_area_lock);
2417 }
2418 
2419 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2420 {
2421 	/*
2422 	 * Before removing VM_UNINITIALIZED,
2423 	 * we should make sure that vm has proper values.
2424 	 * Pair with smp_rmb() in show_numa_info().
2425 	 */
2426 	smp_wmb();
2427 	vm->flags &= ~VM_UNINITIALIZED;
2428 }
2429 
2430 static struct vm_struct *__get_vm_area_node(unsigned long size,
2431 		unsigned long align, unsigned long shift, unsigned long flags,
2432 		unsigned long start, unsigned long end, int node,
2433 		gfp_t gfp_mask, const void *caller)
2434 {
2435 	struct vmap_area *va;
2436 	struct vm_struct *area;
2437 	unsigned long requested_size = size;
2438 
2439 	BUG_ON(in_interrupt());
2440 	size = ALIGN(size, 1ul << shift);
2441 	if (unlikely(!size))
2442 		return NULL;
2443 
2444 	if (flags & VM_IOREMAP)
2445 		align = 1ul << clamp_t(int, get_count_order_long(size),
2446 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2447 
2448 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2449 	if (unlikely(!area))
2450 		return NULL;
2451 
2452 	if (!(flags & VM_NO_GUARD))
2453 		size += PAGE_SIZE;
2454 
2455 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2456 	if (IS_ERR(va)) {
2457 		kfree(area);
2458 		return NULL;
2459 	}
2460 
2461 	setup_vmalloc_vm(area, va, flags, caller);
2462 
2463 	/*
2464 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2465 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2466 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2467 	 * getting mapped in __vmalloc_node_range().
2468 	 * With hardware tag-based KASAN, marking is skipped for
2469 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2470 	 */
2471 	if (!(flags & VM_ALLOC))
2472 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2473 						    KASAN_VMALLOC_PROT_NORMAL);
2474 
2475 	return area;
2476 }
2477 
2478 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2479 				       unsigned long start, unsigned long end,
2480 				       const void *caller)
2481 {
2482 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2483 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2484 }
2485 
2486 /**
2487  * get_vm_area - reserve a contiguous kernel virtual area
2488  * @size:	 size of the area
2489  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2490  *
2491  * Search an area of @size in the kernel virtual mapping area,
2492  * and reserved it for out purposes.  Returns the area descriptor
2493  * on success or %NULL on failure.
2494  *
2495  * Return: the area descriptor on success or %NULL on failure.
2496  */
2497 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2498 {
2499 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2500 				  VMALLOC_START, VMALLOC_END,
2501 				  NUMA_NO_NODE, GFP_KERNEL,
2502 				  __builtin_return_address(0));
2503 }
2504 
2505 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2506 				const void *caller)
2507 {
2508 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2509 				  VMALLOC_START, VMALLOC_END,
2510 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2511 }
2512 
2513 /**
2514  * find_vm_area - find a continuous kernel virtual area
2515  * @addr:	  base address
2516  *
2517  * Search for the kernel VM area starting at @addr, and return it.
2518  * It is up to the caller to do all required locking to keep the returned
2519  * pointer valid.
2520  *
2521  * Return: the area descriptor on success or %NULL on failure.
2522  */
2523 struct vm_struct *find_vm_area(const void *addr)
2524 {
2525 	struct vmap_area *va;
2526 
2527 	va = find_vmap_area((unsigned long)addr);
2528 	if (!va)
2529 		return NULL;
2530 
2531 	return va->vm;
2532 }
2533 
2534 /**
2535  * remove_vm_area - find and remove a continuous kernel virtual area
2536  * @addr:	    base address
2537  *
2538  * Search for the kernel VM area starting at @addr, and remove it.
2539  * This function returns the found VM area, but using it is NOT safe
2540  * on SMP machines, except for its size or flags.
2541  *
2542  * Return: the area descriptor on success or %NULL on failure.
2543  */
2544 struct vm_struct *remove_vm_area(const void *addr)
2545 {
2546 	struct vmap_area *va;
2547 
2548 	might_sleep();
2549 
2550 	spin_lock(&vmap_area_lock);
2551 	va = __find_vmap_area((unsigned long)addr);
2552 	if (va && va->vm) {
2553 		struct vm_struct *vm = va->vm;
2554 
2555 		va->vm = NULL;
2556 		spin_unlock(&vmap_area_lock);
2557 
2558 		kasan_free_module_shadow(vm);
2559 		free_unmap_vmap_area(va);
2560 
2561 		return vm;
2562 	}
2563 
2564 	spin_unlock(&vmap_area_lock);
2565 	return NULL;
2566 }
2567 
2568 static inline void set_area_direct_map(const struct vm_struct *area,
2569 				       int (*set_direct_map)(struct page *page))
2570 {
2571 	int i;
2572 
2573 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2574 	for (i = 0; i < area->nr_pages; i++)
2575 		if (page_address(area->pages[i]))
2576 			set_direct_map(area->pages[i]);
2577 }
2578 
2579 /* Handle removing and resetting vm mappings related to the vm_struct. */
2580 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2581 {
2582 	unsigned long start = ULONG_MAX, end = 0;
2583 	unsigned int page_order = vm_area_page_order(area);
2584 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2585 	int flush_dmap = 0;
2586 	int i;
2587 
2588 	remove_vm_area(area->addr);
2589 
2590 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2591 	if (!flush_reset)
2592 		return;
2593 
2594 	/*
2595 	 * If not deallocating pages, just do the flush of the VM area and
2596 	 * return.
2597 	 */
2598 	if (!deallocate_pages) {
2599 		vm_unmap_aliases();
2600 		return;
2601 	}
2602 
2603 	/*
2604 	 * If execution gets here, flush the vm mapping and reset the direct
2605 	 * map. Find the start and end range of the direct mappings to make sure
2606 	 * the vm_unmap_aliases() flush includes the direct map.
2607 	 */
2608 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2609 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2610 		if (addr) {
2611 			unsigned long page_size;
2612 
2613 			page_size = PAGE_SIZE << page_order;
2614 			start = min(addr, start);
2615 			end = max(addr + page_size, end);
2616 			flush_dmap = 1;
2617 		}
2618 	}
2619 
2620 	/*
2621 	 * Set direct map to something invalid so that it won't be cached if
2622 	 * there are any accesses after the TLB flush, then flush the TLB and
2623 	 * reset the direct map permissions to the default.
2624 	 */
2625 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2626 	_vm_unmap_aliases(start, end, flush_dmap);
2627 	set_area_direct_map(area, set_direct_map_default_noflush);
2628 }
2629 
2630 static void __vunmap(const void *addr, int deallocate_pages)
2631 {
2632 	struct vm_struct *area;
2633 
2634 	if (!addr)
2635 		return;
2636 
2637 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2638 			addr))
2639 		return;
2640 
2641 	area = find_vm_area(addr);
2642 	if (unlikely(!area)) {
2643 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2644 				addr);
2645 		return;
2646 	}
2647 
2648 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2649 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2650 
2651 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2652 
2653 	vm_remove_mappings(area, deallocate_pages);
2654 
2655 	if (deallocate_pages) {
2656 		int i;
2657 
2658 		for (i = 0; i < area->nr_pages; i++) {
2659 			struct page *page = area->pages[i];
2660 
2661 			BUG_ON(!page);
2662 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2663 			/*
2664 			 * High-order allocs for huge vmallocs are split, so
2665 			 * can be freed as an array of order-0 allocations
2666 			 */
2667 			__free_pages(page, 0);
2668 			cond_resched();
2669 		}
2670 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2671 
2672 		kvfree(area->pages);
2673 	}
2674 
2675 	kfree(area);
2676 }
2677 
2678 static inline void __vfree_deferred(const void *addr)
2679 {
2680 	/*
2681 	 * Use raw_cpu_ptr() because this can be called from preemptible
2682 	 * context. Preemption is absolutely fine here, because the llist_add()
2683 	 * implementation is lockless, so it works even if we are adding to
2684 	 * another cpu's list. schedule_work() should be fine with this too.
2685 	 */
2686 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2687 
2688 	if (llist_add((struct llist_node *)addr, &p->list))
2689 		schedule_work(&p->wq);
2690 }
2691 
2692 /**
2693  * vfree_atomic - release memory allocated by vmalloc()
2694  * @addr:	  memory base address
2695  *
2696  * This one is just like vfree() but can be called in any atomic context
2697  * except NMIs.
2698  */
2699 void vfree_atomic(const void *addr)
2700 {
2701 	BUG_ON(in_nmi());
2702 
2703 	kmemleak_free(addr);
2704 
2705 	if (!addr)
2706 		return;
2707 	__vfree_deferred(addr);
2708 }
2709 
2710 static void __vfree(const void *addr)
2711 {
2712 	if (unlikely(in_interrupt()))
2713 		__vfree_deferred(addr);
2714 	else
2715 		__vunmap(addr, 1);
2716 }
2717 
2718 /**
2719  * vfree - Release memory allocated by vmalloc()
2720  * @addr:  Memory base address
2721  *
2722  * Free the virtually continuous memory area starting at @addr, as obtained
2723  * from one of the vmalloc() family of APIs.  This will usually also free the
2724  * physical memory underlying the virtual allocation, but that memory is
2725  * reference counted, so it will not be freed until the last user goes away.
2726  *
2727  * If @addr is NULL, no operation is performed.
2728  *
2729  * Context:
2730  * May sleep if called *not* from interrupt context.
2731  * Must not be called in NMI context (strictly speaking, it could be
2732  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2733  * conventions for vfree() arch-dependent would be a really bad idea).
2734  */
2735 void vfree(const void *addr)
2736 {
2737 	BUG_ON(in_nmi());
2738 
2739 	kmemleak_free(addr);
2740 
2741 	might_sleep_if(!in_interrupt());
2742 
2743 	if (!addr)
2744 		return;
2745 
2746 	__vfree(addr);
2747 }
2748 EXPORT_SYMBOL(vfree);
2749 
2750 /**
2751  * vunmap - release virtual mapping obtained by vmap()
2752  * @addr:   memory base address
2753  *
2754  * Free the virtually contiguous memory area starting at @addr,
2755  * which was created from the page array passed to vmap().
2756  *
2757  * Must not be called in interrupt context.
2758  */
2759 void vunmap(const void *addr)
2760 {
2761 	BUG_ON(in_interrupt());
2762 	might_sleep();
2763 	if (addr)
2764 		__vunmap(addr, 0);
2765 }
2766 EXPORT_SYMBOL(vunmap);
2767 
2768 /**
2769  * vmap - map an array of pages into virtually contiguous space
2770  * @pages: array of page pointers
2771  * @count: number of pages to map
2772  * @flags: vm_area->flags
2773  * @prot: page protection for the mapping
2774  *
2775  * Maps @count pages from @pages into contiguous kernel virtual space.
2776  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2777  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2778  * are transferred from the caller to vmap(), and will be freed / dropped when
2779  * vfree() is called on the return value.
2780  *
2781  * Return: the address of the area or %NULL on failure
2782  */
2783 void *vmap(struct page **pages, unsigned int count,
2784 	   unsigned long flags, pgprot_t prot)
2785 {
2786 	struct vm_struct *area;
2787 	unsigned long addr;
2788 	unsigned long size;		/* In bytes */
2789 
2790 	might_sleep();
2791 
2792 	/*
2793 	 * Your top guard is someone else's bottom guard. Not having a top
2794 	 * guard compromises someone else's mappings too.
2795 	 */
2796 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2797 		flags &= ~VM_NO_GUARD;
2798 
2799 	if (count > totalram_pages())
2800 		return NULL;
2801 
2802 	size = (unsigned long)count << PAGE_SHIFT;
2803 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2804 	if (!area)
2805 		return NULL;
2806 
2807 	addr = (unsigned long)area->addr;
2808 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2809 				pages, PAGE_SHIFT) < 0) {
2810 		vunmap(area->addr);
2811 		return NULL;
2812 	}
2813 
2814 	if (flags & VM_MAP_PUT_PAGES) {
2815 		area->pages = pages;
2816 		area->nr_pages = count;
2817 	}
2818 	return area->addr;
2819 }
2820 EXPORT_SYMBOL(vmap);
2821 
2822 #ifdef CONFIG_VMAP_PFN
2823 struct vmap_pfn_data {
2824 	unsigned long	*pfns;
2825 	pgprot_t	prot;
2826 	unsigned int	idx;
2827 };
2828 
2829 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2830 {
2831 	struct vmap_pfn_data *data = private;
2832 
2833 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2834 		return -EINVAL;
2835 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2836 	return 0;
2837 }
2838 
2839 /**
2840  * vmap_pfn - map an array of PFNs into virtually contiguous space
2841  * @pfns: array of PFNs
2842  * @count: number of pages to map
2843  * @prot: page protection for the mapping
2844  *
2845  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2846  * the start address of the mapping.
2847  */
2848 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2849 {
2850 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2851 	struct vm_struct *area;
2852 
2853 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2854 			__builtin_return_address(0));
2855 	if (!area)
2856 		return NULL;
2857 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2858 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2859 		free_vm_area(area);
2860 		return NULL;
2861 	}
2862 	return area->addr;
2863 }
2864 EXPORT_SYMBOL_GPL(vmap_pfn);
2865 #endif /* CONFIG_VMAP_PFN */
2866 
2867 static inline unsigned int
2868 vm_area_alloc_pages(gfp_t gfp, int nid,
2869 		unsigned int order, unsigned int nr_pages, struct page **pages)
2870 {
2871 	unsigned int nr_allocated = 0;
2872 	struct page *page;
2873 	int i;
2874 
2875 	/*
2876 	 * For order-0 pages we make use of bulk allocator, if
2877 	 * the page array is partly or not at all populated due
2878 	 * to fails, fallback to a single page allocator that is
2879 	 * more permissive.
2880 	 */
2881 	if (!order) {
2882 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2883 
2884 		while (nr_allocated < nr_pages) {
2885 			unsigned int nr, nr_pages_request;
2886 
2887 			/*
2888 			 * A maximum allowed request is hard-coded and is 100
2889 			 * pages per call. That is done in order to prevent a
2890 			 * long preemption off scenario in the bulk-allocator
2891 			 * so the range is [1:100].
2892 			 */
2893 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2894 
2895 			/* memory allocation should consider mempolicy, we can't
2896 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2897 			 * otherwise memory may be allocated in only one node,
2898 			 * but mempolcy want to alloc memory by interleaving.
2899 			 */
2900 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2901 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2902 							nr_pages_request,
2903 							pages + nr_allocated);
2904 
2905 			else
2906 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2907 							nr_pages_request,
2908 							pages + nr_allocated);
2909 
2910 			nr_allocated += nr;
2911 			cond_resched();
2912 
2913 			/*
2914 			 * If zero or pages were obtained partly,
2915 			 * fallback to a single page allocator.
2916 			 */
2917 			if (nr != nr_pages_request)
2918 				break;
2919 		}
2920 	}
2921 
2922 	/* High-order pages or fallback path if "bulk" fails. */
2923 
2924 	while (nr_allocated < nr_pages) {
2925 		if (fatal_signal_pending(current))
2926 			break;
2927 
2928 		if (nid == NUMA_NO_NODE)
2929 			page = alloc_pages(gfp, order);
2930 		else
2931 			page = alloc_pages_node(nid, gfp, order);
2932 		if (unlikely(!page))
2933 			break;
2934 		/*
2935 		 * Higher order allocations must be able to be treated as
2936 		 * indepdenent small pages by callers (as they can with
2937 		 * small-page vmallocs). Some drivers do their own refcounting
2938 		 * on vmalloc_to_page() pages, some use page->mapping,
2939 		 * page->lru, etc.
2940 		 */
2941 		if (order)
2942 			split_page(page, order);
2943 
2944 		/*
2945 		 * Careful, we allocate and map page-order pages, but
2946 		 * tracking is done per PAGE_SIZE page so as to keep the
2947 		 * vm_struct APIs independent of the physical/mapped size.
2948 		 */
2949 		for (i = 0; i < (1U << order); i++)
2950 			pages[nr_allocated + i] = page + i;
2951 
2952 		cond_resched();
2953 		nr_allocated += 1U << order;
2954 	}
2955 
2956 	return nr_allocated;
2957 }
2958 
2959 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2960 				 pgprot_t prot, unsigned int page_shift,
2961 				 int node)
2962 {
2963 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2964 	bool nofail = gfp_mask & __GFP_NOFAIL;
2965 	unsigned long addr = (unsigned long)area->addr;
2966 	unsigned long size = get_vm_area_size(area);
2967 	unsigned long array_size;
2968 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2969 	unsigned int page_order;
2970 	unsigned int flags;
2971 	int ret;
2972 
2973 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2974 	gfp_mask |= __GFP_NOWARN;
2975 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2976 		gfp_mask |= __GFP_HIGHMEM;
2977 
2978 	/* Please note that the recursion is strictly bounded. */
2979 	if (array_size > PAGE_SIZE) {
2980 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2981 					area->caller);
2982 	} else {
2983 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2984 	}
2985 
2986 	if (!area->pages) {
2987 		warn_alloc(gfp_mask, NULL,
2988 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2989 			nr_small_pages * PAGE_SIZE, array_size);
2990 		free_vm_area(area);
2991 		return NULL;
2992 	}
2993 
2994 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2995 	page_order = vm_area_page_order(area);
2996 
2997 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
2998 		node, page_order, nr_small_pages, area->pages);
2999 
3000 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3001 	if (gfp_mask & __GFP_ACCOUNT) {
3002 		int i;
3003 
3004 		for (i = 0; i < area->nr_pages; i++)
3005 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3006 	}
3007 
3008 	/*
3009 	 * If not enough pages were obtained to accomplish an
3010 	 * allocation request, free them via __vfree() if any.
3011 	 */
3012 	if (area->nr_pages != nr_small_pages) {
3013 		warn_alloc(gfp_mask, NULL,
3014 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3015 			area->nr_pages * PAGE_SIZE, page_order);
3016 		goto fail;
3017 	}
3018 
3019 	/*
3020 	 * page tables allocations ignore external gfp mask, enforce it
3021 	 * by the scope API
3022 	 */
3023 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3024 		flags = memalloc_nofs_save();
3025 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3026 		flags = memalloc_noio_save();
3027 
3028 	do {
3029 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3030 			page_shift);
3031 		if (nofail && (ret < 0))
3032 			schedule_timeout_uninterruptible(1);
3033 	} while (nofail && (ret < 0));
3034 
3035 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3036 		memalloc_nofs_restore(flags);
3037 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3038 		memalloc_noio_restore(flags);
3039 
3040 	if (ret < 0) {
3041 		warn_alloc(gfp_mask, NULL,
3042 			"vmalloc error: size %lu, failed to map pages",
3043 			area->nr_pages * PAGE_SIZE);
3044 		goto fail;
3045 	}
3046 
3047 	return area->addr;
3048 
3049 fail:
3050 	__vfree(area->addr);
3051 	return NULL;
3052 }
3053 
3054 /**
3055  * __vmalloc_node_range - allocate virtually contiguous memory
3056  * @size:		  allocation size
3057  * @align:		  desired alignment
3058  * @start:		  vm area range start
3059  * @end:		  vm area range end
3060  * @gfp_mask:		  flags for the page level allocator
3061  * @prot:		  protection mask for the allocated pages
3062  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3063  * @node:		  node to use for allocation or NUMA_NO_NODE
3064  * @caller:		  caller's return address
3065  *
3066  * Allocate enough pages to cover @size from the page level
3067  * allocator with @gfp_mask flags. Please note that the full set of gfp
3068  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3069  * supported.
3070  * Zone modifiers are not supported. From the reclaim modifiers
3071  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3072  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3073  * __GFP_RETRY_MAYFAIL are not supported).
3074  *
3075  * __GFP_NOWARN can be used to suppress failures messages.
3076  *
3077  * Map them into contiguous kernel virtual space, using a pagetable
3078  * protection of @prot.
3079  *
3080  * Return: the address of the area or %NULL on failure
3081  */
3082 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3083 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3084 			pgprot_t prot, unsigned long vm_flags, int node,
3085 			const void *caller)
3086 {
3087 	struct vm_struct *area;
3088 	void *ret;
3089 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3090 	unsigned long real_size = size;
3091 	unsigned long real_align = align;
3092 	unsigned int shift = PAGE_SHIFT;
3093 
3094 	if (WARN_ON_ONCE(!size))
3095 		return NULL;
3096 
3097 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3098 		warn_alloc(gfp_mask, NULL,
3099 			"vmalloc error: size %lu, exceeds total pages",
3100 			real_size);
3101 		return NULL;
3102 	}
3103 
3104 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3105 		unsigned long size_per_node;
3106 
3107 		/*
3108 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3109 		 * others like modules don't yet expect huge pages in
3110 		 * their allocations due to apply_to_page_range not
3111 		 * supporting them.
3112 		 */
3113 
3114 		size_per_node = size;
3115 		if (node == NUMA_NO_NODE)
3116 			size_per_node /= num_online_nodes();
3117 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3118 			shift = PMD_SHIFT;
3119 		else
3120 			shift = arch_vmap_pte_supported_shift(size_per_node);
3121 
3122 		align = max(real_align, 1UL << shift);
3123 		size = ALIGN(real_size, 1UL << shift);
3124 	}
3125 
3126 again:
3127 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3128 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3129 				  gfp_mask, caller);
3130 	if (!area) {
3131 		bool nofail = gfp_mask & __GFP_NOFAIL;
3132 		warn_alloc(gfp_mask, NULL,
3133 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3134 			real_size, (nofail) ? ". Retrying." : "");
3135 		if (nofail) {
3136 			schedule_timeout_uninterruptible(1);
3137 			goto again;
3138 		}
3139 		goto fail;
3140 	}
3141 
3142 	/*
3143 	 * Prepare arguments for __vmalloc_area_node() and
3144 	 * kasan_unpoison_vmalloc().
3145 	 */
3146 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3147 		if (kasan_hw_tags_enabled()) {
3148 			/*
3149 			 * Modify protection bits to allow tagging.
3150 			 * This must be done before mapping.
3151 			 */
3152 			prot = arch_vmap_pgprot_tagged(prot);
3153 
3154 			/*
3155 			 * Skip page_alloc poisoning and zeroing for physical
3156 			 * pages backing VM_ALLOC mapping. Memory is instead
3157 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3158 			 */
3159 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3160 		}
3161 
3162 		/* Take note that the mapping is PAGE_KERNEL. */
3163 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3164 	}
3165 
3166 	/* Allocate physical pages and map them into vmalloc space. */
3167 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3168 	if (!ret)
3169 		goto fail;
3170 
3171 	/*
3172 	 * Mark the pages as accessible, now that they are mapped.
3173 	 * The init condition should match the one in post_alloc_hook()
3174 	 * (except for the should_skip_init() check) to make sure that memory
3175 	 * is initialized under the same conditions regardless of the enabled
3176 	 * KASAN mode.
3177 	 * Tag-based KASAN modes only assign tags to normal non-executable
3178 	 * allocations, see __kasan_unpoison_vmalloc().
3179 	 */
3180 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3181 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask))
3182 		kasan_flags |= KASAN_VMALLOC_INIT;
3183 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3184 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3185 
3186 	/*
3187 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3188 	 * flag. It means that vm_struct is not fully initialized.
3189 	 * Now, it is fully initialized, so remove this flag here.
3190 	 */
3191 	clear_vm_uninitialized_flag(area);
3192 
3193 	size = PAGE_ALIGN(size);
3194 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3195 		kmemleak_vmalloc(area, size, gfp_mask);
3196 
3197 	return area->addr;
3198 
3199 fail:
3200 	if (shift > PAGE_SHIFT) {
3201 		shift = PAGE_SHIFT;
3202 		align = real_align;
3203 		size = real_size;
3204 		goto again;
3205 	}
3206 
3207 	return NULL;
3208 }
3209 
3210 /**
3211  * __vmalloc_node - allocate virtually contiguous memory
3212  * @size:	    allocation size
3213  * @align:	    desired alignment
3214  * @gfp_mask:	    flags for the page level allocator
3215  * @node:	    node to use for allocation or NUMA_NO_NODE
3216  * @caller:	    caller's return address
3217  *
3218  * Allocate enough pages to cover @size from the page level allocator with
3219  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3220  *
3221  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3222  * and __GFP_NOFAIL are not supported
3223  *
3224  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3225  * with mm people.
3226  *
3227  * Return: pointer to the allocated memory or %NULL on error
3228  */
3229 void *__vmalloc_node(unsigned long size, unsigned long align,
3230 			    gfp_t gfp_mask, int node, const void *caller)
3231 {
3232 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3233 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3234 }
3235 /*
3236  * This is only for performance analysis of vmalloc and stress purpose.
3237  * It is required by vmalloc test module, therefore do not use it other
3238  * than that.
3239  */
3240 #ifdef CONFIG_TEST_VMALLOC_MODULE
3241 EXPORT_SYMBOL_GPL(__vmalloc_node);
3242 #endif
3243 
3244 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3245 {
3246 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3247 				__builtin_return_address(0));
3248 }
3249 EXPORT_SYMBOL(__vmalloc);
3250 
3251 /**
3252  * vmalloc - allocate virtually contiguous memory
3253  * @size:    allocation size
3254  *
3255  * Allocate enough pages to cover @size from the page level
3256  * allocator and map them into contiguous kernel virtual space.
3257  *
3258  * For tight control over page level allocator and protection flags
3259  * use __vmalloc() instead.
3260  *
3261  * Return: pointer to the allocated memory or %NULL on error
3262  */
3263 void *vmalloc(unsigned long size)
3264 {
3265 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3266 				__builtin_return_address(0));
3267 }
3268 EXPORT_SYMBOL(vmalloc);
3269 
3270 /**
3271  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3272  * @size:      allocation size
3273  * @gfp_mask:  flags for the page level allocator
3274  *
3275  * Allocate enough pages to cover @size from the page level
3276  * allocator and map them into contiguous kernel virtual space.
3277  * If @size is greater than or equal to PMD_SIZE, allow using
3278  * huge pages for the memory
3279  *
3280  * Return: pointer to the allocated memory or %NULL on error
3281  */
3282 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3283 {
3284 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3285 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3286 				    NUMA_NO_NODE, __builtin_return_address(0));
3287 }
3288 EXPORT_SYMBOL_GPL(vmalloc_huge);
3289 
3290 /**
3291  * vzalloc - allocate virtually contiguous memory with zero fill
3292  * @size:    allocation size
3293  *
3294  * Allocate enough pages to cover @size from the page level
3295  * allocator and map them into contiguous kernel virtual space.
3296  * The memory allocated is set to zero.
3297  *
3298  * For tight control over page level allocator and protection flags
3299  * use __vmalloc() instead.
3300  *
3301  * Return: pointer to the allocated memory or %NULL on error
3302  */
3303 void *vzalloc(unsigned long size)
3304 {
3305 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3306 				__builtin_return_address(0));
3307 }
3308 EXPORT_SYMBOL(vzalloc);
3309 
3310 /**
3311  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3312  * @size: allocation size
3313  *
3314  * The resulting memory area is zeroed so it can be mapped to userspace
3315  * without leaking data.
3316  *
3317  * Return: pointer to the allocated memory or %NULL on error
3318  */
3319 void *vmalloc_user(unsigned long size)
3320 {
3321 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3322 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3323 				    VM_USERMAP, NUMA_NO_NODE,
3324 				    __builtin_return_address(0));
3325 }
3326 EXPORT_SYMBOL(vmalloc_user);
3327 
3328 /**
3329  * vmalloc_node - allocate memory on a specific node
3330  * @size:	  allocation size
3331  * @node:	  numa node
3332  *
3333  * Allocate enough pages to cover @size from the page level
3334  * allocator and map them into contiguous kernel virtual space.
3335  *
3336  * For tight control over page level allocator and protection flags
3337  * use __vmalloc() instead.
3338  *
3339  * Return: pointer to the allocated memory or %NULL on error
3340  */
3341 void *vmalloc_node(unsigned long size, int node)
3342 {
3343 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3344 			__builtin_return_address(0));
3345 }
3346 EXPORT_SYMBOL(vmalloc_node);
3347 
3348 /**
3349  * vzalloc_node - allocate memory on a specific node with zero fill
3350  * @size:	allocation size
3351  * @node:	numa node
3352  *
3353  * Allocate enough pages to cover @size from the page level
3354  * allocator and map them into contiguous kernel virtual space.
3355  * The memory allocated is set to zero.
3356  *
3357  * Return: pointer to the allocated memory or %NULL on error
3358  */
3359 void *vzalloc_node(unsigned long size, int node)
3360 {
3361 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3362 				__builtin_return_address(0));
3363 }
3364 EXPORT_SYMBOL(vzalloc_node);
3365 
3366 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3367 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3368 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3369 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3370 #else
3371 /*
3372  * 64b systems should always have either DMA or DMA32 zones. For others
3373  * GFP_DMA32 should do the right thing and use the normal zone.
3374  */
3375 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3376 #endif
3377 
3378 /**
3379  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3380  * @size:	allocation size
3381  *
3382  * Allocate enough 32bit PA addressable pages to cover @size from the
3383  * page level allocator and map them into contiguous kernel virtual space.
3384  *
3385  * Return: pointer to the allocated memory or %NULL on error
3386  */
3387 void *vmalloc_32(unsigned long size)
3388 {
3389 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3390 			__builtin_return_address(0));
3391 }
3392 EXPORT_SYMBOL(vmalloc_32);
3393 
3394 /**
3395  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3396  * @size:	     allocation size
3397  *
3398  * The resulting memory area is 32bit addressable and zeroed so it can be
3399  * mapped to userspace without leaking data.
3400  *
3401  * Return: pointer to the allocated memory or %NULL on error
3402  */
3403 void *vmalloc_32_user(unsigned long size)
3404 {
3405 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3406 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3407 				    VM_USERMAP, NUMA_NO_NODE,
3408 				    __builtin_return_address(0));
3409 }
3410 EXPORT_SYMBOL(vmalloc_32_user);
3411 
3412 /*
3413  * small helper routine , copy contents to buf from addr.
3414  * If the page is not present, fill zero.
3415  */
3416 
3417 static int aligned_vread(char *buf, char *addr, unsigned long count)
3418 {
3419 	struct page *p;
3420 	int copied = 0;
3421 
3422 	while (count) {
3423 		unsigned long offset, length;
3424 
3425 		offset = offset_in_page(addr);
3426 		length = PAGE_SIZE - offset;
3427 		if (length > count)
3428 			length = count;
3429 		p = vmalloc_to_page(addr);
3430 		/*
3431 		 * To do safe access to this _mapped_ area, we need
3432 		 * lock. But adding lock here means that we need to add
3433 		 * overhead of vmalloc()/vfree() calls for this _debug_
3434 		 * interface, rarely used. Instead of that, we'll use
3435 		 * kmap() and get small overhead in this access function.
3436 		 */
3437 		if (p) {
3438 			/* We can expect USER0 is not used -- see vread() */
3439 			void *map = kmap_atomic(p);
3440 			memcpy(buf, map + offset, length);
3441 			kunmap_atomic(map);
3442 		} else
3443 			memset(buf, 0, length);
3444 
3445 		addr += length;
3446 		buf += length;
3447 		copied += length;
3448 		count -= length;
3449 	}
3450 	return copied;
3451 }
3452 
3453 /**
3454  * vread() - read vmalloc area in a safe way.
3455  * @buf:     buffer for reading data
3456  * @addr:    vm address.
3457  * @count:   number of bytes to be read.
3458  *
3459  * This function checks that addr is a valid vmalloc'ed area, and
3460  * copy data from that area to a given buffer. If the given memory range
3461  * of [addr...addr+count) includes some valid address, data is copied to
3462  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3463  * IOREMAP area is treated as memory hole and no copy is done.
3464  *
3465  * If [addr...addr+count) doesn't includes any intersects with alive
3466  * vm_struct area, returns 0. @buf should be kernel's buffer.
3467  *
3468  * Note: In usual ops, vread() is never necessary because the caller
3469  * should know vmalloc() area is valid and can use memcpy().
3470  * This is for routines which have to access vmalloc area without
3471  * any information, as /proc/kcore.
3472  *
3473  * Return: number of bytes for which addr and buf should be increased
3474  * (same number as @count) or %0 if [addr...addr+count) doesn't
3475  * include any intersection with valid vmalloc area
3476  */
3477 long vread(char *buf, char *addr, unsigned long count)
3478 {
3479 	struct vmap_area *va;
3480 	struct vm_struct *vm;
3481 	char *vaddr, *buf_start = buf;
3482 	unsigned long buflen = count;
3483 	unsigned long n;
3484 
3485 	addr = kasan_reset_tag(addr);
3486 
3487 	/* Don't allow overflow */
3488 	if ((unsigned long) addr + count < count)
3489 		count = -(unsigned long) addr;
3490 
3491 	spin_lock(&vmap_area_lock);
3492 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3493 	if (!va)
3494 		goto finished;
3495 
3496 	/* no intersects with alive vmap_area */
3497 	if ((unsigned long)addr + count <= va->va_start)
3498 		goto finished;
3499 
3500 	list_for_each_entry_from(va, &vmap_area_list, list) {
3501 		if (!count)
3502 			break;
3503 
3504 		if (!va->vm)
3505 			continue;
3506 
3507 		vm = va->vm;
3508 		vaddr = (char *) vm->addr;
3509 		if (addr >= vaddr + get_vm_area_size(vm))
3510 			continue;
3511 		while (addr < vaddr) {
3512 			if (count == 0)
3513 				goto finished;
3514 			*buf = '\0';
3515 			buf++;
3516 			addr++;
3517 			count--;
3518 		}
3519 		n = vaddr + get_vm_area_size(vm) - addr;
3520 		if (n > count)
3521 			n = count;
3522 		if (!(vm->flags & VM_IOREMAP))
3523 			aligned_vread(buf, addr, n);
3524 		else /* IOREMAP area is treated as memory hole */
3525 			memset(buf, 0, n);
3526 		buf += n;
3527 		addr += n;
3528 		count -= n;
3529 	}
3530 finished:
3531 	spin_unlock(&vmap_area_lock);
3532 
3533 	if (buf == buf_start)
3534 		return 0;
3535 	/* zero-fill memory holes */
3536 	if (buf != buf_start + buflen)
3537 		memset(buf, 0, buflen - (buf - buf_start));
3538 
3539 	return buflen;
3540 }
3541 
3542 /**
3543  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3544  * @vma:		vma to cover
3545  * @uaddr:		target user address to start at
3546  * @kaddr:		virtual address of vmalloc kernel memory
3547  * @pgoff:		offset from @kaddr to start at
3548  * @size:		size of map area
3549  *
3550  * Returns:	0 for success, -Exxx on failure
3551  *
3552  * This function checks that @kaddr is a valid vmalloc'ed area,
3553  * and that it is big enough to cover the range starting at
3554  * @uaddr in @vma. Will return failure if that criteria isn't
3555  * met.
3556  *
3557  * Similar to remap_pfn_range() (see mm/memory.c)
3558  */
3559 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3560 				void *kaddr, unsigned long pgoff,
3561 				unsigned long size)
3562 {
3563 	struct vm_struct *area;
3564 	unsigned long off;
3565 	unsigned long end_index;
3566 
3567 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3568 		return -EINVAL;
3569 
3570 	size = PAGE_ALIGN(size);
3571 
3572 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3573 		return -EINVAL;
3574 
3575 	area = find_vm_area(kaddr);
3576 	if (!area)
3577 		return -EINVAL;
3578 
3579 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3580 		return -EINVAL;
3581 
3582 	if (check_add_overflow(size, off, &end_index) ||
3583 	    end_index > get_vm_area_size(area))
3584 		return -EINVAL;
3585 	kaddr += off;
3586 
3587 	do {
3588 		struct page *page = vmalloc_to_page(kaddr);
3589 		int ret;
3590 
3591 		ret = vm_insert_page(vma, uaddr, page);
3592 		if (ret)
3593 			return ret;
3594 
3595 		uaddr += PAGE_SIZE;
3596 		kaddr += PAGE_SIZE;
3597 		size -= PAGE_SIZE;
3598 	} while (size > 0);
3599 
3600 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3601 
3602 	return 0;
3603 }
3604 
3605 /**
3606  * remap_vmalloc_range - map vmalloc pages to userspace
3607  * @vma:		vma to cover (map full range of vma)
3608  * @addr:		vmalloc memory
3609  * @pgoff:		number of pages into addr before first page to map
3610  *
3611  * Returns:	0 for success, -Exxx on failure
3612  *
3613  * This function checks that addr is a valid vmalloc'ed area, and
3614  * that it is big enough to cover the vma. Will return failure if
3615  * that criteria isn't met.
3616  *
3617  * Similar to remap_pfn_range() (see mm/memory.c)
3618  */
3619 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3620 						unsigned long pgoff)
3621 {
3622 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3623 					   addr, pgoff,
3624 					   vma->vm_end - vma->vm_start);
3625 }
3626 EXPORT_SYMBOL(remap_vmalloc_range);
3627 
3628 void free_vm_area(struct vm_struct *area)
3629 {
3630 	struct vm_struct *ret;
3631 	ret = remove_vm_area(area->addr);
3632 	BUG_ON(ret != area);
3633 	kfree(area);
3634 }
3635 EXPORT_SYMBOL_GPL(free_vm_area);
3636 
3637 #ifdef CONFIG_SMP
3638 static struct vmap_area *node_to_va(struct rb_node *n)
3639 {
3640 	return rb_entry_safe(n, struct vmap_area, rb_node);
3641 }
3642 
3643 /**
3644  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3645  * @addr: target address
3646  *
3647  * Returns: vmap_area if it is found. If there is no such area
3648  *   the first highest(reverse order) vmap_area is returned
3649  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3650  *   if there are no any areas before @addr.
3651  */
3652 static struct vmap_area *
3653 pvm_find_va_enclose_addr(unsigned long addr)
3654 {
3655 	struct vmap_area *va, *tmp;
3656 	struct rb_node *n;
3657 
3658 	n = free_vmap_area_root.rb_node;
3659 	va = NULL;
3660 
3661 	while (n) {
3662 		tmp = rb_entry(n, struct vmap_area, rb_node);
3663 		if (tmp->va_start <= addr) {
3664 			va = tmp;
3665 			if (tmp->va_end >= addr)
3666 				break;
3667 
3668 			n = n->rb_right;
3669 		} else {
3670 			n = n->rb_left;
3671 		}
3672 	}
3673 
3674 	return va;
3675 }
3676 
3677 /**
3678  * pvm_determine_end_from_reverse - find the highest aligned address
3679  * of free block below VMALLOC_END
3680  * @va:
3681  *   in - the VA we start the search(reverse order);
3682  *   out - the VA with the highest aligned end address.
3683  * @align: alignment for required highest address
3684  *
3685  * Returns: determined end address within vmap_area
3686  */
3687 static unsigned long
3688 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3689 {
3690 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3691 	unsigned long addr;
3692 
3693 	if (likely(*va)) {
3694 		list_for_each_entry_from_reverse((*va),
3695 				&free_vmap_area_list, list) {
3696 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3697 			if ((*va)->va_start < addr)
3698 				return addr;
3699 		}
3700 	}
3701 
3702 	return 0;
3703 }
3704 
3705 /**
3706  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3707  * @offsets: array containing offset of each area
3708  * @sizes: array containing size of each area
3709  * @nr_vms: the number of areas to allocate
3710  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3711  *
3712  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3713  *	    vm_structs on success, %NULL on failure
3714  *
3715  * Percpu allocator wants to use congruent vm areas so that it can
3716  * maintain the offsets among percpu areas.  This function allocates
3717  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3718  * be scattered pretty far, distance between two areas easily going up
3719  * to gigabytes.  To avoid interacting with regular vmallocs, these
3720  * areas are allocated from top.
3721  *
3722  * Despite its complicated look, this allocator is rather simple. It
3723  * does everything top-down and scans free blocks from the end looking
3724  * for matching base. While scanning, if any of the areas do not fit the
3725  * base address is pulled down to fit the area. Scanning is repeated till
3726  * all the areas fit and then all necessary data structures are inserted
3727  * and the result is returned.
3728  */
3729 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3730 				     const size_t *sizes, int nr_vms,
3731 				     size_t align)
3732 {
3733 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3734 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3735 	struct vmap_area **vas, *va;
3736 	struct vm_struct **vms;
3737 	int area, area2, last_area, term_area;
3738 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3739 	bool purged = false;
3740 	enum fit_type type;
3741 
3742 	/* verify parameters and allocate data structures */
3743 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3744 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3745 		start = offsets[area];
3746 		end = start + sizes[area];
3747 
3748 		/* is everything aligned properly? */
3749 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3750 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3751 
3752 		/* detect the area with the highest address */
3753 		if (start > offsets[last_area])
3754 			last_area = area;
3755 
3756 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3757 			unsigned long start2 = offsets[area2];
3758 			unsigned long end2 = start2 + sizes[area2];
3759 
3760 			BUG_ON(start2 < end && start < end2);
3761 		}
3762 	}
3763 	last_end = offsets[last_area] + sizes[last_area];
3764 
3765 	if (vmalloc_end - vmalloc_start < last_end) {
3766 		WARN_ON(true);
3767 		return NULL;
3768 	}
3769 
3770 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3771 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3772 	if (!vas || !vms)
3773 		goto err_free2;
3774 
3775 	for (area = 0; area < nr_vms; area++) {
3776 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3777 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3778 		if (!vas[area] || !vms[area])
3779 			goto err_free;
3780 	}
3781 retry:
3782 	spin_lock(&free_vmap_area_lock);
3783 
3784 	/* start scanning - we scan from the top, begin with the last area */
3785 	area = term_area = last_area;
3786 	start = offsets[area];
3787 	end = start + sizes[area];
3788 
3789 	va = pvm_find_va_enclose_addr(vmalloc_end);
3790 	base = pvm_determine_end_from_reverse(&va, align) - end;
3791 
3792 	while (true) {
3793 		/*
3794 		 * base might have underflowed, add last_end before
3795 		 * comparing.
3796 		 */
3797 		if (base + last_end < vmalloc_start + last_end)
3798 			goto overflow;
3799 
3800 		/*
3801 		 * Fitting base has not been found.
3802 		 */
3803 		if (va == NULL)
3804 			goto overflow;
3805 
3806 		/*
3807 		 * If required width exceeds current VA block, move
3808 		 * base downwards and then recheck.
3809 		 */
3810 		if (base + end > va->va_end) {
3811 			base = pvm_determine_end_from_reverse(&va, align) - end;
3812 			term_area = area;
3813 			continue;
3814 		}
3815 
3816 		/*
3817 		 * If this VA does not fit, move base downwards and recheck.
3818 		 */
3819 		if (base + start < va->va_start) {
3820 			va = node_to_va(rb_prev(&va->rb_node));
3821 			base = pvm_determine_end_from_reverse(&va, align) - end;
3822 			term_area = area;
3823 			continue;
3824 		}
3825 
3826 		/*
3827 		 * This area fits, move on to the previous one.  If
3828 		 * the previous one is the terminal one, we're done.
3829 		 */
3830 		area = (area + nr_vms - 1) % nr_vms;
3831 		if (area == term_area)
3832 			break;
3833 
3834 		start = offsets[area];
3835 		end = start + sizes[area];
3836 		va = pvm_find_va_enclose_addr(base + end);
3837 	}
3838 
3839 	/* we've found a fitting base, insert all va's */
3840 	for (area = 0; area < nr_vms; area++) {
3841 		int ret;
3842 
3843 		start = base + offsets[area];
3844 		size = sizes[area];
3845 
3846 		va = pvm_find_va_enclose_addr(start);
3847 		if (WARN_ON_ONCE(va == NULL))
3848 			/* It is a BUG(), but trigger recovery instead. */
3849 			goto recovery;
3850 
3851 		type = classify_va_fit_type(va, start, size);
3852 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3853 			/* It is a BUG(), but trigger recovery instead. */
3854 			goto recovery;
3855 
3856 		ret = adjust_va_to_fit_type(va, start, size, type);
3857 		if (unlikely(ret))
3858 			goto recovery;
3859 
3860 		/* Allocated area. */
3861 		va = vas[area];
3862 		va->va_start = start;
3863 		va->va_end = start + size;
3864 	}
3865 
3866 	spin_unlock(&free_vmap_area_lock);
3867 
3868 	/* populate the kasan shadow space */
3869 	for (area = 0; area < nr_vms; area++) {
3870 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3871 			goto err_free_shadow;
3872 	}
3873 
3874 	/* insert all vm's */
3875 	spin_lock(&vmap_area_lock);
3876 	for (area = 0; area < nr_vms; area++) {
3877 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3878 
3879 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3880 				 pcpu_get_vm_areas);
3881 	}
3882 	spin_unlock(&vmap_area_lock);
3883 
3884 	/*
3885 	 * Mark allocated areas as accessible. Do it now as a best-effort
3886 	 * approach, as they can be mapped outside of vmalloc code.
3887 	 * With hardware tag-based KASAN, marking is skipped for
3888 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3889 	 */
3890 	for (area = 0; area < nr_vms; area++)
3891 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3892 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3893 
3894 	kfree(vas);
3895 	return vms;
3896 
3897 recovery:
3898 	/*
3899 	 * Remove previously allocated areas. There is no
3900 	 * need in removing these areas from the busy tree,
3901 	 * because they are inserted only on the final step
3902 	 * and when pcpu_get_vm_areas() is success.
3903 	 */
3904 	while (area--) {
3905 		orig_start = vas[area]->va_start;
3906 		orig_end = vas[area]->va_end;
3907 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3908 				&free_vmap_area_list);
3909 		if (va)
3910 			kasan_release_vmalloc(orig_start, orig_end,
3911 				va->va_start, va->va_end);
3912 		vas[area] = NULL;
3913 	}
3914 
3915 overflow:
3916 	spin_unlock(&free_vmap_area_lock);
3917 	if (!purged) {
3918 		purge_vmap_area_lazy();
3919 		purged = true;
3920 
3921 		/* Before "retry", check if we recover. */
3922 		for (area = 0; area < nr_vms; area++) {
3923 			if (vas[area])
3924 				continue;
3925 
3926 			vas[area] = kmem_cache_zalloc(
3927 				vmap_area_cachep, GFP_KERNEL);
3928 			if (!vas[area])
3929 				goto err_free;
3930 		}
3931 
3932 		goto retry;
3933 	}
3934 
3935 err_free:
3936 	for (area = 0; area < nr_vms; area++) {
3937 		if (vas[area])
3938 			kmem_cache_free(vmap_area_cachep, vas[area]);
3939 
3940 		kfree(vms[area]);
3941 	}
3942 err_free2:
3943 	kfree(vas);
3944 	kfree(vms);
3945 	return NULL;
3946 
3947 err_free_shadow:
3948 	spin_lock(&free_vmap_area_lock);
3949 	/*
3950 	 * We release all the vmalloc shadows, even the ones for regions that
3951 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3952 	 * being able to tolerate this case.
3953 	 */
3954 	for (area = 0; area < nr_vms; area++) {
3955 		orig_start = vas[area]->va_start;
3956 		orig_end = vas[area]->va_end;
3957 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3958 				&free_vmap_area_list);
3959 		if (va)
3960 			kasan_release_vmalloc(orig_start, orig_end,
3961 				va->va_start, va->va_end);
3962 		vas[area] = NULL;
3963 		kfree(vms[area]);
3964 	}
3965 	spin_unlock(&free_vmap_area_lock);
3966 	kfree(vas);
3967 	kfree(vms);
3968 	return NULL;
3969 }
3970 
3971 /**
3972  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3973  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3974  * @nr_vms: the number of allocated areas
3975  *
3976  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3977  */
3978 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3979 {
3980 	int i;
3981 
3982 	for (i = 0; i < nr_vms; i++)
3983 		free_vm_area(vms[i]);
3984 	kfree(vms);
3985 }
3986 #endif	/* CONFIG_SMP */
3987 
3988 #ifdef CONFIG_PRINTK
3989 bool vmalloc_dump_obj(void *object)
3990 {
3991 	struct vm_struct *vm;
3992 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3993 
3994 	vm = find_vm_area(objp);
3995 	if (!vm)
3996 		return false;
3997 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3998 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3999 	return true;
4000 }
4001 #endif
4002 
4003 #ifdef CONFIG_PROC_FS
4004 static void *s_start(struct seq_file *m, loff_t *pos)
4005 	__acquires(&vmap_purge_lock)
4006 	__acquires(&vmap_area_lock)
4007 {
4008 	mutex_lock(&vmap_purge_lock);
4009 	spin_lock(&vmap_area_lock);
4010 
4011 	return seq_list_start(&vmap_area_list, *pos);
4012 }
4013 
4014 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4015 {
4016 	return seq_list_next(p, &vmap_area_list, pos);
4017 }
4018 
4019 static void s_stop(struct seq_file *m, void *p)
4020 	__releases(&vmap_area_lock)
4021 	__releases(&vmap_purge_lock)
4022 {
4023 	spin_unlock(&vmap_area_lock);
4024 	mutex_unlock(&vmap_purge_lock);
4025 }
4026 
4027 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4028 {
4029 	if (IS_ENABLED(CONFIG_NUMA)) {
4030 		unsigned int nr, *counters = m->private;
4031 		unsigned int step = 1U << vm_area_page_order(v);
4032 
4033 		if (!counters)
4034 			return;
4035 
4036 		if (v->flags & VM_UNINITIALIZED)
4037 			return;
4038 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4039 		smp_rmb();
4040 
4041 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4042 
4043 		for (nr = 0; nr < v->nr_pages; nr += step)
4044 			counters[page_to_nid(v->pages[nr])] += step;
4045 		for_each_node_state(nr, N_HIGH_MEMORY)
4046 			if (counters[nr])
4047 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4048 	}
4049 }
4050 
4051 static void show_purge_info(struct seq_file *m)
4052 {
4053 	struct vmap_area *va;
4054 
4055 	spin_lock(&purge_vmap_area_lock);
4056 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4057 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4058 			(void *)va->va_start, (void *)va->va_end,
4059 			va->va_end - va->va_start);
4060 	}
4061 	spin_unlock(&purge_vmap_area_lock);
4062 }
4063 
4064 static int s_show(struct seq_file *m, void *p)
4065 {
4066 	struct vmap_area *va;
4067 	struct vm_struct *v;
4068 
4069 	va = list_entry(p, struct vmap_area, list);
4070 
4071 	/*
4072 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4073 	 * of vmap area is being tear down or vm_map_ram allocation.
4074 	 */
4075 	if (!va->vm) {
4076 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4077 			(void *)va->va_start, (void *)va->va_end,
4078 			va->va_end - va->va_start);
4079 
4080 		goto final;
4081 	}
4082 
4083 	v = va->vm;
4084 
4085 	seq_printf(m, "0x%pK-0x%pK %7ld",
4086 		v->addr, v->addr + v->size, v->size);
4087 
4088 	if (v->caller)
4089 		seq_printf(m, " %pS", v->caller);
4090 
4091 	if (v->nr_pages)
4092 		seq_printf(m, " pages=%d", v->nr_pages);
4093 
4094 	if (v->phys_addr)
4095 		seq_printf(m, " phys=%pa", &v->phys_addr);
4096 
4097 	if (v->flags & VM_IOREMAP)
4098 		seq_puts(m, " ioremap");
4099 
4100 	if (v->flags & VM_ALLOC)
4101 		seq_puts(m, " vmalloc");
4102 
4103 	if (v->flags & VM_MAP)
4104 		seq_puts(m, " vmap");
4105 
4106 	if (v->flags & VM_USERMAP)
4107 		seq_puts(m, " user");
4108 
4109 	if (v->flags & VM_DMA_COHERENT)
4110 		seq_puts(m, " dma-coherent");
4111 
4112 	if (is_vmalloc_addr(v->pages))
4113 		seq_puts(m, " vpages");
4114 
4115 	show_numa_info(m, v);
4116 	seq_putc(m, '\n');
4117 
4118 	/*
4119 	 * As a final step, dump "unpurged" areas.
4120 	 */
4121 final:
4122 	if (list_is_last(&va->list, &vmap_area_list))
4123 		show_purge_info(m);
4124 
4125 	return 0;
4126 }
4127 
4128 static const struct seq_operations vmalloc_op = {
4129 	.start = s_start,
4130 	.next = s_next,
4131 	.stop = s_stop,
4132 	.show = s_show,
4133 };
4134 
4135 static int __init proc_vmalloc_init(void)
4136 {
4137 	if (IS_ENABLED(CONFIG_NUMA))
4138 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4139 				&vmalloc_op,
4140 				nr_node_ids * sizeof(unsigned int), NULL);
4141 	else
4142 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4143 	return 0;
4144 }
4145 module_init(proc_vmalloc_init);
4146 
4147 #endif
4148