1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 35 /*** Page table manipulation functions ***/ 36 37 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 38 { 39 pte_t *pte; 40 41 pte = pte_offset_kernel(pmd, addr); 42 do { 43 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 44 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 45 } while (pte++, addr += PAGE_SIZE, addr != end); 46 } 47 48 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 49 { 50 pmd_t *pmd; 51 unsigned long next; 52 53 pmd = pmd_offset(pud, addr); 54 do { 55 next = pmd_addr_end(addr, end); 56 if (pmd_none_or_clear_bad(pmd)) 57 continue; 58 vunmap_pte_range(pmd, addr, next); 59 } while (pmd++, addr = next, addr != end); 60 } 61 62 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 63 { 64 pud_t *pud; 65 unsigned long next; 66 67 pud = pud_offset(pgd, addr); 68 do { 69 next = pud_addr_end(addr, end); 70 if (pud_none_or_clear_bad(pud)) 71 continue; 72 vunmap_pmd_range(pud, addr, next); 73 } while (pud++, addr = next, addr != end); 74 } 75 76 static void vunmap_page_range(unsigned long addr, unsigned long end) 77 { 78 pgd_t *pgd; 79 unsigned long next; 80 81 BUG_ON(addr >= end); 82 pgd = pgd_offset_k(addr); 83 do { 84 next = pgd_addr_end(addr, end); 85 if (pgd_none_or_clear_bad(pgd)) 86 continue; 87 vunmap_pud_range(pgd, addr, next); 88 } while (pgd++, addr = next, addr != end); 89 } 90 91 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 92 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 93 { 94 pte_t *pte; 95 96 /* 97 * nr is a running index into the array which helps higher level 98 * callers keep track of where we're up to. 99 */ 100 101 pte = pte_alloc_kernel(pmd, addr); 102 if (!pte) 103 return -ENOMEM; 104 do { 105 struct page *page = pages[*nr]; 106 107 if (WARN_ON(!pte_none(*pte))) 108 return -EBUSY; 109 if (WARN_ON(!page)) 110 return -ENOMEM; 111 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 112 (*nr)++; 113 } while (pte++, addr += PAGE_SIZE, addr != end); 114 return 0; 115 } 116 117 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 118 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 119 { 120 pmd_t *pmd; 121 unsigned long next; 122 123 pmd = pmd_alloc(&init_mm, pud, addr); 124 if (!pmd) 125 return -ENOMEM; 126 do { 127 next = pmd_addr_end(addr, end); 128 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 129 return -ENOMEM; 130 } while (pmd++, addr = next, addr != end); 131 return 0; 132 } 133 134 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 136 { 137 pud_t *pud; 138 unsigned long next; 139 140 pud = pud_alloc(&init_mm, pgd, addr); 141 if (!pud) 142 return -ENOMEM; 143 do { 144 next = pud_addr_end(addr, end); 145 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 146 return -ENOMEM; 147 } while (pud++, addr = next, addr != end); 148 return 0; 149 } 150 151 /* 152 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 153 * will have pfns corresponding to the "pages" array. 154 * 155 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 156 */ 157 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 158 pgprot_t prot, struct page **pages) 159 { 160 pgd_t *pgd; 161 unsigned long next; 162 unsigned long addr = start; 163 int err = 0; 164 int nr = 0; 165 166 BUG_ON(addr >= end); 167 pgd = pgd_offset_k(addr); 168 do { 169 next = pgd_addr_end(addr, end); 170 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 171 if (err) 172 return err; 173 } while (pgd++, addr = next, addr != end); 174 175 return nr; 176 } 177 178 static int vmap_page_range(unsigned long start, unsigned long end, 179 pgprot_t prot, struct page **pages) 180 { 181 int ret; 182 183 ret = vmap_page_range_noflush(start, end, prot, pages); 184 flush_cache_vmap(start, end); 185 return ret; 186 } 187 188 int is_vmalloc_or_module_addr(const void *x) 189 { 190 /* 191 * ARM, x86-64 and sparc64 put modules in a special place, 192 * and fall back on vmalloc() if that fails. Others 193 * just put it in the vmalloc space. 194 */ 195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 196 unsigned long addr = (unsigned long)x; 197 if (addr >= MODULES_VADDR && addr < MODULES_END) 198 return 1; 199 #endif 200 return is_vmalloc_addr(x); 201 } 202 203 /* 204 * Walk a vmap address to the struct page it maps. 205 */ 206 struct page *vmalloc_to_page(const void *vmalloc_addr) 207 { 208 unsigned long addr = (unsigned long) vmalloc_addr; 209 struct page *page = NULL; 210 pgd_t *pgd = pgd_offset_k(addr); 211 212 /* 213 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 214 * architectures that do not vmalloc module space 215 */ 216 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 217 218 if (!pgd_none(*pgd)) { 219 pud_t *pud = pud_offset(pgd, addr); 220 if (!pud_none(*pud)) { 221 pmd_t *pmd = pmd_offset(pud, addr); 222 if (!pmd_none(*pmd)) { 223 pte_t *ptep, pte; 224 225 ptep = pte_offset_map(pmd, addr); 226 pte = *ptep; 227 if (pte_present(pte)) 228 page = pte_page(pte); 229 pte_unmap(ptep); 230 } 231 } 232 } 233 return page; 234 } 235 EXPORT_SYMBOL(vmalloc_to_page); 236 237 /* 238 * Map a vmalloc()-space virtual address to the physical page frame number. 239 */ 240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 241 { 242 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 243 } 244 EXPORT_SYMBOL(vmalloc_to_pfn); 245 246 247 /*** Global kva allocator ***/ 248 249 #define VM_LAZY_FREE 0x01 250 #define VM_LAZY_FREEING 0x02 251 #define VM_VM_AREA 0x04 252 253 struct vmap_area { 254 unsigned long va_start; 255 unsigned long va_end; 256 unsigned long flags; 257 struct rb_node rb_node; /* address sorted rbtree */ 258 struct list_head list; /* address sorted list */ 259 struct list_head purge_list; /* "lazy purge" list */ 260 void *private; 261 struct rcu_head rcu_head; 262 }; 263 264 static DEFINE_SPINLOCK(vmap_area_lock); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 static LIST_HEAD(vmap_area_list); 267 static unsigned long vmap_area_pcpu_hole; 268 269 static struct vmap_area *__find_vmap_area(unsigned long addr) 270 { 271 struct rb_node *n = vmap_area_root.rb_node; 272 273 while (n) { 274 struct vmap_area *va; 275 276 va = rb_entry(n, struct vmap_area, rb_node); 277 if (addr < va->va_start) 278 n = n->rb_left; 279 else if (addr > va->va_start) 280 n = n->rb_right; 281 else 282 return va; 283 } 284 285 return NULL; 286 } 287 288 static void __insert_vmap_area(struct vmap_area *va) 289 { 290 struct rb_node **p = &vmap_area_root.rb_node; 291 struct rb_node *parent = NULL; 292 struct rb_node *tmp; 293 294 while (*p) { 295 struct vmap_area *tmp; 296 297 parent = *p; 298 tmp = rb_entry(parent, struct vmap_area, rb_node); 299 if (va->va_start < tmp->va_end) 300 p = &(*p)->rb_left; 301 else if (va->va_end > tmp->va_start) 302 p = &(*p)->rb_right; 303 else 304 BUG(); 305 } 306 307 rb_link_node(&va->rb_node, parent, p); 308 rb_insert_color(&va->rb_node, &vmap_area_root); 309 310 /* address-sort this list so it is usable like the vmlist */ 311 tmp = rb_prev(&va->rb_node); 312 if (tmp) { 313 struct vmap_area *prev; 314 prev = rb_entry(tmp, struct vmap_area, rb_node); 315 list_add_rcu(&va->list, &prev->list); 316 } else 317 list_add_rcu(&va->list, &vmap_area_list); 318 } 319 320 static void purge_vmap_area_lazy(void); 321 322 /* 323 * Allocate a region of KVA of the specified size and alignment, within the 324 * vstart and vend. 325 */ 326 static struct vmap_area *alloc_vmap_area(unsigned long size, 327 unsigned long align, 328 unsigned long vstart, unsigned long vend, 329 int node, gfp_t gfp_mask) 330 { 331 struct vmap_area *va; 332 struct rb_node *n; 333 unsigned long addr; 334 int purged = 0; 335 336 BUG_ON(!size); 337 BUG_ON(size & ~PAGE_MASK); 338 339 va = kmalloc_node(sizeof(struct vmap_area), 340 gfp_mask & GFP_RECLAIM_MASK, node); 341 if (unlikely(!va)) 342 return ERR_PTR(-ENOMEM); 343 344 retry: 345 addr = ALIGN(vstart, align); 346 347 spin_lock(&vmap_area_lock); 348 if (addr + size - 1 < addr) 349 goto overflow; 350 351 /* XXX: could have a last_hole cache */ 352 n = vmap_area_root.rb_node; 353 if (n) { 354 struct vmap_area *first = NULL; 355 356 do { 357 struct vmap_area *tmp; 358 tmp = rb_entry(n, struct vmap_area, rb_node); 359 if (tmp->va_end >= addr) { 360 if (!first && tmp->va_start < addr + size) 361 first = tmp; 362 n = n->rb_left; 363 } else { 364 first = tmp; 365 n = n->rb_right; 366 } 367 } while (n); 368 369 if (!first) 370 goto found; 371 372 if (first->va_end < addr) { 373 n = rb_next(&first->rb_node); 374 if (n) 375 first = rb_entry(n, struct vmap_area, rb_node); 376 else 377 goto found; 378 } 379 380 while (addr + size > first->va_start && addr + size <= vend) { 381 addr = ALIGN(first->va_end + PAGE_SIZE, align); 382 if (addr + size - 1 < addr) 383 goto overflow; 384 385 n = rb_next(&first->rb_node); 386 if (n) 387 first = rb_entry(n, struct vmap_area, rb_node); 388 else 389 goto found; 390 } 391 } 392 found: 393 if (addr + size > vend) { 394 overflow: 395 spin_unlock(&vmap_area_lock); 396 if (!purged) { 397 purge_vmap_area_lazy(); 398 purged = 1; 399 goto retry; 400 } 401 if (printk_ratelimit()) 402 printk(KERN_WARNING 403 "vmap allocation for size %lu failed: " 404 "use vmalloc=<size> to increase size.\n", size); 405 kfree(va); 406 return ERR_PTR(-EBUSY); 407 } 408 409 BUG_ON(addr & (align-1)); 410 411 va->va_start = addr; 412 va->va_end = addr + size; 413 va->flags = 0; 414 __insert_vmap_area(va); 415 spin_unlock(&vmap_area_lock); 416 417 return va; 418 } 419 420 static void rcu_free_va(struct rcu_head *head) 421 { 422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 423 424 kfree(va); 425 } 426 427 static void __free_vmap_area(struct vmap_area *va) 428 { 429 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 430 rb_erase(&va->rb_node, &vmap_area_root); 431 RB_CLEAR_NODE(&va->rb_node); 432 list_del_rcu(&va->list); 433 434 /* 435 * Track the highest possible candidate for pcpu area 436 * allocation. Areas outside of vmalloc area can be returned 437 * here too, consider only end addresses which fall inside 438 * vmalloc area proper. 439 */ 440 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 441 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 442 443 call_rcu(&va->rcu_head, rcu_free_va); 444 } 445 446 /* 447 * Free a region of KVA allocated by alloc_vmap_area 448 */ 449 static void free_vmap_area(struct vmap_area *va) 450 { 451 spin_lock(&vmap_area_lock); 452 __free_vmap_area(va); 453 spin_unlock(&vmap_area_lock); 454 } 455 456 /* 457 * Clear the pagetable entries of a given vmap_area 458 */ 459 static void unmap_vmap_area(struct vmap_area *va) 460 { 461 vunmap_page_range(va->va_start, va->va_end); 462 } 463 464 static void vmap_debug_free_range(unsigned long start, unsigned long end) 465 { 466 /* 467 * Unmap page tables and force a TLB flush immediately if 468 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 469 * bugs similarly to those in linear kernel virtual address 470 * space after a page has been freed. 471 * 472 * All the lazy freeing logic is still retained, in order to 473 * minimise intrusiveness of this debugging feature. 474 * 475 * This is going to be *slow* (linear kernel virtual address 476 * debugging doesn't do a broadcast TLB flush so it is a lot 477 * faster). 478 */ 479 #ifdef CONFIG_DEBUG_PAGEALLOC 480 vunmap_page_range(start, end); 481 flush_tlb_kernel_range(start, end); 482 #endif 483 } 484 485 /* 486 * lazy_max_pages is the maximum amount of virtual address space we gather up 487 * before attempting to purge with a TLB flush. 488 * 489 * There is a tradeoff here: a larger number will cover more kernel page tables 490 * and take slightly longer to purge, but it will linearly reduce the number of 491 * global TLB flushes that must be performed. It would seem natural to scale 492 * this number up linearly with the number of CPUs (because vmapping activity 493 * could also scale linearly with the number of CPUs), however it is likely 494 * that in practice, workloads might be constrained in other ways that mean 495 * vmap activity will not scale linearly with CPUs. Also, I want to be 496 * conservative and not introduce a big latency on huge systems, so go with 497 * a less aggressive log scale. It will still be an improvement over the old 498 * code, and it will be simple to change the scale factor if we find that it 499 * becomes a problem on bigger systems. 500 */ 501 static unsigned long lazy_max_pages(void) 502 { 503 unsigned int log; 504 505 log = fls(num_online_cpus()); 506 507 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 508 } 509 510 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 511 512 /* 513 * Purges all lazily-freed vmap areas. 514 * 515 * If sync is 0 then don't purge if there is already a purge in progress. 516 * If force_flush is 1, then flush kernel TLBs between *start and *end even 517 * if we found no lazy vmap areas to unmap (callers can use this to optimise 518 * their own TLB flushing). 519 * Returns with *start = min(*start, lowest purged address) 520 * *end = max(*end, highest purged address) 521 */ 522 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 523 int sync, int force_flush) 524 { 525 static DEFINE_SPINLOCK(purge_lock); 526 LIST_HEAD(valist); 527 struct vmap_area *va; 528 struct vmap_area *n_va; 529 int nr = 0; 530 531 /* 532 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 533 * should not expect such behaviour. This just simplifies locking for 534 * the case that isn't actually used at the moment anyway. 535 */ 536 if (!sync && !force_flush) { 537 if (!spin_trylock(&purge_lock)) 538 return; 539 } else 540 spin_lock(&purge_lock); 541 542 rcu_read_lock(); 543 list_for_each_entry_rcu(va, &vmap_area_list, list) { 544 if (va->flags & VM_LAZY_FREE) { 545 if (va->va_start < *start) 546 *start = va->va_start; 547 if (va->va_end > *end) 548 *end = va->va_end; 549 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 550 unmap_vmap_area(va); 551 list_add_tail(&va->purge_list, &valist); 552 va->flags |= VM_LAZY_FREEING; 553 va->flags &= ~VM_LAZY_FREE; 554 } 555 } 556 rcu_read_unlock(); 557 558 if (nr) 559 atomic_sub(nr, &vmap_lazy_nr); 560 561 if (nr || force_flush) 562 flush_tlb_kernel_range(*start, *end); 563 564 if (nr) { 565 spin_lock(&vmap_area_lock); 566 list_for_each_entry_safe(va, n_va, &valist, purge_list) 567 __free_vmap_area(va); 568 spin_unlock(&vmap_area_lock); 569 } 570 spin_unlock(&purge_lock); 571 } 572 573 /* 574 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 575 * is already purging. 576 */ 577 static void try_purge_vmap_area_lazy(void) 578 { 579 unsigned long start = ULONG_MAX, end = 0; 580 581 __purge_vmap_area_lazy(&start, &end, 0, 0); 582 } 583 584 /* 585 * Kick off a purge of the outstanding lazy areas. 586 */ 587 static void purge_vmap_area_lazy(void) 588 { 589 unsigned long start = ULONG_MAX, end = 0; 590 591 __purge_vmap_area_lazy(&start, &end, 1, 0); 592 } 593 594 /* 595 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 596 * called for the correct range previously. 597 */ 598 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 599 { 600 va->flags |= VM_LAZY_FREE; 601 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 602 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 603 try_purge_vmap_area_lazy(); 604 } 605 606 /* 607 * Free and unmap a vmap area 608 */ 609 static void free_unmap_vmap_area(struct vmap_area *va) 610 { 611 flush_cache_vunmap(va->va_start, va->va_end); 612 free_unmap_vmap_area_noflush(va); 613 } 614 615 static struct vmap_area *find_vmap_area(unsigned long addr) 616 { 617 struct vmap_area *va; 618 619 spin_lock(&vmap_area_lock); 620 va = __find_vmap_area(addr); 621 spin_unlock(&vmap_area_lock); 622 623 return va; 624 } 625 626 static void free_unmap_vmap_area_addr(unsigned long addr) 627 { 628 struct vmap_area *va; 629 630 va = find_vmap_area(addr); 631 BUG_ON(!va); 632 free_unmap_vmap_area(va); 633 } 634 635 636 /*** Per cpu kva allocator ***/ 637 638 /* 639 * vmap space is limited especially on 32 bit architectures. Ensure there is 640 * room for at least 16 percpu vmap blocks per CPU. 641 */ 642 /* 643 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 644 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 645 * instead (we just need a rough idea) 646 */ 647 #if BITS_PER_LONG == 32 648 #define VMALLOC_SPACE (128UL*1024*1024) 649 #else 650 #define VMALLOC_SPACE (128UL*1024*1024*1024) 651 #endif 652 653 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 654 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 655 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 656 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 657 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 658 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 659 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 660 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 661 VMALLOC_PAGES / NR_CPUS / 16)) 662 663 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 664 665 static bool vmap_initialized __read_mostly = false; 666 667 struct vmap_block_queue { 668 spinlock_t lock; 669 struct list_head free; 670 struct list_head dirty; 671 unsigned int nr_dirty; 672 }; 673 674 struct vmap_block { 675 spinlock_t lock; 676 struct vmap_area *va; 677 struct vmap_block_queue *vbq; 678 unsigned long free, dirty; 679 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 680 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 681 union { 682 struct list_head free_list; 683 struct rcu_head rcu_head; 684 }; 685 }; 686 687 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 688 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 689 690 /* 691 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 692 * in the free path. Could get rid of this if we change the API to return a 693 * "cookie" from alloc, to be passed to free. But no big deal yet. 694 */ 695 static DEFINE_SPINLOCK(vmap_block_tree_lock); 696 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 697 698 /* 699 * We should probably have a fallback mechanism to allocate virtual memory 700 * out of partially filled vmap blocks. However vmap block sizing should be 701 * fairly reasonable according to the vmalloc size, so it shouldn't be a 702 * big problem. 703 */ 704 705 static unsigned long addr_to_vb_idx(unsigned long addr) 706 { 707 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 708 addr /= VMAP_BLOCK_SIZE; 709 return addr; 710 } 711 712 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 713 { 714 struct vmap_block_queue *vbq; 715 struct vmap_block *vb; 716 struct vmap_area *va; 717 unsigned long vb_idx; 718 int node, err; 719 720 node = numa_node_id(); 721 722 vb = kmalloc_node(sizeof(struct vmap_block), 723 gfp_mask & GFP_RECLAIM_MASK, node); 724 if (unlikely(!vb)) 725 return ERR_PTR(-ENOMEM); 726 727 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 728 VMALLOC_START, VMALLOC_END, 729 node, gfp_mask); 730 if (unlikely(IS_ERR(va))) { 731 kfree(vb); 732 return ERR_PTR(PTR_ERR(va)); 733 } 734 735 err = radix_tree_preload(gfp_mask); 736 if (unlikely(err)) { 737 kfree(vb); 738 free_vmap_area(va); 739 return ERR_PTR(err); 740 } 741 742 spin_lock_init(&vb->lock); 743 vb->va = va; 744 vb->free = VMAP_BBMAP_BITS; 745 vb->dirty = 0; 746 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 747 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 748 INIT_LIST_HEAD(&vb->free_list); 749 750 vb_idx = addr_to_vb_idx(va->va_start); 751 spin_lock(&vmap_block_tree_lock); 752 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 753 spin_unlock(&vmap_block_tree_lock); 754 BUG_ON(err); 755 radix_tree_preload_end(); 756 757 vbq = &get_cpu_var(vmap_block_queue); 758 vb->vbq = vbq; 759 spin_lock(&vbq->lock); 760 list_add(&vb->free_list, &vbq->free); 761 spin_unlock(&vbq->lock); 762 put_cpu_var(vmap_block_queue); 763 764 return vb; 765 } 766 767 static void rcu_free_vb(struct rcu_head *head) 768 { 769 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 770 771 kfree(vb); 772 } 773 774 static void free_vmap_block(struct vmap_block *vb) 775 { 776 struct vmap_block *tmp; 777 unsigned long vb_idx; 778 779 BUG_ON(!list_empty(&vb->free_list)); 780 781 vb_idx = addr_to_vb_idx(vb->va->va_start); 782 spin_lock(&vmap_block_tree_lock); 783 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 784 spin_unlock(&vmap_block_tree_lock); 785 BUG_ON(tmp != vb); 786 787 free_unmap_vmap_area_noflush(vb->va); 788 call_rcu(&vb->rcu_head, rcu_free_vb); 789 } 790 791 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 792 { 793 struct vmap_block_queue *vbq; 794 struct vmap_block *vb; 795 unsigned long addr = 0; 796 unsigned int order; 797 798 BUG_ON(size & ~PAGE_MASK); 799 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 800 order = get_order(size); 801 802 again: 803 rcu_read_lock(); 804 vbq = &get_cpu_var(vmap_block_queue); 805 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 806 int i; 807 808 spin_lock(&vb->lock); 809 i = bitmap_find_free_region(vb->alloc_map, 810 VMAP_BBMAP_BITS, order); 811 812 if (i >= 0) { 813 addr = vb->va->va_start + (i << PAGE_SHIFT); 814 BUG_ON(addr_to_vb_idx(addr) != 815 addr_to_vb_idx(vb->va->va_start)); 816 vb->free -= 1UL << order; 817 if (vb->free == 0) { 818 spin_lock(&vbq->lock); 819 list_del_init(&vb->free_list); 820 spin_unlock(&vbq->lock); 821 } 822 spin_unlock(&vb->lock); 823 break; 824 } 825 spin_unlock(&vb->lock); 826 } 827 put_cpu_var(vmap_block_queue); 828 rcu_read_unlock(); 829 830 if (!addr) { 831 vb = new_vmap_block(gfp_mask); 832 if (IS_ERR(vb)) 833 return vb; 834 goto again; 835 } 836 837 return (void *)addr; 838 } 839 840 static void vb_free(const void *addr, unsigned long size) 841 { 842 unsigned long offset; 843 unsigned long vb_idx; 844 unsigned int order; 845 struct vmap_block *vb; 846 847 BUG_ON(size & ~PAGE_MASK); 848 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 849 850 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 851 852 order = get_order(size); 853 854 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 855 856 vb_idx = addr_to_vb_idx((unsigned long)addr); 857 rcu_read_lock(); 858 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 859 rcu_read_unlock(); 860 BUG_ON(!vb); 861 862 spin_lock(&vb->lock); 863 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 864 865 vb->dirty += 1UL << order; 866 if (vb->dirty == VMAP_BBMAP_BITS) { 867 BUG_ON(vb->free || !list_empty(&vb->free_list)); 868 spin_unlock(&vb->lock); 869 free_vmap_block(vb); 870 } else 871 spin_unlock(&vb->lock); 872 } 873 874 /** 875 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 876 * 877 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 878 * to amortize TLB flushing overheads. What this means is that any page you 879 * have now, may, in a former life, have been mapped into kernel virtual 880 * address by the vmap layer and so there might be some CPUs with TLB entries 881 * still referencing that page (additional to the regular 1:1 kernel mapping). 882 * 883 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 884 * be sure that none of the pages we have control over will have any aliases 885 * from the vmap layer. 886 */ 887 void vm_unmap_aliases(void) 888 { 889 unsigned long start = ULONG_MAX, end = 0; 890 int cpu; 891 int flush = 0; 892 893 if (unlikely(!vmap_initialized)) 894 return; 895 896 for_each_possible_cpu(cpu) { 897 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 898 struct vmap_block *vb; 899 900 rcu_read_lock(); 901 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 902 int i; 903 904 spin_lock(&vb->lock); 905 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 906 while (i < VMAP_BBMAP_BITS) { 907 unsigned long s, e; 908 int j; 909 j = find_next_zero_bit(vb->dirty_map, 910 VMAP_BBMAP_BITS, i); 911 912 s = vb->va->va_start + (i << PAGE_SHIFT); 913 e = vb->va->va_start + (j << PAGE_SHIFT); 914 vunmap_page_range(s, e); 915 flush = 1; 916 917 if (s < start) 918 start = s; 919 if (e > end) 920 end = e; 921 922 i = j; 923 i = find_next_bit(vb->dirty_map, 924 VMAP_BBMAP_BITS, i); 925 } 926 spin_unlock(&vb->lock); 927 } 928 rcu_read_unlock(); 929 } 930 931 __purge_vmap_area_lazy(&start, &end, 1, flush); 932 } 933 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 934 935 /** 936 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 937 * @mem: the pointer returned by vm_map_ram 938 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 939 */ 940 void vm_unmap_ram(const void *mem, unsigned int count) 941 { 942 unsigned long size = count << PAGE_SHIFT; 943 unsigned long addr = (unsigned long)mem; 944 945 BUG_ON(!addr); 946 BUG_ON(addr < VMALLOC_START); 947 BUG_ON(addr > VMALLOC_END); 948 BUG_ON(addr & (PAGE_SIZE-1)); 949 950 debug_check_no_locks_freed(mem, size); 951 vmap_debug_free_range(addr, addr+size); 952 953 if (likely(count <= VMAP_MAX_ALLOC)) 954 vb_free(mem, size); 955 else 956 free_unmap_vmap_area_addr(addr); 957 } 958 EXPORT_SYMBOL(vm_unmap_ram); 959 960 /** 961 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 962 * @pages: an array of pointers to the pages to be mapped 963 * @count: number of pages 964 * @node: prefer to allocate data structures on this node 965 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 966 * 967 * Returns: a pointer to the address that has been mapped, or %NULL on failure 968 */ 969 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 970 { 971 unsigned long size = count << PAGE_SHIFT; 972 unsigned long addr; 973 void *mem; 974 975 if (likely(count <= VMAP_MAX_ALLOC)) { 976 mem = vb_alloc(size, GFP_KERNEL); 977 if (IS_ERR(mem)) 978 return NULL; 979 addr = (unsigned long)mem; 980 } else { 981 struct vmap_area *va; 982 va = alloc_vmap_area(size, PAGE_SIZE, 983 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 984 if (IS_ERR(va)) 985 return NULL; 986 987 addr = va->va_start; 988 mem = (void *)addr; 989 } 990 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 991 vm_unmap_ram(mem, count); 992 return NULL; 993 } 994 return mem; 995 } 996 EXPORT_SYMBOL(vm_map_ram); 997 998 /** 999 * vm_area_register_early - register vmap area early during boot 1000 * @vm: vm_struct to register 1001 * @align: requested alignment 1002 * 1003 * This function is used to register kernel vm area before 1004 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1005 * proper values on entry and other fields should be zero. On return, 1006 * vm->addr contains the allocated address. 1007 * 1008 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1009 */ 1010 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1011 { 1012 static size_t vm_init_off __initdata; 1013 unsigned long addr; 1014 1015 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1016 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1017 1018 vm->addr = (void *)addr; 1019 1020 vm->next = vmlist; 1021 vmlist = vm; 1022 } 1023 1024 void __init vmalloc_init(void) 1025 { 1026 struct vmap_area *va; 1027 struct vm_struct *tmp; 1028 int i; 1029 1030 for_each_possible_cpu(i) { 1031 struct vmap_block_queue *vbq; 1032 1033 vbq = &per_cpu(vmap_block_queue, i); 1034 spin_lock_init(&vbq->lock); 1035 INIT_LIST_HEAD(&vbq->free); 1036 INIT_LIST_HEAD(&vbq->dirty); 1037 vbq->nr_dirty = 0; 1038 } 1039 1040 /* Import existing vmlist entries. */ 1041 for (tmp = vmlist; tmp; tmp = tmp->next) { 1042 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1043 va->flags = tmp->flags | VM_VM_AREA; 1044 va->va_start = (unsigned long)tmp->addr; 1045 va->va_end = va->va_start + tmp->size; 1046 __insert_vmap_area(va); 1047 } 1048 1049 vmap_area_pcpu_hole = VMALLOC_END; 1050 1051 vmap_initialized = true; 1052 } 1053 1054 /** 1055 * map_kernel_range_noflush - map kernel VM area with the specified pages 1056 * @addr: start of the VM area to map 1057 * @size: size of the VM area to map 1058 * @prot: page protection flags to use 1059 * @pages: pages to map 1060 * 1061 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1062 * specify should have been allocated using get_vm_area() and its 1063 * friends. 1064 * 1065 * NOTE: 1066 * This function does NOT do any cache flushing. The caller is 1067 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1068 * before calling this function. 1069 * 1070 * RETURNS: 1071 * The number of pages mapped on success, -errno on failure. 1072 */ 1073 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1074 pgprot_t prot, struct page **pages) 1075 { 1076 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1077 } 1078 1079 /** 1080 * unmap_kernel_range_noflush - unmap kernel VM area 1081 * @addr: start of the VM area to unmap 1082 * @size: size of the VM area to unmap 1083 * 1084 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1085 * specify should have been allocated using get_vm_area() and its 1086 * friends. 1087 * 1088 * NOTE: 1089 * This function does NOT do any cache flushing. The caller is 1090 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1091 * before calling this function and flush_tlb_kernel_range() after. 1092 */ 1093 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1094 { 1095 vunmap_page_range(addr, addr + size); 1096 } 1097 1098 /** 1099 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1100 * @addr: start of the VM area to unmap 1101 * @size: size of the VM area to unmap 1102 * 1103 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1104 * the unmapping and tlb after. 1105 */ 1106 void unmap_kernel_range(unsigned long addr, unsigned long size) 1107 { 1108 unsigned long end = addr + size; 1109 1110 flush_cache_vunmap(addr, end); 1111 vunmap_page_range(addr, end); 1112 flush_tlb_kernel_range(addr, end); 1113 } 1114 1115 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1116 { 1117 unsigned long addr = (unsigned long)area->addr; 1118 unsigned long end = addr + area->size - PAGE_SIZE; 1119 int err; 1120 1121 err = vmap_page_range(addr, end, prot, *pages); 1122 if (err > 0) { 1123 *pages += err; 1124 err = 0; 1125 } 1126 1127 return err; 1128 } 1129 EXPORT_SYMBOL_GPL(map_vm_area); 1130 1131 /*** Old vmalloc interfaces ***/ 1132 DEFINE_RWLOCK(vmlist_lock); 1133 struct vm_struct *vmlist; 1134 1135 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1136 unsigned long flags, void *caller) 1137 { 1138 struct vm_struct *tmp, **p; 1139 1140 vm->flags = flags; 1141 vm->addr = (void *)va->va_start; 1142 vm->size = va->va_end - va->va_start; 1143 vm->caller = caller; 1144 va->private = vm; 1145 va->flags |= VM_VM_AREA; 1146 1147 write_lock(&vmlist_lock); 1148 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1149 if (tmp->addr >= vm->addr) 1150 break; 1151 } 1152 vm->next = *p; 1153 *p = vm; 1154 write_unlock(&vmlist_lock); 1155 } 1156 1157 static struct vm_struct *__get_vm_area_node(unsigned long size, 1158 unsigned long align, unsigned long flags, unsigned long start, 1159 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1160 { 1161 static struct vmap_area *va; 1162 struct vm_struct *area; 1163 1164 BUG_ON(in_interrupt()); 1165 if (flags & VM_IOREMAP) { 1166 int bit = fls(size); 1167 1168 if (bit > IOREMAP_MAX_ORDER) 1169 bit = IOREMAP_MAX_ORDER; 1170 else if (bit < PAGE_SHIFT) 1171 bit = PAGE_SHIFT; 1172 1173 align = 1ul << bit; 1174 } 1175 1176 size = PAGE_ALIGN(size); 1177 if (unlikely(!size)) 1178 return NULL; 1179 1180 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1181 if (unlikely(!area)) 1182 return NULL; 1183 1184 /* 1185 * We always allocate a guard page. 1186 */ 1187 size += PAGE_SIZE; 1188 1189 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1190 if (IS_ERR(va)) { 1191 kfree(area); 1192 return NULL; 1193 } 1194 1195 insert_vmalloc_vm(area, va, flags, caller); 1196 return area; 1197 } 1198 1199 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1200 unsigned long start, unsigned long end) 1201 { 1202 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1203 __builtin_return_address(0)); 1204 } 1205 EXPORT_SYMBOL_GPL(__get_vm_area); 1206 1207 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1208 unsigned long start, unsigned long end, 1209 void *caller) 1210 { 1211 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1212 caller); 1213 } 1214 1215 /** 1216 * get_vm_area - reserve a contiguous kernel virtual area 1217 * @size: size of the area 1218 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1219 * 1220 * Search an area of @size in the kernel virtual mapping area, 1221 * and reserved it for out purposes. Returns the area descriptor 1222 * on success or %NULL on failure. 1223 */ 1224 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1225 { 1226 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1227 -1, GFP_KERNEL, __builtin_return_address(0)); 1228 } 1229 1230 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1231 void *caller) 1232 { 1233 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1234 -1, GFP_KERNEL, caller); 1235 } 1236 1237 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1238 int node, gfp_t gfp_mask) 1239 { 1240 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1241 node, gfp_mask, __builtin_return_address(0)); 1242 } 1243 1244 static struct vm_struct *find_vm_area(const void *addr) 1245 { 1246 struct vmap_area *va; 1247 1248 va = find_vmap_area((unsigned long)addr); 1249 if (va && va->flags & VM_VM_AREA) 1250 return va->private; 1251 1252 return NULL; 1253 } 1254 1255 /** 1256 * remove_vm_area - find and remove a continuous kernel virtual area 1257 * @addr: base address 1258 * 1259 * Search for the kernel VM area starting at @addr, and remove it. 1260 * This function returns the found VM area, but using it is NOT safe 1261 * on SMP machines, except for its size or flags. 1262 */ 1263 struct vm_struct *remove_vm_area(const void *addr) 1264 { 1265 struct vmap_area *va; 1266 1267 va = find_vmap_area((unsigned long)addr); 1268 if (va && va->flags & VM_VM_AREA) { 1269 struct vm_struct *vm = va->private; 1270 struct vm_struct *tmp, **p; 1271 /* 1272 * remove from list and disallow access to this vm_struct 1273 * before unmap. (address range confliction is maintained by 1274 * vmap.) 1275 */ 1276 write_lock(&vmlist_lock); 1277 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1278 ; 1279 *p = tmp->next; 1280 write_unlock(&vmlist_lock); 1281 1282 vmap_debug_free_range(va->va_start, va->va_end); 1283 free_unmap_vmap_area(va); 1284 vm->size -= PAGE_SIZE; 1285 1286 return vm; 1287 } 1288 return NULL; 1289 } 1290 1291 static void __vunmap(const void *addr, int deallocate_pages) 1292 { 1293 struct vm_struct *area; 1294 1295 if (!addr) 1296 return; 1297 1298 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1299 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1300 return; 1301 } 1302 1303 area = remove_vm_area(addr); 1304 if (unlikely(!area)) { 1305 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1306 addr); 1307 return; 1308 } 1309 1310 debug_check_no_locks_freed(addr, area->size); 1311 debug_check_no_obj_freed(addr, area->size); 1312 1313 if (deallocate_pages) { 1314 int i; 1315 1316 for (i = 0; i < area->nr_pages; i++) { 1317 struct page *page = area->pages[i]; 1318 1319 BUG_ON(!page); 1320 __free_page(page); 1321 } 1322 1323 if (area->flags & VM_VPAGES) 1324 vfree(area->pages); 1325 else 1326 kfree(area->pages); 1327 } 1328 1329 kfree(area); 1330 return; 1331 } 1332 1333 /** 1334 * vfree - release memory allocated by vmalloc() 1335 * @addr: memory base address 1336 * 1337 * Free the virtually continuous memory area starting at @addr, as 1338 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1339 * NULL, no operation is performed. 1340 * 1341 * Must not be called in interrupt context. 1342 */ 1343 void vfree(const void *addr) 1344 { 1345 BUG_ON(in_interrupt()); 1346 1347 kmemleak_free(addr); 1348 1349 __vunmap(addr, 1); 1350 } 1351 EXPORT_SYMBOL(vfree); 1352 1353 /** 1354 * vunmap - release virtual mapping obtained by vmap() 1355 * @addr: memory base address 1356 * 1357 * Free the virtually contiguous memory area starting at @addr, 1358 * which was created from the page array passed to vmap(). 1359 * 1360 * Must not be called in interrupt context. 1361 */ 1362 void vunmap(const void *addr) 1363 { 1364 BUG_ON(in_interrupt()); 1365 might_sleep(); 1366 __vunmap(addr, 0); 1367 } 1368 EXPORT_SYMBOL(vunmap); 1369 1370 /** 1371 * vmap - map an array of pages into virtually contiguous space 1372 * @pages: array of page pointers 1373 * @count: number of pages to map 1374 * @flags: vm_area->flags 1375 * @prot: page protection for the mapping 1376 * 1377 * Maps @count pages from @pages into contiguous kernel virtual 1378 * space. 1379 */ 1380 void *vmap(struct page **pages, unsigned int count, 1381 unsigned long flags, pgprot_t prot) 1382 { 1383 struct vm_struct *area; 1384 1385 might_sleep(); 1386 1387 if (count > totalram_pages) 1388 return NULL; 1389 1390 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1391 __builtin_return_address(0)); 1392 if (!area) 1393 return NULL; 1394 1395 if (map_vm_area(area, prot, &pages)) { 1396 vunmap(area->addr); 1397 return NULL; 1398 } 1399 1400 return area->addr; 1401 } 1402 EXPORT_SYMBOL(vmap); 1403 1404 static void *__vmalloc_node(unsigned long size, unsigned long align, 1405 gfp_t gfp_mask, pgprot_t prot, 1406 int node, void *caller); 1407 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1408 pgprot_t prot, int node, void *caller) 1409 { 1410 struct page **pages; 1411 unsigned int nr_pages, array_size, i; 1412 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1413 1414 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1415 array_size = (nr_pages * sizeof(struct page *)); 1416 1417 area->nr_pages = nr_pages; 1418 /* Please note that the recursion is strictly bounded. */ 1419 if (array_size > PAGE_SIZE) { 1420 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1421 PAGE_KERNEL, node, caller); 1422 area->flags |= VM_VPAGES; 1423 } else { 1424 pages = kmalloc_node(array_size, nested_gfp, node); 1425 } 1426 area->pages = pages; 1427 area->caller = caller; 1428 if (!area->pages) { 1429 remove_vm_area(area->addr); 1430 kfree(area); 1431 return NULL; 1432 } 1433 1434 for (i = 0; i < area->nr_pages; i++) { 1435 struct page *page; 1436 1437 if (node < 0) 1438 page = alloc_page(gfp_mask); 1439 else 1440 page = alloc_pages_node(node, gfp_mask, 0); 1441 1442 if (unlikely(!page)) { 1443 /* Successfully allocated i pages, free them in __vunmap() */ 1444 area->nr_pages = i; 1445 goto fail; 1446 } 1447 area->pages[i] = page; 1448 } 1449 1450 if (map_vm_area(area, prot, &pages)) 1451 goto fail; 1452 return area->addr; 1453 1454 fail: 1455 vfree(area->addr); 1456 return NULL; 1457 } 1458 1459 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1460 { 1461 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, 1462 __builtin_return_address(0)); 1463 1464 /* 1465 * A ref_count = 3 is needed because the vm_struct and vmap_area 1466 * structures allocated in the __get_vm_area_node() function contain 1467 * references to the virtual address of the vmalloc'ed block. 1468 */ 1469 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); 1470 1471 return addr; 1472 } 1473 1474 /** 1475 * __vmalloc_node - allocate virtually contiguous memory 1476 * @size: allocation size 1477 * @align: desired alignment 1478 * @gfp_mask: flags for the page level allocator 1479 * @prot: protection mask for the allocated pages 1480 * @node: node to use for allocation or -1 1481 * @caller: caller's return address 1482 * 1483 * Allocate enough pages to cover @size from the page level 1484 * allocator with @gfp_mask flags. Map them into contiguous 1485 * kernel virtual space, using a pagetable protection of @prot. 1486 */ 1487 static void *__vmalloc_node(unsigned long size, unsigned long align, 1488 gfp_t gfp_mask, pgprot_t prot, 1489 int node, void *caller) 1490 { 1491 struct vm_struct *area; 1492 void *addr; 1493 unsigned long real_size = size; 1494 1495 size = PAGE_ALIGN(size); 1496 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1497 return NULL; 1498 1499 area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, 1500 VMALLOC_END, node, gfp_mask, caller); 1501 1502 if (!area) 1503 return NULL; 1504 1505 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1506 1507 /* 1508 * A ref_count = 3 is needed because the vm_struct and vmap_area 1509 * structures allocated in the __get_vm_area_node() function contain 1510 * references to the virtual address of the vmalloc'ed block. 1511 */ 1512 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1513 1514 return addr; 1515 } 1516 1517 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1518 { 1519 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1520 __builtin_return_address(0)); 1521 } 1522 EXPORT_SYMBOL(__vmalloc); 1523 1524 /** 1525 * vmalloc - allocate virtually contiguous memory 1526 * @size: allocation size 1527 * Allocate enough pages to cover @size from the page level 1528 * allocator and map them into contiguous kernel virtual space. 1529 * 1530 * For tight control over page level allocator and protection flags 1531 * use __vmalloc() instead. 1532 */ 1533 void *vmalloc(unsigned long size) 1534 { 1535 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1536 -1, __builtin_return_address(0)); 1537 } 1538 EXPORT_SYMBOL(vmalloc); 1539 1540 /** 1541 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1542 * @size: allocation size 1543 * 1544 * The resulting memory area is zeroed so it can be mapped to userspace 1545 * without leaking data. 1546 */ 1547 void *vmalloc_user(unsigned long size) 1548 { 1549 struct vm_struct *area; 1550 void *ret; 1551 1552 ret = __vmalloc_node(size, SHMLBA, 1553 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1554 PAGE_KERNEL, -1, __builtin_return_address(0)); 1555 if (ret) { 1556 area = find_vm_area(ret); 1557 area->flags |= VM_USERMAP; 1558 } 1559 return ret; 1560 } 1561 EXPORT_SYMBOL(vmalloc_user); 1562 1563 /** 1564 * vmalloc_node - allocate memory on a specific node 1565 * @size: allocation size 1566 * @node: numa node 1567 * 1568 * Allocate enough pages to cover @size from the page level 1569 * allocator and map them into contiguous kernel virtual space. 1570 * 1571 * For tight control over page level allocator and protection flags 1572 * use __vmalloc() instead. 1573 */ 1574 void *vmalloc_node(unsigned long size, int node) 1575 { 1576 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1577 node, __builtin_return_address(0)); 1578 } 1579 EXPORT_SYMBOL(vmalloc_node); 1580 1581 #ifndef PAGE_KERNEL_EXEC 1582 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1583 #endif 1584 1585 /** 1586 * vmalloc_exec - allocate virtually contiguous, executable memory 1587 * @size: allocation size 1588 * 1589 * Kernel-internal function to allocate enough pages to cover @size 1590 * the page level allocator and map them into contiguous and 1591 * executable kernel virtual space. 1592 * 1593 * For tight control over page level allocator and protection flags 1594 * use __vmalloc() instead. 1595 */ 1596 1597 void *vmalloc_exec(unsigned long size) 1598 { 1599 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1600 -1, __builtin_return_address(0)); 1601 } 1602 1603 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1604 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1605 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1606 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1607 #else 1608 #define GFP_VMALLOC32 GFP_KERNEL 1609 #endif 1610 1611 /** 1612 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1613 * @size: allocation size 1614 * 1615 * Allocate enough 32bit PA addressable pages to cover @size from the 1616 * page level allocator and map them into contiguous kernel virtual space. 1617 */ 1618 void *vmalloc_32(unsigned long size) 1619 { 1620 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1621 -1, __builtin_return_address(0)); 1622 } 1623 EXPORT_SYMBOL(vmalloc_32); 1624 1625 /** 1626 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1627 * @size: allocation size 1628 * 1629 * The resulting memory area is 32bit addressable and zeroed so it can be 1630 * mapped to userspace without leaking data. 1631 */ 1632 void *vmalloc_32_user(unsigned long size) 1633 { 1634 struct vm_struct *area; 1635 void *ret; 1636 1637 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1638 -1, __builtin_return_address(0)); 1639 if (ret) { 1640 area = find_vm_area(ret); 1641 area->flags |= VM_USERMAP; 1642 } 1643 return ret; 1644 } 1645 EXPORT_SYMBOL(vmalloc_32_user); 1646 1647 /* 1648 * small helper routine , copy contents to buf from addr. 1649 * If the page is not present, fill zero. 1650 */ 1651 1652 static int aligned_vread(char *buf, char *addr, unsigned long count) 1653 { 1654 struct page *p; 1655 int copied = 0; 1656 1657 while (count) { 1658 unsigned long offset, length; 1659 1660 offset = (unsigned long)addr & ~PAGE_MASK; 1661 length = PAGE_SIZE - offset; 1662 if (length > count) 1663 length = count; 1664 p = vmalloc_to_page(addr); 1665 /* 1666 * To do safe access to this _mapped_ area, we need 1667 * lock. But adding lock here means that we need to add 1668 * overhead of vmalloc()/vfree() calles for this _debug_ 1669 * interface, rarely used. Instead of that, we'll use 1670 * kmap() and get small overhead in this access function. 1671 */ 1672 if (p) { 1673 /* 1674 * we can expect USER0 is not used (see vread/vwrite's 1675 * function description) 1676 */ 1677 void *map = kmap_atomic(p, KM_USER0); 1678 memcpy(buf, map + offset, length); 1679 kunmap_atomic(map, KM_USER0); 1680 } else 1681 memset(buf, 0, length); 1682 1683 addr += length; 1684 buf += length; 1685 copied += length; 1686 count -= length; 1687 } 1688 return copied; 1689 } 1690 1691 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1692 { 1693 struct page *p; 1694 int copied = 0; 1695 1696 while (count) { 1697 unsigned long offset, length; 1698 1699 offset = (unsigned long)addr & ~PAGE_MASK; 1700 length = PAGE_SIZE - offset; 1701 if (length > count) 1702 length = count; 1703 p = vmalloc_to_page(addr); 1704 /* 1705 * To do safe access to this _mapped_ area, we need 1706 * lock. But adding lock here means that we need to add 1707 * overhead of vmalloc()/vfree() calles for this _debug_ 1708 * interface, rarely used. Instead of that, we'll use 1709 * kmap() and get small overhead in this access function. 1710 */ 1711 if (p) { 1712 /* 1713 * we can expect USER0 is not used (see vread/vwrite's 1714 * function description) 1715 */ 1716 void *map = kmap_atomic(p, KM_USER0); 1717 memcpy(map + offset, buf, length); 1718 kunmap_atomic(map, KM_USER0); 1719 } 1720 addr += length; 1721 buf += length; 1722 copied += length; 1723 count -= length; 1724 } 1725 return copied; 1726 } 1727 1728 /** 1729 * vread() - read vmalloc area in a safe way. 1730 * @buf: buffer for reading data 1731 * @addr: vm address. 1732 * @count: number of bytes to be read. 1733 * 1734 * Returns # of bytes which addr and buf should be increased. 1735 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1736 * includes any intersect with alive vmalloc area. 1737 * 1738 * This function checks that addr is a valid vmalloc'ed area, and 1739 * copy data from that area to a given buffer. If the given memory range 1740 * of [addr...addr+count) includes some valid address, data is copied to 1741 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1742 * IOREMAP area is treated as memory hole and no copy is done. 1743 * 1744 * If [addr...addr+count) doesn't includes any intersects with alive 1745 * vm_struct area, returns 0. 1746 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1747 * the caller should guarantee KM_USER0 is not used. 1748 * 1749 * Note: In usual ops, vread() is never necessary because the caller 1750 * should know vmalloc() area is valid and can use memcpy(). 1751 * This is for routines which have to access vmalloc area without 1752 * any informaion, as /dev/kmem. 1753 * 1754 */ 1755 1756 long vread(char *buf, char *addr, unsigned long count) 1757 { 1758 struct vm_struct *tmp; 1759 char *vaddr, *buf_start = buf; 1760 unsigned long buflen = count; 1761 unsigned long n; 1762 1763 /* Don't allow overflow */ 1764 if ((unsigned long) addr + count < count) 1765 count = -(unsigned long) addr; 1766 1767 read_lock(&vmlist_lock); 1768 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1769 vaddr = (char *) tmp->addr; 1770 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1771 continue; 1772 while (addr < vaddr) { 1773 if (count == 0) 1774 goto finished; 1775 *buf = '\0'; 1776 buf++; 1777 addr++; 1778 count--; 1779 } 1780 n = vaddr + tmp->size - PAGE_SIZE - addr; 1781 if (n > count) 1782 n = count; 1783 if (!(tmp->flags & VM_IOREMAP)) 1784 aligned_vread(buf, addr, n); 1785 else /* IOREMAP area is treated as memory hole */ 1786 memset(buf, 0, n); 1787 buf += n; 1788 addr += n; 1789 count -= n; 1790 } 1791 finished: 1792 read_unlock(&vmlist_lock); 1793 1794 if (buf == buf_start) 1795 return 0; 1796 /* zero-fill memory holes */ 1797 if (buf != buf_start + buflen) 1798 memset(buf, 0, buflen - (buf - buf_start)); 1799 1800 return buflen; 1801 } 1802 1803 /** 1804 * vwrite() - write vmalloc area in a safe way. 1805 * @buf: buffer for source data 1806 * @addr: vm address. 1807 * @count: number of bytes to be read. 1808 * 1809 * Returns # of bytes which addr and buf should be incresed. 1810 * (same number to @count). 1811 * If [addr...addr+count) doesn't includes any intersect with valid 1812 * vmalloc area, returns 0. 1813 * 1814 * This function checks that addr is a valid vmalloc'ed area, and 1815 * copy data from a buffer to the given addr. If specified range of 1816 * [addr...addr+count) includes some valid address, data is copied from 1817 * proper area of @buf. If there are memory holes, no copy to hole. 1818 * IOREMAP area is treated as memory hole and no copy is done. 1819 * 1820 * If [addr...addr+count) doesn't includes any intersects with alive 1821 * vm_struct area, returns 0. 1822 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1823 * the caller should guarantee KM_USER0 is not used. 1824 * 1825 * Note: In usual ops, vwrite() is never necessary because the caller 1826 * should know vmalloc() area is valid and can use memcpy(). 1827 * This is for routines which have to access vmalloc area without 1828 * any informaion, as /dev/kmem. 1829 * 1830 * The caller should guarantee KM_USER1 is not used. 1831 */ 1832 1833 long vwrite(char *buf, char *addr, unsigned long count) 1834 { 1835 struct vm_struct *tmp; 1836 char *vaddr; 1837 unsigned long n, buflen; 1838 int copied = 0; 1839 1840 /* Don't allow overflow */ 1841 if ((unsigned long) addr + count < count) 1842 count = -(unsigned long) addr; 1843 buflen = count; 1844 1845 read_lock(&vmlist_lock); 1846 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1847 vaddr = (char *) tmp->addr; 1848 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1849 continue; 1850 while (addr < vaddr) { 1851 if (count == 0) 1852 goto finished; 1853 buf++; 1854 addr++; 1855 count--; 1856 } 1857 n = vaddr + tmp->size - PAGE_SIZE - addr; 1858 if (n > count) 1859 n = count; 1860 if (!(tmp->flags & VM_IOREMAP)) { 1861 aligned_vwrite(buf, addr, n); 1862 copied++; 1863 } 1864 buf += n; 1865 addr += n; 1866 count -= n; 1867 } 1868 finished: 1869 read_unlock(&vmlist_lock); 1870 if (!copied) 1871 return 0; 1872 return buflen; 1873 } 1874 1875 /** 1876 * remap_vmalloc_range - map vmalloc pages to userspace 1877 * @vma: vma to cover (map full range of vma) 1878 * @addr: vmalloc memory 1879 * @pgoff: number of pages into addr before first page to map 1880 * 1881 * Returns: 0 for success, -Exxx on failure 1882 * 1883 * This function checks that addr is a valid vmalloc'ed area, and 1884 * that it is big enough to cover the vma. Will return failure if 1885 * that criteria isn't met. 1886 * 1887 * Similar to remap_pfn_range() (see mm/memory.c) 1888 */ 1889 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1890 unsigned long pgoff) 1891 { 1892 struct vm_struct *area; 1893 unsigned long uaddr = vma->vm_start; 1894 unsigned long usize = vma->vm_end - vma->vm_start; 1895 1896 if ((PAGE_SIZE-1) & (unsigned long)addr) 1897 return -EINVAL; 1898 1899 area = find_vm_area(addr); 1900 if (!area) 1901 return -EINVAL; 1902 1903 if (!(area->flags & VM_USERMAP)) 1904 return -EINVAL; 1905 1906 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1907 return -EINVAL; 1908 1909 addr += pgoff << PAGE_SHIFT; 1910 do { 1911 struct page *page = vmalloc_to_page(addr); 1912 int ret; 1913 1914 ret = vm_insert_page(vma, uaddr, page); 1915 if (ret) 1916 return ret; 1917 1918 uaddr += PAGE_SIZE; 1919 addr += PAGE_SIZE; 1920 usize -= PAGE_SIZE; 1921 } while (usize > 0); 1922 1923 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1924 vma->vm_flags |= VM_RESERVED; 1925 1926 return 0; 1927 } 1928 EXPORT_SYMBOL(remap_vmalloc_range); 1929 1930 /* 1931 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1932 * have one. 1933 */ 1934 void __attribute__((weak)) vmalloc_sync_all(void) 1935 { 1936 } 1937 1938 1939 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1940 { 1941 /* apply_to_page_range() does all the hard work. */ 1942 return 0; 1943 } 1944 1945 /** 1946 * alloc_vm_area - allocate a range of kernel address space 1947 * @size: size of the area 1948 * 1949 * Returns: NULL on failure, vm_struct on success 1950 * 1951 * This function reserves a range of kernel address space, and 1952 * allocates pagetables to map that range. No actual mappings 1953 * are created. If the kernel address space is not shared 1954 * between processes, it syncs the pagetable across all 1955 * processes. 1956 */ 1957 struct vm_struct *alloc_vm_area(size_t size) 1958 { 1959 struct vm_struct *area; 1960 1961 area = get_vm_area_caller(size, VM_IOREMAP, 1962 __builtin_return_address(0)); 1963 if (area == NULL) 1964 return NULL; 1965 1966 /* 1967 * This ensures that page tables are constructed for this region 1968 * of kernel virtual address space and mapped into init_mm. 1969 */ 1970 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1971 area->size, f, NULL)) { 1972 free_vm_area(area); 1973 return NULL; 1974 } 1975 1976 /* Make sure the pagetables are constructed in process kernel 1977 mappings */ 1978 vmalloc_sync_all(); 1979 1980 return area; 1981 } 1982 EXPORT_SYMBOL_GPL(alloc_vm_area); 1983 1984 void free_vm_area(struct vm_struct *area) 1985 { 1986 struct vm_struct *ret; 1987 ret = remove_vm_area(area->addr); 1988 BUG_ON(ret != area); 1989 kfree(area); 1990 } 1991 EXPORT_SYMBOL_GPL(free_vm_area); 1992 1993 static struct vmap_area *node_to_va(struct rb_node *n) 1994 { 1995 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 1996 } 1997 1998 /** 1999 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2000 * @end: target address 2001 * @pnext: out arg for the next vmap_area 2002 * @pprev: out arg for the previous vmap_area 2003 * 2004 * Returns: %true if either or both of next and prev are found, 2005 * %false if no vmap_area exists 2006 * 2007 * Find vmap_areas end addresses of which enclose @end. ie. if not 2008 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2009 */ 2010 static bool pvm_find_next_prev(unsigned long end, 2011 struct vmap_area **pnext, 2012 struct vmap_area **pprev) 2013 { 2014 struct rb_node *n = vmap_area_root.rb_node; 2015 struct vmap_area *va = NULL; 2016 2017 while (n) { 2018 va = rb_entry(n, struct vmap_area, rb_node); 2019 if (end < va->va_end) 2020 n = n->rb_left; 2021 else if (end > va->va_end) 2022 n = n->rb_right; 2023 else 2024 break; 2025 } 2026 2027 if (!va) 2028 return false; 2029 2030 if (va->va_end > end) { 2031 *pnext = va; 2032 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2033 } else { 2034 *pprev = va; 2035 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2036 } 2037 return true; 2038 } 2039 2040 /** 2041 * pvm_determine_end - find the highest aligned address between two vmap_areas 2042 * @pnext: in/out arg for the next vmap_area 2043 * @pprev: in/out arg for the previous vmap_area 2044 * @align: alignment 2045 * 2046 * Returns: determined end address 2047 * 2048 * Find the highest aligned address between *@pnext and *@pprev below 2049 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2050 * down address is between the end addresses of the two vmap_areas. 2051 * 2052 * Please note that the address returned by this function may fall 2053 * inside *@pnext vmap_area. The caller is responsible for checking 2054 * that. 2055 */ 2056 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2057 struct vmap_area **pprev, 2058 unsigned long align) 2059 { 2060 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2061 unsigned long addr; 2062 2063 if (*pnext) 2064 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2065 else 2066 addr = vmalloc_end; 2067 2068 while (*pprev && (*pprev)->va_end > addr) { 2069 *pnext = *pprev; 2070 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2071 } 2072 2073 return addr; 2074 } 2075 2076 /** 2077 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2078 * @offsets: array containing offset of each area 2079 * @sizes: array containing size of each area 2080 * @nr_vms: the number of areas to allocate 2081 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2082 * @gfp_mask: allocation mask 2083 * 2084 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2085 * vm_structs on success, %NULL on failure 2086 * 2087 * Percpu allocator wants to use congruent vm areas so that it can 2088 * maintain the offsets among percpu areas. This function allocates 2089 * congruent vmalloc areas for it. These areas tend to be scattered 2090 * pretty far, distance between two areas easily going up to 2091 * gigabytes. To avoid interacting with regular vmallocs, these areas 2092 * are allocated from top. 2093 * 2094 * Despite its complicated look, this allocator is rather simple. It 2095 * does everything top-down and scans areas from the end looking for 2096 * matching slot. While scanning, if any of the areas overlaps with 2097 * existing vmap_area, the base address is pulled down to fit the 2098 * area. Scanning is repeated till all the areas fit and then all 2099 * necessary data structres are inserted and the result is returned. 2100 */ 2101 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2102 const size_t *sizes, int nr_vms, 2103 size_t align, gfp_t gfp_mask) 2104 { 2105 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2106 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2107 struct vmap_area **vas, *prev, *next; 2108 struct vm_struct **vms; 2109 int area, area2, last_area, term_area; 2110 unsigned long base, start, end, last_end; 2111 bool purged = false; 2112 2113 gfp_mask &= GFP_RECLAIM_MASK; 2114 2115 /* verify parameters and allocate data structures */ 2116 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2117 for (last_area = 0, area = 0; area < nr_vms; area++) { 2118 start = offsets[area]; 2119 end = start + sizes[area]; 2120 2121 /* is everything aligned properly? */ 2122 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2123 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2124 2125 /* detect the area with the highest address */ 2126 if (start > offsets[last_area]) 2127 last_area = area; 2128 2129 for (area2 = 0; area2 < nr_vms; area2++) { 2130 unsigned long start2 = offsets[area2]; 2131 unsigned long end2 = start2 + sizes[area2]; 2132 2133 if (area2 == area) 2134 continue; 2135 2136 BUG_ON(start2 >= start && start2 < end); 2137 BUG_ON(end2 <= end && end2 > start); 2138 } 2139 } 2140 last_end = offsets[last_area] + sizes[last_area]; 2141 2142 if (vmalloc_end - vmalloc_start < last_end) { 2143 WARN_ON(true); 2144 return NULL; 2145 } 2146 2147 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); 2148 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); 2149 if (!vas || !vms) 2150 goto err_free; 2151 2152 for (area = 0; area < nr_vms; area++) { 2153 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); 2154 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); 2155 if (!vas[area] || !vms[area]) 2156 goto err_free; 2157 } 2158 retry: 2159 spin_lock(&vmap_area_lock); 2160 2161 /* start scanning - we scan from the top, begin with the last area */ 2162 area = term_area = last_area; 2163 start = offsets[area]; 2164 end = start + sizes[area]; 2165 2166 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2167 base = vmalloc_end - last_end; 2168 goto found; 2169 } 2170 base = pvm_determine_end(&next, &prev, align) - end; 2171 2172 while (true) { 2173 BUG_ON(next && next->va_end <= base + end); 2174 BUG_ON(prev && prev->va_end > base + end); 2175 2176 /* 2177 * base might have underflowed, add last_end before 2178 * comparing. 2179 */ 2180 if (base + last_end < vmalloc_start + last_end) { 2181 spin_unlock(&vmap_area_lock); 2182 if (!purged) { 2183 purge_vmap_area_lazy(); 2184 purged = true; 2185 goto retry; 2186 } 2187 goto err_free; 2188 } 2189 2190 /* 2191 * If next overlaps, move base downwards so that it's 2192 * right below next and then recheck. 2193 */ 2194 if (next && next->va_start < base + end) { 2195 base = pvm_determine_end(&next, &prev, align) - end; 2196 term_area = area; 2197 continue; 2198 } 2199 2200 /* 2201 * If prev overlaps, shift down next and prev and move 2202 * base so that it's right below new next and then 2203 * recheck. 2204 */ 2205 if (prev && prev->va_end > base + start) { 2206 next = prev; 2207 prev = node_to_va(rb_prev(&next->rb_node)); 2208 base = pvm_determine_end(&next, &prev, align) - end; 2209 term_area = area; 2210 continue; 2211 } 2212 2213 /* 2214 * This area fits, move on to the previous one. If 2215 * the previous one is the terminal one, we're done. 2216 */ 2217 area = (area + nr_vms - 1) % nr_vms; 2218 if (area == term_area) 2219 break; 2220 start = offsets[area]; 2221 end = start + sizes[area]; 2222 pvm_find_next_prev(base + end, &next, &prev); 2223 } 2224 found: 2225 /* we've found a fitting base, insert all va's */ 2226 for (area = 0; area < nr_vms; area++) { 2227 struct vmap_area *va = vas[area]; 2228 2229 va->va_start = base + offsets[area]; 2230 va->va_end = va->va_start + sizes[area]; 2231 __insert_vmap_area(va); 2232 } 2233 2234 vmap_area_pcpu_hole = base + offsets[last_area]; 2235 2236 spin_unlock(&vmap_area_lock); 2237 2238 /* insert all vm's */ 2239 for (area = 0; area < nr_vms; area++) 2240 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2241 pcpu_get_vm_areas); 2242 2243 kfree(vas); 2244 return vms; 2245 2246 err_free: 2247 for (area = 0; area < nr_vms; area++) { 2248 if (vas) 2249 kfree(vas[area]); 2250 if (vms) 2251 kfree(vms[area]); 2252 } 2253 kfree(vas); 2254 kfree(vms); 2255 return NULL; 2256 } 2257 2258 /** 2259 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2260 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2261 * @nr_vms: the number of allocated areas 2262 * 2263 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2264 */ 2265 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2266 { 2267 int i; 2268 2269 for (i = 0; i < nr_vms; i++) 2270 free_vm_area(vms[i]); 2271 kfree(vms); 2272 } 2273 2274 #ifdef CONFIG_PROC_FS 2275 static void *s_start(struct seq_file *m, loff_t *pos) 2276 { 2277 loff_t n = *pos; 2278 struct vm_struct *v; 2279 2280 read_lock(&vmlist_lock); 2281 v = vmlist; 2282 while (n > 0 && v) { 2283 n--; 2284 v = v->next; 2285 } 2286 if (!n) 2287 return v; 2288 2289 return NULL; 2290 2291 } 2292 2293 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2294 { 2295 struct vm_struct *v = p; 2296 2297 ++*pos; 2298 return v->next; 2299 } 2300 2301 static void s_stop(struct seq_file *m, void *p) 2302 { 2303 read_unlock(&vmlist_lock); 2304 } 2305 2306 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2307 { 2308 if (NUMA_BUILD) { 2309 unsigned int nr, *counters = m->private; 2310 2311 if (!counters) 2312 return; 2313 2314 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2315 2316 for (nr = 0; nr < v->nr_pages; nr++) 2317 counters[page_to_nid(v->pages[nr])]++; 2318 2319 for_each_node_state(nr, N_HIGH_MEMORY) 2320 if (counters[nr]) 2321 seq_printf(m, " N%u=%u", nr, counters[nr]); 2322 } 2323 } 2324 2325 static int s_show(struct seq_file *m, void *p) 2326 { 2327 struct vm_struct *v = p; 2328 2329 seq_printf(m, "0x%p-0x%p %7ld", 2330 v->addr, v->addr + v->size, v->size); 2331 2332 if (v->caller) { 2333 char buff[KSYM_SYMBOL_LEN]; 2334 2335 seq_putc(m, ' '); 2336 sprint_symbol(buff, (unsigned long)v->caller); 2337 seq_puts(m, buff); 2338 } 2339 2340 if (v->nr_pages) 2341 seq_printf(m, " pages=%d", v->nr_pages); 2342 2343 if (v->phys_addr) 2344 seq_printf(m, " phys=%lx", v->phys_addr); 2345 2346 if (v->flags & VM_IOREMAP) 2347 seq_printf(m, " ioremap"); 2348 2349 if (v->flags & VM_ALLOC) 2350 seq_printf(m, " vmalloc"); 2351 2352 if (v->flags & VM_MAP) 2353 seq_printf(m, " vmap"); 2354 2355 if (v->flags & VM_USERMAP) 2356 seq_printf(m, " user"); 2357 2358 if (v->flags & VM_VPAGES) 2359 seq_printf(m, " vpages"); 2360 2361 show_numa_info(m, v); 2362 seq_putc(m, '\n'); 2363 return 0; 2364 } 2365 2366 static const struct seq_operations vmalloc_op = { 2367 .start = s_start, 2368 .next = s_next, 2369 .stop = s_stop, 2370 .show = s_show, 2371 }; 2372 2373 static int vmalloc_open(struct inode *inode, struct file *file) 2374 { 2375 unsigned int *ptr = NULL; 2376 int ret; 2377 2378 if (NUMA_BUILD) 2379 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2380 ret = seq_open(file, &vmalloc_op); 2381 if (!ret) { 2382 struct seq_file *m = file->private_data; 2383 m->private = ptr; 2384 } else 2385 kfree(ptr); 2386 return ret; 2387 } 2388 2389 static const struct file_operations proc_vmalloc_operations = { 2390 .open = vmalloc_open, 2391 .read = seq_read, 2392 .llseek = seq_lseek, 2393 .release = seq_release_private, 2394 }; 2395 2396 static int __init proc_vmalloc_init(void) 2397 { 2398 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2399 return 0; 2400 } 2401 module_init(proc_vmalloc_init); 2402 #endif 2403 2404