xref: /linux/mm/vmalloc.c (revision 6eb6f98396f7bd653d8fb15b06364c8c7d70e22c)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 
35 /*** Page table manipulation functions ***/
36 
37 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 {
39 	pte_t *pte;
40 
41 	pte = pte_offset_kernel(pmd, addr);
42 	do {
43 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
44 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
45 	} while (pte++, addr += PAGE_SIZE, addr != end);
46 }
47 
48 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 {
50 	pmd_t *pmd;
51 	unsigned long next;
52 
53 	pmd = pmd_offset(pud, addr);
54 	do {
55 		next = pmd_addr_end(addr, end);
56 		if (pmd_none_or_clear_bad(pmd))
57 			continue;
58 		vunmap_pte_range(pmd, addr, next);
59 	} while (pmd++, addr = next, addr != end);
60 }
61 
62 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 {
64 	pud_t *pud;
65 	unsigned long next;
66 
67 	pud = pud_offset(pgd, addr);
68 	do {
69 		next = pud_addr_end(addr, end);
70 		if (pud_none_or_clear_bad(pud))
71 			continue;
72 		vunmap_pmd_range(pud, addr, next);
73 	} while (pud++, addr = next, addr != end);
74 }
75 
76 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 {
78 	pgd_t *pgd;
79 	unsigned long next;
80 
81 	BUG_ON(addr >= end);
82 	pgd = pgd_offset_k(addr);
83 	do {
84 		next = pgd_addr_end(addr, end);
85 		if (pgd_none_or_clear_bad(pgd))
86 			continue;
87 		vunmap_pud_range(pgd, addr, next);
88 	} while (pgd++, addr = next, addr != end);
89 }
90 
91 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
92 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 {
94 	pte_t *pte;
95 
96 	/*
97 	 * nr is a running index into the array which helps higher level
98 	 * callers keep track of where we're up to.
99 	 */
100 
101 	pte = pte_alloc_kernel(pmd, addr);
102 	if (!pte)
103 		return -ENOMEM;
104 	do {
105 		struct page *page = pages[*nr];
106 
107 		if (WARN_ON(!pte_none(*pte)))
108 			return -EBUSY;
109 		if (WARN_ON(!page))
110 			return -ENOMEM;
111 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
112 		(*nr)++;
113 	} while (pte++, addr += PAGE_SIZE, addr != end);
114 	return 0;
115 }
116 
117 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
118 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 {
120 	pmd_t *pmd;
121 	unsigned long next;
122 
123 	pmd = pmd_alloc(&init_mm, pud, addr);
124 	if (!pmd)
125 		return -ENOMEM;
126 	do {
127 		next = pmd_addr_end(addr, end);
128 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
129 			return -ENOMEM;
130 	} while (pmd++, addr = next, addr != end);
131 	return 0;
132 }
133 
134 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
135 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 	pud_t *pud;
138 	unsigned long next;
139 
140 	pud = pud_alloc(&init_mm, pgd, addr);
141 	if (!pud)
142 		return -ENOMEM;
143 	do {
144 		next = pud_addr_end(addr, end);
145 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
146 			return -ENOMEM;
147 	} while (pud++, addr = next, addr != end);
148 	return 0;
149 }
150 
151 /*
152  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
153  * will have pfns corresponding to the "pages" array.
154  *
155  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156  */
157 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
158 				   pgprot_t prot, struct page **pages)
159 {
160 	pgd_t *pgd;
161 	unsigned long next;
162 	unsigned long addr = start;
163 	int err = 0;
164 	int nr = 0;
165 
166 	BUG_ON(addr >= end);
167 	pgd = pgd_offset_k(addr);
168 	do {
169 		next = pgd_addr_end(addr, end);
170 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
171 		if (err)
172 			return err;
173 	} while (pgd++, addr = next, addr != end);
174 
175 	return nr;
176 }
177 
178 static int vmap_page_range(unsigned long start, unsigned long end,
179 			   pgprot_t prot, struct page **pages)
180 {
181 	int ret;
182 
183 	ret = vmap_page_range_noflush(start, end, prot, pages);
184 	flush_cache_vmap(start, end);
185 	return ret;
186 }
187 
188 int is_vmalloc_or_module_addr(const void *x)
189 {
190 	/*
191 	 * ARM, x86-64 and sparc64 put modules in a special place,
192 	 * and fall back on vmalloc() if that fails. Others
193 	 * just put it in the vmalloc space.
194 	 */
195 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
196 	unsigned long addr = (unsigned long)x;
197 	if (addr >= MODULES_VADDR && addr < MODULES_END)
198 		return 1;
199 #endif
200 	return is_vmalloc_addr(x);
201 }
202 
203 /*
204  * Walk a vmap address to the struct page it maps.
205  */
206 struct page *vmalloc_to_page(const void *vmalloc_addr)
207 {
208 	unsigned long addr = (unsigned long) vmalloc_addr;
209 	struct page *page = NULL;
210 	pgd_t *pgd = pgd_offset_k(addr);
211 
212 	/*
213 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
214 	 * architectures that do not vmalloc module space
215 	 */
216 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
217 
218 	if (!pgd_none(*pgd)) {
219 		pud_t *pud = pud_offset(pgd, addr);
220 		if (!pud_none(*pud)) {
221 			pmd_t *pmd = pmd_offset(pud, addr);
222 			if (!pmd_none(*pmd)) {
223 				pte_t *ptep, pte;
224 
225 				ptep = pte_offset_map(pmd, addr);
226 				pte = *ptep;
227 				if (pte_present(pte))
228 					page = pte_page(pte);
229 				pte_unmap(ptep);
230 			}
231 		}
232 	}
233 	return page;
234 }
235 EXPORT_SYMBOL(vmalloc_to_page);
236 
237 /*
238  * Map a vmalloc()-space virtual address to the physical page frame number.
239  */
240 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
241 {
242 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243 }
244 EXPORT_SYMBOL(vmalloc_to_pfn);
245 
246 
247 /*** Global kva allocator ***/
248 
249 #define VM_LAZY_FREE	0x01
250 #define VM_LAZY_FREEING	0x02
251 #define VM_VM_AREA	0x04
252 
253 struct vmap_area {
254 	unsigned long va_start;
255 	unsigned long va_end;
256 	unsigned long flags;
257 	struct rb_node rb_node;		/* address sorted rbtree */
258 	struct list_head list;		/* address sorted list */
259 	struct list_head purge_list;	/* "lazy purge" list */
260 	void *private;
261 	struct rcu_head rcu_head;
262 };
263 
264 static DEFINE_SPINLOCK(vmap_area_lock);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 static LIST_HEAD(vmap_area_list);
267 static unsigned long vmap_area_pcpu_hole;
268 
269 static struct vmap_area *__find_vmap_area(unsigned long addr)
270 {
271 	struct rb_node *n = vmap_area_root.rb_node;
272 
273 	while (n) {
274 		struct vmap_area *va;
275 
276 		va = rb_entry(n, struct vmap_area, rb_node);
277 		if (addr < va->va_start)
278 			n = n->rb_left;
279 		else if (addr > va->va_start)
280 			n = n->rb_right;
281 		else
282 			return va;
283 	}
284 
285 	return NULL;
286 }
287 
288 static void __insert_vmap_area(struct vmap_area *va)
289 {
290 	struct rb_node **p = &vmap_area_root.rb_node;
291 	struct rb_node *parent = NULL;
292 	struct rb_node *tmp;
293 
294 	while (*p) {
295 		struct vmap_area *tmp;
296 
297 		parent = *p;
298 		tmp = rb_entry(parent, struct vmap_area, rb_node);
299 		if (va->va_start < tmp->va_end)
300 			p = &(*p)->rb_left;
301 		else if (va->va_end > tmp->va_start)
302 			p = &(*p)->rb_right;
303 		else
304 			BUG();
305 	}
306 
307 	rb_link_node(&va->rb_node, parent, p);
308 	rb_insert_color(&va->rb_node, &vmap_area_root);
309 
310 	/* address-sort this list so it is usable like the vmlist */
311 	tmp = rb_prev(&va->rb_node);
312 	if (tmp) {
313 		struct vmap_area *prev;
314 		prev = rb_entry(tmp, struct vmap_area, rb_node);
315 		list_add_rcu(&va->list, &prev->list);
316 	} else
317 		list_add_rcu(&va->list, &vmap_area_list);
318 }
319 
320 static void purge_vmap_area_lazy(void);
321 
322 /*
323  * Allocate a region of KVA of the specified size and alignment, within the
324  * vstart and vend.
325  */
326 static struct vmap_area *alloc_vmap_area(unsigned long size,
327 				unsigned long align,
328 				unsigned long vstart, unsigned long vend,
329 				int node, gfp_t gfp_mask)
330 {
331 	struct vmap_area *va;
332 	struct rb_node *n;
333 	unsigned long addr;
334 	int purged = 0;
335 
336 	BUG_ON(!size);
337 	BUG_ON(size & ~PAGE_MASK);
338 
339 	va = kmalloc_node(sizeof(struct vmap_area),
340 			gfp_mask & GFP_RECLAIM_MASK, node);
341 	if (unlikely(!va))
342 		return ERR_PTR(-ENOMEM);
343 
344 retry:
345 	addr = ALIGN(vstart, align);
346 
347 	spin_lock(&vmap_area_lock);
348 	if (addr + size - 1 < addr)
349 		goto overflow;
350 
351 	/* XXX: could have a last_hole cache */
352 	n = vmap_area_root.rb_node;
353 	if (n) {
354 		struct vmap_area *first = NULL;
355 
356 		do {
357 			struct vmap_area *tmp;
358 			tmp = rb_entry(n, struct vmap_area, rb_node);
359 			if (tmp->va_end >= addr) {
360 				if (!first && tmp->va_start < addr + size)
361 					first = tmp;
362 				n = n->rb_left;
363 			} else {
364 				first = tmp;
365 				n = n->rb_right;
366 			}
367 		} while (n);
368 
369 		if (!first)
370 			goto found;
371 
372 		if (first->va_end < addr) {
373 			n = rb_next(&first->rb_node);
374 			if (n)
375 				first = rb_entry(n, struct vmap_area, rb_node);
376 			else
377 				goto found;
378 		}
379 
380 		while (addr + size > first->va_start && addr + size <= vend) {
381 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
382 			if (addr + size - 1 < addr)
383 				goto overflow;
384 
385 			n = rb_next(&first->rb_node);
386 			if (n)
387 				first = rb_entry(n, struct vmap_area, rb_node);
388 			else
389 				goto found;
390 		}
391 	}
392 found:
393 	if (addr + size > vend) {
394 overflow:
395 		spin_unlock(&vmap_area_lock);
396 		if (!purged) {
397 			purge_vmap_area_lazy();
398 			purged = 1;
399 			goto retry;
400 		}
401 		if (printk_ratelimit())
402 			printk(KERN_WARNING
403 				"vmap allocation for size %lu failed: "
404 				"use vmalloc=<size> to increase size.\n", size);
405 		kfree(va);
406 		return ERR_PTR(-EBUSY);
407 	}
408 
409 	BUG_ON(addr & (align-1));
410 
411 	va->va_start = addr;
412 	va->va_end = addr + size;
413 	va->flags = 0;
414 	__insert_vmap_area(va);
415 	spin_unlock(&vmap_area_lock);
416 
417 	return va;
418 }
419 
420 static void rcu_free_va(struct rcu_head *head)
421 {
422 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
423 
424 	kfree(va);
425 }
426 
427 static void __free_vmap_area(struct vmap_area *va)
428 {
429 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
430 	rb_erase(&va->rb_node, &vmap_area_root);
431 	RB_CLEAR_NODE(&va->rb_node);
432 	list_del_rcu(&va->list);
433 
434 	/*
435 	 * Track the highest possible candidate for pcpu area
436 	 * allocation.  Areas outside of vmalloc area can be returned
437 	 * here too, consider only end addresses which fall inside
438 	 * vmalloc area proper.
439 	 */
440 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
441 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
442 
443 	call_rcu(&va->rcu_head, rcu_free_va);
444 }
445 
446 /*
447  * Free a region of KVA allocated by alloc_vmap_area
448  */
449 static void free_vmap_area(struct vmap_area *va)
450 {
451 	spin_lock(&vmap_area_lock);
452 	__free_vmap_area(va);
453 	spin_unlock(&vmap_area_lock);
454 }
455 
456 /*
457  * Clear the pagetable entries of a given vmap_area
458  */
459 static void unmap_vmap_area(struct vmap_area *va)
460 {
461 	vunmap_page_range(va->va_start, va->va_end);
462 }
463 
464 static void vmap_debug_free_range(unsigned long start, unsigned long end)
465 {
466 	/*
467 	 * Unmap page tables and force a TLB flush immediately if
468 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
469 	 * bugs similarly to those in linear kernel virtual address
470 	 * space after a page has been freed.
471 	 *
472 	 * All the lazy freeing logic is still retained, in order to
473 	 * minimise intrusiveness of this debugging feature.
474 	 *
475 	 * This is going to be *slow* (linear kernel virtual address
476 	 * debugging doesn't do a broadcast TLB flush so it is a lot
477 	 * faster).
478 	 */
479 #ifdef CONFIG_DEBUG_PAGEALLOC
480 	vunmap_page_range(start, end);
481 	flush_tlb_kernel_range(start, end);
482 #endif
483 }
484 
485 /*
486  * lazy_max_pages is the maximum amount of virtual address space we gather up
487  * before attempting to purge with a TLB flush.
488  *
489  * There is a tradeoff here: a larger number will cover more kernel page tables
490  * and take slightly longer to purge, but it will linearly reduce the number of
491  * global TLB flushes that must be performed. It would seem natural to scale
492  * this number up linearly with the number of CPUs (because vmapping activity
493  * could also scale linearly with the number of CPUs), however it is likely
494  * that in practice, workloads might be constrained in other ways that mean
495  * vmap activity will not scale linearly with CPUs. Also, I want to be
496  * conservative and not introduce a big latency on huge systems, so go with
497  * a less aggressive log scale. It will still be an improvement over the old
498  * code, and it will be simple to change the scale factor if we find that it
499  * becomes a problem on bigger systems.
500  */
501 static unsigned long lazy_max_pages(void)
502 {
503 	unsigned int log;
504 
505 	log = fls(num_online_cpus());
506 
507 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
508 }
509 
510 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
511 
512 /*
513  * Purges all lazily-freed vmap areas.
514  *
515  * If sync is 0 then don't purge if there is already a purge in progress.
516  * If force_flush is 1, then flush kernel TLBs between *start and *end even
517  * if we found no lazy vmap areas to unmap (callers can use this to optimise
518  * their own TLB flushing).
519  * Returns with *start = min(*start, lowest purged address)
520  *              *end = max(*end, highest purged address)
521  */
522 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
523 					int sync, int force_flush)
524 {
525 	static DEFINE_SPINLOCK(purge_lock);
526 	LIST_HEAD(valist);
527 	struct vmap_area *va;
528 	struct vmap_area *n_va;
529 	int nr = 0;
530 
531 	/*
532 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
533 	 * should not expect such behaviour. This just simplifies locking for
534 	 * the case that isn't actually used at the moment anyway.
535 	 */
536 	if (!sync && !force_flush) {
537 		if (!spin_trylock(&purge_lock))
538 			return;
539 	} else
540 		spin_lock(&purge_lock);
541 
542 	rcu_read_lock();
543 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
544 		if (va->flags & VM_LAZY_FREE) {
545 			if (va->va_start < *start)
546 				*start = va->va_start;
547 			if (va->va_end > *end)
548 				*end = va->va_end;
549 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
550 			unmap_vmap_area(va);
551 			list_add_tail(&va->purge_list, &valist);
552 			va->flags |= VM_LAZY_FREEING;
553 			va->flags &= ~VM_LAZY_FREE;
554 		}
555 	}
556 	rcu_read_unlock();
557 
558 	if (nr)
559 		atomic_sub(nr, &vmap_lazy_nr);
560 
561 	if (nr || force_flush)
562 		flush_tlb_kernel_range(*start, *end);
563 
564 	if (nr) {
565 		spin_lock(&vmap_area_lock);
566 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
567 			__free_vmap_area(va);
568 		spin_unlock(&vmap_area_lock);
569 	}
570 	spin_unlock(&purge_lock);
571 }
572 
573 /*
574  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
575  * is already purging.
576  */
577 static void try_purge_vmap_area_lazy(void)
578 {
579 	unsigned long start = ULONG_MAX, end = 0;
580 
581 	__purge_vmap_area_lazy(&start, &end, 0, 0);
582 }
583 
584 /*
585  * Kick off a purge of the outstanding lazy areas.
586  */
587 static void purge_vmap_area_lazy(void)
588 {
589 	unsigned long start = ULONG_MAX, end = 0;
590 
591 	__purge_vmap_area_lazy(&start, &end, 1, 0);
592 }
593 
594 /*
595  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
596  * called for the correct range previously.
597  */
598 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
599 {
600 	va->flags |= VM_LAZY_FREE;
601 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
602 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
603 		try_purge_vmap_area_lazy();
604 }
605 
606 /*
607  * Free and unmap a vmap area
608  */
609 static void free_unmap_vmap_area(struct vmap_area *va)
610 {
611 	flush_cache_vunmap(va->va_start, va->va_end);
612 	free_unmap_vmap_area_noflush(va);
613 }
614 
615 static struct vmap_area *find_vmap_area(unsigned long addr)
616 {
617 	struct vmap_area *va;
618 
619 	spin_lock(&vmap_area_lock);
620 	va = __find_vmap_area(addr);
621 	spin_unlock(&vmap_area_lock);
622 
623 	return va;
624 }
625 
626 static void free_unmap_vmap_area_addr(unsigned long addr)
627 {
628 	struct vmap_area *va;
629 
630 	va = find_vmap_area(addr);
631 	BUG_ON(!va);
632 	free_unmap_vmap_area(va);
633 }
634 
635 
636 /*** Per cpu kva allocator ***/
637 
638 /*
639  * vmap space is limited especially on 32 bit architectures. Ensure there is
640  * room for at least 16 percpu vmap blocks per CPU.
641  */
642 /*
643  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
644  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
645  * instead (we just need a rough idea)
646  */
647 #if BITS_PER_LONG == 32
648 #define VMALLOC_SPACE		(128UL*1024*1024)
649 #else
650 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
651 #endif
652 
653 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
654 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
655 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
656 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
657 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
658 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
659 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
660 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
661 						VMALLOC_PAGES / NR_CPUS / 16))
662 
663 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
664 
665 static bool vmap_initialized __read_mostly = false;
666 
667 struct vmap_block_queue {
668 	spinlock_t lock;
669 	struct list_head free;
670 	struct list_head dirty;
671 	unsigned int nr_dirty;
672 };
673 
674 struct vmap_block {
675 	spinlock_t lock;
676 	struct vmap_area *va;
677 	struct vmap_block_queue *vbq;
678 	unsigned long free, dirty;
679 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
680 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
681 	union {
682 		struct list_head free_list;
683 		struct rcu_head rcu_head;
684 	};
685 };
686 
687 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
688 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
689 
690 /*
691  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
692  * in the free path. Could get rid of this if we change the API to return a
693  * "cookie" from alloc, to be passed to free. But no big deal yet.
694  */
695 static DEFINE_SPINLOCK(vmap_block_tree_lock);
696 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
697 
698 /*
699  * We should probably have a fallback mechanism to allocate virtual memory
700  * out of partially filled vmap blocks. However vmap block sizing should be
701  * fairly reasonable according to the vmalloc size, so it shouldn't be a
702  * big problem.
703  */
704 
705 static unsigned long addr_to_vb_idx(unsigned long addr)
706 {
707 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
708 	addr /= VMAP_BLOCK_SIZE;
709 	return addr;
710 }
711 
712 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
713 {
714 	struct vmap_block_queue *vbq;
715 	struct vmap_block *vb;
716 	struct vmap_area *va;
717 	unsigned long vb_idx;
718 	int node, err;
719 
720 	node = numa_node_id();
721 
722 	vb = kmalloc_node(sizeof(struct vmap_block),
723 			gfp_mask & GFP_RECLAIM_MASK, node);
724 	if (unlikely(!vb))
725 		return ERR_PTR(-ENOMEM);
726 
727 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
728 					VMALLOC_START, VMALLOC_END,
729 					node, gfp_mask);
730 	if (unlikely(IS_ERR(va))) {
731 		kfree(vb);
732 		return ERR_PTR(PTR_ERR(va));
733 	}
734 
735 	err = radix_tree_preload(gfp_mask);
736 	if (unlikely(err)) {
737 		kfree(vb);
738 		free_vmap_area(va);
739 		return ERR_PTR(err);
740 	}
741 
742 	spin_lock_init(&vb->lock);
743 	vb->va = va;
744 	vb->free = VMAP_BBMAP_BITS;
745 	vb->dirty = 0;
746 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
747 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
748 	INIT_LIST_HEAD(&vb->free_list);
749 
750 	vb_idx = addr_to_vb_idx(va->va_start);
751 	spin_lock(&vmap_block_tree_lock);
752 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
753 	spin_unlock(&vmap_block_tree_lock);
754 	BUG_ON(err);
755 	radix_tree_preload_end();
756 
757 	vbq = &get_cpu_var(vmap_block_queue);
758 	vb->vbq = vbq;
759 	spin_lock(&vbq->lock);
760 	list_add(&vb->free_list, &vbq->free);
761 	spin_unlock(&vbq->lock);
762 	put_cpu_var(vmap_block_queue);
763 
764 	return vb;
765 }
766 
767 static void rcu_free_vb(struct rcu_head *head)
768 {
769 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
770 
771 	kfree(vb);
772 }
773 
774 static void free_vmap_block(struct vmap_block *vb)
775 {
776 	struct vmap_block *tmp;
777 	unsigned long vb_idx;
778 
779 	BUG_ON(!list_empty(&vb->free_list));
780 
781 	vb_idx = addr_to_vb_idx(vb->va->va_start);
782 	spin_lock(&vmap_block_tree_lock);
783 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
784 	spin_unlock(&vmap_block_tree_lock);
785 	BUG_ON(tmp != vb);
786 
787 	free_unmap_vmap_area_noflush(vb->va);
788 	call_rcu(&vb->rcu_head, rcu_free_vb);
789 }
790 
791 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
792 {
793 	struct vmap_block_queue *vbq;
794 	struct vmap_block *vb;
795 	unsigned long addr = 0;
796 	unsigned int order;
797 
798 	BUG_ON(size & ~PAGE_MASK);
799 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
800 	order = get_order(size);
801 
802 again:
803 	rcu_read_lock();
804 	vbq = &get_cpu_var(vmap_block_queue);
805 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
806 		int i;
807 
808 		spin_lock(&vb->lock);
809 		i = bitmap_find_free_region(vb->alloc_map,
810 						VMAP_BBMAP_BITS, order);
811 
812 		if (i >= 0) {
813 			addr = vb->va->va_start + (i << PAGE_SHIFT);
814 			BUG_ON(addr_to_vb_idx(addr) !=
815 					addr_to_vb_idx(vb->va->va_start));
816 			vb->free -= 1UL << order;
817 			if (vb->free == 0) {
818 				spin_lock(&vbq->lock);
819 				list_del_init(&vb->free_list);
820 				spin_unlock(&vbq->lock);
821 			}
822 			spin_unlock(&vb->lock);
823 			break;
824 		}
825 		spin_unlock(&vb->lock);
826 	}
827 	put_cpu_var(vmap_block_queue);
828 	rcu_read_unlock();
829 
830 	if (!addr) {
831 		vb = new_vmap_block(gfp_mask);
832 		if (IS_ERR(vb))
833 			return vb;
834 		goto again;
835 	}
836 
837 	return (void *)addr;
838 }
839 
840 static void vb_free(const void *addr, unsigned long size)
841 {
842 	unsigned long offset;
843 	unsigned long vb_idx;
844 	unsigned int order;
845 	struct vmap_block *vb;
846 
847 	BUG_ON(size & ~PAGE_MASK);
848 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
849 
850 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
851 
852 	order = get_order(size);
853 
854 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
855 
856 	vb_idx = addr_to_vb_idx((unsigned long)addr);
857 	rcu_read_lock();
858 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
859 	rcu_read_unlock();
860 	BUG_ON(!vb);
861 
862 	spin_lock(&vb->lock);
863 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
864 
865 	vb->dirty += 1UL << order;
866 	if (vb->dirty == VMAP_BBMAP_BITS) {
867 		BUG_ON(vb->free || !list_empty(&vb->free_list));
868 		spin_unlock(&vb->lock);
869 		free_vmap_block(vb);
870 	} else
871 		spin_unlock(&vb->lock);
872 }
873 
874 /**
875  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
876  *
877  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
878  * to amortize TLB flushing overheads. What this means is that any page you
879  * have now, may, in a former life, have been mapped into kernel virtual
880  * address by the vmap layer and so there might be some CPUs with TLB entries
881  * still referencing that page (additional to the regular 1:1 kernel mapping).
882  *
883  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
884  * be sure that none of the pages we have control over will have any aliases
885  * from the vmap layer.
886  */
887 void vm_unmap_aliases(void)
888 {
889 	unsigned long start = ULONG_MAX, end = 0;
890 	int cpu;
891 	int flush = 0;
892 
893 	if (unlikely(!vmap_initialized))
894 		return;
895 
896 	for_each_possible_cpu(cpu) {
897 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
898 		struct vmap_block *vb;
899 
900 		rcu_read_lock();
901 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
902 			int i;
903 
904 			spin_lock(&vb->lock);
905 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
906 			while (i < VMAP_BBMAP_BITS) {
907 				unsigned long s, e;
908 				int j;
909 				j = find_next_zero_bit(vb->dirty_map,
910 					VMAP_BBMAP_BITS, i);
911 
912 				s = vb->va->va_start + (i << PAGE_SHIFT);
913 				e = vb->va->va_start + (j << PAGE_SHIFT);
914 				vunmap_page_range(s, e);
915 				flush = 1;
916 
917 				if (s < start)
918 					start = s;
919 				if (e > end)
920 					end = e;
921 
922 				i = j;
923 				i = find_next_bit(vb->dirty_map,
924 							VMAP_BBMAP_BITS, i);
925 			}
926 			spin_unlock(&vb->lock);
927 		}
928 		rcu_read_unlock();
929 	}
930 
931 	__purge_vmap_area_lazy(&start, &end, 1, flush);
932 }
933 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
934 
935 /**
936  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
937  * @mem: the pointer returned by vm_map_ram
938  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
939  */
940 void vm_unmap_ram(const void *mem, unsigned int count)
941 {
942 	unsigned long size = count << PAGE_SHIFT;
943 	unsigned long addr = (unsigned long)mem;
944 
945 	BUG_ON(!addr);
946 	BUG_ON(addr < VMALLOC_START);
947 	BUG_ON(addr > VMALLOC_END);
948 	BUG_ON(addr & (PAGE_SIZE-1));
949 
950 	debug_check_no_locks_freed(mem, size);
951 	vmap_debug_free_range(addr, addr+size);
952 
953 	if (likely(count <= VMAP_MAX_ALLOC))
954 		vb_free(mem, size);
955 	else
956 		free_unmap_vmap_area_addr(addr);
957 }
958 EXPORT_SYMBOL(vm_unmap_ram);
959 
960 /**
961  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
962  * @pages: an array of pointers to the pages to be mapped
963  * @count: number of pages
964  * @node: prefer to allocate data structures on this node
965  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
966  *
967  * Returns: a pointer to the address that has been mapped, or %NULL on failure
968  */
969 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
970 {
971 	unsigned long size = count << PAGE_SHIFT;
972 	unsigned long addr;
973 	void *mem;
974 
975 	if (likely(count <= VMAP_MAX_ALLOC)) {
976 		mem = vb_alloc(size, GFP_KERNEL);
977 		if (IS_ERR(mem))
978 			return NULL;
979 		addr = (unsigned long)mem;
980 	} else {
981 		struct vmap_area *va;
982 		va = alloc_vmap_area(size, PAGE_SIZE,
983 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
984 		if (IS_ERR(va))
985 			return NULL;
986 
987 		addr = va->va_start;
988 		mem = (void *)addr;
989 	}
990 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
991 		vm_unmap_ram(mem, count);
992 		return NULL;
993 	}
994 	return mem;
995 }
996 EXPORT_SYMBOL(vm_map_ram);
997 
998 /**
999  * vm_area_register_early - register vmap area early during boot
1000  * @vm: vm_struct to register
1001  * @align: requested alignment
1002  *
1003  * This function is used to register kernel vm area before
1004  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1005  * proper values on entry and other fields should be zero.  On return,
1006  * vm->addr contains the allocated address.
1007  *
1008  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1009  */
1010 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1011 {
1012 	static size_t vm_init_off __initdata;
1013 	unsigned long addr;
1014 
1015 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1016 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1017 
1018 	vm->addr = (void *)addr;
1019 
1020 	vm->next = vmlist;
1021 	vmlist = vm;
1022 }
1023 
1024 void __init vmalloc_init(void)
1025 {
1026 	struct vmap_area *va;
1027 	struct vm_struct *tmp;
1028 	int i;
1029 
1030 	for_each_possible_cpu(i) {
1031 		struct vmap_block_queue *vbq;
1032 
1033 		vbq = &per_cpu(vmap_block_queue, i);
1034 		spin_lock_init(&vbq->lock);
1035 		INIT_LIST_HEAD(&vbq->free);
1036 		INIT_LIST_HEAD(&vbq->dirty);
1037 		vbq->nr_dirty = 0;
1038 	}
1039 
1040 	/* Import existing vmlist entries. */
1041 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1042 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1043 		va->flags = tmp->flags | VM_VM_AREA;
1044 		va->va_start = (unsigned long)tmp->addr;
1045 		va->va_end = va->va_start + tmp->size;
1046 		__insert_vmap_area(va);
1047 	}
1048 
1049 	vmap_area_pcpu_hole = VMALLOC_END;
1050 
1051 	vmap_initialized = true;
1052 }
1053 
1054 /**
1055  * map_kernel_range_noflush - map kernel VM area with the specified pages
1056  * @addr: start of the VM area to map
1057  * @size: size of the VM area to map
1058  * @prot: page protection flags to use
1059  * @pages: pages to map
1060  *
1061  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1062  * specify should have been allocated using get_vm_area() and its
1063  * friends.
1064  *
1065  * NOTE:
1066  * This function does NOT do any cache flushing.  The caller is
1067  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1068  * before calling this function.
1069  *
1070  * RETURNS:
1071  * The number of pages mapped on success, -errno on failure.
1072  */
1073 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1074 			     pgprot_t prot, struct page **pages)
1075 {
1076 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1077 }
1078 
1079 /**
1080  * unmap_kernel_range_noflush - unmap kernel VM area
1081  * @addr: start of the VM area to unmap
1082  * @size: size of the VM area to unmap
1083  *
1084  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1085  * specify should have been allocated using get_vm_area() and its
1086  * friends.
1087  *
1088  * NOTE:
1089  * This function does NOT do any cache flushing.  The caller is
1090  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1091  * before calling this function and flush_tlb_kernel_range() after.
1092  */
1093 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1094 {
1095 	vunmap_page_range(addr, addr + size);
1096 }
1097 
1098 /**
1099  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1100  * @addr: start of the VM area to unmap
1101  * @size: size of the VM area to unmap
1102  *
1103  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1104  * the unmapping and tlb after.
1105  */
1106 void unmap_kernel_range(unsigned long addr, unsigned long size)
1107 {
1108 	unsigned long end = addr + size;
1109 
1110 	flush_cache_vunmap(addr, end);
1111 	vunmap_page_range(addr, end);
1112 	flush_tlb_kernel_range(addr, end);
1113 }
1114 
1115 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1116 {
1117 	unsigned long addr = (unsigned long)area->addr;
1118 	unsigned long end = addr + area->size - PAGE_SIZE;
1119 	int err;
1120 
1121 	err = vmap_page_range(addr, end, prot, *pages);
1122 	if (err > 0) {
1123 		*pages += err;
1124 		err = 0;
1125 	}
1126 
1127 	return err;
1128 }
1129 EXPORT_SYMBOL_GPL(map_vm_area);
1130 
1131 /*** Old vmalloc interfaces ***/
1132 DEFINE_RWLOCK(vmlist_lock);
1133 struct vm_struct *vmlist;
1134 
1135 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1136 			      unsigned long flags, void *caller)
1137 {
1138 	struct vm_struct *tmp, **p;
1139 
1140 	vm->flags = flags;
1141 	vm->addr = (void *)va->va_start;
1142 	vm->size = va->va_end - va->va_start;
1143 	vm->caller = caller;
1144 	va->private = vm;
1145 	va->flags |= VM_VM_AREA;
1146 
1147 	write_lock(&vmlist_lock);
1148 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1149 		if (tmp->addr >= vm->addr)
1150 			break;
1151 	}
1152 	vm->next = *p;
1153 	*p = vm;
1154 	write_unlock(&vmlist_lock);
1155 }
1156 
1157 static struct vm_struct *__get_vm_area_node(unsigned long size,
1158 		unsigned long align, unsigned long flags, unsigned long start,
1159 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1160 {
1161 	static struct vmap_area *va;
1162 	struct vm_struct *area;
1163 
1164 	BUG_ON(in_interrupt());
1165 	if (flags & VM_IOREMAP) {
1166 		int bit = fls(size);
1167 
1168 		if (bit > IOREMAP_MAX_ORDER)
1169 			bit = IOREMAP_MAX_ORDER;
1170 		else if (bit < PAGE_SHIFT)
1171 			bit = PAGE_SHIFT;
1172 
1173 		align = 1ul << bit;
1174 	}
1175 
1176 	size = PAGE_ALIGN(size);
1177 	if (unlikely(!size))
1178 		return NULL;
1179 
1180 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1181 	if (unlikely(!area))
1182 		return NULL;
1183 
1184 	/*
1185 	 * We always allocate a guard page.
1186 	 */
1187 	size += PAGE_SIZE;
1188 
1189 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1190 	if (IS_ERR(va)) {
1191 		kfree(area);
1192 		return NULL;
1193 	}
1194 
1195 	insert_vmalloc_vm(area, va, flags, caller);
1196 	return area;
1197 }
1198 
1199 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1200 				unsigned long start, unsigned long end)
1201 {
1202 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1203 						__builtin_return_address(0));
1204 }
1205 EXPORT_SYMBOL_GPL(__get_vm_area);
1206 
1207 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1208 				       unsigned long start, unsigned long end,
1209 				       void *caller)
1210 {
1211 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1212 				  caller);
1213 }
1214 
1215 /**
1216  *	get_vm_area  -  reserve a contiguous kernel virtual area
1217  *	@size:		size of the area
1218  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1219  *
1220  *	Search an area of @size in the kernel virtual mapping area,
1221  *	and reserved it for out purposes.  Returns the area descriptor
1222  *	on success or %NULL on failure.
1223  */
1224 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1225 {
1226 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1227 				-1, GFP_KERNEL, __builtin_return_address(0));
1228 }
1229 
1230 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1231 				void *caller)
1232 {
1233 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1234 						-1, GFP_KERNEL, caller);
1235 }
1236 
1237 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1238 				   int node, gfp_t gfp_mask)
1239 {
1240 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1241 				  node, gfp_mask, __builtin_return_address(0));
1242 }
1243 
1244 static struct vm_struct *find_vm_area(const void *addr)
1245 {
1246 	struct vmap_area *va;
1247 
1248 	va = find_vmap_area((unsigned long)addr);
1249 	if (va && va->flags & VM_VM_AREA)
1250 		return va->private;
1251 
1252 	return NULL;
1253 }
1254 
1255 /**
1256  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1257  *	@addr:		base address
1258  *
1259  *	Search for the kernel VM area starting at @addr, and remove it.
1260  *	This function returns the found VM area, but using it is NOT safe
1261  *	on SMP machines, except for its size or flags.
1262  */
1263 struct vm_struct *remove_vm_area(const void *addr)
1264 {
1265 	struct vmap_area *va;
1266 
1267 	va = find_vmap_area((unsigned long)addr);
1268 	if (va && va->flags & VM_VM_AREA) {
1269 		struct vm_struct *vm = va->private;
1270 		struct vm_struct *tmp, **p;
1271 		/*
1272 		 * remove from list and disallow access to this vm_struct
1273 		 * before unmap. (address range confliction is maintained by
1274 		 * vmap.)
1275 		 */
1276 		write_lock(&vmlist_lock);
1277 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1278 			;
1279 		*p = tmp->next;
1280 		write_unlock(&vmlist_lock);
1281 
1282 		vmap_debug_free_range(va->va_start, va->va_end);
1283 		free_unmap_vmap_area(va);
1284 		vm->size -= PAGE_SIZE;
1285 
1286 		return vm;
1287 	}
1288 	return NULL;
1289 }
1290 
1291 static void __vunmap(const void *addr, int deallocate_pages)
1292 {
1293 	struct vm_struct *area;
1294 
1295 	if (!addr)
1296 		return;
1297 
1298 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1299 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1300 		return;
1301 	}
1302 
1303 	area = remove_vm_area(addr);
1304 	if (unlikely(!area)) {
1305 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1306 				addr);
1307 		return;
1308 	}
1309 
1310 	debug_check_no_locks_freed(addr, area->size);
1311 	debug_check_no_obj_freed(addr, area->size);
1312 
1313 	if (deallocate_pages) {
1314 		int i;
1315 
1316 		for (i = 0; i < area->nr_pages; i++) {
1317 			struct page *page = area->pages[i];
1318 
1319 			BUG_ON(!page);
1320 			__free_page(page);
1321 		}
1322 
1323 		if (area->flags & VM_VPAGES)
1324 			vfree(area->pages);
1325 		else
1326 			kfree(area->pages);
1327 	}
1328 
1329 	kfree(area);
1330 	return;
1331 }
1332 
1333 /**
1334  *	vfree  -  release memory allocated by vmalloc()
1335  *	@addr:		memory base address
1336  *
1337  *	Free the virtually continuous memory area starting at @addr, as
1338  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1339  *	NULL, no operation is performed.
1340  *
1341  *	Must not be called in interrupt context.
1342  */
1343 void vfree(const void *addr)
1344 {
1345 	BUG_ON(in_interrupt());
1346 
1347 	kmemleak_free(addr);
1348 
1349 	__vunmap(addr, 1);
1350 }
1351 EXPORT_SYMBOL(vfree);
1352 
1353 /**
1354  *	vunmap  -  release virtual mapping obtained by vmap()
1355  *	@addr:		memory base address
1356  *
1357  *	Free the virtually contiguous memory area starting at @addr,
1358  *	which was created from the page array passed to vmap().
1359  *
1360  *	Must not be called in interrupt context.
1361  */
1362 void vunmap(const void *addr)
1363 {
1364 	BUG_ON(in_interrupt());
1365 	might_sleep();
1366 	__vunmap(addr, 0);
1367 }
1368 EXPORT_SYMBOL(vunmap);
1369 
1370 /**
1371  *	vmap  -  map an array of pages into virtually contiguous space
1372  *	@pages:		array of page pointers
1373  *	@count:		number of pages to map
1374  *	@flags:		vm_area->flags
1375  *	@prot:		page protection for the mapping
1376  *
1377  *	Maps @count pages from @pages into contiguous kernel virtual
1378  *	space.
1379  */
1380 void *vmap(struct page **pages, unsigned int count,
1381 		unsigned long flags, pgprot_t prot)
1382 {
1383 	struct vm_struct *area;
1384 
1385 	might_sleep();
1386 
1387 	if (count > totalram_pages)
1388 		return NULL;
1389 
1390 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1391 					__builtin_return_address(0));
1392 	if (!area)
1393 		return NULL;
1394 
1395 	if (map_vm_area(area, prot, &pages)) {
1396 		vunmap(area->addr);
1397 		return NULL;
1398 	}
1399 
1400 	return area->addr;
1401 }
1402 EXPORT_SYMBOL(vmap);
1403 
1404 static void *__vmalloc_node(unsigned long size, unsigned long align,
1405 			    gfp_t gfp_mask, pgprot_t prot,
1406 			    int node, void *caller);
1407 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1408 				 pgprot_t prot, int node, void *caller)
1409 {
1410 	struct page **pages;
1411 	unsigned int nr_pages, array_size, i;
1412 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1413 
1414 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1415 	array_size = (nr_pages * sizeof(struct page *));
1416 
1417 	area->nr_pages = nr_pages;
1418 	/* Please note that the recursion is strictly bounded. */
1419 	if (array_size > PAGE_SIZE) {
1420 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1421 				PAGE_KERNEL, node, caller);
1422 		area->flags |= VM_VPAGES;
1423 	} else {
1424 		pages = kmalloc_node(array_size, nested_gfp, node);
1425 	}
1426 	area->pages = pages;
1427 	area->caller = caller;
1428 	if (!area->pages) {
1429 		remove_vm_area(area->addr);
1430 		kfree(area);
1431 		return NULL;
1432 	}
1433 
1434 	for (i = 0; i < area->nr_pages; i++) {
1435 		struct page *page;
1436 
1437 		if (node < 0)
1438 			page = alloc_page(gfp_mask);
1439 		else
1440 			page = alloc_pages_node(node, gfp_mask, 0);
1441 
1442 		if (unlikely(!page)) {
1443 			/* Successfully allocated i pages, free them in __vunmap() */
1444 			area->nr_pages = i;
1445 			goto fail;
1446 		}
1447 		area->pages[i] = page;
1448 	}
1449 
1450 	if (map_vm_area(area, prot, &pages))
1451 		goto fail;
1452 	return area->addr;
1453 
1454 fail:
1455 	vfree(area->addr);
1456 	return NULL;
1457 }
1458 
1459 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1460 {
1461 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1462 					 __builtin_return_address(0));
1463 
1464 	/*
1465 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1466 	 * structures allocated in the __get_vm_area_node() function contain
1467 	 * references to the virtual address of the vmalloc'ed block.
1468 	 */
1469 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1470 
1471 	return addr;
1472 }
1473 
1474 /**
1475  *	__vmalloc_node  -  allocate virtually contiguous memory
1476  *	@size:		allocation size
1477  *	@align:		desired alignment
1478  *	@gfp_mask:	flags for the page level allocator
1479  *	@prot:		protection mask for the allocated pages
1480  *	@node:		node to use for allocation or -1
1481  *	@caller:	caller's return address
1482  *
1483  *	Allocate enough pages to cover @size from the page level
1484  *	allocator with @gfp_mask flags.  Map them into contiguous
1485  *	kernel virtual space, using a pagetable protection of @prot.
1486  */
1487 static void *__vmalloc_node(unsigned long size, unsigned long align,
1488 			    gfp_t gfp_mask, pgprot_t prot,
1489 			    int node, void *caller)
1490 {
1491 	struct vm_struct *area;
1492 	void *addr;
1493 	unsigned long real_size = size;
1494 
1495 	size = PAGE_ALIGN(size);
1496 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1497 		return NULL;
1498 
1499 	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1500 				  VMALLOC_END, node, gfp_mask, caller);
1501 
1502 	if (!area)
1503 		return NULL;
1504 
1505 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1506 
1507 	/*
1508 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1509 	 * structures allocated in the __get_vm_area_node() function contain
1510 	 * references to the virtual address of the vmalloc'ed block.
1511 	 */
1512 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1513 
1514 	return addr;
1515 }
1516 
1517 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1518 {
1519 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1520 				__builtin_return_address(0));
1521 }
1522 EXPORT_SYMBOL(__vmalloc);
1523 
1524 /**
1525  *	vmalloc  -  allocate virtually contiguous memory
1526  *	@size:		allocation size
1527  *	Allocate enough pages to cover @size from the page level
1528  *	allocator and map them into contiguous kernel virtual space.
1529  *
1530  *	For tight control over page level allocator and protection flags
1531  *	use __vmalloc() instead.
1532  */
1533 void *vmalloc(unsigned long size)
1534 {
1535 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1536 					-1, __builtin_return_address(0));
1537 }
1538 EXPORT_SYMBOL(vmalloc);
1539 
1540 /**
1541  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1542  * @size: allocation size
1543  *
1544  * The resulting memory area is zeroed so it can be mapped to userspace
1545  * without leaking data.
1546  */
1547 void *vmalloc_user(unsigned long size)
1548 {
1549 	struct vm_struct *area;
1550 	void *ret;
1551 
1552 	ret = __vmalloc_node(size, SHMLBA,
1553 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1554 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1555 	if (ret) {
1556 		area = find_vm_area(ret);
1557 		area->flags |= VM_USERMAP;
1558 	}
1559 	return ret;
1560 }
1561 EXPORT_SYMBOL(vmalloc_user);
1562 
1563 /**
1564  *	vmalloc_node  -  allocate memory on a specific node
1565  *	@size:		allocation size
1566  *	@node:		numa node
1567  *
1568  *	Allocate enough pages to cover @size from the page level
1569  *	allocator and map them into contiguous kernel virtual space.
1570  *
1571  *	For tight control over page level allocator and protection flags
1572  *	use __vmalloc() instead.
1573  */
1574 void *vmalloc_node(unsigned long size, int node)
1575 {
1576 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1577 					node, __builtin_return_address(0));
1578 }
1579 EXPORT_SYMBOL(vmalloc_node);
1580 
1581 #ifndef PAGE_KERNEL_EXEC
1582 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1583 #endif
1584 
1585 /**
1586  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1587  *	@size:		allocation size
1588  *
1589  *	Kernel-internal function to allocate enough pages to cover @size
1590  *	the page level allocator and map them into contiguous and
1591  *	executable kernel virtual space.
1592  *
1593  *	For tight control over page level allocator and protection flags
1594  *	use __vmalloc() instead.
1595  */
1596 
1597 void *vmalloc_exec(unsigned long size)
1598 {
1599 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1600 			      -1, __builtin_return_address(0));
1601 }
1602 
1603 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1604 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1605 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1606 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1607 #else
1608 #define GFP_VMALLOC32 GFP_KERNEL
1609 #endif
1610 
1611 /**
1612  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1613  *	@size:		allocation size
1614  *
1615  *	Allocate enough 32bit PA addressable pages to cover @size from the
1616  *	page level allocator and map them into contiguous kernel virtual space.
1617  */
1618 void *vmalloc_32(unsigned long size)
1619 {
1620 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1621 			      -1, __builtin_return_address(0));
1622 }
1623 EXPORT_SYMBOL(vmalloc_32);
1624 
1625 /**
1626  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1627  *	@size:		allocation size
1628  *
1629  * The resulting memory area is 32bit addressable and zeroed so it can be
1630  * mapped to userspace without leaking data.
1631  */
1632 void *vmalloc_32_user(unsigned long size)
1633 {
1634 	struct vm_struct *area;
1635 	void *ret;
1636 
1637 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1638 			     -1, __builtin_return_address(0));
1639 	if (ret) {
1640 		area = find_vm_area(ret);
1641 		area->flags |= VM_USERMAP;
1642 	}
1643 	return ret;
1644 }
1645 EXPORT_SYMBOL(vmalloc_32_user);
1646 
1647 /*
1648  * small helper routine , copy contents to buf from addr.
1649  * If the page is not present, fill zero.
1650  */
1651 
1652 static int aligned_vread(char *buf, char *addr, unsigned long count)
1653 {
1654 	struct page *p;
1655 	int copied = 0;
1656 
1657 	while (count) {
1658 		unsigned long offset, length;
1659 
1660 		offset = (unsigned long)addr & ~PAGE_MASK;
1661 		length = PAGE_SIZE - offset;
1662 		if (length > count)
1663 			length = count;
1664 		p = vmalloc_to_page(addr);
1665 		/*
1666 		 * To do safe access to this _mapped_ area, we need
1667 		 * lock. But adding lock here means that we need to add
1668 		 * overhead of vmalloc()/vfree() calles for this _debug_
1669 		 * interface, rarely used. Instead of that, we'll use
1670 		 * kmap() and get small overhead in this access function.
1671 		 */
1672 		if (p) {
1673 			/*
1674 			 * we can expect USER0 is not used (see vread/vwrite's
1675 			 * function description)
1676 			 */
1677 			void *map = kmap_atomic(p, KM_USER0);
1678 			memcpy(buf, map + offset, length);
1679 			kunmap_atomic(map, KM_USER0);
1680 		} else
1681 			memset(buf, 0, length);
1682 
1683 		addr += length;
1684 		buf += length;
1685 		copied += length;
1686 		count -= length;
1687 	}
1688 	return copied;
1689 }
1690 
1691 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1692 {
1693 	struct page *p;
1694 	int copied = 0;
1695 
1696 	while (count) {
1697 		unsigned long offset, length;
1698 
1699 		offset = (unsigned long)addr & ~PAGE_MASK;
1700 		length = PAGE_SIZE - offset;
1701 		if (length > count)
1702 			length = count;
1703 		p = vmalloc_to_page(addr);
1704 		/*
1705 		 * To do safe access to this _mapped_ area, we need
1706 		 * lock. But adding lock here means that we need to add
1707 		 * overhead of vmalloc()/vfree() calles for this _debug_
1708 		 * interface, rarely used. Instead of that, we'll use
1709 		 * kmap() and get small overhead in this access function.
1710 		 */
1711 		if (p) {
1712 			/*
1713 			 * we can expect USER0 is not used (see vread/vwrite's
1714 			 * function description)
1715 			 */
1716 			void *map = kmap_atomic(p, KM_USER0);
1717 			memcpy(map + offset, buf, length);
1718 			kunmap_atomic(map, KM_USER0);
1719 		}
1720 		addr += length;
1721 		buf += length;
1722 		copied += length;
1723 		count -= length;
1724 	}
1725 	return copied;
1726 }
1727 
1728 /**
1729  *	vread() -  read vmalloc area in a safe way.
1730  *	@buf:		buffer for reading data
1731  *	@addr:		vm address.
1732  *	@count:		number of bytes to be read.
1733  *
1734  *	Returns # of bytes which addr and buf should be increased.
1735  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1736  *	includes any intersect with alive vmalloc area.
1737  *
1738  *	This function checks that addr is a valid vmalloc'ed area, and
1739  *	copy data from that area to a given buffer. If the given memory range
1740  *	of [addr...addr+count) includes some valid address, data is copied to
1741  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1742  *	IOREMAP area is treated as memory hole and no copy is done.
1743  *
1744  *	If [addr...addr+count) doesn't includes any intersects with alive
1745  *	vm_struct area, returns 0.
1746  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1747  *	the caller should guarantee KM_USER0 is not used.
1748  *
1749  *	Note: In usual ops, vread() is never necessary because the caller
1750  *	should know vmalloc() area is valid and can use memcpy().
1751  *	This is for routines which have to access vmalloc area without
1752  *	any informaion, as /dev/kmem.
1753  *
1754  */
1755 
1756 long vread(char *buf, char *addr, unsigned long count)
1757 {
1758 	struct vm_struct *tmp;
1759 	char *vaddr, *buf_start = buf;
1760 	unsigned long buflen = count;
1761 	unsigned long n;
1762 
1763 	/* Don't allow overflow */
1764 	if ((unsigned long) addr + count < count)
1765 		count = -(unsigned long) addr;
1766 
1767 	read_lock(&vmlist_lock);
1768 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1769 		vaddr = (char *) tmp->addr;
1770 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1771 			continue;
1772 		while (addr < vaddr) {
1773 			if (count == 0)
1774 				goto finished;
1775 			*buf = '\0';
1776 			buf++;
1777 			addr++;
1778 			count--;
1779 		}
1780 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1781 		if (n > count)
1782 			n = count;
1783 		if (!(tmp->flags & VM_IOREMAP))
1784 			aligned_vread(buf, addr, n);
1785 		else /* IOREMAP area is treated as memory hole */
1786 			memset(buf, 0, n);
1787 		buf += n;
1788 		addr += n;
1789 		count -= n;
1790 	}
1791 finished:
1792 	read_unlock(&vmlist_lock);
1793 
1794 	if (buf == buf_start)
1795 		return 0;
1796 	/* zero-fill memory holes */
1797 	if (buf != buf_start + buflen)
1798 		memset(buf, 0, buflen - (buf - buf_start));
1799 
1800 	return buflen;
1801 }
1802 
1803 /**
1804  *	vwrite() -  write vmalloc area in a safe way.
1805  *	@buf:		buffer for source data
1806  *	@addr:		vm address.
1807  *	@count:		number of bytes to be read.
1808  *
1809  *	Returns # of bytes which addr and buf should be incresed.
1810  *	(same number to @count).
1811  *	If [addr...addr+count) doesn't includes any intersect with valid
1812  *	vmalloc area, returns 0.
1813  *
1814  *	This function checks that addr is a valid vmalloc'ed area, and
1815  *	copy data from a buffer to the given addr. If specified range of
1816  *	[addr...addr+count) includes some valid address, data is copied from
1817  *	proper area of @buf. If there are memory holes, no copy to hole.
1818  *	IOREMAP area is treated as memory hole and no copy is done.
1819  *
1820  *	If [addr...addr+count) doesn't includes any intersects with alive
1821  *	vm_struct area, returns 0.
1822  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1823  *	the caller should guarantee KM_USER0 is not used.
1824  *
1825  *	Note: In usual ops, vwrite() is never necessary because the caller
1826  *	should know vmalloc() area is valid and can use memcpy().
1827  *	This is for routines which have to access vmalloc area without
1828  *	any informaion, as /dev/kmem.
1829  *
1830  *	The caller should guarantee KM_USER1 is not used.
1831  */
1832 
1833 long vwrite(char *buf, char *addr, unsigned long count)
1834 {
1835 	struct vm_struct *tmp;
1836 	char *vaddr;
1837 	unsigned long n, buflen;
1838 	int copied = 0;
1839 
1840 	/* Don't allow overflow */
1841 	if ((unsigned long) addr + count < count)
1842 		count = -(unsigned long) addr;
1843 	buflen = count;
1844 
1845 	read_lock(&vmlist_lock);
1846 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1847 		vaddr = (char *) tmp->addr;
1848 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1849 			continue;
1850 		while (addr < vaddr) {
1851 			if (count == 0)
1852 				goto finished;
1853 			buf++;
1854 			addr++;
1855 			count--;
1856 		}
1857 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1858 		if (n > count)
1859 			n = count;
1860 		if (!(tmp->flags & VM_IOREMAP)) {
1861 			aligned_vwrite(buf, addr, n);
1862 			copied++;
1863 		}
1864 		buf += n;
1865 		addr += n;
1866 		count -= n;
1867 	}
1868 finished:
1869 	read_unlock(&vmlist_lock);
1870 	if (!copied)
1871 		return 0;
1872 	return buflen;
1873 }
1874 
1875 /**
1876  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1877  *	@vma:		vma to cover (map full range of vma)
1878  *	@addr:		vmalloc memory
1879  *	@pgoff:		number of pages into addr before first page to map
1880  *
1881  *	Returns:	0 for success, -Exxx on failure
1882  *
1883  *	This function checks that addr is a valid vmalloc'ed area, and
1884  *	that it is big enough to cover the vma. Will return failure if
1885  *	that criteria isn't met.
1886  *
1887  *	Similar to remap_pfn_range() (see mm/memory.c)
1888  */
1889 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1890 						unsigned long pgoff)
1891 {
1892 	struct vm_struct *area;
1893 	unsigned long uaddr = vma->vm_start;
1894 	unsigned long usize = vma->vm_end - vma->vm_start;
1895 
1896 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1897 		return -EINVAL;
1898 
1899 	area = find_vm_area(addr);
1900 	if (!area)
1901 		return -EINVAL;
1902 
1903 	if (!(area->flags & VM_USERMAP))
1904 		return -EINVAL;
1905 
1906 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1907 		return -EINVAL;
1908 
1909 	addr += pgoff << PAGE_SHIFT;
1910 	do {
1911 		struct page *page = vmalloc_to_page(addr);
1912 		int ret;
1913 
1914 		ret = vm_insert_page(vma, uaddr, page);
1915 		if (ret)
1916 			return ret;
1917 
1918 		uaddr += PAGE_SIZE;
1919 		addr += PAGE_SIZE;
1920 		usize -= PAGE_SIZE;
1921 	} while (usize > 0);
1922 
1923 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1924 	vma->vm_flags |= VM_RESERVED;
1925 
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL(remap_vmalloc_range);
1929 
1930 /*
1931  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1932  * have one.
1933  */
1934 void  __attribute__((weak)) vmalloc_sync_all(void)
1935 {
1936 }
1937 
1938 
1939 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1940 {
1941 	/* apply_to_page_range() does all the hard work. */
1942 	return 0;
1943 }
1944 
1945 /**
1946  *	alloc_vm_area - allocate a range of kernel address space
1947  *	@size:		size of the area
1948  *
1949  *	Returns:	NULL on failure, vm_struct on success
1950  *
1951  *	This function reserves a range of kernel address space, and
1952  *	allocates pagetables to map that range.  No actual mappings
1953  *	are created.  If the kernel address space is not shared
1954  *	between processes, it syncs the pagetable across all
1955  *	processes.
1956  */
1957 struct vm_struct *alloc_vm_area(size_t size)
1958 {
1959 	struct vm_struct *area;
1960 
1961 	area = get_vm_area_caller(size, VM_IOREMAP,
1962 				__builtin_return_address(0));
1963 	if (area == NULL)
1964 		return NULL;
1965 
1966 	/*
1967 	 * This ensures that page tables are constructed for this region
1968 	 * of kernel virtual address space and mapped into init_mm.
1969 	 */
1970 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1971 				area->size, f, NULL)) {
1972 		free_vm_area(area);
1973 		return NULL;
1974 	}
1975 
1976 	/* Make sure the pagetables are constructed in process kernel
1977 	   mappings */
1978 	vmalloc_sync_all();
1979 
1980 	return area;
1981 }
1982 EXPORT_SYMBOL_GPL(alloc_vm_area);
1983 
1984 void free_vm_area(struct vm_struct *area)
1985 {
1986 	struct vm_struct *ret;
1987 	ret = remove_vm_area(area->addr);
1988 	BUG_ON(ret != area);
1989 	kfree(area);
1990 }
1991 EXPORT_SYMBOL_GPL(free_vm_area);
1992 
1993 static struct vmap_area *node_to_va(struct rb_node *n)
1994 {
1995 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
1996 }
1997 
1998 /**
1999  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2000  * @end: target address
2001  * @pnext: out arg for the next vmap_area
2002  * @pprev: out arg for the previous vmap_area
2003  *
2004  * Returns: %true if either or both of next and prev are found,
2005  *	    %false if no vmap_area exists
2006  *
2007  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2008  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2009  */
2010 static bool pvm_find_next_prev(unsigned long end,
2011 			       struct vmap_area **pnext,
2012 			       struct vmap_area **pprev)
2013 {
2014 	struct rb_node *n = vmap_area_root.rb_node;
2015 	struct vmap_area *va = NULL;
2016 
2017 	while (n) {
2018 		va = rb_entry(n, struct vmap_area, rb_node);
2019 		if (end < va->va_end)
2020 			n = n->rb_left;
2021 		else if (end > va->va_end)
2022 			n = n->rb_right;
2023 		else
2024 			break;
2025 	}
2026 
2027 	if (!va)
2028 		return false;
2029 
2030 	if (va->va_end > end) {
2031 		*pnext = va;
2032 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2033 	} else {
2034 		*pprev = va;
2035 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2036 	}
2037 	return true;
2038 }
2039 
2040 /**
2041  * pvm_determine_end - find the highest aligned address between two vmap_areas
2042  * @pnext: in/out arg for the next vmap_area
2043  * @pprev: in/out arg for the previous vmap_area
2044  * @align: alignment
2045  *
2046  * Returns: determined end address
2047  *
2048  * Find the highest aligned address between *@pnext and *@pprev below
2049  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2050  * down address is between the end addresses of the two vmap_areas.
2051  *
2052  * Please note that the address returned by this function may fall
2053  * inside *@pnext vmap_area.  The caller is responsible for checking
2054  * that.
2055  */
2056 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2057 				       struct vmap_area **pprev,
2058 				       unsigned long align)
2059 {
2060 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2061 	unsigned long addr;
2062 
2063 	if (*pnext)
2064 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2065 	else
2066 		addr = vmalloc_end;
2067 
2068 	while (*pprev && (*pprev)->va_end > addr) {
2069 		*pnext = *pprev;
2070 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2071 	}
2072 
2073 	return addr;
2074 }
2075 
2076 /**
2077  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2078  * @offsets: array containing offset of each area
2079  * @sizes: array containing size of each area
2080  * @nr_vms: the number of areas to allocate
2081  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2082  * @gfp_mask: allocation mask
2083  *
2084  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2085  *	    vm_structs on success, %NULL on failure
2086  *
2087  * Percpu allocator wants to use congruent vm areas so that it can
2088  * maintain the offsets among percpu areas.  This function allocates
2089  * congruent vmalloc areas for it.  These areas tend to be scattered
2090  * pretty far, distance between two areas easily going up to
2091  * gigabytes.  To avoid interacting with regular vmallocs, these areas
2092  * are allocated from top.
2093  *
2094  * Despite its complicated look, this allocator is rather simple.  It
2095  * does everything top-down and scans areas from the end looking for
2096  * matching slot.  While scanning, if any of the areas overlaps with
2097  * existing vmap_area, the base address is pulled down to fit the
2098  * area.  Scanning is repeated till all the areas fit and then all
2099  * necessary data structres are inserted and the result is returned.
2100  */
2101 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2102 				     const size_t *sizes, int nr_vms,
2103 				     size_t align, gfp_t gfp_mask)
2104 {
2105 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2106 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2107 	struct vmap_area **vas, *prev, *next;
2108 	struct vm_struct **vms;
2109 	int area, area2, last_area, term_area;
2110 	unsigned long base, start, end, last_end;
2111 	bool purged = false;
2112 
2113 	gfp_mask &= GFP_RECLAIM_MASK;
2114 
2115 	/* verify parameters and allocate data structures */
2116 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2117 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2118 		start = offsets[area];
2119 		end = start + sizes[area];
2120 
2121 		/* is everything aligned properly? */
2122 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2123 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2124 
2125 		/* detect the area with the highest address */
2126 		if (start > offsets[last_area])
2127 			last_area = area;
2128 
2129 		for (area2 = 0; area2 < nr_vms; area2++) {
2130 			unsigned long start2 = offsets[area2];
2131 			unsigned long end2 = start2 + sizes[area2];
2132 
2133 			if (area2 == area)
2134 				continue;
2135 
2136 			BUG_ON(start2 >= start && start2 < end);
2137 			BUG_ON(end2 <= end && end2 > start);
2138 		}
2139 	}
2140 	last_end = offsets[last_area] + sizes[last_area];
2141 
2142 	if (vmalloc_end - vmalloc_start < last_end) {
2143 		WARN_ON(true);
2144 		return NULL;
2145 	}
2146 
2147 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2148 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2149 	if (!vas || !vms)
2150 		goto err_free;
2151 
2152 	for (area = 0; area < nr_vms; area++) {
2153 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2154 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2155 		if (!vas[area] || !vms[area])
2156 			goto err_free;
2157 	}
2158 retry:
2159 	spin_lock(&vmap_area_lock);
2160 
2161 	/* start scanning - we scan from the top, begin with the last area */
2162 	area = term_area = last_area;
2163 	start = offsets[area];
2164 	end = start + sizes[area];
2165 
2166 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2167 		base = vmalloc_end - last_end;
2168 		goto found;
2169 	}
2170 	base = pvm_determine_end(&next, &prev, align) - end;
2171 
2172 	while (true) {
2173 		BUG_ON(next && next->va_end <= base + end);
2174 		BUG_ON(prev && prev->va_end > base + end);
2175 
2176 		/*
2177 		 * base might have underflowed, add last_end before
2178 		 * comparing.
2179 		 */
2180 		if (base + last_end < vmalloc_start + last_end) {
2181 			spin_unlock(&vmap_area_lock);
2182 			if (!purged) {
2183 				purge_vmap_area_lazy();
2184 				purged = true;
2185 				goto retry;
2186 			}
2187 			goto err_free;
2188 		}
2189 
2190 		/*
2191 		 * If next overlaps, move base downwards so that it's
2192 		 * right below next and then recheck.
2193 		 */
2194 		if (next && next->va_start < base + end) {
2195 			base = pvm_determine_end(&next, &prev, align) - end;
2196 			term_area = area;
2197 			continue;
2198 		}
2199 
2200 		/*
2201 		 * If prev overlaps, shift down next and prev and move
2202 		 * base so that it's right below new next and then
2203 		 * recheck.
2204 		 */
2205 		if (prev && prev->va_end > base + start)  {
2206 			next = prev;
2207 			prev = node_to_va(rb_prev(&next->rb_node));
2208 			base = pvm_determine_end(&next, &prev, align) - end;
2209 			term_area = area;
2210 			continue;
2211 		}
2212 
2213 		/*
2214 		 * This area fits, move on to the previous one.  If
2215 		 * the previous one is the terminal one, we're done.
2216 		 */
2217 		area = (area + nr_vms - 1) % nr_vms;
2218 		if (area == term_area)
2219 			break;
2220 		start = offsets[area];
2221 		end = start + sizes[area];
2222 		pvm_find_next_prev(base + end, &next, &prev);
2223 	}
2224 found:
2225 	/* we've found a fitting base, insert all va's */
2226 	for (area = 0; area < nr_vms; area++) {
2227 		struct vmap_area *va = vas[area];
2228 
2229 		va->va_start = base + offsets[area];
2230 		va->va_end = va->va_start + sizes[area];
2231 		__insert_vmap_area(va);
2232 	}
2233 
2234 	vmap_area_pcpu_hole = base + offsets[last_area];
2235 
2236 	spin_unlock(&vmap_area_lock);
2237 
2238 	/* insert all vm's */
2239 	for (area = 0; area < nr_vms; area++)
2240 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2241 				  pcpu_get_vm_areas);
2242 
2243 	kfree(vas);
2244 	return vms;
2245 
2246 err_free:
2247 	for (area = 0; area < nr_vms; area++) {
2248 		if (vas)
2249 			kfree(vas[area]);
2250 		if (vms)
2251 			kfree(vms[area]);
2252 	}
2253 	kfree(vas);
2254 	kfree(vms);
2255 	return NULL;
2256 }
2257 
2258 /**
2259  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2260  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2261  * @nr_vms: the number of allocated areas
2262  *
2263  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2264  */
2265 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2266 {
2267 	int i;
2268 
2269 	for (i = 0; i < nr_vms; i++)
2270 		free_vm_area(vms[i]);
2271 	kfree(vms);
2272 }
2273 
2274 #ifdef CONFIG_PROC_FS
2275 static void *s_start(struct seq_file *m, loff_t *pos)
2276 {
2277 	loff_t n = *pos;
2278 	struct vm_struct *v;
2279 
2280 	read_lock(&vmlist_lock);
2281 	v = vmlist;
2282 	while (n > 0 && v) {
2283 		n--;
2284 		v = v->next;
2285 	}
2286 	if (!n)
2287 		return v;
2288 
2289 	return NULL;
2290 
2291 }
2292 
2293 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2294 {
2295 	struct vm_struct *v = p;
2296 
2297 	++*pos;
2298 	return v->next;
2299 }
2300 
2301 static void s_stop(struct seq_file *m, void *p)
2302 {
2303 	read_unlock(&vmlist_lock);
2304 }
2305 
2306 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2307 {
2308 	if (NUMA_BUILD) {
2309 		unsigned int nr, *counters = m->private;
2310 
2311 		if (!counters)
2312 			return;
2313 
2314 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2315 
2316 		for (nr = 0; nr < v->nr_pages; nr++)
2317 			counters[page_to_nid(v->pages[nr])]++;
2318 
2319 		for_each_node_state(nr, N_HIGH_MEMORY)
2320 			if (counters[nr])
2321 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2322 	}
2323 }
2324 
2325 static int s_show(struct seq_file *m, void *p)
2326 {
2327 	struct vm_struct *v = p;
2328 
2329 	seq_printf(m, "0x%p-0x%p %7ld",
2330 		v->addr, v->addr + v->size, v->size);
2331 
2332 	if (v->caller) {
2333 		char buff[KSYM_SYMBOL_LEN];
2334 
2335 		seq_putc(m, ' ');
2336 		sprint_symbol(buff, (unsigned long)v->caller);
2337 		seq_puts(m, buff);
2338 	}
2339 
2340 	if (v->nr_pages)
2341 		seq_printf(m, " pages=%d", v->nr_pages);
2342 
2343 	if (v->phys_addr)
2344 		seq_printf(m, " phys=%lx", v->phys_addr);
2345 
2346 	if (v->flags & VM_IOREMAP)
2347 		seq_printf(m, " ioremap");
2348 
2349 	if (v->flags & VM_ALLOC)
2350 		seq_printf(m, " vmalloc");
2351 
2352 	if (v->flags & VM_MAP)
2353 		seq_printf(m, " vmap");
2354 
2355 	if (v->flags & VM_USERMAP)
2356 		seq_printf(m, " user");
2357 
2358 	if (v->flags & VM_VPAGES)
2359 		seq_printf(m, " vpages");
2360 
2361 	show_numa_info(m, v);
2362 	seq_putc(m, '\n');
2363 	return 0;
2364 }
2365 
2366 static const struct seq_operations vmalloc_op = {
2367 	.start = s_start,
2368 	.next = s_next,
2369 	.stop = s_stop,
2370 	.show = s_show,
2371 };
2372 
2373 static int vmalloc_open(struct inode *inode, struct file *file)
2374 {
2375 	unsigned int *ptr = NULL;
2376 	int ret;
2377 
2378 	if (NUMA_BUILD)
2379 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2380 	ret = seq_open(file, &vmalloc_op);
2381 	if (!ret) {
2382 		struct seq_file *m = file->private_data;
2383 		m->private = ptr;
2384 	} else
2385 		kfree(ptr);
2386 	return ret;
2387 }
2388 
2389 static const struct file_operations proc_vmalloc_operations = {
2390 	.open		= vmalloc_open,
2391 	.read		= seq_read,
2392 	.llseek		= seq_lseek,
2393 	.release	= seq_release_private,
2394 };
2395 
2396 static int __init proc_vmalloc_init(void)
2397 {
2398 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2399 	return 0;
2400 }
2401 module_init(proc_vmalloc_init);
2402 #endif
2403 
2404