1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 28 { 29 pte_t *pte; 30 31 pte = pte_offset_kernel(pmd, addr); 32 do { 33 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 34 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 35 } while (pte++, addr += PAGE_SIZE, addr != end); 36 } 37 38 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 39 unsigned long end) 40 { 41 pmd_t *pmd; 42 unsigned long next; 43 44 pmd = pmd_offset(pud, addr); 45 do { 46 next = pmd_addr_end(addr, end); 47 if (pmd_none_or_clear_bad(pmd)) 48 continue; 49 vunmap_pte_range(pmd, addr, next); 50 } while (pmd++, addr = next, addr != end); 51 } 52 53 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 54 unsigned long end) 55 { 56 pud_t *pud; 57 unsigned long next; 58 59 pud = pud_offset(pgd, addr); 60 do { 61 next = pud_addr_end(addr, end); 62 if (pud_none_or_clear_bad(pud)) 63 continue; 64 vunmap_pmd_range(pud, addr, next); 65 } while (pud++, addr = next, addr != end); 66 } 67 68 void unmap_vm_area(struct vm_struct *area) 69 { 70 pgd_t *pgd; 71 unsigned long next; 72 unsigned long addr = (unsigned long) area->addr; 73 unsigned long end = addr + area->size; 74 75 BUG_ON(addr >= end); 76 pgd = pgd_offset_k(addr); 77 flush_cache_vunmap(addr, end); 78 do { 79 next = pgd_addr_end(addr, end); 80 if (pgd_none_or_clear_bad(pgd)) 81 continue; 82 vunmap_pud_range(pgd, addr, next); 83 } while (pgd++, addr = next, addr != end); 84 flush_tlb_kernel_range((unsigned long) area->addr, end); 85 } 86 87 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 88 unsigned long end, pgprot_t prot, struct page ***pages) 89 { 90 pte_t *pte; 91 92 pte = pte_alloc_kernel(pmd, addr); 93 if (!pte) 94 return -ENOMEM; 95 do { 96 struct page *page = **pages; 97 WARN_ON(!pte_none(*pte)); 98 if (!page) 99 return -ENOMEM; 100 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 101 (*pages)++; 102 } while (pte++, addr += PAGE_SIZE, addr != end); 103 return 0; 104 } 105 106 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 107 unsigned long end, pgprot_t prot, struct page ***pages) 108 { 109 pmd_t *pmd; 110 unsigned long next; 111 112 pmd = pmd_alloc(&init_mm, pud, addr); 113 if (!pmd) 114 return -ENOMEM; 115 do { 116 next = pmd_addr_end(addr, end); 117 if (vmap_pte_range(pmd, addr, next, prot, pages)) 118 return -ENOMEM; 119 } while (pmd++, addr = next, addr != end); 120 return 0; 121 } 122 123 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 124 unsigned long end, pgprot_t prot, struct page ***pages) 125 { 126 pud_t *pud; 127 unsigned long next; 128 129 pud = pud_alloc(&init_mm, pgd, addr); 130 if (!pud) 131 return -ENOMEM; 132 do { 133 next = pud_addr_end(addr, end); 134 if (vmap_pmd_range(pud, addr, next, prot, pages)) 135 return -ENOMEM; 136 } while (pud++, addr = next, addr != end); 137 return 0; 138 } 139 140 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 141 { 142 pgd_t *pgd; 143 unsigned long next; 144 unsigned long addr = (unsigned long) area->addr; 145 unsigned long end = addr + area->size - PAGE_SIZE; 146 int err; 147 148 BUG_ON(addr >= end); 149 pgd = pgd_offset_k(addr); 150 do { 151 next = pgd_addr_end(addr, end); 152 err = vmap_pud_range(pgd, addr, next, prot, pages); 153 if (err) 154 break; 155 } while (pgd++, addr = next, addr != end); 156 flush_cache_vmap((unsigned long) area->addr, end); 157 return err; 158 } 159 160 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 161 unsigned long start, unsigned long end, int node) 162 { 163 struct vm_struct **p, *tmp, *area; 164 unsigned long align = 1; 165 unsigned long addr; 166 167 if (flags & VM_IOREMAP) { 168 int bit = fls(size); 169 170 if (bit > IOREMAP_MAX_ORDER) 171 bit = IOREMAP_MAX_ORDER; 172 else if (bit < PAGE_SHIFT) 173 bit = PAGE_SHIFT; 174 175 align = 1ul << bit; 176 } 177 addr = ALIGN(start, align); 178 size = PAGE_ALIGN(size); 179 180 area = kmalloc_node(sizeof(*area), GFP_KERNEL, node); 181 if (unlikely(!area)) 182 return NULL; 183 184 if (unlikely(!size)) { 185 kfree (area); 186 return NULL; 187 } 188 189 /* 190 * We always allocate a guard page. 191 */ 192 size += PAGE_SIZE; 193 194 write_lock(&vmlist_lock); 195 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 196 if ((unsigned long)tmp->addr < addr) { 197 if((unsigned long)tmp->addr + tmp->size >= addr) 198 addr = ALIGN(tmp->size + 199 (unsigned long)tmp->addr, align); 200 continue; 201 } 202 if ((size + addr) < addr) 203 goto out; 204 if (size + addr <= (unsigned long)tmp->addr) 205 goto found; 206 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 207 if (addr > end - size) 208 goto out; 209 } 210 211 found: 212 area->next = *p; 213 *p = area; 214 215 area->flags = flags; 216 area->addr = (void *)addr; 217 area->size = size; 218 area->pages = NULL; 219 area->nr_pages = 0; 220 area->phys_addr = 0; 221 write_unlock(&vmlist_lock); 222 223 return area; 224 225 out: 226 write_unlock(&vmlist_lock); 227 kfree(area); 228 if (printk_ratelimit()) 229 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 230 return NULL; 231 } 232 233 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 234 unsigned long start, unsigned long end) 235 { 236 return __get_vm_area_node(size, flags, start, end, -1); 237 } 238 239 /** 240 * get_vm_area - reserve a contingous kernel virtual area 241 * 242 * @size: size of the area 243 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 244 * 245 * Search an area of @size in the kernel virtual mapping area, 246 * and reserved it for out purposes. Returns the area descriptor 247 * on success or %NULL on failure. 248 */ 249 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 250 { 251 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 252 } 253 254 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node) 255 { 256 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node); 257 } 258 259 /* Caller must hold vmlist_lock */ 260 static struct vm_struct *__find_vm_area(void *addr) 261 { 262 struct vm_struct *tmp; 263 264 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 265 if (tmp->addr == addr) 266 break; 267 } 268 269 return tmp; 270 } 271 272 /* Caller must hold vmlist_lock */ 273 struct vm_struct *__remove_vm_area(void *addr) 274 { 275 struct vm_struct **p, *tmp; 276 277 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 278 if (tmp->addr == addr) 279 goto found; 280 } 281 return NULL; 282 283 found: 284 unmap_vm_area(tmp); 285 *p = tmp->next; 286 287 /* 288 * Remove the guard page. 289 */ 290 tmp->size -= PAGE_SIZE; 291 return tmp; 292 } 293 294 /** 295 * remove_vm_area - find and remove a contingous kernel virtual area 296 * 297 * @addr: base address 298 * 299 * Search for the kernel VM area starting at @addr, and remove it. 300 * This function returns the found VM area, but using it is NOT safe 301 * on SMP machines, except for its size or flags. 302 */ 303 struct vm_struct *remove_vm_area(void *addr) 304 { 305 struct vm_struct *v; 306 write_lock(&vmlist_lock); 307 v = __remove_vm_area(addr); 308 write_unlock(&vmlist_lock); 309 return v; 310 } 311 312 void __vunmap(void *addr, int deallocate_pages) 313 { 314 struct vm_struct *area; 315 316 if (!addr) 317 return; 318 319 if ((PAGE_SIZE-1) & (unsigned long)addr) { 320 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 321 WARN_ON(1); 322 return; 323 } 324 325 area = remove_vm_area(addr); 326 if (unlikely(!area)) { 327 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 328 addr); 329 WARN_ON(1); 330 return; 331 } 332 333 debug_check_no_locks_freed(addr, area->size); 334 335 if (deallocate_pages) { 336 int i; 337 338 for (i = 0; i < area->nr_pages; i++) { 339 BUG_ON(!area->pages[i]); 340 __free_page(area->pages[i]); 341 } 342 343 if (area->flags & VM_VPAGES) 344 vfree(area->pages); 345 else 346 kfree(area->pages); 347 } 348 349 kfree(area); 350 return; 351 } 352 353 /** 354 * vfree - release memory allocated by vmalloc() 355 * 356 * @addr: memory base address 357 * 358 * Free the virtually contiguous memory area starting at @addr, as 359 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 360 * NULL, no operation is performed. 361 * 362 * Must not be called in interrupt context. 363 */ 364 void vfree(void *addr) 365 { 366 BUG_ON(in_interrupt()); 367 __vunmap(addr, 1); 368 } 369 EXPORT_SYMBOL(vfree); 370 371 /** 372 * vunmap - release virtual mapping obtained by vmap() 373 * 374 * @addr: memory base address 375 * 376 * Free the virtually contiguous memory area starting at @addr, 377 * which was created from the page array passed to vmap(). 378 * 379 * Must not be called in interrupt context. 380 */ 381 void vunmap(void *addr) 382 { 383 BUG_ON(in_interrupt()); 384 __vunmap(addr, 0); 385 } 386 EXPORT_SYMBOL(vunmap); 387 388 /** 389 * vmap - map an array of pages into virtually contiguous space 390 * 391 * @pages: array of page pointers 392 * @count: number of pages to map 393 * @flags: vm_area->flags 394 * @prot: page protection for the mapping 395 * 396 * Maps @count pages from @pages into contiguous kernel virtual 397 * space. 398 */ 399 void *vmap(struct page **pages, unsigned int count, 400 unsigned long flags, pgprot_t prot) 401 { 402 struct vm_struct *area; 403 404 if (count > num_physpages) 405 return NULL; 406 407 area = get_vm_area((count << PAGE_SHIFT), flags); 408 if (!area) 409 return NULL; 410 if (map_vm_area(area, prot, &pages)) { 411 vunmap(area->addr); 412 return NULL; 413 } 414 415 return area->addr; 416 } 417 EXPORT_SYMBOL(vmap); 418 419 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 420 pgprot_t prot, int node) 421 { 422 struct page **pages; 423 unsigned int nr_pages, array_size, i; 424 425 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 426 array_size = (nr_pages * sizeof(struct page *)); 427 428 area->nr_pages = nr_pages; 429 /* Please note that the recursion is strictly bounded. */ 430 if (array_size > PAGE_SIZE) { 431 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node); 432 area->flags |= VM_VPAGES; 433 } else 434 pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node); 435 area->pages = pages; 436 if (!area->pages) { 437 remove_vm_area(area->addr); 438 kfree(area); 439 return NULL; 440 } 441 memset(area->pages, 0, array_size); 442 443 for (i = 0; i < area->nr_pages; i++) { 444 if (node < 0) 445 area->pages[i] = alloc_page(gfp_mask); 446 else 447 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 448 if (unlikely(!area->pages[i])) { 449 /* Successfully allocated i pages, free them in __vunmap() */ 450 area->nr_pages = i; 451 goto fail; 452 } 453 } 454 455 if (map_vm_area(area, prot, &pages)) 456 goto fail; 457 return area->addr; 458 459 fail: 460 vfree(area->addr); 461 return NULL; 462 } 463 464 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 465 { 466 return __vmalloc_area_node(area, gfp_mask, prot, -1); 467 } 468 469 /** 470 * __vmalloc_node - allocate virtually contiguous memory 471 * 472 * @size: allocation size 473 * @gfp_mask: flags for the page level allocator 474 * @prot: protection mask for the allocated pages 475 * @node: node to use for allocation or -1 476 * 477 * Allocate enough pages to cover @size from the page level 478 * allocator with @gfp_mask flags. Map them into contiguous 479 * kernel virtual space, using a pagetable protection of @prot. 480 */ 481 void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 482 int node) 483 { 484 struct vm_struct *area; 485 486 size = PAGE_ALIGN(size); 487 if (!size || (size >> PAGE_SHIFT) > num_physpages) 488 return NULL; 489 490 area = get_vm_area_node(size, VM_ALLOC, node); 491 if (!area) 492 return NULL; 493 494 return __vmalloc_area_node(area, gfp_mask, prot, node); 495 } 496 EXPORT_SYMBOL(__vmalloc_node); 497 498 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 499 { 500 return __vmalloc_node(size, gfp_mask, prot, -1); 501 } 502 EXPORT_SYMBOL(__vmalloc); 503 504 /** 505 * vmalloc - allocate virtually contiguous memory 506 * 507 * @size: allocation size 508 * 509 * Allocate enough pages to cover @size from the page level 510 * allocator and map them into contiguous kernel virtual space. 511 * 512 * For tight cotrol over page level allocator and protection flags 513 * use __vmalloc() instead. 514 */ 515 void *vmalloc(unsigned long size) 516 { 517 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 518 } 519 EXPORT_SYMBOL(vmalloc); 520 521 /** 522 * vmalloc_user - allocate virtually contiguous memory which has 523 * been zeroed so it can be mapped to userspace without 524 * leaking data. 525 * 526 * @size: allocation size 527 */ 528 void *vmalloc_user(unsigned long size) 529 { 530 struct vm_struct *area; 531 void *ret; 532 533 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 534 write_lock(&vmlist_lock); 535 area = __find_vm_area(ret); 536 area->flags |= VM_USERMAP; 537 write_unlock(&vmlist_lock); 538 539 return ret; 540 } 541 EXPORT_SYMBOL(vmalloc_user); 542 543 /** 544 * vmalloc_node - allocate memory on a specific node 545 * 546 * @size: allocation size 547 * @node: numa node 548 * 549 * Allocate enough pages to cover @size from the page level 550 * allocator and map them into contiguous kernel virtual space. 551 * 552 * For tight cotrol over page level allocator and protection flags 553 * use __vmalloc() instead. 554 */ 555 void *vmalloc_node(unsigned long size, int node) 556 { 557 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 558 } 559 EXPORT_SYMBOL(vmalloc_node); 560 561 #ifndef PAGE_KERNEL_EXEC 562 # define PAGE_KERNEL_EXEC PAGE_KERNEL 563 #endif 564 565 /** 566 * vmalloc_exec - allocate virtually contiguous, executable memory 567 * 568 * @size: allocation size 569 * 570 * Kernel-internal function to allocate enough pages to cover @size 571 * the page level allocator and map them into contiguous and 572 * executable kernel virtual space. 573 * 574 * For tight cotrol over page level allocator and protection flags 575 * use __vmalloc() instead. 576 */ 577 578 void *vmalloc_exec(unsigned long size) 579 { 580 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 581 } 582 583 /** 584 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 585 * 586 * @size: allocation size 587 * 588 * Allocate enough 32bit PA addressable pages to cover @size from the 589 * page level allocator and map them into contiguous kernel virtual space. 590 */ 591 void *vmalloc_32(unsigned long size) 592 { 593 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 594 } 595 EXPORT_SYMBOL(vmalloc_32); 596 597 /** 598 * vmalloc_32_user - allocate virtually contiguous memory (32bit 599 * addressable) which is zeroed so it can be 600 * mapped to userspace without leaking data. 601 * 602 * @size: allocation size 603 */ 604 void *vmalloc_32_user(unsigned long size) 605 { 606 struct vm_struct *area; 607 void *ret; 608 609 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 610 write_lock(&vmlist_lock); 611 area = __find_vm_area(ret); 612 area->flags |= VM_USERMAP; 613 write_unlock(&vmlist_lock); 614 615 return ret; 616 } 617 EXPORT_SYMBOL(vmalloc_32_user); 618 619 long vread(char *buf, char *addr, unsigned long count) 620 { 621 struct vm_struct *tmp; 622 char *vaddr, *buf_start = buf; 623 unsigned long n; 624 625 /* Don't allow overflow */ 626 if ((unsigned long) addr + count < count) 627 count = -(unsigned long) addr; 628 629 read_lock(&vmlist_lock); 630 for (tmp = vmlist; tmp; tmp = tmp->next) { 631 vaddr = (char *) tmp->addr; 632 if (addr >= vaddr + tmp->size - PAGE_SIZE) 633 continue; 634 while (addr < vaddr) { 635 if (count == 0) 636 goto finished; 637 *buf = '\0'; 638 buf++; 639 addr++; 640 count--; 641 } 642 n = vaddr + tmp->size - PAGE_SIZE - addr; 643 do { 644 if (count == 0) 645 goto finished; 646 *buf = *addr; 647 buf++; 648 addr++; 649 count--; 650 } while (--n > 0); 651 } 652 finished: 653 read_unlock(&vmlist_lock); 654 return buf - buf_start; 655 } 656 657 long vwrite(char *buf, char *addr, unsigned long count) 658 { 659 struct vm_struct *tmp; 660 char *vaddr, *buf_start = buf; 661 unsigned long n; 662 663 /* Don't allow overflow */ 664 if ((unsigned long) addr + count < count) 665 count = -(unsigned long) addr; 666 667 read_lock(&vmlist_lock); 668 for (tmp = vmlist; tmp; tmp = tmp->next) { 669 vaddr = (char *) tmp->addr; 670 if (addr >= vaddr + tmp->size - PAGE_SIZE) 671 continue; 672 while (addr < vaddr) { 673 if (count == 0) 674 goto finished; 675 buf++; 676 addr++; 677 count--; 678 } 679 n = vaddr + tmp->size - PAGE_SIZE - addr; 680 do { 681 if (count == 0) 682 goto finished; 683 *addr = *buf; 684 buf++; 685 addr++; 686 count--; 687 } while (--n > 0); 688 } 689 finished: 690 read_unlock(&vmlist_lock); 691 return buf - buf_start; 692 } 693 694 /** 695 * remap_vmalloc_range - map vmalloc pages to userspace 696 * 697 * @vma: vma to cover (map full range of vma) 698 * @addr: vmalloc memory 699 * @pgoff: number of pages into addr before first page to map 700 * @returns: 0 for success, -Exxx on failure 701 * 702 * This function checks that addr is a valid vmalloc'ed area, and 703 * that it is big enough to cover the vma. Will return failure if 704 * that criteria isn't met. 705 * 706 * Similar to remap_pfn_range (see mm/memory.c) 707 */ 708 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 709 unsigned long pgoff) 710 { 711 struct vm_struct *area; 712 unsigned long uaddr = vma->vm_start; 713 unsigned long usize = vma->vm_end - vma->vm_start; 714 int ret; 715 716 if ((PAGE_SIZE-1) & (unsigned long)addr) 717 return -EINVAL; 718 719 read_lock(&vmlist_lock); 720 area = __find_vm_area(addr); 721 if (!area) 722 goto out_einval_locked; 723 724 if (!(area->flags & VM_USERMAP)) 725 goto out_einval_locked; 726 727 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 728 goto out_einval_locked; 729 read_unlock(&vmlist_lock); 730 731 addr += pgoff << PAGE_SHIFT; 732 do { 733 struct page *page = vmalloc_to_page(addr); 734 ret = vm_insert_page(vma, uaddr, page); 735 if (ret) 736 return ret; 737 738 uaddr += PAGE_SIZE; 739 addr += PAGE_SIZE; 740 usize -= PAGE_SIZE; 741 } while (usize > 0); 742 743 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 744 vma->vm_flags |= VM_RESERVED; 745 746 return ret; 747 748 out_einval_locked: 749 read_unlock(&vmlist_lock); 750 return -EINVAL; 751 } 752 EXPORT_SYMBOL(remap_vmalloc_range); 753 754