xref: /linux/mm/vmalloc.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(p4d, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106 {
107 	p4d_t *p4d;
108 	unsigned long next;
109 
110 	p4d = p4d_offset(pgd, addr);
111 	do {
112 		next = p4d_addr_end(addr, end);
113 		if (p4d_clear_huge(p4d))
114 			continue;
115 		if (p4d_none_or_clear_bad(p4d))
116 			continue;
117 		vunmap_pud_range(p4d, addr, next);
118 	} while (p4d++, addr = next, addr != end);
119 }
120 
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
122 {
123 	pgd_t *pgd;
124 	unsigned long next;
125 
126 	BUG_ON(addr >= end);
127 	pgd = pgd_offset_k(addr);
128 	do {
129 		next = pgd_addr_end(addr, end);
130 		if (pgd_none_or_clear_bad(pgd))
131 			continue;
132 		vunmap_p4d_range(pgd, addr, next);
133 	} while (pgd++, addr = next, addr != end);
134 }
135 
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 	pte_t *pte;
140 
141 	/*
142 	 * nr is a running index into the array which helps higher level
143 	 * callers keep track of where we're up to.
144 	 */
145 
146 	pte = pte_alloc_kernel(pmd, addr);
147 	if (!pte)
148 		return -ENOMEM;
149 	do {
150 		struct page *page = pages[*nr];
151 
152 		if (WARN_ON(!pte_none(*pte)))
153 			return -EBUSY;
154 		if (WARN_ON(!page))
155 			return -ENOMEM;
156 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 		(*nr)++;
158 	} while (pte++, addr += PAGE_SIZE, addr != end);
159 	return 0;
160 }
161 
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 	pmd_t *pmd;
166 	unsigned long next;
167 
168 	pmd = pmd_alloc(&init_mm, pud, addr);
169 	if (!pmd)
170 		return -ENOMEM;
171 	do {
172 		next = pmd_addr_end(addr, end);
173 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 			return -ENOMEM;
175 	} while (pmd++, addr = next, addr != end);
176 	return 0;
177 }
178 
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
181 {
182 	pud_t *pud;
183 	unsigned long next;
184 
185 	pud = pud_alloc(&init_mm, p4d, addr);
186 	if (!pud)
187 		return -ENOMEM;
188 	do {
189 		next = pud_addr_end(addr, end);
190 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 			return -ENOMEM;
192 	} while (pud++, addr = next, addr != end);
193 	return 0;
194 }
195 
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198 {
199 	p4d_t *p4d;
200 	unsigned long next;
201 
202 	p4d = p4d_alloc(&init_mm, pgd, addr);
203 	if (!p4d)
204 		return -ENOMEM;
205 	do {
206 		next = p4d_addr_end(addr, end);
207 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 			return -ENOMEM;
209 	} while (p4d++, addr = next, addr != end);
210 	return 0;
211 }
212 
213 /*
214  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215  * will have pfns corresponding to the "pages" array.
216  *
217  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218  */
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 				   pgprot_t prot, struct page **pages)
221 {
222 	pgd_t *pgd;
223 	unsigned long next;
224 	unsigned long addr = start;
225 	int err = 0;
226 	int nr = 0;
227 
228 	BUG_ON(addr >= end);
229 	pgd = pgd_offset_k(addr);
230 	do {
231 		next = pgd_addr_end(addr, end);
232 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 		if (err)
234 			return err;
235 	} while (pgd++, addr = next, addr != end);
236 
237 	return nr;
238 }
239 
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 			   pgprot_t prot, struct page **pages)
242 {
243 	int ret;
244 
245 	ret = vmap_page_range_noflush(start, end, prot, pages);
246 	flush_cache_vmap(start, end);
247 	return ret;
248 }
249 
250 int is_vmalloc_or_module_addr(const void *x)
251 {
252 	/*
253 	 * ARM, x86-64 and sparc64 put modules in a special place,
254 	 * and fall back on vmalloc() if that fails. Others
255 	 * just put it in the vmalloc space.
256 	 */
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 	unsigned long addr = (unsigned long)x;
259 	if (addr >= MODULES_VADDR && addr < MODULES_END)
260 		return 1;
261 #endif
262 	return is_vmalloc_addr(x);
263 }
264 
265 /*
266  * Walk a vmap address to the struct page it maps.
267  */
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
269 {
270 	unsigned long addr = (unsigned long) vmalloc_addr;
271 	struct page *page = NULL;
272 	pgd_t *pgd = pgd_offset_k(addr);
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *ptep, pte;
277 
278 	/*
279 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 	 * architectures that do not vmalloc module space
281 	 */
282 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
283 
284 	if (pgd_none(*pgd))
285 		return NULL;
286 	p4d = p4d_offset(pgd, addr);
287 	if (p4d_none(*p4d))
288 		return NULL;
289 	pud = pud_offset(p4d, addr);
290 
291 	/*
292 	 * Don't dereference bad PUD or PMD (below) entries. This will also
293 	 * identify huge mappings, which we may encounter on architectures
294 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
295 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
296 	 * not [unambiguously] associated with a struct page, so there is
297 	 * no correct value to return for them.
298 	 */
299 	WARN_ON_ONCE(pud_bad(*pud));
300 	if (pud_none(*pud) || pud_bad(*pud))
301 		return NULL;
302 	pmd = pmd_offset(pud, addr);
303 	WARN_ON_ONCE(pmd_bad(*pmd));
304 	if (pmd_none(*pmd) || pmd_bad(*pmd))
305 		return NULL;
306 
307 	ptep = pte_offset_map(pmd, addr);
308 	pte = *ptep;
309 	if (pte_present(pte))
310 		page = pte_page(pte);
311 	pte_unmap(ptep);
312 	return page;
313 }
314 EXPORT_SYMBOL(vmalloc_to_page);
315 
316 /*
317  * Map a vmalloc()-space virtual address to the physical page frame number.
318  */
319 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
320 {
321 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
322 }
323 EXPORT_SYMBOL(vmalloc_to_pfn);
324 
325 
326 /*** Global kva allocator ***/
327 
328 #define VM_VM_AREA	0x04
329 
330 static DEFINE_SPINLOCK(vmap_area_lock);
331 /* Export for kexec only */
332 LIST_HEAD(vmap_area_list);
333 static LLIST_HEAD(vmap_purge_list);
334 static struct rb_root vmap_area_root = RB_ROOT;
335 
336 /* The vmap cache globals are protected by vmap_area_lock */
337 static struct rb_node *free_vmap_cache;
338 static unsigned long cached_hole_size;
339 static unsigned long cached_vstart;
340 static unsigned long cached_align;
341 
342 static unsigned long vmap_area_pcpu_hole;
343 
344 static struct vmap_area *__find_vmap_area(unsigned long addr)
345 {
346 	struct rb_node *n = vmap_area_root.rb_node;
347 
348 	while (n) {
349 		struct vmap_area *va;
350 
351 		va = rb_entry(n, struct vmap_area, rb_node);
352 		if (addr < va->va_start)
353 			n = n->rb_left;
354 		else if (addr >= va->va_end)
355 			n = n->rb_right;
356 		else
357 			return va;
358 	}
359 
360 	return NULL;
361 }
362 
363 static void __insert_vmap_area(struct vmap_area *va)
364 {
365 	struct rb_node **p = &vmap_area_root.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct rb_node *tmp;
368 
369 	while (*p) {
370 		struct vmap_area *tmp_va;
371 
372 		parent = *p;
373 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
374 		if (va->va_start < tmp_va->va_end)
375 			p = &(*p)->rb_left;
376 		else if (va->va_end > tmp_va->va_start)
377 			p = &(*p)->rb_right;
378 		else
379 			BUG();
380 	}
381 
382 	rb_link_node(&va->rb_node, parent, p);
383 	rb_insert_color(&va->rb_node, &vmap_area_root);
384 
385 	/* address-sort this list */
386 	tmp = rb_prev(&va->rb_node);
387 	if (tmp) {
388 		struct vmap_area *prev;
389 		prev = rb_entry(tmp, struct vmap_area, rb_node);
390 		list_add_rcu(&va->list, &prev->list);
391 	} else
392 		list_add_rcu(&va->list, &vmap_area_list);
393 }
394 
395 static void purge_vmap_area_lazy(void);
396 
397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
398 
399 /*
400  * Allocate a region of KVA of the specified size and alignment, within the
401  * vstart and vend.
402  */
403 static struct vmap_area *alloc_vmap_area(unsigned long size,
404 				unsigned long align,
405 				unsigned long vstart, unsigned long vend,
406 				int node, gfp_t gfp_mask)
407 {
408 	struct vmap_area *va;
409 	struct rb_node *n;
410 	unsigned long addr;
411 	int purged = 0;
412 	struct vmap_area *first;
413 
414 	BUG_ON(!size);
415 	BUG_ON(offset_in_page(size));
416 	BUG_ON(!is_power_of_2(align));
417 
418 	might_sleep();
419 
420 	va = kmalloc_node(sizeof(struct vmap_area),
421 			gfp_mask & GFP_RECLAIM_MASK, node);
422 	if (unlikely(!va))
423 		return ERR_PTR(-ENOMEM);
424 
425 	/*
426 	 * Only scan the relevant parts containing pointers to other objects
427 	 * to avoid false negatives.
428 	 */
429 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
430 
431 retry:
432 	spin_lock(&vmap_area_lock);
433 	/*
434 	 * Invalidate cache if we have more permissive parameters.
435 	 * cached_hole_size notes the largest hole noticed _below_
436 	 * the vmap_area cached in free_vmap_cache: if size fits
437 	 * into that hole, we want to scan from vstart to reuse
438 	 * the hole instead of allocating above free_vmap_cache.
439 	 * Note that __free_vmap_area may update free_vmap_cache
440 	 * without updating cached_hole_size or cached_align.
441 	 */
442 	if (!free_vmap_cache ||
443 			size < cached_hole_size ||
444 			vstart < cached_vstart ||
445 			align < cached_align) {
446 nocache:
447 		cached_hole_size = 0;
448 		free_vmap_cache = NULL;
449 	}
450 	/* record if we encounter less permissive parameters */
451 	cached_vstart = vstart;
452 	cached_align = align;
453 
454 	/* find starting point for our search */
455 	if (free_vmap_cache) {
456 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
457 		addr = ALIGN(first->va_end, align);
458 		if (addr < vstart)
459 			goto nocache;
460 		if (addr + size < addr)
461 			goto overflow;
462 
463 	} else {
464 		addr = ALIGN(vstart, align);
465 		if (addr + size < addr)
466 			goto overflow;
467 
468 		n = vmap_area_root.rb_node;
469 		first = NULL;
470 
471 		while (n) {
472 			struct vmap_area *tmp;
473 			tmp = rb_entry(n, struct vmap_area, rb_node);
474 			if (tmp->va_end >= addr) {
475 				first = tmp;
476 				if (tmp->va_start <= addr)
477 					break;
478 				n = n->rb_left;
479 			} else
480 				n = n->rb_right;
481 		}
482 
483 		if (!first)
484 			goto found;
485 	}
486 
487 	/* from the starting point, walk areas until a suitable hole is found */
488 	while (addr + size > first->va_start && addr + size <= vend) {
489 		if (addr + cached_hole_size < first->va_start)
490 			cached_hole_size = first->va_start - addr;
491 		addr = ALIGN(first->va_end, align);
492 		if (addr + size < addr)
493 			goto overflow;
494 
495 		if (list_is_last(&first->list, &vmap_area_list))
496 			goto found;
497 
498 		first = list_next_entry(first, list);
499 	}
500 
501 found:
502 	if (addr + size > vend)
503 		goto overflow;
504 
505 	va->va_start = addr;
506 	va->va_end = addr + size;
507 	va->flags = 0;
508 	__insert_vmap_area(va);
509 	free_vmap_cache = &va->rb_node;
510 	spin_unlock(&vmap_area_lock);
511 
512 	BUG_ON(!IS_ALIGNED(va->va_start, align));
513 	BUG_ON(va->va_start < vstart);
514 	BUG_ON(va->va_end > vend);
515 
516 	return va;
517 
518 overflow:
519 	spin_unlock(&vmap_area_lock);
520 	if (!purged) {
521 		purge_vmap_area_lazy();
522 		purged = 1;
523 		goto retry;
524 	}
525 
526 	if (gfpflags_allow_blocking(gfp_mask)) {
527 		unsigned long freed = 0;
528 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
529 		if (freed > 0) {
530 			purged = 0;
531 			goto retry;
532 		}
533 	}
534 
535 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
536 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
537 			size);
538 	kfree(va);
539 	return ERR_PTR(-EBUSY);
540 }
541 
542 int register_vmap_purge_notifier(struct notifier_block *nb)
543 {
544 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
545 }
546 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
547 
548 int unregister_vmap_purge_notifier(struct notifier_block *nb)
549 {
550 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
551 }
552 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
553 
554 static void __free_vmap_area(struct vmap_area *va)
555 {
556 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
557 
558 	if (free_vmap_cache) {
559 		if (va->va_end < cached_vstart) {
560 			free_vmap_cache = NULL;
561 		} else {
562 			struct vmap_area *cache;
563 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
564 			if (va->va_start <= cache->va_start) {
565 				free_vmap_cache = rb_prev(&va->rb_node);
566 				/*
567 				 * We don't try to update cached_hole_size or
568 				 * cached_align, but it won't go very wrong.
569 				 */
570 			}
571 		}
572 	}
573 	rb_erase(&va->rb_node, &vmap_area_root);
574 	RB_CLEAR_NODE(&va->rb_node);
575 	list_del_rcu(&va->list);
576 
577 	/*
578 	 * Track the highest possible candidate for pcpu area
579 	 * allocation.  Areas outside of vmalloc area can be returned
580 	 * here too, consider only end addresses which fall inside
581 	 * vmalloc area proper.
582 	 */
583 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
584 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
585 
586 	kfree_rcu(va, rcu_head);
587 }
588 
589 /*
590  * Free a region of KVA allocated by alloc_vmap_area
591  */
592 static void free_vmap_area(struct vmap_area *va)
593 {
594 	spin_lock(&vmap_area_lock);
595 	__free_vmap_area(va);
596 	spin_unlock(&vmap_area_lock);
597 }
598 
599 /*
600  * Clear the pagetable entries of a given vmap_area
601  */
602 static void unmap_vmap_area(struct vmap_area *va)
603 {
604 	vunmap_page_range(va->va_start, va->va_end);
605 }
606 
607 static void vmap_debug_free_range(unsigned long start, unsigned long end)
608 {
609 	/*
610 	 * Unmap page tables and force a TLB flush immediately if pagealloc
611 	 * debugging is enabled.  This catches use after free bugs similarly to
612 	 * those in linear kernel virtual address space after a page has been
613 	 * freed.
614 	 *
615 	 * All the lazy freeing logic is still retained, in order to minimise
616 	 * intrusiveness of this debugging feature.
617 	 *
618 	 * This is going to be *slow* (linear kernel virtual address debugging
619 	 * doesn't do a broadcast TLB flush so it is a lot faster).
620 	 */
621 	if (debug_pagealloc_enabled()) {
622 		vunmap_page_range(start, end);
623 		flush_tlb_kernel_range(start, end);
624 	}
625 }
626 
627 /*
628  * lazy_max_pages is the maximum amount of virtual address space we gather up
629  * before attempting to purge with a TLB flush.
630  *
631  * There is a tradeoff here: a larger number will cover more kernel page tables
632  * and take slightly longer to purge, but it will linearly reduce the number of
633  * global TLB flushes that must be performed. It would seem natural to scale
634  * this number up linearly with the number of CPUs (because vmapping activity
635  * could also scale linearly with the number of CPUs), however it is likely
636  * that in practice, workloads might be constrained in other ways that mean
637  * vmap activity will not scale linearly with CPUs. Also, I want to be
638  * conservative and not introduce a big latency on huge systems, so go with
639  * a less aggressive log scale. It will still be an improvement over the old
640  * code, and it will be simple to change the scale factor if we find that it
641  * becomes a problem on bigger systems.
642  */
643 static unsigned long lazy_max_pages(void)
644 {
645 	unsigned int log;
646 
647 	log = fls(num_online_cpus());
648 
649 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
650 }
651 
652 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
653 
654 /*
655  * Serialize vmap purging.  There is no actual criticial section protected
656  * by this look, but we want to avoid concurrent calls for performance
657  * reasons and to make the pcpu_get_vm_areas more deterministic.
658  */
659 static DEFINE_MUTEX(vmap_purge_lock);
660 
661 /* for per-CPU blocks */
662 static void purge_fragmented_blocks_allcpus(void);
663 
664 /*
665  * called before a call to iounmap() if the caller wants vm_area_struct's
666  * immediately freed.
667  */
668 void set_iounmap_nonlazy(void)
669 {
670 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
671 }
672 
673 /*
674  * Purges all lazily-freed vmap areas.
675  */
676 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
677 {
678 	struct llist_node *valist;
679 	struct vmap_area *va;
680 	struct vmap_area *n_va;
681 	bool do_free = false;
682 
683 	lockdep_assert_held(&vmap_purge_lock);
684 
685 	valist = llist_del_all(&vmap_purge_list);
686 	llist_for_each_entry(va, valist, purge_list) {
687 		if (va->va_start < start)
688 			start = va->va_start;
689 		if (va->va_end > end)
690 			end = va->va_end;
691 		do_free = true;
692 	}
693 
694 	if (!do_free)
695 		return false;
696 
697 	flush_tlb_kernel_range(start, end);
698 
699 	spin_lock(&vmap_area_lock);
700 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
701 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
702 
703 		__free_vmap_area(va);
704 		atomic_sub(nr, &vmap_lazy_nr);
705 		cond_resched_lock(&vmap_area_lock);
706 	}
707 	spin_unlock(&vmap_area_lock);
708 	return true;
709 }
710 
711 /*
712  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
713  * is already purging.
714  */
715 static void try_purge_vmap_area_lazy(void)
716 {
717 	if (mutex_trylock(&vmap_purge_lock)) {
718 		__purge_vmap_area_lazy(ULONG_MAX, 0);
719 		mutex_unlock(&vmap_purge_lock);
720 	}
721 }
722 
723 /*
724  * Kick off a purge of the outstanding lazy areas.
725  */
726 static void purge_vmap_area_lazy(void)
727 {
728 	mutex_lock(&vmap_purge_lock);
729 	purge_fragmented_blocks_allcpus();
730 	__purge_vmap_area_lazy(ULONG_MAX, 0);
731 	mutex_unlock(&vmap_purge_lock);
732 }
733 
734 /*
735  * Free a vmap area, caller ensuring that the area has been unmapped
736  * and flush_cache_vunmap had been called for the correct range
737  * previously.
738  */
739 static void free_vmap_area_noflush(struct vmap_area *va)
740 {
741 	int nr_lazy;
742 
743 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
744 				    &vmap_lazy_nr);
745 
746 	/* After this point, we may free va at any time */
747 	llist_add(&va->purge_list, &vmap_purge_list);
748 
749 	if (unlikely(nr_lazy > lazy_max_pages()))
750 		try_purge_vmap_area_lazy();
751 }
752 
753 /*
754  * Free and unmap a vmap area
755  */
756 static void free_unmap_vmap_area(struct vmap_area *va)
757 {
758 	flush_cache_vunmap(va->va_start, va->va_end);
759 	unmap_vmap_area(va);
760 	free_vmap_area_noflush(va);
761 }
762 
763 static struct vmap_area *find_vmap_area(unsigned long addr)
764 {
765 	struct vmap_area *va;
766 
767 	spin_lock(&vmap_area_lock);
768 	va = __find_vmap_area(addr);
769 	spin_unlock(&vmap_area_lock);
770 
771 	return va;
772 }
773 
774 /*** Per cpu kva allocator ***/
775 
776 /*
777  * vmap space is limited especially on 32 bit architectures. Ensure there is
778  * room for at least 16 percpu vmap blocks per CPU.
779  */
780 /*
781  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
782  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
783  * instead (we just need a rough idea)
784  */
785 #if BITS_PER_LONG == 32
786 #define VMALLOC_SPACE		(128UL*1024*1024)
787 #else
788 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
789 #endif
790 
791 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
792 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
793 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
794 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
795 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
796 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
797 #define VMAP_BBMAP_BITS		\
798 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
799 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
800 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
801 
802 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
803 
804 static bool vmap_initialized __read_mostly = false;
805 
806 struct vmap_block_queue {
807 	spinlock_t lock;
808 	struct list_head free;
809 };
810 
811 struct vmap_block {
812 	spinlock_t lock;
813 	struct vmap_area *va;
814 	unsigned long free, dirty;
815 	unsigned long dirty_min, dirty_max; /*< dirty range */
816 	struct list_head free_list;
817 	struct rcu_head rcu_head;
818 	struct list_head purge;
819 };
820 
821 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
822 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
823 
824 /*
825  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
826  * in the free path. Could get rid of this if we change the API to return a
827  * "cookie" from alloc, to be passed to free. But no big deal yet.
828  */
829 static DEFINE_SPINLOCK(vmap_block_tree_lock);
830 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
831 
832 /*
833  * We should probably have a fallback mechanism to allocate virtual memory
834  * out of partially filled vmap blocks. However vmap block sizing should be
835  * fairly reasonable according to the vmalloc size, so it shouldn't be a
836  * big problem.
837  */
838 
839 static unsigned long addr_to_vb_idx(unsigned long addr)
840 {
841 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
842 	addr /= VMAP_BLOCK_SIZE;
843 	return addr;
844 }
845 
846 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
847 {
848 	unsigned long addr;
849 
850 	addr = va_start + (pages_off << PAGE_SHIFT);
851 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
852 	return (void *)addr;
853 }
854 
855 /**
856  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
857  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
858  * @order:    how many 2^order pages should be occupied in newly allocated block
859  * @gfp_mask: flags for the page level allocator
860  *
861  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
862  */
863 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
864 {
865 	struct vmap_block_queue *vbq;
866 	struct vmap_block *vb;
867 	struct vmap_area *va;
868 	unsigned long vb_idx;
869 	int node, err;
870 	void *vaddr;
871 
872 	node = numa_node_id();
873 
874 	vb = kmalloc_node(sizeof(struct vmap_block),
875 			gfp_mask & GFP_RECLAIM_MASK, node);
876 	if (unlikely(!vb))
877 		return ERR_PTR(-ENOMEM);
878 
879 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
880 					VMALLOC_START, VMALLOC_END,
881 					node, gfp_mask);
882 	if (IS_ERR(va)) {
883 		kfree(vb);
884 		return ERR_CAST(va);
885 	}
886 
887 	err = radix_tree_preload(gfp_mask);
888 	if (unlikely(err)) {
889 		kfree(vb);
890 		free_vmap_area(va);
891 		return ERR_PTR(err);
892 	}
893 
894 	vaddr = vmap_block_vaddr(va->va_start, 0);
895 	spin_lock_init(&vb->lock);
896 	vb->va = va;
897 	/* At least something should be left free */
898 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
899 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
900 	vb->dirty = 0;
901 	vb->dirty_min = VMAP_BBMAP_BITS;
902 	vb->dirty_max = 0;
903 	INIT_LIST_HEAD(&vb->free_list);
904 
905 	vb_idx = addr_to_vb_idx(va->va_start);
906 	spin_lock(&vmap_block_tree_lock);
907 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
908 	spin_unlock(&vmap_block_tree_lock);
909 	BUG_ON(err);
910 	radix_tree_preload_end();
911 
912 	vbq = &get_cpu_var(vmap_block_queue);
913 	spin_lock(&vbq->lock);
914 	list_add_tail_rcu(&vb->free_list, &vbq->free);
915 	spin_unlock(&vbq->lock);
916 	put_cpu_var(vmap_block_queue);
917 
918 	return vaddr;
919 }
920 
921 static void free_vmap_block(struct vmap_block *vb)
922 {
923 	struct vmap_block *tmp;
924 	unsigned long vb_idx;
925 
926 	vb_idx = addr_to_vb_idx(vb->va->va_start);
927 	spin_lock(&vmap_block_tree_lock);
928 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
929 	spin_unlock(&vmap_block_tree_lock);
930 	BUG_ON(tmp != vb);
931 
932 	free_vmap_area_noflush(vb->va);
933 	kfree_rcu(vb, rcu_head);
934 }
935 
936 static void purge_fragmented_blocks(int cpu)
937 {
938 	LIST_HEAD(purge);
939 	struct vmap_block *vb;
940 	struct vmap_block *n_vb;
941 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
942 
943 	rcu_read_lock();
944 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
945 
946 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
947 			continue;
948 
949 		spin_lock(&vb->lock);
950 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
951 			vb->free = 0; /* prevent further allocs after releasing lock */
952 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
953 			vb->dirty_min = 0;
954 			vb->dirty_max = VMAP_BBMAP_BITS;
955 			spin_lock(&vbq->lock);
956 			list_del_rcu(&vb->free_list);
957 			spin_unlock(&vbq->lock);
958 			spin_unlock(&vb->lock);
959 			list_add_tail(&vb->purge, &purge);
960 		} else
961 			spin_unlock(&vb->lock);
962 	}
963 	rcu_read_unlock();
964 
965 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
966 		list_del(&vb->purge);
967 		free_vmap_block(vb);
968 	}
969 }
970 
971 static void purge_fragmented_blocks_allcpus(void)
972 {
973 	int cpu;
974 
975 	for_each_possible_cpu(cpu)
976 		purge_fragmented_blocks(cpu);
977 }
978 
979 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
980 {
981 	struct vmap_block_queue *vbq;
982 	struct vmap_block *vb;
983 	void *vaddr = NULL;
984 	unsigned int order;
985 
986 	BUG_ON(offset_in_page(size));
987 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
988 	if (WARN_ON(size == 0)) {
989 		/*
990 		 * Allocating 0 bytes isn't what caller wants since
991 		 * get_order(0) returns funny result. Just warn and terminate
992 		 * early.
993 		 */
994 		return NULL;
995 	}
996 	order = get_order(size);
997 
998 	rcu_read_lock();
999 	vbq = &get_cpu_var(vmap_block_queue);
1000 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1001 		unsigned long pages_off;
1002 
1003 		spin_lock(&vb->lock);
1004 		if (vb->free < (1UL << order)) {
1005 			spin_unlock(&vb->lock);
1006 			continue;
1007 		}
1008 
1009 		pages_off = VMAP_BBMAP_BITS - vb->free;
1010 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1011 		vb->free -= 1UL << order;
1012 		if (vb->free == 0) {
1013 			spin_lock(&vbq->lock);
1014 			list_del_rcu(&vb->free_list);
1015 			spin_unlock(&vbq->lock);
1016 		}
1017 
1018 		spin_unlock(&vb->lock);
1019 		break;
1020 	}
1021 
1022 	put_cpu_var(vmap_block_queue);
1023 	rcu_read_unlock();
1024 
1025 	/* Allocate new block if nothing was found */
1026 	if (!vaddr)
1027 		vaddr = new_vmap_block(order, gfp_mask);
1028 
1029 	return vaddr;
1030 }
1031 
1032 static void vb_free(const void *addr, unsigned long size)
1033 {
1034 	unsigned long offset;
1035 	unsigned long vb_idx;
1036 	unsigned int order;
1037 	struct vmap_block *vb;
1038 
1039 	BUG_ON(offset_in_page(size));
1040 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1041 
1042 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1043 
1044 	order = get_order(size);
1045 
1046 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1047 	offset >>= PAGE_SHIFT;
1048 
1049 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1050 	rcu_read_lock();
1051 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1052 	rcu_read_unlock();
1053 	BUG_ON(!vb);
1054 
1055 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1056 
1057 	spin_lock(&vb->lock);
1058 
1059 	/* Expand dirty range */
1060 	vb->dirty_min = min(vb->dirty_min, offset);
1061 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1062 
1063 	vb->dirty += 1UL << order;
1064 	if (vb->dirty == VMAP_BBMAP_BITS) {
1065 		BUG_ON(vb->free);
1066 		spin_unlock(&vb->lock);
1067 		free_vmap_block(vb);
1068 	} else
1069 		spin_unlock(&vb->lock);
1070 }
1071 
1072 /**
1073  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1074  *
1075  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1076  * to amortize TLB flushing overheads. What this means is that any page you
1077  * have now, may, in a former life, have been mapped into kernel virtual
1078  * address by the vmap layer and so there might be some CPUs with TLB entries
1079  * still referencing that page (additional to the regular 1:1 kernel mapping).
1080  *
1081  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1082  * be sure that none of the pages we have control over will have any aliases
1083  * from the vmap layer.
1084  */
1085 void vm_unmap_aliases(void)
1086 {
1087 	unsigned long start = ULONG_MAX, end = 0;
1088 	int cpu;
1089 	int flush = 0;
1090 
1091 	if (unlikely(!vmap_initialized))
1092 		return;
1093 
1094 	might_sleep();
1095 
1096 	for_each_possible_cpu(cpu) {
1097 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1098 		struct vmap_block *vb;
1099 
1100 		rcu_read_lock();
1101 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1102 			spin_lock(&vb->lock);
1103 			if (vb->dirty) {
1104 				unsigned long va_start = vb->va->va_start;
1105 				unsigned long s, e;
1106 
1107 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1108 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1109 
1110 				start = min(s, start);
1111 				end   = max(e, end);
1112 
1113 				flush = 1;
1114 			}
1115 			spin_unlock(&vb->lock);
1116 		}
1117 		rcu_read_unlock();
1118 	}
1119 
1120 	mutex_lock(&vmap_purge_lock);
1121 	purge_fragmented_blocks_allcpus();
1122 	if (!__purge_vmap_area_lazy(start, end) && flush)
1123 		flush_tlb_kernel_range(start, end);
1124 	mutex_unlock(&vmap_purge_lock);
1125 }
1126 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1127 
1128 /**
1129  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1130  * @mem: the pointer returned by vm_map_ram
1131  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1132  */
1133 void vm_unmap_ram(const void *mem, unsigned int count)
1134 {
1135 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1136 	unsigned long addr = (unsigned long)mem;
1137 	struct vmap_area *va;
1138 
1139 	might_sleep();
1140 	BUG_ON(!addr);
1141 	BUG_ON(addr < VMALLOC_START);
1142 	BUG_ON(addr > VMALLOC_END);
1143 	BUG_ON(!PAGE_ALIGNED(addr));
1144 
1145 	debug_check_no_locks_freed(mem, size);
1146 	vmap_debug_free_range(addr, addr+size);
1147 
1148 	if (likely(count <= VMAP_MAX_ALLOC)) {
1149 		vb_free(mem, size);
1150 		return;
1151 	}
1152 
1153 	va = find_vmap_area(addr);
1154 	BUG_ON(!va);
1155 	free_unmap_vmap_area(va);
1156 }
1157 EXPORT_SYMBOL(vm_unmap_ram);
1158 
1159 /**
1160  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1161  * @pages: an array of pointers to the pages to be mapped
1162  * @count: number of pages
1163  * @node: prefer to allocate data structures on this node
1164  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1165  *
1166  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1167  * faster than vmap so it's good.  But if you mix long-life and short-life
1168  * objects with vm_map_ram(), it could consume lots of address space through
1169  * fragmentation (especially on a 32bit machine).  You could see failures in
1170  * the end.  Please use this function for short-lived objects.
1171  *
1172  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1173  */
1174 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1175 {
1176 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1177 	unsigned long addr;
1178 	void *mem;
1179 
1180 	if (likely(count <= VMAP_MAX_ALLOC)) {
1181 		mem = vb_alloc(size, GFP_KERNEL);
1182 		if (IS_ERR(mem))
1183 			return NULL;
1184 		addr = (unsigned long)mem;
1185 	} else {
1186 		struct vmap_area *va;
1187 		va = alloc_vmap_area(size, PAGE_SIZE,
1188 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1189 		if (IS_ERR(va))
1190 			return NULL;
1191 
1192 		addr = va->va_start;
1193 		mem = (void *)addr;
1194 	}
1195 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1196 		vm_unmap_ram(mem, count);
1197 		return NULL;
1198 	}
1199 	return mem;
1200 }
1201 EXPORT_SYMBOL(vm_map_ram);
1202 
1203 static struct vm_struct *vmlist __initdata;
1204 /**
1205  * vm_area_add_early - add vmap area early during boot
1206  * @vm: vm_struct to add
1207  *
1208  * This function is used to add fixed kernel vm area to vmlist before
1209  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1210  * should contain proper values and the other fields should be zero.
1211  *
1212  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1213  */
1214 void __init vm_area_add_early(struct vm_struct *vm)
1215 {
1216 	struct vm_struct *tmp, **p;
1217 
1218 	BUG_ON(vmap_initialized);
1219 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1220 		if (tmp->addr >= vm->addr) {
1221 			BUG_ON(tmp->addr < vm->addr + vm->size);
1222 			break;
1223 		} else
1224 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1225 	}
1226 	vm->next = *p;
1227 	*p = vm;
1228 }
1229 
1230 /**
1231  * vm_area_register_early - register vmap area early during boot
1232  * @vm: vm_struct to register
1233  * @align: requested alignment
1234  *
1235  * This function is used to register kernel vm area before
1236  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1237  * proper values on entry and other fields should be zero.  On return,
1238  * vm->addr contains the allocated address.
1239  *
1240  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1241  */
1242 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1243 {
1244 	static size_t vm_init_off __initdata;
1245 	unsigned long addr;
1246 
1247 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1248 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1249 
1250 	vm->addr = (void *)addr;
1251 
1252 	vm_area_add_early(vm);
1253 }
1254 
1255 void __init vmalloc_init(void)
1256 {
1257 	struct vmap_area *va;
1258 	struct vm_struct *tmp;
1259 	int i;
1260 
1261 	for_each_possible_cpu(i) {
1262 		struct vmap_block_queue *vbq;
1263 		struct vfree_deferred *p;
1264 
1265 		vbq = &per_cpu(vmap_block_queue, i);
1266 		spin_lock_init(&vbq->lock);
1267 		INIT_LIST_HEAD(&vbq->free);
1268 		p = &per_cpu(vfree_deferred, i);
1269 		init_llist_head(&p->list);
1270 		INIT_WORK(&p->wq, free_work);
1271 	}
1272 
1273 	/* Import existing vmlist entries. */
1274 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1275 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1276 		va->flags = VM_VM_AREA;
1277 		va->va_start = (unsigned long)tmp->addr;
1278 		va->va_end = va->va_start + tmp->size;
1279 		va->vm = tmp;
1280 		__insert_vmap_area(va);
1281 	}
1282 
1283 	vmap_area_pcpu_hole = VMALLOC_END;
1284 
1285 	vmap_initialized = true;
1286 }
1287 
1288 /**
1289  * map_kernel_range_noflush - map kernel VM area with the specified pages
1290  * @addr: start of the VM area to map
1291  * @size: size of the VM area to map
1292  * @prot: page protection flags to use
1293  * @pages: pages to map
1294  *
1295  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1296  * specify should have been allocated using get_vm_area() and its
1297  * friends.
1298  *
1299  * NOTE:
1300  * This function does NOT do any cache flushing.  The caller is
1301  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1302  * before calling this function.
1303  *
1304  * RETURNS:
1305  * The number of pages mapped on success, -errno on failure.
1306  */
1307 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1308 			     pgprot_t prot, struct page **pages)
1309 {
1310 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1311 }
1312 
1313 /**
1314  * unmap_kernel_range_noflush - unmap kernel VM area
1315  * @addr: start of the VM area to unmap
1316  * @size: size of the VM area to unmap
1317  *
1318  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1319  * specify should have been allocated using get_vm_area() and its
1320  * friends.
1321  *
1322  * NOTE:
1323  * This function does NOT do any cache flushing.  The caller is
1324  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1325  * before calling this function and flush_tlb_kernel_range() after.
1326  */
1327 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1328 {
1329 	vunmap_page_range(addr, addr + size);
1330 }
1331 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1332 
1333 /**
1334  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1335  * @addr: start of the VM area to unmap
1336  * @size: size of the VM area to unmap
1337  *
1338  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1339  * the unmapping and tlb after.
1340  */
1341 void unmap_kernel_range(unsigned long addr, unsigned long size)
1342 {
1343 	unsigned long end = addr + size;
1344 
1345 	flush_cache_vunmap(addr, end);
1346 	vunmap_page_range(addr, end);
1347 	flush_tlb_kernel_range(addr, end);
1348 }
1349 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1350 
1351 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1352 {
1353 	unsigned long addr = (unsigned long)area->addr;
1354 	unsigned long end = addr + get_vm_area_size(area);
1355 	int err;
1356 
1357 	err = vmap_page_range(addr, end, prot, pages);
1358 
1359 	return err > 0 ? 0 : err;
1360 }
1361 EXPORT_SYMBOL_GPL(map_vm_area);
1362 
1363 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1364 			      unsigned long flags, const void *caller)
1365 {
1366 	spin_lock(&vmap_area_lock);
1367 	vm->flags = flags;
1368 	vm->addr = (void *)va->va_start;
1369 	vm->size = va->va_end - va->va_start;
1370 	vm->caller = caller;
1371 	va->vm = vm;
1372 	va->flags |= VM_VM_AREA;
1373 	spin_unlock(&vmap_area_lock);
1374 }
1375 
1376 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1377 {
1378 	/*
1379 	 * Before removing VM_UNINITIALIZED,
1380 	 * we should make sure that vm has proper values.
1381 	 * Pair with smp_rmb() in show_numa_info().
1382 	 */
1383 	smp_wmb();
1384 	vm->flags &= ~VM_UNINITIALIZED;
1385 }
1386 
1387 static struct vm_struct *__get_vm_area_node(unsigned long size,
1388 		unsigned long align, unsigned long flags, unsigned long start,
1389 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1390 {
1391 	struct vmap_area *va;
1392 	struct vm_struct *area;
1393 
1394 	BUG_ON(in_interrupt());
1395 	size = PAGE_ALIGN(size);
1396 	if (unlikely(!size))
1397 		return NULL;
1398 
1399 	if (flags & VM_IOREMAP)
1400 		align = 1ul << clamp_t(int, get_count_order_long(size),
1401 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1402 
1403 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1404 	if (unlikely(!area))
1405 		return NULL;
1406 
1407 	if (!(flags & VM_NO_GUARD))
1408 		size += PAGE_SIZE;
1409 
1410 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1411 	if (IS_ERR(va)) {
1412 		kfree(area);
1413 		return NULL;
1414 	}
1415 
1416 	setup_vmalloc_vm(area, va, flags, caller);
1417 
1418 	return area;
1419 }
1420 
1421 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1422 				unsigned long start, unsigned long end)
1423 {
1424 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1425 				  GFP_KERNEL, __builtin_return_address(0));
1426 }
1427 EXPORT_SYMBOL_GPL(__get_vm_area);
1428 
1429 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1430 				       unsigned long start, unsigned long end,
1431 				       const void *caller)
1432 {
1433 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1434 				  GFP_KERNEL, caller);
1435 }
1436 
1437 /**
1438  *	get_vm_area  -  reserve a contiguous kernel virtual area
1439  *	@size:		size of the area
1440  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1441  *
1442  *	Search an area of @size in the kernel virtual mapping area,
1443  *	and reserved it for out purposes.  Returns the area descriptor
1444  *	on success or %NULL on failure.
1445  */
1446 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1447 {
1448 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1449 				  NUMA_NO_NODE, GFP_KERNEL,
1450 				  __builtin_return_address(0));
1451 }
1452 
1453 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1454 				const void *caller)
1455 {
1456 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1457 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1458 }
1459 
1460 /**
1461  *	find_vm_area  -  find a continuous kernel virtual area
1462  *	@addr:		base address
1463  *
1464  *	Search for the kernel VM area starting at @addr, and return it.
1465  *	It is up to the caller to do all required locking to keep the returned
1466  *	pointer valid.
1467  */
1468 struct vm_struct *find_vm_area(const void *addr)
1469 {
1470 	struct vmap_area *va;
1471 
1472 	va = find_vmap_area((unsigned long)addr);
1473 	if (va && va->flags & VM_VM_AREA)
1474 		return va->vm;
1475 
1476 	return NULL;
1477 }
1478 
1479 /**
1480  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1481  *	@addr:		base address
1482  *
1483  *	Search for the kernel VM area starting at @addr, and remove it.
1484  *	This function returns the found VM area, but using it is NOT safe
1485  *	on SMP machines, except for its size or flags.
1486  */
1487 struct vm_struct *remove_vm_area(const void *addr)
1488 {
1489 	struct vmap_area *va;
1490 
1491 	might_sleep();
1492 
1493 	va = find_vmap_area((unsigned long)addr);
1494 	if (va && va->flags & VM_VM_AREA) {
1495 		struct vm_struct *vm = va->vm;
1496 
1497 		spin_lock(&vmap_area_lock);
1498 		va->vm = NULL;
1499 		va->flags &= ~VM_VM_AREA;
1500 		spin_unlock(&vmap_area_lock);
1501 
1502 		vmap_debug_free_range(va->va_start, va->va_end);
1503 		kasan_free_shadow(vm);
1504 		free_unmap_vmap_area(va);
1505 
1506 		return vm;
1507 	}
1508 	return NULL;
1509 }
1510 
1511 static void __vunmap(const void *addr, int deallocate_pages)
1512 {
1513 	struct vm_struct *area;
1514 
1515 	if (!addr)
1516 		return;
1517 
1518 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1519 			addr))
1520 		return;
1521 
1522 	area = remove_vm_area(addr);
1523 	if (unlikely(!area)) {
1524 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1525 				addr);
1526 		return;
1527 	}
1528 
1529 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1530 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1531 
1532 	if (deallocate_pages) {
1533 		int i;
1534 
1535 		for (i = 0; i < area->nr_pages; i++) {
1536 			struct page *page = area->pages[i];
1537 
1538 			BUG_ON(!page);
1539 			__free_pages(page, 0);
1540 		}
1541 
1542 		kvfree(area->pages);
1543 	}
1544 
1545 	kfree(area);
1546 	return;
1547 }
1548 
1549 static inline void __vfree_deferred(const void *addr)
1550 {
1551 	/*
1552 	 * Use raw_cpu_ptr() because this can be called from preemptible
1553 	 * context. Preemption is absolutely fine here, because the llist_add()
1554 	 * implementation is lockless, so it works even if we are adding to
1555 	 * nother cpu's list.  schedule_work() should be fine with this too.
1556 	 */
1557 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1558 
1559 	if (llist_add((struct llist_node *)addr, &p->list))
1560 		schedule_work(&p->wq);
1561 }
1562 
1563 /**
1564  *	vfree_atomic  -  release memory allocated by vmalloc()
1565  *	@addr:		memory base address
1566  *
1567  *	This one is just like vfree() but can be called in any atomic context
1568  *	except NMIs.
1569  */
1570 void vfree_atomic(const void *addr)
1571 {
1572 	BUG_ON(in_nmi());
1573 
1574 	kmemleak_free(addr);
1575 
1576 	if (!addr)
1577 		return;
1578 	__vfree_deferred(addr);
1579 }
1580 
1581 /**
1582  *	vfree  -  release memory allocated by vmalloc()
1583  *	@addr:		memory base address
1584  *
1585  *	Free the virtually continuous memory area starting at @addr, as
1586  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1587  *	NULL, no operation is performed.
1588  *
1589  *	Must not be called in NMI context (strictly speaking, only if we don't
1590  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1591  *	conventions for vfree() arch-depenedent would be a really bad idea)
1592  *
1593  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1594  */
1595 void vfree(const void *addr)
1596 {
1597 	BUG_ON(in_nmi());
1598 
1599 	kmemleak_free(addr);
1600 
1601 	if (!addr)
1602 		return;
1603 	if (unlikely(in_interrupt()))
1604 		__vfree_deferred(addr);
1605 	else
1606 		__vunmap(addr, 1);
1607 }
1608 EXPORT_SYMBOL(vfree);
1609 
1610 /**
1611  *	vunmap  -  release virtual mapping obtained by vmap()
1612  *	@addr:		memory base address
1613  *
1614  *	Free the virtually contiguous memory area starting at @addr,
1615  *	which was created from the page array passed to vmap().
1616  *
1617  *	Must not be called in interrupt context.
1618  */
1619 void vunmap(const void *addr)
1620 {
1621 	BUG_ON(in_interrupt());
1622 	might_sleep();
1623 	if (addr)
1624 		__vunmap(addr, 0);
1625 }
1626 EXPORT_SYMBOL(vunmap);
1627 
1628 /**
1629  *	vmap  -  map an array of pages into virtually contiguous space
1630  *	@pages:		array of page pointers
1631  *	@count:		number of pages to map
1632  *	@flags:		vm_area->flags
1633  *	@prot:		page protection for the mapping
1634  *
1635  *	Maps @count pages from @pages into contiguous kernel virtual
1636  *	space.
1637  */
1638 void *vmap(struct page **pages, unsigned int count,
1639 		unsigned long flags, pgprot_t prot)
1640 {
1641 	struct vm_struct *area;
1642 	unsigned long size;		/* In bytes */
1643 
1644 	might_sleep();
1645 
1646 	if (count > totalram_pages)
1647 		return NULL;
1648 
1649 	size = (unsigned long)count << PAGE_SHIFT;
1650 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1651 	if (!area)
1652 		return NULL;
1653 
1654 	if (map_vm_area(area, prot, pages)) {
1655 		vunmap(area->addr);
1656 		return NULL;
1657 	}
1658 
1659 	return area->addr;
1660 }
1661 EXPORT_SYMBOL(vmap);
1662 
1663 static void *__vmalloc_node(unsigned long size, unsigned long align,
1664 			    gfp_t gfp_mask, pgprot_t prot,
1665 			    int node, const void *caller);
1666 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1667 				 pgprot_t prot, int node)
1668 {
1669 	struct page **pages;
1670 	unsigned int nr_pages, array_size, i;
1671 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1672 	const gfp_t alloc_mask = gfp_mask | __GFP_HIGHMEM | __GFP_NOWARN;
1673 
1674 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1675 	array_size = (nr_pages * sizeof(struct page *));
1676 
1677 	area->nr_pages = nr_pages;
1678 	/* Please note that the recursion is strictly bounded. */
1679 	if (array_size > PAGE_SIZE) {
1680 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1681 				PAGE_KERNEL, node, area->caller);
1682 	} else {
1683 		pages = kmalloc_node(array_size, nested_gfp, node);
1684 	}
1685 	area->pages = pages;
1686 	if (!area->pages) {
1687 		remove_vm_area(area->addr);
1688 		kfree(area);
1689 		return NULL;
1690 	}
1691 
1692 	for (i = 0; i < area->nr_pages; i++) {
1693 		struct page *page;
1694 
1695 		if (fatal_signal_pending(current)) {
1696 			area->nr_pages = i;
1697 			goto fail_no_warn;
1698 		}
1699 
1700 		if (node == NUMA_NO_NODE)
1701 			page = alloc_page(alloc_mask);
1702 		else
1703 			page = alloc_pages_node(node, alloc_mask, 0);
1704 
1705 		if (unlikely(!page)) {
1706 			/* Successfully allocated i pages, free them in __vunmap() */
1707 			area->nr_pages = i;
1708 			goto fail;
1709 		}
1710 		area->pages[i] = page;
1711 		if (gfpflags_allow_blocking(gfp_mask))
1712 			cond_resched();
1713 	}
1714 
1715 	if (map_vm_area(area, prot, pages))
1716 		goto fail;
1717 	return area->addr;
1718 
1719 fail:
1720 	warn_alloc(gfp_mask, NULL,
1721 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1722 			  (area->nr_pages*PAGE_SIZE), area->size);
1723 fail_no_warn:
1724 	vfree(area->addr);
1725 	return NULL;
1726 }
1727 
1728 /**
1729  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1730  *	@size:		allocation size
1731  *	@align:		desired alignment
1732  *	@start:		vm area range start
1733  *	@end:		vm area range end
1734  *	@gfp_mask:	flags for the page level allocator
1735  *	@prot:		protection mask for the allocated pages
1736  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1737  *	@node:		node to use for allocation or NUMA_NO_NODE
1738  *	@caller:	caller's return address
1739  *
1740  *	Allocate enough pages to cover @size from the page level
1741  *	allocator with @gfp_mask flags.  Map them into contiguous
1742  *	kernel virtual space, using a pagetable protection of @prot.
1743  */
1744 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1745 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1746 			pgprot_t prot, unsigned long vm_flags, int node,
1747 			const void *caller)
1748 {
1749 	struct vm_struct *area;
1750 	void *addr;
1751 	unsigned long real_size = size;
1752 
1753 	size = PAGE_ALIGN(size);
1754 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1755 		goto fail;
1756 
1757 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1758 				vm_flags, start, end, node, gfp_mask, caller);
1759 	if (!area)
1760 		goto fail;
1761 
1762 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1763 	if (!addr)
1764 		return NULL;
1765 
1766 	/*
1767 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1768 	 * flag. It means that vm_struct is not fully initialized.
1769 	 * Now, it is fully initialized, so remove this flag here.
1770 	 */
1771 	clear_vm_uninitialized_flag(area);
1772 
1773 	/*
1774 	 * A ref_count = 2 is needed because vm_struct allocated in
1775 	 * __get_vm_area_node() contains a reference to the virtual address of
1776 	 * the vmalloc'ed block.
1777 	 */
1778 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1779 
1780 	return addr;
1781 
1782 fail:
1783 	warn_alloc(gfp_mask, NULL,
1784 			  "vmalloc: allocation failure: %lu bytes", real_size);
1785 	return NULL;
1786 }
1787 
1788 /**
1789  *	__vmalloc_node  -  allocate virtually contiguous memory
1790  *	@size:		allocation size
1791  *	@align:		desired alignment
1792  *	@gfp_mask:	flags for the page level allocator
1793  *	@prot:		protection mask for the allocated pages
1794  *	@node:		node to use for allocation or NUMA_NO_NODE
1795  *	@caller:	caller's return address
1796  *
1797  *	Allocate enough pages to cover @size from the page level
1798  *	allocator with @gfp_mask flags.  Map them into contiguous
1799  *	kernel virtual space, using a pagetable protection of @prot.
1800  *
1801  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_REPEAT
1802  *	and __GFP_NOFAIL are not supported
1803  *
1804  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1805  *	with mm people.
1806  *
1807  */
1808 static void *__vmalloc_node(unsigned long size, unsigned long align,
1809 			    gfp_t gfp_mask, pgprot_t prot,
1810 			    int node, const void *caller)
1811 {
1812 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1813 				gfp_mask, prot, 0, node, caller);
1814 }
1815 
1816 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1817 {
1818 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1819 				__builtin_return_address(0));
1820 }
1821 EXPORT_SYMBOL(__vmalloc);
1822 
1823 static inline void *__vmalloc_node_flags(unsigned long size,
1824 					int node, gfp_t flags)
1825 {
1826 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1827 					node, __builtin_return_address(0));
1828 }
1829 
1830 
1831 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1832 				  void *caller)
1833 {
1834 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1835 }
1836 
1837 /**
1838  *	vmalloc  -  allocate virtually contiguous memory
1839  *	@size:		allocation size
1840  *	Allocate enough pages to cover @size from the page level
1841  *	allocator and map them into contiguous kernel virtual space.
1842  *
1843  *	For tight control over page level allocator and protection flags
1844  *	use __vmalloc() instead.
1845  */
1846 void *vmalloc(unsigned long size)
1847 {
1848 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1849 				    GFP_KERNEL);
1850 }
1851 EXPORT_SYMBOL(vmalloc);
1852 
1853 /**
1854  *	vzalloc - allocate virtually contiguous memory with zero fill
1855  *	@size:	allocation size
1856  *	Allocate enough pages to cover @size from the page level
1857  *	allocator and map them into contiguous kernel virtual space.
1858  *	The memory allocated is set to zero.
1859  *
1860  *	For tight control over page level allocator and protection flags
1861  *	use __vmalloc() instead.
1862  */
1863 void *vzalloc(unsigned long size)
1864 {
1865 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1866 				GFP_KERNEL | __GFP_ZERO);
1867 }
1868 EXPORT_SYMBOL(vzalloc);
1869 
1870 /**
1871  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1872  * @size: allocation size
1873  *
1874  * The resulting memory area is zeroed so it can be mapped to userspace
1875  * without leaking data.
1876  */
1877 void *vmalloc_user(unsigned long size)
1878 {
1879 	struct vm_struct *area;
1880 	void *ret;
1881 
1882 	ret = __vmalloc_node(size, SHMLBA,
1883 			     GFP_KERNEL | __GFP_ZERO,
1884 			     PAGE_KERNEL, NUMA_NO_NODE,
1885 			     __builtin_return_address(0));
1886 	if (ret) {
1887 		area = find_vm_area(ret);
1888 		area->flags |= VM_USERMAP;
1889 	}
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL(vmalloc_user);
1893 
1894 /**
1895  *	vmalloc_node  -  allocate memory on a specific node
1896  *	@size:		allocation size
1897  *	@node:		numa node
1898  *
1899  *	Allocate enough pages to cover @size from the page level
1900  *	allocator and map them into contiguous kernel virtual space.
1901  *
1902  *	For tight control over page level allocator and protection flags
1903  *	use __vmalloc() instead.
1904  */
1905 void *vmalloc_node(unsigned long size, int node)
1906 {
1907 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1908 					node, __builtin_return_address(0));
1909 }
1910 EXPORT_SYMBOL(vmalloc_node);
1911 
1912 /**
1913  * vzalloc_node - allocate memory on a specific node with zero fill
1914  * @size:	allocation size
1915  * @node:	numa node
1916  *
1917  * Allocate enough pages to cover @size from the page level
1918  * allocator and map them into contiguous kernel virtual space.
1919  * The memory allocated is set to zero.
1920  *
1921  * For tight control over page level allocator and protection flags
1922  * use __vmalloc_node() instead.
1923  */
1924 void *vzalloc_node(unsigned long size, int node)
1925 {
1926 	return __vmalloc_node_flags(size, node,
1927 			 GFP_KERNEL | __GFP_ZERO);
1928 }
1929 EXPORT_SYMBOL(vzalloc_node);
1930 
1931 #ifndef PAGE_KERNEL_EXEC
1932 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1933 #endif
1934 
1935 /**
1936  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1937  *	@size:		allocation size
1938  *
1939  *	Kernel-internal function to allocate enough pages to cover @size
1940  *	the page level allocator and map them into contiguous and
1941  *	executable kernel virtual space.
1942  *
1943  *	For tight control over page level allocator and protection flags
1944  *	use __vmalloc() instead.
1945  */
1946 
1947 void *vmalloc_exec(unsigned long size)
1948 {
1949 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1950 			      NUMA_NO_NODE, __builtin_return_address(0));
1951 }
1952 
1953 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1954 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1955 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1956 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1957 #else
1958 #define GFP_VMALLOC32 GFP_KERNEL
1959 #endif
1960 
1961 /**
1962  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1963  *	@size:		allocation size
1964  *
1965  *	Allocate enough 32bit PA addressable pages to cover @size from the
1966  *	page level allocator and map them into contiguous kernel virtual space.
1967  */
1968 void *vmalloc_32(unsigned long size)
1969 {
1970 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1971 			      NUMA_NO_NODE, __builtin_return_address(0));
1972 }
1973 EXPORT_SYMBOL(vmalloc_32);
1974 
1975 /**
1976  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1977  *	@size:		allocation size
1978  *
1979  * The resulting memory area is 32bit addressable and zeroed so it can be
1980  * mapped to userspace without leaking data.
1981  */
1982 void *vmalloc_32_user(unsigned long size)
1983 {
1984 	struct vm_struct *area;
1985 	void *ret;
1986 
1987 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1988 			     NUMA_NO_NODE, __builtin_return_address(0));
1989 	if (ret) {
1990 		area = find_vm_area(ret);
1991 		area->flags |= VM_USERMAP;
1992 	}
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL(vmalloc_32_user);
1996 
1997 /*
1998  * small helper routine , copy contents to buf from addr.
1999  * If the page is not present, fill zero.
2000  */
2001 
2002 static int aligned_vread(char *buf, char *addr, unsigned long count)
2003 {
2004 	struct page *p;
2005 	int copied = 0;
2006 
2007 	while (count) {
2008 		unsigned long offset, length;
2009 
2010 		offset = offset_in_page(addr);
2011 		length = PAGE_SIZE - offset;
2012 		if (length > count)
2013 			length = count;
2014 		p = vmalloc_to_page(addr);
2015 		/*
2016 		 * To do safe access to this _mapped_ area, we need
2017 		 * lock. But adding lock here means that we need to add
2018 		 * overhead of vmalloc()/vfree() calles for this _debug_
2019 		 * interface, rarely used. Instead of that, we'll use
2020 		 * kmap() and get small overhead in this access function.
2021 		 */
2022 		if (p) {
2023 			/*
2024 			 * we can expect USER0 is not used (see vread/vwrite's
2025 			 * function description)
2026 			 */
2027 			void *map = kmap_atomic(p);
2028 			memcpy(buf, map + offset, length);
2029 			kunmap_atomic(map);
2030 		} else
2031 			memset(buf, 0, length);
2032 
2033 		addr += length;
2034 		buf += length;
2035 		copied += length;
2036 		count -= length;
2037 	}
2038 	return copied;
2039 }
2040 
2041 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2042 {
2043 	struct page *p;
2044 	int copied = 0;
2045 
2046 	while (count) {
2047 		unsigned long offset, length;
2048 
2049 		offset = offset_in_page(addr);
2050 		length = PAGE_SIZE - offset;
2051 		if (length > count)
2052 			length = count;
2053 		p = vmalloc_to_page(addr);
2054 		/*
2055 		 * To do safe access to this _mapped_ area, we need
2056 		 * lock. But adding lock here means that we need to add
2057 		 * overhead of vmalloc()/vfree() calles for this _debug_
2058 		 * interface, rarely used. Instead of that, we'll use
2059 		 * kmap() and get small overhead in this access function.
2060 		 */
2061 		if (p) {
2062 			/*
2063 			 * we can expect USER0 is not used (see vread/vwrite's
2064 			 * function description)
2065 			 */
2066 			void *map = kmap_atomic(p);
2067 			memcpy(map + offset, buf, length);
2068 			kunmap_atomic(map);
2069 		}
2070 		addr += length;
2071 		buf += length;
2072 		copied += length;
2073 		count -= length;
2074 	}
2075 	return copied;
2076 }
2077 
2078 /**
2079  *	vread() -  read vmalloc area in a safe way.
2080  *	@buf:		buffer for reading data
2081  *	@addr:		vm address.
2082  *	@count:		number of bytes to be read.
2083  *
2084  *	Returns # of bytes which addr and buf should be increased.
2085  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2086  *	includes any intersect with alive vmalloc area.
2087  *
2088  *	This function checks that addr is a valid vmalloc'ed area, and
2089  *	copy data from that area to a given buffer. If the given memory range
2090  *	of [addr...addr+count) includes some valid address, data is copied to
2091  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2092  *	IOREMAP area is treated as memory hole and no copy is done.
2093  *
2094  *	If [addr...addr+count) doesn't includes any intersects with alive
2095  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2096  *
2097  *	Note: In usual ops, vread() is never necessary because the caller
2098  *	should know vmalloc() area is valid and can use memcpy().
2099  *	This is for routines which have to access vmalloc area without
2100  *	any informaion, as /dev/kmem.
2101  *
2102  */
2103 
2104 long vread(char *buf, char *addr, unsigned long count)
2105 {
2106 	struct vmap_area *va;
2107 	struct vm_struct *vm;
2108 	char *vaddr, *buf_start = buf;
2109 	unsigned long buflen = count;
2110 	unsigned long n;
2111 
2112 	/* Don't allow overflow */
2113 	if ((unsigned long) addr + count < count)
2114 		count = -(unsigned long) addr;
2115 
2116 	spin_lock(&vmap_area_lock);
2117 	list_for_each_entry(va, &vmap_area_list, list) {
2118 		if (!count)
2119 			break;
2120 
2121 		if (!(va->flags & VM_VM_AREA))
2122 			continue;
2123 
2124 		vm = va->vm;
2125 		vaddr = (char *) vm->addr;
2126 		if (addr >= vaddr + get_vm_area_size(vm))
2127 			continue;
2128 		while (addr < vaddr) {
2129 			if (count == 0)
2130 				goto finished;
2131 			*buf = '\0';
2132 			buf++;
2133 			addr++;
2134 			count--;
2135 		}
2136 		n = vaddr + get_vm_area_size(vm) - addr;
2137 		if (n > count)
2138 			n = count;
2139 		if (!(vm->flags & VM_IOREMAP))
2140 			aligned_vread(buf, addr, n);
2141 		else /* IOREMAP area is treated as memory hole */
2142 			memset(buf, 0, n);
2143 		buf += n;
2144 		addr += n;
2145 		count -= n;
2146 	}
2147 finished:
2148 	spin_unlock(&vmap_area_lock);
2149 
2150 	if (buf == buf_start)
2151 		return 0;
2152 	/* zero-fill memory holes */
2153 	if (buf != buf_start + buflen)
2154 		memset(buf, 0, buflen - (buf - buf_start));
2155 
2156 	return buflen;
2157 }
2158 
2159 /**
2160  *	vwrite() -  write vmalloc area in a safe way.
2161  *	@buf:		buffer for source data
2162  *	@addr:		vm address.
2163  *	@count:		number of bytes to be read.
2164  *
2165  *	Returns # of bytes which addr and buf should be incresed.
2166  *	(same number to @count).
2167  *	If [addr...addr+count) doesn't includes any intersect with valid
2168  *	vmalloc area, returns 0.
2169  *
2170  *	This function checks that addr is a valid vmalloc'ed area, and
2171  *	copy data from a buffer to the given addr. If specified range of
2172  *	[addr...addr+count) includes some valid address, data is copied from
2173  *	proper area of @buf. If there are memory holes, no copy to hole.
2174  *	IOREMAP area is treated as memory hole and no copy is done.
2175  *
2176  *	If [addr...addr+count) doesn't includes any intersects with alive
2177  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2178  *
2179  *	Note: In usual ops, vwrite() is never necessary because the caller
2180  *	should know vmalloc() area is valid and can use memcpy().
2181  *	This is for routines which have to access vmalloc area without
2182  *	any informaion, as /dev/kmem.
2183  */
2184 
2185 long vwrite(char *buf, char *addr, unsigned long count)
2186 {
2187 	struct vmap_area *va;
2188 	struct vm_struct *vm;
2189 	char *vaddr;
2190 	unsigned long n, buflen;
2191 	int copied = 0;
2192 
2193 	/* Don't allow overflow */
2194 	if ((unsigned long) addr + count < count)
2195 		count = -(unsigned long) addr;
2196 	buflen = count;
2197 
2198 	spin_lock(&vmap_area_lock);
2199 	list_for_each_entry(va, &vmap_area_list, list) {
2200 		if (!count)
2201 			break;
2202 
2203 		if (!(va->flags & VM_VM_AREA))
2204 			continue;
2205 
2206 		vm = va->vm;
2207 		vaddr = (char *) vm->addr;
2208 		if (addr >= vaddr + get_vm_area_size(vm))
2209 			continue;
2210 		while (addr < vaddr) {
2211 			if (count == 0)
2212 				goto finished;
2213 			buf++;
2214 			addr++;
2215 			count--;
2216 		}
2217 		n = vaddr + get_vm_area_size(vm) - addr;
2218 		if (n > count)
2219 			n = count;
2220 		if (!(vm->flags & VM_IOREMAP)) {
2221 			aligned_vwrite(buf, addr, n);
2222 			copied++;
2223 		}
2224 		buf += n;
2225 		addr += n;
2226 		count -= n;
2227 	}
2228 finished:
2229 	spin_unlock(&vmap_area_lock);
2230 	if (!copied)
2231 		return 0;
2232 	return buflen;
2233 }
2234 
2235 /**
2236  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2237  *	@vma:		vma to cover
2238  *	@uaddr:		target user address to start at
2239  *	@kaddr:		virtual address of vmalloc kernel memory
2240  *	@size:		size of map area
2241  *
2242  *	Returns:	0 for success, -Exxx on failure
2243  *
2244  *	This function checks that @kaddr is a valid vmalloc'ed area,
2245  *	and that it is big enough to cover the range starting at
2246  *	@uaddr in @vma. Will return failure if that criteria isn't
2247  *	met.
2248  *
2249  *	Similar to remap_pfn_range() (see mm/memory.c)
2250  */
2251 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2252 				void *kaddr, unsigned long size)
2253 {
2254 	struct vm_struct *area;
2255 
2256 	size = PAGE_ALIGN(size);
2257 
2258 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2259 		return -EINVAL;
2260 
2261 	area = find_vm_area(kaddr);
2262 	if (!area)
2263 		return -EINVAL;
2264 
2265 	if (!(area->flags & VM_USERMAP))
2266 		return -EINVAL;
2267 
2268 	if (kaddr + size > area->addr + area->size)
2269 		return -EINVAL;
2270 
2271 	do {
2272 		struct page *page = vmalloc_to_page(kaddr);
2273 		int ret;
2274 
2275 		ret = vm_insert_page(vma, uaddr, page);
2276 		if (ret)
2277 			return ret;
2278 
2279 		uaddr += PAGE_SIZE;
2280 		kaddr += PAGE_SIZE;
2281 		size -= PAGE_SIZE;
2282 	} while (size > 0);
2283 
2284 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2285 
2286 	return 0;
2287 }
2288 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2289 
2290 /**
2291  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2292  *	@vma:		vma to cover (map full range of vma)
2293  *	@addr:		vmalloc memory
2294  *	@pgoff:		number of pages into addr before first page to map
2295  *
2296  *	Returns:	0 for success, -Exxx on failure
2297  *
2298  *	This function checks that addr is a valid vmalloc'ed area, and
2299  *	that it is big enough to cover the vma. Will return failure if
2300  *	that criteria isn't met.
2301  *
2302  *	Similar to remap_pfn_range() (see mm/memory.c)
2303  */
2304 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2305 						unsigned long pgoff)
2306 {
2307 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2308 					   addr + (pgoff << PAGE_SHIFT),
2309 					   vma->vm_end - vma->vm_start);
2310 }
2311 EXPORT_SYMBOL(remap_vmalloc_range);
2312 
2313 /*
2314  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2315  * have one.
2316  */
2317 void __weak vmalloc_sync_all(void)
2318 {
2319 }
2320 
2321 
2322 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2323 {
2324 	pte_t ***p = data;
2325 
2326 	if (p) {
2327 		*(*p) = pte;
2328 		(*p)++;
2329 	}
2330 	return 0;
2331 }
2332 
2333 /**
2334  *	alloc_vm_area - allocate a range of kernel address space
2335  *	@size:		size of the area
2336  *	@ptes:		returns the PTEs for the address space
2337  *
2338  *	Returns:	NULL on failure, vm_struct on success
2339  *
2340  *	This function reserves a range of kernel address space, and
2341  *	allocates pagetables to map that range.  No actual mappings
2342  *	are created.
2343  *
2344  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2345  *	allocated for the VM area are returned.
2346  */
2347 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2348 {
2349 	struct vm_struct *area;
2350 
2351 	area = get_vm_area_caller(size, VM_IOREMAP,
2352 				__builtin_return_address(0));
2353 	if (area == NULL)
2354 		return NULL;
2355 
2356 	/*
2357 	 * This ensures that page tables are constructed for this region
2358 	 * of kernel virtual address space and mapped into init_mm.
2359 	 */
2360 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2361 				size, f, ptes ? &ptes : NULL)) {
2362 		free_vm_area(area);
2363 		return NULL;
2364 	}
2365 
2366 	return area;
2367 }
2368 EXPORT_SYMBOL_GPL(alloc_vm_area);
2369 
2370 void free_vm_area(struct vm_struct *area)
2371 {
2372 	struct vm_struct *ret;
2373 	ret = remove_vm_area(area->addr);
2374 	BUG_ON(ret != area);
2375 	kfree(area);
2376 }
2377 EXPORT_SYMBOL_GPL(free_vm_area);
2378 
2379 #ifdef CONFIG_SMP
2380 static struct vmap_area *node_to_va(struct rb_node *n)
2381 {
2382 	return rb_entry_safe(n, struct vmap_area, rb_node);
2383 }
2384 
2385 /**
2386  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2387  * @end: target address
2388  * @pnext: out arg for the next vmap_area
2389  * @pprev: out arg for the previous vmap_area
2390  *
2391  * Returns: %true if either or both of next and prev are found,
2392  *	    %false if no vmap_area exists
2393  *
2394  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2395  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2396  */
2397 static bool pvm_find_next_prev(unsigned long end,
2398 			       struct vmap_area **pnext,
2399 			       struct vmap_area **pprev)
2400 {
2401 	struct rb_node *n = vmap_area_root.rb_node;
2402 	struct vmap_area *va = NULL;
2403 
2404 	while (n) {
2405 		va = rb_entry(n, struct vmap_area, rb_node);
2406 		if (end < va->va_end)
2407 			n = n->rb_left;
2408 		else if (end > va->va_end)
2409 			n = n->rb_right;
2410 		else
2411 			break;
2412 	}
2413 
2414 	if (!va)
2415 		return false;
2416 
2417 	if (va->va_end > end) {
2418 		*pnext = va;
2419 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2420 	} else {
2421 		*pprev = va;
2422 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2423 	}
2424 	return true;
2425 }
2426 
2427 /**
2428  * pvm_determine_end - find the highest aligned address between two vmap_areas
2429  * @pnext: in/out arg for the next vmap_area
2430  * @pprev: in/out arg for the previous vmap_area
2431  * @align: alignment
2432  *
2433  * Returns: determined end address
2434  *
2435  * Find the highest aligned address between *@pnext and *@pprev below
2436  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2437  * down address is between the end addresses of the two vmap_areas.
2438  *
2439  * Please note that the address returned by this function may fall
2440  * inside *@pnext vmap_area.  The caller is responsible for checking
2441  * that.
2442  */
2443 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2444 				       struct vmap_area **pprev,
2445 				       unsigned long align)
2446 {
2447 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2448 	unsigned long addr;
2449 
2450 	if (*pnext)
2451 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2452 	else
2453 		addr = vmalloc_end;
2454 
2455 	while (*pprev && (*pprev)->va_end > addr) {
2456 		*pnext = *pprev;
2457 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2458 	}
2459 
2460 	return addr;
2461 }
2462 
2463 /**
2464  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2465  * @offsets: array containing offset of each area
2466  * @sizes: array containing size of each area
2467  * @nr_vms: the number of areas to allocate
2468  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2469  *
2470  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2471  *	    vm_structs on success, %NULL on failure
2472  *
2473  * Percpu allocator wants to use congruent vm areas so that it can
2474  * maintain the offsets among percpu areas.  This function allocates
2475  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2476  * be scattered pretty far, distance between two areas easily going up
2477  * to gigabytes.  To avoid interacting with regular vmallocs, these
2478  * areas are allocated from top.
2479  *
2480  * Despite its complicated look, this allocator is rather simple.  It
2481  * does everything top-down and scans areas from the end looking for
2482  * matching slot.  While scanning, if any of the areas overlaps with
2483  * existing vmap_area, the base address is pulled down to fit the
2484  * area.  Scanning is repeated till all the areas fit and then all
2485  * necessary data structres are inserted and the result is returned.
2486  */
2487 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2488 				     const size_t *sizes, int nr_vms,
2489 				     size_t align)
2490 {
2491 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2492 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2493 	struct vmap_area **vas, *prev, *next;
2494 	struct vm_struct **vms;
2495 	int area, area2, last_area, term_area;
2496 	unsigned long base, start, end, last_end;
2497 	bool purged = false;
2498 
2499 	/* verify parameters and allocate data structures */
2500 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2501 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2502 		start = offsets[area];
2503 		end = start + sizes[area];
2504 
2505 		/* is everything aligned properly? */
2506 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2507 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2508 
2509 		/* detect the area with the highest address */
2510 		if (start > offsets[last_area])
2511 			last_area = area;
2512 
2513 		for (area2 = 0; area2 < nr_vms; area2++) {
2514 			unsigned long start2 = offsets[area2];
2515 			unsigned long end2 = start2 + sizes[area2];
2516 
2517 			if (area2 == area)
2518 				continue;
2519 
2520 			BUG_ON(start2 >= start && start2 < end);
2521 			BUG_ON(end2 <= end && end2 > start);
2522 		}
2523 	}
2524 	last_end = offsets[last_area] + sizes[last_area];
2525 
2526 	if (vmalloc_end - vmalloc_start < last_end) {
2527 		WARN_ON(true);
2528 		return NULL;
2529 	}
2530 
2531 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2532 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2533 	if (!vas || !vms)
2534 		goto err_free2;
2535 
2536 	for (area = 0; area < nr_vms; area++) {
2537 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2538 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2539 		if (!vas[area] || !vms[area])
2540 			goto err_free;
2541 	}
2542 retry:
2543 	spin_lock(&vmap_area_lock);
2544 
2545 	/* start scanning - we scan from the top, begin with the last area */
2546 	area = term_area = last_area;
2547 	start = offsets[area];
2548 	end = start + sizes[area];
2549 
2550 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2551 		base = vmalloc_end - last_end;
2552 		goto found;
2553 	}
2554 	base = pvm_determine_end(&next, &prev, align) - end;
2555 
2556 	while (true) {
2557 		BUG_ON(next && next->va_end <= base + end);
2558 		BUG_ON(prev && prev->va_end > base + end);
2559 
2560 		/*
2561 		 * base might have underflowed, add last_end before
2562 		 * comparing.
2563 		 */
2564 		if (base + last_end < vmalloc_start + last_end) {
2565 			spin_unlock(&vmap_area_lock);
2566 			if (!purged) {
2567 				purge_vmap_area_lazy();
2568 				purged = true;
2569 				goto retry;
2570 			}
2571 			goto err_free;
2572 		}
2573 
2574 		/*
2575 		 * If next overlaps, move base downwards so that it's
2576 		 * right below next and then recheck.
2577 		 */
2578 		if (next && next->va_start < base + end) {
2579 			base = pvm_determine_end(&next, &prev, align) - end;
2580 			term_area = area;
2581 			continue;
2582 		}
2583 
2584 		/*
2585 		 * If prev overlaps, shift down next and prev and move
2586 		 * base so that it's right below new next and then
2587 		 * recheck.
2588 		 */
2589 		if (prev && prev->va_end > base + start)  {
2590 			next = prev;
2591 			prev = node_to_va(rb_prev(&next->rb_node));
2592 			base = pvm_determine_end(&next, &prev, align) - end;
2593 			term_area = area;
2594 			continue;
2595 		}
2596 
2597 		/*
2598 		 * This area fits, move on to the previous one.  If
2599 		 * the previous one is the terminal one, we're done.
2600 		 */
2601 		area = (area + nr_vms - 1) % nr_vms;
2602 		if (area == term_area)
2603 			break;
2604 		start = offsets[area];
2605 		end = start + sizes[area];
2606 		pvm_find_next_prev(base + end, &next, &prev);
2607 	}
2608 found:
2609 	/* we've found a fitting base, insert all va's */
2610 	for (area = 0; area < nr_vms; area++) {
2611 		struct vmap_area *va = vas[area];
2612 
2613 		va->va_start = base + offsets[area];
2614 		va->va_end = va->va_start + sizes[area];
2615 		__insert_vmap_area(va);
2616 	}
2617 
2618 	vmap_area_pcpu_hole = base + offsets[last_area];
2619 
2620 	spin_unlock(&vmap_area_lock);
2621 
2622 	/* insert all vm's */
2623 	for (area = 0; area < nr_vms; area++)
2624 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2625 				 pcpu_get_vm_areas);
2626 
2627 	kfree(vas);
2628 	return vms;
2629 
2630 err_free:
2631 	for (area = 0; area < nr_vms; area++) {
2632 		kfree(vas[area]);
2633 		kfree(vms[area]);
2634 	}
2635 err_free2:
2636 	kfree(vas);
2637 	kfree(vms);
2638 	return NULL;
2639 }
2640 
2641 /**
2642  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2643  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2644  * @nr_vms: the number of allocated areas
2645  *
2646  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2647  */
2648 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2649 {
2650 	int i;
2651 
2652 	for (i = 0; i < nr_vms; i++)
2653 		free_vm_area(vms[i]);
2654 	kfree(vms);
2655 }
2656 #endif	/* CONFIG_SMP */
2657 
2658 #ifdef CONFIG_PROC_FS
2659 static void *s_start(struct seq_file *m, loff_t *pos)
2660 	__acquires(&vmap_area_lock)
2661 {
2662 	spin_lock(&vmap_area_lock);
2663 	return seq_list_start(&vmap_area_list, *pos);
2664 }
2665 
2666 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2667 {
2668 	return seq_list_next(p, &vmap_area_list, pos);
2669 }
2670 
2671 static void s_stop(struct seq_file *m, void *p)
2672 	__releases(&vmap_area_lock)
2673 {
2674 	spin_unlock(&vmap_area_lock);
2675 }
2676 
2677 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2678 {
2679 	if (IS_ENABLED(CONFIG_NUMA)) {
2680 		unsigned int nr, *counters = m->private;
2681 
2682 		if (!counters)
2683 			return;
2684 
2685 		if (v->flags & VM_UNINITIALIZED)
2686 			return;
2687 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2688 		smp_rmb();
2689 
2690 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2691 
2692 		for (nr = 0; nr < v->nr_pages; nr++)
2693 			counters[page_to_nid(v->pages[nr])]++;
2694 
2695 		for_each_node_state(nr, N_HIGH_MEMORY)
2696 			if (counters[nr])
2697 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2698 	}
2699 }
2700 
2701 static int s_show(struct seq_file *m, void *p)
2702 {
2703 	struct vmap_area *va;
2704 	struct vm_struct *v;
2705 
2706 	va = list_entry(p, struct vmap_area, list);
2707 
2708 	/*
2709 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2710 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2711 	 */
2712 	if (!(va->flags & VM_VM_AREA))
2713 		return 0;
2714 
2715 	v = va->vm;
2716 
2717 	seq_printf(m, "0x%pK-0x%pK %7ld",
2718 		v->addr, v->addr + v->size, v->size);
2719 
2720 	if (v->caller)
2721 		seq_printf(m, " %pS", v->caller);
2722 
2723 	if (v->nr_pages)
2724 		seq_printf(m, " pages=%d", v->nr_pages);
2725 
2726 	if (v->phys_addr)
2727 		seq_printf(m, " phys=%pa", &v->phys_addr);
2728 
2729 	if (v->flags & VM_IOREMAP)
2730 		seq_puts(m, " ioremap");
2731 
2732 	if (v->flags & VM_ALLOC)
2733 		seq_puts(m, " vmalloc");
2734 
2735 	if (v->flags & VM_MAP)
2736 		seq_puts(m, " vmap");
2737 
2738 	if (v->flags & VM_USERMAP)
2739 		seq_puts(m, " user");
2740 
2741 	if (is_vmalloc_addr(v->pages))
2742 		seq_puts(m, " vpages");
2743 
2744 	show_numa_info(m, v);
2745 	seq_putc(m, '\n');
2746 	return 0;
2747 }
2748 
2749 static const struct seq_operations vmalloc_op = {
2750 	.start = s_start,
2751 	.next = s_next,
2752 	.stop = s_stop,
2753 	.show = s_show,
2754 };
2755 
2756 static int vmalloc_open(struct inode *inode, struct file *file)
2757 {
2758 	if (IS_ENABLED(CONFIG_NUMA))
2759 		return seq_open_private(file, &vmalloc_op,
2760 					nr_node_ids * sizeof(unsigned int));
2761 	else
2762 		return seq_open(file, &vmalloc_op);
2763 }
2764 
2765 static const struct file_operations proc_vmalloc_operations = {
2766 	.open		= vmalloc_open,
2767 	.read		= seq_read,
2768 	.llseek		= seq_lseek,
2769 	.release	= seq_release_private,
2770 };
2771 
2772 static int __init proc_vmalloc_init(void)
2773 {
2774 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2775 	return 0;
2776 }
2777 module_init(proc_vmalloc_init);
2778 
2779 #endif
2780 
2781