1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 void *private; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static LIST_HEAD(vmap_area_list); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 267 /* The vmap cache globals are protected by vmap_area_lock */ 268 static struct rb_node *free_vmap_cache; 269 static unsigned long cached_hole_size; 270 static unsigned long cached_vstart; 271 static unsigned long cached_align; 272 273 static unsigned long vmap_area_pcpu_hole; 274 275 static struct vmap_area *__find_vmap_area(unsigned long addr) 276 { 277 struct rb_node *n = vmap_area_root.rb_node; 278 279 while (n) { 280 struct vmap_area *va; 281 282 va = rb_entry(n, struct vmap_area, rb_node); 283 if (addr < va->va_start) 284 n = n->rb_left; 285 else if (addr > va->va_start) 286 n = n->rb_right; 287 else 288 return va; 289 } 290 291 return NULL; 292 } 293 294 static void __insert_vmap_area(struct vmap_area *va) 295 { 296 struct rb_node **p = &vmap_area_root.rb_node; 297 struct rb_node *parent = NULL; 298 struct rb_node *tmp; 299 300 while (*p) { 301 struct vmap_area *tmp_va; 302 303 parent = *p; 304 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 305 if (va->va_start < tmp_va->va_end) 306 p = &(*p)->rb_left; 307 else if (va->va_end > tmp_va->va_start) 308 p = &(*p)->rb_right; 309 else 310 BUG(); 311 } 312 313 rb_link_node(&va->rb_node, parent, p); 314 rb_insert_color(&va->rb_node, &vmap_area_root); 315 316 /* address-sort this list so it is usable like the vmlist */ 317 tmp = rb_prev(&va->rb_node); 318 if (tmp) { 319 struct vmap_area *prev; 320 prev = rb_entry(tmp, struct vmap_area, rb_node); 321 list_add_rcu(&va->list, &prev->list); 322 } else 323 list_add_rcu(&va->list, &vmap_area_list); 324 } 325 326 static void purge_vmap_area_lazy(void); 327 328 /* 329 * Allocate a region of KVA of the specified size and alignment, within the 330 * vstart and vend. 331 */ 332 static struct vmap_area *alloc_vmap_area(unsigned long size, 333 unsigned long align, 334 unsigned long vstart, unsigned long vend, 335 int node, gfp_t gfp_mask) 336 { 337 struct vmap_area *va; 338 struct rb_node *n; 339 unsigned long addr; 340 int purged = 0; 341 struct vmap_area *first; 342 343 BUG_ON(!size); 344 BUG_ON(size & ~PAGE_MASK); 345 BUG_ON(!is_power_of_2(align)); 346 347 va = kmalloc_node(sizeof(struct vmap_area), 348 gfp_mask & GFP_RECLAIM_MASK, node); 349 if (unlikely(!va)) 350 return ERR_PTR(-ENOMEM); 351 352 retry: 353 spin_lock(&vmap_area_lock); 354 /* 355 * Invalidate cache if we have more permissive parameters. 356 * cached_hole_size notes the largest hole noticed _below_ 357 * the vmap_area cached in free_vmap_cache: if size fits 358 * into that hole, we want to scan from vstart to reuse 359 * the hole instead of allocating above free_vmap_cache. 360 * Note that __free_vmap_area may update free_vmap_cache 361 * without updating cached_hole_size or cached_align. 362 */ 363 if (!free_vmap_cache || 364 size < cached_hole_size || 365 vstart < cached_vstart || 366 align < cached_align) { 367 nocache: 368 cached_hole_size = 0; 369 free_vmap_cache = NULL; 370 } 371 /* record if we encounter less permissive parameters */ 372 cached_vstart = vstart; 373 cached_align = align; 374 375 /* find starting point for our search */ 376 if (free_vmap_cache) { 377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 378 addr = ALIGN(first->va_end, align); 379 if (addr < vstart) 380 goto nocache; 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 } else { 385 addr = ALIGN(vstart, align); 386 if (addr + size - 1 < addr) 387 goto overflow; 388 389 n = vmap_area_root.rb_node; 390 first = NULL; 391 392 while (n) { 393 struct vmap_area *tmp; 394 tmp = rb_entry(n, struct vmap_area, rb_node); 395 if (tmp->va_end >= addr) { 396 first = tmp; 397 if (tmp->va_start <= addr) 398 break; 399 n = n->rb_left; 400 } else 401 n = n->rb_right; 402 } 403 404 if (!first) 405 goto found; 406 } 407 408 /* from the starting point, walk areas until a suitable hole is found */ 409 while (addr + size > first->va_start && addr + size <= vend) { 410 if (addr + cached_hole_size < first->va_start) 411 cached_hole_size = first->va_start - addr; 412 addr = ALIGN(first->va_end, align); 413 if (addr + size - 1 < addr) 414 goto overflow; 415 416 n = rb_next(&first->rb_node); 417 if (n) 418 first = rb_entry(n, struct vmap_area, rb_node); 419 else 420 goto found; 421 } 422 423 found: 424 if (addr + size > vend) 425 goto overflow; 426 427 va->va_start = addr; 428 va->va_end = addr + size; 429 va->flags = 0; 430 __insert_vmap_area(va); 431 free_vmap_cache = &va->rb_node; 432 spin_unlock(&vmap_area_lock); 433 434 BUG_ON(va->va_start & (align-1)); 435 BUG_ON(va->va_start < vstart); 436 BUG_ON(va->va_end > vend); 437 438 return va; 439 440 overflow: 441 spin_unlock(&vmap_area_lock); 442 if (!purged) { 443 purge_vmap_area_lazy(); 444 purged = 1; 445 goto retry; 446 } 447 if (printk_ratelimit()) 448 printk(KERN_WARNING 449 "vmap allocation for size %lu failed: " 450 "use vmalloc=<size> to increase size.\n", size); 451 kfree(va); 452 return ERR_PTR(-EBUSY); 453 } 454 455 static void __free_vmap_area(struct vmap_area *va) 456 { 457 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 458 459 if (free_vmap_cache) { 460 if (va->va_end < cached_vstart) { 461 free_vmap_cache = NULL; 462 } else { 463 struct vmap_area *cache; 464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 465 if (va->va_start <= cache->va_start) { 466 free_vmap_cache = rb_prev(&va->rb_node); 467 /* 468 * We don't try to update cached_hole_size or 469 * cached_align, but it won't go very wrong. 470 */ 471 } 472 } 473 } 474 rb_erase(&va->rb_node, &vmap_area_root); 475 RB_CLEAR_NODE(&va->rb_node); 476 list_del_rcu(&va->list); 477 478 /* 479 * Track the highest possible candidate for pcpu area 480 * allocation. Areas outside of vmalloc area can be returned 481 * here too, consider only end addresses which fall inside 482 * vmalloc area proper. 483 */ 484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 486 487 kfree_rcu(va, rcu_head); 488 } 489 490 /* 491 * Free a region of KVA allocated by alloc_vmap_area 492 */ 493 static void free_vmap_area(struct vmap_area *va) 494 { 495 spin_lock(&vmap_area_lock); 496 __free_vmap_area(va); 497 spin_unlock(&vmap_area_lock); 498 } 499 500 /* 501 * Clear the pagetable entries of a given vmap_area 502 */ 503 static void unmap_vmap_area(struct vmap_area *va) 504 { 505 vunmap_page_range(va->va_start, va->va_end); 506 } 507 508 static void vmap_debug_free_range(unsigned long start, unsigned long end) 509 { 510 /* 511 * Unmap page tables and force a TLB flush immediately if 512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 513 * bugs similarly to those in linear kernel virtual address 514 * space after a page has been freed. 515 * 516 * All the lazy freeing logic is still retained, in order to 517 * minimise intrusiveness of this debugging feature. 518 * 519 * This is going to be *slow* (linear kernel virtual address 520 * debugging doesn't do a broadcast TLB flush so it is a lot 521 * faster). 522 */ 523 #ifdef CONFIG_DEBUG_PAGEALLOC 524 vunmap_page_range(start, end); 525 flush_tlb_kernel_range(start, end); 526 #endif 527 } 528 529 /* 530 * lazy_max_pages is the maximum amount of virtual address space we gather up 531 * before attempting to purge with a TLB flush. 532 * 533 * There is a tradeoff here: a larger number will cover more kernel page tables 534 * and take slightly longer to purge, but it will linearly reduce the number of 535 * global TLB flushes that must be performed. It would seem natural to scale 536 * this number up linearly with the number of CPUs (because vmapping activity 537 * could also scale linearly with the number of CPUs), however it is likely 538 * that in practice, workloads might be constrained in other ways that mean 539 * vmap activity will not scale linearly with CPUs. Also, I want to be 540 * conservative and not introduce a big latency on huge systems, so go with 541 * a less aggressive log scale. It will still be an improvement over the old 542 * code, and it will be simple to change the scale factor if we find that it 543 * becomes a problem on bigger systems. 544 */ 545 static unsigned long lazy_max_pages(void) 546 { 547 unsigned int log; 548 549 log = fls(num_online_cpus()); 550 551 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 552 } 553 554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 555 556 /* for per-CPU blocks */ 557 static void purge_fragmented_blocks_allcpus(void); 558 559 /* 560 * called before a call to iounmap() if the caller wants vm_area_struct's 561 * immediately freed. 562 */ 563 void set_iounmap_nonlazy(void) 564 { 565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 566 } 567 568 /* 569 * Purges all lazily-freed vmap areas. 570 * 571 * If sync is 0 then don't purge if there is already a purge in progress. 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise 574 * their own TLB flushing). 575 * Returns with *start = min(*start, lowest purged address) 576 * *end = max(*end, highest purged address) 577 */ 578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 579 int sync, int force_flush) 580 { 581 static DEFINE_SPINLOCK(purge_lock); 582 LIST_HEAD(valist); 583 struct vmap_area *va; 584 struct vmap_area *n_va; 585 int nr = 0; 586 587 /* 588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 589 * should not expect such behaviour. This just simplifies locking for 590 * the case that isn't actually used at the moment anyway. 591 */ 592 if (!sync && !force_flush) { 593 if (!spin_trylock(&purge_lock)) 594 return; 595 } else 596 spin_lock(&purge_lock); 597 598 if (sync) 599 purge_fragmented_blocks_allcpus(); 600 601 rcu_read_lock(); 602 list_for_each_entry_rcu(va, &vmap_area_list, list) { 603 if (va->flags & VM_LAZY_FREE) { 604 if (va->va_start < *start) 605 *start = va->va_start; 606 if (va->va_end > *end) 607 *end = va->va_end; 608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 609 list_add_tail(&va->purge_list, &valist); 610 va->flags |= VM_LAZY_FREEING; 611 va->flags &= ~VM_LAZY_FREE; 612 } 613 } 614 rcu_read_unlock(); 615 616 if (nr) 617 atomic_sub(nr, &vmap_lazy_nr); 618 619 if (nr || force_flush) 620 flush_tlb_kernel_range(*start, *end); 621 622 if (nr) { 623 spin_lock(&vmap_area_lock); 624 list_for_each_entry_safe(va, n_va, &valist, purge_list) 625 __free_vmap_area(va); 626 spin_unlock(&vmap_area_lock); 627 } 628 spin_unlock(&purge_lock); 629 } 630 631 /* 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 633 * is already purging. 634 */ 635 static void try_purge_vmap_area_lazy(void) 636 { 637 unsigned long start = ULONG_MAX, end = 0; 638 639 __purge_vmap_area_lazy(&start, &end, 0, 0); 640 } 641 642 /* 643 * Kick off a purge of the outstanding lazy areas. 644 */ 645 static void purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 1, 0); 650 } 651 652 /* 653 * Free a vmap area, caller ensuring that the area has been unmapped 654 * and flush_cache_vunmap had been called for the correct range 655 * previously. 656 */ 657 static void free_vmap_area_noflush(struct vmap_area *va) 658 { 659 va->flags |= VM_LAZY_FREE; 660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 662 try_purge_vmap_area_lazy(); 663 } 664 665 /* 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 667 * called for the correct range previously. 668 */ 669 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 670 { 671 unmap_vmap_area(va); 672 free_vmap_area_noflush(va); 673 } 674 675 /* 676 * Free and unmap a vmap area 677 */ 678 static void free_unmap_vmap_area(struct vmap_area *va) 679 { 680 flush_cache_vunmap(va->va_start, va->va_end); 681 free_unmap_vmap_area_noflush(va); 682 } 683 684 static struct vmap_area *find_vmap_area(unsigned long addr) 685 { 686 struct vmap_area *va; 687 688 spin_lock(&vmap_area_lock); 689 va = __find_vmap_area(addr); 690 spin_unlock(&vmap_area_lock); 691 692 return va; 693 } 694 695 static void free_unmap_vmap_area_addr(unsigned long addr) 696 { 697 struct vmap_area *va; 698 699 va = find_vmap_area(addr); 700 BUG_ON(!va); 701 free_unmap_vmap_area(va); 702 } 703 704 705 /*** Per cpu kva allocator ***/ 706 707 /* 708 * vmap space is limited especially on 32 bit architectures. Ensure there is 709 * room for at least 16 percpu vmap blocks per CPU. 710 */ 711 /* 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 714 * instead (we just need a rough idea) 715 */ 716 #if BITS_PER_LONG == 32 717 #define VMALLOC_SPACE (128UL*1024*1024) 718 #else 719 #define VMALLOC_SPACE (128UL*1024*1024*1024) 720 #endif 721 722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 728 #define VMAP_BBMAP_BITS \ 729 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 730 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 731 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 732 733 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 734 735 static bool vmap_initialized __read_mostly = false; 736 737 struct vmap_block_queue { 738 spinlock_t lock; 739 struct list_head free; 740 }; 741 742 struct vmap_block { 743 spinlock_t lock; 744 struct vmap_area *va; 745 struct vmap_block_queue *vbq; 746 unsigned long free, dirty; 747 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 748 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 749 struct list_head free_list; 750 struct rcu_head rcu_head; 751 struct list_head purge; 752 }; 753 754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 755 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 756 757 /* 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 759 * in the free path. Could get rid of this if we change the API to return a 760 * "cookie" from alloc, to be passed to free. But no big deal yet. 761 */ 762 static DEFINE_SPINLOCK(vmap_block_tree_lock); 763 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 764 765 /* 766 * We should probably have a fallback mechanism to allocate virtual memory 767 * out of partially filled vmap blocks. However vmap block sizing should be 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a 769 * big problem. 770 */ 771 772 static unsigned long addr_to_vb_idx(unsigned long addr) 773 { 774 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 775 addr /= VMAP_BLOCK_SIZE; 776 return addr; 777 } 778 779 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 780 { 781 struct vmap_block_queue *vbq; 782 struct vmap_block *vb; 783 struct vmap_area *va; 784 unsigned long vb_idx; 785 int node, err; 786 787 node = numa_node_id(); 788 789 vb = kmalloc_node(sizeof(struct vmap_block), 790 gfp_mask & GFP_RECLAIM_MASK, node); 791 if (unlikely(!vb)) 792 return ERR_PTR(-ENOMEM); 793 794 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 795 VMALLOC_START, VMALLOC_END, 796 node, gfp_mask); 797 if (IS_ERR(va)) { 798 kfree(vb); 799 return ERR_CAST(va); 800 } 801 802 err = radix_tree_preload(gfp_mask); 803 if (unlikely(err)) { 804 kfree(vb); 805 free_vmap_area(va); 806 return ERR_PTR(err); 807 } 808 809 spin_lock_init(&vb->lock); 810 vb->va = va; 811 vb->free = VMAP_BBMAP_BITS; 812 vb->dirty = 0; 813 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 814 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 815 INIT_LIST_HEAD(&vb->free_list); 816 817 vb_idx = addr_to_vb_idx(va->va_start); 818 spin_lock(&vmap_block_tree_lock); 819 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 820 spin_unlock(&vmap_block_tree_lock); 821 BUG_ON(err); 822 radix_tree_preload_end(); 823 824 vbq = &get_cpu_var(vmap_block_queue); 825 vb->vbq = vbq; 826 spin_lock(&vbq->lock); 827 list_add_rcu(&vb->free_list, &vbq->free); 828 spin_unlock(&vbq->lock); 829 put_cpu_var(vmap_block_queue); 830 831 return vb; 832 } 833 834 static void free_vmap_block(struct vmap_block *vb) 835 { 836 struct vmap_block *tmp; 837 unsigned long vb_idx; 838 839 vb_idx = addr_to_vb_idx(vb->va->va_start); 840 spin_lock(&vmap_block_tree_lock); 841 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 842 spin_unlock(&vmap_block_tree_lock); 843 BUG_ON(tmp != vb); 844 845 free_vmap_area_noflush(vb->va); 846 kfree_rcu(vb, rcu_head); 847 } 848 849 static void purge_fragmented_blocks(int cpu) 850 { 851 LIST_HEAD(purge); 852 struct vmap_block *vb; 853 struct vmap_block *n_vb; 854 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 855 856 rcu_read_lock(); 857 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 858 859 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 860 continue; 861 862 spin_lock(&vb->lock); 863 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 864 vb->free = 0; /* prevent further allocs after releasing lock */ 865 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 866 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 867 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 868 spin_lock(&vbq->lock); 869 list_del_rcu(&vb->free_list); 870 spin_unlock(&vbq->lock); 871 spin_unlock(&vb->lock); 872 list_add_tail(&vb->purge, &purge); 873 } else 874 spin_unlock(&vb->lock); 875 } 876 rcu_read_unlock(); 877 878 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 879 list_del(&vb->purge); 880 free_vmap_block(vb); 881 } 882 } 883 884 static void purge_fragmented_blocks_thiscpu(void) 885 { 886 purge_fragmented_blocks(smp_processor_id()); 887 } 888 889 static void purge_fragmented_blocks_allcpus(void) 890 { 891 int cpu; 892 893 for_each_possible_cpu(cpu) 894 purge_fragmented_blocks(cpu); 895 } 896 897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 898 { 899 struct vmap_block_queue *vbq; 900 struct vmap_block *vb; 901 unsigned long addr = 0; 902 unsigned int order; 903 int purge = 0; 904 905 BUG_ON(size & ~PAGE_MASK); 906 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 907 order = get_order(size); 908 909 again: 910 rcu_read_lock(); 911 vbq = &get_cpu_var(vmap_block_queue); 912 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 913 int i; 914 915 spin_lock(&vb->lock); 916 if (vb->free < 1UL << order) 917 goto next; 918 919 i = bitmap_find_free_region(vb->alloc_map, 920 VMAP_BBMAP_BITS, order); 921 922 if (i < 0) { 923 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 924 /* fragmented and no outstanding allocations */ 925 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 926 purge = 1; 927 } 928 goto next; 929 } 930 addr = vb->va->va_start + (i << PAGE_SHIFT); 931 BUG_ON(addr_to_vb_idx(addr) != 932 addr_to_vb_idx(vb->va->va_start)); 933 vb->free -= 1UL << order; 934 if (vb->free == 0) { 935 spin_lock(&vbq->lock); 936 list_del_rcu(&vb->free_list); 937 spin_unlock(&vbq->lock); 938 } 939 spin_unlock(&vb->lock); 940 break; 941 next: 942 spin_unlock(&vb->lock); 943 } 944 945 if (purge) 946 purge_fragmented_blocks_thiscpu(); 947 948 put_cpu_var(vmap_block_queue); 949 rcu_read_unlock(); 950 951 if (!addr) { 952 vb = new_vmap_block(gfp_mask); 953 if (IS_ERR(vb)) 954 return vb; 955 goto again; 956 } 957 958 return (void *)addr; 959 } 960 961 static void vb_free(const void *addr, unsigned long size) 962 { 963 unsigned long offset; 964 unsigned long vb_idx; 965 unsigned int order; 966 struct vmap_block *vb; 967 968 BUG_ON(size & ~PAGE_MASK); 969 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 970 971 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 972 973 order = get_order(size); 974 975 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 976 977 vb_idx = addr_to_vb_idx((unsigned long)addr); 978 rcu_read_lock(); 979 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 980 rcu_read_unlock(); 981 BUG_ON(!vb); 982 983 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 984 985 spin_lock(&vb->lock); 986 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 987 988 vb->dirty += 1UL << order; 989 if (vb->dirty == VMAP_BBMAP_BITS) { 990 BUG_ON(vb->free); 991 spin_unlock(&vb->lock); 992 free_vmap_block(vb); 993 } else 994 spin_unlock(&vb->lock); 995 } 996 997 /** 998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 999 * 1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1001 * to amortize TLB flushing overheads. What this means is that any page you 1002 * have now, may, in a former life, have been mapped into kernel virtual 1003 * address by the vmap layer and so there might be some CPUs with TLB entries 1004 * still referencing that page (additional to the regular 1:1 kernel mapping). 1005 * 1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1007 * be sure that none of the pages we have control over will have any aliases 1008 * from the vmap layer. 1009 */ 1010 void vm_unmap_aliases(void) 1011 { 1012 unsigned long start = ULONG_MAX, end = 0; 1013 int cpu; 1014 int flush = 0; 1015 1016 if (unlikely(!vmap_initialized)) 1017 return; 1018 1019 for_each_possible_cpu(cpu) { 1020 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1021 struct vmap_block *vb; 1022 1023 rcu_read_lock(); 1024 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1025 int i; 1026 1027 spin_lock(&vb->lock); 1028 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1029 while (i < VMAP_BBMAP_BITS) { 1030 unsigned long s, e; 1031 int j; 1032 j = find_next_zero_bit(vb->dirty_map, 1033 VMAP_BBMAP_BITS, i); 1034 1035 s = vb->va->va_start + (i << PAGE_SHIFT); 1036 e = vb->va->va_start + (j << PAGE_SHIFT); 1037 flush = 1; 1038 1039 if (s < start) 1040 start = s; 1041 if (e > end) 1042 end = e; 1043 1044 i = j; 1045 i = find_next_bit(vb->dirty_map, 1046 VMAP_BBMAP_BITS, i); 1047 } 1048 spin_unlock(&vb->lock); 1049 } 1050 rcu_read_unlock(); 1051 } 1052 1053 __purge_vmap_area_lazy(&start, &end, 1, flush); 1054 } 1055 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1056 1057 /** 1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1059 * @mem: the pointer returned by vm_map_ram 1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1061 */ 1062 void vm_unmap_ram(const void *mem, unsigned int count) 1063 { 1064 unsigned long size = count << PAGE_SHIFT; 1065 unsigned long addr = (unsigned long)mem; 1066 1067 BUG_ON(!addr); 1068 BUG_ON(addr < VMALLOC_START); 1069 BUG_ON(addr > VMALLOC_END); 1070 BUG_ON(addr & (PAGE_SIZE-1)); 1071 1072 debug_check_no_locks_freed(mem, size); 1073 vmap_debug_free_range(addr, addr+size); 1074 1075 if (likely(count <= VMAP_MAX_ALLOC)) 1076 vb_free(mem, size); 1077 else 1078 free_unmap_vmap_area_addr(addr); 1079 } 1080 EXPORT_SYMBOL(vm_unmap_ram); 1081 1082 /** 1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1084 * @pages: an array of pointers to the pages to be mapped 1085 * @count: number of pages 1086 * @node: prefer to allocate data structures on this node 1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1088 * 1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1090 */ 1091 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1092 { 1093 unsigned long size = count << PAGE_SHIFT; 1094 unsigned long addr; 1095 void *mem; 1096 1097 if (likely(count <= VMAP_MAX_ALLOC)) { 1098 mem = vb_alloc(size, GFP_KERNEL); 1099 if (IS_ERR(mem)) 1100 return NULL; 1101 addr = (unsigned long)mem; 1102 } else { 1103 struct vmap_area *va; 1104 va = alloc_vmap_area(size, PAGE_SIZE, 1105 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1106 if (IS_ERR(va)) 1107 return NULL; 1108 1109 addr = va->va_start; 1110 mem = (void *)addr; 1111 } 1112 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1113 vm_unmap_ram(mem, count); 1114 return NULL; 1115 } 1116 return mem; 1117 } 1118 EXPORT_SYMBOL(vm_map_ram); 1119 1120 /** 1121 * vm_area_register_early - register vmap area early during boot 1122 * @vm: vm_struct to register 1123 * @align: requested alignment 1124 * 1125 * This function is used to register kernel vm area before 1126 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1127 * proper values on entry and other fields should be zero. On return, 1128 * vm->addr contains the allocated address. 1129 * 1130 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1131 */ 1132 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1133 { 1134 static size_t vm_init_off __initdata; 1135 unsigned long addr; 1136 1137 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1138 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1139 1140 vm->addr = (void *)addr; 1141 1142 vm->next = vmlist; 1143 vmlist = vm; 1144 } 1145 1146 void __init vmalloc_init(void) 1147 { 1148 struct vmap_area *va; 1149 struct vm_struct *tmp; 1150 int i; 1151 1152 for_each_possible_cpu(i) { 1153 struct vmap_block_queue *vbq; 1154 1155 vbq = &per_cpu(vmap_block_queue, i); 1156 spin_lock_init(&vbq->lock); 1157 INIT_LIST_HEAD(&vbq->free); 1158 } 1159 1160 /* Import existing vmlist entries. */ 1161 for (tmp = vmlist; tmp; tmp = tmp->next) { 1162 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1163 va->flags = tmp->flags | VM_VM_AREA; 1164 va->va_start = (unsigned long)tmp->addr; 1165 va->va_end = va->va_start + tmp->size; 1166 __insert_vmap_area(va); 1167 } 1168 1169 vmap_area_pcpu_hole = VMALLOC_END; 1170 1171 vmap_initialized = true; 1172 } 1173 1174 /** 1175 * map_kernel_range_noflush - map kernel VM area with the specified pages 1176 * @addr: start of the VM area to map 1177 * @size: size of the VM area to map 1178 * @prot: page protection flags to use 1179 * @pages: pages to map 1180 * 1181 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1182 * specify should have been allocated using get_vm_area() and its 1183 * friends. 1184 * 1185 * NOTE: 1186 * This function does NOT do any cache flushing. The caller is 1187 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1188 * before calling this function. 1189 * 1190 * RETURNS: 1191 * The number of pages mapped on success, -errno on failure. 1192 */ 1193 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1194 pgprot_t prot, struct page **pages) 1195 { 1196 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1197 } 1198 1199 /** 1200 * unmap_kernel_range_noflush - unmap kernel VM area 1201 * @addr: start of the VM area to unmap 1202 * @size: size of the VM area to unmap 1203 * 1204 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1205 * specify should have been allocated using get_vm_area() and its 1206 * friends. 1207 * 1208 * NOTE: 1209 * This function does NOT do any cache flushing. The caller is 1210 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1211 * before calling this function and flush_tlb_kernel_range() after. 1212 */ 1213 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1214 { 1215 vunmap_page_range(addr, addr + size); 1216 } 1217 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1218 1219 /** 1220 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1221 * @addr: start of the VM area to unmap 1222 * @size: size of the VM area to unmap 1223 * 1224 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1225 * the unmapping and tlb after. 1226 */ 1227 void unmap_kernel_range(unsigned long addr, unsigned long size) 1228 { 1229 unsigned long end = addr + size; 1230 1231 flush_cache_vunmap(addr, end); 1232 vunmap_page_range(addr, end); 1233 flush_tlb_kernel_range(addr, end); 1234 } 1235 1236 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1237 { 1238 unsigned long addr = (unsigned long)area->addr; 1239 unsigned long end = addr + area->size - PAGE_SIZE; 1240 int err; 1241 1242 err = vmap_page_range(addr, end, prot, *pages); 1243 if (err > 0) { 1244 *pages += err; 1245 err = 0; 1246 } 1247 1248 return err; 1249 } 1250 EXPORT_SYMBOL_GPL(map_vm_area); 1251 1252 /*** Old vmalloc interfaces ***/ 1253 DEFINE_RWLOCK(vmlist_lock); 1254 struct vm_struct *vmlist; 1255 1256 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1257 unsigned long flags, void *caller) 1258 { 1259 struct vm_struct *tmp, **p; 1260 1261 vm->flags = flags; 1262 vm->addr = (void *)va->va_start; 1263 vm->size = va->va_end - va->va_start; 1264 vm->caller = caller; 1265 va->private = vm; 1266 va->flags |= VM_VM_AREA; 1267 1268 write_lock(&vmlist_lock); 1269 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1270 if (tmp->addr >= vm->addr) 1271 break; 1272 } 1273 vm->next = *p; 1274 *p = vm; 1275 write_unlock(&vmlist_lock); 1276 } 1277 1278 static struct vm_struct *__get_vm_area_node(unsigned long size, 1279 unsigned long align, unsigned long flags, unsigned long start, 1280 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1281 { 1282 static struct vmap_area *va; 1283 struct vm_struct *area; 1284 1285 BUG_ON(in_interrupt()); 1286 if (flags & VM_IOREMAP) { 1287 int bit = fls(size); 1288 1289 if (bit > IOREMAP_MAX_ORDER) 1290 bit = IOREMAP_MAX_ORDER; 1291 else if (bit < PAGE_SHIFT) 1292 bit = PAGE_SHIFT; 1293 1294 align = 1ul << bit; 1295 } 1296 1297 size = PAGE_ALIGN(size); 1298 if (unlikely(!size)) 1299 return NULL; 1300 1301 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1302 if (unlikely(!area)) 1303 return NULL; 1304 1305 /* 1306 * We always allocate a guard page. 1307 */ 1308 size += PAGE_SIZE; 1309 1310 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1311 if (IS_ERR(va)) { 1312 kfree(area); 1313 return NULL; 1314 } 1315 1316 insert_vmalloc_vm(area, va, flags, caller); 1317 return area; 1318 } 1319 1320 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1321 unsigned long start, unsigned long end) 1322 { 1323 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1324 __builtin_return_address(0)); 1325 } 1326 EXPORT_SYMBOL_GPL(__get_vm_area); 1327 1328 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1329 unsigned long start, unsigned long end, 1330 void *caller) 1331 { 1332 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1333 caller); 1334 } 1335 1336 /** 1337 * get_vm_area - reserve a contiguous kernel virtual area 1338 * @size: size of the area 1339 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1340 * 1341 * Search an area of @size in the kernel virtual mapping area, 1342 * and reserved it for out purposes. Returns the area descriptor 1343 * on success or %NULL on failure. 1344 */ 1345 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1346 { 1347 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1348 -1, GFP_KERNEL, __builtin_return_address(0)); 1349 } 1350 1351 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1352 void *caller) 1353 { 1354 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1355 -1, GFP_KERNEL, caller); 1356 } 1357 1358 static struct vm_struct *find_vm_area(const void *addr) 1359 { 1360 struct vmap_area *va; 1361 1362 va = find_vmap_area((unsigned long)addr); 1363 if (va && va->flags & VM_VM_AREA) 1364 return va->private; 1365 1366 return NULL; 1367 } 1368 1369 /** 1370 * remove_vm_area - find and remove a continuous kernel virtual area 1371 * @addr: base address 1372 * 1373 * Search for the kernel VM area starting at @addr, and remove it. 1374 * This function returns the found VM area, but using it is NOT safe 1375 * on SMP machines, except for its size or flags. 1376 */ 1377 struct vm_struct *remove_vm_area(const void *addr) 1378 { 1379 struct vmap_area *va; 1380 1381 va = find_vmap_area((unsigned long)addr); 1382 if (va && va->flags & VM_VM_AREA) { 1383 struct vm_struct *vm = va->private; 1384 struct vm_struct *tmp, **p; 1385 /* 1386 * remove from list and disallow access to this vm_struct 1387 * before unmap. (address range confliction is maintained by 1388 * vmap.) 1389 */ 1390 write_lock(&vmlist_lock); 1391 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1392 ; 1393 *p = tmp->next; 1394 write_unlock(&vmlist_lock); 1395 1396 vmap_debug_free_range(va->va_start, va->va_end); 1397 free_unmap_vmap_area(va); 1398 vm->size -= PAGE_SIZE; 1399 1400 return vm; 1401 } 1402 return NULL; 1403 } 1404 1405 static void __vunmap(const void *addr, int deallocate_pages) 1406 { 1407 struct vm_struct *area; 1408 1409 if (!addr) 1410 return; 1411 1412 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1413 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1414 return; 1415 } 1416 1417 area = remove_vm_area(addr); 1418 if (unlikely(!area)) { 1419 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1420 addr); 1421 return; 1422 } 1423 1424 debug_check_no_locks_freed(addr, area->size); 1425 debug_check_no_obj_freed(addr, area->size); 1426 1427 if (deallocate_pages) { 1428 int i; 1429 1430 for (i = 0; i < area->nr_pages; i++) { 1431 struct page *page = area->pages[i]; 1432 1433 BUG_ON(!page); 1434 __free_page(page); 1435 } 1436 1437 if (area->flags & VM_VPAGES) 1438 vfree(area->pages); 1439 else 1440 kfree(area->pages); 1441 } 1442 1443 kfree(area); 1444 return; 1445 } 1446 1447 /** 1448 * vfree - release memory allocated by vmalloc() 1449 * @addr: memory base address 1450 * 1451 * Free the virtually continuous memory area starting at @addr, as 1452 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1453 * NULL, no operation is performed. 1454 * 1455 * Must not be called in interrupt context. 1456 */ 1457 void vfree(const void *addr) 1458 { 1459 BUG_ON(in_interrupt()); 1460 1461 kmemleak_free(addr); 1462 1463 __vunmap(addr, 1); 1464 } 1465 EXPORT_SYMBOL(vfree); 1466 1467 /** 1468 * vunmap - release virtual mapping obtained by vmap() 1469 * @addr: memory base address 1470 * 1471 * Free the virtually contiguous memory area starting at @addr, 1472 * which was created from the page array passed to vmap(). 1473 * 1474 * Must not be called in interrupt context. 1475 */ 1476 void vunmap(const void *addr) 1477 { 1478 BUG_ON(in_interrupt()); 1479 might_sleep(); 1480 __vunmap(addr, 0); 1481 } 1482 EXPORT_SYMBOL(vunmap); 1483 1484 /** 1485 * vmap - map an array of pages into virtually contiguous space 1486 * @pages: array of page pointers 1487 * @count: number of pages to map 1488 * @flags: vm_area->flags 1489 * @prot: page protection for the mapping 1490 * 1491 * Maps @count pages from @pages into contiguous kernel virtual 1492 * space. 1493 */ 1494 void *vmap(struct page **pages, unsigned int count, 1495 unsigned long flags, pgprot_t prot) 1496 { 1497 struct vm_struct *area; 1498 1499 might_sleep(); 1500 1501 if (count > totalram_pages) 1502 return NULL; 1503 1504 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1505 __builtin_return_address(0)); 1506 if (!area) 1507 return NULL; 1508 1509 if (map_vm_area(area, prot, &pages)) { 1510 vunmap(area->addr); 1511 return NULL; 1512 } 1513 1514 return area->addr; 1515 } 1516 EXPORT_SYMBOL(vmap); 1517 1518 static void *__vmalloc_node(unsigned long size, unsigned long align, 1519 gfp_t gfp_mask, pgprot_t prot, 1520 int node, void *caller); 1521 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1522 pgprot_t prot, int node, void *caller) 1523 { 1524 const int order = 0; 1525 struct page **pages; 1526 unsigned int nr_pages, array_size, i; 1527 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1528 1529 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1530 array_size = (nr_pages * sizeof(struct page *)); 1531 1532 area->nr_pages = nr_pages; 1533 /* Please note that the recursion is strictly bounded. */ 1534 if (array_size > PAGE_SIZE) { 1535 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1536 PAGE_KERNEL, node, caller); 1537 area->flags |= VM_VPAGES; 1538 } else { 1539 pages = kmalloc_node(array_size, nested_gfp, node); 1540 } 1541 area->pages = pages; 1542 area->caller = caller; 1543 if (!area->pages) { 1544 remove_vm_area(area->addr); 1545 kfree(area); 1546 return NULL; 1547 } 1548 1549 for (i = 0; i < area->nr_pages; i++) { 1550 struct page *page; 1551 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1552 1553 if (node < 0) 1554 page = alloc_page(tmp_mask); 1555 else 1556 page = alloc_pages_node(node, tmp_mask, order); 1557 1558 if (unlikely(!page)) { 1559 /* Successfully allocated i pages, free them in __vunmap() */ 1560 area->nr_pages = i; 1561 goto fail; 1562 } 1563 area->pages[i] = page; 1564 } 1565 1566 if (map_vm_area(area, prot, &pages)) 1567 goto fail; 1568 return area->addr; 1569 1570 fail: 1571 warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, " 1572 "allocated %ld of %ld bytes\n", 1573 (area->nr_pages*PAGE_SIZE), area->size); 1574 vfree(area->addr); 1575 return NULL; 1576 } 1577 1578 /** 1579 * __vmalloc_node_range - allocate virtually contiguous memory 1580 * @size: allocation size 1581 * @align: desired alignment 1582 * @start: vm area range start 1583 * @end: vm area range end 1584 * @gfp_mask: flags for the page level allocator 1585 * @prot: protection mask for the allocated pages 1586 * @node: node to use for allocation or -1 1587 * @caller: caller's return address 1588 * 1589 * Allocate enough pages to cover @size from the page level 1590 * allocator with @gfp_mask flags. Map them into contiguous 1591 * kernel virtual space, using a pagetable protection of @prot. 1592 */ 1593 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1594 unsigned long start, unsigned long end, gfp_t gfp_mask, 1595 pgprot_t prot, int node, void *caller) 1596 { 1597 struct vm_struct *area; 1598 void *addr; 1599 unsigned long real_size = size; 1600 1601 size = PAGE_ALIGN(size); 1602 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1603 return NULL; 1604 1605 area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node, 1606 gfp_mask, caller); 1607 1608 if (!area) 1609 return NULL; 1610 1611 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1612 1613 /* 1614 * A ref_count = 3 is needed because the vm_struct and vmap_area 1615 * structures allocated in the __get_vm_area_node() function contain 1616 * references to the virtual address of the vmalloc'ed block. 1617 */ 1618 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1619 1620 return addr; 1621 } 1622 1623 /** 1624 * __vmalloc_node - allocate virtually contiguous memory 1625 * @size: allocation size 1626 * @align: desired alignment 1627 * @gfp_mask: flags for the page level allocator 1628 * @prot: protection mask for the allocated pages 1629 * @node: node to use for allocation or -1 1630 * @caller: caller's return address 1631 * 1632 * Allocate enough pages to cover @size from the page level 1633 * allocator with @gfp_mask flags. Map them into contiguous 1634 * kernel virtual space, using a pagetable protection of @prot. 1635 */ 1636 static void *__vmalloc_node(unsigned long size, unsigned long align, 1637 gfp_t gfp_mask, pgprot_t prot, 1638 int node, void *caller) 1639 { 1640 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1641 gfp_mask, prot, node, caller); 1642 } 1643 1644 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1645 { 1646 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1647 __builtin_return_address(0)); 1648 } 1649 EXPORT_SYMBOL(__vmalloc); 1650 1651 static inline void *__vmalloc_node_flags(unsigned long size, 1652 int node, gfp_t flags) 1653 { 1654 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1655 node, __builtin_return_address(0)); 1656 } 1657 1658 /** 1659 * vmalloc - allocate virtually contiguous memory 1660 * @size: allocation size 1661 * Allocate enough pages to cover @size from the page level 1662 * allocator and map them into contiguous kernel virtual space. 1663 * 1664 * For tight control over page level allocator and protection flags 1665 * use __vmalloc() instead. 1666 */ 1667 void *vmalloc(unsigned long size) 1668 { 1669 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1670 } 1671 EXPORT_SYMBOL(vmalloc); 1672 1673 /** 1674 * vzalloc - allocate virtually contiguous memory with zero fill 1675 * @size: allocation size 1676 * Allocate enough pages to cover @size from the page level 1677 * allocator and map them into contiguous kernel virtual space. 1678 * The memory allocated is set to zero. 1679 * 1680 * For tight control over page level allocator and protection flags 1681 * use __vmalloc() instead. 1682 */ 1683 void *vzalloc(unsigned long size) 1684 { 1685 return __vmalloc_node_flags(size, -1, 1686 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1687 } 1688 EXPORT_SYMBOL(vzalloc); 1689 1690 /** 1691 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1692 * @size: allocation size 1693 * 1694 * The resulting memory area is zeroed so it can be mapped to userspace 1695 * without leaking data. 1696 */ 1697 void *vmalloc_user(unsigned long size) 1698 { 1699 struct vm_struct *area; 1700 void *ret; 1701 1702 ret = __vmalloc_node(size, SHMLBA, 1703 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1704 PAGE_KERNEL, -1, __builtin_return_address(0)); 1705 if (ret) { 1706 area = find_vm_area(ret); 1707 area->flags |= VM_USERMAP; 1708 } 1709 return ret; 1710 } 1711 EXPORT_SYMBOL(vmalloc_user); 1712 1713 /** 1714 * vmalloc_node - allocate memory on a specific node 1715 * @size: allocation size 1716 * @node: numa node 1717 * 1718 * Allocate enough pages to cover @size from the page level 1719 * allocator and map them into contiguous kernel virtual space. 1720 * 1721 * For tight control over page level allocator and protection flags 1722 * use __vmalloc() instead. 1723 */ 1724 void *vmalloc_node(unsigned long size, int node) 1725 { 1726 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1727 node, __builtin_return_address(0)); 1728 } 1729 EXPORT_SYMBOL(vmalloc_node); 1730 1731 /** 1732 * vzalloc_node - allocate memory on a specific node with zero fill 1733 * @size: allocation size 1734 * @node: numa node 1735 * 1736 * Allocate enough pages to cover @size from the page level 1737 * allocator and map them into contiguous kernel virtual space. 1738 * The memory allocated is set to zero. 1739 * 1740 * For tight control over page level allocator and protection flags 1741 * use __vmalloc_node() instead. 1742 */ 1743 void *vzalloc_node(unsigned long size, int node) 1744 { 1745 return __vmalloc_node_flags(size, node, 1746 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1747 } 1748 EXPORT_SYMBOL(vzalloc_node); 1749 1750 #ifndef PAGE_KERNEL_EXEC 1751 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1752 #endif 1753 1754 /** 1755 * vmalloc_exec - allocate virtually contiguous, executable memory 1756 * @size: allocation size 1757 * 1758 * Kernel-internal function to allocate enough pages to cover @size 1759 * the page level allocator and map them into contiguous and 1760 * executable kernel virtual space. 1761 * 1762 * For tight control over page level allocator and protection flags 1763 * use __vmalloc() instead. 1764 */ 1765 1766 void *vmalloc_exec(unsigned long size) 1767 { 1768 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1769 -1, __builtin_return_address(0)); 1770 } 1771 1772 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1773 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1774 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1775 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1776 #else 1777 #define GFP_VMALLOC32 GFP_KERNEL 1778 #endif 1779 1780 /** 1781 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1782 * @size: allocation size 1783 * 1784 * Allocate enough 32bit PA addressable pages to cover @size from the 1785 * page level allocator and map them into contiguous kernel virtual space. 1786 */ 1787 void *vmalloc_32(unsigned long size) 1788 { 1789 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1790 -1, __builtin_return_address(0)); 1791 } 1792 EXPORT_SYMBOL(vmalloc_32); 1793 1794 /** 1795 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1796 * @size: allocation size 1797 * 1798 * The resulting memory area is 32bit addressable and zeroed so it can be 1799 * mapped to userspace without leaking data. 1800 */ 1801 void *vmalloc_32_user(unsigned long size) 1802 { 1803 struct vm_struct *area; 1804 void *ret; 1805 1806 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1807 -1, __builtin_return_address(0)); 1808 if (ret) { 1809 area = find_vm_area(ret); 1810 area->flags |= VM_USERMAP; 1811 } 1812 return ret; 1813 } 1814 EXPORT_SYMBOL(vmalloc_32_user); 1815 1816 /* 1817 * small helper routine , copy contents to buf from addr. 1818 * If the page is not present, fill zero. 1819 */ 1820 1821 static int aligned_vread(char *buf, char *addr, unsigned long count) 1822 { 1823 struct page *p; 1824 int copied = 0; 1825 1826 while (count) { 1827 unsigned long offset, length; 1828 1829 offset = (unsigned long)addr & ~PAGE_MASK; 1830 length = PAGE_SIZE - offset; 1831 if (length > count) 1832 length = count; 1833 p = vmalloc_to_page(addr); 1834 /* 1835 * To do safe access to this _mapped_ area, we need 1836 * lock. But adding lock here means that we need to add 1837 * overhead of vmalloc()/vfree() calles for this _debug_ 1838 * interface, rarely used. Instead of that, we'll use 1839 * kmap() and get small overhead in this access function. 1840 */ 1841 if (p) { 1842 /* 1843 * we can expect USER0 is not used (see vread/vwrite's 1844 * function description) 1845 */ 1846 void *map = kmap_atomic(p, KM_USER0); 1847 memcpy(buf, map + offset, length); 1848 kunmap_atomic(map, KM_USER0); 1849 } else 1850 memset(buf, 0, length); 1851 1852 addr += length; 1853 buf += length; 1854 copied += length; 1855 count -= length; 1856 } 1857 return copied; 1858 } 1859 1860 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1861 { 1862 struct page *p; 1863 int copied = 0; 1864 1865 while (count) { 1866 unsigned long offset, length; 1867 1868 offset = (unsigned long)addr & ~PAGE_MASK; 1869 length = PAGE_SIZE - offset; 1870 if (length > count) 1871 length = count; 1872 p = vmalloc_to_page(addr); 1873 /* 1874 * To do safe access to this _mapped_ area, we need 1875 * lock. But adding lock here means that we need to add 1876 * overhead of vmalloc()/vfree() calles for this _debug_ 1877 * interface, rarely used. Instead of that, we'll use 1878 * kmap() and get small overhead in this access function. 1879 */ 1880 if (p) { 1881 /* 1882 * we can expect USER0 is not used (see vread/vwrite's 1883 * function description) 1884 */ 1885 void *map = kmap_atomic(p, KM_USER0); 1886 memcpy(map + offset, buf, length); 1887 kunmap_atomic(map, KM_USER0); 1888 } 1889 addr += length; 1890 buf += length; 1891 copied += length; 1892 count -= length; 1893 } 1894 return copied; 1895 } 1896 1897 /** 1898 * vread() - read vmalloc area in a safe way. 1899 * @buf: buffer for reading data 1900 * @addr: vm address. 1901 * @count: number of bytes to be read. 1902 * 1903 * Returns # of bytes which addr and buf should be increased. 1904 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1905 * includes any intersect with alive vmalloc area. 1906 * 1907 * This function checks that addr is a valid vmalloc'ed area, and 1908 * copy data from that area to a given buffer. If the given memory range 1909 * of [addr...addr+count) includes some valid address, data is copied to 1910 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1911 * IOREMAP area is treated as memory hole and no copy is done. 1912 * 1913 * If [addr...addr+count) doesn't includes any intersects with alive 1914 * vm_struct area, returns 0. 1915 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1916 * the caller should guarantee KM_USER0 is not used. 1917 * 1918 * Note: In usual ops, vread() is never necessary because the caller 1919 * should know vmalloc() area is valid and can use memcpy(). 1920 * This is for routines which have to access vmalloc area without 1921 * any informaion, as /dev/kmem. 1922 * 1923 */ 1924 1925 long vread(char *buf, char *addr, unsigned long count) 1926 { 1927 struct vm_struct *tmp; 1928 char *vaddr, *buf_start = buf; 1929 unsigned long buflen = count; 1930 unsigned long n; 1931 1932 /* Don't allow overflow */ 1933 if ((unsigned long) addr + count < count) 1934 count = -(unsigned long) addr; 1935 1936 read_lock(&vmlist_lock); 1937 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1938 vaddr = (char *) tmp->addr; 1939 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1940 continue; 1941 while (addr < vaddr) { 1942 if (count == 0) 1943 goto finished; 1944 *buf = '\0'; 1945 buf++; 1946 addr++; 1947 count--; 1948 } 1949 n = vaddr + tmp->size - PAGE_SIZE - addr; 1950 if (n > count) 1951 n = count; 1952 if (!(tmp->flags & VM_IOREMAP)) 1953 aligned_vread(buf, addr, n); 1954 else /* IOREMAP area is treated as memory hole */ 1955 memset(buf, 0, n); 1956 buf += n; 1957 addr += n; 1958 count -= n; 1959 } 1960 finished: 1961 read_unlock(&vmlist_lock); 1962 1963 if (buf == buf_start) 1964 return 0; 1965 /* zero-fill memory holes */ 1966 if (buf != buf_start + buflen) 1967 memset(buf, 0, buflen - (buf - buf_start)); 1968 1969 return buflen; 1970 } 1971 1972 /** 1973 * vwrite() - write vmalloc area in a safe way. 1974 * @buf: buffer for source data 1975 * @addr: vm address. 1976 * @count: number of bytes to be read. 1977 * 1978 * Returns # of bytes which addr and buf should be incresed. 1979 * (same number to @count). 1980 * If [addr...addr+count) doesn't includes any intersect with valid 1981 * vmalloc area, returns 0. 1982 * 1983 * This function checks that addr is a valid vmalloc'ed area, and 1984 * copy data from a buffer to the given addr. If specified range of 1985 * [addr...addr+count) includes some valid address, data is copied from 1986 * proper area of @buf. If there are memory holes, no copy to hole. 1987 * IOREMAP area is treated as memory hole and no copy is done. 1988 * 1989 * If [addr...addr+count) doesn't includes any intersects with alive 1990 * vm_struct area, returns 0. 1991 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1992 * the caller should guarantee KM_USER0 is not used. 1993 * 1994 * Note: In usual ops, vwrite() is never necessary because the caller 1995 * should know vmalloc() area is valid and can use memcpy(). 1996 * This is for routines which have to access vmalloc area without 1997 * any informaion, as /dev/kmem. 1998 */ 1999 2000 long vwrite(char *buf, char *addr, unsigned long count) 2001 { 2002 struct vm_struct *tmp; 2003 char *vaddr; 2004 unsigned long n, buflen; 2005 int copied = 0; 2006 2007 /* Don't allow overflow */ 2008 if ((unsigned long) addr + count < count) 2009 count = -(unsigned long) addr; 2010 buflen = count; 2011 2012 read_lock(&vmlist_lock); 2013 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2014 vaddr = (char *) tmp->addr; 2015 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2016 continue; 2017 while (addr < vaddr) { 2018 if (count == 0) 2019 goto finished; 2020 buf++; 2021 addr++; 2022 count--; 2023 } 2024 n = vaddr + tmp->size - PAGE_SIZE - addr; 2025 if (n > count) 2026 n = count; 2027 if (!(tmp->flags & VM_IOREMAP)) { 2028 aligned_vwrite(buf, addr, n); 2029 copied++; 2030 } 2031 buf += n; 2032 addr += n; 2033 count -= n; 2034 } 2035 finished: 2036 read_unlock(&vmlist_lock); 2037 if (!copied) 2038 return 0; 2039 return buflen; 2040 } 2041 2042 /** 2043 * remap_vmalloc_range - map vmalloc pages to userspace 2044 * @vma: vma to cover (map full range of vma) 2045 * @addr: vmalloc memory 2046 * @pgoff: number of pages into addr before first page to map 2047 * 2048 * Returns: 0 for success, -Exxx on failure 2049 * 2050 * This function checks that addr is a valid vmalloc'ed area, and 2051 * that it is big enough to cover the vma. Will return failure if 2052 * that criteria isn't met. 2053 * 2054 * Similar to remap_pfn_range() (see mm/memory.c) 2055 */ 2056 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2057 unsigned long pgoff) 2058 { 2059 struct vm_struct *area; 2060 unsigned long uaddr = vma->vm_start; 2061 unsigned long usize = vma->vm_end - vma->vm_start; 2062 2063 if ((PAGE_SIZE-1) & (unsigned long)addr) 2064 return -EINVAL; 2065 2066 area = find_vm_area(addr); 2067 if (!area) 2068 return -EINVAL; 2069 2070 if (!(area->flags & VM_USERMAP)) 2071 return -EINVAL; 2072 2073 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2074 return -EINVAL; 2075 2076 addr += pgoff << PAGE_SHIFT; 2077 do { 2078 struct page *page = vmalloc_to_page(addr); 2079 int ret; 2080 2081 ret = vm_insert_page(vma, uaddr, page); 2082 if (ret) 2083 return ret; 2084 2085 uaddr += PAGE_SIZE; 2086 addr += PAGE_SIZE; 2087 usize -= PAGE_SIZE; 2088 } while (usize > 0); 2089 2090 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 2091 vma->vm_flags |= VM_RESERVED; 2092 2093 return 0; 2094 } 2095 EXPORT_SYMBOL(remap_vmalloc_range); 2096 2097 /* 2098 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2099 * have one. 2100 */ 2101 void __attribute__((weak)) vmalloc_sync_all(void) 2102 { 2103 } 2104 2105 2106 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2107 { 2108 /* apply_to_page_range() does all the hard work. */ 2109 return 0; 2110 } 2111 2112 /** 2113 * alloc_vm_area - allocate a range of kernel address space 2114 * @size: size of the area 2115 * 2116 * Returns: NULL on failure, vm_struct on success 2117 * 2118 * This function reserves a range of kernel address space, and 2119 * allocates pagetables to map that range. No actual mappings 2120 * are created. If the kernel address space is not shared 2121 * between processes, it syncs the pagetable across all 2122 * processes. 2123 */ 2124 struct vm_struct *alloc_vm_area(size_t size) 2125 { 2126 struct vm_struct *area; 2127 2128 area = get_vm_area_caller(size, VM_IOREMAP, 2129 __builtin_return_address(0)); 2130 if (area == NULL) 2131 return NULL; 2132 2133 /* 2134 * This ensures that page tables are constructed for this region 2135 * of kernel virtual address space and mapped into init_mm. 2136 */ 2137 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2138 area->size, f, NULL)) { 2139 free_vm_area(area); 2140 return NULL; 2141 } 2142 2143 /* 2144 * If the allocated address space is passed to a hypercall 2145 * before being used then we cannot rely on a page fault to 2146 * trigger an update of the page tables. So sync all the page 2147 * tables here. 2148 */ 2149 vmalloc_sync_all(); 2150 2151 return area; 2152 } 2153 EXPORT_SYMBOL_GPL(alloc_vm_area); 2154 2155 void free_vm_area(struct vm_struct *area) 2156 { 2157 struct vm_struct *ret; 2158 ret = remove_vm_area(area->addr); 2159 BUG_ON(ret != area); 2160 kfree(area); 2161 } 2162 EXPORT_SYMBOL_GPL(free_vm_area); 2163 2164 #ifdef CONFIG_SMP 2165 static struct vmap_area *node_to_va(struct rb_node *n) 2166 { 2167 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2168 } 2169 2170 /** 2171 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2172 * @end: target address 2173 * @pnext: out arg for the next vmap_area 2174 * @pprev: out arg for the previous vmap_area 2175 * 2176 * Returns: %true if either or both of next and prev are found, 2177 * %false if no vmap_area exists 2178 * 2179 * Find vmap_areas end addresses of which enclose @end. ie. if not 2180 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2181 */ 2182 static bool pvm_find_next_prev(unsigned long end, 2183 struct vmap_area **pnext, 2184 struct vmap_area **pprev) 2185 { 2186 struct rb_node *n = vmap_area_root.rb_node; 2187 struct vmap_area *va = NULL; 2188 2189 while (n) { 2190 va = rb_entry(n, struct vmap_area, rb_node); 2191 if (end < va->va_end) 2192 n = n->rb_left; 2193 else if (end > va->va_end) 2194 n = n->rb_right; 2195 else 2196 break; 2197 } 2198 2199 if (!va) 2200 return false; 2201 2202 if (va->va_end > end) { 2203 *pnext = va; 2204 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2205 } else { 2206 *pprev = va; 2207 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2208 } 2209 return true; 2210 } 2211 2212 /** 2213 * pvm_determine_end - find the highest aligned address between two vmap_areas 2214 * @pnext: in/out arg for the next vmap_area 2215 * @pprev: in/out arg for the previous vmap_area 2216 * @align: alignment 2217 * 2218 * Returns: determined end address 2219 * 2220 * Find the highest aligned address between *@pnext and *@pprev below 2221 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2222 * down address is between the end addresses of the two vmap_areas. 2223 * 2224 * Please note that the address returned by this function may fall 2225 * inside *@pnext vmap_area. The caller is responsible for checking 2226 * that. 2227 */ 2228 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2229 struct vmap_area **pprev, 2230 unsigned long align) 2231 { 2232 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2233 unsigned long addr; 2234 2235 if (*pnext) 2236 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2237 else 2238 addr = vmalloc_end; 2239 2240 while (*pprev && (*pprev)->va_end > addr) { 2241 *pnext = *pprev; 2242 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2243 } 2244 2245 return addr; 2246 } 2247 2248 /** 2249 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2250 * @offsets: array containing offset of each area 2251 * @sizes: array containing size of each area 2252 * @nr_vms: the number of areas to allocate 2253 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2254 * 2255 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2256 * vm_structs on success, %NULL on failure 2257 * 2258 * Percpu allocator wants to use congruent vm areas so that it can 2259 * maintain the offsets among percpu areas. This function allocates 2260 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2261 * be scattered pretty far, distance between two areas easily going up 2262 * to gigabytes. To avoid interacting with regular vmallocs, these 2263 * areas are allocated from top. 2264 * 2265 * Despite its complicated look, this allocator is rather simple. It 2266 * does everything top-down and scans areas from the end looking for 2267 * matching slot. While scanning, if any of the areas overlaps with 2268 * existing vmap_area, the base address is pulled down to fit the 2269 * area. Scanning is repeated till all the areas fit and then all 2270 * necessary data structres are inserted and the result is returned. 2271 */ 2272 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2273 const size_t *sizes, int nr_vms, 2274 size_t align) 2275 { 2276 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2277 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2278 struct vmap_area **vas, *prev, *next; 2279 struct vm_struct **vms; 2280 int area, area2, last_area, term_area; 2281 unsigned long base, start, end, last_end; 2282 bool purged = false; 2283 2284 /* verify parameters and allocate data structures */ 2285 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2286 for (last_area = 0, area = 0; area < nr_vms; area++) { 2287 start = offsets[area]; 2288 end = start + sizes[area]; 2289 2290 /* is everything aligned properly? */ 2291 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2292 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2293 2294 /* detect the area with the highest address */ 2295 if (start > offsets[last_area]) 2296 last_area = area; 2297 2298 for (area2 = 0; area2 < nr_vms; area2++) { 2299 unsigned long start2 = offsets[area2]; 2300 unsigned long end2 = start2 + sizes[area2]; 2301 2302 if (area2 == area) 2303 continue; 2304 2305 BUG_ON(start2 >= start && start2 < end); 2306 BUG_ON(end2 <= end && end2 > start); 2307 } 2308 } 2309 last_end = offsets[last_area] + sizes[last_area]; 2310 2311 if (vmalloc_end - vmalloc_start < last_end) { 2312 WARN_ON(true); 2313 return NULL; 2314 } 2315 2316 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL); 2317 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL); 2318 if (!vas || !vms) 2319 goto err_free; 2320 2321 for (area = 0; area < nr_vms; area++) { 2322 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2323 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2324 if (!vas[area] || !vms[area]) 2325 goto err_free; 2326 } 2327 retry: 2328 spin_lock(&vmap_area_lock); 2329 2330 /* start scanning - we scan from the top, begin with the last area */ 2331 area = term_area = last_area; 2332 start = offsets[area]; 2333 end = start + sizes[area]; 2334 2335 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2336 base = vmalloc_end - last_end; 2337 goto found; 2338 } 2339 base = pvm_determine_end(&next, &prev, align) - end; 2340 2341 while (true) { 2342 BUG_ON(next && next->va_end <= base + end); 2343 BUG_ON(prev && prev->va_end > base + end); 2344 2345 /* 2346 * base might have underflowed, add last_end before 2347 * comparing. 2348 */ 2349 if (base + last_end < vmalloc_start + last_end) { 2350 spin_unlock(&vmap_area_lock); 2351 if (!purged) { 2352 purge_vmap_area_lazy(); 2353 purged = true; 2354 goto retry; 2355 } 2356 goto err_free; 2357 } 2358 2359 /* 2360 * If next overlaps, move base downwards so that it's 2361 * right below next and then recheck. 2362 */ 2363 if (next && next->va_start < base + end) { 2364 base = pvm_determine_end(&next, &prev, align) - end; 2365 term_area = area; 2366 continue; 2367 } 2368 2369 /* 2370 * If prev overlaps, shift down next and prev and move 2371 * base so that it's right below new next and then 2372 * recheck. 2373 */ 2374 if (prev && prev->va_end > base + start) { 2375 next = prev; 2376 prev = node_to_va(rb_prev(&next->rb_node)); 2377 base = pvm_determine_end(&next, &prev, align) - end; 2378 term_area = area; 2379 continue; 2380 } 2381 2382 /* 2383 * This area fits, move on to the previous one. If 2384 * the previous one is the terminal one, we're done. 2385 */ 2386 area = (area + nr_vms - 1) % nr_vms; 2387 if (area == term_area) 2388 break; 2389 start = offsets[area]; 2390 end = start + sizes[area]; 2391 pvm_find_next_prev(base + end, &next, &prev); 2392 } 2393 found: 2394 /* we've found a fitting base, insert all va's */ 2395 for (area = 0; area < nr_vms; area++) { 2396 struct vmap_area *va = vas[area]; 2397 2398 va->va_start = base + offsets[area]; 2399 va->va_end = va->va_start + sizes[area]; 2400 __insert_vmap_area(va); 2401 } 2402 2403 vmap_area_pcpu_hole = base + offsets[last_area]; 2404 2405 spin_unlock(&vmap_area_lock); 2406 2407 /* insert all vm's */ 2408 for (area = 0; area < nr_vms; area++) 2409 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2410 pcpu_get_vm_areas); 2411 2412 kfree(vas); 2413 return vms; 2414 2415 err_free: 2416 for (area = 0; area < nr_vms; area++) { 2417 if (vas) 2418 kfree(vas[area]); 2419 if (vms) 2420 kfree(vms[area]); 2421 } 2422 kfree(vas); 2423 kfree(vms); 2424 return NULL; 2425 } 2426 2427 /** 2428 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2429 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2430 * @nr_vms: the number of allocated areas 2431 * 2432 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2433 */ 2434 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2435 { 2436 int i; 2437 2438 for (i = 0; i < nr_vms; i++) 2439 free_vm_area(vms[i]); 2440 kfree(vms); 2441 } 2442 #endif /* CONFIG_SMP */ 2443 2444 #ifdef CONFIG_PROC_FS 2445 static void *s_start(struct seq_file *m, loff_t *pos) 2446 __acquires(&vmlist_lock) 2447 { 2448 loff_t n = *pos; 2449 struct vm_struct *v; 2450 2451 read_lock(&vmlist_lock); 2452 v = vmlist; 2453 while (n > 0 && v) { 2454 n--; 2455 v = v->next; 2456 } 2457 if (!n) 2458 return v; 2459 2460 return NULL; 2461 2462 } 2463 2464 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2465 { 2466 struct vm_struct *v = p; 2467 2468 ++*pos; 2469 return v->next; 2470 } 2471 2472 static void s_stop(struct seq_file *m, void *p) 2473 __releases(&vmlist_lock) 2474 { 2475 read_unlock(&vmlist_lock); 2476 } 2477 2478 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2479 { 2480 if (NUMA_BUILD) { 2481 unsigned int nr, *counters = m->private; 2482 2483 if (!counters) 2484 return; 2485 2486 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2487 2488 for (nr = 0; nr < v->nr_pages; nr++) 2489 counters[page_to_nid(v->pages[nr])]++; 2490 2491 for_each_node_state(nr, N_HIGH_MEMORY) 2492 if (counters[nr]) 2493 seq_printf(m, " N%u=%u", nr, counters[nr]); 2494 } 2495 } 2496 2497 static int s_show(struct seq_file *m, void *p) 2498 { 2499 struct vm_struct *v = p; 2500 2501 seq_printf(m, "0x%p-0x%p %7ld", 2502 v->addr, v->addr + v->size, v->size); 2503 2504 if (v->caller) 2505 seq_printf(m, " %pS", v->caller); 2506 2507 if (v->nr_pages) 2508 seq_printf(m, " pages=%d", v->nr_pages); 2509 2510 if (v->phys_addr) 2511 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2512 2513 if (v->flags & VM_IOREMAP) 2514 seq_printf(m, " ioremap"); 2515 2516 if (v->flags & VM_ALLOC) 2517 seq_printf(m, " vmalloc"); 2518 2519 if (v->flags & VM_MAP) 2520 seq_printf(m, " vmap"); 2521 2522 if (v->flags & VM_USERMAP) 2523 seq_printf(m, " user"); 2524 2525 if (v->flags & VM_VPAGES) 2526 seq_printf(m, " vpages"); 2527 2528 show_numa_info(m, v); 2529 seq_putc(m, '\n'); 2530 return 0; 2531 } 2532 2533 static const struct seq_operations vmalloc_op = { 2534 .start = s_start, 2535 .next = s_next, 2536 .stop = s_stop, 2537 .show = s_show, 2538 }; 2539 2540 static int vmalloc_open(struct inode *inode, struct file *file) 2541 { 2542 unsigned int *ptr = NULL; 2543 int ret; 2544 2545 if (NUMA_BUILD) { 2546 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2547 if (ptr == NULL) 2548 return -ENOMEM; 2549 } 2550 ret = seq_open(file, &vmalloc_op); 2551 if (!ret) { 2552 struct seq_file *m = file->private_data; 2553 m->private = ptr; 2554 } else 2555 kfree(ptr); 2556 return ret; 2557 } 2558 2559 static const struct file_operations proc_vmalloc_operations = { 2560 .open = vmalloc_open, 2561 .read = seq_read, 2562 .llseek = seq_lseek, 2563 .release = seq_release_private, 2564 }; 2565 2566 static int __init proc_vmalloc_init(void) 2567 { 2568 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2569 return 0; 2570 } 2571 module_init(proc_vmalloc_init); 2572 #endif 2573 2574