xref: /linux/mm/vmalloc.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			return err;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	return nr;
175 }
176 
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 			   pgprot_t prot, struct page **pages)
179 {
180 	int ret;
181 
182 	ret = vmap_page_range_noflush(start, end, prot, pages);
183 	flush_cache_vmap(start, end);
184 	return ret;
185 }
186 
187 int is_vmalloc_or_module_addr(const void *x)
188 {
189 	/*
190 	 * ARM, x86-64 and sparc64 put modules in a special place,
191 	 * and fall back on vmalloc() if that fails. Others
192 	 * just put it in the vmalloc space.
193 	 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 	unsigned long addr = (unsigned long)x;
196 	if (addr >= MODULES_VADDR && addr < MODULES_END)
197 		return 1;
198 #endif
199 	return is_vmalloc_addr(x);
200 }
201 
202 /*
203  * Walk a vmap address to the struct page it maps.
204  */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 	unsigned long addr = (unsigned long) vmalloc_addr;
208 	struct page *page = NULL;
209 	pgd_t *pgd = pgd_offset_k(addr);
210 
211 	/*
212 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 	 * architectures that do not vmalloc module space
214 	 */
215 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216 
217 	if (!pgd_none(*pgd)) {
218 		pud_t *pud = pud_offset(pgd, addr);
219 		if (!pud_none(*pud)) {
220 			pmd_t *pmd = pmd_offset(pud, addr);
221 			if (!pmd_none(*pmd)) {
222 				pte_t *ptep, pte;
223 
224 				ptep = pte_offset_map(pmd, addr);
225 				pte = *ptep;
226 				if (pte_present(pte))
227 					page = pte_page(pte);
228 				pte_unmap(ptep);
229 			}
230 		}
231 	}
232 	return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235 
236 /*
237  * Map a vmalloc()-space virtual address to the physical page frame number.
238  */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244 
245 
246 /*** Global kva allocator ***/
247 
248 #define VM_LAZY_FREE	0x01
249 #define VM_LAZY_FREEING	0x02
250 #define VM_VM_AREA	0x04
251 
252 struct vmap_area {
253 	unsigned long va_start;
254 	unsigned long va_end;
255 	unsigned long flags;
256 	struct rb_node rb_node;		/* address sorted rbtree */
257 	struct list_head list;		/* address sorted list */
258 	struct list_head purge_list;	/* "lazy purge" list */
259 	void *private;
260 	struct rcu_head rcu_head;
261 };
262 
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static LIST_HEAD(vmap_area_list);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node *free_vmap_cache;
269 static unsigned long cached_hole_size;
270 static unsigned long cached_vstart;
271 static unsigned long cached_align;
272 
273 static unsigned long vmap_area_pcpu_hole;
274 
275 static struct vmap_area *__find_vmap_area(unsigned long addr)
276 {
277 	struct rb_node *n = vmap_area_root.rb_node;
278 
279 	while (n) {
280 		struct vmap_area *va;
281 
282 		va = rb_entry(n, struct vmap_area, rb_node);
283 		if (addr < va->va_start)
284 			n = n->rb_left;
285 		else if (addr > va->va_start)
286 			n = n->rb_right;
287 		else
288 			return va;
289 	}
290 
291 	return NULL;
292 }
293 
294 static void __insert_vmap_area(struct vmap_area *va)
295 {
296 	struct rb_node **p = &vmap_area_root.rb_node;
297 	struct rb_node *parent = NULL;
298 	struct rb_node *tmp;
299 
300 	while (*p) {
301 		struct vmap_area *tmp_va;
302 
303 		parent = *p;
304 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 		if (va->va_start < tmp_va->va_end)
306 			p = &(*p)->rb_left;
307 		else if (va->va_end > tmp_va->va_start)
308 			p = &(*p)->rb_right;
309 		else
310 			BUG();
311 	}
312 
313 	rb_link_node(&va->rb_node, parent, p);
314 	rb_insert_color(&va->rb_node, &vmap_area_root);
315 
316 	/* address-sort this list so it is usable like the vmlist */
317 	tmp = rb_prev(&va->rb_node);
318 	if (tmp) {
319 		struct vmap_area *prev;
320 		prev = rb_entry(tmp, struct vmap_area, rb_node);
321 		list_add_rcu(&va->list, &prev->list);
322 	} else
323 		list_add_rcu(&va->list, &vmap_area_list);
324 }
325 
326 static void purge_vmap_area_lazy(void);
327 
328 /*
329  * Allocate a region of KVA of the specified size and alignment, within the
330  * vstart and vend.
331  */
332 static struct vmap_area *alloc_vmap_area(unsigned long size,
333 				unsigned long align,
334 				unsigned long vstart, unsigned long vend,
335 				int node, gfp_t gfp_mask)
336 {
337 	struct vmap_area *va;
338 	struct rb_node *n;
339 	unsigned long addr;
340 	int purged = 0;
341 	struct vmap_area *first;
342 
343 	BUG_ON(!size);
344 	BUG_ON(size & ~PAGE_MASK);
345 	BUG_ON(!is_power_of_2(align));
346 
347 	va = kmalloc_node(sizeof(struct vmap_area),
348 			gfp_mask & GFP_RECLAIM_MASK, node);
349 	if (unlikely(!va))
350 		return ERR_PTR(-ENOMEM);
351 
352 retry:
353 	spin_lock(&vmap_area_lock);
354 	/*
355 	 * Invalidate cache if we have more permissive parameters.
356 	 * cached_hole_size notes the largest hole noticed _below_
357 	 * the vmap_area cached in free_vmap_cache: if size fits
358 	 * into that hole, we want to scan from vstart to reuse
359 	 * the hole instead of allocating above free_vmap_cache.
360 	 * Note that __free_vmap_area may update free_vmap_cache
361 	 * without updating cached_hole_size or cached_align.
362 	 */
363 	if (!free_vmap_cache ||
364 			size < cached_hole_size ||
365 			vstart < cached_vstart ||
366 			align < cached_align) {
367 nocache:
368 		cached_hole_size = 0;
369 		free_vmap_cache = NULL;
370 	}
371 	/* record if we encounter less permissive parameters */
372 	cached_vstart = vstart;
373 	cached_align = align;
374 
375 	/* find starting point for our search */
376 	if (free_vmap_cache) {
377 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
378 		addr = ALIGN(first->va_end, align);
379 		if (addr < vstart)
380 			goto nocache;
381 		if (addr + size - 1 < addr)
382 			goto overflow;
383 
384 	} else {
385 		addr = ALIGN(vstart, align);
386 		if (addr + size - 1 < addr)
387 			goto overflow;
388 
389 		n = vmap_area_root.rb_node;
390 		first = NULL;
391 
392 		while (n) {
393 			struct vmap_area *tmp;
394 			tmp = rb_entry(n, struct vmap_area, rb_node);
395 			if (tmp->va_end >= addr) {
396 				first = tmp;
397 				if (tmp->va_start <= addr)
398 					break;
399 				n = n->rb_left;
400 			} else
401 				n = n->rb_right;
402 		}
403 
404 		if (!first)
405 			goto found;
406 	}
407 
408 	/* from the starting point, walk areas until a suitable hole is found */
409 	while (addr + size > first->va_start && addr + size <= vend) {
410 		if (addr + cached_hole_size < first->va_start)
411 			cached_hole_size = first->va_start - addr;
412 		addr = ALIGN(first->va_end, align);
413 		if (addr + size - 1 < addr)
414 			goto overflow;
415 
416 		n = rb_next(&first->rb_node);
417 		if (n)
418 			first = rb_entry(n, struct vmap_area, rb_node);
419 		else
420 			goto found;
421 	}
422 
423 found:
424 	if (addr + size > vend)
425 		goto overflow;
426 
427 	va->va_start = addr;
428 	va->va_end = addr + size;
429 	va->flags = 0;
430 	__insert_vmap_area(va);
431 	free_vmap_cache = &va->rb_node;
432 	spin_unlock(&vmap_area_lock);
433 
434 	BUG_ON(va->va_start & (align-1));
435 	BUG_ON(va->va_start < vstart);
436 	BUG_ON(va->va_end > vend);
437 
438 	return va;
439 
440 overflow:
441 	spin_unlock(&vmap_area_lock);
442 	if (!purged) {
443 		purge_vmap_area_lazy();
444 		purged = 1;
445 		goto retry;
446 	}
447 	if (printk_ratelimit())
448 		printk(KERN_WARNING
449 			"vmap allocation for size %lu failed: "
450 			"use vmalloc=<size> to increase size.\n", size);
451 	kfree(va);
452 	return ERR_PTR(-EBUSY);
453 }
454 
455 static void __free_vmap_area(struct vmap_area *va)
456 {
457 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
458 
459 	if (free_vmap_cache) {
460 		if (va->va_end < cached_vstart) {
461 			free_vmap_cache = NULL;
462 		} else {
463 			struct vmap_area *cache;
464 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
465 			if (va->va_start <= cache->va_start) {
466 				free_vmap_cache = rb_prev(&va->rb_node);
467 				/*
468 				 * We don't try to update cached_hole_size or
469 				 * cached_align, but it won't go very wrong.
470 				 */
471 			}
472 		}
473 	}
474 	rb_erase(&va->rb_node, &vmap_area_root);
475 	RB_CLEAR_NODE(&va->rb_node);
476 	list_del_rcu(&va->list);
477 
478 	/*
479 	 * Track the highest possible candidate for pcpu area
480 	 * allocation.  Areas outside of vmalloc area can be returned
481 	 * here too, consider only end addresses which fall inside
482 	 * vmalloc area proper.
483 	 */
484 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
485 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
486 
487 	kfree_rcu(va, rcu_head);
488 }
489 
490 /*
491  * Free a region of KVA allocated by alloc_vmap_area
492  */
493 static void free_vmap_area(struct vmap_area *va)
494 {
495 	spin_lock(&vmap_area_lock);
496 	__free_vmap_area(va);
497 	spin_unlock(&vmap_area_lock);
498 }
499 
500 /*
501  * Clear the pagetable entries of a given vmap_area
502  */
503 static void unmap_vmap_area(struct vmap_area *va)
504 {
505 	vunmap_page_range(va->va_start, va->va_end);
506 }
507 
508 static void vmap_debug_free_range(unsigned long start, unsigned long end)
509 {
510 	/*
511 	 * Unmap page tables and force a TLB flush immediately if
512 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
513 	 * bugs similarly to those in linear kernel virtual address
514 	 * space after a page has been freed.
515 	 *
516 	 * All the lazy freeing logic is still retained, in order to
517 	 * minimise intrusiveness of this debugging feature.
518 	 *
519 	 * This is going to be *slow* (linear kernel virtual address
520 	 * debugging doesn't do a broadcast TLB flush so it is a lot
521 	 * faster).
522 	 */
523 #ifdef CONFIG_DEBUG_PAGEALLOC
524 	vunmap_page_range(start, end);
525 	flush_tlb_kernel_range(start, end);
526 #endif
527 }
528 
529 /*
530  * lazy_max_pages is the maximum amount of virtual address space we gather up
531  * before attempting to purge with a TLB flush.
532  *
533  * There is a tradeoff here: a larger number will cover more kernel page tables
534  * and take slightly longer to purge, but it will linearly reduce the number of
535  * global TLB flushes that must be performed. It would seem natural to scale
536  * this number up linearly with the number of CPUs (because vmapping activity
537  * could also scale linearly with the number of CPUs), however it is likely
538  * that in practice, workloads might be constrained in other ways that mean
539  * vmap activity will not scale linearly with CPUs. Also, I want to be
540  * conservative and not introduce a big latency on huge systems, so go with
541  * a less aggressive log scale. It will still be an improvement over the old
542  * code, and it will be simple to change the scale factor if we find that it
543  * becomes a problem on bigger systems.
544  */
545 static unsigned long lazy_max_pages(void)
546 {
547 	unsigned int log;
548 
549 	log = fls(num_online_cpus());
550 
551 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
552 }
553 
554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
555 
556 /* for per-CPU blocks */
557 static void purge_fragmented_blocks_allcpus(void);
558 
559 /*
560  * called before a call to iounmap() if the caller wants vm_area_struct's
561  * immediately freed.
562  */
563 void set_iounmap_nonlazy(void)
564 {
565 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
566 }
567 
568 /*
569  * Purges all lazily-freed vmap areas.
570  *
571  * If sync is 0 then don't purge if there is already a purge in progress.
572  * If force_flush is 1, then flush kernel TLBs between *start and *end even
573  * if we found no lazy vmap areas to unmap (callers can use this to optimise
574  * their own TLB flushing).
575  * Returns with *start = min(*start, lowest purged address)
576  *              *end = max(*end, highest purged address)
577  */
578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
579 					int sync, int force_flush)
580 {
581 	static DEFINE_SPINLOCK(purge_lock);
582 	LIST_HEAD(valist);
583 	struct vmap_area *va;
584 	struct vmap_area *n_va;
585 	int nr = 0;
586 
587 	/*
588 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
589 	 * should not expect such behaviour. This just simplifies locking for
590 	 * the case that isn't actually used at the moment anyway.
591 	 */
592 	if (!sync && !force_flush) {
593 		if (!spin_trylock(&purge_lock))
594 			return;
595 	} else
596 		spin_lock(&purge_lock);
597 
598 	if (sync)
599 		purge_fragmented_blocks_allcpus();
600 
601 	rcu_read_lock();
602 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
603 		if (va->flags & VM_LAZY_FREE) {
604 			if (va->va_start < *start)
605 				*start = va->va_start;
606 			if (va->va_end > *end)
607 				*end = va->va_end;
608 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
609 			list_add_tail(&va->purge_list, &valist);
610 			va->flags |= VM_LAZY_FREEING;
611 			va->flags &= ~VM_LAZY_FREE;
612 		}
613 	}
614 	rcu_read_unlock();
615 
616 	if (nr)
617 		atomic_sub(nr, &vmap_lazy_nr);
618 
619 	if (nr || force_flush)
620 		flush_tlb_kernel_range(*start, *end);
621 
622 	if (nr) {
623 		spin_lock(&vmap_area_lock);
624 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
625 			__free_vmap_area(va);
626 		spin_unlock(&vmap_area_lock);
627 	}
628 	spin_unlock(&purge_lock);
629 }
630 
631 /*
632  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
633  * is already purging.
634  */
635 static void try_purge_vmap_area_lazy(void)
636 {
637 	unsigned long start = ULONG_MAX, end = 0;
638 
639 	__purge_vmap_area_lazy(&start, &end, 0, 0);
640 }
641 
642 /*
643  * Kick off a purge of the outstanding lazy areas.
644  */
645 static void purge_vmap_area_lazy(void)
646 {
647 	unsigned long start = ULONG_MAX, end = 0;
648 
649 	__purge_vmap_area_lazy(&start, &end, 1, 0);
650 }
651 
652 /*
653  * Free a vmap area, caller ensuring that the area has been unmapped
654  * and flush_cache_vunmap had been called for the correct range
655  * previously.
656  */
657 static void free_vmap_area_noflush(struct vmap_area *va)
658 {
659 	va->flags |= VM_LAZY_FREE;
660 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
661 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
662 		try_purge_vmap_area_lazy();
663 }
664 
665 /*
666  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
667  * called for the correct range previously.
668  */
669 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
670 {
671 	unmap_vmap_area(va);
672 	free_vmap_area_noflush(va);
673 }
674 
675 /*
676  * Free and unmap a vmap area
677  */
678 static void free_unmap_vmap_area(struct vmap_area *va)
679 {
680 	flush_cache_vunmap(va->va_start, va->va_end);
681 	free_unmap_vmap_area_noflush(va);
682 }
683 
684 static struct vmap_area *find_vmap_area(unsigned long addr)
685 {
686 	struct vmap_area *va;
687 
688 	spin_lock(&vmap_area_lock);
689 	va = __find_vmap_area(addr);
690 	spin_unlock(&vmap_area_lock);
691 
692 	return va;
693 }
694 
695 static void free_unmap_vmap_area_addr(unsigned long addr)
696 {
697 	struct vmap_area *va;
698 
699 	va = find_vmap_area(addr);
700 	BUG_ON(!va);
701 	free_unmap_vmap_area(va);
702 }
703 
704 
705 /*** Per cpu kva allocator ***/
706 
707 /*
708  * vmap space is limited especially on 32 bit architectures. Ensure there is
709  * room for at least 16 percpu vmap blocks per CPU.
710  */
711 /*
712  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
713  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
714  * instead (we just need a rough idea)
715  */
716 #if BITS_PER_LONG == 32
717 #define VMALLOC_SPACE		(128UL*1024*1024)
718 #else
719 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
720 #endif
721 
722 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
723 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
724 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
725 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
726 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
727 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
728 #define VMAP_BBMAP_BITS		\
729 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
730 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
731 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
732 
733 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
734 
735 static bool vmap_initialized __read_mostly = false;
736 
737 struct vmap_block_queue {
738 	spinlock_t lock;
739 	struct list_head free;
740 };
741 
742 struct vmap_block {
743 	spinlock_t lock;
744 	struct vmap_area *va;
745 	struct vmap_block_queue *vbq;
746 	unsigned long free, dirty;
747 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
748 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
749 	struct list_head free_list;
750 	struct rcu_head rcu_head;
751 	struct list_head purge;
752 };
753 
754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
755 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
756 
757 /*
758  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
759  * in the free path. Could get rid of this if we change the API to return a
760  * "cookie" from alloc, to be passed to free. But no big deal yet.
761  */
762 static DEFINE_SPINLOCK(vmap_block_tree_lock);
763 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
764 
765 /*
766  * We should probably have a fallback mechanism to allocate virtual memory
767  * out of partially filled vmap blocks. However vmap block sizing should be
768  * fairly reasonable according to the vmalloc size, so it shouldn't be a
769  * big problem.
770  */
771 
772 static unsigned long addr_to_vb_idx(unsigned long addr)
773 {
774 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
775 	addr /= VMAP_BLOCK_SIZE;
776 	return addr;
777 }
778 
779 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
780 {
781 	struct vmap_block_queue *vbq;
782 	struct vmap_block *vb;
783 	struct vmap_area *va;
784 	unsigned long vb_idx;
785 	int node, err;
786 
787 	node = numa_node_id();
788 
789 	vb = kmalloc_node(sizeof(struct vmap_block),
790 			gfp_mask & GFP_RECLAIM_MASK, node);
791 	if (unlikely(!vb))
792 		return ERR_PTR(-ENOMEM);
793 
794 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
795 					VMALLOC_START, VMALLOC_END,
796 					node, gfp_mask);
797 	if (IS_ERR(va)) {
798 		kfree(vb);
799 		return ERR_CAST(va);
800 	}
801 
802 	err = radix_tree_preload(gfp_mask);
803 	if (unlikely(err)) {
804 		kfree(vb);
805 		free_vmap_area(va);
806 		return ERR_PTR(err);
807 	}
808 
809 	spin_lock_init(&vb->lock);
810 	vb->va = va;
811 	vb->free = VMAP_BBMAP_BITS;
812 	vb->dirty = 0;
813 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
814 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
815 	INIT_LIST_HEAD(&vb->free_list);
816 
817 	vb_idx = addr_to_vb_idx(va->va_start);
818 	spin_lock(&vmap_block_tree_lock);
819 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
820 	spin_unlock(&vmap_block_tree_lock);
821 	BUG_ON(err);
822 	radix_tree_preload_end();
823 
824 	vbq = &get_cpu_var(vmap_block_queue);
825 	vb->vbq = vbq;
826 	spin_lock(&vbq->lock);
827 	list_add_rcu(&vb->free_list, &vbq->free);
828 	spin_unlock(&vbq->lock);
829 	put_cpu_var(vmap_block_queue);
830 
831 	return vb;
832 }
833 
834 static void free_vmap_block(struct vmap_block *vb)
835 {
836 	struct vmap_block *tmp;
837 	unsigned long vb_idx;
838 
839 	vb_idx = addr_to_vb_idx(vb->va->va_start);
840 	spin_lock(&vmap_block_tree_lock);
841 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
842 	spin_unlock(&vmap_block_tree_lock);
843 	BUG_ON(tmp != vb);
844 
845 	free_vmap_area_noflush(vb->va);
846 	kfree_rcu(vb, rcu_head);
847 }
848 
849 static void purge_fragmented_blocks(int cpu)
850 {
851 	LIST_HEAD(purge);
852 	struct vmap_block *vb;
853 	struct vmap_block *n_vb;
854 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
855 
856 	rcu_read_lock();
857 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
858 
859 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
860 			continue;
861 
862 		spin_lock(&vb->lock);
863 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
864 			vb->free = 0; /* prevent further allocs after releasing lock */
865 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
866 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
867 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
868 			spin_lock(&vbq->lock);
869 			list_del_rcu(&vb->free_list);
870 			spin_unlock(&vbq->lock);
871 			spin_unlock(&vb->lock);
872 			list_add_tail(&vb->purge, &purge);
873 		} else
874 			spin_unlock(&vb->lock);
875 	}
876 	rcu_read_unlock();
877 
878 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
879 		list_del(&vb->purge);
880 		free_vmap_block(vb);
881 	}
882 }
883 
884 static void purge_fragmented_blocks_thiscpu(void)
885 {
886 	purge_fragmented_blocks(smp_processor_id());
887 }
888 
889 static void purge_fragmented_blocks_allcpus(void)
890 {
891 	int cpu;
892 
893 	for_each_possible_cpu(cpu)
894 		purge_fragmented_blocks(cpu);
895 }
896 
897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898 {
899 	struct vmap_block_queue *vbq;
900 	struct vmap_block *vb;
901 	unsigned long addr = 0;
902 	unsigned int order;
903 	int purge = 0;
904 
905 	BUG_ON(size & ~PAGE_MASK);
906 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
907 	order = get_order(size);
908 
909 again:
910 	rcu_read_lock();
911 	vbq = &get_cpu_var(vmap_block_queue);
912 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
913 		int i;
914 
915 		spin_lock(&vb->lock);
916 		if (vb->free < 1UL << order)
917 			goto next;
918 
919 		i = bitmap_find_free_region(vb->alloc_map,
920 						VMAP_BBMAP_BITS, order);
921 
922 		if (i < 0) {
923 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
924 				/* fragmented and no outstanding allocations */
925 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
926 				purge = 1;
927 			}
928 			goto next;
929 		}
930 		addr = vb->va->va_start + (i << PAGE_SHIFT);
931 		BUG_ON(addr_to_vb_idx(addr) !=
932 				addr_to_vb_idx(vb->va->va_start));
933 		vb->free -= 1UL << order;
934 		if (vb->free == 0) {
935 			spin_lock(&vbq->lock);
936 			list_del_rcu(&vb->free_list);
937 			spin_unlock(&vbq->lock);
938 		}
939 		spin_unlock(&vb->lock);
940 		break;
941 next:
942 		spin_unlock(&vb->lock);
943 	}
944 
945 	if (purge)
946 		purge_fragmented_blocks_thiscpu();
947 
948 	put_cpu_var(vmap_block_queue);
949 	rcu_read_unlock();
950 
951 	if (!addr) {
952 		vb = new_vmap_block(gfp_mask);
953 		if (IS_ERR(vb))
954 			return vb;
955 		goto again;
956 	}
957 
958 	return (void *)addr;
959 }
960 
961 static void vb_free(const void *addr, unsigned long size)
962 {
963 	unsigned long offset;
964 	unsigned long vb_idx;
965 	unsigned int order;
966 	struct vmap_block *vb;
967 
968 	BUG_ON(size & ~PAGE_MASK);
969 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
970 
971 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
972 
973 	order = get_order(size);
974 
975 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
976 
977 	vb_idx = addr_to_vb_idx((unsigned long)addr);
978 	rcu_read_lock();
979 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
980 	rcu_read_unlock();
981 	BUG_ON(!vb);
982 
983 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
984 
985 	spin_lock(&vb->lock);
986 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
987 
988 	vb->dirty += 1UL << order;
989 	if (vb->dirty == VMAP_BBMAP_BITS) {
990 		BUG_ON(vb->free);
991 		spin_unlock(&vb->lock);
992 		free_vmap_block(vb);
993 	} else
994 		spin_unlock(&vb->lock);
995 }
996 
997 /**
998  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
999  *
1000  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001  * to amortize TLB flushing overheads. What this means is that any page you
1002  * have now, may, in a former life, have been mapped into kernel virtual
1003  * address by the vmap layer and so there might be some CPUs with TLB entries
1004  * still referencing that page (additional to the regular 1:1 kernel mapping).
1005  *
1006  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007  * be sure that none of the pages we have control over will have any aliases
1008  * from the vmap layer.
1009  */
1010 void vm_unmap_aliases(void)
1011 {
1012 	unsigned long start = ULONG_MAX, end = 0;
1013 	int cpu;
1014 	int flush = 0;
1015 
1016 	if (unlikely(!vmap_initialized))
1017 		return;
1018 
1019 	for_each_possible_cpu(cpu) {
1020 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021 		struct vmap_block *vb;
1022 
1023 		rcu_read_lock();
1024 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025 			int i;
1026 
1027 			spin_lock(&vb->lock);
1028 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029 			while (i < VMAP_BBMAP_BITS) {
1030 				unsigned long s, e;
1031 				int j;
1032 				j = find_next_zero_bit(vb->dirty_map,
1033 					VMAP_BBMAP_BITS, i);
1034 
1035 				s = vb->va->va_start + (i << PAGE_SHIFT);
1036 				e = vb->va->va_start + (j << PAGE_SHIFT);
1037 				flush = 1;
1038 
1039 				if (s < start)
1040 					start = s;
1041 				if (e > end)
1042 					end = e;
1043 
1044 				i = j;
1045 				i = find_next_bit(vb->dirty_map,
1046 							VMAP_BBMAP_BITS, i);
1047 			}
1048 			spin_unlock(&vb->lock);
1049 		}
1050 		rcu_read_unlock();
1051 	}
1052 
1053 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1054 }
1055 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1056 
1057 /**
1058  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1059  * @mem: the pointer returned by vm_map_ram
1060  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1061  */
1062 void vm_unmap_ram(const void *mem, unsigned int count)
1063 {
1064 	unsigned long size = count << PAGE_SHIFT;
1065 	unsigned long addr = (unsigned long)mem;
1066 
1067 	BUG_ON(!addr);
1068 	BUG_ON(addr < VMALLOC_START);
1069 	BUG_ON(addr > VMALLOC_END);
1070 	BUG_ON(addr & (PAGE_SIZE-1));
1071 
1072 	debug_check_no_locks_freed(mem, size);
1073 	vmap_debug_free_range(addr, addr+size);
1074 
1075 	if (likely(count <= VMAP_MAX_ALLOC))
1076 		vb_free(mem, size);
1077 	else
1078 		free_unmap_vmap_area_addr(addr);
1079 }
1080 EXPORT_SYMBOL(vm_unmap_ram);
1081 
1082 /**
1083  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1084  * @pages: an array of pointers to the pages to be mapped
1085  * @count: number of pages
1086  * @node: prefer to allocate data structures on this node
1087  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1088  *
1089  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1090  */
1091 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1092 {
1093 	unsigned long size = count << PAGE_SHIFT;
1094 	unsigned long addr;
1095 	void *mem;
1096 
1097 	if (likely(count <= VMAP_MAX_ALLOC)) {
1098 		mem = vb_alloc(size, GFP_KERNEL);
1099 		if (IS_ERR(mem))
1100 			return NULL;
1101 		addr = (unsigned long)mem;
1102 	} else {
1103 		struct vmap_area *va;
1104 		va = alloc_vmap_area(size, PAGE_SIZE,
1105 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1106 		if (IS_ERR(va))
1107 			return NULL;
1108 
1109 		addr = va->va_start;
1110 		mem = (void *)addr;
1111 	}
1112 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1113 		vm_unmap_ram(mem, count);
1114 		return NULL;
1115 	}
1116 	return mem;
1117 }
1118 EXPORT_SYMBOL(vm_map_ram);
1119 
1120 /**
1121  * vm_area_register_early - register vmap area early during boot
1122  * @vm: vm_struct to register
1123  * @align: requested alignment
1124  *
1125  * This function is used to register kernel vm area before
1126  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1127  * proper values on entry and other fields should be zero.  On return,
1128  * vm->addr contains the allocated address.
1129  *
1130  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1131  */
1132 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1133 {
1134 	static size_t vm_init_off __initdata;
1135 	unsigned long addr;
1136 
1137 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1138 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1139 
1140 	vm->addr = (void *)addr;
1141 
1142 	vm->next = vmlist;
1143 	vmlist = vm;
1144 }
1145 
1146 void __init vmalloc_init(void)
1147 {
1148 	struct vmap_area *va;
1149 	struct vm_struct *tmp;
1150 	int i;
1151 
1152 	for_each_possible_cpu(i) {
1153 		struct vmap_block_queue *vbq;
1154 
1155 		vbq = &per_cpu(vmap_block_queue, i);
1156 		spin_lock_init(&vbq->lock);
1157 		INIT_LIST_HEAD(&vbq->free);
1158 	}
1159 
1160 	/* Import existing vmlist entries. */
1161 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1162 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1163 		va->flags = tmp->flags | VM_VM_AREA;
1164 		va->va_start = (unsigned long)tmp->addr;
1165 		va->va_end = va->va_start + tmp->size;
1166 		__insert_vmap_area(va);
1167 	}
1168 
1169 	vmap_area_pcpu_hole = VMALLOC_END;
1170 
1171 	vmap_initialized = true;
1172 }
1173 
1174 /**
1175  * map_kernel_range_noflush - map kernel VM area with the specified pages
1176  * @addr: start of the VM area to map
1177  * @size: size of the VM area to map
1178  * @prot: page protection flags to use
1179  * @pages: pages to map
1180  *
1181  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1182  * specify should have been allocated using get_vm_area() and its
1183  * friends.
1184  *
1185  * NOTE:
1186  * This function does NOT do any cache flushing.  The caller is
1187  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1188  * before calling this function.
1189  *
1190  * RETURNS:
1191  * The number of pages mapped on success, -errno on failure.
1192  */
1193 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1194 			     pgprot_t prot, struct page **pages)
1195 {
1196 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1197 }
1198 
1199 /**
1200  * unmap_kernel_range_noflush - unmap kernel VM area
1201  * @addr: start of the VM area to unmap
1202  * @size: size of the VM area to unmap
1203  *
1204  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1205  * specify should have been allocated using get_vm_area() and its
1206  * friends.
1207  *
1208  * NOTE:
1209  * This function does NOT do any cache flushing.  The caller is
1210  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1211  * before calling this function and flush_tlb_kernel_range() after.
1212  */
1213 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1214 {
1215 	vunmap_page_range(addr, addr + size);
1216 }
1217 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1218 
1219 /**
1220  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1221  * @addr: start of the VM area to unmap
1222  * @size: size of the VM area to unmap
1223  *
1224  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1225  * the unmapping and tlb after.
1226  */
1227 void unmap_kernel_range(unsigned long addr, unsigned long size)
1228 {
1229 	unsigned long end = addr + size;
1230 
1231 	flush_cache_vunmap(addr, end);
1232 	vunmap_page_range(addr, end);
1233 	flush_tlb_kernel_range(addr, end);
1234 }
1235 
1236 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1237 {
1238 	unsigned long addr = (unsigned long)area->addr;
1239 	unsigned long end = addr + area->size - PAGE_SIZE;
1240 	int err;
1241 
1242 	err = vmap_page_range(addr, end, prot, *pages);
1243 	if (err > 0) {
1244 		*pages += err;
1245 		err = 0;
1246 	}
1247 
1248 	return err;
1249 }
1250 EXPORT_SYMBOL_GPL(map_vm_area);
1251 
1252 /*** Old vmalloc interfaces ***/
1253 DEFINE_RWLOCK(vmlist_lock);
1254 struct vm_struct *vmlist;
1255 
1256 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1257 			      unsigned long flags, void *caller)
1258 {
1259 	struct vm_struct *tmp, **p;
1260 
1261 	vm->flags = flags;
1262 	vm->addr = (void *)va->va_start;
1263 	vm->size = va->va_end - va->va_start;
1264 	vm->caller = caller;
1265 	va->private = vm;
1266 	va->flags |= VM_VM_AREA;
1267 
1268 	write_lock(&vmlist_lock);
1269 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1270 		if (tmp->addr >= vm->addr)
1271 			break;
1272 	}
1273 	vm->next = *p;
1274 	*p = vm;
1275 	write_unlock(&vmlist_lock);
1276 }
1277 
1278 static struct vm_struct *__get_vm_area_node(unsigned long size,
1279 		unsigned long align, unsigned long flags, unsigned long start,
1280 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1281 {
1282 	static struct vmap_area *va;
1283 	struct vm_struct *area;
1284 
1285 	BUG_ON(in_interrupt());
1286 	if (flags & VM_IOREMAP) {
1287 		int bit = fls(size);
1288 
1289 		if (bit > IOREMAP_MAX_ORDER)
1290 			bit = IOREMAP_MAX_ORDER;
1291 		else if (bit < PAGE_SHIFT)
1292 			bit = PAGE_SHIFT;
1293 
1294 		align = 1ul << bit;
1295 	}
1296 
1297 	size = PAGE_ALIGN(size);
1298 	if (unlikely(!size))
1299 		return NULL;
1300 
1301 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1302 	if (unlikely(!area))
1303 		return NULL;
1304 
1305 	/*
1306 	 * We always allocate a guard page.
1307 	 */
1308 	size += PAGE_SIZE;
1309 
1310 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1311 	if (IS_ERR(va)) {
1312 		kfree(area);
1313 		return NULL;
1314 	}
1315 
1316 	insert_vmalloc_vm(area, va, flags, caller);
1317 	return area;
1318 }
1319 
1320 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1321 				unsigned long start, unsigned long end)
1322 {
1323 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1324 						__builtin_return_address(0));
1325 }
1326 EXPORT_SYMBOL_GPL(__get_vm_area);
1327 
1328 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1329 				       unsigned long start, unsigned long end,
1330 				       void *caller)
1331 {
1332 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1333 				  caller);
1334 }
1335 
1336 /**
1337  *	get_vm_area  -  reserve a contiguous kernel virtual area
1338  *	@size:		size of the area
1339  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1340  *
1341  *	Search an area of @size in the kernel virtual mapping area,
1342  *	and reserved it for out purposes.  Returns the area descriptor
1343  *	on success or %NULL on failure.
1344  */
1345 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1346 {
1347 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1348 				-1, GFP_KERNEL, __builtin_return_address(0));
1349 }
1350 
1351 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1352 				void *caller)
1353 {
1354 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1355 						-1, GFP_KERNEL, caller);
1356 }
1357 
1358 static struct vm_struct *find_vm_area(const void *addr)
1359 {
1360 	struct vmap_area *va;
1361 
1362 	va = find_vmap_area((unsigned long)addr);
1363 	if (va && va->flags & VM_VM_AREA)
1364 		return va->private;
1365 
1366 	return NULL;
1367 }
1368 
1369 /**
1370  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1371  *	@addr:		base address
1372  *
1373  *	Search for the kernel VM area starting at @addr, and remove it.
1374  *	This function returns the found VM area, but using it is NOT safe
1375  *	on SMP machines, except for its size or flags.
1376  */
1377 struct vm_struct *remove_vm_area(const void *addr)
1378 {
1379 	struct vmap_area *va;
1380 
1381 	va = find_vmap_area((unsigned long)addr);
1382 	if (va && va->flags & VM_VM_AREA) {
1383 		struct vm_struct *vm = va->private;
1384 		struct vm_struct *tmp, **p;
1385 		/*
1386 		 * remove from list and disallow access to this vm_struct
1387 		 * before unmap. (address range confliction is maintained by
1388 		 * vmap.)
1389 		 */
1390 		write_lock(&vmlist_lock);
1391 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1392 			;
1393 		*p = tmp->next;
1394 		write_unlock(&vmlist_lock);
1395 
1396 		vmap_debug_free_range(va->va_start, va->va_end);
1397 		free_unmap_vmap_area(va);
1398 		vm->size -= PAGE_SIZE;
1399 
1400 		return vm;
1401 	}
1402 	return NULL;
1403 }
1404 
1405 static void __vunmap(const void *addr, int deallocate_pages)
1406 {
1407 	struct vm_struct *area;
1408 
1409 	if (!addr)
1410 		return;
1411 
1412 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1413 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1414 		return;
1415 	}
1416 
1417 	area = remove_vm_area(addr);
1418 	if (unlikely(!area)) {
1419 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1420 				addr);
1421 		return;
1422 	}
1423 
1424 	debug_check_no_locks_freed(addr, area->size);
1425 	debug_check_no_obj_freed(addr, area->size);
1426 
1427 	if (deallocate_pages) {
1428 		int i;
1429 
1430 		for (i = 0; i < area->nr_pages; i++) {
1431 			struct page *page = area->pages[i];
1432 
1433 			BUG_ON(!page);
1434 			__free_page(page);
1435 		}
1436 
1437 		if (area->flags & VM_VPAGES)
1438 			vfree(area->pages);
1439 		else
1440 			kfree(area->pages);
1441 	}
1442 
1443 	kfree(area);
1444 	return;
1445 }
1446 
1447 /**
1448  *	vfree  -  release memory allocated by vmalloc()
1449  *	@addr:		memory base address
1450  *
1451  *	Free the virtually continuous memory area starting at @addr, as
1452  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1453  *	NULL, no operation is performed.
1454  *
1455  *	Must not be called in interrupt context.
1456  */
1457 void vfree(const void *addr)
1458 {
1459 	BUG_ON(in_interrupt());
1460 
1461 	kmemleak_free(addr);
1462 
1463 	__vunmap(addr, 1);
1464 }
1465 EXPORT_SYMBOL(vfree);
1466 
1467 /**
1468  *	vunmap  -  release virtual mapping obtained by vmap()
1469  *	@addr:		memory base address
1470  *
1471  *	Free the virtually contiguous memory area starting at @addr,
1472  *	which was created from the page array passed to vmap().
1473  *
1474  *	Must not be called in interrupt context.
1475  */
1476 void vunmap(const void *addr)
1477 {
1478 	BUG_ON(in_interrupt());
1479 	might_sleep();
1480 	__vunmap(addr, 0);
1481 }
1482 EXPORT_SYMBOL(vunmap);
1483 
1484 /**
1485  *	vmap  -  map an array of pages into virtually contiguous space
1486  *	@pages:		array of page pointers
1487  *	@count:		number of pages to map
1488  *	@flags:		vm_area->flags
1489  *	@prot:		page protection for the mapping
1490  *
1491  *	Maps @count pages from @pages into contiguous kernel virtual
1492  *	space.
1493  */
1494 void *vmap(struct page **pages, unsigned int count,
1495 		unsigned long flags, pgprot_t prot)
1496 {
1497 	struct vm_struct *area;
1498 
1499 	might_sleep();
1500 
1501 	if (count > totalram_pages)
1502 		return NULL;
1503 
1504 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1505 					__builtin_return_address(0));
1506 	if (!area)
1507 		return NULL;
1508 
1509 	if (map_vm_area(area, prot, &pages)) {
1510 		vunmap(area->addr);
1511 		return NULL;
1512 	}
1513 
1514 	return area->addr;
1515 }
1516 EXPORT_SYMBOL(vmap);
1517 
1518 static void *__vmalloc_node(unsigned long size, unsigned long align,
1519 			    gfp_t gfp_mask, pgprot_t prot,
1520 			    int node, void *caller);
1521 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1522 				 pgprot_t prot, int node, void *caller)
1523 {
1524 	const int order = 0;
1525 	struct page **pages;
1526 	unsigned int nr_pages, array_size, i;
1527 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1528 
1529 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1530 	array_size = (nr_pages * sizeof(struct page *));
1531 
1532 	area->nr_pages = nr_pages;
1533 	/* Please note that the recursion is strictly bounded. */
1534 	if (array_size > PAGE_SIZE) {
1535 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1536 				PAGE_KERNEL, node, caller);
1537 		area->flags |= VM_VPAGES;
1538 	} else {
1539 		pages = kmalloc_node(array_size, nested_gfp, node);
1540 	}
1541 	area->pages = pages;
1542 	area->caller = caller;
1543 	if (!area->pages) {
1544 		remove_vm_area(area->addr);
1545 		kfree(area);
1546 		return NULL;
1547 	}
1548 
1549 	for (i = 0; i < area->nr_pages; i++) {
1550 		struct page *page;
1551 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1552 
1553 		if (node < 0)
1554 			page = alloc_page(tmp_mask);
1555 		else
1556 			page = alloc_pages_node(node, tmp_mask, order);
1557 
1558 		if (unlikely(!page)) {
1559 			/* Successfully allocated i pages, free them in __vunmap() */
1560 			area->nr_pages = i;
1561 			goto fail;
1562 		}
1563 		area->pages[i] = page;
1564 	}
1565 
1566 	if (map_vm_area(area, prot, &pages))
1567 		goto fail;
1568 	return area->addr;
1569 
1570 fail:
1571 	warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1572 			  "allocated %ld of %ld bytes\n",
1573 			  (area->nr_pages*PAGE_SIZE), area->size);
1574 	vfree(area->addr);
1575 	return NULL;
1576 }
1577 
1578 /**
1579  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1580  *	@size:		allocation size
1581  *	@align:		desired alignment
1582  *	@start:		vm area range start
1583  *	@end:		vm area range end
1584  *	@gfp_mask:	flags for the page level allocator
1585  *	@prot:		protection mask for the allocated pages
1586  *	@node:		node to use for allocation or -1
1587  *	@caller:	caller's return address
1588  *
1589  *	Allocate enough pages to cover @size from the page level
1590  *	allocator with @gfp_mask flags.  Map them into contiguous
1591  *	kernel virtual space, using a pagetable protection of @prot.
1592  */
1593 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1594 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1595 			pgprot_t prot, int node, void *caller)
1596 {
1597 	struct vm_struct *area;
1598 	void *addr;
1599 	unsigned long real_size = size;
1600 
1601 	size = PAGE_ALIGN(size);
1602 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1603 		return NULL;
1604 
1605 	area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node,
1606 				  gfp_mask, caller);
1607 
1608 	if (!area)
1609 		return NULL;
1610 
1611 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1612 
1613 	/*
1614 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1615 	 * structures allocated in the __get_vm_area_node() function contain
1616 	 * references to the virtual address of the vmalloc'ed block.
1617 	 */
1618 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1619 
1620 	return addr;
1621 }
1622 
1623 /**
1624  *	__vmalloc_node  -  allocate virtually contiguous memory
1625  *	@size:		allocation size
1626  *	@align:		desired alignment
1627  *	@gfp_mask:	flags for the page level allocator
1628  *	@prot:		protection mask for the allocated pages
1629  *	@node:		node to use for allocation or -1
1630  *	@caller:	caller's return address
1631  *
1632  *	Allocate enough pages to cover @size from the page level
1633  *	allocator with @gfp_mask flags.  Map them into contiguous
1634  *	kernel virtual space, using a pagetable protection of @prot.
1635  */
1636 static void *__vmalloc_node(unsigned long size, unsigned long align,
1637 			    gfp_t gfp_mask, pgprot_t prot,
1638 			    int node, void *caller)
1639 {
1640 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1641 				gfp_mask, prot, node, caller);
1642 }
1643 
1644 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1645 {
1646 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1647 				__builtin_return_address(0));
1648 }
1649 EXPORT_SYMBOL(__vmalloc);
1650 
1651 static inline void *__vmalloc_node_flags(unsigned long size,
1652 					int node, gfp_t flags)
1653 {
1654 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1655 					node, __builtin_return_address(0));
1656 }
1657 
1658 /**
1659  *	vmalloc  -  allocate virtually contiguous memory
1660  *	@size:		allocation size
1661  *	Allocate enough pages to cover @size from the page level
1662  *	allocator and map them into contiguous kernel virtual space.
1663  *
1664  *	For tight control over page level allocator and protection flags
1665  *	use __vmalloc() instead.
1666  */
1667 void *vmalloc(unsigned long size)
1668 {
1669 	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1670 }
1671 EXPORT_SYMBOL(vmalloc);
1672 
1673 /**
1674  *	vzalloc - allocate virtually contiguous memory with zero fill
1675  *	@size:	allocation size
1676  *	Allocate enough pages to cover @size from the page level
1677  *	allocator and map them into contiguous kernel virtual space.
1678  *	The memory allocated is set to zero.
1679  *
1680  *	For tight control over page level allocator and protection flags
1681  *	use __vmalloc() instead.
1682  */
1683 void *vzalloc(unsigned long size)
1684 {
1685 	return __vmalloc_node_flags(size, -1,
1686 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1687 }
1688 EXPORT_SYMBOL(vzalloc);
1689 
1690 /**
1691  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1692  * @size: allocation size
1693  *
1694  * The resulting memory area is zeroed so it can be mapped to userspace
1695  * without leaking data.
1696  */
1697 void *vmalloc_user(unsigned long size)
1698 {
1699 	struct vm_struct *area;
1700 	void *ret;
1701 
1702 	ret = __vmalloc_node(size, SHMLBA,
1703 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1704 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1705 	if (ret) {
1706 		area = find_vm_area(ret);
1707 		area->flags |= VM_USERMAP;
1708 	}
1709 	return ret;
1710 }
1711 EXPORT_SYMBOL(vmalloc_user);
1712 
1713 /**
1714  *	vmalloc_node  -  allocate memory on a specific node
1715  *	@size:		allocation size
1716  *	@node:		numa node
1717  *
1718  *	Allocate enough pages to cover @size from the page level
1719  *	allocator and map them into contiguous kernel virtual space.
1720  *
1721  *	For tight control over page level allocator and protection flags
1722  *	use __vmalloc() instead.
1723  */
1724 void *vmalloc_node(unsigned long size, int node)
1725 {
1726 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1727 					node, __builtin_return_address(0));
1728 }
1729 EXPORT_SYMBOL(vmalloc_node);
1730 
1731 /**
1732  * vzalloc_node - allocate memory on a specific node with zero fill
1733  * @size:	allocation size
1734  * @node:	numa node
1735  *
1736  * Allocate enough pages to cover @size from the page level
1737  * allocator and map them into contiguous kernel virtual space.
1738  * The memory allocated is set to zero.
1739  *
1740  * For tight control over page level allocator and protection flags
1741  * use __vmalloc_node() instead.
1742  */
1743 void *vzalloc_node(unsigned long size, int node)
1744 {
1745 	return __vmalloc_node_flags(size, node,
1746 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1747 }
1748 EXPORT_SYMBOL(vzalloc_node);
1749 
1750 #ifndef PAGE_KERNEL_EXEC
1751 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1752 #endif
1753 
1754 /**
1755  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1756  *	@size:		allocation size
1757  *
1758  *	Kernel-internal function to allocate enough pages to cover @size
1759  *	the page level allocator and map them into contiguous and
1760  *	executable kernel virtual space.
1761  *
1762  *	For tight control over page level allocator and protection flags
1763  *	use __vmalloc() instead.
1764  */
1765 
1766 void *vmalloc_exec(unsigned long size)
1767 {
1768 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1769 			      -1, __builtin_return_address(0));
1770 }
1771 
1772 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1773 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1774 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1775 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1776 #else
1777 #define GFP_VMALLOC32 GFP_KERNEL
1778 #endif
1779 
1780 /**
1781  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1782  *	@size:		allocation size
1783  *
1784  *	Allocate enough 32bit PA addressable pages to cover @size from the
1785  *	page level allocator and map them into contiguous kernel virtual space.
1786  */
1787 void *vmalloc_32(unsigned long size)
1788 {
1789 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1790 			      -1, __builtin_return_address(0));
1791 }
1792 EXPORT_SYMBOL(vmalloc_32);
1793 
1794 /**
1795  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1796  *	@size:		allocation size
1797  *
1798  * The resulting memory area is 32bit addressable and zeroed so it can be
1799  * mapped to userspace without leaking data.
1800  */
1801 void *vmalloc_32_user(unsigned long size)
1802 {
1803 	struct vm_struct *area;
1804 	void *ret;
1805 
1806 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1807 			     -1, __builtin_return_address(0));
1808 	if (ret) {
1809 		area = find_vm_area(ret);
1810 		area->flags |= VM_USERMAP;
1811 	}
1812 	return ret;
1813 }
1814 EXPORT_SYMBOL(vmalloc_32_user);
1815 
1816 /*
1817  * small helper routine , copy contents to buf from addr.
1818  * If the page is not present, fill zero.
1819  */
1820 
1821 static int aligned_vread(char *buf, char *addr, unsigned long count)
1822 {
1823 	struct page *p;
1824 	int copied = 0;
1825 
1826 	while (count) {
1827 		unsigned long offset, length;
1828 
1829 		offset = (unsigned long)addr & ~PAGE_MASK;
1830 		length = PAGE_SIZE - offset;
1831 		if (length > count)
1832 			length = count;
1833 		p = vmalloc_to_page(addr);
1834 		/*
1835 		 * To do safe access to this _mapped_ area, we need
1836 		 * lock. But adding lock here means that we need to add
1837 		 * overhead of vmalloc()/vfree() calles for this _debug_
1838 		 * interface, rarely used. Instead of that, we'll use
1839 		 * kmap() and get small overhead in this access function.
1840 		 */
1841 		if (p) {
1842 			/*
1843 			 * we can expect USER0 is not used (see vread/vwrite's
1844 			 * function description)
1845 			 */
1846 			void *map = kmap_atomic(p, KM_USER0);
1847 			memcpy(buf, map + offset, length);
1848 			kunmap_atomic(map, KM_USER0);
1849 		} else
1850 			memset(buf, 0, length);
1851 
1852 		addr += length;
1853 		buf += length;
1854 		copied += length;
1855 		count -= length;
1856 	}
1857 	return copied;
1858 }
1859 
1860 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1861 {
1862 	struct page *p;
1863 	int copied = 0;
1864 
1865 	while (count) {
1866 		unsigned long offset, length;
1867 
1868 		offset = (unsigned long)addr & ~PAGE_MASK;
1869 		length = PAGE_SIZE - offset;
1870 		if (length > count)
1871 			length = count;
1872 		p = vmalloc_to_page(addr);
1873 		/*
1874 		 * To do safe access to this _mapped_ area, we need
1875 		 * lock. But adding lock here means that we need to add
1876 		 * overhead of vmalloc()/vfree() calles for this _debug_
1877 		 * interface, rarely used. Instead of that, we'll use
1878 		 * kmap() and get small overhead in this access function.
1879 		 */
1880 		if (p) {
1881 			/*
1882 			 * we can expect USER0 is not used (see vread/vwrite's
1883 			 * function description)
1884 			 */
1885 			void *map = kmap_atomic(p, KM_USER0);
1886 			memcpy(map + offset, buf, length);
1887 			kunmap_atomic(map, KM_USER0);
1888 		}
1889 		addr += length;
1890 		buf += length;
1891 		copied += length;
1892 		count -= length;
1893 	}
1894 	return copied;
1895 }
1896 
1897 /**
1898  *	vread() -  read vmalloc area in a safe way.
1899  *	@buf:		buffer for reading data
1900  *	@addr:		vm address.
1901  *	@count:		number of bytes to be read.
1902  *
1903  *	Returns # of bytes which addr and buf should be increased.
1904  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1905  *	includes any intersect with alive vmalloc area.
1906  *
1907  *	This function checks that addr is a valid vmalloc'ed area, and
1908  *	copy data from that area to a given buffer. If the given memory range
1909  *	of [addr...addr+count) includes some valid address, data is copied to
1910  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1911  *	IOREMAP area is treated as memory hole and no copy is done.
1912  *
1913  *	If [addr...addr+count) doesn't includes any intersects with alive
1914  *	vm_struct area, returns 0.
1915  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1916  *	the caller should guarantee KM_USER0 is not used.
1917  *
1918  *	Note: In usual ops, vread() is never necessary because the caller
1919  *	should know vmalloc() area is valid and can use memcpy().
1920  *	This is for routines which have to access vmalloc area without
1921  *	any informaion, as /dev/kmem.
1922  *
1923  */
1924 
1925 long vread(char *buf, char *addr, unsigned long count)
1926 {
1927 	struct vm_struct *tmp;
1928 	char *vaddr, *buf_start = buf;
1929 	unsigned long buflen = count;
1930 	unsigned long n;
1931 
1932 	/* Don't allow overflow */
1933 	if ((unsigned long) addr + count < count)
1934 		count = -(unsigned long) addr;
1935 
1936 	read_lock(&vmlist_lock);
1937 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1938 		vaddr = (char *) tmp->addr;
1939 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1940 			continue;
1941 		while (addr < vaddr) {
1942 			if (count == 0)
1943 				goto finished;
1944 			*buf = '\0';
1945 			buf++;
1946 			addr++;
1947 			count--;
1948 		}
1949 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1950 		if (n > count)
1951 			n = count;
1952 		if (!(tmp->flags & VM_IOREMAP))
1953 			aligned_vread(buf, addr, n);
1954 		else /* IOREMAP area is treated as memory hole */
1955 			memset(buf, 0, n);
1956 		buf += n;
1957 		addr += n;
1958 		count -= n;
1959 	}
1960 finished:
1961 	read_unlock(&vmlist_lock);
1962 
1963 	if (buf == buf_start)
1964 		return 0;
1965 	/* zero-fill memory holes */
1966 	if (buf != buf_start + buflen)
1967 		memset(buf, 0, buflen - (buf - buf_start));
1968 
1969 	return buflen;
1970 }
1971 
1972 /**
1973  *	vwrite() -  write vmalloc area in a safe way.
1974  *	@buf:		buffer for source data
1975  *	@addr:		vm address.
1976  *	@count:		number of bytes to be read.
1977  *
1978  *	Returns # of bytes which addr and buf should be incresed.
1979  *	(same number to @count).
1980  *	If [addr...addr+count) doesn't includes any intersect with valid
1981  *	vmalloc area, returns 0.
1982  *
1983  *	This function checks that addr is a valid vmalloc'ed area, and
1984  *	copy data from a buffer to the given addr. If specified range of
1985  *	[addr...addr+count) includes some valid address, data is copied from
1986  *	proper area of @buf. If there are memory holes, no copy to hole.
1987  *	IOREMAP area is treated as memory hole and no copy is done.
1988  *
1989  *	If [addr...addr+count) doesn't includes any intersects with alive
1990  *	vm_struct area, returns 0.
1991  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1992  *	the caller should guarantee KM_USER0 is not used.
1993  *
1994  *	Note: In usual ops, vwrite() is never necessary because the caller
1995  *	should know vmalloc() area is valid and can use memcpy().
1996  *	This is for routines which have to access vmalloc area without
1997  *	any informaion, as /dev/kmem.
1998  */
1999 
2000 long vwrite(char *buf, char *addr, unsigned long count)
2001 {
2002 	struct vm_struct *tmp;
2003 	char *vaddr;
2004 	unsigned long n, buflen;
2005 	int copied = 0;
2006 
2007 	/* Don't allow overflow */
2008 	if ((unsigned long) addr + count < count)
2009 		count = -(unsigned long) addr;
2010 	buflen = count;
2011 
2012 	read_lock(&vmlist_lock);
2013 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2014 		vaddr = (char *) tmp->addr;
2015 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2016 			continue;
2017 		while (addr < vaddr) {
2018 			if (count == 0)
2019 				goto finished;
2020 			buf++;
2021 			addr++;
2022 			count--;
2023 		}
2024 		n = vaddr + tmp->size - PAGE_SIZE - addr;
2025 		if (n > count)
2026 			n = count;
2027 		if (!(tmp->flags & VM_IOREMAP)) {
2028 			aligned_vwrite(buf, addr, n);
2029 			copied++;
2030 		}
2031 		buf += n;
2032 		addr += n;
2033 		count -= n;
2034 	}
2035 finished:
2036 	read_unlock(&vmlist_lock);
2037 	if (!copied)
2038 		return 0;
2039 	return buflen;
2040 }
2041 
2042 /**
2043  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2044  *	@vma:		vma to cover (map full range of vma)
2045  *	@addr:		vmalloc memory
2046  *	@pgoff:		number of pages into addr before first page to map
2047  *
2048  *	Returns:	0 for success, -Exxx on failure
2049  *
2050  *	This function checks that addr is a valid vmalloc'ed area, and
2051  *	that it is big enough to cover the vma. Will return failure if
2052  *	that criteria isn't met.
2053  *
2054  *	Similar to remap_pfn_range() (see mm/memory.c)
2055  */
2056 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2057 						unsigned long pgoff)
2058 {
2059 	struct vm_struct *area;
2060 	unsigned long uaddr = vma->vm_start;
2061 	unsigned long usize = vma->vm_end - vma->vm_start;
2062 
2063 	if ((PAGE_SIZE-1) & (unsigned long)addr)
2064 		return -EINVAL;
2065 
2066 	area = find_vm_area(addr);
2067 	if (!area)
2068 		return -EINVAL;
2069 
2070 	if (!(area->flags & VM_USERMAP))
2071 		return -EINVAL;
2072 
2073 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2074 		return -EINVAL;
2075 
2076 	addr += pgoff << PAGE_SHIFT;
2077 	do {
2078 		struct page *page = vmalloc_to_page(addr);
2079 		int ret;
2080 
2081 		ret = vm_insert_page(vma, uaddr, page);
2082 		if (ret)
2083 			return ret;
2084 
2085 		uaddr += PAGE_SIZE;
2086 		addr += PAGE_SIZE;
2087 		usize -= PAGE_SIZE;
2088 	} while (usize > 0);
2089 
2090 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
2091 	vma->vm_flags |= VM_RESERVED;
2092 
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL(remap_vmalloc_range);
2096 
2097 /*
2098  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2099  * have one.
2100  */
2101 void  __attribute__((weak)) vmalloc_sync_all(void)
2102 {
2103 }
2104 
2105 
2106 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2107 {
2108 	/* apply_to_page_range() does all the hard work. */
2109 	return 0;
2110 }
2111 
2112 /**
2113  *	alloc_vm_area - allocate a range of kernel address space
2114  *	@size:		size of the area
2115  *
2116  *	Returns:	NULL on failure, vm_struct on success
2117  *
2118  *	This function reserves a range of kernel address space, and
2119  *	allocates pagetables to map that range.  No actual mappings
2120  *	are created.  If the kernel address space is not shared
2121  *	between processes, it syncs the pagetable across all
2122  *	processes.
2123  */
2124 struct vm_struct *alloc_vm_area(size_t size)
2125 {
2126 	struct vm_struct *area;
2127 
2128 	area = get_vm_area_caller(size, VM_IOREMAP,
2129 				__builtin_return_address(0));
2130 	if (area == NULL)
2131 		return NULL;
2132 
2133 	/*
2134 	 * This ensures that page tables are constructed for this region
2135 	 * of kernel virtual address space and mapped into init_mm.
2136 	 */
2137 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2138 				area->size, f, NULL)) {
2139 		free_vm_area(area);
2140 		return NULL;
2141 	}
2142 
2143 	/*
2144 	 * If the allocated address space is passed to a hypercall
2145 	 * before being used then we cannot rely on a page fault to
2146 	 * trigger an update of the page tables.  So sync all the page
2147 	 * tables here.
2148 	 */
2149 	vmalloc_sync_all();
2150 
2151 	return area;
2152 }
2153 EXPORT_SYMBOL_GPL(alloc_vm_area);
2154 
2155 void free_vm_area(struct vm_struct *area)
2156 {
2157 	struct vm_struct *ret;
2158 	ret = remove_vm_area(area->addr);
2159 	BUG_ON(ret != area);
2160 	kfree(area);
2161 }
2162 EXPORT_SYMBOL_GPL(free_vm_area);
2163 
2164 #ifdef CONFIG_SMP
2165 static struct vmap_area *node_to_va(struct rb_node *n)
2166 {
2167 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2168 }
2169 
2170 /**
2171  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2172  * @end: target address
2173  * @pnext: out arg for the next vmap_area
2174  * @pprev: out arg for the previous vmap_area
2175  *
2176  * Returns: %true if either or both of next and prev are found,
2177  *	    %false if no vmap_area exists
2178  *
2179  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2180  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2181  */
2182 static bool pvm_find_next_prev(unsigned long end,
2183 			       struct vmap_area **pnext,
2184 			       struct vmap_area **pprev)
2185 {
2186 	struct rb_node *n = vmap_area_root.rb_node;
2187 	struct vmap_area *va = NULL;
2188 
2189 	while (n) {
2190 		va = rb_entry(n, struct vmap_area, rb_node);
2191 		if (end < va->va_end)
2192 			n = n->rb_left;
2193 		else if (end > va->va_end)
2194 			n = n->rb_right;
2195 		else
2196 			break;
2197 	}
2198 
2199 	if (!va)
2200 		return false;
2201 
2202 	if (va->va_end > end) {
2203 		*pnext = va;
2204 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2205 	} else {
2206 		*pprev = va;
2207 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2208 	}
2209 	return true;
2210 }
2211 
2212 /**
2213  * pvm_determine_end - find the highest aligned address between two vmap_areas
2214  * @pnext: in/out arg for the next vmap_area
2215  * @pprev: in/out arg for the previous vmap_area
2216  * @align: alignment
2217  *
2218  * Returns: determined end address
2219  *
2220  * Find the highest aligned address between *@pnext and *@pprev below
2221  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2222  * down address is between the end addresses of the two vmap_areas.
2223  *
2224  * Please note that the address returned by this function may fall
2225  * inside *@pnext vmap_area.  The caller is responsible for checking
2226  * that.
2227  */
2228 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2229 				       struct vmap_area **pprev,
2230 				       unsigned long align)
2231 {
2232 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2233 	unsigned long addr;
2234 
2235 	if (*pnext)
2236 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2237 	else
2238 		addr = vmalloc_end;
2239 
2240 	while (*pprev && (*pprev)->va_end > addr) {
2241 		*pnext = *pprev;
2242 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2243 	}
2244 
2245 	return addr;
2246 }
2247 
2248 /**
2249  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2250  * @offsets: array containing offset of each area
2251  * @sizes: array containing size of each area
2252  * @nr_vms: the number of areas to allocate
2253  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2254  *
2255  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2256  *	    vm_structs on success, %NULL on failure
2257  *
2258  * Percpu allocator wants to use congruent vm areas so that it can
2259  * maintain the offsets among percpu areas.  This function allocates
2260  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2261  * be scattered pretty far, distance between two areas easily going up
2262  * to gigabytes.  To avoid interacting with regular vmallocs, these
2263  * areas are allocated from top.
2264  *
2265  * Despite its complicated look, this allocator is rather simple.  It
2266  * does everything top-down and scans areas from the end looking for
2267  * matching slot.  While scanning, if any of the areas overlaps with
2268  * existing vmap_area, the base address is pulled down to fit the
2269  * area.  Scanning is repeated till all the areas fit and then all
2270  * necessary data structres are inserted and the result is returned.
2271  */
2272 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2273 				     const size_t *sizes, int nr_vms,
2274 				     size_t align)
2275 {
2276 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2277 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2278 	struct vmap_area **vas, *prev, *next;
2279 	struct vm_struct **vms;
2280 	int area, area2, last_area, term_area;
2281 	unsigned long base, start, end, last_end;
2282 	bool purged = false;
2283 
2284 	/* verify parameters and allocate data structures */
2285 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2286 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2287 		start = offsets[area];
2288 		end = start + sizes[area];
2289 
2290 		/* is everything aligned properly? */
2291 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2292 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2293 
2294 		/* detect the area with the highest address */
2295 		if (start > offsets[last_area])
2296 			last_area = area;
2297 
2298 		for (area2 = 0; area2 < nr_vms; area2++) {
2299 			unsigned long start2 = offsets[area2];
2300 			unsigned long end2 = start2 + sizes[area2];
2301 
2302 			if (area2 == area)
2303 				continue;
2304 
2305 			BUG_ON(start2 >= start && start2 < end);
2306 			BUG_ON(end2 <= end && end2 > start);
2307 		}
2308 	}
2309 	last_end = offsets[last_area] + sizes[last_area];
2310 
2311 	if (vmalloc_end - vmalloc_start < last_end) {
2312 		WARN_ON(true);
2313 		return NULL;
2314 	}
2315 
2316 	vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2317 	vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2318 	if (!vas || !vms)
2319 		goto err_free;
2320 
2321 	for (area = 0; area < nr_vms; area++) {
2322 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2323 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2324 		if (!vas[area] || !vms[area])
2325 			goto err_free;
2326 	}
2327 retry:
2328 	spin_lock(&vmap_area_lock);
2329 
2330 	/* start scanning - we scan from the top, begin with the last area */
2331 	area = term_area = last_area;
2332 	start = offsets[area];
2333 	end = start + sizes[area];
2334 
2335 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2336 		base = vmalloc_end - last_end;
2337 		goto found;
2338 	}
2339 	base = pvm_determine_end(&next, &prev, align) - end;
2340 
2341 	while (true) {
2342 		BUG_ON(next && next->va_end <= base + end);
2343 		BUG_ON(prev && prev->va_end > base + end);
2344 
2345 		/*
2346 		 * base might have underflowed, add last_end before
2347 		 * comparing.
2348 		 */
2349 		if (base + last_end < vmalloc_start + last_end) {
2350 			spin_unlock(&vmap_area_lock);
2351 			if (!purged) {
2352 				purge_vmap_area_lazy();
2353 				purged = true;
2354 				goto retry;
2355 			}
2356 			goto err_free;
2357 		}
2358 
2359 		/*
2360 		 * If next overlaps, move base downwards so that it's
2361 		 * right below next and then recheck.
2362 		 */
2363 		if (next && next->va_start < base + end) {
2364 			base = pvm_determine_end(&next, &prev, align) - end;
2365 			term_area = area;
2366 			continue;
2367 		}
2368 
2369 		/*
2370 		 * If prev overlaps, shift down next and prev and move
2371 		 * base so that it's right below new next and then
2372 		 * recheck.
2373 		 */
2374 		if (prev && prev->va_end > base + start)  {
2375 			next = prev;
2376 			prev = node_to_va(rb_prev(&next->rb_node));
2377 			base = pvm_determine_end(&next, &prev, align) - end;
2378 			term_area = area;
2379 			continue;
2380 		}
2381 
2382 		/*
2383 		 * This area fits, move on to the previous one.  If
2384 		 * the previous one is the terminal one, we're done.
2385 		 */
2386 		area = (area + nr_vms - 1) % nr_vms;
2387 		if (area == term_area)
2388 			break;
2389 		start = offsets[area];
2390 		end = start + sizes[area];
2391 		pvm_find_next_prev(base + end, &next, &prev);
2392 	}
2393 found:
2394 	/* we've found a fitting base, insert all va's */
2395 	for (area = 0; area < nr_vms; area++) {
2396 		struct vmap_area *va = vas[area];
2397 
2398 		va->va_start = base + offsets[area];
2399 		va->va_end = va->va_start + sizes[area];
2400 		__insert_vmap_area(va);
2401 	}
2402 
2403 	vmap_area_pcpu_hole = base + offsets[last_area];
2404 
2405 	spin_unlock(&vmap_area_lock);
2406 
2407 	/* insert all vm's */
2408 	for (area = 0; area < nr_vms; area++)
2409 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2410 				  pcpu_get_vm_areas);
2411 
2412 	kfree(vas);
2413 	return vms;
2414 
2415 err_free:
2416 	for (area = 0; area < nr_vms; area++) {
2417 		if (vas)
2418 			kfree(vas[area]);
2419 		if (vms)
2420 			kfree(vms[area]);
2421 	}
2422 	kfree(vas);
2423 	kfree(vms);
2424 	return NULL;
2425 }
2426 
2427 /**
2428  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2429  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2430  * @nr_vms: the number of allocated areas
2431  *
2432  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2433  */
2434 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2435 {
2436 	int i;
2437 
2438 	for (i = 0; i < nr_vms; i++)
2439 		free_vm_area(vms[i]);
2440 	kfree(vms);
2441 }
2442 #endif	/* CONFIG_SMP */
2443 
2444 #ifdef CONFIG_PROC_FS
2445 static void *s_start(struct seq_file *m, loff_t *pos)
2446 	__acquires(&vmlist_lock)
2447 {
2448 	loff_t n = *pos;
2449 	struct vm_struct *v;
2450 
2451 	read_lock(&vmlist_lock);
2452 	v = vmlist;
2453 	while (n > 0 && v) {
2454 		n--;
2455 		v = v->next;
2456 	}
2457 	if (!n)
2458 		return v;
2459 
2460 	return NULL;
2461 
2462 }
2463 
2464 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2465 {
2466 	struct vm_struct *v = p;
2467 
2468 	++*pos;
2469 	return v->next;
2470 }
2471 
2472 static void s_stop(struct seq_file *m, void *p)
2473 	__releases(&vmlist_lock)
2474 {
2475 	read_unlock(&vmlist_lock);
2476 }
2477 
2478 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2479 {
2480 	if (NUMA_BUILD) {
2481 		unsigned int nr, *counters = m->private;
2482 
2483 		if (!counters)
2484 			return;
2485 
2486 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2487 
2488 		for (nr = 0; nr < v->nr_pages; nr++)
2489 			counters[page_to_nid(v->pages[nr])]++;
2490 
2491 		for_each_node_state(nr, N_HIGH_MEMORY)
2492 			if (counters[nr])
2493 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2494 	}
2495 }
2496 
2497 static int s_show(struct seq_file *m, void *p)
2498 {
2499 	struct vm_struct *v = p;
2500 
2501 	seq_printf(m, "0x%p-0x%p %7ld",
2502 		v->addr, v->addr + v->size, v->size);
2503 
2504 	if (v->caller)
2505 		seq_printf(m, " %pS", v->caller);
2506 
2507 	if (v->nr_pages)
2508 		seq_printf(m, " pages=%d", v->nr_pages);
2509 
2510 	if (v->phys_addr)
2511 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2512 
2513 	if (v->flags & VM_IOREMAP)
2514 		seq_printf(m, " ioremap");
2515 
2516 	if (v->flags & VM_ALLOC)
2517 		seq_printf(m, " vmalloc");
2518 
2519 	if (v->flags & VM_MAP)
2520 		seq_printf(m, " vmap");
2521 
2522 	if (v->flags & VM_USERMAP)
2523 		seq_printf(m, " user");
2524 
2525 	if (v->flags & VM_VPAGES)
2526 		seq_printf(m, " vpages");
2527 
2528 	show_numa_info(m, v);
2529 	seq_putc(m, '\n');
2530 	return 0;
2531 }
2532 
2533 static const struct seq_operations vmalloc_op = {
2534 	.start = s_start,
2535 	.next = s_next,
2536 	.stop = s_stop,
2537 	.show = s_show,
2538 };
2539 
2540 static int vmalloc_open(struct inode *inode, struct file *file)
2541 {
2542 	unsigned int *ptr = NULL;
2543 	int ret;
2544 
2545 	if (NUMA_BUILD) {
2546 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2547 		if (ptr == NULL)
2548 			return -ENOMEM;
2549 	}
2550 	ret = seq_open(file, &vmalloc_op);
2551 	if (!ret) {
2552 		struct seq_file *m = file->private_data;
2553 		m->private = ptr;
2554 	} else
2555 		kfree(ptr);
2556 	return ret;
2557 }
2558 
2559 static const struct file_operations proc_vmalloc_operations = {
2560 	.open		= vmalloc_open,
2561 	.read		= seq_read,
2562 	.llseek		= seq_lseek,
2563 	.release	= seq_release_private,
2564 };
2565 
2566 static int __init proc_vmalloc_init(void)
2567 {
2568 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2569 	return 0;
2570 }
2571 module_init(proc_vmalloc_init);
2572 #endif
2573 
2574