1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 #include <linux/page_owner.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/vmalloc.h> 49 50 #include "internal.h" 51 #include "pgalloc-track.h" 52 53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 55 56 static int __init set_nohugeiomap(char *str) 57 { 58 ioremap_max_page_shift = PAGE_SHIFT; 59 return 0; 60 } 61 early_param("nohugeiomap", set_nohugeiomap); 62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 65 66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 67 static bool __ro_after_init vmap_allow_huge = true; 68 69 static int __init set_nohugevmalloc(char *str) 70 { 71 vmap_allow_huge = false; 72 return 0; 73 } 74 early_param("nohugevmalloc", set_nohugevmalloc); 75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 76 static const bool vmap_allow_huge = false; 77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 78 79 bool is_vmalloc_addr(const void *x) 80 { 81 unsigned long addr = (unsigned long)kasan_reset_tag(x); 82 83 return addr >= VMALLOC_START && addr < VMALLOC_END; 84 } 85 EXPORT_SYMBOL(is_vmalloc_addr); 86 87 struct vfree_deferred { 88 struct llist_head list; 89 struct work_struct wq; 90 }; 91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 92 93 /*** Page table manipulation functions ***/ 94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 95 phys_addr_t phys_addr, pgprot_t prot, 96 unsigned int max_page_shift, pgtbl_mod_mask *mask) 97 { 98 pte_t *pte; 99 u64 pfn; 100 struct page *page; 101 unsigned long size = PAGE_SIZE; 102 103 pfn = phys_addr >> PAGE_SHIFT; 104 pte = pte_alloc_kernel_track(pmd, addr, mask); 105 if (!pte) 106 return -ENOMEM; 107 108 arch_enter_lazy_mmu_mode(); 109 110 do { 111 if (unlikely(!pte_none(ptep_get(pte)))) { 112 if (pfn_valid(pfn)) { 113 page = pfn_to_page(pfn); 114 dump_page(page, "remapping already mapped page"); 115 } 116 BUG(); 117 } 118 119 #ifdef CONFIG_HUGETLB_PAGE 120 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 121 if (size != PAGE_SIZE) { 122 pte_t entry = pfn_pte(pfn, prot); 123 124 entry = arch_make_huge_pte(entry, ilog2(size), 0); 125 set_huge_pte_at(&init_mm, addr, pte, entry, size); 126 pfn += PFN_DOWN(size); 127 continue; 128 } 129 #endif 130 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 131 pfn++; 132 } while (pte += PFN_DOWN(size), addr += size, addr != end); 133 134 arch_leave_lazy_mmu_mode(); 135 *mask |= PGTBL_PTE_MODIFIED; 136 return 0; 137 } 138 139 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 140 phys_addr_t phys_addr, pgprot_t prot, 141 unsigned int max_page_shift) 142 { 143 if (max_page_shift < PMD_SHIFT) 144 return 0; 145 146 if (!arch_vmap_pmd_supported(prot)) 147 return 0; 148 149 if ((end - addr) != PMD_SIZE) 150 return 0; 151 152 if (!IS_ALIGNED(addr, PMD_SIZE)) 153 return 0; 154 155 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 156 return 0; 157 158 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 159 return 0; 160 161 return pmd_set_huge(pmd, phys_addr, prot); 162 } 163 164 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 165 phys_addr_t phys_addr, pgprot_t prot, 166 unsigned int max_page_shift, pgtbl_mod_mask *mask) 167 { 168 pmd_t *pmd; 169 unsigned long next; 170 171 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 172 if (!pmd) 173 return -ENOMEM; 174 do { 175 next = pmd_addr_end(addr, end); 176 177 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 178 max_page_shift)) { 179 *mask |= PGTBL_PMD_MODIFIED; 180 continue; 181 } 182 183 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 184 return -ENOMEM; 185 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 186 return 0; 187 } 188 189 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 190 phys_addr_t phys_addr, pgprot_t prot, 191 unsigned int max_page_shift) 192 { 193 if (max_page_shift < PUD_SHIFT) 194 return 0; 195 196 if (!arch_vmap_pud_supported(prot)) 197 return 0; 198 199 if ((end - addr) != PUD_SIZE) 200 return 0; 201 202 if (!IS_ALIGNED(addr, PUD_SIZE)) 203 return 0; 204 205 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 206 return 0; 207 208 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 209 return 0; 210 211 return pud_set_huge(pud, phys_addr, prot); 212 } 213 214 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 215 phys_addr_t phys_addr, pgprot_t prot, 216 unsigned int max_page_shift, pgtbl_mod_mask *mask) 217 { 218 pud_t *pud; 219 unsigned long next; 220 221 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 222 if (!pud) 223 return -ENOMEM; 224 do { 225 next = pud_addr_end(addr, end); 226 227 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 228 max_page_shift)) { 229 *mask |= PGTBL_PUD_MODIFIED; 230 continue; 231 } 232 233 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 234 max_page_shift, mask)) 235 return -ENOMEM; 236 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 237 return 0; 238 } 239 240 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 241 phys_addr_t phys_addr, pgprot_t prot, 242 unsigned int max_page_shift) 243 { 244 if (max_page_shift < P4D_SHIFT) 245 return 0; 246 247 if (!arch_vmap_p4d_supported(prot)) 248 return 0; 249 250 if ((end - addr) != P4D_SIZE) 251 return 0; 252 253 if (!IS_ALIGNED(addr, P4D_SIZE)) 254 return 0; 255 256 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 257 return 0; 258 259 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 260 return 0; 261 262 return p4d_set_huge(p4d, phys_addr, prot); 263 } 264 265 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 266 phys_addr_t phys_addr, pgprot_t prot, 267 unsigned int max_page_shift, pgtbl_mod_mask *mask) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 272 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 273 if (!p4d) 274 return -ENOMEM; 275 do { 276 next = p4d_addr_end(addr, end); 277 278 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 279 max_page_shift)) { 280 *mask |= PGTBL_P4D_MODIFIED; 281 continue; 282 } 283 284 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 285 max_page_shift, mask)) 286 return -ENOMEM; 287 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 288 return 0; 289 } 290 291 static int vmap_range_noflush(unsigned long addr, unsigned long end, 292 phys_addr_t phys_addr, pgprot_t prot, 293 unsigned int max_page_shift) 294 { 295 pgd_t *pgd; 296 unsigned long start; 297 unsigned long next; 298 int err; 299 pgtbl_mod_mask mask = 0; 300 301 might_sleep(); 302 BUG_ON(addr >= end); 303 304 start = addr; 305 pgd = pgd_offset_k(addr); 306 do { 307 next = pgd_addr_end(addr, end); 308 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 309 max_page_shift, &mask); 310 if (err) 311 break; 312 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 313 314 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 315 arch_sync_kernel_mappings(start, end); 316 317 return err; 318 } 319 320 int vmap_page_range(unsigned long addr, unsigned long end, 321 phys_addr_t phys_addr, pgprot_t prot) 322 { 323 int err; 324 325 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 326 ioremap_max_page_shift); 327 flush_cache_vmap(addr, end); 328 if (!err) 329 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 330 ioremap_max_page_shift); 331 return err; 332 } 333 334 int ioremap_page_range(unsigned long addr, unsigned long end, 335 phys_addr_t phys_addr, pgprot_t prot) 336 { 337 struct vm_struct *area; 338 339 area = find_vm_area((void *)addr); 340 if (!area || !(area->flags & VM_IOREMAP)) { 341 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 342 return -EINVAL; 343 } 344 if (addr != (unsigned long)area->addr || 345 (void *)end != area->addr + get_vm_area_size(area)) { 346 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 347 addr, end, (long)area->addr, 348 (long)area->addr + get_vm_area_size(area)); 349 return -ERANGE; 350 } 351 return vmap_page_range(addr, end, phys_addr, prot); 352 } 353 354 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 355 pgtbl_mod_mask *mask) 356 { 357 pte_t *pte; 358 pte_t ptent; 359 unsigned long size = PAGE_SIZE; 360 361 pte = pte_offset_kernel(pmd, addr); 362 arch_enter_lazy_mmu_mode(); 363 364 do { 365 #ifdef CONFIG_HUGETLB_PAGE 366 size = arch_vmap_pte_range_unmap_size(addr, pte); 367 if (size != PAGE_SIZE) { 368 if (WARN_ON(!IS_ALIGNED(addr, size))) { 369 addr = ALIGN_DOWN(addr, size); 370 pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT)); 371 } 372 ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size); 373 if (WARN_ON(end - addr < size)) 374 size = end - addr; 375 } else 376 #endif 377 ptent = ptep_get_and_clear(&init_mm, addr, pte); 378 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 379 } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end); 380 381 arch_leave_lazy_mmu_mode(); 382 *mask |= PGTBL_PTE_MODIFIED; 383 } 384 385 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 386 pgtbl_mod_mask *mask) 387 { 388 pmd_t *pmd; 389 unsigned long next; 390 int cleared; 391 392 pmd = pmd_offset(pud, addr); 393 do { 394 next = pmd_addr_end(addr, end); 395 396 cleared = pmd_clear_huge(pmd); 397 if (cleared || pmd_bad(*pmd)) 398 *mask |= PGTBL_PMD_MODIFIED; 399 400 if (cleared) { 401 WARN_ON(next - addr < PMD_SIZE); 402 continue; 403 } 404 if (pmd_none_or_clear_bad(pmd)) 405 continue; 406 vunmap_pte_range(pmd, addr, next, mask); 407 408 cond_resched(); 409 } while (pmd++, addr = next, addr != end); 410 } 411 412 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 413 pgtbl_mod_mask *mask) 414 { 415 pud_t *pud; 416 unsigned long next; 417 int cleared; 418 419 pud = pud_offset(p4d, addr); 420 do { 421 next = pud_addr_end(addr, end); 422 423 cleared = pud_clear_huge(pud); 424 if (cleared || pud_bad(*pud)) 425 *mask |= PGTBL_PUD_MODIFIED; 426 427 if (cleared) { 428 WARN_ON(next - addr < PUD_SIZE); 429 continue; 430 } 431 if (pud_none_or_clear_bad(pud)) 432 continue; 433 vunmap_pmd_range(pud, addr, next, mask); 434 } while (pud++, addr = next, addr != end); 435 } 436 437 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 438 pgtbl_mod_mask *mask) 439 { 440 p4d_t *p4d; 441 unsigned long next; 442 443 p4d = p4d_offset(pgd, addr); 444 do { 445 next = p4d_addr_end(addr, end); 446 447 p4d_clear_huge(p4d); 448 if (p4d_bad(*p4d)) 449 *mask |= PGTBL_P4D_MODIFIED; 450 451 if (p4d_none_or_clear_bad(p4d)) 452 continue; 453 vunmap_pud_range(p4d, addr, next, mask); 454 } while (p4d++, addr = next, addr != end); 455 } 456 457 /* 458 * vunmap_range_noflush is similar to vunmap_range, but does not 459 * flush caches or TLBs. 460 * 461 * The caller is responsible for calling flush_cache_vmap() before calling 462 * this function, and flush_tlb_kernel_range after it has returned 463 * successfully (and before the addresses are expected to cause a page fault 464 * or be re-mapped for something else, if TLB flushes are being delayed or 465 * coalesced). 466 * 467 * This is an internal function only. Do not use outside mm/. 468 */ 469 void __vunmap_range_noflush(unsigned long start, unsigned long end) 470 { 471 unsigned long next; 472 pgd_t *pgd; 473 unsigned long addr = start; 474 pgtbl_mod_mask mask = 0; 475 476 BUG_ON(addr >= end); 477 pgd = pgd_offset_k(addr); 478 do { 479 next = pgd_addr_end(addr, end); 480 if (pgd_bad(*pgd)) 481 mask |= PGTBL_PGD_MODIFIED; 482 if (pgd_none_or_clear_bad(pgd)) 483 continue; 484 vunmap_p4d_range(pgd, addr, next, &mask); 485 } while (pgd++, addr = next, addr != end); 486 487 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 488 arch_sync_kernel_mappings(start, end); 489 } 490 491 void vunmap_range_noflush(unsigned long start, unsigned long end) 492 { 493 kmsan_vunmap_range_noflush(start, end); 494 __vunmap_range_noflush(start, end); 495 } 496 497 /** 498 * vunmap_range - unmap kernel virtual addresses 499 * @addr: start of the VM area to unmap 500 * @end: end of the VM area to unmap (non-inclusive) 501 * 502 * Clears any present PTEs in the virtual address range, flushes TLBs and 503 * caches. Any subsequent access to the address before it has been re-mapped 504 * is a kernel bug. 505 */ 506 void vunmap_range(unsigned long addr, unsigned long end) 507 { 508 flush_cache_vunmap(addr, end); 509 vunmap_range_noflush(addr, end); 510 flush_tlb_kernel_range(addr, end); 511 } 512 513 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 514 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 515 pgtbl_mod_mask *mask) 516 { 517 int err = 0; 518 pte_t *pte; 519 520 /* 521 * nr is a running index into the array which helps higher level 522 * callers keep track of where we're up to. 523 */ 524 525 pte = pte_alloc_kernel_track(pmd, addr, mask); 526 if (!pte) 527 return -ENOMEM; 528 529 arch_enter_lazy_mmu_mode(); 530 531 do { 532 struct page *page = pages[*nr]; 533 534 if (WARN_ON(!pte_none(ptep_get(pte)))) { 535 err = -EBUSY; 536 break; 537 } 538 if (WARN_ON(!page)) { 539 err = -ENOMEM; 540 break; 541 } 542 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) { 543 err = -EINVAL; 544 break; 545 } 546 547 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 548 (*nr)++; 549 } while (pte++, addr += PAGE_SIZE, addr != end); 550 551 arch_leave_lazy_mmu_mode(); 552 *mask |= PGTBL_PTE_MODIFIED; 553 554 return err; 555 } 556 557 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 558 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 559 pgtbl_mod_mask *mask) 560 { 561 pmd_t *pmd; 562 unsigned long next; 563 564 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 565 if (!pmd) 566 return -ENOMEM; 567 do { 568 next = pmd_addr_end(addr, end); 569 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 570 return -ENOMEM; 571 } while (pmd++, addr = next, addr != end); 572 return 0; 573 } 574 575 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 576 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 577 pgtbl_mod_mask *mask) 578 { 579 pud_t *pud; 580 unsigned long next; 581 582 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 583 if (!pud) 584 return -ENOMEM; 585 do { 586 next = pud_addr_end(addr, end); 587 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 588 return -ENOMEM; 589 } while (pud++, addr = next, addr != end); 590 return 0; 591 } 592 593 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 594 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 595 pgtbl_mod_mask *mask) 596 { 597 p4d_t *p4d; 598 unsigned long next; 599 600 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 601 if (!p4d) 602 return -ENOMEM; 603 do { 604 next = p4d_addr_end(addr, end); 605 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 606 return -ENOMEM; 607 } while (p4d++, addr = next, addr != end); 608 return 0; 609 } 610 611 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 612 pgprot_t prot, struct page **pages) 613 { 614 unsigned long start = addr; 615 pgd_t *pgd; 616 unsigned long next; 617 int err = 0; 618 int nr = 0; 619 pgtbl_mod_mask mask = 0; 620 621 BUG_ON(addr >= end); 622 pgd = pgd_offset_k(addr); 623 do { 624 next = pgd_addr_end(addr, end); 625 if (pgd_bad(*pgd)) 626 mask |= PGTBL_PGD_MODIFIED; 627 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 628 if (err) 629 break; 630 } while (pgd++, addr = next, addr != end); 631 632 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 633 arch_sync_kernel_mappings(start, end); 634 635 return err; 636 } 637 638 /* 639 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 640 * flush caches. 641 * 642 * The caller is responsible for calling flush_cache_vmap() after this 643 * function returns successfully and before the addresses are accessed. 644 * 645 * This is an internal function only. Do not use outside mm/. 646 */ 647 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 648 pgprot_t prot, struct page **pages, unsigned int page_shift) 649 { 650 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 651 652 WARN_ON(page_shift < PAGE_SHIFT); 653 654 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 655 page_shift == PAGE_SHIFT) 656 return vmap_small_pages_range_noflush(addr, end, prot, pages); 657 658 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 659 int err; 660 661 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 662 page_to_phys(pages[i]), prot, 663 page_shift); 664 if (err) 665 return err; 666 667 addr += 1UL << page_shift; 668 } 669 670 return 0; 671 } 672 673 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 674 pgprot_t prot, struct page **pages, unsigned int page_shift) 675 { 676 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 677 page_shift); 678 679 if (ret) 680 return ret; 681 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 682 } 683 684 /** 685 * vmap_pages_range - map pages to a kernel virtual address 686 * @addr: start of the VM area to map 687 * @end: end of the VM area to map (non-inclusive) 688 * @prot: page protection flags to use 689 * @pages: pages to map (always PAGE_SIZE pages) 690 * @page_shift: maximum shift that the pages may be mapped with, @pages must 691 * be aligned and contiguous up to at least this shift. 692 * 693 * RETURNS: 694 * 0 on success, -errno on failure. 695 */ 696 int vmap_pages_range(unsigned long addr, unsigned long end, 697 pgprot_t prot, struct page **pages, unsigned int page_shift) 698 { 699 int err; 700 701 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 702 flush_cache_vmap(addr, end); 703 return err; 704 } 705 706 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 707 unsigned long end) 708 { 709 might_sleep(); 710 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 711 return -EINVAL; 712 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 713 return -EINVAL; 714 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 715 return -EINVAL; 716 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 717 return -E2BIG; 718 if (start < (unsigned long)area->addr || 719 (void *)end > area->addr + get_vm_area_size(area)) 720 return -ERANGE; 721 return 0; 722 } 723 724 /** 725 * vm_area_map_pages - map pages inside given sparse vm_area 726 * @area: vm_area 727 * @start: start address inside vm_area 728 * @end: end address inside vm_area 729 * @pages: pages to map (always PAGE_SIZE pages) 730 */ 731 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 732 unsigned long end, struct page **pages) 733 { 734 int err; 735 736 err = check_sparse_vm_area(area, start, end); 737 if (err) 738 return err; 739 740 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 741 } 742 743 /** 744 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 745 * @area: vm_area 746 * @start: start address inside vm_area 747 * @end: end address inside vm_area 748 */ 749 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 750 unsigned long end) 751 { 752 if (check_sparse_vm_area(area, start, end)) 753 return; 754 755 vunmap_range(start, end); 756 } 757 758 int is_vmalloc_or_module_addr(const void *x) 759 { 760 /* 761 * ARM, x86-64 and sparc64 put modules in a special place, 762 * and fall back on vmalloc() if that fails. Others 763 * just put it in the vmalloc space. 764 */ 765 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) 766 unsigned long addr = (unsigned long)kasan_reset_tag(x); 767 if (addr >= MODULES_VADDR && addr < MODULES_END) 768 return 1; 769 #endif 770 return is_vmalloc_addr(x); 771 } 772 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 773 774 /* 775 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 776 * return the tail page that corresponds to the base page address, which 777 * matches small vmap mappings. 778 */ 779 struct page *vmalloc_to_page(const void *vmalloc_addr) 780 { 781 unsigned long addr = (unsigned long) vmalloc_addr; 782 struct page *page = NULL; 783 pgd_t *pgd = pgd_offset_k(addr); 784 p4d_t *p4d; 785 pud_t *pud; 786 pmd_t *pmd; 787 pte_t *ptep, pte; 788 789 /* 790 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 791 * architectures that do not vmalloc module space 792 */ 793 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 794 795 if (pgd_none(*pgd)) 796 return NULL; 797 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 798 return NULL; /* XXX: no allowance for huge pgd */ 799 if (WARN_ON_ONCE(pgd_bad(*pgd))) 800 return NULL; 801 802 p4d = p4d_offset(pgd, addr); 803 if (p4d_none(*p4d)) 804 return NULL; 805 if (p4d_leaf(*p4d)) 806 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 807 if (WARN_ON_ONCE(p4d_bad(*p4d))) 808 return NULL; 809 810 pud = pud_offset(p4d, addr); 811 if (pud_none(*pud)) 812 return NULL; 813 if (pud_leaf(*pud)) 814 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 815 if (WARN_ON_ONCE(pud_bad(*pud))) 816 return NULL; 817 818 pmd = pmd_offset(pud, addr); 819 if (pmd_none(*pmd)) 820 return NULL; 821 if (pmd_leaf(*pmd)) 822 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 823 if (WARN_ON_ONCE(pmd_bad(*pmd))) 824 return NULL; 825 826 ptep = pte_offset_kernel(pmd, addr); 827 pte = ptep_get(ptep); 828 if (pte_present(pte)) 829 page = pte_page(pte); 830 831 return page; 832 } 833 EXPORT_SYMBOL(vmalloc_to_page); 834 835 /* 836 * Map a vmalloc()-space virtual address to the physical page frame number. 837 */ 838 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 839 { 840 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 841 } 842 EXPORT_SYMBOL(vmalloc_to_pfn); 843 844 845 /*** Global kva allocator ***/ 846 847 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 848 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 849 850 851 static DEFINE_SPINLOCK(free_vmap_area_lock); 852 static bool vmap_initialized __read_mostly; 853 854 /* 855 * This kmem_cache is used for vmap_area objects. Instead of 856 * allocating from slab we reuse an object from this cache to 857 * make things faster. Especially in "no edge" splitting of 858 * free block. 859 */ 860 static struct kmem_cache *vmap_area_cachep; 861 862 /* 863 * This linked list is used in pair with free_vmap_area_root. 864 * It gives O(1) access to prev/next to perform fast coalescing. 865 */ 866 static LIST_HEAD(free_vmap_area_list); 867 868 /* 869 * This augment red-black tree represents the free vmap space. 870 * All vmap_area objects in this tree are sorted by va->va_start 871 * address. It is used for allocation and merging when a vmap 872 * object is released. 873 * 874 * Each vmap_area node contains a maximum available free block 875 * of its sub-tree, right or left. Therefore it is possible to 876 * find a lowest match of free area. 877 */ 878 static struct rb_root free_vmap_area_root = RB_ROOT; 879 880 /* 881 * Preload a CPU with one object for "no edge" split case. The 882 * aim is to get rid of allocations from the atomic context, thus 883 * to use more permissive allocation masks. 884 */ 885 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 886 887 /* 888 * This structure defines a single, solid model where a list and 889 * rb-tree are part of one entity protected by the lock. Nodes are 890 * sorted in ascending order, thus for O(1) access to left/right 891 * neighbors a list is used as well as for sequential traversal. 892 */ 893 struct rb_list { 894 struct rb_root root; 895 struct list_head head; 896 spinlock_t lock; 897 }; 898 899 /* 900 * A fast size storage contains VAs up to 1M size. A pool consists 901 * of linked between each other ready to go VAs of certain sizes. 902 * An index in the pool-array corresponds to number of pages + 1. 903 */ 904 #define MAX_VA_SIZE_PAGES 256 905 906 struct vmap_pool { 907 struct list_head head; 908 unsigned long len; 909 }; 910 911 /* 912 * An effective vmap-node logic. Users make use of nodes instead 913 * of a global heap. It allows to balance an access and mitigate 914 * contention. 915 */ 916 static struct vmap_node { 917 /* Simple size segregated storage. */ 918 struct vmap_pool pool[MAX_VA_SIZE_PAGES]; 919 spinlock_t pool_lock; 920 bool skip_populate; 921 922 /* Bookkeeping data of this node. */ 923 struct rb_list busy; 924 struct rb_list lazy; 925 926 /* 927 * Ready-to-free areas. 928 */ 929 struct list_head purge_list; 930 struct work_struct purge_work; 931 unsigned long nr_purged; 932 } single; 933 934 /* 935 * Initial setup consists of one single node, i.e. a balancing 936 * is fully disabled. Later on, after vmap is initialized these 937 * parameters are updated based on a system capacity. 938 */ 939 static struct vmap_node *vmap_nodes = &single; 940 static __read_mostly unsigned int nr_vmap_nodes = 1; 941 static __read_mostly unsigned int vmap_zone_size = 1; 942 943 /* A simple iterator over all vmap-nodes. */ 944 #define for_each_vmap_node(vn) \ 945 for ((vn) = &vmap_nodes[0]; \ 946 (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) 947 948 static inline unsigned int 949 addr_to_node_id(unsigned long addr) 950 { 951 return (addr / vmap_zone_size) % nr_vmap_nodes; 952 } 953 954 static inline struct vmap_node * 955 addr_to_node(unsigned long addr) 956 { 957 return &vmap_nodes[addr_to_node_id(addr)]; 958 } 959 960 static inline struct vmap_node * 961 id_to_node(unsigned int id) 962 { 963 return &vmap_nodes[id % nr_vmap_nodes]; 964 } 965 966 static inline unsigned int 967 node_to_id(struct vmap_node *node) 968 { 969 /* Pointer arithmetic. */ 970 unsigned int id = node - vmap_nodes; 971 972 if (likely(id < nr_vmap_nodes)) 973 return id; 974 975 WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); 976 return 0; 977 } 978 979 /* 980 * We use the value 0 to represent "no node", that is why 981 * an encoded value will be the node-id incremented by 1. 982 * It is always greater then 0. A valid node_id which can 983 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id 984 * is not valid 0 is returned. 985 */ 986 static unsigned int 987 encode_vn_id(unsigned int node_id) 988 { 989 /* Can store U8_MAX [0:254] nodes. */ 990 if (node_id < nr_vmap_nodes) 991 return (node_id + 1) << BITS_PER_BYTE; 992 993 /* Warn and no node encoded. */ 994 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); 995 return 0; 996 } 997 998 /* 999 * Returns an encoded node-id, the valid range is within 1000 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is 1001 * returned if extracted data is wrong. 1002 */ 1003 static unsigned int 1004 decode_vn_id(unsigned int val) 1005 { 1006 unsigned int node_id = (val >> BITS_PER_BYTE) - 1; 1007 1008 /* Can store U8_MAX [0:254] nodes. */ 1009 if (node_id < nr_vmap_nodes) 1010 return node_id; 1011 1012 /* If it was _not_ zero, warn. */ 1013 WARN_ONCE(node_id != UINT_MAX, 1014 "Decode wrong node id (%d)\n", node_id); 1015 1016 return nr_vmap_nodes; 1017 } 1018 1019 static bool 1020 is_vn_id_valid(unsigned int node_id) 1021 { 1022 if (node_id < nr_vmap_nodes) 1023 return true; 1024 1025 return false; 1026 } 1027 1028 static __always_inline unsigned long 1029 va_size(struct vmap_area *va) 1030 { 1031 return (va->va_end - va->va_start); 1032 } 1033 1034 static __always_inline unsigned long 1035 get_subtree_max_size(struct rb_node *node) 1036 { 1037 struct vmap_area *va; 1038 1039 va = rb_entry_safe(node, struct vmap_area, rb_node); 1040 return va ? va->subtree_max_size : 0; 1041 } 1042 1043 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 1044 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 1045 1046 static void reclaim_and_purge_vmap_areas(void); 1047 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 1048 static void drain_vmap_area_work(struct work_struct *work); 1049 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 1050 1051 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; 1052 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; 1053 1054 unsigned long vmalloc_nr_pages(void) 1055 { 1056 return atomic_long_read(&nr_vmalloc_pages); 1057 } 1058 1059 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 1060 { 1061 struct rb_node *n = root->rb_node; 1062 1063 addr = (unsigned long)kasan_reset_tag((void *)addr); 1064 1065 while (n) { 1066 struct vmap_area *va; 1067 1068 va = rb_entry(n, struct vmap_area, rb_node); 1069 if (addr < va->va_start) 1070 n = n->rb_left; 1071 else if (addr >= va->va_end) 1072 n = n->rb_right; 1073 else 1074 return va; 1075 } 1076 1077 return NULL; 1078 } 1079 1080 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 1081 static struct vmap_area * 1082 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) 1083 { 1084 struct vmap_area *va = NULL; 1085 struct rb_node *n = root->rb_node; 1086 1087 addr = (unsigned long)kasan_reset_tag((void *)addr); 1088 1089 while (n) { 1090 struct vmap_area *tmp; 1091 1092 tmp = rb_entry(n, struct vmap_area, rb_node); 1093 if (tmp->va_end > addr) { 1094 va = tmp; 1095 if (tmp->va_start <= addr) 1096 break; 1097 1098 n = n->rb_left; 1099 } else 1100 n = n->rb_right; 1101 } 1102 1103 return va; 1104 } 1105 1106 /* 1107 * Returns a node where a first VA, that satisfies addr < va_end, resides. 1108 * If success, a node is locked. A user is responsible to unlock it when a 1109 * VA is no longer needed to be accessed. 1110 * 1111 * Returns NULL if nothing found. 1112 */ 1113 static struct vmap_node * 1114 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) 1115 { 1116 unsigned long va_start_lowest; 1117 struct vmap_node *vn; 1118 1119 repeat: 1120 va_start_lowest = 0; 1121 1122 for_each_vmap_node(vn) { 1123 spin_lock(&vn->busy.lock); 1124 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); 1125 1126 if (*va) 1127 if (!va_start_lowest || (*va)->va_start < va_start_lowest) 1128 va_start_lowest = (*va)->va_start; 1129 spin_unlock(&vn->busy.lock); 1130 } 1131 1132 /* 1133 * Check if found VA exists, it might have gone away. In this case we 1134 * repeat the search because a VA has been removed concurrently and we 1135 * need to proceed to the next one, which is a rare case. 1136 */ 1137 if (va_start_lowest) { 1138 vn = addr_to_node(va_start_lowest); 1139 1140 spin_lock(&vn->busy.lock); 1141 *va = __find_vmap_area(va_start_lowest, &vn->busy.root); 1142 1143 if (*va) 1144 return vn; 1145 1146 spin_unlock(&vn->busy.lock); 1147 goto repeat; 1148 } 1149 1150 return NULL; 1151 } 1152 1153 /* 1154 * This function returns back addresses of parent node 1155 * and its left or right link for further processing. 1156 * 1157 * Otherwise NULL is returned. In that case all further 1158 * steps regarding inserting of conflicting overlap range 1159 * have to be declined and actually considered as a bug. 1160 */ 1161 static __always_inline struct rb_node ** 1162 find_va_links(struct vmap_area *va, 1163 struct rb_root *root, struct rb_node *from, 1164 struct rb_node **parent) 1165 { 1166 struct vmap_area *tmp_va; 1167 struct rb_node **link; 1168 1169 if (root) { 1170 link = &root->rb_node; 1171 if (unlikely(!*link)) { 1172 *parent = NULL; 1173 return link; 1174 } 1175 } else { 1176 link = &from; 1177 } 1178 1179 /* 1180 * Go to the bottom of the tree. When we hit the last point 1181 * we end up with parent rb_node and correct direction, i name 1182 * it link, where the new va->rb_node will be attached to. 1183 */ 1184 do { 1185 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 1186 1187 /* 1188 * During the traversal we also do some sanity check. 1189 * Trigger the BUG() if there are sides(left/right) 1190 * or full overlaps. 1191 */ 1192 if (va->va_end <= tmp_va->va_start) 1193 link = &(*link)->rb_left; 1194 else if (va->va_start >= tmp_va->va_end) 1195 link = &(*link)->rb_right; 1196 else { 1197 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 1198 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 1199 1200 return NULL; 1201 } 1202 } while (*link); 1203 1204 *parent = &tmp_va->rb_node; 1205 return link; 1206 } 1207 1208 static __always_inline struct list_head * 1209 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 1210 { 1211 struct list_head *list; 1212 1213 if (unlikely(!parent)) 1214 /* 1215 * The red-black tree where we try to find VA neighbors 1216 * before merging or inserting is empty, i.e. it means 1217 * there is no free vmap space. Normally it does not 1218 * happen but we handle this case anyway. 1219 */ 1220 return NULL; 1221 1222 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 1223 return (&parent->rb_right == link ? list->next : list); 1224 } 1225 1226 static __always_inline void 1227 __link_va(struct vmap_area *va, struct rb_root *root, 1228 struct rb_node *parent, struct rb_node **link, 1229 struct list_head *head, bool augment) 1230 { 1231 /* 1232 * VA is still not in the list, but we can 1233 * identify its future previous list_head node. 1234 */ 1235 if (likely(parent)) { 1236 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1237 if (&parent->rb_right != link) 1238 head = head->prev; 1239 } 1240 1241 /* Insert to the rb-tree */ 1242 rb_link_node(&va->rb_node, parent, link); 1243 if (augment) { 1244 /* 1245 * Some explanation here. Just perform simple insertion 1246 * to the tree. We do not set va->subtree_max_size to 1247 * its current size before calling rb_insert_augmented(). 1248 * It is because we populate the tree from the bottom 1249 * to parent levels when the node _is_ in the tree. 1250 * 1251 * Therefore we set subtree_max_size to zero after insertion, 1252 * to let __augment_tree_propagate_from() puts everything to 1253 * the correct order later on. 1254 */ 1255 rb_insert_augmented(&va->rb_node, 1256 root, &free_vmap_area_rb_augment_cb); 1257 va->subtree_max_size = 0; 1258 } else { 1259 rb_insert_color(&va->rb_node, root); 1260 } 1261 1262 /* Address-sort this list */ 1263 list_add(&va->list, head); 1264 } 1265 1266 static __always_inline void 1267 link_va(struct vmap_area *va, struct rb_root *root, 1268 struct rb_node *parent, struct rb_node **link, 1269 struct list_head *head) 1270 { 1271 __link_va(va, root, parent, link, head, false); 1272 } 1273 1274 static __always_inline void 1275 link_va_augment(struct vmap_area *va, struct rb_root *root, 1276 struct rb_node *parent, struct rb_node **link, 1277 struct list_head *head) 1278 { 1279 __link_va(va, root, parent, link, head, true); 1280 } 1281 1282 static __always_inline void 1283 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1284 { 1285 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1286 return; 1287 1288 if (augment) 1289 rb_erase_augmented(&va->rb_node, 1290 root, &free_vmap_area_rb_augment_cb); 1291 else 1292 rb_erase(&va->rb_node, root); 1293 1294 list_del_init(&va->list); 1295 RB_CLEAR_NODE(&va->rb_node); 1296 } 1297 1298 static __always_inline void 1299 unlink_va(struct vmap_area *va, struct rb_root *root) 1300 { 1301 __unlink_va(va, root, false); 1302 } 1303 1304 static __always_inline void 1305 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1306 { 1307 __unlink_va(va, root, true); 1308 } 1309 1310 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1311 /* 1312 * Gets called when remove the node and rotate. 1313 */ 1314 static __always_inline unsigned long 1315 compute_subtree_max_size(struct vmap_area *va) 1316 { 1317 return max3(va_size(va), 1318 get_subtree_max_size(va->rb_node.rb_left), 1319 get_subtree_max_size(va->rb_node.rb_right)); 1320 } 1321 1322 static void 1323 augment_tree_propagate_check(void) 1324 { 1325 struct vmap_area *va; 1326 unsigned long computed_size; 1327 1328 list_for_each_entry(va, &free_vmap_area_list, list) { 1329 computed_size = compute_subtree_max_size(va); 1330 if (computed_size != va->subtree_max_size) 1331 pr_emerg("tree is corrupted: %lu, %lu\n", 1332 va_size(va), va->subtree_max_size); 1333 } 1334 } 1335 #endif 1336 1337 /* 1338 * This function populates subtree_max_size from bottom to upper 1339 * levels starting from VA point. The propagation must be done 1340 * when VA size is modified by changing its va_start/va_end. Or 1341 * in case of newly inserting of VA to the tree. 1342 * 1343 * It means that __augment_tree_propagate_from() must be called: 1344 * - After VA has been inserted to the tree(free path); 1345 * - After VA has been shrunk(allocation path); 1346 * - After VA has been increased(merging path). 1347 * 1348 * Please note that, it does not mean that upper parent nodes 1349 * and their subtree_max_size are recalculated all the time up 1350 * to the root node. 1351 * 1352 * 4--8 1353 * /\ 1354 * / \ 1355 * / \ 1356 * 2--2 8--8 1357 * 1358 * For example if we modify the node 4, shrinking it to 2, then 1359 * no any modification is required. If we shrink the node 2 to 1 1360 * its subtree_max_size is updated only, and set to 1. If we shrink 1361 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1362 * node becomes 4--6. 1363 */ 1364 static __always_inline void 1365 augment_tree_propagate_from(struct vmap_area *va) 1366 { 1367 /* 1368 * Populate the tree from bottom towards the root until 1369 * the calculated maximum available size of checked node 1370 * is equal to its current one. 1371 */ 1372 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1373 1374 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1375 augment_tree_propagate_check(); 1376 #endif 1377 } 1378 1379 static void 1380 insert_vmap_area(struct vmap_area *va, 1381 struct rb_root *root, struct list_head *head) 1382 { 1383 struct rb_node **link; 1384 struct rb_node *parent; 1385 1386 link = find_va_links(va, root, NULL, &parent); 1387 if (link) 1388 link_va(va, root, parent, link, head); 1389 } 1390 1391 static void 1392 insert_vmap_area_augment(struct vmap_area *va, 1393 struct rb_node *from, struct rb_root *root, 1394 struct list_head *head) 1395 { 1396 struct rb_node **link; 1397 struct rb_node *parent; 1398 1399 if (from) 1400 link = find_va_links(va, NULL, from, &parent); 1401 else 1402 link = find_va_links(va, root, NULL, &parent); 1403 1404 if (link) { 1405 link_va_augment(va, root, parent, link, head); 1406 augment_tree_propagate_from(va); 1407 } 1408 } 1409 1410 /* 1411 * Merge de-allocated chunk of VA memory with previous 1412 * and next free blocks. If coalesce is not done a new 1413 * free area is inserted. If VA has been merged, it is 1414 * freed. 1415 * 1416 * Please note, it can return NULL in case of overlap 1417 * ranges, followed by WARN() report. Despite it is a 1418 * buggy behaviour, a system can be alive and keep 1419 * ongoing. 1420 */ 1421 static __always_inline struct vmap_area * 1422 __merge_or_add_vmap_area(struct vmap_area *va, 1423 struct rb_root *root, struct list_head *head, bool augment) 1424 { 1425 struct vmap_area *sibling; 1426 struct list_head *next; 1427 struct rb_node **link; 1428 struct rb_node *parent; 1429 bool merged = false; 1430 1431 /* 1432 * Find a place in the tree where VA potentially will be 1433 * inserted, unless it is merged with its sibling/siblings. 1434 */ 1435 link = find_va_links(va, root, NULL, &parent); 1436 if (!link) 1437 return NULL; 1438 1439 /* 1440 * Get next node of VA to check if merging can be done. 1441 */ 1442 next = get_va_next_sibling(parent, link); 1443 if (unlikely(next == NULL)) 1444 goto insert; 1445 1446 /* 1447 * start end 1448 * | | 1449 * |<------VA------>|<-----Next----->| 1450 * | | 1451 * start end 1452 */ 1453 if (next != head) { 1454 sibling = list_entry(next, struct vmap_area, list); 1455 if (sibling->va_start == va->va_end) { 1456 sibling->va_start = va->va_start; 1457 1458 /* Free vmap_area object. */ 1459 kmem_cache_free(vmap_area_cachep, va); 1460 1461 /* Point to the new merged area. */ 1462 va = sibling; 1463 merged = true; 1464 } 1465 } 1466 1467 /* 1468 * start end 1469 * | | 1470 * |<-----Prev----->|<------VA------>| 1471 * | | 1472 * start end 1473 */ 1474 if (next->prev != head) { 1475 sibling = list_entry(next->prev, struct vmap_area, list); 1476 if (sibling->va_end == va->va_start) { 1477 /* 1478 * If both neighbors are coalesced, it is important 1479 * to unlink the "next" node first, followed by merging 1480 * with "previous" one. Otherwise the tree might not be 1481 * fully populated if a sibling's augmented value is 1482 * "normalized" because of rotation operations. 1483 */ 1484 if (merged) 1485 __unlink_va(va, root, augment); 1486 1487 sibling->va_end = va->va_end; 1488 1489 /* Free vmap_area object. */ 1490 kmem_cache_free(vmap_area_cachep, va); 1491 1492 /* Point to the new merged area. */ 1493 va = sibling; 1494 merged = true; 1495 } 1496 } 1497 1498 insert: 1499 if (!merged) 1500 __link_va(va, root, parent, link, head, augment); 1501 1502 return va; 1503 } 1504 1505 static __always_inline struct vmap_area * 1506 merge_or_add_vmap_area(struct vmap_area *va, 1507 struct rb_root *root, struct list_head *head) 1508 { 1509 return __merge_or_add_vmap_area(va, root, head, false); 1510 } 1511 1512 static __always_inline struct vmap_area * 1513 merge_or_add_vmap_area_augment(struct vmap_area *va, 1514 struct rb_root *root, struct list_head *head) 1515 { 1516 va = __merge_or_add_vmap_area(va, root, head, true); 1517 if (va) 1518 augment_tree_propagate_from(va); 1519 1520 return va; 1521 } 1522 1523 static __always_inline bool 1524 is_within_this_va(struct vmap_area *va, unsigned long size, 1525 unsigned long align, unsigned long vstart) 1526 { 1527 unsigned long nva_start_addr; 1528 1529 if (va->va_start > vstart) 1530 nva_start_addr = ALIGN(va->va_start, align); 1531 else 1532 nva_start_addr = ALIGN(vstart, align); 1533 1534 /* Can be overflowed due to big size or alignment. */ 1535 if (nva_start_addr + size < nva_start_addr || 1536 nva_start_addr < vstart) 1537 return false; 1538 1539 return (nva_start_addr + size <= va->va_end); 1540 } 1541 1542 /* 1543 * Find the first free block(lowest start address) in the tree, 1544 * that will accomplish the request corresponding to passing 1545 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1546 * a search length is adjusted to account for worst case alignment 1547 * overhead. 1548 */ 1549 static __always_inline struct vmap_area * 1550 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1551 unsigned long align, unsigned long vstart, bool adjust_search_size) 1552 { 1553 struct vmap_area *va; 1554 struct rb_node *node; 1555 unsigned long length; 1556 1557 /* Start from the root. */ 1558 node = root->rb_node; 1559 1560 /* Adjust the search size for alignment overhead. */ 1561 length = adjust_search_size ? size + align - 1 : size; 1562 1563 while (node) { 1564 va = rb_entry(node, struct vmap_area, rb_node); 1565 1566 if (get_subtree_max_size(node->rb_left) >= length && 1567 vstart < va->va_start) { 1568 node = node->rb_left; 1569 } else { 1570 if (is_within_this_va(va, size, align, vstart)) 1571 return va; 1572 1573 /* 1574 * Does not make sense to go deeper towards the right 1575 * sub-tree if it does not have a free block that is 1576 * equal or bigger to the requested search length. 1577 */ 1578 if (get_subtree_max_size(node->rb_right) >= length) { 1579 node = node->rb_right; 1580 continue; 1581 } 1582 1583 /* 1584 * OK. We roll back and find the first right sub-tree, 1585 * that will satisfy the search criteria. It can happen 1586 * due to "vstart" restriction or an alignment overhead 1587 * that is bigger then PAGE_SIZE. 1588 */ 1589 while ((node = rb_parent(node))) { 1590 va = rb_entry(node, struct vmap_area, rb_node); 1591 if (is_within_this_va(va, size, align, vstart)) 1592 return va; 1593 1594 if (get_subtree_max_size(node->rb_right) >= length && 1595 vstart <= va->va_start) { 1596 /* 1597 * Shift the vstart forward. Please note, we update it with 1598 * parent's start address adding "1" because we do not want 1599 * to enter same sub-tree after it has already been checked 1600 * and no suitable free block found there. 1601 */ 1602 vstart = va->va_start + 1; 1603 node = node->rb_right; 1604 break; 1605 } 1606 } 1607 } 1608 } 1609 1610 return NULL; 1611 } 1612 1613 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1614 #include <linux/random.h> 1615 1616 static struct vmap_area * 1617 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1618 unsigned long align, unsigned long vstart) 1619 { 1620 struct vmap_area *va; 1621 1622 list_for_each_entry(va, head, list) { 1623 if (!is_within_this_va(va, size, align, vstart)) 1624 continue; 1625 1626 return va; 1627 } 1628 1629 return NULL; 1630 } 1631 1632 static void 1633 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1634 unsigned long size, unsigned long align) 1635 { 1636 struct vmap_area *va_1, *va_2; 1637 unsigned long vstart; 1638 unsigned int rnd; 1639 1640 get_random_bytes(&rnd, sizeof(rnd)); 1641 vstart = VMALLOC_START + rnd; 1642 1643 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1644 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1645 1646 if (va_1 != va_2) 1647 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1648 va_1, va_2, vstart); 1649 } 1650 #endif 1651 1652 enum fit_type { 1653 NOTHING_FIT = 0, 1654 FL_FIT_TYPE = 1, /* full fit */ 1655 LE_FIT_TYPE = 2, /* left edge fit */ 1656 RE_FIT_TYPE = 3, /* right edge fit */ 1657 NE_FIT_TYPE = 4 /* no edge fit */ 1658 }; 1659 1660 static __always_inline enum fit_type 1661 classify_va_fit_type(struct vmap_area *va, 1662 unsigned long nva_start_addr, unsigned long size) 1663 { 1664 enum fit_type type; 1665 1666 /* Check if it is within VA. */ 1667 if (nva_start_addr < va->va_start || 1668 nva_start_addr + size > va->va_end) 1669 return NOTHING_FIT; 1670 1671 /* Now classify. */ 1672 if (va->va_start == nva_start_addr) { 1673 if (va->va_end == nva_start_addr + size) 1674 type = FL_FIT_TYPE; 1675 else 1676 type = LE_FIT_TYPE; 1677 } else if (va->va_end == nva_start_addr + size) { 1678 type = RE_FIT_TYPE; 1679 } else { 1680 type = NE_FIT_TYPE; 1681 } 1682 1683 return type; 1684 } 1685 1686 static __always_inline int 1687 va_clip(struct rb_root *root, struct list_head *head, 1688 struct vmap_area *va, unsigned long nva_start_addr, 1689 unsigned long size) 1690 { 1691 struct vmap_area *lva = NULL; 1692 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1693 1694 if (type == FL_FIT_TYPE) { 1695 /* 1696 * No need to split VA, it fully fits. 1697 * 1698 * | | 1699 * V NVA V 1700 * |---------------| 1701 */ 1702 unlink_va_augment(va, root); 1703 kmem_cache_free(vmap_area_cachep, va); 1704 } else if (type == LE_FIT_TYPE) { 1705 /* 1706 * Split left edge of fit VA. 1707 * 1708 * | | 1709 * V NVA V R 1710 * |-------|-------| 1711 */ 1712 va->va_start += size; 1713 } else if (type == RE_FIT_TYPE) { 1714 /* 1715 * Split right edge of fit VA. 1716 * 1717 * | | 1718 * L V NVA V 1719 * |-------|-------| 1720 */ 1721 va->va_end = nva_start_addr; 1722 } else if (type == NE_FIT_TYPE) { 1723 /* 1724 * Split no edge of fit VA. 1725 * 1726 * | | 1727 * L V NVA V R 1728 * |---|-------|---| 1729 */ 1730 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1731 if (unlikely(!lva)) { 1732 /* 1733 * For percpu allocator we do not do any pre-allocation 1734 * and leave it as it is. The reason is it most likely 1735 * never ends up with NE_FIT_TYPE splitting. In case of 1736 * percpu allocations offsets and sizes are aligned to 1737 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1738 * are its main fitting cases. 1739 * 1740 * There are a few exceptions though, as an example it is 1741 * a first allocation (early boot up) when we have "one" 1742 * big free space that has to be split. 1743 * 1744 * Also we can hit this path in case of regular "vmap" 1745 * allocations, if "this" current CPU was not preloaded. 1746 * See the comment in alloc_vmap_area() why. If so, then 1747 * GFP_NOWAIT is used instead to get an extra object for 1748 * split purpose. That is rare and most time does not 1749 * occur. 1750 * 1751 * What happens if an allocation gets failed. Basically, 1752 * an "overflow" path is triggered to purge lazily freed 1753 * areas to free some memory, then, the "retry" path is 1754 * triggered to repeat one more time. See more details 1755 * in alloc_vmap_area() function. 1756 */ 1757 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1758 if (!lva) 1759 return -ENOMEM; 1760 } 1761 1762 /* 1763 * Build the remainder. 1764 */ 1765 lva->va_start = va->va_start; 1766 lva->va_end = nva_start_addr; 1767 1768 /* 1769 * Shrink this VA to remaining size. 1770 */ 1771 va->va_start = nva_start_addr + size; 1772 } else { 1773 return -EINVAL; 1774 } 1775 1776 if (type != FL_FIT_TYPE) { 1777 augment_tree_propagate_from(va); 1778 1779 if (lva) /* type == NE_FIT_TYPE */ 1780 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1781 } 1782 1783 return 0; 1784 } 1785 1786 static unsigned long 1787 va_alloc(struct vmap_area *va, 1788 struct rb_root *root, struct list_head *head, 1789 unsigned long size, unsigned long align, 1790 unsigned long vstart, unsigned long vend) 1791 { 1792 unsigned long nva_start_addr; 1793 int ret; 1794 1795 if (va->va_start > vstart) 1796 nva_start_addr = ALIGN(va->va_start, align); 1797 else 1798 nva_start_addr = ALIGN(vstart, align); 1799 1800 /* Check the "vend" restriction. */ 1801 if (nva_start_addr + size > vend) 1802 return -ERANGE; 1803 1804 /* Update the free vmap_area. */ 1805 ret = va_clip(root, head, va, nva_start_addr, size); 1806 if (WARN_ON_ONCE(ret)) 1807 return ret; 1808 1809 return nva_start_addr; 1810 } 1811 1812 /* 1813 * Returns a start address of the newly allocated area, if success. 1814 * Otherwise an error value is returned that indicates failure. 1815 */ 1816 static __always_inline unsigned long 1817 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1818 unsigned long size, unsigned long align, 1819 unsigned long vstart, unsigned long vend) 1820 { 1821 bool adjust_search_size = true; 1822 unsigned long nva_start_addr; 1823 struct vmap_area *va; 1824 1825 /* 1826 * Do not adjust when: 1827 * a) align <= PAGE_SIZE, because it does not make any sense. 1828 * All blocks(their start addresses) are at least PAGE_SIZE 1829 * aligned anyway; 1830 * b) a short range where a requested size corresponds to exactly 1831 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1832 * With adjusted search length an allocation would not succeed. 1833 */ 1834 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1835 adjust_search_size = false; 1836 1837 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1838 if (unlikely(!va)) 1839 return -ENOENT; 1840 1841 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); 1842 1843 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1844 if (!IS_ERR_VALUE(nva_start_addr)) 1845 find_vmap_lowest_match_check(root, head, size, align); 1846 #endif 1847 1848 return nva_start_addr; 1849 } 1850 1851 /* 1852 * Free a region of KVA allocated by alloc_vmap_area 1853 */ 1854 static void free_vmap_area(struct vmap_area *va) 1855 { 1856 struct vmap_node *vn = addr_to_node(va->va_start); 1857 1858 /* 1859 * Remove from the busy tree/list. 1860 */ 1861 spin_lock(&vn->busy.lock); 1862 unlink_va(va, &vn->busy.root); 1863 spin_unlock(&vn->busy.lock); 1864 1865 /* 1866 * Insert/Merge it back to the free tree/list. 1867 */ 1868 spin_lock(&free_vmap_area_lock); 1869 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1870 spin_unlock(&free_vmap_area_lock); 1871 } 1872 1873 static inline void 1874 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1875 { 1876 struct vmap_area *va = NULL, *tmp; 1877 1878 /* 1879 * Preload this CPU with one extra vmap_area object. It is used 1880 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1881 * a CPU that does an allocation is preloaded. 1882 * 1883 * We do it in non-atomic context, thus it allows us to use more 1884 * permissive allocation masks to be more stable under low memory 1885 * condition and high memory pressure. 1886 */ 1887 if (!this_cpu_read(ne_fit_preload_node)) 1888 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1889 1890 spin_lock(lock); 1891 1892 tmp = NULL; 1893 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) 1894 kmem_cache_free(vmap_area_cachep, va); 1895 } 1896 1897 static struct vmap_pool * 1898 size_to_va_pool(struct vmap_node *vn, unsigned long size) 1899 { 1900 unsigned int idx = (size - 1) / PAGE_SIZE; 1901 1902 if (idx < MAX_VA_SIZE_PAGES) 1903 return &vn->pool[idx]; 1904 1905 return NULL; 1906 } 1907 1908 static bool 1909 node_pool_add_va(struct vmap_node *n, struct vmap_area *va) 1910 { 1911 struct vmap_pool *vp; 1912 1913 vp = size_to_va_pool(n, va_size(va)); 1914 if (!vp) 1915 return false; 1916 1917 spin_lock(&n->pool_lock); 1918 list_add(&va->list, &vp->head); 1919 WRITE_ONCE(vp->len, vp->len + 1); 1920 spin_unlock(&n->pool_lock); 1921 1922 return true; 1923 } 1924 1925 static struct vmap_area * 1926 node_pool_del_va(struct vmap_node *vn, unsigned long size, 1927 unsigned long align, unsigned long vstart, 1928 unsigned long vend) 1929 { 1930 struct vmap_area *va = NULL; 1931 struct vmap_pool *vp; 1932 int err = 0; 1933 1934 vp = size_to_va_pool(vn, size); 1935 if (!vp || list_empty(&vp->head)) 1936 return NULL; 1937 1938 spin_lock(&vn->pool_lock); 1939 if (!list_empty(&vp->head)) { 1940 va = list_first_entry(&vp->head, struct vmap_area, list); 1941 1942 if (IS_ALIGNED(va->va_start, align)) { 1943 /* 1944 * Do some sanity check and emit a warning 1945 * if one of below checks detects an error. 1946 */ 1947 err |= (va_size(va) != size); 1948 err |= (va->va_start < vstart); 1949 err |= (va->va_end > vend); 1950 1951 if (!WARN_ON_ONCE(err)) { 1952 list_del_init(&va->list); 1953 WRITE_ONCE(vp->len, vp->len - 1); 1954 } else { 1955 va = NULL; 1956 } 1957 } else { 1958 list_move_tail(&va->list, &vp->head); 1959 va = NULL; 1960 } 1961 } 1962 spin_unlock(&vn->pool_lock); 1963 1964 return va; 1965 } 1966 1967 static struct vmap_area * 1968 node_alloc(unsigned long size, unsigned long align, 1969 unsigned long vstart, unsigned long vend, 1970 unsigned long *addr, unsigned int *vn_id) 1971 { 1972 struct vmap_area *va; 1973 1974 *vn_id = 0; 1975 *addr = -EINVAL; 1976 1977 /* 1978 * Fallback to a global heap if not vmalloc or there 1979 * is only one node. 1980 */ 1981 if (vstart != VMALLOC_START || vend != VMALLOC_END || 1982 nr_vmap_nodes == 1) 1983 return NULL; 1984 1985 *vn_id = raw_smp_processor_id() % nr_vmap_nodes; 1986 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); 1987 *vn_id = encode_vn_id(*vn_id); 1988 1989 if (va) 1990 *addr = va->va_start; 1991 1992 return va; 1993 } 1994 1995 static inline void setup_vmalloc_vm(struct vm_struct *vm, 1996 struct vmap_area *va, unsigned long flags, const void *caller) 1997 { 1998 vm->flags = flags; 1999 vm->addr = (void *)va->va_start; 2000 vm->size = vm->requested_size = va_size(va); 2001 vm->caller = caller; 2002 va->vm = vm; 2003 } 2004 2005 /* 2006 * Allocate a region of KVA of the specified size and alignment, within the 2007 * vstart and vend. If vm is passed in, the two will also be bound. 2008 */ 2009 static struct vmap_area *alloc_vmap_area(unsigned long size, 2010 unsigned long align, 2011 unsigned long vstart, unsigned long vend, 2012 int node, gfp_t gfp_mask, 2013 unsigned long va_flags, struct vm_struct *vm) 2014 { 2015 struct vmap_node *vn; 2016 struct vmap_area *va; 2017 unsigned long freed; 2018 unsigned long addr; 2019 unsigned int vn_id; 2020 int purged = 0; 2021 int ret; 2022 2023 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 2024 return ERR_PTR(-EINVAL); 2025 2026 if (unlikely(!vmap_initialized)) 2027 return ERR_PTR(-EBUSY); 2028 2029 /* Only reclaim behaviour flags are relevant. */ 2030 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 2031 might_sleep(); 2032 2033 /* 2034 * If a VA is obtained from a global heap(if it fails here) 2035 * it is anyway marked with this "vn_id" so it is returned 2036 * to this pool's node later. Such way gives a possibility 2037 * to populate pools based on users demand. 2038 * 2039 * On success a ready to go VA is returned. 2040 */ 2041 va = node_alloc(size, align, vstart, vend, &addr, &vn_id); 2042 if (!va) { 2043 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 2044 if (unlikely(!va)) 2045 return ERR_PTR(-ENOMEM); 2046 2047 /* 2048 * Only scan the relevant parts containing pointers to other objects 2049 * to avoid false negatives. 2050 */ 2051 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 2052 } 2053 2054 retry: 2055 if (IS_ERR_VALUE(addr)) { 2056 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 2057 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 2058 size, align, vstart, vend); 2059 spin_unlock(&free_vmap_area_lock); 2060 2061 /* 2062 * This is not a fast path. Check if yielding is needed. This 2063 * is the only reschedule point in the vmalloc() path. 2064 */ 2065 cond_resched(); 2066 } 2067 2068 trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr)); 2069 2070 /* 2071 * If an allocation fails, the error value is 2072 * returned. Therefore trigger the overflow path. 2073 */ 2074 if (IS_ERR_VALUE(addr)) 2075 goto overflow; 2076 2077 va->va_start = addr; 2078 va->va_end = addr + size; 2079 va->vm = NULL; 2080 va->flags = (va_flags | vn_id); 2081 2082 if (vm) { 2083 vm->addr = (void *)va->va_start; 2084 vm->size = va_size(va); 2085 va->vm = vm; 2086 } 2087 2088 vn = addr_to_node(va->va_start); 2089 2090 spin_lock(&vn->busy.lock); 2091 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 2092 spin_unlock(&vn->busy.lock); 2093 2094 BUG_ON(!IS_ALIGNED(va->va_start, align)); 2095 BUG_ON(va->va_start < vstart); 2096 BUG_ON(va->va_end > vend); 2097 2098 ret = kasan_populate_vmalloc(addr, size, gfp_mask); 2099 if (ret) { 2100 free_vmap_area(va); 2101 return ERR_PTR(ret); 2102 } 2103 2104 return va; 2105 2106 overflow: 2107 if (!purged) { 2108 reclaim_and_purge_vmap_areas(); 2109 purged = 1; 2110 goto retry; 2111 } 2112 2113 freed = 0; 2114 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 2115 2116 if (freed > 0) { 2117 purged = 0; 2118 goto retry; 2119 } 2120 2121 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 2122 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", 2123 size, vstart, vend); 2124 2125 kmem_cache_free(vmap_area_cachep, va); 2126 return ERR_PTR(-EBUSY); 2127 } 2128 2129 int register_vmap_purge_notifier(struct notifier_block *nb) 2130 { 2131 return blocking_notifier_chain_register(&vmap_notify_list, nb); 2132 } 2133 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 2134 2135 int unregister_vmap_purge_notifier(struct notifier_block *nb) 2136 { 2137 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 2138 } 2139 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 2140 2141 /* 2142 * lazy_max_pages is the maximum amount of virtual address space we gather up 2143 * before attempting to purge with a TLB flush. 2144 * 2145 * There is a tradeoff here: a larger number will cover more kernel page tables 2146 * and take slightly longer to purge, but it will linearly reduce the number of 2147 * global TLB flushes that must be performed. It would seem natural to scale 2148 * this number up linearly with the number of CPUs (because vmapping activity 2149 * could also scale linearly with the number of CPUs), however it is likely 2150 * that in practice, workloads might be constrained in other ways that mean 2151 * vmap activity will not scale linearly with CPUs. Also, I want to be 2152 * conservative and not introduce a big latency on huge systems, so go with 2153 * a less aggressive log scale. It will still be an improvement over the old 2154 * code, and it will be simple to change the scale factor if we find that it 2155 * becomes a problem on bigger systems. 2156 */ 2157 static unsigned long lazy_max_pages(void) 2158 { 2159 unsigned int log; 2160 2161 log = fls(num_online_cpus()); 2162 2163 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 2164 } 2165 2166 /* 2167 * Serialize vmap purging. There is no actual critical section protected 2168 * by this lock, but we want to avoid concurrent calls for performance 2169 * reasons and to make the pcpu_get_vm_areas more deterministic. 2170 */ 2171 static DEFINE_MUTEX(vmap_purge_lock); 2172 2173 /* for per-CPU blocks */ 2174 static void purge_fragmented_blocks_allcpus(void); 2175 2176 static void 2177 reclaim_list_global(struct list_head *head) 2178 { 2179 struct vmap_area *va, *n; 2180 2181 if (list_empty(head)) 2182 return; 2183 2184 spin_lock(&free_vmap_area_lock); 2185 list_for_each_entry_safe(va, n, head, list) 2186 merge_or_add_vmap_area_augment(va, 2187 &free_vmap_area_root, &free_vmap_area_list); 2188 spin_unlock(&free_vmap_area_lock); 2189 } 2190 2191 static void 2192 decay_va_pool_node(struct vmap_node *vn, bool full_decay) 2193 { 2194 LIST_HEAD(decay_list); 2195 struct rb_root decay_root = RB_ROOT; 2196 struct vmap_area *va, *nva; 2197 unsigned long n_decay, pool_len; 2198 int i; 2199 2200 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 2201 LIST_HEAD(tmp_list); 2202 2203 if (list_empty(&vn->pool[i].head)) 2204 continue; 2205 2206 /* Detach the pool, so no-one can access it. */ 2207 spin_lock(&vn->pool_lock); 2208 list_replace_init(&vn->pool[i].head, &tmp_list); 2209 spin_unlock(&vn->pool_lock); 2210 2211 pool_len = n_decay = vn->pool[i].len; 2212 WRITE_ONCE(vn->pool[i].len, 0); 2213 2214 /* Decay a pool by ~25% out of left objects. */ 2215 if (!full_decay) 2216 n_decay >>= 2; 2217 pool_len -= n_decay; 2218 2219 list_for_each_entry_safe(va, nva, &tmp_list, list) { 2220 if (!n_decay--) 2221 break; 2222 2223 list_del_init(&va->list); 2224 merge_or_add_vmap_area(va, &decay_root, &decay_list); 2225 } 2226 2227 /* 2228 * Attach the pool back if it has been partly decayed. 2229 * Please note, it is supposed that nobody(other contexts) 2230 * can populate the pool therefore a simple list replace 2231 * operation takes place here. 2232 */ 2233 if (!list_empty(&tmp_list)) { 2234 spin_lock(&vn->pool_lock); 2235 list_replace_init(&tmp_list, &vn->pool[i].head); 2236 WRITE_ONCE(vn->pool[i].len, pool_len); 2237 spin_unlock(&vn->pool_lock); 2238 } 2239 } 2240 2241 reclaim_list_global(&decay_list); 2242 } 2243 2244 static void 2245 kasan_release_vmalloc_node(struct vmap_node *vn) 2246 { 2247 struct vmap_area *va; 2248 unsigned long start, end; 2249 2250 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; 2251 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; 2252 2253 list_for_each_entry(va, &vn->purge_list, list) { 2254 if (is_vmalloc_or_module_addr((void *) va->va_start)) 2255 kasan_release_vmalloc(va->va_start, va->va_end, 2256 va->va_start, va->va_end, 2257 KASAN_VMALLOC_PAGE_RANGE); 2258 } 2259 2260 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); 2261 } 2262 2263 static void purge_vmap_node(struct work_struct *work) 2264 { 2265 struct vmap_node *vn = container_of(work, 2266 struct vmap_node, purge_work); 2267 unsigned long nr_purged_pages = 0; 2268 struct vmap_area *va, *n_va; 2269 LIST_HEAD(local_list); 2270 2271 if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) 2272 kasan_release_vmalloc_node(vn); 2273 2274 vn->nr_purged = 0; 2275 2276 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { 2277 unsigned long nr = va_size(va) >> PAGE_SHIFT; 2278 unsigned int vn_id = decode_vn_id(va->flags); 2279 2280 list_del_init(&va->list); 2281 2282 nr_purged_pages += nr; 2283 vn->nr_purged++; 2284 2285 if (is_vn_id_valid(vn_id) && !vn->skip_populate) 2286 if (node_pool_add_va(vn, va)) 2287 continue; 2288 2289 /* Go back to global. */ 2290 list_add(&va->list, &local_list); 2291 } 2292 2293 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); 2294 2295 reclaim_list_global(&local_list); 2296 } 2297 2298 /* 2299 * Purges all lazily-freed vmap areas. 2300 */ 2301 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, 2302 bool full_pool_decay) 2303 { 2304 unsigned long nr_purged_areas = 0; 2305 unsigned int nr_purge_helpers; 2306 static cpumask_t purge_nodes; 2307 unsigned int nr_purge_nodes; 2308 struct vmap_node *vn; 2309 int i; 2310 2311 lockdep_assert_held(&vmap_purge_lock); 2312 2313 /* 2314 * Use cpumask to mark which node has to be processed. 2315 */ 2316 purge_nodes = CPU_MASK_NONE; 2317 2318 for_each_vmap_node(vn) { 2319 INIT_LIST_HEAD(&vn->purge_list); 2320 vn->skip_populate = full_pool_decay; 2321 decay_va_pool_node(vn, full_pool_decay); 2322 2323 if (RB_EMPTY_ROOT(&vn->lazy.root)) 2324 continue; 2325 2326 spin_lock(&vn->lazy.lock); 2327 WRITE_ONCE(vn->lazy.root.rb_node, NULL); 2328 list_replace_init(&vn->lazy.head, &vn->purge_list); 2329 spin_unlock(&vn->lazy.lock); 2330 2331 start = min(start, list_first_entry(&vn->purge_list, 2332 struct vmap_area, list)->va_start); 2333 2334 end = max(end, list_last_entry(&vn->purge_list, 2335 struct vmap_area, list)->va_end); 2336 2337 cpumask_set_cpu(node_to_id(vn), &purge_nodes); 2338 } 2339 2340 nr_purge_nodes = cpumask_weight(&purge_nodes); 2341 if (nr_purge_nodes > 0) { 2342 flush_tlb_kernel_range(start, end); 2343 2344 /* One extra worker is per a lazy_max_pages() full set minus one. */ 2345 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); 2346 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; 2347 2348 for_each_cpu(i, &purge_nodes) { 2349 vn = &vmap_nodes[i]; 2350 2351 if (nr_purge_helpers > 0) { 2352 INIT_WORK(&vn->purge_work, purge_vmap_node); 2353 2354 if (cpumask_test_cpu(i, cpu_online_mask)) 2355 schedule_work_on(i, &vn->purge_work); 2356 else 2357 schedule_work(&vn->purge_work); 2358 2359 nr_purge_helpers--; 2360 } else { 2361 vn->purge_work.func = NULL; 2362 purge_vmap_node(&vn->purge_work); 2363 nr_purged_areas += vn->nr_purged; 2364 } 2365 } 2366 2367 for_each_cpu(i, &purge_nodes) { 2368 vn = &vmap_nodes[i]; 2369 2370 if (vn->purge_work.func) { 2371 flush_work(&vn->purge_work); 2372 nr_purged_areas += vn->nr_purged; 2373 } 2374 } 2375 } 2376 2377 trace_purge_vmap_area_lazy(start, end, nr_purged_areas); 2378 return nr_purged_areas > 0; 2379 } 2380 2381 /* 2382 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 2383 */ 2384 static void reclaim_and_purge_vmap_areas(void) 2385 2386 { 2387 mutex_lock(&vmap_purge_lock); 2388 purge_fragmented_blocks_allcpus(); 2389 __purge_vmap_area_lazy(ULONG_MAX, 0, true); 2390 mutex_unlock(&vmap_purge_lock); 2391 } 2392 2393 static void drain_vmap_area_work(struct work_struct *work) 2394 { 2395 mutex_lock(&vmap_purge_lock); 2396 __purge_vmap_area_lazy(ULONG_MAX, 0, false); 2397 mutex_unlock(&vmap_purge_lock); 2398 } 2399 2400 /* 2401 * Free a vmap area, caller ensuring that the area has been unmapped, 2402 * unlinked and flush_cache_vunmap had been called for the correct 2403 * range previously. 2404 */ 2405 static void free_vmap_area_noflush(struct vmap_area *va) 2406 { 2407 unsigned long nr_lazy_max = lazy_max_pages(); 2408 unsigned long va_start = va->va_start; 2409 unsigned int vn_id = decode_vn_id(va->flags); 2410 struct vmap_node *vn; 2411 unsigned long nr_lazy; 2412 2413 if (WARN_ON_ONCE(!list_empty(&va->list))) 2414 return; 2415 2416 nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, 2417 &vmap_lazy_nr); 2418 2419 /* 2420 * If it was request by a certain node we would like to 2421 * return it to that node, i.e. its pool for later reuse. 2422 */ 2423 vn = is_vn_id_valid(vn_id) ? 2424 id_to_node(vn_id):addr_to_node(va->va_start); 2425 2426 spin_lock(&vn->lazy.lock); 2427 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); 2428 spin_unlock(&vn->lazy.lock); 2429 2430 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 2431 2432 /* After this point, we may free va at any time */ 2433 if (unlikely(nr_lazy > nr_lazy_max)) 2434 schedule_work(&drain_vmap_work); 2435 } 2436 2437 /* 2438 * Free and unmap a vmap area 2439 */ 2440 static void free_unmap_vmap_area(struct vmap_area *va) 2441 { 2442 flush_cache_vunmap(va->va_start, va->va_end); 2443 vunmap_range_noflush(va->va_start, va->va_end); 2444 if (debug_pagealloc_enabled_static()) 2445 flush_tlb_kernel_range(va->va_start, va->va_end); 2446 2447 free_vmap_area_noflush(va); 2448 } 2449 2450 struct vmap_area *find_vmap_area(unsigned long addr) 2451 { 2452 struct vmap_node *vn; 2453 struct vmap_area *va; 2454 int i, j; 2455 2456 if (unlikely(!vmap_initialized)) 2457 return NULL; 2458 2459 /* 2460 * An addr_to_node_id(addr) converts an address to a node index 2461 * where a VA is located. If VA spans several zones and passed 2462 * addr is not the same as va->va_start, what is not common, we 2463 * may need to scan extra nodes. See an example: 2464 * 2465 * <----va----> 2466 * -|-----|-----|-----|-----|- 2467 * 1 2 0 1 2468 * 2469 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed 2470 * addr is within 2 or 0 nodes we should do extra work. 2471 */ 2472 i = j = addr_to_node_id(addr); 2473 do { 2474 vn = &vmap_nodes[i]; 2475 2476 spin_lock(&vn->busy.lock); 2477 va = __find_vmap_area(addr, &vn->busy.root); 2478 spin_unlock(&vn->busy.lock); 2479 2480 if (va) 2481 return va; 2482 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); 2483 2484 return NULL; 2485 } 2486 2487 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 2488 { 2489 struct vmap_node *vn; 2490 struct vmap_area *va; 2491 int i, j; 2492 2493 /* 2494 * Check the comment in the find_vmap_area() about the loop. 2495 */ 2496 i = j = addr_to_node_id(addr); 2497 do { 2498 vn = &vmap_nodes[i]; 2499 2500 spin_lock(&vn->busy.lock); 2501 va = __find_vmap_area(addr, &vn->busy.root); 2502 if (va) 2503 unlink_va(va, &vn->busy.root); 2504 spin_unlock(&vn->busy.lock); 2505 2506 if (va) 2507 return va; 2508 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); 2509 2510 return NULL; 2511 } 2512 2513 /*** Per cpu kva allocator ***/ 2514 2515 /* 2516 * vmap space is limited especially on 32 bit architectures. Ensure there is 2517 * room for at least 16 percpu vmap blocks per CPU. 2518 */ 2519 /* 2520 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 2521 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 2522 * instead (we just need a rough idea) 2523 */ 2524 #if BITS_PER_LONG == 32 2525 #define VMALLOC_SPACE (128UL*1024*1024) 2526 #else 2527 #define VMALLOC_SPACE (128UL*1024*1024*1024) 2528 #endif 2529 2530 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 2531 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 2532 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 2533 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 2534 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 2535 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 2536 #define VMAP_BBMAP_BITS \ 2537 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 2538 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 2539 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 2540 2541 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 2542 2543 /* 2544 * Purge threshold to prevent overeager purging of fragmented blocks for 2545 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 2546 */ 2547 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 2548 2549 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 2550 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 2551 #define VMAP_FLAGS_MASK 0x3 2552 2553 struct vmap_block_queue { 2554 spinlock_t lock; 2555 struct list_head free; 2556 2557 /* 2558 * An xarray requires an extra memory dynamically to 2559 * be allocated. If it is an issue, we can use rb-tree 2560 * instead. 2561 */ 2562 struct xarray vmap_blocks; 2563 }; 2564 2565 struct vmap_block { 2566 spinlock_t lock; 2567 struct vmap_area *va; 2568 unsigned long free, dirty; 2569 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2570 unsigned long dirty_min, dirty_max; /*< dirty range */ 2571 struct list_head free_list; 2572 struct rcu_head rcu_head; 2573 struct list_head purge; 2574 unsigned int cpu; 2575 }; 2576 2577 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2578 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2579 2580 /* 2581 * In order to fast access to any "vmap_block" associated with a 2582 * specific address, we use a hash. 2583 * 2584 * A per-cpu vmap_block_queue is used in both ways, to serialize 2585 * an access to free block chains among CPUs(alloc path) and it 2586 * also acts as a vmap_block hash(alloc/free paths). It means we 2587 * overload it, since we already have the per-cpu array which is 2588 * used as a hash table. When used as a hash a 'cpu' passed to 2589 * per_cpu() is not actually a CPU but rather a hash index. 2590 * 2591 * A hash function is addr_to_vb_xa() which hashes any address 2592 * to a specific index(in a hash) it belongs to. This then uses a 2593 * per_cpu() macro to access an array with generated index. 2594 * 2595 * An example: 2596 * 2597 * CPU_1 CPU_2 CPU_0 2598 * | | | 2599 * V V V 2600 * 0 10 20 30 40 50 60 2601 * |------|------|------|------|------|------|...<vmap address space> 2602 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2603 * 2604 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2605 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2606 * 2607 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2608 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2609 * 2610 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2611 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2612 * 2613 * This technique almost always avoids lock contention on insert/remove, 2614 * however xarray spinlocks protect against any contention that remains. 2615 */ 2616 static struct xarray * 2617 addr_to_vb_xa(unsigned long addr) 2618 { 2619 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; 2620 2621 /* 2622 * Please note, nr_cpu_ids points on a highest set 2623 * possible bit, i.e. we never invoke cpumask_next() 2624 * if an index points on it which is nr_cpu_ids - 1. 2625 */ 2626 if (!cpu_possible(index)) 2627 index = cpumask_next(index, cpu_possible_mask); 2628 2629 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2630 } 2631 2632 /* 2633 * We should probably have a fallback mechanism to allocate virtual memory 2634 * out of partially filled vmap blocks. However vmap block sizing should be 2635 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2636 * big problem. 2637 */ 2638 2639 static unsigned long addr_to_vb_idx(unsigned long addr) 2640 { 2641 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2642 addr /= VMAP_BLOCK_SIZE; 2643 return addr; 2644 } 2645 2646 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2647 { 2648 unsigned long addr; 2649 2650 addr = va_start + (pages_off << PAGE_SHIFT); 2651 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2652 return (void *)addr; 2653 } 2654 2655 /** 2656 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2657 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2658 * @order: how many 2^order pages should be occupied in newly allocated block 2659 * @gfp_mask: flags for the page level allocator 2660 * 2661 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2662 */ 2663 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2664 { 2665 struct vmap_block_queue *vbq; 2666 struct vmap_block *vb; 2667 struct vmap_area *va; 2668 struct xarray *xa; 2669 unsigned long vb_idx; 2670 int node, err; 2671 void *vaddr; 2672 2673 node = numa_node_id(); 2674 2675 vb = kmalloc_node(sizeof(struct vmap_block), 2676 gfp_mask & GFP_RECLAIM_MASK, node); 2677 if (unlikely(!vb)) 2678 return ERR_PTR(-ENOMEM); 2679 2680 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2681 VMALLOC_START, VMALLOC_END, 2682 node, gfp_mask, 2683 VMAP_RAM|VMAP_BLOCK, NULL); 2684 if (IS_ERR(va)) { 2685 kfree(vb); 2686 return ERR_CAST(va); 2687 } 2688 2689 vaddr = vmap_block_vaddr(va->va_start, 0); 2690 spin_lock_init(&vb->lock); 2691 vb->va = va; 2692 /* At least something should be left free */ 2693 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2694 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2695 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2696 vb->dirty = 0; 2697 vb->dirty_min = VMAP_BBMAP_BITS; 2698 vb->dirty_max = 0; 2699 bitmap_set(vb->used_map, 0, (1UL << order)); 2700 INIT_LIST_HEAD(&vb->free_list); 2701 vb->cpu = raw_smp_processor_id(); 2702 2703 xa = addr_to_vb_xa(va->va_start); 2704 vb_idx = addr_to_vb_idx(va->va_start); 2705 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2706 if (err) { 2707 kfree(vb); 2708 free_vmap_area(va); 2709 return ERR_PTR(err); 2710 } 2711 /* 2712 * list_add_tail_rcu could happened in another core 2713 * rather than vb->cpu due to task migration, which 2714 * is safe as list_add_tail_rcu will ensure the list's 2715 * integrity together with list_for_each_rcu from read 2716 * side. 2717 */ 2718 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); 2719 spin_lock(&vbq->lock); 2720 list_add_tail_rcu(&vb->free_list, &vbq->free); 2721 spin_unlock(&vbq->lock); 2722 2723 return vaddr; 2724 } 2725 2726 static void free_vmap_block(struct vmap_block *vb) 2727 { 2728 struct vmap_node *vn; 2729 struct vmap_block *tmp; 2730 struct xarray *xa; 2731 2732 xa = addr_to_vb_xa(vb->va->va_start); 2733 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2734 BUG_ON(tmp != vb); 2735 2736 vn = addr_to_node(vb->va->va_start); 2737 spin_lock(&vn->busy.lock); 2738 unlink_va(vb->va, &vn->busy.root); 2739 spin_unlock(&vn->busy.lock); 2740 2741 free_vmap_area_noflush(vb->va); 2742 kfree_rcu(vb, rcu_head); 2743 } 2744 2745 static bool purge_fragmented_block(struct vmap_block *vb, 2746 struct list_head *purge_list, bool force_purge) 2747 { 2748 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); 2749 2750 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2751 vb->dirty == VMAP_BBMAP_BITS) 2752 return false; 2753 2754 /* Don't overeagerly purge usable blocks unless requested */ 2755 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2756 return false; 2757 2758 /* prevent further allocs after releasing lock */ 2759 WRITE_ONCE(vb->free, 0); 2760 /* prevent purging it again */ 2761 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2762 vb->dirty_min = 0; 2763 vb->dirty_max = VMAP_BBMAP_BITS; 2764 spin_lock(&vbq->lock); 2765 list_del_rcu(&vb->free_list); 2766 spin_unlock(&vbq->lock); 2767 list_add_tail(&vb->purge, purge_list); 2768 return true; 2769 } 2770 2771 static void free_purged_blocks(struct list_head *purge_list) 2772 { 2773 struct vmap_block *vb, *n_vb; 2774 2775 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2776 list_del(&vb->purge); 2777 free_vmap_block(vb); 2778 } 2779 } 2780 2781 static void purge_fragmented_blocks(int cpu) 2782 { 2783 LIST_HEAD(purge); 2784 struct vmap_block *vb; 2785 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2786 2787 rcu_read_lock(); 2788 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2789 unsigned long free = READ_ONCE(vb->free); 2790 unsigned long dirty = READ_ONCE(vb->dirty); 2791 2792 if (free + dirty != VMAP_BBMAP_BITS || 2793 dirty == VMAP_BBMAP_BITS) 2794 continue; 2795 2796 spin_lock(&vb->lock); 2797 purge_fragmented_block(vb, &purge, true); 2798 spin_unlock(&vb->lock); 2799 } 2800 rcu_read_unlock(); 2801 free_purged_blocks(&purge); 2802 } 2803 2804 static void purge_fragmented_blocks_allcpus(void) 2805 { 2806 int cpu; 2807 2808 for_each_possible_cpu(cpu) 2809 purge_fragmented_blocks(cpu); 2810 } 2811 2812 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2813 { 2814 struct vmap_block_queue *vbq; 2815 struct vmap_block *vb; 2816 void *vaddr = NULL; 2817 unsigned int order; 2818 2819 BUG_ON(offset_in_page(size)); 2820 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2821 if (WARN_ON(size == 0)) { 2822 /* 2823 * Allocating 0 bytes isn't what caller wants since 2824 * get_order(0) returns funny result. Just warn and terminate 2825 * early. 2826 */ 2827 return ERR_PTR(-EINVAL); 2828 } 2829 order = get_order(size); 2830 2831 rcu_read_lock(); 2832 vbq = raw_cpu_ptr(&vmap_block_queue); 2833 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2834 unsigned long pages_off; 2835 2836 if (READ_ONCE(vb->free) < (1UL << order)) 2837 continue; 2838 2839 spin_lock(&vb->lock); 2840 if (vb->free < (1UL << order)) { 2841 spin_unlock(&vb->lock); 2842 continue; 2843 } 2844 2845 pages_off = VMAP_BBMAP_BITS - vb->free; 2846 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2847 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2848 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2849 if (vb->free == 0) { 2850 spin_lock(&vbq->lock); 2851 list_del_rcu(&vb->free_list); 2852 spin_unlock(&vbq->lock); 2853 } 2854 2855 spin_unlock(&vb->lock); 2856 break; 2857 } 2858 2859 rcu_read_unlock(); 2860 2861 /* Allocate new block if nothing was found */ 2862 if (!vaddr) 2863 vaddr = new_vmap_block(order, gfp_mask); 2864 2865 return vaddr; 2866 } 2867 2868 static void vb_free(unsigned long addr, unsigned long size) 2869 { 2870 unsigned long offset; 2871 unsigned int order; 2872 struct vmap_block *vb; 2873 struct xarray *xa; 2874 2875 BUG_ON(offset_in_page(size)); 2876 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2877 2878 flush_cache_vunmap(addr, addr + size); 2879 2880 order = get_order(size); 2881 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2882 2883 xa = addr_to_vb_xa(addr); 2884 vb = xa_load(xa, addr_to_vb_idx(addr)); 2885 2886 spin_lock(&vb->lock); 2887 bitmap_clear(vb->used_map, offset, (1UL << order)); 2888 spin_unlock(&vb->lock); 2889 2890 vunmap_range_noflush(addr, addr + size); 2891 2892 if (debug_pagealloc_enabled_static()) 2893 flush_tlb_kernel_range(addr, addr + size); 2894 2895 spin_lock(&vb->lock); 2896 2897 /* Expand the not yet TLB flushed dirty range */ 2898 vb->dirty_min = min(vb->dirty_min, offset); 2899 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2900 2901 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2902 if (vb->dirty == VMAP_BBMAP_BITS) { 2903 BUG_ON(vb->free); 2904 spin_unlock(&vb->lock); 2905 free_vmap_block(vb); 2906 } else 2907 spin_unlock(&vb->lock); 2908 } 2909 2910 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2911 { 2912 LIST_HEAD(purge_list); 2913 int cpu; 2914 2915 if (unlikely(!vmap_initialized)) 2916 return; 2917 2918 mutex_lock(&vmap_purge_lock); 2919 2920 for_each_possible_cpu(cpu) { 2921 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2922 struct vmap_block *vb; 2923 unsigned long idx; 2924 2925 rcu_read_lock(); 2926 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2927 spin_lock(&vb->lock); 2928 2929 /* 2930 * Try to purge a fragmented block first. If it's 2931 * not purgeable, check whether there is dirty 2932 * space to be flushed. 2933 */ 2934 if (!purge_fragmented_block(vb, &purge_list, false) && 2935 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2936 unsigned long va_start = vb->va->va_start; 2937 unsigned long s, e; 2938 2939 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2940 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2941 2942 start = min(s, start); 2943 end = max(e, end); 2944 2945 /* Prevent that this is flushed again */ 2946 vb->dirty_min = VMAP_BBMAP_BITS; 2947 vb->dirty_max = 0; 2948 2949 flush = 1; 2950 } 2951 spin_unlock(&vb->lock); 2952 } 2953 rcu_read_unlock(); 2954 } 2955 free_purged_blocks(&purge_list); 2956 2957 if (!__purge_vmap_area_lazy(start, end, false) && flush) 2958 flush_tlb_kernel_range(start, end); 2959 mutex_unlock(&vmap_purge_lock); 2960 } 2961 2962 /** 2963 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2964 * 2965 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2966 * to amortize TLB flushing overheads. What this means is that any page you 2967 * have now, may, in a former life, have been mapped into kernel virtual 2968 * address by the vmap layer and so there might be some CPUs with TLB entries 2969 * still referencing that page (additional to the regular 1:1 kernel mapping). 2970 * 2971 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2972 * be sure that none of the pages we have control over will have any aliases 2973 * from the vmap layer. 2974 */ 2975 void vm_unmap_aliases(void) 2976 { 2977 _vm_unmap_aliases(ULONG_MAX, 0, 0); 2978 } 2979 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2980 2981 /** 2982 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2983 * @mem: the pointer returned by vm_map_ram 2984 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2985 */ 2986 void vm_unmap_ram(const void *mem, unsigned int count) 2987 { 2988 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2989 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2990 struct vmap_area *va; 2991 2992 might_sleep(); 2993 BUG_ON(!addr); 2994 BUG_ON(addr < VMALLOC_START); 2995 BUG_ON(addr > VMALLOC_END); 2996 BUG_ON(!PAGE_ALIGNED(addr)); 2997 2998 kasan_poison_vmalloc(mem, size); 2999 3000 if (likely(count <= VMAP_MAX_ALLOC)) { 3001 debug_check_no_locks_freed(mem, size); 3002 vb_free(addr, size); 3003 return; 3004 } 3005 3006 va = find_unlink_vmap_area(addr); 3007 if (WARN_ON_ONCE(!va)) 3008 return; 3009 3010 debug_check_no_locks_freed((void *)va->va_start, va_size(va)); 3011 free_unmap_vmap_area(va); 3012 } 3013 EXPORT_SYMBOL(vm_unmap_ram); 3014 3015 /** 3016 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 3017 * @pages: an array of pointers to the pages to be mapped 3018 * @count: number of pages 3019 * @node: prefer to allocate data structures on this node 3020 * 3021 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 3022 * faster than vmap so it's good. But if you mix long-life and short-life 3023 * objects with vm_map_ram(), it could consume lots of address space through 3024 * fragmentation (especially on a 32bit machine). You could see failures in 3025 * the end. Please use this function for short-lived objects. 3026 * 3027 * Returns: a pointer to the address that has been mapped, or %NULL on failure 3028 */ 3029 void *vm_map_ram(struct page **pages, unsigned int count, int node) 3030 { 3031 unsigned long size = (unsigned long)count << PAGE_SHIFT; 3032 unsigned long addr; 3033 void *mem; 3034 3035 if (likely(count <= VMAP_MAX_ALLOC)) { 3036 mem = vb_alloc(size, GFP_KERNEL); 3037 if (IS_ERR(mem)) 3038 return NULL; 3039 addr = (unsigned long)mem; 3040 } else { 3041 struct vmap_area *va; 3042 va = alloc_vmap_area(size, PAGE_SIZE, 3043 VMALLOC_START, VMALLOC_END, 3044 node, GFP_KERNEL, VMAP_RAM, 3045 NULL); 3046 if (IS_ERR(va)) 3047 return NULL; 3048 3049 addr = va->va_start; 3050 mem = (void *)addr; 3051 } 3052 3053 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 3054 pages, PAGE_SHIFT) < 0) { 3055 vm_unmap_ram(mem, count); 3056 return NULL; 3057 } 3058 3059 /* 3060 * Mark the pages as accessible, now that they are mapped. 3061 * With hardware tag-based KASAN, marking is skipped for 3062 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3063 */ 3064 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 3065 3066 return mem; 3067 } 3068 EXPORT_SYMBOL(vm_map_ram); 3069 3070 static struct vm_struct *vmlist __initdata; 3071 3072 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 3073 { 3074 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3075 return vm->page_order; 3076 #else 3077 return 0; 3078 #endif 3079 } 3080 3081 unsigned int get_vm_area_page_order(struct vm_struct *vm) 3082 { 3083 return vm_area_page_order(vm); 3084 } 3085 3086 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 3087 { 3088 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3089 vm->page_order = order; 3090 #else 3091 BUG_ON(order != 0); 3092 #endif 3093 } 3094 3095 /** 3096 * vm_area_add_early - add vmap area early during boot 3097 * @vm: vm_struct to add 3098 * 3099 * This function is used to add fixed kernel vm area to vmlist before 3100 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 3101 * should contain proper values and the other fields should be zero. 3102 * 3103 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3104 */ 3105 void __init vm_area_add_early(struct vm_struct *vm) 3106 { 3107 struct vm_struct *tmp, **p; 3108 3109 BUG_ON(vmap_initialized); 3110 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 3111 if (tmp->addr >= vm->addr) { 3112 BUG_ON(tmp->addr < vm->addr + vm->size); 3113 break; 3114 } else 3115 BUG_ON(tmp->addr + tmp->size > vm->addr); 3116 } 3117 vm->next = *p; 3118 *p = vm; 3119 } 3120 3121 /** 3122 * vm_area_register_early - register vmap area early during boot 3123 * @vm: vm_struct to register 3124 * @align: requested alignment 3125 * 3126 * This function is used to register kernel vm area before 3127 * vmalloc_init() is called. @vm->size and @vm->flags should contain 3128 * proper values on entry and other fields should be zero. On return, 3129 * vm->addr contains the allocated address. 3130 * 3131 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3132 */ 3133 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 3134 { 3135 unsigned long addr = ALIGN(VMALLOC_START, align); 3136 struct vm_struct *cur, **p; 3137 3138 BUG_ON(vmap_initialized); 3139 3140 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 3141 if ((unsigned long)cur->addr - addr >= vm->size) 3142 break; 3143 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 3144 } 3145 3146 BUG_ON(addr > VMALLOC_END - vm->size); 3147 vm->addr = (void *)addr; 3148 vm->next = *p; 3149 *p = vm; 3150 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 3151 } 3152 3153 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 3154 { 3155 /* 3156 * Before removing VM_UNINITIALIZED, 3157 * we should make sure that vm has proper values. 3158 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show(). 3159 */ 3160 smp_wmb(); 3161 vm->flags &= ~VM_UNINITIALIZED; 3162 } 3163 3164 struct vm_struct *__get_vm_area_node(unsigned long size, 3165 unsigned long align, unsigned long shift, unsigned long flags, 3166 unsigned long start, unsigned long end, int node, 3167 gfp_t gfp_mask, const void *caller) 3168 { 3169 struct vmap_area *va; 3170 struct vm_struct *area; 3171 unsigned long requested_size = size; 3172 3173 BUG_ON(in_interrupt()); 3174 size = ALIGN(size, 1ul << shift); 3175 if (unlikely(!size)) 3176 return NULL; 3177 3178 if (flags & VM_IOREMAP) 3179 align = 1ul << clamp_t(int, get_count_order_long(size), 3180 PAGE_SHIFT, IOREMAP_MAX_ORDER); 3181 3182 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 3183 if (unlikely(!area)) 3184 return NULL; 3185 3186 if (!(flags & VM_NO_GUARD)) 3187 size += PAGE_SIZE; 3188 3189 area->flags = flags; 3190 area->caller = caller; 3191 area->requested_size = requested_size; 3192 3193 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); 3194 if (IS_ERR(va)) { 3195 kfree(area); 3196 return NULL; 3197 } 3198 3199 /* 3200 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 3201 * best-effort approach, as they can be mapped outside of vmalloc code. 3202 * For VM_ALLOC mappings, the pages are marked as accessible after 3203 * getting mapped in __vmalloc_node_range(). 3204 * With hardware tag-based KASAN, marking is skipped for 3205 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3206 */ 3207 if (!(flags & VM_ALLOC)) 3208 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 3209 KASAN_VMALLOC_PROT_NORMAL); 3210 3211 return area; 3212 } 3213 3214 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 3215 unsigned long start, unsigned long end, 3216 const void *caller) 3217 { 3218 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 3219 NUMA_NO_NODE, GFP_KERNEL, caller); 3220 } 3221 3222 /** 3223 * get_vm_area - reserve a contiguous kernel virtual area 3224 * @size: size of the area 3225 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 3226 * 3227 * Search an area of @size in the kernel virtual mapping area, 3228 * and reserved it for out purposes. Returns the area descriptor 3229 * on success or %NULL on failure. 3230 * 3231 * Return: the area descriptor on success or %NULL on failure. 3232 */ 3233 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 3234 { 3235 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3236 VMALLOC_START, VMALLOC_END, 3237 NUMA_NO_NODE, GFP_KERNEL, 3238 __builtin_return_address(0)); 3239 } 3240 3241 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 3242 const void *caller) 3243 { 3244 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3245 VMALLOC_START, VMALLOC_END, 3246 NUMA_NO_NODE, GFP_KERNEL, caller); 3247 } 3248 3249 /** 3250 * find_vm_area - find a continuous kernel virtual area 3251 * @addr: base address 3252 * 3253 * Search for the kernel VM area starting at @addr, and return it. 3254 * It is up to the caller to do all required locking to keep the returned 3255 * pointer valid. 3256 * 3257 * Return: the area descriptor on success or %NULL on failure. 3258 */ 3259 struct vm_struct *find_vm_area(const void *addr) 3260 { 3261 struct vmap_area *va; 3262 3263 va = find_vmap_area((unsigned long)addr); 3264 if (!va) 3265 return NULL; 3266 3267 return va->vm; 3268 } 3269 3270 /** 3271 * remove_vm_area - find and remove a continuous kernel virtual area 3272 * @addr: base address 3273 * 3274 * Search for the kernel VM area starting at @addr, and remove it. 3275 * This function returns the found VM area, but using it is NOT safe 3276 * on SMP machines, except for its size or flags. 3277 * 3278 * Return: the area descriptor on success or %NULL on failure. 3279 */ 3280 struct vm_struct *remove_vm_area(const void *addr) 3281 { 3282 struct vmap_area *va; 3283 struct vm_struct *vm; 3284 3285 might_sleep(); 3286 3287 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 3288 addr)) 3289 return NULL; 3290 3291 va = find_unlink_vmap_area((unsigned long)addr); 3292 if (!va || !va->vm) 3293 return NULL; 3294 vm = va->vm; 3295 3296 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 3297 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 3298 kasan_free_module_shadow(vm); 3299 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 3300 3301 free_unmap_vmap_area(va); 3302 return vm; 3303 } 3304 3305 static inline void set_area_direct_map(const struct vm_struct *area, 3306 int (*set_direct_map)(struct page *page)) 3307 { 3308 int i; 3309 3310 /* HUGE_VMALLOC passes small pages to set_direct_map */ 3311 for (i = 0; i < area->nr_pages; i++) 3312 if (page_address(area->pages[i])) 3313 set_direct_map(area->pages[i]); 3314 } 3315 3316 /* 3317 * Flush the vm mapping and reset the direct map. 3318 */ 3319 static void vm_reset_perms(struct vm_struct *area) 3320 { 3321 unsigned long start = ULONG_MAX, end = 0; 3322 unsigned int page_order = vm_area_page_order(area); 3323 int flush_dmap = 0; 3324 int i; 3325 3326 /* 3327 * Find the start and end range of the direct mappings to make sure that 3328 * the vm_unmap_aliases() flush includes the direct map. 3329 */ 3330 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 3331 unsigned long addr = (unsigned long)page_address(area->pages[i]); 3332 3333 if (addr) { 3334 unsigned long page_size; 3335 3336 page_size = PAGE_SIZE << page_order; 3337 start = min(addr, start); 3338 end = max(addr + page_size, end); 3339 flush_dmap = 1; 3340 } 3341 } 3342 3343 /* 3344 * Set direct map to something invalid so that it won't be cached if 3345 * there are any accesses after the TLB flush, then flush the TLB and 3346 * reset the direct map permissions to the default. 3347 */ 3348 set_area_direct_map(area, set_direct_map_invalid_noflush); 3349 _vm_unmap_aliases(start, end, flush_dmap); 3350 set_area_direct_map(area, set_direct_map_default_noflush); 3351 } 3352 3353 static void delayed_vfree_work(struct work_struct *w) 3354 { 3355 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 3356 struct llist_node *t, *llnode; 3357 3358 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 3359 vfree(llnode); 3360 } 3361 3362 /** 3363 * vfree_atomic - release memory allocated by vmalloc() 3364 * @addr: memory base address 3365 * 3366 * This one is just like vfree() but can be called in any atomic context 3367 * except NMIs. 3368 */ 3369 void vfree_atomic(const void *addr) 3370 { 3371 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 3372 3373 BUG_ON(in_nmi()); 3374 kmemleak_free(addr); 3375 3376 /* 3377 * Use raw_cpu_ptr() because this can be called from preemptible 3378 * context. Preemption is absolutely fine here, because the llist_add() 3379 * implementation is lockless, so it works even if we are adding to 3380 * another cpu's list. schedule_work() should be fine with this too. 3381 */ 3382 if (addr && llist_add((struct llist_node *)addr, &p->list)) 3383 schedule_work(&p->wq); 3384 } 3385 3386 /** 3387 * vfree - Release memory allocated by vmalloc() 3388 * @addr: Memory base address 3389 * 3390 * Free the virtually continuous memory area starting at @addr, as obtained 3391 * from one of the vmalloc() family of APIs. This will usually also free the 3392 * physical memory underlying the virtual allocation, but that memory is 3393 * reference counted, so it will not be freed until the last user goes away. 3394 * 3395 * If @addr is NULL, no operation is performed. 3396 * 3397 * Context: 3398 * May sleep if called *not* from interrupt context. 3399 * Must not be called in NMI context (strictly speaking, it could be 3400 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 3401 * conventions for vfree() arch-dependent would be a really bad idea). 3402 */ 3403 void vfree(const void *addr) 3404 { 3405 struct vm_struct *vm; 3406 int i; 3407 3408 if (unlikely(in_interrupt())) { 3409 vfree_atomic(addr); 3410 return; 3411 } 3412 3413 BUG_ON(in_nmi()); 3414 kmemleak_free(addr); 3415 might_sleep(); 3416 3417 if (!addr) 3418 return; 3419 3420 vm = remove_vm_area(addr); 3421 if (unlikely(!vm)) { 3422 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 3423 addr); 3424 return; 3425 } 3426 3427 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 3428 vm_reset_perms(vm); 3429 /* All pages of vm should be charged to same memcg, so use first one. */ 3430 if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) 3431 mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); 3432 for (i = 0; i < vm->nr_pages; i++) { 3433 struct page *page = vm->pages[i]; 3434 3435 BUG_ON(!page); 3436 /* 3437 * High-order allocs for huge vmallocs are split, so 3438 * can be freed as an array of order-0 allocations 3439 */ 3440 __free_page(page); 3441 cond_resched(); 3442 } 3443 if (!(vm->flags & VM_MAP_PUT_PAGES)) 3444 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 3445 kvfree(vm->pages); 3446 kfree(vm); 3447 } 3448 EXPORT_SYMBOL(vfree); 3449 3450 /** 3451 * vunmap - release virtual mapping obtained by vmap() 3452 * @addr: memory base address 3453 * 3454 * Free the virtually contiguous memory area starting at @addr, 3455 * which was created from the page array passed to vmap(). 3456 * 3457 * Must not be called in interrupt context. 3458 */ 3459 void vunmap(const void *addr) 3460 { 3461 struct vm_struct *vm; 3462 3463 BUG_ON(in_interrupt()); 3464 might_sleep(); 3465 3466 if (!addr) 3467 return; 3468 vm = remove_vm_area(addr); 3469 if (unlikely(!vm)) { 3470 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 3471 addr); 3472 return; 3473 } 3474 kfree(vm); 3475 } 3476 EXPORT_SYMBOL(vunmap); 3477 3478 /** 3479 * vmap - map an array of pages into virtually contiguous space 3480 * @pages: array of page pointers 3481 * @count: number of pages to map 3482 * @flags: vm_area->flags 3483 * @prot: page protection for the mapping 3484 * 3485 * Maps @count pages from @pages into contiguous kernel virtual space. 3486 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 3487 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 3488 * are transferred from the caller to vmap(), and will be freed / dropped when 3489 * vfree() is called on the return value. 3490 * 3491 * Return: the address of the area or %NULL on failure 3492 */ 3493 void *vmap(struct page **pages, unsigned int count, 3494 unsigned long flags, pgprot_t prot) 3495 { 3496 struct vm_struct *area; 3497 unsigned long addr; 3498 unsigned long size; /* In bytes */ 3499 3500 might_sleep(); 3501 3502 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 3503 return NULL; 3504 3505 /* 3506 * Your top guard is someone else's bottom guard. Not having a top 3507 * guard compromises someone else's mappings too. 3508 */ 3509 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 3510 flags &= ~VM_NO_GUARD; 3511 3512 if (count > totalram_pages()) 3513 return NULL; 3514 3515 size = (unsigned long)count << PAGE_SHIFT; 3516 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 3517 if (!area) 3518 return NULL; 3519 3520 addr = (unsigned long)area->addr; 3521 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 3522 pages, PAGE_SHIFT) < 0) { 3523 vunmap(area->addr); 3524 return NULL; 3525 } 3526 3527 if (flags & VM_MAP_PUT_PAGES) { 3528 area->pages = pages; 3529 area->nr_pages = count; 3530 } 3531 return area->addr; 3532 } 3533 EXPORT_SYMBOL(vmap); 3534 3535 #ifdef CONFIG_VMAP_PFN 3536 struct vmap_pfn_data { 3537 unsigned long *pfns; 3538 pgprot_t prot; 3539 unsigned int idx; 3540 }; 3541 3542 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3543 { 3544 struct vmap_pfn_data *data = private; 3545 unsigned long pfn = data->pfns[data->idx]; 3546 pte_t ptent; 3547 3548 if (WARN_ON_ONCE(pfn_valid(pfn))) 3549 return -EINVAL; 3550 3551 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3552 set_pte_at(&init_mm, addr, pte, ptent); 3553 3554 data->idx++; 3555 return 0; 3556 } 3557 3558 /** 3559 * vmap_pfn - map an array of PFNs into virtually contiguous space 3560 * @pfns: array of PFNs 3561 * @count: number of pages to map 3562 * @prot: page protection for the mapping 3563 * 3564 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3565 * the start address of the mapping. 3566 */ 3567 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3568 { 3569 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3570 struct vm_struct *area; 3571 3572 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3573 __builtin_return_address(0)); 3574 if (!area) 3575 return NULL; 3576 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3577 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3578 free_vm_area(area); 3579 return NULL; 3580 } 3581 3582 flush_cache_vmap((unsigned long)area->addr, 3583 (unsigned long)area->addr + count * PAGE_SIZE); 3584 3585 return area->addr; 3586 } 3587 EXPORT_SYMBOL_GPL(vmap_pfn); 3588 #endif /* CONFIG_VMAP_PFN */ 3589 3590 static inline unsigned int 3591 vm_area_alloc_pages(gfp_t gfp, int nid, 3592 unsigned int order, unsigned int nr_pages, struct page **pages) 3593 { 3594 unsigned int nr_allocated = 0; 3595 struct page *page; 3596 int i; 3597 3598 /* 3599 * For order-0 pages we make use of bulk allocator, if 3600 * the page array is partly or not at all populated due 3601 * to fails, fallback to a single page allocator that is 3602 * more permissive. 3603 */ 3604 if (!order) { 3605 while (nr_allocated < nr_pages) { 3606 unsigned int nr, nr_pages_request; 3607 3608 /* 3609 * A maximum allowed request is hard-coded and is 100 3610 * pages per call. That is done in order to prevent a 3611 * long preemption off scenario in the bulk-allocator 3612 * so the range is [1:100]. 3613 */ 3614 nr_pages_request = min(100U, nr_pages - nr_allocated); 3615 3616 /* memory allocation should consider mempolicy, we can't 3617 * wrongly use nearest node when nid == NUMA_NO_NODE, 3618 * otherwise memory may be allocated in only one node, 3619 * but mempolicy wants to alloc memory by interleaving. 3620 */ 3621 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3622 nr = alloc_pages_bulk_mempolicy_noprof(gfp, 3623 nr_pages_request, 3624 pages + nr_allocated); 3625 else 3626 nr = alloc_pages_bulk_node_noprof(gfp, nid, 3627 nr_pages_request, 3628 pages + nr_allocated); 3629 3630 nr_allocated += nr; 3631 3632 /* 3633 * If zero or pages were obtained partly, 3634 * fallback to a single page allocator. 3635 */ 3636 if (nr != nr_pages_request) 3637 break; 3638 } 3639 } 3640 3641 /* High-order pages or fallback path if "bulk" fails. */ 3642 while (nr_allocated < nr_pages) { 3643 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) 3644 break; 3645 3646 if (nid == NUMA_NO_NODE) 3647 page = alloc_pages_noprof(gfp, order); 3648 else 3649 page = alloc_pages_node_noprof(nid, gfp, order); 3650 3651 if (unlikely(!page)) 3652 break; 3653 3654 /* 3655 * High-order allocations must be able to be treated as 3656 * independent small pages by callers (as they can with 3657 * small-page vmallocs). Some drivers do their own refcounting 3658 * on vmalloc_to_page() pages, some use page->mapping, 3659 * page->lru, etc. 3660 */ 3661 if (order) 3662 split_page(page, order); 3663 3664 /* 3665 * Careful, we allocate and map page-order pages, but 3666 * tracking is done per PAGE_SIZE page so as to keep the 3667 * vm_struct APIs independent of the physical/mapped size. 3668 */ 3669 for (i = 0; i < (1U << order); i++) 3670 pages[nr_allocated + i] = page + i; 3671 3672 nr_allocated += 1U << order; 3673 } 3674 3675 return nr_allocated; 3676 } 3677 3678 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3679 pgprot_t prot, unsigned int page_shift, 3680 int node) 3681 { 3682 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3683 bool nofail = gfp_mask & __GFP_NOFAIL; 3684 unsigned long addr = (unsigned long)area->addr; 3685 unsigned long size = get_vm_area_size(area); 3686 unsigned long array_size; 3687 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3688 unsigned int page_order; 3689 unsigned int flags; 3690 int ret; 3691 3692 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3693 3694 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3695 gfp_mask |= __GFP_HIGHMEM; 3696 3697 /* Please note that the recursion is strictly bounded. */ 3698 if (array_size > PAGE_SIZE) { 3699 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, 3700 area->caller); 3701 } else { 3702 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); 3703 } 3704 3705 if (!area->pages) { 3706 warn_alloc(gfp_mask, NULL, 3707 "vmalloc error: size %lu, failed to allocated page array size %lu", 3708 nr_small_pages * PAGE_SIZE, array_size); 3709 free_vm_area(area); 3710 return NULL; 3711 } 3712 3713 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3714 page_order = vm_area_page_order(area); 3715 3716 /* 3717 * High-order nofail allocations are really expensive and 3718 * potentially dangerous (pre-mature OOM, disruptive reclaim 3719 * and compaction etc. 3720 * 3721 * Please note, the __vmalloc_node_range_noprof() falls-back 3722 * to order-0 pages if high-order attempt is unsuccessful. 3723 */ 3724 area->nr_pages = vm_area_alloc_pages((page_order ? 3725 gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, 3726 node, page_order, nr_small_pages, area->pages); 3727 3728 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3729 /* All pages of vm should be charged to same memcg, so use first one. */ 3730 if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) 3731 mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, 3732 area->nr_pages); 3733 3734 /* 3735 * If not enough pages were obtained to accomplish an 3736 * allocation request, free them via vfree() if any. 3737 */ 3738 if (area->nr_pages != nr_small_pages) { 3739 /* 3740 * vm_area_alloc_pages() can fail due to insufficient memory but 3741 * also:- 3742 * 3743 * - a pending fatal signal 3744 * - insufficient huge page-order pages 3745 * 3746 * Since we always retry allocations at order-0 in the huge page 3747 * case a warning for either is spurious. 3748 */ 3749 if (!fatal_signal_pending(current) && page_order == 0) 3750 warn_alloc(gfp_mask, NULL, 3751 "vmalloc error: size %lu, failed to allocate pages", 3752 area->nr_pages * PAGE_SIZE); 3753 goto fail; 3754 } 3755 3756 /* 3757 * page tables allocations ignore external gfp mask, enforce it 3758 * by the scope API 3759 */ 3760 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3761 flags = memalloc_nofs_save(); 3762 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3763 flags = memalloc_noio_save(); 3764 3765 do { 3766 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3767 page_shift); 3768 if (nofail && (ret < 0)) 3769 schedule_timeout_uninterruptible(1); 3770 } while (nofail && (ret < 0)); 3771 3772 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3773 memalloc_nofs_restore(flags); 3774 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3775 memalloc_noio_restore(flags); 3776 3777 if (ret < 0) { 3778 warn_alloc(gfp_mask, NULL, 3779 "vmalloc error: size %lu, failed to map pages", 3780 area->nr_pages * PAGE_SIZE); 3781 goto fail; 3782 } 3783 3784 return area->addr; 3785 3786 fail: 3787 vfree(area->addr); 3788 return NULL; 3789 } 3790 3791 /** 3792 * __vmalloc_node_range - allocate virtually contiguous memory 3793 * @size: allocation size 3794 * @align: desired alignment 3795 * @start: vm area range start 3796 * @end: vm area range end 3797 * @gfp_mask: flags for the page level allocator 3798 * @prot: protection mask for the allocated pages 3799 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3800 * @node: node to use for allocation or NUMA_NO_NODE 3801 * @caller: caller's return address 3802 * 3803 * Allocate enough pages to cover @size from the page level 3804 * allocator with @gfp_mask flags. Please note that the full set of gfp 3805 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3806 * supported. 3807 * Zone modifiers are not supported. From the reclaim modifiers 3808 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3809 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3810 * __GFP_RETRY_MAYFAIL are not supported). 3811 * 3812 * __GFP_NOWARN can be used to suppress failures messages. 3813 * 3814 * Map them into contiguous kernel virtual space, using a pagetable 3815 * protection of @prot. 3816 * 3817 * Return: the address of the area or %NULL on failure 3818 */ 3819 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 3820 unsigned long start, unsigned long end, gfp_t gfp_mask, 3821 pgprot_t prot, unsigned long vm_flags, int node, 3822 const void *caller) 3823 { 3824 struct vm_struct *area; 3825 void *ret; 3826 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3827 unsigned long original_align = align; 3828 unsigned int shift = PAGE_SHIFT; 3829 3830 if (WARN_ON_ONCE(!size)) 3831 return NULL; 3832 3833 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3834 warn_alloc(gfp_mask, NULL, 3835 "vmalloc error: size %lu, exceeds total pages", 3836 size); 3837 return NULL; 3838 } 3839 3840 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3841 /* 3842 * Try huge pages. Only try for PAGE_KERNEL allocations, 3843 * others like modules don't yet expect huge pages in 3844 * their allocations due to apply_to_page_range not 3845 * supporting them. 3846 */ 3847 3848 if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) 3849 shift = PMD_SHIFT; 3850 else 3851 shift = arch_vmap_pte_supported_shift(size); 3852 3853 align = max(original_align, 1UL << shift); 3854 } 3855 3856 again: 3857 area = __get_vm_area_node(size, align, shift, VM_ALLOC | 3858 VM_UNINITIALIZED | vm_flags, start, end, node, 3859 gfp_mask, caller); 3860 if (!area) { 3861 bool nofail = gfp_mask & __GFP_NOFAIL; 3862 warn_alloc(gfp_mask, NULL, 3863 "vmalloc error: size %lu, vm_struct allocation failed%s", 3864 size, (nofail) ? ". Retrying." : ""); 3865 if (nofail) { 3866 schedule_timeout_uninterruptible(1); 3867 goto again; 3868 } 3869 goto fail; 3870 } 3871 3872 /* 3873 * Prepare arguments for __vmalloc_area_node() and 3874 * kasan_unpoison_vmalloc(). 3875 */ 3876 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3877 if (kasan_hw_tags_enabled()) { 3878 /* 3879 * Modify protection bits to allow tagging. 3880 * This must be done before mapping. 3881 */ 3882 prot = arch_vmap_pgprot_tagged(prot); 3883 3884 /* 3885 * Skip page_alloc poisoning and zeroing for physical 3886 * pages backing VM_ALLOC mapping. Memory is instead 3887 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3888 */ 3889 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3890 } 3891 3892 /* Take note that the mapping is PAGE_KERNEL. */ 3893 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3894 } 3895 3896 /* Allocate physical pages and map them into vmalloc space. */ 3897 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3898 if (!ret) 3899 goto fail; 3900 3901 /* 3902 * Mark the pages as accessible, now that they are mapped. 3903 * The condition for setting KASAN_VMALLOC_INIT should complement the 3904 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3905 * to make sure that memory is initialized under the same conditions. 3906 * Tag-based KASAN modes only assign tags to normal non-executable 3907 * allocations, see __kasan_unpoison_vmalloc(). 3908 */ 3909 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3910 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3911 (gfp_mask & __GFP_SKIP_ZERO)) 3912 kasan_flags |= KASAN_VMALLOC_INIT; 3913 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3914 area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); 3915 3916 /* 3917 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3918 * flag. It means that vm_struct is not fully initialized. 3919 * Now, it is fully initialized, so remove this flag here. 3920 */ 3921 clear_vm_uninitialized_flag(area); 3922 3923 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3924 kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); 3925 3926 return area->addr; 3927 3928 fail: 3929 if (shift > PAGE_SHIFT) { 3930 shift = PAGE_SHIFT; 3931 align = original_align; 3932 goto again; 3933 } 3934 3935 return NULL; 3936 } 3937 3938 /** 3939 * __vmalloc_node - allocate virtually contiguous memory 3940 * @size: allocation size 3941 * @align: desired alignment 3942 * @gfp_mask: flags for the page level allocator 3943 * @node: node to use for allocation or NUMA_NO_NODE 3944 * @caller: caller's return address 3945 * 3946 * Allocate enough pages to cover @size from the page level allocator with 3947 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3948 * 3949 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3950 * and __GFP_NOFAIL are not supported 3951 * 3952 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3953 * with mm people. 3954 * 3955 * Return: pointer to the allocated memory or %NULL on error 3956 */ 3957 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, 3958 gfp_t gfp_mask, int node, const void *caller) 3959 { 3960 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 3961 gfp_mask, PAGE_KERNEL, 0, node, caller); 3962 } 3963 /* 3964 * This is only for performance analysis of vmalloc and stress purpose. 3965 * It is required by vmalloc test module, therefore do not use it other 3966 * than that. 3967 */ 3968 #ifdef CONFIG_TEST_VMALLOC_MODULE 3969 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); 3970 #endif 3971 3972 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 3973 { 3974 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, 3975 __builtin_return_address(0)); 3976 } 3977 EXPORT_SYMBOL(__vmalloc_noprof); 3978 3979 /** 3980 * vmalloc - allocate virtually contiguous memory 3981 * @size: allocation size 3982 * 3983 * Allocate enough pages to cover @size from the page level 3984 * allocator and map them into contiguous kernel virtual space. 3985 * 3986 * For tight control over page level allocator and protection flags 3987 * use __vmalloc() instead. 3988 * 3989 * Return: pointer to the allocated memory or %NULL on error 3990 */ 3991 void *vmalloc_noprof(unsigned long size) 3992 { 3993 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3994 __builtin_return_address(0)); 3995 } 3996 EXPORT_SYMBOL(vmalloc_noprof); 3997 3998 /** 3999 * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages 4000 * @size: allocation size 4001 * @gfp_mask: flags for the page level allocator 4002 * @node: node to use for allocation or NUMA_NO_NODE 4003 * 4004 * Allocate enough pages to cover @size from the page level 4005 * allocator and map them into contiguous kernel virtual space. 4006 * If @size is greater than or equal to PMD_SIZE, allow using 4007 * huge pages for the memory 4008 * 4009 * Return: pointer to the allocated memory or %NULL on error 4010 */ 4011 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node) 4012 { 4013 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 4014 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 4015 node, __builtin_return_address(0)); 4016 } 4017 EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof); 4018 4019 /** 4020 * vzalloc - allocate virtually contiguous memory with zero fill 4021 * @size: allocation size 4022 * 4023 * Allocate enough pages to cover @size from the page level 4024 * allocator and map them into contiguous kernel virtual space. 4025 * The memory allocated is set to zero. 4026 * 4027 * For tight control over page level allocator and protection flags 4028 * use __vmalloc() instead. 4029 * 4030 * Return: pointer to the allocated memory or %NULL on error 4031 */ 4032 void *vzalloc_noprof(unsigned long size) 4033 { 4034 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 4035 __builtin_return_address(0)); 4036 } 4037 EXPORT_SYMBOL(vzalloc_noprof); 4038 4039 /** 4040 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 4041 * @size: allocation size 4042 * 4043 * The resulting memory area is zeroed so it can be mapped to userspace 4044 * without leaking data. 4045 * 4046 * Return: pointer to the allocated memory or %NULL on error 4047 */ 4048 void *vmalloc_user_noprof(unsigned long size) 4049 { 4050 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4051 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 4052 VM_USERMAP, NUMA_NO_NODE, 4053 __builtin_return_address(0)); 4054 } 4055 EXPORT_SYMBOL(vmalloc_user_noprof); 4056 4057 /** 4058 * vmalloc_node - allocate memory on a specific node 4059 * @size: allocation size 4060 * @node: numa node 4061 * 4062 * Allocate enough pages to cover @size from the page level 4063 * allocator and map them into contiguous kernel virtual space. 4064 * 4065 * For tight control over page level allocator and protection flags 4066 * use __vmalloc() instead. 4067 * 4068 * Return: pointer to the allocated memory or %NULL on error 4069 */ 4070 void *vmalloc_node_noprof(unsigned long size, int node) 4071 { 4072 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, 4073 __builtin_return_address(0)); 4074 } 4075 EXPORT_SYMBOL(vmalloc_node_noprof); 4076 4077 /** 4078 * vzalloc_node - allocate memory on a specific node with zero fill 4079 * @size: allocation size 4080 * @node: numa node 4081 * 4082 * Allocate enough pages to cover @size from the page level 4083 * allocator and map them into contiguous kernel virtual space. 4084 * The memory allocated is set to zero. 4085 * 4086 * Return: pointer to the allocated memory or %NULL on error 4087 */ 4088 void *vzalloc_node_noprof(unsigned long size, int node) 4089 { 4090 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, 4091 __builtin_return_address(0)); 4092 } 4093 EXPORT_SYMBOL(vzalloc_node_noprof); 4094 4095 /** 4096 * vrealloc_node_align_noprof - reallocate virtually contiguous memory; contents 4097 * remain unchanged 4098 * @p: object to reallocate memory for 4099 * @size: the size to reallocate 4100 * @align: requested alignment 4101 * @flags: the flags for the page level allocator 4102 * @nid: node number of the target node 4103 * 4104 * If @p is %NULL, vrealloc_XXX() behaves exactly like vmalloc_XXX(). If @size 4105 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4106 * 4107 * If the caller wants the new memory to be on specific node *only*, 4108 * __GFP_THISNODE flag should be set, otherwise the function will try to avoid 4109 * reallocation and possibly disregard the specified @nid. 4110 * 4111 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4112 * initial memory allocation, every subsequent call to this API for the same 4113 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4114 * __GFP_ZERO is not fully honored by this API. 4115 * 4116 * Requesting an alignment that is bigger than the alignment of the existing 4117 * allocation will fail. 4118 * 4119 * In any case, the contents of the object pointed to are preserved up to the 4120 * lesser of the new and old sizes. 4121 * 4122 * This function must not be called concurrently with itself or vfree() for the 4123 * same memory allocation. 4124 * 4125 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of 4126 * failure 4127 */ 4128 void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align, 4129 gfp_t flags, int nid) 4130 { 4131 struct vm_struct *vm = NULL; 4132 size_t alloced_size = 0; 4133 size_t old_size = 0; 4134 void *n; 4135 4136 if (!size) { 4137 vfree(p); 4138 return NULL; 4139 } 4140 4141 if (p) { 4142 vm = find_vm_area(p); 4143 if (unlikely(!vm)) { 4144 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); 4145 return NULL; 4146 } 4147 4148 alloced_size = get_vm_area_size(vm); 4149 old_size = vm->requested_size; 4150 if (WARN(alloced_size < old_size, 4151 "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) 4152 return NULL; 4153 if (WARN(!IS_ALIGNED((unsigned long)p, align), 4154 "will not reallocate with a bigger alignment (0x%lx)\n", align)) 4155 return NULL; 4156 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE && 4157 nid != page_to_nid(vmalloc_to_page(p))) 4158 goto need_realloc; 4159 } 4160 4161 /* 4162 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What 4163 * would be a good heuristic for when to shrink the vm_area? 4164 */ 4165 if (size <= old_size) { 4166 /* Zero out "freed" memory, potentially for future realloc. */ 4167 if (want_init_on_free() || want_init_on_alloc(flags)) 4168 memset((void *)p + size, 0, old_size - size); 4169 vm->requested_size = size; 4170 kasan_poison_vmalloc(p + size, old_size - size); 4171 return (void *)p; 4172 } 4173 4174 /* 4175 * We already have the bytes available in the allocation; use them. 4176 */ 4177 if (size <= alloced_size) { 4178 kasan_unpoison_vmalloc(p + old_size, size - old_size, 4179 KASAN_VMALLOC_PROT_NORMAL); 4180 /* 4181 * No need to zero memory here, as unused memory will have 4182 * already been zeroed at initial allocation time or during 4183 * realloc shrink time. 4184 */ 4185 vm->requested_size = size; 4186 return (void *)p; 4187 } 4188 4189 need_realloc: 4190 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ 4191 n = __vmalloc_node_noprof(size, align, flags, nid, __builtin_return_address(0)); 4192 4193 if (!n) 4194 return NULL; 4195 4196 if (p) { 4197 memcpy(n, p, old_size); 4198 vfree(p); 4199 } 4200 4201 return n; 4202 } 4203 4204 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 4205 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4206 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 4207 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 4208 #else 4209 /* 4210 * 64b systems should always have either DMA or DMA32 zones. For others 4211 * GFP_DMA32 should do the right thing and use the normal zone. 4212 */ 4213 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4214 #endif 4215 4216 /** 4217 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 4218 * @size: allocation size 4219 * 4220 * Allocate enough 32bit PA addressable pages to cover @size from the 4221 * page level allocator and map them into contiguous kernel virtual space. 4222 * 4223 * Return: pointer to the allocated memory or %NULL on error 4224 */ 4225 void *vmalloc_32_noprof(unsigned long size) 4226 { 4227 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 4228 __builtin_return_address(0)); 4229 } 4230 EXPORT_SYMBOL(vmalloc_32_noprof); 4231 4232 /** 4233 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 4234 * @size: allocation size 4235 * 4236 * The resulting memory area is 32bit addressable and zeroed so it can be 4237 * mapped to userspace without leaking data. 4238 * 4239 * Return: pointer to the allocated memory or %NULL on error 4240 */ 4241 void *vmalloc_32_user_noprof(unsigned long size) 4242 { 4243 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4244 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 4245 VM_USERMAP, NUMA_NO_NODE, 4246 __builtin_return_address(0)); 4247 } 4248 EXPORT_SYMBOL(vmalloc_32_user_noprof); 4249 4250 /* 4251 * Atomically zero bytes in the iterator. 4252 * 4253 * Returns the number of zeroed bytes. 4254 */ 4255 static size_t zero_iter(struct iov_iter *iter, size_t count) 4256 { 4257 size_t remains = count; 4258 4259 while (remains > 0) { 4260 size_t num, copied; 4261 4262 num = min_t(size_t, remains, PAGE_SIZE); 4263 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 4264 remains -= copied; 4265 4266 if (copied < num) 4267 break; 4268 } 4269 4270 return count - remains; 4271 } 4272 4273 /* 4274 * small helper routine, copy contents to iter from addr. 4275 * If the page is not present, fill zero. 4276 * 4277 * Returns the number of copied bytes. 4278 */ 4279 static size_t aligned_vread_iter(struct iov_iter *iter, 4280 const char *addr, size_t count) 4281 { 4282 size_t remains = count; 4283 struct page *page; 4284 4285 while (remains > 0) { 4286 unsigned long offset, length; 4287 size_t copied = 0; 4288 4289 offset = offset_in_page(addr); 4290 length = PAGE_SIZE - offset; 4291 if (length > remains) 4292 length = remains; 4293 page = vmalloc_to_page(addr); 4294 /* 4295 * To do safe access to this _mapped_ area, we need lock. But 4296 * adding lock here means that we need to add overhead of 4297 * vmalloc()/vfree() calls for this _debug_ interface, rarely 4298 * used. Instead of that, we'll use an local mapping via 4299 * copy_page_to_iter_nofault() and accept a small overhead in 4300 * this access function. 4301 */ 4302 if (page) 4303 copied = copy_page_to_iter_nofault(page, offset, 4304 length, iter); 4305 else 4306 copied = zero_iter(iter, length); 4307 4308 addr += copied; 4309 remains -= copied; 4310 4311 if (copied != length) 4312 break; 4313 } 4314 4315 return count - remains; 4316 } 4317 4318 /* 4319 * Read from a vm_map_ram region of memory. 4320 * 4321 * Returns the number of copied bytes. 4322 */ 4323 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 4324 size_t count, unsigned long flags) 4325 { 4326 char *start; 4327 struct vmap_block *vb; 4328 struct xarray *xa; 4329 unsigned long offset; 4330 unsigned int rs, re; 4331 size_t remains, n; 4332 4333 /* 4334 * If it's area created by vm_map_ram() interface directly, but 4335 * not further subdividing and delegating management to vmap_block, 4336 * handle it here. 4337 */ 4338 if (!(flags & VMAP_BLOCK)) 4339 return aligned_vread_iter(iter, addr, count); 4340 4341 remains = count; 4342 4343 /* 4344 * Area is split into regions and tracked with vmap_block, read out 4345 * each region and zero fill the hole between regions. 4346 */ 4347 xa = addr_to_vb_xa((unsigned long) addr); 4348 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 4349 if (!vb) 4350 goto finished_zero; 4351 4352 spin_lock(&vb->lock); 4353 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 4354 spin_unlock(&vb->lock); 4355 goto finished_zero; 4356 } 4357 4358 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 4359 size_t copied; 4360 4361 if (remains == 0) 4362 goto finished; 4363 4364 start = vmap_block_vaddr(vb->va->va_start, rs); 4365 4366 if (addr < start) { 4367 size_t to_zero = min_t(size_t, start - addr, remains); 4368 size_t zeroed = zero_iter(iter, to_zero); 4369 4370 addr += zeroed; 4371 remains -= zeroed; 4372 4373 if (remains == 0 || zeroed != to_zero) 4374 goto finished; 4375 } 4376 4377 /*it could start reading from the middle of used region*/ 4378 offset = offset_in_page(addr); 4379 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 4380 if (n > remains) 4381 n = remains; 4382 4383 copied = aligned_vread_iter(iter, start + offset, n); 4384 4385 addr += copied; 4386 remains -= copied; 4387 4388 if (copied != n) 4389 goto finished; 4390 } 4391 4392 spin_unlock(&vb->lock); 4393 4394 finished_zero: 4395 /* zero-fill the left dirty or free regions */ 4396 return count - remains + zero_iter(iter, remains); 4397 finished: 4398 /* We couldn't copy/zero everything */ 4399 spin_unlock(&vb->lock); 4400 return count - remains; 4401 } 4402 4403 /** 4404 * vread_iter() - read vmalloc area in a safe way to an iterator. 4405 * @iter: the iterator to which data should be written. 4406 * @addr: vm address. 4407 * @count: number of bytes to be read. 4408 * 4409 * This function checks that addr is a valid vmalloc'ed area, and 4410 * copy data from that area to a given buffer. If the given memory range 4411 * of [addr...addr+count) includes some valid address, data is copied to 4412 * proper area of @buf. If there are memory holes, they'll be zero-filled. 4413 * IOREMAP area is treated as memory hole and no copy is done. 4414 * 4415 * If [addr...addr+count) doesn't includes any intersects with alive 4416 * vm_struct area, returns 0. @buf should be kernel's buffer. 4417 * 4418 * Note: In usual ops, vread() is never necessary because the caller 4419 * should know vmalloc() area is valid and can use memcpy(). 4420 * This is for routines which have to access vmalloc area without 4421 * any information, as /proc/kcore. 4422 * 4423 * Return: number of bytes for which addr and buf should be increased 4424 * (same number as @count) or %0 if [addr...addr+count) doesn't 4425 * include any intersection with valid vmalloc area 4426 */ 4427 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 4428 { 4429 struct vmap_node *vn; 4430 struct vmap_area *va; 4431 struct vm_struct *vm; 4432 char *vaddr; 4433 size_t n, size, flags, remains; 4434 unsigned long next; 4435 4436 addr = kasan_reset_tag(addr); 4437 4438 /* Don't allow overflow */ 4439 if ((unsigned long) addr + count < count) 4440 count = -(unsigned long) addr; 4441 4442 remains = count; 4443 4444 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); 4445 if (!vn) 4446 goto finished_zero; 4447 4448 /* no intersects with alive vmap_area */ 4449 if ((unsigned long)addr + remains <= va->va_start) 4450 goto finished_zero; 4451 4452 do { 4453 size_t copied; 4454 4455 if (remains == 0) 4456 goto finished; 4457 4458 vm = va->vm; 4459 flags = va->flags & VMAP_FLAGS_MASK; 4460 /* 4461 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 4462 * be set together with VMAP_RAM. 4463 */ 4464 WARN_ON(flags == VMAP_BLOCK); 4465 4466 if (!vm && !flags) 4467 goto next_va; 4468 4469 if (vm && (vm->flags & VM_UNINITIALIZED)) 4470 goto next_va; 4471 4472 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4473 smp_rmb(); 4474 4475 vaddr = (char *) va->va_start; 4476 size = vm ? get_vm_area_size(vm) : va_size(va); 4477 4478 if (addr >= vaddr + size) 4479 goto next_va; 4480 4481 if (addr < vaddr) { 4482 size_t to_zero = min_t(size_t, vaddr - addr, remains); 4483 size_t zeroed = zero_iter(iter, to_zero); 4484 4485 addr += zeroed; 4486 remains -= zeroed; 4487 4488 if (remains == 0 || zeroed != to_zero) 4489 goto finished; 4490 } 4491 4492 n = vaddr + size - addr; 4493 if (n > remains) 4494 n = remains; 4495 4496 if (flags & VMAP_RAM) 4497 copied = vmap_ram_vread_iter(iter, addr, n, flags); 4498 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 4499 copied = aligned_vread_iter(iter, addr, n); 4500 else /* IOREMAP | SPARSE area is treated as memory hole */ 4501 copied = zero_iter(iter, n); 4502 4503 addr += copied; 4504 remains -= copied; 4505 4506 if (copied != n) 4507 goto finished; 4508 4509 next_va: 4510 next = va->va_end; 4511 spin_unlock(&vn->busy.lock); 4512 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); 4513 4514 finished_zero: 4515 if (vn) 4516 spin_unlock(&vn->busy.lock); 4517 4518 /* zero-fill memory holes */ 4519 return count - remains + zero_iter(iter, remains); 4520 finished: 4521 /* Nothing remains, or We couldn't copy/zero everything. */ 4522 if (vn) 4523 spin_unlock(&vn->busy.lock); 4524 4525 return count - remains; 4526 } 4527 4528 /** 4529 * remap_vmalloc_range_partial - map vmalloc pages to userspace 4530 * @vma: vma to cover 4531 * @uaddr: target user address to start at 4532 * @kaddr: virtual address of vmalloc kernel memory 4533 * @pgoff: offset from @kaddr to start at 4534 * @size: size of map area 4535 * 4536 * Returns: 0 for success, -Exxx on failure 4537 * 4538 * This function checks that @kaddr is a valid vmalloc'ed area, 4539 * and that it is big enough to cover the range starting at 4540 * @uaddr in @vma. Will return failure if that criteria isn't 4541 * met. 4542 * 4543 * Similar to remap_pfn_range() (see mm/memory.c) 4544 */ 4545 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 4546 void *kaddr, unsigned long pgoff, 4547 unsigned long size) 4548 { 4549 struct vm_struct *area; 4550 unsigned long off; 4551 unsigned long end_index; 4552 4553 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 4554 return -EINVAL; 4555 4556 size = PAGE_ALIGN(size); 4557 4558 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 4559 return -EINVAL; 4560 4561 area = find_vm_area(kaddr); 4562 if (!area) 4563 return -EINVAL; 4564 4565 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 4566 return -EINVAL; 4567 4568 if (check_add_overflow(size, off, &end_index) || 4569 end_index > get_vm_area_size(area)) 4570 return -EINVAL; 4571 kaddr += off; 4572 4573 do { 4574 struct page *page = vmalloc_to_page(kaddr); 4575 int ret; 4576 4577 ret = vm_insert_page(vma, uaddr, page); 4578 if (ret) 4579 return ret; 4580 4581 uaddr += PAGE_SIZE; 4582 kaddr += PAGE_SIZE; 4583 size -= PAGE_SIZE; 4584 } while (size > 0); 4585 4586 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 4587 4588 return 0; 4589 } 4590 4591 /** 4592 * remap_vmalloc_range - map vmalloc pages to userspace 4593 * @vma: vma to cover (map full range of vma) 4594 * @addr: vmalloc memory 4595 * @pgoff: number of pages into addr before first page to map 4596 * 4597 * Returns: 0 for success, -Exxx on failure 4598 * 4599 * This function checks that addr is a valid vmalloc'ed area, and 4600 * that it is big enough to cover the vma. Will return failure if 4601 * that criteria isn't met. 4602 * 4603 * Similar to remap_pfn_range() (see mm/memory.c) 4604 */ 4605 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 4606 unsigned long pgoff) 4607 { 4608 return remap_vmalloc_range_partial(vma, vma->vm_start, 4609 addr, pgoff, 4610 vma->vm_end - vma->vm_start); 4611 } 4612 EXPORT_SYMBOL(remap_vmalloc_range); 4613 4614 void free_vm_area(struct vm_struct *area) 4615 { 4616 struct vm_struct *ret; 4617 ret = remove_vm_area(area->addr); 4618 BUG_ON(ret != area); 4619 kfree(area); 4620 } 4621 EXPORT_SYMBOL_GPL(free_vm_area); 4622 4623 #ifdef CONFIG_SMP 4624 static struct vmap_area *node_to_va(struct rb_node *n) 4625 { 4626 return rb_entry_safe(n, struct vmap_area, rb_node); 4627 } 4628 4629 /** 4630 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4631 * @addr: target address 4632 * 4633 * Returns: vmap_area if it is found. If there is no such area 4634 * the first highest(reverse order) vmap_area is returned 4635 * i.e. va->va_start < addr && va->va_end < addr or NULL 4636 * if there are no any areas before @addr. 4637 */ 4638 static struct vmap_area * 4639 pvm_find_va_enclose_addr(unsigned long addr) 4640 { 4641 struct vmap_area *va, *tmp; 4642 struct rb_node *n; 4643 4644 n = free_vmap_area_root.rb_node; 4645 va = NULL; 4646 4647 while (n) { 4648 tmp = rb_entry(n, struct vmap_area, rb_node); 4649 if (tmp->va_start <= addr) { 4650 va = tmp; 4651 if (tmp->va_end >= addr) 4652 break; 4653 4654 n = n->rb_right; 4655 } else { 4656 n = n->rb_left; 4657 } 4658 } 4659 4660 return va; 4661 } 4662 4663 /** 4664 * pvm_determine_end_from_reverse - find the highest aligned address 4665 * of free block below VMALLOC_END 4666 * @va: 4667 * in - the VA we start the search(reverse order); 4668 * out - the VA with the highest aligned end address. 4669 * @align: alignment for required highest address 4670 * 4671 * Returns: determined end address within vmap_area 4672 */ 4673 static unsigned long 4674 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4675 { 4676 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4677 unsigned long addr; 4678 4679 if (likely(*va)) { 4680 list_for_each_entry_from_reverse((*va), 4681 &free_vmap_area_list, list) { 4682 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4683 if ((*va)->va_start < addr) 4684 return addr; 4685 } 4686 } 4687 4688 return 0; 4689 } 4690 4691 /** 4692 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4693 * @offsets: array containing offset of each area 4694 * @sizes: array containing size of each area 4695 * @nr_vms: the number of areas to allocate 4696 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4697 * 4698 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4699 * vm_structs on success, %NULL on failure 4700 * 4701 * Percpu allocator wants to use congruent vm areas so that it can 4702 * maintain the offsets among percpu areas. This function allocates 4703 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4704 * be scattered pretty far, distance between two areas easily going up 4705 * to gigabytes. To avoid interacting with regular vmallocs, these 4706 * areas are allocated from top. 4707 * 4708 * Despite its complicated look, this allocator is rather simple. It 4709 * does everything top-down and scans free blocks from the end looking 4710 * for matching base. While scanning, if any of the areas do not fit the 4711 * base address is pulled down to fit the area. Scanning is repeated till 4712 * all the areas fit and then all necessary data structures are inserted 4713 * and the result is returned. 4714 */ 4715 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4716 const size_t *sizes, int nr_vms, 4717 size_t align) 4718 { 4719 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4720 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4721 struct vmap_area **vas, *va; 4722 struct vm_struct **vms; 4723 int area, area2, last_area, term_area; 4724 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4725 bool purged = false; 4726 4727 /* verify parameters and allocate data structures */ 4728 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4729 for (last_area = 0, area = 0; area < nr_vms; area++) { 4730 start = offsets[area]; 4731 end = start + sizes[area]; 4732 4733 /* is everything aligned properly? */ 4734 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4735 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4736 4737 /* detect the area with the highest address */ 4738 if (start > offsets[last_area]) 4739 last_area = area; 4740 4741 for (area2 = area + 1; area2 < nr_vms; area2++) { 4742 unsigned long start2 = offsets[area2]; 4743 unsigned long end2 = start2 + sizes[area2]; 4744 4745 BUG_ON(start2 < end && start < end2); 4746 } 4747 } 4748 last_end = offsets[last_area] + sizes[last_area]; 4749 4750 if (vmalloc_end - vmalloc_start < last_end) { 4751 WARN_ON(true); 4752 return NULL; 4753 } 4754 4755 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4756 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4757 if (!vas || !vms) 4758 goto err_free2; 4759 4760 for (area = 0; area < nr_vms; area++) { 4761 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4762 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4763 if (!vas[area] || !vms[area]) 4764 goto err_free; 4765 } 4766 retry: 4767 spin_lock(&free_vmap_area_lock); 4768 4769 /* start scanning - we scan from the top, begin with the last area */ 4770 area = term_area = last_area; 4771 start = offsets[area]; 4772 end = start + sizes[area]; 4773 4774 va = pvm_find_va_enclose_addr(vmalloc_end); 4775 base = pvm_determine_end_from_reverse(&va, align) - end; 4776 4777 while (true) { 4778 /* 4779 * base might have underflowed, add last_end before 4780 * comparing. 4781 */ 4782 if (base + last_end < vmalloc_start + last_end) 4783 goto overflow; 4784 4785 /* 4786 * Fitting base has not been found. 4787 */ 4788 if (va == NULL) 4789 goto overflow; 4790 4791 /* 4792 * If required width exceeds current VA block, move 4793 * base downwards and then recheck. 4794 */ 4795 if (base + end > va->va_end) { 4796 base = pvm_determine_end_from_reverse(&va, align) - end; 4797 term_area = area; 4798 continue; 4799 } 4800 4801 /* 4802 * If this VA does not fit, move base downwards and recheck. 4803 */ 4804 if (base + start < va->va_start) { 4805 va = node_to_va(rb_prev(&va->rb_node)); 4806 base = pvm_determine_end_from_reverse(&va, align) - end; 4807 term_area = area; 4808 continue; 4809 } 4810 4811 /* 4812 * This area fits, move on to the previous one. If 4813 * the previous one is the terminal one, we're done. 4814 */ 4815 area = (area + nr_vms - 1) % nr_vms; 4816 if (area == term_area) 4817 break; 4818 4819 start = offsets[area]; 4820 end = start + sizes[area]; 4821 va = pvm_find_va_enclose_addr(base + end); 4822 } 4823 4824 /* we've found a fitting base, insert all va's */ 4825 for (area = 0; area < nr_vms; area++) { 4826 int ret; 4827 4828 start = base + offsets[area]; 4829 size = sizes[area]; 4830 4831 va = pvm_find_va_enclose_addr(start); 4832 if (WARN_ON_ONCE(va == NULL)) 4833 /* It is a BUG(), but trigger recovery instead. */ 4834 goto recovery; 4835 4836 ret = va_clip(&free_vmap_area_root, 4837 &free_vmap_area_list, va, start, size); 4838 if (WARN_ON_ONCE(unlikely(ret))) 4839 /* It is a BUG(), but trigger recovery instead. */ 4840 goto recovery; 4841 4842 /* Allocated area. */ 4843 va = vas[area]; 4844 va->va_start = start; 4845 va->va_end = start + size; 4846 } 4847 4848 spin_unlock(&free_vmap_area_lock); 4849 4850 /* populate the kasan shadow space */ 4851 for (area = 0; area < nr_vms; area++) { 4852 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area], GFP_KERNEL)) 4853 goto err_free_shadow; 4854 } 4855 4856 /* insert all vm's */ 4857 for (area = 0; area < nr_vms; area++) { 4858 struct vmap_node *vn = addr_to_node(vas[area]->va_start); 4859 4860 spin_lock(&vn->busy.lock); 4861 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); 4862 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 4863 pcpu_get_vm_areas); 4864 spin_unlock(&vn->busy.lock); 4865 } 4866 4867 /* 4868 * Mark allocated areas as accessible. Do it now as a best-effort 4869 * approach, as they can be mapped outside of vmalloc code. 4870 * With hardware tag-based KASAN, marking is skipped for 4871 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4872 */ 4873 for (area = 0; area < nr_vms; area++) 4874 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4875 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4876 4877 kfree(vas); 4878 return vms; 4879 4880 recovery: 4881 /* 4882 * Remove previously allocated areas. There is no 4883 * need in removing these areas from the busy tree, 4884 * because they are inserted only on the final step 4885 * and when pcpu_get_vm_areas() is success. 4886 */ 4887 while (area--) { 4888 orig_start = vas[area]->va_start; 4889 orig_end = vas[area]->va_end; 4890 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4891 &free_vmap_area_list); 4892 if (va) 4893 kasan_release_vmalloc(orig_start, orig_end, 4894 va->va_start, va->va_end, 4895 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4896 vas[area] = NULL; 4897 } 4898 4899 overflow: 4900 spin_unlock(&free_vmap_area_lock); 4901 if (!purged) { 4902 reclaim_and_purge_vmap_areas(); 4903 purged = true; 4904 4905 /* Before "retry", check if we recover. */ 4906 for (area = 0; area < nr_vms; area++) { 4907 if (vas[area]) 4908 continue; 4909 4910 vas[area] = kmem_cache_zalloc( 4911 vmap_area_cachep, GFP_KERNEL); 4912 if (!vas[area]) 4913 goto err_free; 4914 } 4915 4916 goto retry; 4917 } 4918 4919 err_free: 4920 for (area = 0; area < nr_vms; area++) { 4921 if (vas[area]) 4922 kmem_cache_free(vmap_area_cachep, vas[area]); 4923 4924 kfree(vms[area]); 4925 } 4926 err_free2: 4927 kfree(vas); 4928 kfree(vms); 4929 return NULL; 4930 4931 err_free_shadow: 4932 spin_lock(&free_vmap_area_lock); 4933 /* 4934 * We release all the vmalloc shadows, even the ones for regions that 4935 * hadn't been successfully added. This relies on kasan_release_vmalloc 4936 * being able to tolerate this case. 4937 */ 4938 for (area = 0; area < nr_vms; area++) { 4939 orig_start = vas[area]->va_start; 4940 orig_end = vas[area]->va_end; 4941 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4942 &free_vmap_area_list); 4943 if (va) 4944 kasan_release_vmalloc(orig_start, orig_end, 4945 va->va_start, va->va_end, 4946 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4947 vas[area] = NULL; 4948 kfree(vms[area]); 4949 } 4950 spin_unlock(&free_vmap_area_lock); 4951 kfree(vas); 4952 kfree(vms); 4953 return NULL; 4954 } 4955 4956 /** 4957 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4958 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4959 * @nr_vms: the number of allocated areas 4960 * 4961 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4962 */ 4963 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4964 { 4965 int i; 4966 4967 for (i = 0; i < nr_vms; i++) 4968 free_vm_area(vms[i]); 4969 kfree(vms); 4970 } 4971 #endif /* CONFIG_SMP */ 4972 4973 #ifdef CONFIG_PRINTK 4974 bool vmalloc_dump_obj(void *object) 4975 { 4976 const void *caller; 4977 struct vm_struct *vm; 4978 struct vmap_area *va; 4979 struct vmap_node *vn; 4980 unsigned long addr; 4981 unsigned int nr_pages; 4982 4983 addr = PAGE_ALIGN((unsigned long) object); 4984 vn = addr_to_node(addr); 4985 4986 if (!spin_trylock(&vn->busy.lock)) 4987 return false; 4988 4989 va = __find_vmap_area(addr, &vn->busy.root); 4990 if (!va || !va->vm) { 4991 spin_unlock(&vn->busy.lock); 4992 return false; 4993 } 4994 4995 vm = va->vm; 4996 addr = (unsigned long) vm->addr; 4997 caller = vm->caller; 4998 nr_pages = vm->nr_pages; 4999 spin_unlock(&vn->busy.lock); 5000 5001 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 5002 nr_pages, addr, caller); 5003 5004 return true; 5005 } 5006 #endif 5007 5008 #ifdef CONFIG_PROC_FS 5009 5010 /* 5011 * Print number of pages allocated on each memory node. 5012 * 5013 * This function can only be called if CONFIG_NUMA is enabled 5014 * and VM_UNINITIALIZED bit in v->flags is disabled. 5015 */ 5016 static void show_numa_info(struct seq_file *m, struct vm_struct *v, 5017 unsigned int *counters) 5018 { 5019 unsigned int nr; 5020 unsigned int step = 1U << vm_area_page_order(v); 5021 5022 if (!counters) 5023 return; 5024 5025 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 5026 5027 for (nr = 0; nr < v->nr_pages; nr += step) 5028 counters[page_to_nid(v->pages[nr])] += step; 5029 for_each_node_state(nr, N_HIGH_MEMORY) 5030 if (counters[nr]) 5031 seq_printf(m, " N%u=%u", nr, counters[nr]); 5032 } 5033 5034 static void show_purge_info(struct seq_file *m) 5035 { 5036 struct vmap_node *vn; 5037 struct vmap_area *va; 5038 5039 for_each_vmap_node(vn) { 5040 spin_lock(&vn->lazy.lock); 5041 list_for_each_entry(va, &vn->lazy.head, list) { 5042 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 5043 (void *)va->va_start, (void *)va->va_end, 5044 va_size(va)); 5045 } 5046 spin_unlock(&vn->lazy.lock); 5047 } 5048 } 5049 5050 static int vmalloc_info_show(struct seq_file *m, void *p) 5051 { 5052 struct vmap_node *vn; 5053 struct vmap_area *va; 5054 struct vm_struct *v; 5055 unsigned int *counters; 5056 5057 if (IS_ENABLED(CONFIG_NUMA)) 5058 counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 5059 5060 for_each_vmap_node(vn) { 5061 spin_lock(&vn->busy.lock); 5062 list_for_each_entry(va, &vn->busy.head, list) { 5063 if (!va->vm) { 5064 if (va->flags & VMAP_RAM) 5065 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 5066 (void *)va->va_start, (void *)va->va_end, 5067 va_size(va)); 5068 5069 continue; 5070 } 5071 5072 v = va->vm; 5073 if (v->flags & VM_UNINITIALIZED) 5074 continue; 5075 5076 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 5077 smp_rmb(); 5078 5079 seq_printf(m, "0x%pK-0x%pK %7ld", 5080 v->addr, v->addr + v->size, v->size); 5081 5082 if (v->caller) 5083 seq_printf(m, " %pS", v->caller); 5084 5085 if (v->nr_pages) 5086 seq_printf(m, " pages=%d", v->nr_pages); 5087 5088 if (v->phys_addr) 5089 seq_printf(m, " phys=%pa", &v->phys_addr); 5090 5091 if (v->flags & VM_IOREMAP) 5092 seq_puts(m, " ioremap"); 5093 5094 if (v->flags & VM_SPARSE) 5095 seq_puts(m, " sparse"); 5096 5097 if (v->flags & VM_ALLOC) 5098 seq_puts(m, " vmalloc"); 5099 5100 if (v->flags & VM_MAP) 5101 seq_puts(m, " vmap"); 5102 5103 if (v->flags & VM_USERMAP) 5104 seq_puts(m, " user"); 5105 5106 if (v->flags & VM_DMA_COHERENT) 5107 seq_puts(m, " dma-coherent"); 5108 5109 if (is_vmalloc_addr(v->pages)) 5110 seq_puts(m, " vpages"); 5111 5112 if (IS_ENABLED(CONFIG_NUMA)) 5113 show_numa_info(m, v, counters); 5114 5115 seq_putc(m, '\n'); 5116 } 5117 spin_unlock(&vn->busy.lock); 5118 } 5119 5120 /* 5121 * As a final step, dump "unpurged" areas. 5122 */ 5123 show_purge_info(m); 5124 if (IS_ENABLED(CONFIG_NUMA)) 5125 kfree(counters); 5126 return 0; 5127 } 5128 5129 static int __init proc_vmalloc_init(void) 5130 { 5131 proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show); 5132 return 0; 5133 } 5134 module_init(proc_vmalloc_init); 5135 5136 #endif 5137 5138 static void __init vmap_init_free_space(void) 5139 { 5140 unsigned long vmap_start = 1; 5141 const unsigned long vmap_end = ULONG_MAX; 5142 struct vmap_area *free; 5143 struct vm_struct *busy; 5144 5145 /* 5146 * B F B B B F 5147 * -|-----|.....|-----|-----|-----|.....|- 5148 * | The KVA space | 5149 * |<--------------------------------->| 5150 */ 5151 for (busy = vmlist; busy; busy = busy->next) { 5152 if ((unsigned long) busy->addr - vmap_start > 0) { 5153 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5154 if (!WARN_ON_ONCE(!free)) { 5155 free->va_start = vmap_start; 5156 free->va_end = (unsigned long) busy->addr; 5157 5158 insert_vmap_area_augment(free, NULL, 5159 &free_vmap_area_root, 5160 &free_vmap_area_list); 5161 } 5162 } 5163 5164 vmap_start = (unsigned long) busy->addr + busy->size; 5165 } 5166 5167 if (vmap_end - vmap_start > 0) { 5168 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5169 if (!WARN_ON_ONCE(!free)) { 5170 free->va_start = vmap_start; 5171 free->va_end = vmap_end; 5172 5173 insert_vmap_area_augment(free, NULL, 5174 &free_vmap_area_root, 5175 &free_vmap_area_list); 5176 } 5177 } 5178 } 5179 5180 static void vmap_init_nodes(void) 5181 { 5182 struct vmap_node *vn; 5183 int i; 5184 5185 #if BITS_PER_LONG == 64 5186 /* 5187 * A high threshold of max nodes is fixed and bound to 128, 5188 * thus a scale factor is 1 for systems where number of cores 5189 * are less or equal to specified threshold. 5190 * 5191 * As for NUMA-aware notes. For bigger systems, for example 5192 * NUMA with multi-sockets, where we can end-up with thousands 5193 * of cores in total, a "sub-numa-clustering" should be added. 5194 * 5195 * In this case a NUMA domain is considered as a single entity 5196 * with dedicated sub-nodes in it which describe one group or 5197 * set of cores. Therefore a per-domain purging is supposed to 5198 * be added as well as a per-domain balancing. 5199 */ 5200 int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); 5201 5202 if (n > 1) { 5203 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT); 5204 if (vn) { 5205 /* Node partition is 16 pages. */ 5206 vmap_zone_size = (1 << 4) * PAGE_SIZE; 5207 nr_vmap_nodes = n; 5208 vmap_nodes = vn; 5209 } else { 5210 pr_err("Failed to allocate an array. Disable a node layer\n"); 5211 } 5212 } 5213 #endif 5214 5215 for_each_vmap_node(vn) { 5216 vn->busy.root = RB_ROOT; 5217 INIT_LIST_HEAD(&vn->busy.head); 5218 spin_lock_init(&vn->busy.lock); 5219 5220 vn->lazy.root = RB_ROOT; 5221 INIT_LIST_HEAD(&vn->lazy.head); 5222 spin_lock_init(&vn->lazy.lock); 5223 5224 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 5225 INIT_LIST_HEAD(&vn->pool[i].head); 5226 WRITE_ONCE(vn->pool[i].len, 0); 5227 } 5228 5229 spin_lock_init(&vn->pool_lock); 5230 } 5231 } 5232 5233 static unsigned long 5234 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5235 { 5236 unsigned long count = 0; 5237 struct vmap_node *vn; 5238 int i; 5239 5240 for_each_vmap_node(vn) { 5241 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) 5242 count += READ_ONCE(vn->pool[i].len); 5243 } 5244 5245 return count ? count : SHRINK_EMPTY; 5246 } 5247 5248 static unsigned long 5249 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5250 { 5251 struct vmap_node *vn; 5252 5253 for_each_vmap_node(vn) 5254 decay_va_pool_node(vn, true); 5255 5256 return SHRINK_STOP; 5257 } 5258 5259 void __init vmalloc_init(void) 5260 { 5261 struct shrinker *vmap_node_shrinker; 5262 struct vmap_area *va; 5263 struct vmap_node *vn; 5264 struct vm_struct *tmp; 5265 int i; 5266 5267 /* 5268 * Create the cache for vmap_area objects. 5269 */ 5270 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 5271 5272 for_each_possible_cpu(i) { 5273 struct vmap_block_queue *vbq; 5274 struct vfree_deferred *p; 5275 5276 vbq = &per_cpu(vmap_block_queue, i); 5277 spin_lock_init(&vbq->lock); 5278 INIT_LIST_HEAD(&vbq->free); 5279 p = &per_cpu(vfree_deferred, i); 5280 init_llist_head(&p->list); 5281 INIT_WORK(&p->wq, delayed_vfree_work); 5282 xa_init(&vbq->vmap_blocks); 5283 } 5284 5285 /* 5286 * Setup nodes before importing vmlist. 5287 */ 5288 vmap_init_nodes(); 5289 5290 /* Import existing vmlist entries. */ 5291 for (tmp = vmlist; tmp; tmp = tmp->next) { 5292 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5293 if (WARN_ON_ONCE(!va)) 5294 continue; 5295 5296 va->va_start = (unsigned long)tmp->addr; 5297 va->va_end = va->va_start + tmp->size; 5298 va->vm = tmp; 5299 5300 vn = addr_to_node(va->va_start); 5301 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 5302 } 5303 5304 /* 5305 * Now we can initialize a free vmap space. 5306 */ 5307 vmap_init_free_space(); 5308 vmap_initialized = true; 5309 5310 vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); 5311 if (!vmap_node_shrinker) { 5312 pr_err("Failed to allocate vmap-node shrinker!\n"); 5313 return; 5314 } 5315 5316 vmap_node_shrinker->count_objects = vmap_node_shrink_count; 5317 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; 5318 shrinker_register(vmap_node_shrinker); 5319 } 5320