1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 #include <linux/bootmem.h> 27 #include <linux/pfn.h> 28 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 break; 172 } while (pgd++, addr = next, addr != end); 173 174 if (unlikely(err)) 175 return err; 176 return nr; 177 } 178 179 static int vmap_page_range(unsigned long start, unsigned long end, 180 pgprot_t prot, struct page **pages) 181 { 182 int ret; 183 184 ret = vmap_page_range_noflush(start, end, prot, pages); 185 flush_cache_vmap(start, end); 186 return ret; 187 } 188 189 static inline int is_vmalloc_or_module_addr(const void *x) 190 { 191 /* 192 * ARM, x86-64 and sparc64 put modules in a special place, 193 * and fall back on vmalloc() if that fails. Others 194 * just put it in the vmalloc space. 195 */ 196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 197 unsigned long addr = (unsigned long)x; 198 if (addr >= MODULES_VADDR && addr < MODULES_END) 199 return 1; 200 #endif 201 return is_vmalloc_addr(x); 202 } 203 204 /* 205 * Walk a vmap address to the struct page it maps. 206 */ 207 struct page *vmalloc_to_page(const void *vmalloc_addr) 208 { 209 unsigned long addr = (unsigned long) vmalloc_addr; 210 struct page *page = NULL; 211 pgd_t *pgd = pgd_offset_k(addr); 212 213 /* 214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 215 * architectures that do not vmalloc module space 216 */ 217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 218 219 if (!pgd_none(*pgd)) { 220 pud_t *pud = pud_offset(pgd, addr); 221 if (!pud_none(*pud)) { 222 pmd_t *pmd = pmd_offset(pud, addr); 223 if (!pmd_none(*pmd)) { 224 pte_t *ptep, pte; 225 226 ptep = pte_offset_map(pmd, addr); 227 pte = *ptep; 228 if (pte_present(pte)) 229 page = pte_page(pte); 230 pte_unmap(ptep); 231 } 232 } 233 } 234 return page; 235 } 236 EXPORT_SYMBOL(vmalloc_to_page); 237 238 /* 239 * Map a vmalloc()-space virtual address to the physical page frame number. 240 */ 241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 242 { 243 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 244 } 245 EXPORT_SYMBOL(vmalloc_to_pfn); 246 247 248 /*** Global kva allocator ***/ 249 250 #define VM_LAZY_FREE 0x01 251 #define VM_LAZY_FREEING 0x02 252 #define VM_VM_AREA 0x04 253 254 struct vmap_area { 255 unsigned long va_start; 256 unsigned long va_end; 257 unsigned long flags; 258 struct rb_node rb_node; /* address sorted rbtree */ 259 struct list_head list; /* address sorted list */ 260 struct list_head purge_list; /* "lazy purge" list */ 261 void *private; 262 struct rcu_head rcu_head; 263 }; 264 265 static DEFINE_SPINLOCK(vmap_area_lock); 266 static struct rb_root vmap_area_root = RB_ROOT; 267 static LIST_HEAD(vmap_area_list); 268 269 static struct vmap_area *__find_vmap_area(unsigned long addr) 270 { 271 struct rb_node *n = vmap_area_root.rb_node; 272 273 while (n) { 274 struct vmap_area *va; 275 276 va = rb_entry(n, struct vmap_area, rb_node); 277 if (addr < va->va_start) 278 n = n->rb_left; 279 else if (addr > va->va_start) 280 n = n->rb_right; 281 else 282 return va; 283 } 284 285 return NULL; 286 } 287 288 static void __insert_vmap_area(struct vmap_area *va) 289 { 290 struct rb_node **p = &vmap_area_root.rb_node; 291 struct rb_node *parent = NULL; 292 struct rb_node *tmp; 293 294 while (*p) { 295 struct vmap_area *tmp; 296 297 parent = *p; 298 tmp = rb_entry(parent, struct vmap_area, rb_node); 299 if (va->va_start < tmp->va_end) 300 p = &(*p)->rb_left; 301 else if (va->va_end > tmp->va_start) 302 p = &(*p)->rb_right; 303 else 304 BUG(); 305 } 306 307 rb_link_node(&va->rb_node, parent, p); 308 rb_insert_color(&va->rb_node, &vmap_area_root); 309 310 /* address-sort this list so it is usable like the vmlist */ 311 tmp = rb_prev(&va->rb_node); 312 if (tmp) { 313 struct vmap_area *prev; 314 prev = rb_entry(tmp, struct vmap_area, rb_node); 315 list_add_rcu(&va->list, &prev->list); 316 } else 317 list_add_rcu(&va->list, &vmap_area_list); 318 } 319 320 static void purge_vmap_area_lazy(void); 321 322 /* 323 * Allocate a region of KVA of the specified size and alignment, within the 324 * vstart and vend. 325 */ 326 static struct vmap_area *alloc_vmap_area(unsigned long size, 327 unsigned long align, 328 unsigned long vstart, unsigned long vend, 329 int node, gfp_t gfp_mask) 330 { 331 struct vmap_area *va; 332 struct rb_node *n; 333 unsigned long addr; 334 int purged = 0; 335 336 BUG_ON(!size); 337 BUG_ON(size & ~PAGE_MASK); 338 339 va = kmalloc_node(sizeof(struct vmap_area), 340 gfp_mask & GFP_RECLAIM_MASK, node); 341 if (unlikely(!va)) 342 return ERR_PTR(-ENOMEM); 343 344 retry: 345 addr = ALIGN(vstart, align); 346 347 spin_lock(&vmap_area_lock); 348 if (addr + size - 1 < addr) 349 goto overflow; 350 351 /* XXX: could have a last_hole cache */ 352 n = vmap_area_root.rb_node; 353 if (n) { 354 struct vmap_area *first = NULL; 355 356 do { 357 struct vmap_area *tmp; 358 tmp = rb_entry(n, struct vmap_area, rb_node); 359 if (tmp->va_end >= addr) { 360 if (!first && tmp->va_start < addr + size) 361 first = tmp; 362 n = n->rb_left; 363 } else { 364 first = tmp; 365 n = n->rb_right; 366 } 367 } while (n); 368 369 if (!first) 370 goto found; 371 372 if (first->va_end < addr) { 373 n = rb_next(&first->rb_node); 374 if (n) 375 first = rb_entry(n, struct vmap_area, rb_node); 376 else 377 goto found; 378 } 379 380 while (addr + size > first->va_start && addr + size <= vend) { 381 addr = ALIGN(first->va_end + PAGE_SIZE, align); 382 if (addr + size - 1 < addr) 383 goto overflow; 384 385 n = rb_next(&first->rb_node); 386 if (n) 387 first = rb_entry(n, struct vmap_area, rb_node); 388 else 389 goto found; 390 } 391 } 392 found: 393 if (addr + size > vend) { 394 overflow: 395 spin_unlock(&vmap_area_lock); 396 if (!purged) { 397 purge_vmap_area_lazy(); 398 purged = 1; 399 goto retry; 400 } 401 if (printk_ratelimit()) 402 printk(KERN_WARNING 403 "vmap allocation for size %lu failed: " 404 "use vmalloc=<size> to increase size.\n", size); 405 kfree(va); 406 return ERR_PTR(-EBUSY); 407 } 408 409 BUG_ON(addr & (align-1)); 410 411 va->va_start = addr; 412 va->va_end = addr + size; 413 va->flags = 0; 414 __insert_vmap_area(va); 415 spin_unlock(&vmap_area_lock); 416 417 return va; 418 } 419 420 static void rcu_free_va(struct rcu_head *head) 421 { 422 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 423 424 kfree(va); 425 } 426 427 static void __free_vmap_area(struct vmap_area *va) 428 { 429 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 430 rb_erase(&va->rb_node, &vmap_area_root); 431 RB_CLEAR_NODE(&va->rb_node); 432 list_del_rcu(&va->list); 433 434 call_rcu(&va->rcu_head, rcu_free_va); 435 } 436 437 /* 438 * Free a region of KVA allocated by alloc_vmap_area 439 */ 440 static void free_vmap_area(struct vmap_area *va) 441 { 442 spin_lock(&vmap_area_lock); 443 __free_vmap_area(va); 444 spin_unlock(&vmap_area_lock); 445 } 446 447 /* 448 * Clear the pagetable entries of a given vmap_area 449 */ 450 static void unmap_vmap_area(struct vmap_area *va) 451 { 452 vunmap_page_range(va->va_start, va->va_end); 453 } 454 455 static void vmap_debug_free_range(unsigned long start, unsigned long end) 456 { 457 /* 458 * Unmap page tables and force a TLB flush immediately if 459 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 460 * bugs similarly to those in linear kernel virtual address 461 * space after a page has been freed. 462 * 463 * All the lazy freeing logic is still retained, in order to 464 * minimise intrusiveness of this debugging feature. 465 * 466 * This is going to be *slow* (linear kernel virtual address 467 * debugging doesn't do a broadcast TLB flush so it is a lot 468 * faster). 469 */ 470 #ifdef CONFIG_DEBUG_PAGEALLOC 471 vunmap_page_range(start, end); 472 flush_tlb_kernel_range(start, end); 473 #endif 474 } 475 476 /* 477 * lazy_max_pages is the maximum amount of virtual address space we gather up 478 * before attempting to purge with a TLB flush. 479 * 480 * There is a tradeoff here: a larger number will cover more kernel page tables 481 * and take slightly longer to purge, but it will linearly reduce the number of 482 * global TLB flushes that must be performed. It would seem natural to scale 483 * this number up linearly with the number of CPUs (because vmapping activity 484 * could also scale linearly with the number of CPUs), however it is likely 485 * that in practice, workloads might be constrained in other ways that mean 486 * vmap activity will not scale linearly with CPUs. Also, I want to be 487 * conservative and not introduce a big latency on huge systems, so go with 488 * a less aggressive log scale. It will still be an improvement over the old 489 * code, and it will be simple to change the scale factor if we find that it 490 * becomes a problem on bigger systems. 491 */ 492 static unsigned long lazy_max_pages(void) 493 { 494 unsigned int log; 495 496 log = fls(num_online_cpus()); 497 498 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 499 } 500 501 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 502 503 /* 504 * Purges all lazily-freed vmap areas. 505 * 506 * If sync is 0 then don't purge if there is already a purge in progress. 507 * If force_flush is 1, then flush kernel TLBs between *start and *end even 508 * if we found no lazy vmap areas to unmap (callers can use this to optimise 509 * their own TLB flushing). 510 * Returns with *start = min(*start, lowest purged address) 511 * *end = max(*end, highest purged address) 512 */ 513 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 514 int sync, int force_flush) 515 { 516 static DEFINE_SPINLOCK(purge_lock); 517 LIST_HEAD(valist); 518 struct vmap_area *va; 519 struct vmap_area *n_va; 520 int nr = 0; 521 522 /* 523 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 524 * should not expect such behaviour. This just simplifies locking for 525 * the case that isn't actually used at the moment anyway. 526 */ 527 if (!sync && !force_flush) { 528 if (!spin_trylock(&purge_lock)) 529 return; 530 } else 531 spin_lock(&purge_lock); 532 533 rcu_read_lock(); 534 list_for_each_entry_rcu(va, &vmap_area_list, list) { 535 if (va->flags & VM_LAZY_FREE) { 536 if (va->va_start < *start) 537 *start = va->va_start; 538 if (va->va_end > *end) 539 *end = va->va_end; 540 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 541 unmap_vmap_area(va); 542 list_add_tail(&va->purge_list, &valist); 543 va->flags |= VM_LAZY_FREEING; 544 va->flags &= ~VM_LAZY_FREE; 545 } 546 } 547 rcu_read_unlock(); 548 549 if (nr) { 550 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 551 atomic_sub(nr, &vmap_lazy_nr); 552 } 553 554 if (nr || force_flush) 555 flush_tlb_kernel_range(*start, *end); 556 557 if (nr) { 558 spin_lock(&vmap_area_lock); 559 list_for_each_entry_safe(va, n_va, &valist, purge_list) 560 __free_vmap_area(va); 561 spin_unlock(&vmap_area_lock); 562 } 563 spin_unlock(&purge_lock); 564 } 565 566 /* 567 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 568 * is already purging. 569 */ 570 static void try_purge_vmap_area_lazy(void) 571 { 572 unsigned long start = ULONG_MAX, end = 0; 573 574 __purge_vmap_area_lazy(&start, &end, 0, 0); 575 } 576 577 /* 578 * Kick off a purge of the outstanding lazy areas. 579 */ 580 static void purge_vmap_area_lazy(void) 581 { 582 unsigned long start = ULONG_MAX, end = 0; 583 584 __purge_vmap_area_lazy(&start, &end, 1, 0); 585 } 586 587 /* 588 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 589 * called for the correct range previously. 590 */ 591 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 592 { 593 va->flags |= VM_LAZY_FREE; 594 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 595 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 596 try_purge_vmap_area_lazy(); 597 } 598 599 /* 600 * Free and unmap a vmap area 601 */ 602 static void free_unmap_vmap_area(struct vmap_area *va) 603 { 604 flush_cache_vunmap(va->va_start, va->va_end); 605 free_unmap_vmap_area_noflush(va); 606 } 607 608 static struct vmap_area *find_vmap_area(unsigned long addr) 609 { 610 struct vmap_area *va; 611 612 spin_lock(&vmap_area_lock); 613 va = __find_vmap_area(addr); 614 spin_unlock(&vmap_area_lock); 615 616 return va; 617 } 618 619 static void free_unmap_vmap_area_addr(unsigned long addr) 620 { 621 struct vmap_area *va; 622 623 va = find_vmap_area(addr); 624 BUG_ON(!va); 625 free_unmap_vmap_area(va); 626 } 627 628 629 /*** Per cpu kva allocator ***/ 630 631 /* 632 * vmap space is limited especially on 32 bit architectures. Ensure there is 633 * room for at least 16 percpu vmap blocks per CPU. 634 */ 635 /* 636 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 637 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 638 * instead (we just need a rough idea) 639 */ 640 #if BITS_PER_LONG == 32 641 #define VMALLOC_SPACE (128UL*1024*1024) 642 #else 643 #define VMALLOC_SPACE (128UL*1024*1024*1024) 644 #endif 645 646 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 647 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 648 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 649 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 650 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 651 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 652 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 653 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 654 VMALLOC_PAGES / NR_CPUS / 16)) 655 656 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 657 658 static bool vmap_initialized __read_mostly = false; 659 660 struct vmap_block_queue { 661 spinlock_t lock; 662 struct list_head free; 663 struct list_head dirty; 664 unsigned int nr_dirty; 665 }; 666 667 struct vmap_block { 668 spinlock_t lock; 669 struct vmap_area *va; 670 struct vmap_block_queue *vbq; 671 unsigned long free, dirty; 672 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 673 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 674 union { 675 struct list_head free_list; 676 struct rcu_head rcu_head; 677 }; 678 }; 679 680 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 681 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 682 683 /* 684 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 685 * in the free path. Could get rid of this if we change the API to return a 686 * "cookie" from alloc, to be passed to free. But no big deal yet. 687 */ 688 static DEFINE_SPINLOCK(vmap_block_tree_lock); 689 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 690 691 /* 692 * We should probably have a fallback mechanism to allocate virtual memory 693 * out of partially filled vmap blocks. However vmap block sizing should be 694 * fairly reasonable according to the vmalloc size, so it shouldn't be a 695 * big problem. 696 */ 697 698 static unsigned long addr_to_vb_idx(unsigned long addr) 699 { 700 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 701 addr /= VMAP_BLOCK_SIZE; 702 return addr; 703 } 704 705 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 706 { 707 struct vmap_block_queue *vbq; 708 struct vmap_block *vb; 709 struct vmap_area *va; 710 unsigned long vb_idx; 711 int node, err; 712 713 node = numa_node_id(); 714 715 vb = kmalloc_node(sizeof(struct vmap_block), 716 gfp_mask & GFP_RECLAIM_MASK, node); 717 if (unlikely(!vb)) 718 return ERR_PTR(-ENOMEM); 719 720 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 721 VMALLOC_START, VMALLOC_END, 722 node, gfp_mask); 723 if (unlikely(IS_ERR(va))) { 724 kfree(vb); 725 return ERR_PTR(PTR_ERR(va)); 726 } 727 728 err = radix_tree_preload(gfp_mask); 729 if (unlikely(err)) { 730 kfree(vb); 731 free_vmap_area(va); 732 return ERR_PTR(err); 733 } 734 735 spin_lock_init(&vb->lock); 736 vb->va = va; 737 vb->free = VMAP_BBMAP_BITS; 738 vb->dirty = 0; 739 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 740 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 741 INIT_LIST_HEAD(&vb->free_list); 742 743 vb_idx = addr_to_vb_idx(va->va_start); 744 spin_lock(&vmap_block_tree_lock); 745 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 746 spin_unlock(&vmap_block_tree_lock); 747 BUG_ON(err); 748 radix_tree_preload_end(); 749 750 vbq = &get_cpu_var(vmap_block_queue); 751 vb->vbq = vbq; 752 spin_lock(&vbq->lock); 753 list_add(&vb->free_list, &vbq->free); 754 spin_unlock(&vbq->lock); 755 put_cpu_var(vmap_cpu_blocks); 756 757 return vb; 758 } 759 760 static void rcu_free_vb(struct rcu_head *head) 761 { 762 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 763 764 kfree(vb); 765 } 766 767 static void free_vmap_block(struct vmap_block *vb) 768 { 769 struct vmap_block *tmp; 770 unsigned long vb_idx; 771 772 BUG_ON(!list_empty(&vb->free_list)); 773 774 vb_idx = addr_to_vb_idx(vb->va->va_start); 775 spin_lock(&vmap_block_tree_lock); 776 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 777 spin_unlock(&vmap_block_tree_lock); 778 BUG_ON(tmp != vb); 779 780 free_unmap_vmap_area_noflush(vb->va); 781 call_rcu(&vb->rcu_head, rcu_free_vb); 782 } 783 784 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 785 { 786 struct vmap_block_queue *vbq; 787 struct vmap_block *vb; 788 unsigned long addr = 0; 789 unsigned int order; 790 791 BUG_ON(size & ~PAGE_MASK); 792 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 793 order = get_order(size); 794 795 again: 796 rcu_read_lock(); 797 vbq = &get_cpu_var(vmap_block_queue); 798 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 799 int i; 800 801 spin_lock(&vb->lock); 802 i = bitmap_find_free_region(vb->alloc_map, 803 VMAP_BBMAP_BITS, order); 804 805 if (i >= 0) { 806 addr = vb->va->va_start + (i << PAGE_SHIFT); 807 BUG_ON(addr_to_vb_idx(addr) != 808 addr_to_vb_idx(vb->va->va_start)); 809 vb->free -= 1UL << order; 810 if (vb->free == 0) { 811 spin_lock(&vbq->lock); 812 list_del_init(&vb->free_list); 813 spin_unlock(&vbq->lock); 814 } 815 spin_unlock(&vb->lock); 816 break; 817 } 818 spin_unlock(&vb->lock); 819 } 820 put_cpu_var(vmap_cpu_blocks); 821 rcu_read_unlock(); 822 823 if (!addr) { 824 vb = new_vmap_block(gfp_mask); 825 if (IS_ERR(vb)) 826 return vb; 827 goto again; 828 } 829 830 return (void *)addr; 831 } 832 833 static void vb_free(const void *addr, unsigned long size) 834 { 835 unsigned long offset; 836 unsigned long vb_idx; 837 unsigned int order; 838 struct vmap_block *vb; 839 840 BUG_ON(size & ~PAGE_MASK); 841 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 842 843 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 844 845 order = get_order(size); 846 847 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 848 849 vb_idx = addr_to_vb_idx((unsigned long)addr); 850 rcu_read_lock(); 851 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 852 rcu_read_unlock(); 853 BUG_ON(!vb); 854 855 spin_lock(&vb->lock); 856 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 857 858 vb->dirty += 1UL << order; 859 if (vb->dirty == VMAP_BBMAP_BITS) { 860 BUG_ON(vb->free || !list_empty(&vb->free_list)); 861 spin_unlock(&vb->lock); 862 free_vmap_block(vb); 863 } else 864 spin_unlock(&vb->lock); 865 } 866 867 /** 868 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 869 * 870 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 871 * to amortize TLB flushing overheads. What this means is that any page you 872 * have now, may, in a former life, have been mapped into kernel virtual 873 * address by the vmap layer and so there might be some CPUs with TLB entries 874 * still referencing that page (additional to the regular 1:1 kernel mapping). 875 * 876 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 877 * be sure that none of the pages we have control over will have any aliases 878 * from the vmap layer. 879 */ 880 void vm_unmap_aliases(void) 881 { 882 unsigned long start = ULONG_MAX, end = 0; 883 int cpu; 884 int flush = 0; 885 886 if (unlikely(!vmap_initialized)) 887 return; 888 889 for_each_possible_cpu(cpu) { 890 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 891 struct vmap_block *vb; 892 893 rcu_read_lock(); 894 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 895 int i; 896 897 spin_lock(&vb->lock); 898 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 899 while (i < VMAP_BBMAP_BITS) { 900 unsigned long s, e; 901 int j; 902 j = find_next_zero_bit(vb->dirty_map, 903 VMAP_BBMAP_BITS, i); 904 905 s = vb->va->va_start + (i << PAGE_SHIFT); 906 e = vb->va->va_start + (j << PAGE_SHIFT); 907 vunmap_page_range(s, e); 908 flush = 1; 909 910 if (s < start) 911 start = s; 912 if (e > end) 913 end = e; 914 915 i = j; 916 i = find_next_bit(vb->dirty_map, 917 VMAP_BBMAP_BITS, i); 918 } 919 spin_unlock(&vb->lock); 920 } 921 rcu_read_unlock(); 922 } 923 924 __purge_vmap_area_lazy(&start, &end, 1, flush); 925 } 926 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 927 928 /** 929 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 930 * @mem: the pointer returned by vm_map_ram 931 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 932 */ 933 void vm_unmap_ram(const void *mem, unsigned int count) 934 { 935 unsigned long size = count << PAGE_SHIFT; 936 unsigned long addr = (unsigned long)mem; 937 938 BUG_ON(!addr); 939 BUG_ON(addr < VMALLOC_START); 940 BUG_ON(addr > VMALLOC_END); 941 BUG_ON(addr & (PAGE_SIZE-1)); 942 943 debug_check_no_locks_freed(mem, size); 944 vmap_debug_free_range(addr, addr+size); 945 946 if (likely(count <= VMAP_MAX_ALLOC)) 947 vb_free(mem, size); 948 else 949 free_unmap_vmap_area_addr(addr); 950 } 951 EXPORT_SYMBOL(vm_unmap_ram); 952 953 /** 954 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 955 * @pages: an array of pointers to the pages to be mapped 956 * @count: number of pages 957 * @node: prefer to allocate data structures on this node 958 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 959 * 960 * Returns: a pointer to the address that has been mapped, or %NULL on failure 961 */ 962 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 963 { 964 unsigned long size = count << PAGE_SHIFT; 965 unsigned long addr; 966 void *mem; 967 968 if (likely(count <= VMAP_MAX_ALLOC)) { 969 mem = vb_alloc(size, GFP_KERNEL); 970 if (IS_ERR(mem)) 971 return NULL; 972 addr = (unsigned long)mem; 973 } else { 974 struct vmap_area *va; 975 va = alloc_vmap_area(size, PAGE_SIZE, 976 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 977 if (IS_ERR(va)) 978 return NULL; 979 980 addr = va->va_start; 981 mem = (void *)addr; 982 } 983 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 984 vm_unmap_ram(mem, count); 985 return NULL; 986 } 987 return mem; 988 } 989 EXPORT_SYMBOL(vm_map_ram); 990 991 /** 992 * vm_area_register_early - register vmap area early during boot 993 * @vm: vm_struct to register 994 * @align: requested alignment 995 * 996 * This function is used to register kernel vm area before 997 * vmalloc_init() is called. @vm->size and @vm->flags should contain 998 * proper values on entry and other fields should be zero. On return, 999 * vm->addr contains the allocated address. 1000 * 1001 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1002 */ 1003 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1004 { 1005 static size_t vm_init_off __initdata; 1006 unsigned long addr; 1007 1008 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1009 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1010 1011 vm->addr = (void *)addr; 1012 1013 vm->next = vmlist; 1014 vmlist = vm; 1015 } 1016 1017 void __init vmalloc_init(void) 1018 { 1019 struct vmap_area *va; 1020 struct vm_struct *tmp; 1021 int i; 1022 1023 for_each_possible_cpu(i) { 1024 struct vmap_block_queue *vbq; 1025 1026 vbq = &per_cpu(vmap_block_queue, i); 1027 spin_lock_init(&vbq->lock); 1028 INIT_LIST_HEAD(&vbq->free); 1029 INIT_LIST_HEAD(&vbq->dirty); 1030 vbq->nr_dirty = 0; 1031 } 1032 1033 /* Import existing vmlist entries. */ 1034 for (tmp = vmlist; tmp; tmp = tmp->next) { 1035 va = alloc_bootmem(sizeof(struct vmap_area)); 1036 va->flags = tmp->flags | VM_VM_AREA; 1037 va->va_start = (unsigned long)tmp->addr; 1038 va->va_end = va->va_start + tmp->size; 1039 __insert_vmap_area(va); 1040 } 1041 vmap_initialized = true; 1042 } 1043 1044 /** 1045 * map_kernel_range_noflush - map kernel VM area with the specified pages 1046 * @addr: start of the VM area to map 1047 * @size: size of the VM area to map 1048 * @prot: page protection flags to use 1049 * @pages: pages to map 1050 * 1051 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1052 * specify should have been allocated using get_vm_area() and its 1053 * friends. 1054 * 1055 * NOTE: 1056 * This function does NOT do any cache flushing. The caller is 1057 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1058 * before calling this function. 1059 * 1060 * RETURNS: 1061 * The number of pages mapped on success, -errno on failure. 1062 */ 1063 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1064 pgprot_t prot, struct page **pages) 1065 { 1066 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1067 } 1068 1069 /** 1070 * unmap_kernel_range_noflush - unmap kernel VM area 1071 * @addr: start of the VM area to unmap 1072 * @size: size of the VM area to unmap 1073 * 1074 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1075 * specify should have been allocated using get_vm_area() and its 1076 * friends. 1077 * 1078 * NOTE: 1079 * This function does NOT do any cache flushing. The caller is 1080 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1081 * before calling this function and flush_tlb_kernel_range() after. 1082 */ 1083 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1084 { 1085 vunmap_page_range(addr, addr + size); 1086 } 1087 1088 /** 1089 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1090 * @addr: start of the VM area to unmap 1091 * @size: size of the VM area to unmap 1092 * 1093 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1094 * the unmapping and tlb after. 1095 */ 1096 void unmap_kernel_range(unsigned long addr, unsigned long size) 1097 { 1098 unsigned long end = addr + size; 1099 1100 flush_cache_vunmap(addr, end); 1101 vunmap_page_range(addr, end); 1102 flush_tlb_kernel_range(addr, end); 1103 } 1104 1105 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1106 { 1107 unsigned long addr = (unsigned long)area->addr; 1108 unsigned long end = addr + area->size - PAGE_SIZE; 1109 int err; 1110 1111 err = vmap_page_range(addr, end, prot, *pages); 1112 if (err > 0) { 1113 *pages += err; 1114 err = 0; 1115 } 1116 1117 return err; 1118 } 1119 EXPORT_SYMBOL_GPL(map_vm_area); 1120 1121 /*** Old vmalloc interfaces ***/ 1122 DEFINE_RWLOCK(vmlist_lock); 1123 struct vm_struct *vmlist; 1124 1125 static struct vm_struct *__get_vm_area_node(unsigned long size, 1126 unsigned long flags, unsigned long start, unsigned long end, 1127 int node, gfp_t gfp_mask, void *caller) 1128 { 1129 static struct vmap_area *va; 1130 struct vm_struct *area; 1131 struct vm_struct *tmp, **p; 1132 unsigned long align = 1; 1133 1134 BUG_ON(in_interrupt()); 1135 if (flags & VM_IOREMAP) { 1136 int bit = fls(size); 1137 1138 if (bit > IOREMAP_MAX_ORDER) 1139 bit = IOREMAP_MAX_ORDER; 1140 else if (bit < PAGE_SHIFT) 1141 bit = PAGE_SHIFT; 1142 1143 align = 1ul << bit; 1144 } 1145 1146 size = PAGE_ALIGN(size); 1147 if (unlikely(!size)) 1148 return NULL; 1149 1150 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1151 if (unlikely(!area)) 1152 return NULL; 1153 1154 /* 1155 * We always allocate a guard page. 1156 */ 1157 size += PAGE_SIZE; 1158 1159 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1160 if (IS_ERR(va)) { 1161 kfree(area); 1162 return NULL; 1163 } 1164 1165 area->flags = flags; 1166 area->addr = (void *)va->va_start; 1167 area->size = size; 1168 area->pages = NULL; 1169 area->nr_pages = 0; 1170 area->phys_addr = 0; 1171 area->caller = caller; 1172 va->private = area; 1173 va->flags |= VM_VM_AREA; 1174 1175 write_lock(&vmlist_lock); 1176 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1177 if (tmp->addr >= area->addr) 1178 break; 1179 } 1180 area->next = *p; 1181 *p = area; 1182 write_unlock(&vmlist_lock); 1183 1184 return area; 1185 } 1186 1187 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1188 unsigned long start, unsigned long end) 1189 { 1190 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1191 __builtin_return_address(0)); 1192 } 1193 EXPORT_SYMBOL_GPL(__get_vm_area); 1194 1195 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1196 unsigned long start, unsigned long end, 1197 void *caller) 1198 { 1199 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1200 caller); 1201 } 1202 1203 /** 1204 * get_vm_area - reserve a contiguous kernel virtual area 1205 * @size: size of the area 1206 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1207 * 1208 * Search an area of @size in the kernel virtual mapping area, 1209 * and reserved it for out purposes. Returns the area descriptor 1210 * on success or %NULL on failure. 1211 */ 1212 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1213 { 1214 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1215 -1, GFP_KERNEL, __builtin_return_address(0)); 1216 } 1217 1218 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1219 void *caller) 1220 { 1221 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1222 -1, GFP_KERNEL, caller); 1223 } 1224 1225 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1226 int node, gfp_t gfp_mask) 1227 { 1228 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1229 gfp_mask, __builtin_return_address(0)); 1230 } 1231 1232 static struct vm_struct *find_vm_area(const void *addr) 1233 { 1234 struct vmap_area *va; 1235 1236 va = find_vmap_area((unsigned long)addr); 1237 if (va && va->flags & VM_VM_AREA) 1238 return va->private; 1239 1240 return NULL; 1241 } 1242 1243 /** 1244 * remove_vm_area - find and remove a continuous kernel virtual area 1245 * @addr: base address 1246 * 1247 * Search for the kernel VM area starting at @addr, and remove it. 1248 * This function returns the found VM area, but using it is NOT safe 1249 * on SMP machines, except for its size or flags. 1250 */ 1251 struct vm_struct *remove_vm_area(const void *addr) 1252 { 1253 struct vmap_area *va; 1254 1255 va = find_vmap_area((unsigned long)addr); 1256 if (va && va->flags & VM_VM_AREA) { 1257 struct vm_struct *vm = va->private; 1258 struct vm_struct *tmp, **p; 1259 1260 vmap_debug_free_range(va->va_start, va->va_end); 1261 free_unmap_vmap_area(va); 1262 vm->size -= PAGE_SIZE; 1263 1264 write_lock(&vmlist_lock); 1265 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1266 ; 1267 *p = tmp->next; 1268 write_unlock(&vmlist_lock); 1269 1270 return vm; 1271 } 1272 return NULL; 1273 } 1274 1275 static void __vunmap(const void *addr, int deallocate_pages) 1276 { 1277 struct vm_struct *area; 1278 1279 if (!addr) 1280 return; 1281 1282 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1283 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1284 return; 1285 } 1286 1287 area = remove_vm_area(addr); 1288 if (unlikely(!area)) { 1289 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1290 addr); 1291 return; 1292 } 1293 1294 debug_check_no_locks_freed(addr, area->size); 1295 debug_check_no_obj_freed(addr, area->size); 1296 1297 if (deallocate_pages) { 1298 int i; 1299 1300 for (i = 0; i < area->nr_pages; i++) { 1301 struct page *page = area->pages[i]; 1302 1303 BUG_ON(!page); 1304 __free_page(page); 1305 } 1306 1307 if (area->flags & VM_VPAGES) 1308 vfree(area->pages); 1309 else 1310 kfree(area->pages); 1311 } 1312 1313 kfree(area); 1314 return; 1315 } 1316 1317 /** 1318 * vfree - release memory allocated by vmalloc() 1319 * @addr: memory base address 1320 * 1321 * Free the virtually continuous memory area starting at @addr, as 1322 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1323 * NULL, no operation is performed. 1324 * 1325 * Must not be called in interrupt context. 1326 */ 1327 void vfree(const void *addr) 1328 { 1329 BUG_ON(in_interrupt()); 1330 __vunmap(addr, 1); 1331 } 1332 EXPORT_SYMBOL(vfree); 1333 1334 /** 1335 * vunmap - release virtual mapping obtained by vmap() 1336 * @addr: memory base address 1337 * 1338 * Free the virtually contiguous memory area starting at @addr, 1339 * which was created from the page array passed to vmap(). 1340 * 1341 * Must not be called in interrupt context. 1342 */ 1343 void vunmap(const void *addr) 1344 { 1345 BUG_ON(in_interrupt()); 1346 might_sleep(); 1347 __vunmap(addr, 0); 1348 } 1349 EXPORT_SYMBOL(vunmap); 1350 1351 /** 1352 * vmap - map an array of pages into virtually contiguous space 1353 * @pages: array of page pointers 1354 * @count: number of pages to map 1355 * @flags: vm_area->flags 1356 * @prot: page protection for the mapping 1357 * 1358 * Maps @count pages from @pages into contiguous kernel virtual 1359 * space. 1360 */ 1361 void *vmap(struct page **pages, unsigned int count, 1362 unsigned long flags, pgprot_t prot) 1363 { 1364 struct vm_struct *area; 1365 1366 might_sleep(); 1367 1368 if (count > num_physpages) 1369 return NULL; 1370 1371 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1372 __builtin_return_address(0)); 1373 if (!area) 1374 return NULL; 1375 1376 if (map_vm_area(area, prot, &pages)) { 1377 vunmap(area->addr); 1378 return NULL; 1379 } 1380 1381 return area->addr; 1382 } 1383 EXPORT_SYMBOL(vmap); 1384 1385 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1386 int node, void *caller); 1387 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1388 pgprot_t prot, int node, void *caller) 1389 { 1390 struct page **pages; 1391 unsigned int nr_pages, array_size, i; 1392 1393 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1394 array_size = (nr_pages * sizeof(struct page *)); 1395 1396 area->nr_pages = nr_pages; 1397 /* Please note that the recursion is strictly bounded. */ 1398 if (array_size > PAGE_SIZE) { 1399 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1400 PAGE_KERNEL, node, caller); 1401 area->flags |= VM_VPAGES; 1402 } else { 1403 pages = kmalloc_node(array_size, 1404 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1405 node); 1406 } 1407 area->pages = pages; 1408 area->caller = caller; 1409 if (!area->pages) { 1410 remove_vm_area(area->addr); 1411 kfree(area); 1412 return NULL; 1413 } 1414 1415 for (i = 0; i < area->nr_pages; i++) { 1416 struct page *page; 1417 1418 if (node < 0) 1419 page = alloc_page(gfp_mask); 1420 else 1421 page = alloc_pages_node(node, gfp_mask, 0); 1422 1423 if (unlikely(!page)) { 1424 /* Successfully allocated i pages, free them in __vunmap() */ 1425 area->nr_pages = i; 1426 goto fail; 1427 } 1428 area->pages[i] = page; 1429 } 1430 1431 if (map_vm_area(area, prot, &pages)) 1432 goto fail; 1433 return area->addr; 1434 1435 fail: 1436 vfree(area->addr); 1437 return NULL; 1438 } 1439 1440 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1441 { 1442 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1443 __builtin_return_address(0)); 1444 } 1445 1446 /** 1447 * __vmalloc_node - allocate virtually contiguous memory 1448 * @size: allocation size 1449 * @gfp_mask: flags for the page level allocator 1450 * @prot: protection mask for the allocated pages 1451 * @node: node to use for allocation or -1 1452 * @caller: caller's return address 1453 * 1454 * Allocate enough pages to cover @size from the page level 1455 * allocator with @gfp_mask flags. Map them into contiguous 1456 * kernel virtual space, using a pagetable protection of @prot. 1457 */ 1458 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1459 int node, void *caller) 1460 { 1461 struct vm_struct *area; 1462 1463 size = PAGE_ALIGN(size); 1464 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1465 return NULL; 1466 1467 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1468 node, gfp_mask, caller); 1469 1470 if (!area) 1471 return NULL; 1472 1473 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1474 } 1475 1476 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1477 { 1478 return __vmalloc_node(size, gfp_mask, prot, -1, 1479 __builtin_return_address(0)); 1480 } 1481 EXPORT_SYMBOL(__vmalloc); 1482 1483 /** 1484 * vmalloc - allocate virtually contiguous memory 1485 * @size: allocation size 1486 * Allocate enough pages to cover @size from the page level 1487 * allocator and map them into contiguous kernel virtual space. 1488 * 1489 * For tight control over page level allocator and protection flags 1490 * use __vmalloc() instead. 1491 */ 1492 void *vmalloc(unsigned long size) 1493 { 1494 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1495 -1, __builtin_return_address(0)); 1496 } 1497 EXPORT_SYMBOL(vmalloc); 1498 1499 /** 1500 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1501 * @size: allocation size 1502 * 1503 * The resulting memory area is zeroed so it can be mapped to userspace 1504 * without leaking data. 1505 */ 1506 void *vmalloc_user(unsigned long size) 1507 { 1508 struct vm_struct *area; 1509 void *ret; 1510 1511 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1512 PAGE_KERNEL, -1, __builtin_return_address(0)); 1513 if (ret) { 1514 area = find_vm_area(ret); 1515 area->flags |= VM_USERMAP; 1516 } 1517 return ret; 1518 } 1519 EXPORT_SYMBOL(vmalloc_user); 1520 1521 /** 1522 * vmalloc_node - allocate memory on a specific node 1523 * @size: allocation size 1524 * @node: numa node 1525 * 1526 * Allocate enough pages to cover @size from the page level 1527 * allocator and map them into contiguous kernel virtual space. 1528 * 1529 * For tight control over page level allocator and protection flags 1530 * use __vmalloc() instead. 1531 */ 1532 void *vmalloc_node(unsigned long size, int node) 1533 { 1534 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1535 node, __builtin_return_address(0)); 1536 } 1537 EXPORT_SYMBOL(vmalloc_node); 1538 1539 #ifndef PAGE_KERNEL_EXEC 1540 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1541 #endif 1542 1543 /** 1544 * vmalloc_exec - allocate virtually contiguous, executable memory 1545 * @size: allocation size 1546 * 1547 * Kernel-internal function to allocate enough pages to cover @size 1548 * the page level allocator and map them into contiguous and 1549 * executable kernel virtual space. 1550 * 1551 * For tight control over page level allocator and protection flags 1552 * use __vmalloc() instead. 1553 */ 1554 1555 void *vmalloc_exec(unsigned long size) 1556 { 1557 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1558 -1, __builtin_return_address(0)); 1559 } 1560 1561 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1562 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1563 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1564 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1565 #else 1566 #define GFP_VMALLOC32 GFP_KERNEL 1567 #endif 1568 1569 /** 1570 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1571 * @size: allocation size 1572 * 1573 * Allocate enough 32bit PA addressable pages to cover @size from the 1574 * page level allocator and map them into contiguous kernel virtual space. 1575 */ 1576 void *vmalloc_32(unsigned long size) 1577 { 1578 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, 1579 -1, __builtin_return_address(0)); 1580 } 1581 EXPORT_SYMBOL(vmalloc_32); 1582 1583 /** 1584 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1585 * @size: allocation size 1586 * 1587 * The resulting memory area is 32bit addressable and zeroed so it can be 1588 * mapped to userspace without leaking data. 1589 */ 1590 void *vmalloc_32_user(unsigned long size) 1591 { 1592 struct vm_struct *area; 1593 void *ret; 1594 1595 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1596 -1, __builtin_return_address(0)); 1597 if (ret) { 1598 area = find_vm_area(ret); 1599 area->flags |= VM_USERMAP; 1600 } 1601 return ret; 1602 } 1603 EXPORT_SYMBOL(vmalloc_32_user); 1604 1605 long vread(char *buf, char *addr, unsigned long count) 1606 { 1607 struct vm_struct *tmp; 1608 char *vaddr, *buf_start = buf; 1609 unsigned long n; 1610 1611 /* Don't allow overflow */ 1612 if ((unsigned long) addr + count < count) 1613 count = -(unsigned long) addr; 1614 1615 read_lock(&vmlist_lock); 1616 for (tmp = vmlist; tmp; tmp = tmp->next) { 1617 vaddr = (char *) tmp->addr; 1618 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1619 continue; 1620 while (addr < vaddr) { 1621 if (count == 0) 1622 goto finished; 1623 *buf = '\0'; 1624 buf++; 1625 addr++; 1626 count--; 1627 } 1628 n = vaddr + tmp->size - PAGE_SIZE - addr; 1629 do { 1630 if (count == 0) 1631 goto finished; 1632 *buf = *addr; 1633 buf++; 1634 addr++; 1635 count--; 1636 } while (--n > 0); 1637 } 1638 finished: 1639 read_unlock(&vmlist_lock); 1640 return buf - buf_start; 1641 } 1642 1643 long vwrite(char *buf, char *addr, unsigned long count) 1644 { 1645 struct vm_struct *tmp; 1646 char *vaddr, *buf_start = buf; 1647 unsigned long n; 1648 1649 /* Don't allow overflow */ 1650 if ((unsigned long) addr + count < count) 1651 count = -(unsigned long) addr; 1652 1653 read_lock(&vmlist_lock); 1654 for (tmp = vmlist; tmp; tmp = tmp->next) { 1655 vaddr = (char *) tmp->addr; 1656 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1657 continue; 1658 while (addr < vaddr) { 1659 if (count == 0) 1660 goto finished; 1661 buf++; 1662 addr++; 1663 count--; 1664 } 1665 n = vaddr + tmp->size - PAGE_SIZE - addr; 1666 do { 1667 if (count == 0) 1668 goto finished; 1669 *addr = *buf; 1670 buf++; 1671 addr++; 1672 count--; 1673 } while (--n > 0); 1674 } 1675 finished: 1676 read_unlock(&vmlist_lock); 1677 return buf - buf_start; 1678 } 1679 1680 /** 1681 * remap_vmalloc_range - map vmalloc pages to userspace 1682 * @vma: vma to cover (map full range of vma) 1683 * @addr: vmalloc memory 1684 * @pgoff: number of pages into addr before first page to map 1685 * 1686 * Returns: 0 for success, -Exxx on failure 1687 * 1688 * This function checks that addr is a valid vmalloc'ed area, and 1689 * that it is big enough to cover the vma. Will return failure if 1690 * that criteria isn't met. 1691 * 1692 * Similar to remap_pfn_range() (see mm/memory.c) 1693 */ 1694 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1695 unsigned long pgoff) 1696 { 1697 struct vm_struct *area; 1698 unsigned long uaddr = vma->vm_start; 1699 unsigned long usize = vma->vm_end - vma->vm_start; 1700 1701 if ((PAGE_SIZE-1) & (unsigned long)addr) 1702 return -EINVAL; 1703 1704 area = find_vm_area(addr); 1705 if (!area) 1706 return -EINVAL; 1707 1708 if (!(area->flags & VM_USERMAP)) 1709 return -EINVAL; 1710 1711 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1712 return -EINVAL; 1713 1714 addr += pgoff << PAGE_SHIFT; 1715 do { 1716 struct page *page = vmalloc_to_page(addr); 1717 int ret; 1718 1719 ret = vm_insert_page(vma, uaddr, page); 1720 if (ret) 1721 return ret; 1722 1723 uaddr += PAGE_SIZE; 1724 addr += PAGE_SIZE; 1725 usize -= PAGE_SIZE; 1726 } while (usize > 0); 1727 1728 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1729 vma->vm_flags |= VM_RESERVED; 1730 1731 return 0; 1732 } 1733 EXPORT_SYMBOL(remap_vmalloc_range); 1734 1735 /* 1736 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1737 * have one. 1738 */ 1739 void __attribute__((weak)) vmalloc_sync_all(void) 1740 { 1741 } 1742 1743 1744 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1745 { 1746 /* apply_to_page_range() does all the hard work. */ 1747 return 0; 1748 } 1749 1750 /** 1751 * alloc_vm_area - allocate a range of kernel address space 1752 * @size: size of the area 1753 * 1754 * Returns: NULL on failure, vm_struct on success 1755 * 1756 * This function reserves a range of kernel address space, and 1757 * allocates pagetables to map that range. No actual mappings 1758 * are created. If the kernel address space is not shared 1759 * between processes, it syncs the pagetable across all 1760 * processes. 1761 */ 1762 struct vm_struct *alloc_vm_area(size_t size) 1763 { 1764 struct vm_struct *area; 1765 1766 area = get_vm_area_caller(size, VM_IOREMAP, 1767 __builtin_return_address(0)); 1768 if (area == NULL) 1769 return NULL; 1770 1771 /* 1772 * This ensures that page tables are constructed for this region 1773 * of kernel virtual address space and mapped into init_mm. 1774 */ 1775 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1776 area->size, f, NULL)) { 1777 free_vm_area(area); 1778 return NULL; 1779 } 1780 1781 /* Make sure the pagetables are constructed in process kernel 1782 mappings */ 1783 vmalloc_sync_all(); 1784 1785 return area; 1786 } 1787 EXPORT_SYMBOL_GPL(alloc_vm_area); 1788 1789 void free_vm_area(struct vm_struct *area) 1790 { 1791 struct vm_struct *ret; 1792 ret = remove_vm_area(area->addr); 1793 BUG_ON(ret != area); 1794 kfree(area); 1795 } 1796 EXPORT_SYMBOL_GPL(free_vm_area); 1797 1798 1799 #ifdef CONFIG_PROC_FS 1800 static void *s_start(struct seq_file *m, loff_t *pos) 1801 { 1802 loff_t n = *pos; 1803 struct vm_struct *v; 1804 1805 read_lock(&vmlist_lock); 1806 v = vmlist; 1807 while (n > 0 && v) { 1808 n--; 1809 v = v->next; 1810 } 1811 if (!n) 1812 return v; 1813 1814 return NULL; 1815 1816 } 1817 1818 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1819 { 1820 struct vm_struct *v = p; 1821 1822 ++*pos; 1823 return v->next; 1824 } 1825 1826 static void s_stop(struct seq_file *m, void *p) 1827 { 1828 read_unlock(&vmlist_lock); 1829 } 1830 1831 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1832 { 1833 if (NUMA_BUILD) { 1834 unsigned int nr, *counters = m->private; 1835 1836 if (!counters) 1837 return; 1838 1839 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1840 1841 for (nr = 0; nr < v->nr_pages; nr++) 1842 counters[page_to_nid(v->pages[nr])]++; 1843 1844 for_each_node_state(nr, N_HIGH_MEMORY) 1845 if (counters[nr]) 1846 seq_printf(m, " N%u=%u", nr, counters[nr]); 1847 } 1848 } 1849 1850 static int s_show(struct seq_file *m, void *p) 1851 { 1852 struct vm_struct *v = p; 1853 1854 seq_printf(m, "0x%p-0x%p %7ld", 1855 v->addr, v->addr + v->size, v->size); 1856 1857 if (v->caller) { 1858 char buff[KSYM_SYMBOL_LEN]; 1859 1860 seq_putc(m, ' '); 1861 sprint_symbol(buff, (unsigned long)v->caller); 1862 seq_puts(m, buff); 1863 } 1864 1865 if (v->nr_pages) 1866 seq_printf(m, " pages=%d", v->nr_pages); 1867 1868 if (v->phys_addr) 1869 seq_printf(m, " phys=%lx", v->phys_addr); 1870 1871 if (v->flags & VM_IOREMAP) 1872 seq_printf(m, " ioremap"); 1873 1874 if (v->flags & VM_ALLOC) 1875 seq_printf(m, " vmalloc"); 1876 1877 if (v->flags & VM_MAP) 1878 seq_printf(m, " vmap"); 1879 1880 if (v->flags & VM_USERMAP) 1881 seq_printf(m, " user"); 1882 1883 if (v->flags & VM_VPAGES) 1884 seq_printf(m, " vpages"); 1885 1886 show_numa_info(m, v); 1887 seq_putc(m, '\n'); 1888 return 0; 1889 } 1890 1891 static const struct seq_operations vmalloc_op = { 1892 .start = s_start, 1893 .next = s_next, 1894 .stop = s_stop, 1895 .show = s_show, 1896 }; 1897 1898 static int vmalloc_open(struct inode *inode, struct file *file) 1899 { 1900 unsigned int *ptr = NULL; 1901 int ret; 1902 1903 if (NUMA_BUILD) 1904 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 1905 ret = seq_open(file, &vmalloc_op); 1906 if (!ret) { 1907 struct seq_file *m = file->private_data; 1908 m->private = ptr; 1909 } else 1910 kfree(ptr); 1911 return ret; 1912 } 1913 1914 static const struct file_operations proc_vmalloc_operations = { 1915 .open = vmalloc_open, 1916 .read = seq_read, 1917 .llseek = seq_lseek, 1918 .release = seq_release_private, 1919 }; 1920 1921 static int __init proc_vmalloc_init(void) 1922 { 1923 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 1924 return 0; 1925 } 1926 module_init(proc_vmalloc_init); 1927 #endif 1928 1929