xref: /linux/mm/vmalloc.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  */
9 
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/vmalloc.h>
18 
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 
22 
23 DEFINE_RWLOCK(vmlist_lock);
24 struct vm_struct *vmlist;
25 
26 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
27 {
28 	pte_t *pte;
29 
30 	pte = pte_offset_kernel(pmd, addr);
31 	do {
32 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
33 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
34 	} while (pte++, addr += PAGE_SIZE, addr != end);
35 }
36 
37 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
38 						unsigned long end)
39 {
40 	pmd_t *pmd;
41 	unsigned long next;
42 
43 	pmd = pmd_offset(pud, addr);
44 	do {
45 		next = pmd_addr_end(addr, end);
46 		if (pmd_none_or_clear_bad(pmd))
47 			continue;
48 		vunmap_pte_range(pmd, addr, next);
49 	} while (pmd++, addr = next, addr != end);
50 }
51 
52 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
53 						unsigned long end)
54 {
55 	pud_t *pud;
56 	unsigned long next;
57 
58 	pud = pud_offset(pgd, addr);
59 	do {
60 		next = pud_addr_end(addr, end);
61 		if (pud_none_or_clear_bad(pud))
62 			continue;
63 		vunmap_pmd_range(pud, addr, next);
64 	} while (pud++, addr = next, addr != end);
65 }
66 
67 void unmap_vm_area(struct vm_struct *area)
68 {
69 	pgd_t *pgd;
70 	unsigned long next;
71 	unsigned long addr = (unsigned long) area->addr;
72 	unsigned long end = addr + area->size;
73 
74 	BUG_ON(addr >= end);
75 	pgd = pgd_offset_k(addr);
76 	flush_cache_vunmap(addr, end);
77 	do {
78 		next = pgd_addr_end(addr, end);
79 		if (pgd_none_or_clear_bad(pgd))
80 			continue;
81 		vunmap_pud_range(pgd, addr, next);
82 	} while (pgd++, addr = next, addr != end);
83 	flush_tlb_kernel_range((unsigned long) area->addr, end);
84 }
85 
86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
87 			unsigned long end, pgprot_t prot, struct page ***pages)
88 {
89 	pte_t *pte;
90 
91 	pte = pte_alloc_kernel(&init_mm, pmd, addr);
92 	if (!pte)
93 		return -ENOMEM;
94 	do {
95 		struct page *page = **pages;
96 		WARN_ON(!pte_none(*pte));
97 		if (!page)
98 			return -ENOMEM;
99 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
100 		(*pages)++;
101 	} while (pte++, addr += PAGE_SIZE, addr != end);
102 	return 0;
103 }
104 
105 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
106 			unsigned long end, pgprot_t prot, struct page ***pages)
107 {
108 	pmd_t *pmd;
109 	unsigned long next;
110 
111 	pmd = pmd_alloc(&init_mm, pud, addr);
112 	if (!pmd)
113 		return -ENOMEM;
114 	do {
115 		next = pmd_addr_end(addr, end);
116 		if (vmap_pte_range(pmd, addr, next, prot, pages))
117 			return -ENOMEM;
118 	} while (pmd++, addr = next, addr != end);
119 	return 0;
120 }
121 
122 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
123 			unsigned long end, pgprot_t prot, struct page ***pages)
124 {
125 	pud_t *pud;
126 	unsigned long next;
127 
128 	pud = pud_alloc(&init_mm, pgd, addr);
129 	if (!pud)
130 		return -ENOMEM;
131 	do {
132 		next = pud_addr_end(addr, end);
133 		if (vmap_pmd_range(pud, addr, next, prot, pages))
134 			return -ENOMEM;
135 	} while (pud++, addr = next, addr != end);
136 	return 0;
137 }
138 
139 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
140 {
141 	pgd_t *pgd;
142 	unsigned long next;
143 	unsigned long addr = (unsigned long) area->addr;
144 	unsigned long end = addr + area->size - PAGE_SIZE;
145 	int err;
146 
147 	BUG_ON(addr >= end);
148 	pgd = pgd_offset_k(addr);
149 	spin_lock(&init_mm.page_table_lock);
150 	do {
151 		next = pgd_addr_end(addr, end);
152 		err = vmap_pud_range(pgd, addr, next, prot, pages);
153 		if (err)
154 			break;
155 	} while (pgd++, addr = next, addr != end);
156 	spin_unlock(&init_mm.page_table_lock);
157 	flush_cache_vmap((unsigned long) area->addr, end);
158 	return err;
159 }
160 
161 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
162 				unsigned long start, unsigned long end)
163 {
164 	struct vm_struct **p, *tmp, *area;
165 	unsigned long align = 1;
166 	unsigned long addr;
167 
168 	if (flags & VM_IOREMAP) {
169 		int bit = fls(size);
170 
171 		if (bit > IOREMAP_MAX_ORDER)
172 			bit = IOREMAP_MAX_ORDER;
173 		else if (bit < PAGE_SHIFT)
174 			bit = PAGE_SHIFT;
175 
176 		align = 1ul << bit;
177 	}
178 	addr = ALIGN(start, align);
179 	size = PAGE_ALIGN(size);
180 
181 	area = kmalloc(sizeof(*area), GFP_KERNEL);
182 	if (unlikely(!area))
183 		return NULL;
184 
185 	if (unlikely(!size)) {
186 		kfree (area);
187 		return NULL;
188 	}
189 
190 	/*
191 	 * We always allocate a guard page.
192 	 */
193 	size += PAGE_SIZE;
194 
195 	write_lock(&vmlist_lock);
196 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
197 		if ((unsigned long)tmp->addr < addr) {
198 			if((unsigned long)tmp->addr + tmp->size >= addr)
199 				addr = ALIGN(tmp->size +
200 					     (unsigned long)tmp->addr, align);
201 			continue;
202 		}
203 		if ((size + addr) < addr)
204 			goto out;
205 		if (size + addr <= (unsigned long)tmp->addr)
206 			goto found;
207 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
208 		if (addr > end - size)
209 			goto out;
210 	}
211 
212 found:
213 	area->next = *p;
214 	*p = area;
215 
216 	area->flags = flags;
217 	area->addr = (void *)addr;
218 	area->size = size;
219 	area->pages = NULL;
220 	area->nr_pages = 0;
221 	area->phys_addr = 0;
222 	write_unlock(&vmlist_lock);
223 
224 	return area;
225 
226 out:
227 	write_unlock(&vmlist_lock);
228 	kfree(area);
229 	if (printk_ratelimit())
230 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
231 	return NULL;
232 }
233 
234 /**
235  *	get_vm_area  -  reserve a contingous kernel virtual area
236  *
237  *	@size:		size of the area
238  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
239  *
240  *	Search an area of @size in the kernel virtual mapping area,
241  *	and reserved it for out purposes.  Returns the area descriptor
242  *	on success or %NULL on failure.
243  */
244 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
245 {
246 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
247 }
248 
249 /* Caller must hold vmlist_lock */
250 struct vm_struct *__remove_vm_area(void *addr)
251 {
252 	struct vm_struct **p, *tmp;
253 
254 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
255 		 if (tmp->addr == addr)
256 			 goto found;
257 	}
258 	return NULL;
259 
260 found:
261 	unmap_vm_area(tmp);
262 	*p = tmp->next;
263 
264 	/*
265 	 * Remove the guard page.
266 	 */
267 	tmp->size -= PAGE_SIZE;
268 	return tmp;
269 }
270 
271 /**
272  *	remove_vm_area  -  find and remove a contingous kernel virtual area
273  *
274  *	@addr:		base address
275  *
276  *	Search for the kernel VM area starting at @addr, and remove it.
277  *	This function returns the found VM area, but using it is NOT safe
278  *	on SMP machines, except for its size or flags.
279  */
280 struct vm_struct *remove_vm_area(void *addr)
281 {
282 	struct vm_struct *v;
283 	write_lock(&vmlist_lock);
284 	v = __remove_vm_area(addr);
285 	write_unlock(&vmlist_lock);
286 	return v;
287 }
288 
289 void __vunmap(void *addr, int deallocate_pages)
290 {
291 	struct vm_struct *area;
292 
293 	if (!addr)
294 		return;
295 
296 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
297 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
298 		WARN_ON(1);
299 		return;
300 	}
301 
302 	area = remove_vm_area(addr);
303 	if (unlikely(!area)) {
304 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
305 				addr);
306 		WARN_ON(1);
307 		return;
308 	}
309 
310 	if (deallocate_pages) {
311 		int i;
312 
313 		for (i = 0; i < area->nr_pages; i++) {
314 			if (unlikely(!area->pages[i]))
315 				BUG();
316 			__free_page(area->pages[i]);
317 		}
318 
319 		if (area->nr_pages > PAGE_SIZE/sizeof(struct page *))
320 			vfree(area->pages);
321 		else
322 			kfree(area->pages);
323 	}
324 
325 	kfree(area);
326 	return;
327 }
328 
329 /**
330  *	vfree  -  release memory allocated by vmalloc()
331  *
332  *	@addr:		memory base address
333  *
334  *	Free the virtually contiguous memory area starting at @addr, as
335  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
336  *	NULL, no operation is performed.
337  *
338  *	Must not be called in interrupt context.
339  */
340 void vfree(void *addr)
341 {
342 	BUG_ON(in_interrupt());
343 	__vunmap(addr, 1);
344 }
345 
346 EXPORT_SYMBOL(vfree);
347 
348 /**
349  *	vunmap  -  release virtual mapping obtained by vmap()
350  *
351  *	@addr:		memory base address
352  *
353  *	Free the virtually contiguous memory area starting at @addr,
354  *	which was created from the page array passed to vmap().
355  *
356  *	Must not be called in interrupt context.
357  */
358 void vunmap(void *addr)
359 {
360 	BUG_ON(in_interrupt());
361 	__vunmap(addr, 0);
362 }
363 
364 EXPORT_SYMBOL(vunmap);
365 
366 /**
367  *	vmap  -  map an array of pages into virtually contiguous space
368  *
369  *	@pages:		array of page pointers
370  *	@count:		number of pages to map
371  *	@flags:		vm_area->flags
372  *	@prot:		page protection for the mapping
373  *
374  *	Maps @count pages from @pages into contiguous kernel virtual
375  *	space.
376  */
377 void *vmap(struct page **pages, unsigned int count,
378 		unsigned long flags, pgprot_t prot)
379 {
380 	struct vm_struct *area;
381 
382 	if (count > num_physpages)
383 		return NULL;
384 
385 	area = get_vm_area((count << PAGE_SHIFT), flags);
386 	if (!area)
387 		return NULL;
388 	if (map_vm_area(area, prot, &pages)) {
389 		vunmap(area->addr);
390 		return NULL;
391 	}
392 
393 	return area->addr;
394 }
395 
396 EXPORT_SYMBOL(vmap);
397 
398 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
399 {
400 	struct page **pages;
401 	unsigned int nr_pages, array_size, i;
402 
403 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
404 	array_size = (nr_pages * sizeof(struct page *));
405 
406 	area->nr_pages = nr_pages;
407 	/* Please note that the recursion is strictly bounded. */
408 	if (array_size > PAGE_SIZE)
409 		pages = __vmalloc(array_size, gfp_mask, PAGE_KERNEL);
410 	else
411 		pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM));
412 	area->pages = pages;
413 	if (!area->pages) {
414 		remove_vm_area(area->addr);
415 		kfree(area);
416 		return NULL;
417 	}
418 	memset(area->pages, 0, array_size);
419 
420 	for (i = 0; i < area->nr_pages; i++) {
421 		area->pages[i] = alloc_page(gfp_mask);
422 		if (unlikely(!area->pages[i])) {
423 			/* Successfully allocated i pages, free them in __vunmap() */
424 			area->nr_pages = i;
425 			goto fail;
426 		}
427 	}
428 
429 	if (map_vm_area(area, prot, &pages))
430 		goto fail;
431 	return area->addr;
432 
433 fail:
434 	vfree(area->addr);
435 	return NULL;
436 }
437 
438 /**
439  *	__vmalloc  -  allocate virtually contiguous memory
440  *
441  *	@size:		allocation size
442  *	@gfp_mask:	flags for the page level allocator
443  *	@prot:		protection mask for the allocated pages
444  *
445  *	Allocate enough pages to cover @size from the page level
446  *	allocator with @gfp_mask flags.  Map them into contiguous
447  *	kernel virtual space, using a pagetable protection of @prot.
448  */
449 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
450 {
451 	struct vm_struct *area;
452 
453 	size = PAGE_ALIGN(size);
454 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
455 		return NULL;
456 
457 	area = get_vm_area(size, VM_ALLOC);
458 	if (!area)
459 		return NULL;
460 
461 	return __vmalloc_area(area, gfp_mask, prot);
462 }
463 
464 EXPORT_SYMBOL(__vmalloc);
465 
466 /**
467  *	vmalloc  -  allocate virtually contiguous memory
468  *
469  *	@size:		allocation size
470  *
471  *	Allocate enough pages to cover @size from the page level
472  *	allocator and map them into contiguous kernel virtual space.
473  *
474  *	For tight cotrol over page level allocator and protection flags
475  *	use __vmalloc() instead.
476  */
477 void *vmalloc(unsigned long size)
478 {
479        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
480 }
481 
482 EXPORT_SYMBOL(vmalloc);
483 
484 #ifndef PAGE_KERNEL_EXEC
485 # define PAGE_KERNEL_EXEC PAGE_KERNEL
486 #endif
487 
488 /**
489  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
490  *
491  *	@size:		allocation size
492  *
493  *	Kernel-internal function to allocate enough pages to cover @size
494  *	the page level allocator and map them into contiguous and
495  *	executable kernel virtual space.
496  *
497  *	For tight cotrol over page level allocator and protection flags
498  *	use __vmalloc() instead.
499  */
500 
501 void *vmalloc_exec(unsigned long size)
502 {
503 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
504 }
505 
506 /**
507  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
508  *
509  *	@size:		allocation size
510  *
511  *	Allocate enough 32bit PA addressable pages to cover @size from the
512  *	page level allocator and map them into contiguous kernel virtual space.
513  */
514 void *vmalloc_32(unsigned long size)
515 {
516 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
517 }
518 
519 EXPORT_SYMBOL(vmalloc_32);
520 
521 long vread(char *buf, char *addr, unsigned long count)
522 {
523 	struct vm_struct *tmp;
524 	char *vaddr, *buf_start = buf;
525 	unsigned long n;
526 
527 	/* Don't allow overflow */
528 	if ((unsigned long) addr + count < count)
529 		count = -(unsigned long) addr;
530 
531 	read_lock(&vmlist_lock);
532 	for (tmp = vmlist; tmp; tmp = tmp->next) {
533 		vaddr = (char *) tmp->addr;
534 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
535 			continue;
536 		while (addr < vaddr) {
537 			if (count == 0)
538 				goto finished;
539 			*buf = '\0';
540 			buf++;
541 			addr++;
542 			count--;
543 		}
544 		n = vaddr + tmp->size - PAGE_SIZE - addr;
545 		do {
546 			if (count == 0)
547 				goto finished;
548 			*buf = *addr;
549 			buf++;
550 			addr++;
551 			count--;
552 		} while (--n > 0);
553 	}
554 finished:
555 	read_unlock(&vmlist_lock);
556 	return buf - buf_start;
557 }
558 
559 long vwrite(char *buf, char *addr, unsigned long count)
560 {
561 	struct vm_struct *tmp;
562 	char *vaddr, *buf_start = buf;
563 	unsigned long n;
564 
565 	/* Don't allow overflow */
566 	if ((unsigned long) addr + count < count)
567 		count = -(unsigned long) addr;
568 
569 	read_lock(&vmlist_lock);
570 	for (tmp = vmlist; tmp; tmp = tmp->next) {
571 		vaddr = (char *) tmp->addr;
572 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
573 			continue;
574 		while (addr < vaddr) {
575 			if (count == 0)
576 				goto finished;
577 			buf++;
578 			addr++;
579 			count--;
580 		}
581 		n = vaddr + tmp->size - PAGE_SIZE - addr;
582 		do {
583 			if (count == 0)
584 				goto finished;
585 			*addr = *buf;
586 			buf++;
587 			addr++;
588 			count--;
589 		} while (--n > 0);
590 	}
591 finished:
592 	read_unlock(&vmlist_lock);
593 	return buf - buf_start;
594 }
595