xref: /linux/mm/vmalloc.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *t, *llnode;
53 
54 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 		__vunmap((void *)llnode, 1);
56 }
57 
58 /*** Page table manipulation functions ***/
59 
60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61 {
62 	pte_t *pte;
63 
64 	pte = pte_offset_kernel(pmd, addr);
65 	do {
66 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 	} while (pte++, addr += PAGE_SIZE, addr != end);
69 }
70 
71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
72 {
73 	pmd_t *pmd;
74 	unsigned long next;
75 
76 	pmd = pmd_offset(pud, addr);
77 	do {
78 		next = pmd_addr_end(addr, end);
79 		if (pmd_clear_huge(pmd))
80 			continue;
81 		if (pmd_none_or_clear_bad(pmd))
82 			continue;
83 		vunmap_pte_range(pmd, addr, next);
84 	} while (pmd++, addr = next, addr != end);
85 }
86 
87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
88 {
89 	pud_t *pud;
90 	unsigned long next;
91 
92 	pud = pud_offset(p4d, addr);
93 	do {
94 		next = pud_addr_end(addr, end);
95 		if (pud_clear_huge(pud))
96 			continue;
97 		if (pud_none_or_clear_bad(pud))
98 			continue;
99 		vunmap_pmd_range(pud, addr, next);
100 	} while (pud++, addr = next, addr != end);
101 }
102 
103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104 {
105 	p4d_t *p4d;
106 	unsigned long next;
107 
108 	p4d = p4d_offset(pgd, addr);
109 	do {
110 		next = p4d_addr_end(addr, end);
111 		if (p4d_clear_huge(p4d))
112 			continue;
113 		if (p4d_none_or_clear_bad(p4d))
114 			continue;
115 		vunmap_pud_range(p4d, addr, next);
116 	} while (p4d++, addr = next, addr != end);
117 }
118 
119 static void vunmap_page_range(unsigned long addr, unsigned long end)
120 {
121 	pgd_t *pgd;
122 	unsigned long next;
123 
124 	BUG_ON(addr >= end);
125 	pgd = pgd_offset_k(addr);
126 	do {
127 		next = pgd_addr_end(addr, end);
128 		if (pgd_none_or_clear_bad(pgd))
129 			continue;
130 		vunmap_p4d_range(pgd, addr, next);
131 	} while (pgd++, addr = next, addr != end);
132 }
133 
134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
135 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 	pte_t *pte;
138 
139 	/*
140 	 * nr is a running index into the array which helps higher level
141 	 * callers keep track of where we're up to.
142 	 */
143 
144 	pte = pte_alloc_kernel(pmd, addr);
145 	if (!pte)
146 		return -ENOMEM;
147 	do {
148 		struct page *page = pages[*nr];
149 
150 		if (WARN_ON(!pte_none(*pte)))
151 			return -EBUSY;
152 		if (WARN_ON(!page))
153 			return -ENOMEM;
154 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
155 		(*nr)++;
156 	} while (pte++, addr += PAGE_SIZE, addr != end);
157 	return 0;
158 }
159 
160 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc(&init_mm, pud, addr);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
172 			return -ENOMEM;
173 	} while (pmd++, addr = next, addr != end);
174 	return 0;
175 }
176 
177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
178 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 
183 	pud = pud_alloc(&init_mm, p4d, addr);
184 	if (!pud)
185 		return -ENOMEM;
186 	do {
187 		next = pud_addr_end(addr, end);
188 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
189 			return -ENOMEM;
190 	} while (pud++, addr = next, addr != end);
191 	return 0;
192 }
193 
194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196 {
197 	p4d_t *p4d;
198 	unsigned long next;
199 
200 	p4d = p4d_alloc(&init_mm, pgd, addr);
201 	if (!p4d)
202 		return -ENOMEM;
203 	do {
204 		next = p4d_addr_end(addr, end);
205 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 			return -ENOMEM;
207 	} while (p4d++, addr = next, addr != end);
208 	return 0;
209 }
210 
211 /*
212  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213  * will have pfns corresponding to the "pages" array.
214  *
215  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216  */
217 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 				   pgprot_t prot, struct page **pages)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	unsigned long addr = start;
223 	int err = 0;
224 	int nr = 0;
225 
226 	BUG_ON(addr >= end);
227 	pgd = pgd_offset_k(addr);
228 	do {
229 		next = pgd_addr_end(addr, end);
230 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
231 		if (err)
232 			return err;
233 	} while (pgd++, addr = next, addr != end);
234 
235 	return nr;
236 }
237 
238 static int vmap_page_range(unsigned long start, unsigned long end,
239 			   pgprot_t prot, struct page **pages)
240 {
241 	int ret;
242 
243 	ret = vmap_page_range_noflush(start, end, prot, pages);
244 	flush_cache_vmap(start, end);
245 	return ret;
246 }
247 
248 int is_vmalloc_or_module_addr(const void *x)
249 {
250 	/*
251 	 * ARM, x86-64 and sparc64 put modules in a special place,
252 	 * and fall back on vmalloc() if that fails. Others
253 	 * just put it in the vmalloc space.
254 	 */
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 	unsigned long addr = (unsigned long)x;
257 	if (addr >= MODULES_VADDR && addr < MODULES_END)
258 		return 1;
259 #endif
260 	return is_vmalloc_addr(x);
261 }
262 
263 /*
264  * Walk a vmap address to the struct page it maps.
265  */
266 struct page *vmalloc_to_page(const void *vmalloc_addr)
267 {
268 	unsigned long addr = (unsigned long) vmalloc_addr;
269 	struct page *page = NULL;
270 	pgd_t *pgd = pgd_offset_k(addr);
271 	p4d_t *p4d;
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *ptep, pte;
275 
276 	/*
277 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 	 * architectures that do not vmalloc module space
279 	 */
280 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
281 
282 	if (pgd_none(*pgd))
283 		return NULL;
284 	p4d = p4d_offset(pgd, addr);
285 	if (p4d_none(*p4d))
286 		return NULL;
287 	pud = pud_offset(p4d, addr);
288 
289 	/*
290 	 * Don't dereference bad PUD or PMD (below) entries. This will also
291 	 * identify huge mappings, which we may encounter on architectures
292 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 	 * not [unambiguously] associated with a struct page, so there is
295 	 * no correct value to return for them.
296 	 */
297 	WARN_ON_ONCE(pud_bad(*pud));
298 	if (pud_none(*pud) || pud_bad(*pud))
299 		return NULL;
300 	pmd = pmd_offset(pud, addr);
301 	WARN_ON_ONCE(pmd_bad(*pmd));
302 	if (pmd_none(*pmd) || pmd_bad(*pmd))
303 		return NULL;
304 
305 	ptep = pte_offset_map(pmd, addr);
306 	pte = *ptep;
307 	if (pte_present(pte))
308 		page = pte_page(pte);
309 	pte_unmap(ptep);
310 	return page;
311 }
312 EXPORT_SYMBOL(vmalloc_to_page);
313 
314 /*
315  * Map a vmalloc()-space virtual address to the physical page frame number.
316  */
317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318 {
319 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320 }
321 EXPORT_SYMBOL(vmalloc_to_pfn);
322 
323 
324 /*** Global kva allocator ***/
325 
326 #define VM_LAZY_FREE	0x02
327 #define VM_VM_AREA	0x04
328 
329 static DEFINE_SPINLOCK(vmap_area_lock);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list);
332 static LLIST_HEAD(vmap_purge_list);
333 static struct rb_root vmap_area_root = RB_ROOT;
334 
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node *free_vmap_cache;
337 static unsigned long cached_hole_size;
338 static unsigned long cached_vstart;
339 static unsigned long cached_align;
340 
341 static unsigned long vmap_area_pcpu_hole;
342 
343 static struct vmap_area *__find_vmap_area(unsigned long addr)
344 {
345 	struct rb_node *n = vmap_area_root.rb_node;
346 
347 	while (n) {
348 		struct vmap_area *va;
349 
350 		va = rb_entry(n, struct vmap_area, rb_node);
351 		if (addr < va->va_start)
352 			n = n->rb_left;
353 		else if (addr >= va->va_end)
354 			n = n->rb_right;
355 		else
356 			return va;
357 	}
358 
359 	return NULL;
360 }
361 
362 static void __insert_vmap_area(struct vmap_area *va)
363 {
364 	struct rb_node **p = &vmap_area_root.rb_node;
365 	struct rb_node *parent = NULL;
366 	struct rb_node *tmp;
367 
368 	while (*p) {
369 		struct vmap_area *tmp_va;
370 
371 		parent = *p;
372 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 		if (va->va_start < tmp_va->va_end)
374 			p = &(*p)->rb_left;
375 		else if (va->va_end > tmp_va->va_start)
376 			p = &(*p)->rb_right;
377 		else
378 			BUG();
379 	}
380 
381 	rb_link_node(&va->rb_node, parent, p);
382 	rb_insert_color(&va->rb_node, &vmap_area_root);
383 
384 	/* address-sort this list */
385 	tmp = rb_prev(&va->rb_node);
386 	if (tmp) {
387 		struct vmap_area *prev;
388 		prev = rb_entry(tmp, struct vmap_area, rb_node);
389 		list_add_rcu(&va->list, &prev->list);
390 	} else
391 		list_add_rcu(&va->list, &vmap_area_list);
392 }
393 
394 static void purge_vmap_area_lazy(void);
395 
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397 
398 /*
399  * Allocate a region of KVA of the specified size and alignment, within the
400  * vstart and vend.
401  */
402 static struct vmap_area *alloc_vmap_area(unsigned long size,
403 				unsigned long align,
404 				unsigned long vstart, unsigned long vend,
405 				int node, gfp_t gfp_mask)
406 {
407 	struct vmap_area *va;
408 	struct rb_node *n;
409 	unsigned long addr;
410 	int purged = 0;
411 	struct vmap_area *first;
412 
413 	BUG_ON(!size);
414 	BUG_ON(offset_in_page(size));
415 	BUG_ON(!is_power_of_2(align));
416 
417 	might_sleep();
418 
419 	va = kmalloc_node(sizeof(struct vmap_area),
420 			gfp_mask & GFP_RECLAIM_MASK, node);
421 	if (unlikely(!va))
422 		return ERR_PTR(-ENOMEM);
423 
424 	/*
425 	 * Only scan the relevant parts containing pointers to other objects
426 	 * to avoid false negatives.
427 	 */
428 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429 
430 retry:
431 	spin_lock(&vmap_area_lock);
432 	/*
433 	 * Invalidate cache if we have more permissive parameters.
434 	 * cached_hole_size notes the largest hole noticed _below_
435 	 * the vmap_area cached in free_vmap_cache: if size fits
436 	 * into that hole, we want to scan from vstart to reuse
437 	 * the hole instead of allocating above free_vmap_cache.
438 	 * Note that __free_vmap_area may update free_vmap_cache
439 	 * without updating cached_hole_size or cached_align.
440 	 */
441 	if (!free_vmap_cache ||
442 			size < cached_hole_size ||
443 			vstart < cached_vstart ||
444 			align < cached_align) {
445 nocache:
446 		cached_hole_size = 0;
447 		free_vmap_cache = NULL;
448 	}
449 	/* record if we encounter less permissive parameters */
450 	cached_vstart = vstart;
451 	cached_align = align;
452 
453 	/* find starting point for our search */
454 	if (free_vmap_cache) {
455 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456 		addr = ALIGN(first->va_end, align);
457 		if (addr < vstart)
458 			goto nocache;
459 		if (addr + size < addr)
460 			goto overflow;
461 
462 	} else {
463 		addr = ALIGN(vstart, align);
464 		if (addr + size < addr)
465 			goto overflow;
466 
467 		n = vmap_area_root.rb_node;
468 		first = NULL;
469 
470 		while (n) {
471 			struct vmap_area *tmp;
472 			tmp = rb_entry(n, struct vmap_area, rb_node);
473 			if (tmp->va_end >= addr) {
474 				first = tmp;
475 				if (tmp->va_start <= addr)
476 					break;
477 				n = n->rb_left;
478 			} else
479 				n = n->rb_right;
480 		}
481 
482 		if (!first)
483 			goto found;
484 	}
485 
486 	/* from the starting point, walk areas until a suitable hole is found */
487 	while (addr + size > first->va_start && addr + size <= vend) {
488 		if (addr + cached_hole_size < first->va_start)
489 			cached_hole_size = first->va_start - addr;
490 		addr = ALIGN(first->va_end, align);
491 		if (addr + size < addr)
492 			goto overflow;
493 
494 		if (list_is_last(&first->list, &vmap_area_list))
495 			goto found;
496 
497 		first = list_next_entry(first, list);
498 	}
499 
500 found:
501 	/*
502 	 * Check also calculated address against the vstart,
503 	 * because it can be 0 because of big align request.
504 	 */
505 	if (addr + size > vend || addr < vstart)
506 		goto overflow;
507 
508 	va->va_start = addr;
509 	va->va_end = addr + size;
510 	va->flags = 0;
511 	__insert_vmap_area(va);
512 	free_vmap_cache = &va->rb_node;
513 	spin_unlock(&vmap_area_lock);
514 
515 	BUG_ON(!IS_ALIGNED(va->va_start, align));
516 	BUG_ON(va->va_start < vstart);
517 	BUG_ON(va->va_end > vend);
518 
519 	return va;
520 
521 overflow:
522 	spin_unlock(&vmap_area_lock);
523 	if (!purged) {
524 		purge_vmap_area_lazy();
525 		purged = 1;
526 		goto retry;
527 	}
528 
529 	if (gfpflags_allow_blocking(gfp_mask)) {
530 		unsigned long freed = 0;
531 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
532 		if (freed > 0) {
533 			purged = 0;
534 			goto retry;
535 		}
536 	}
537 
538 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
539 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
540 			size);
541 	kfree(va);
542 	return ERR_PTR(-EBUSY);
543 }
544 
545 int register_vmap_purge_notifier(struct notifier_block *nb)
546 {
547 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
548 }
549 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
550 
551 int unregister_vmap_purge_notifier(struct notifier_block *nb)
552 {
553 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
554 }
555 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
556 
557 static void __free_vmap_area(struct vmap_area *va)
558 {
559 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
560 
561 	if (free_vmap_cache) {
562 		if (va->va_end < cached_vstart) {
563 			free_vmap_cache = NULL;
564 		} else {
565 			struct vmap_area *cache;
566 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
567 			if (va->va_start <= cache->va_start) {
568 				free_vmap_cache = rb_prev(&va->rb_node);
569 				/*
570 				 * We don't try to update cached_hole_size or
571 				 * cached_align, but it won't go very wrong.
572 				 */
573 			}
574 		}
575 	}
576 	rb_erase(&va->rb_node, &vmap_area_root);
577 	RB_CLEAR_NODE(&va->rb_node);
578 	list_del_rcu(&va->list);
579 
580 	/*
581 	 * Track the highest possible candidate for pcpu area
582 	 * allocation.  Areas outside of vmalloc area can be returned
583 	 * here too, consider only end addresses which fall inside
584 	 * vmalloc area proper.
585 	 */
586 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
587 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
588 
589 	kfree_rcu(va, rcu_head);
590 }
591 
592 /*
593  * Free a region of KVA allocated by alloc_vmap_area
594  */
595 static void free_vmap_area(struct vmap_area *va)
596 {
597 	spin_lock(&vmap_area_lock);
598 	__free_vmap_area(va);
599 	spin_unlock(&vmap_area_lock);
600 }
601 
602 /*
603  * Clear the pagetable entries of a given vmap_area
604  */
605 static void unmap_vmap_area(struct vmap_area *va)
606 {
607 	vunmap_page_range(va->va_start, va->va_end);
608 }
609 
610 /*
611  * lazy_max_pages is the maximum amount of virtual address space we gather up
612  * before attempting to purge with a TLB flush.
613  *
614  * There is a tradeoff here: a larger number will cover more kernel page tables
615  * and take slightly longer to purge, but it will linearly reduce the number of
616  * global TLB flushes that must be performed. It would seem natural to scale
617  * this number up linearly with the number of CPUs (because vmapping activity
618  * could also scale linearly with the number of CPUs), however it is likely
619  * that in practice, workloads might be constrained in other ways that mean
620  * vmap activity will not scale linearly with CPUs. Also, I want to be
621  * conservative and not introduce a big latency on huge systems, so go with
622  * a less aggressive log scale. It will still be an improvement over the old
623  * code, and it will be simple to change the scale factor if we find that it
624  * becomes a problem on bigger systems.
625  */
626 static unsigned long lazy_max_pages(void)
627 {
628 	unsigned int log;
629 
630 	log = fls(num_online_cpus());
631 
632 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
633 }
634 
635 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
636 
637 /*
638  * Serialize vmap purging.  There is no actual criticial section protected
639  * by this look, but we want to avoid concurrent calls for performance
640  * reasons and to make the pcpu_get_vm_areas more deterministic.
641  */
642 static DEFINE_MUTEX(vmap_purge_lock);
643 
644 /* for per-CPU blocks */
645 static void purge_fragmented_blocks_allcpus(void);
646 
647 /*
648  * called before a call to iounmap() if the caller wants vm_area_struct's
649  * immediately freed.
650  */
651 void set_iounmap_nonlazy(void)
652 {
653 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
654 }
655 
656 /*
657  * Purges all lazily-freed vmap areas.
658  */
659 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
660 {
661 	struct llist_node *valist;
662 	struct vmap_area *va;
663 	struct vmap_area *n_va;
664 	bool do_free = false;
665 
666 	lockdep_assert_held(&vmap_purge_lock);
667 
668 	valist = llist_del_all(&vmap_purge_list);
669 	llist_for_each_entry(va, valist, purge_list) {
670 		if (va->va_start < start)
671 			start = va->va_start;
672 		if (va->va_end > end)
673 			end = va->va_end;
674 		do_free = true;
675 	}
676 
677 	if (!do_free)
678 		return false;
679 
680 	flush_tlb_kernel_range(start, end);
681 
682 	spin_lock(&vmap_area_lock);
683 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
684 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
685 
686 		__free_vmap_area(va);
687 		atomic_sub(nr, &vmap_lazy_nr);
688 		cond_resched_lock(&vmap_area_lock);
689 	}
690 	spin_unlock(&vmap_area_lock);
691 	return true;
692 }
693 
694 /*
695  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
696  * is already purging.
697  */
698 static void try_purge_vmap_area_lazy(void)
699 {
700 	if (mutex_trylock(&vmap_purge_lock)) {
701 		__purge_vmap_area_lazy(ULONG_MAX, 0);
702 		mutex_unlock(&vmap_purge_lock);
703 	}
704 }
705 
706 /*
707  * Kick off a purge of the outstanding lazy areas.
708  */
709 static void purge_vmap_area_lazy(void)
710 {
711 	mutex_lock(&vmap_purge_lock);
712 	purge_fragmented_blocks_allcpus();
713 	__purge_vmap_area_lazy(ULONG_MAX, 0);
714 	mutex_unlock(&vmap_purge_lock);
715 }
716 
717 /*
718  * Free a vmap area, caller ensuring that the area has been unmapped
719  * and flush_cache_vunmap had been called for the correct range
720  * previously.
721  */
722 static void free_vmap_area_noflush(struct vmap_area *va)
723 {
724 	int nr_lazy;
725 
726 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
727 				    &vmap_lazy_nr);
728 
729 	/* After this point, we may free va at any time */
730 	llist_add(&va->purge_list, &vmap_purge_list);
731 
732 	if (unlikely(nr_lazy > lazy_max_pages()))
733 		try_purge_vmap_area_lazy();
734 }
735 
736 /*
737  * Free and unmap a vmap area
738  */
739 static void free_unmap_vmap_area(struct vmap_area *va)
740 {
741 	flush_cache_vunmap(va->va_start, va->va_end);
742 	unmap_vmap_area(va);
743 	if (debug_pagealloc_enabled())
744 		flush_tlb_kernel_range(va->va_start, va->va_end);
745 
746 	free_vmap_area_noflush(va);
747 }
748 
749 static struct vmap_area *find_vmap_area(unsigned long addr)
750 {
751 	struct vmap_area *va;
752 
753 	spin_lock(&vmap_area_lock);
754 	va = __find_vmap_area(addr);
755 	spin_unlock(&vmap_area_lock);
756 
757 	return va;
758 }
759 
760 /*** Per cpu kva allocator ***/
761 
762 /*
763  * vmap space is limited especially on 32 bit architectures. Ensure there is
764  * room for at least 16 percpu vmap blocks per CPU.
765  */
766 /*
767  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
768  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
769  * instead (we just need a rough idea)
770  */
771 #if BITS_PER_LONG == 32
772 #define VMALLOC_SPACE		(128UL*1024*1024)
773 #else
774 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
775 #endif
776 
777 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
778 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
779 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
780 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
781 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
782 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
783 #define VMAP_BBMAP_BITS		\
784 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
785 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
786 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
787 
788 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
789 
790 static bool vmap_initialized __read_mostly = false;
791 
792 struct vmap_block_queue {
793 	spinlock_t lock;
794 	struct list_head free;
795 };
796 
797 struct vmap_block {
798 	spinlock_t lock;
799 	struct vmap_area *va;
800 	unsigned long free, dirty;
801 	unsigned long dirty_min, dirty_max; /*< dirty range */
802 	struct list_head free_list;
803 	struct rcu_head rcu_head;
804 	struct list_head purge;
805 };
806 
807 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
808 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
809 
810 /*
811  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
812  * in the free path. Could get rid of this if we change the API to return a
813  * "cookie" from alloc, to be passed to free. But no big deal yet.
814  */
815 static DEFINE_SPINLOCK(vmap_block_tree_lock);
816 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
817 
818 /*
819  * We should probably have a fallback mechanism to allocate virtual memory
820  * out of partially filled vmap blocks. However vmap block sizing should be
821  * fairly reasonable according to the vmalloc size, so it shouldn't be a
822  * big problem.
823  */
824 
825 static unsigned long addr_to_vb_idx(unsigned long addr)
826 {
827 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
828 	addr /= VMAP_BLOCK_SIZE;
829 	return addr;
830 }
831 
832 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
833 {
834 	unsigned long addr;
835 
836 	addr = va_start + (pages_off << PAGE_SHIFT);
837 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
838 	return (void *)addr;
839 }
840 
841 /**
842  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
843  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
844  * @order:    how many 2^order pages should be occupied in newly allocated block
845  * @gfp_mask: flags for the page level allocator
846  *
847  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
848  */
849 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
850 {
851 	struct vmap_block_queue *vbq;
852 	struct vmap_block *vb;
853 	struct vmap_area *va;
854 	unsigned long vb_idx;
855 	int node, err;
856 	void *vaddr;
857 
858 	node = numa_node_id();
859 
860 	vb = kmalloc_node(sizeof(struct vmap_block),
861 			gfp_mask & GFP_RECLAIM_MASK, node);
862 	if (unlikely(!vb))
863 		return ERR_PTR(-ENOMEM);
864 
865 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
866 					VMALLOC_START, VMALLOC_END,
867 					node, gfp_mask);
868 	if (IS_ERR(va)) {
869 		kfree(vb);
870 		return ERR_CAST(va);
871 	}
872 
873 	err = radix_tree_preload(gfp_mask);
874 	if (unlikely(err)) {
875 		kfree(vb);
876 		free_vmap_area(va);
877 		return ERR_PTR(err);
878 	}
879 
880 	vaddr = vmap_block_vaddr(va->va_start, 0);
881 	spin_lock_init(&vb->lock);
882 	vb->va = va;
883 	/* At least something should be left free */
884 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
885 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
886 	vb->dirty = 0;
887 	vb->dirty_min = VMAP_BBMAP_BITS;
888 	vb->dirty_max = 0;
889 	INIT_LIST_HEAD(&vb->free_list);
890 
891 	vb_idx = addr_to_vb_idx(va->va_start);
892 	spin_lock(&vmap_block_tree_lock);
893 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
894 	spin_unlock(&vmap_block_tree_lock);
895 	BUG_ON(err);
896 	radix_tree_preload_end();
897 
898 	vbq = &get_cpu_var(vmap_block_queue);
899 	spin_lock(&vbq->lock);
900 	list_add_tail_rcu(&vb->free_list, &vbq->free);
901 	spin_unlock(&vbq->lock);
902 	put_cpu_var(vmap_block_queue);
903 
904 	return vaddr;
905 }
906 
907 static void free_vmap_block(struct vmap_block *vb)
908 {
909 	struct vmap_block *tmp;
910 	unsigned long vb_idx;
911 
912 	vb_idx = addr_to_vb_idx(vb->va->va_start);
913 	spin_lock(&vmap_block_tree_lock);
914 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
915 	spin_unlock(&vmap_block_tree_lock);
916 	BUG_ON(tmp != vb);
917 
918 	free_vmap_area_noflush(vb->va);
919 	kfree_rcu(vb, rcu_head);
920 }
921 
922 static void purge_fragmented_blocks(int cpu)
923 {
924 	LIST_HEAD(purge);
925 	struct vmap_block *vb;
926 	struct vmap_block *n_vb;
927 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
928 
929 	rcu_read_lock();
930 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
931 
932 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
933 			continue;
934 
935 		spin_lock(&vb->lock);
936 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
937 			vb->free = 0; /* prevent further allocs after releasing lock */
938 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
939 			vb->dirty_min = 0;
940 			vb->dirty_max = VMAP_BBMAP_BITS;
941 			spin_lock(&vbq->lock);
942 			list_del_rcu(&vb->free_list);
943 			spin_unlock(&vbq->lock);
944 			spin_unlock(&vb->lock);
945 			list_add_tail(&vb->purge, &purge);
946 		} else
947 			spin_unlock(&vb->lock);
948 	}
949 	rcu_read_unlock();
950 
951 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
952 		list_del(&vb->purge);
953 		free_vmap_block(vb);
954 	}
955 }
956 
957 static void purge_fragmented_blocks_allcpus(void)
958 {
959 	int cpu;
960 
961 	for_each_possible_cpu(cpu)
962 		purge_fragmented_blocks(cpu);
963 }
964 
965 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
966 {
967 	struct vmap_block_queue *vbq;
968 	struct vmap_block *vb;
969 	void *vaddr = NULL;
970 	unsigned int order;
971 
972 	BUG_ON(offset_in_page(size));
973 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
974 	if (WARN_ON(size == 0)) {
975 		/*
976 		 * Allocating 0 bytes isn't what caller wants since
977 		 * get_order(0) returns funny result. Just warn and terminate
978 		 * early.
979 		 */
980 		return NULL;
981 	}
982 	order = get_order(size);
983 
984 	rcu_read_lock();
985 	vbq = &get_cpu_var(vmap_block_queue);
986 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
987 		unsigned long pages_off;
988 
989 		spin_lock(&vb->lock);
990 		if (vb->free < (1UL << order)) {
991 			spin_unlock(&vb->lock);
992 			continue;
993 		}
994 
995 		pages_off = VMAP_BBMAP_BITS - vb->free;
996 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
997 		vb->free -= 1UL << order;
998 		if (vb->free == 0) {
999 			spin_lock(&vbq->lock);
1000 			list_del_rcu(&vb->free_list);
1001 			spin_unlock(&vbq->lock);
1002 		}
1003 
1004 		spin_unlock(&vb->lock);
1005 		break;
1006 	}
1007 
1008 	put_cpu_var(vmap_block_queue);
1009 	rcu_read_unlock();
1010 
1011 	/* Allocate new block if nothing was found */
1012 	if (!vaddr)
1013 		vaddr = new_vmap_block(order, gfp_mask);
1014 
1015 	return vaddr;
1016 }
1017 
1018 static void vb_free(const void *addr, unsigned long size)
1019 {
1020 	unsigned long offset;
1021 	unsigned long vb_idx;
1022 	unsigned int order;
1023 	struct vmap_block *vb;
1024 
1025 	BUG_ON(offset_in_page(size));
1026 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1027 
1028 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1029 
1030 	order = get_order(size);
1031 
1032 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1033 	offset >>= PAGE_SHIFT;
1034 
1035 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1036 	rcu_read_lock();
1037 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1038 	rcu_read_unlock();
1039 	BUG_ON(!vb);
1040 
1041 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1042 
1043 	if (debug_pagealloc_enabled())
1044 		flush_tlb_kernel_range((unsigned long)addr,
1045 					(unsigned long)addr + size);
1046 
1047 	spin_lock(&vb->lock);
1048 
1049 	/* Expand dirty range */
1050 	vb->dirty_min = min(vb->dirty_min, offset);
1051 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1052 
1053 	vb->dirty += 1UL << order;
1054 	if (vb->dirty == VMAP_BBMAP_BITS) {
1055 		BUG_ON(vb->free);
1056 		spin_unlock(&vb->lock);
1057 		free_vmap_block(vb);
1058 	} else
1059 		spin_unlock(&vb->lock);
1060 }
1061 
1062 /**
1063  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1064  *
1065  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1066  * to amortize TLB flushing overheads. What this means is that any page you
1067  * have now, may, in a former life, have been mapped into kernel virtual
1068  * address by the vmap layer and so there might be some CPUs with TLB entries
1069  * still referencing that page (additional to the regular 1:1 kernel mapping).
1070  *
1071  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1072  * be sure that none of the pages we have control over will have any aliases
1073  * from the vmap layer.
1074  */
1075 void vm_unmap_aliases(void)
1076 {
1077 	unsigned long start = ULONG_MAX, end = 0;
1078 	int cpu;
1079 	int flush = 0;
1080 
1081 	if (unlikely(!vmap_initialized))
1082 		return;
1083 
1084 	might_sleep();
1085 
1086 	for_each_possible_cpu(cpu) {
1087 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1088 		struct vmap_block *vb;
1089 
1090 		rcu_read_lock();
1091 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1092 			spin_lock(&vb->lock);
1093 			if (vb->dirty) {
1094 				unsigned long va_start = vb->va->va_start;
1095 				unsigned long s, e;
1096 
1097 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1098 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1099 
1100 				start = min(s, start);
1101 				end   = max(e, end);
1102 
1103 				flush = 1;
1104 			}
1105 			spin_unlock(&vb->lock);
1106 		}
1107 		rcu_read_unlock();
1108 	}
1109 
1110 	mutex_lock(&vmap_purge_lock);
1111 	purge_fragmented_blocks_allcpus();
1112 	if (!__purge_vmap_area_lazy(start, end) && flush)
1113 		flush_tlb_kernel_range(start, end);
1114 	mutex_unlock(&vmap_purge_lock);
1115 }
1116 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1117 
1118 /**
1119  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1120  * @mem: the pointer returned by vm_map_ram
1121  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1122  */
1123 void vm_unmap_ram(const void *mem, unsigned int count)
1124 {
1125 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1126 	unsigned long addr = (unsigned long)mem;
1127 	struct vmap_area *va;
1128 
1129 	might_sleep();
1130 	BUG_ON(!addr);
1131 	BUG_ON(addr < VMALLOC_START);
1132 	BUG_ON(addr > VMALLOC_END);
1133 	BUG_ON(!PAGE_ALIGNED(addr));
1134 
1135 	if (likely(count <= VMAP_MAX_ALLOC)) {
1136 		debug_check_no_locks_freed(mem, size);
1137 		vb_free(mem, size);
1138 		return;
1139 	}
1140 
1141 	va = find_vmap_area(addr);
1142 	BUG_ON(!va);
1143 	debug_check_no_locks_freed((void *)va->va_start,
1144 				    (va->va_end - va->va_start));
1145 	free_unmap_vmap_area(va);
1146 }
1147 EXPORT_SYMBOL(vm_unmap_ram);
1148 
1149 /**
1150  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1151  * @pages: an array of pointers to the pages to be mapped
1152  * @count: number of pages
1153  * @node: prefer to allocate data structures on this node
1154  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1155  *
1156  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1157  * faster than vmap so it's good.  But if you mix long-life and short-life
1158  * objects with vm_map_ram(), it could consume lots of address space through
1159  * fragmentation (especially on a 32bit machine).  You could see failures in
1160  * the end.  Please use this function for short-lived objects.
1161  *
1162  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1163  */
1164 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1165 {
1166 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1167 	unsigned long addr;
1168 	void *mem;
1169 
1170 	if (likely(count <= VMAP_MAX_ALLOC)) {
1171 		mem = vb_alloc(size, GFP_KERNEL);
1172 		if (IS_ERR(mem))
1173 			return NULL;
1174 		addr = (unsigned long)mem;
1175 	} else {
1176 		struct vmap_area *va;
1177 		va = alloc_vmap_area(size, PAGE_SIZE,
1178 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1179 		if (IS_ERR(va))
1180 			return NULL;
1181 
1182 		addr = va->va_start;
1183 		mem = (void *)addr;
1184 	}
1185 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1186 		vm_unmap_ram(mem, count);
1187 		return NULL;
1188 	}
1189 	return mem;
1190 }
1191 EXPORT_SYMBOL(vm_map_ram);
1192 
1193 static struct vm_struct *vmlist __initdata;
1194 /**
1195  * vm_area_add_early - add vmap area early during boot
1196  * @vm: vm_struct to add
1197  *
1198  * This function is used to add fixed kernel vm area to vmlist before
1199  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1200  * should contain proper values and the other fields should be zero.
1201  *
1202  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1203  */
1204 void __init vm_area_add_early(struct vm_struct *vm)
1205 {
1206 	struct vm_struct *tmp, **p;
1207 
1208 	BUG_ON(vmap_initialized);
1209 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1210 		if (tmp->addr >= vm->addr) {
1211 			BUG_ON(tmp->addr < vm->addr + vm->size);
1212 			break;
1213 		} else
1214 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1215 	}
1216 	vm->next = *p;
1217 	*p = vm;
1218 }
1219 
1220 /**
1221  * vm_area_register_early - register vmap area early during boot
1222  * @vm: vm_struct to register
1223  * @align: requested alignment
1224  *
1225  * This function is used to register kernel vm area before
1226  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1227  * proper values on entry and other fields should be zero.  On return,
1228  * vm->addr contains the allocated address.
1229  *
1230  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1231  */
1232 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1233 {
1234 	static size_t vm_init_off __initdata;
1235 	unsigned long addr;
1236 
1237 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1238 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1239 
1240 	vm->addr = (void *)addr;
1241 
1242 	vm_area_add_early(vm);
1243 }
1244 
1245 void __init vmalloc_init(void)
1246 {
1247 	struct vmap_area *va;
1248 	struct vm_struct *tmp;
1249 	int i;
1250 
1251 	for_each_possible_cpu(i) {
1252 		struct vmap_block_queue *vbq;
1253 		struct vfree_deferred *p;
1254 
1255 		vbq = &per_cpu(vmap_block_queue, i);
1256 		spin_lock_init(&vbq->lock);
1257 		INIT_LIST_HEAD(&vbq->free);
1258 		p = &per_cpu(vfree_deferred, i);
1259 		init_llist_head(&p->list);
1260 		INIT_WORK(&p->wq, free_work);
1261 	}
1262 
1263 	/* Import existing vmlist entries. */
1264 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1265 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1266 		va->flags = VM_VM_AREA;
1267 		va->va_start = (unsigned long)tmp->addr;
1268 		va->va_end = va->va_start + tmp->size;
1269 		va->vm = tmp;
1270 		__insert_vmap_area(va);
1271 	}
1272 
1273 	vmap_area_pcpu_hole = VMALLOC_END;
1274 
1275 	vmap_initialized = true;
1276 }
1277 
1278 /**
1279  * map_kernel_range_noflush - map kernel VM area with the specified pages
1280  * @addr: start of the VM area to map
1281  * @size: size of the VM area to map
1282  * @prot: page protection flags to use
1283  * @pages: pages to map
1284  *
1285  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1286  * specify should have been allocated using get_vm_area() and its
1287  * friends.
1288  *
1289  * NOTE:
1290  * This function does NOT do any cache flushing.  The caller is
1291  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1292  * before calling this function.
1293  *
1294  * RETURNS:
1295  * The number of pages mapped on success, -errno on failure.
1296  */
1297 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1298 			     pgprot_t prot, struct page **pages)
1299 {
1300 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1301 }
1302 
1303 /**
1304  * unmap_kernel_range_noflush - unmap kernel VM area
1305  * @addr: start of the VM area to unmap
1306  * @size: size of the VM area to unmap
1307  *
1308  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1309  * specify should have been allocated using get_vm_area() and its
1310  * friends.
1311  *
1312  * NOTE:
1313  * This function does NOT do any cache flushing.  The caller is
1314  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1315  * before calling this function and flush_tlb_kernel_range() after.
1316  */
1317 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1318 {
1319 	vunmap_page_range(addr, addr + size);
1320 }
1321 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1322 
1323 /**
1324  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1325  * @addr: start of the VM area to unmap
1326  * @size: size of the VM area to unmap
1327  *
1328  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1329  * the unmapping and tlb after.
1330  */
1331 void unmap_kernel_range(unsigned long addr, unsigned long size)
1332 {
1333 	unsigned long end = addr + size;
1334 
1335 	flush_cache_vunmap(addr, end);
1336 	vunmap_page_range(addr, end);
1337 	flush_tlb_kernel_range(addr, end);
1338 }
1339 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1340 
1341 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1342 {
1343 	unsigned long addr = (unsigned long)area->addr;
1344 	unsigned long end = addr + get_vm_area_size(area);
1345 	int err;
1346 
1347 	err = vmap_page_range(addr, end, prot, pages);
1348 
1349 	return err > 0 ? 0 : err;
1350 }
1351 EXPORT_SYMBOL_GPL(map_vm_area);
1352 
1353 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1354 			      unsigned long flags, const void *caller)
1355 {
1356 	spin_lock(&vmap_area_lock);
1357 	vm->flags = flags;
1358 	vm->addr = (void *)va->va_start;
1359 	vm->size = va->va_end - va->va_start;
1360 	vm->caller = caller;
1361 	va->vm = vm;
1362 	va->flags |= VM_VM_AREA;
1363 	spin_unlock(&vmap_area_lock);
1364 }
1365 
1366 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1367 {
1368 	/*
1369 	 * Before removing VM_UNINITIALIZED,
1370 	 * we should make sure that vm has proper values.
1371 	 * Pair with smp_rmb() in show_numa_info().
1372 	 */
1373 	smp_wmb();
1374 	vm->flags &= ~VM_UNINITIALIZED;
1375 }
1376 
1377 static struct vm_struct *__get_vm_area_node(unsigned long size,
1378 		unsigned long align, unsigned long flags, unsigned long start,
1379 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1380 {
1381 	struct vmap_area *va;
1382 	struct vm_struct *area;
1383 
1384 	BUG_ON(in_interrupt());
1385 	size = PAGE_ALIGN(size);
1386 	if (unlikely(!size))
1387 		return NULL;
1388 
1389 	if (flags & VM_IOREMAP)
1390 		align = 1ul << clamp_t(int, get_count_order_long(size),
1391 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1392 
1393 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1394 	if (unlikely(!area))
1395 		return NULL;
1396 
1397 	if (!(flags & VM_NO_GUARD))
1398 		size += PAGE_SIZE;
1399 
1400 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1401 	if (IS_ERR(va)) {
1402 		kfree(area);
1403 		return NULL;
1404 	}
1405 
1406 	setup_vmalloc_vm(area, va, flags, caller);
1407 
1408 	return area;
1409 }
1410 
1411 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1412 				unsigned long start, unsigned long end)
1413 {
1414 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1415 				  GFP_KERNEL, __builtin_return_address(0));
1416 }
1417 EXPORT_SYMBOL_GPL(__get_vm_area);
1418 
1419 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1420 				       unsigned long start, unsigned long end,
1421 				       const void *caller)
1422 {
1423 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1424 				  GFP_KERNEL, caller);
1425 }
1426 
1427 /**
1428  *	get_vm_area  -  reserve a contiguous kernel virtual area
1429  *	@size:		size of the area
1430  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1431  *
1432  *	Search an area of @size in the kernel virtual mapping area,
1433  *	and reserved it for out purposes.  Returns the area descriptor
1434  *	on success or %NULL on failure.
1435  */
1436 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1437 {
1438 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1439 				  NUMA_NO_NODE, GFP_KERNEL,
1440 				  __builtin_return_address(0));
1441 }
1442 
1443 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1444 				const void *caller)
1445 {
1446 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1447 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1448 }
1449 
1450 /**
1451  *	find_vm_area  -  find a continuous kernel virtual area
1452  *	@addr:		base address
1453  *
1454  *	Search for the kernel VM area starting at @addr, and return it.
1455  *	It is up to the caller to do all required locking to keep the returned
1456  *	pointer valid.
1457  */
1458 struct vm_struct *find_vm_area(const void *addr)
1459 {
1460 	struct vmap_area *va;
1461 
1462 	va = find_vmap_area((unsigned long)addr);
1463 	if (va && va->flags & VM_VM_AREA)
1464 		return va->vm;
1465 
1466 	return NULL;
1467 }
1468 
1469 /**
1470  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1471  *	@addr:		base address
1472  *
1473  *	Search for the kernel VM area starting at @addr, and remove it.
1474  *	This function returns the found VM area, but using it is NOT safe
1475  *	on SMP machines, except for its size or flags.
1476  */
1477 struct vm_struct *remove_vm_area(const void *addr)
1478 {
1479 	struct vmap_area *va;
1480 
1481 	might_sleep();
1482 
1483 	va = find_vmap_area((unsigned long)addr);
1484 	if (va && va->flags & VM_VM_AREA) {
1485 		struct vm_struct *vm = va->vm;
1486 
1487 		spin_lock(&vmap_area_lock);
1488 		va->vm = NULL;
1489 		va->flags &= ~VM_VM_AREA;
1490 		va->flags |= VM_LAZY_FREE;
1491 		spin_unlock(&vmap_area_lock);
1492 
1493 		kasan_free_shadow(vm);
1494 		free_unmap_vmap_area(va);
1495 
1496 		return vm;
1497 	}
1498 	return NULL;
1499 }
1500 
1501 static void __vunmap(const void *addr, int deallocate_pages)
1502 {
1503 	struct vm_struct *area;
1504 
1505 	if (!addr)
1506 		return;
1507 
1508 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1509 			addr))
1510 		return;
1511 
1512 	area = find_vm_area(addr);
1513 	if (unlikely(!area)) {
1514 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1515 				addr);
1516 		return;
1517 	}
1518 
1519 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1520 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1521 
1522 	remove_vm_area(addr);
1523 	if (deallocate_pages) {
1524 		int i;
1525 
1526 		for (i = 0; i < area->nr_pages; i++) {
1527 			struct page *page = area->pages[i];
1528 
1529 			BUG_ON(!page);
1530 			__free_pages(page, 0);
1531 		}
1532 
1533 		kvfree(area->pages);
1534 	}
1535 
1536 	kfree(area);
1537 	return;
1538 }
1539 
1540 static inline void __vfree_deferred(const void *addr)
1541 {
1542 	/*
1543 	 * Use raw_cpu_ptr() because this can be called from preemptible
1544 	 * context. Preemption is absolutely fine here, because the llist_add()
1545 	 * implementation is lockless, so it works even if we are adding to
1546 	 * nother cpu's list.  schedule_work() should be fine with this too.
1547 	 */
1548 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1549 
1550 	if (llist_add((struct llist_node *)addr, &p->list))
1551 		schedule_work(&p->wq);
1552 }
1553 
1554 /**
1555  *	vfree_atomic  -  release memory allocated by vmalloc()
1556  *	@addr:		memory base address
1557  *
1558  *	This one is just like vfree() but can be called in any atomic context
1559  *	except NMIs.
1560  */
1561 void vfree_atomic(const void *addr)
1562 {
1563 	BUG_ON(in_nmi());
1564 
1565 	kmemleak_free(addr);
1566 
1567 	if (!addr)
1568 		return;
1569 	__vfree_deferred(addr);
1570 }
1571 
1572 static void __vfree(const void *addr)
1573 {
1574 	if (unlikely(in_interrupt()))
1575 		__vfree_deferred(addr);
1576 	else
1577 		__vunmap(addr, 1);
1578 }
1579 
1580 /**
1581  *	vfree  -  release memory allocated by vmalloc()
1582  *	@addr:		memory base address
1583  *
1584  *	Free the virtually continuous memory area starting at @addr, as
1585  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1586  *	NULL, no operation is performed.
1587  *
1588  *	Must not be called in NMI context (strictly speaking, only if we don't
1589  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1590  *	conventions for vfree() arch-depenedent would be a really bad idea)
1591  *
1592  *	May sleep if called *not* from interrupt context.
1593  *
1594  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1595  */
1596 void vfree(const void *addr)
1597 {
1598 	BUG_ON(in_nmi());
1599 
1600 	kmemleak_free(addr);
1601 
1602 	might_sleep_if(!in_interrupt());
1603 
1604 	if (!addr)
1605 		return;
1606 
1607 	__vfree(addr);
1608 }
1609 EXPORT_SYMBOL(vfree);
1610 
1611 /**
1612  *	vunmap  -  release virtual mapping obtained by vmap()
1613  *	@addr:		memory base address
1614  *
1615  *	Free the virtually contiguous memory area starting at @addr,
1616  *	which was created from the page array passed to vmap().
1617  *
1618  *	Must not be called in interrupt context.
1619  */
1620 void vunmap(const void *addr)
1621 {
1622 	BUG_ON(in_interrupt());
1623 	might_sleep();
1624 	if (addr)
1625 		__vunmap(addr, 0);
1626 }
1627 EXPORT_SYMBOL(vunmap);
1628 
1629 /**
1630  *	vmap  -  map an array of pages into virtually contiguous space
1631  *	@pages:		array of page pointers
1632  *	@count:		number of pages to map
1633  *	@flags:		vm_area->flags
1634  *	@prot:		page protection for the mapping
1635  *
1636  *	Maps @count pages from @pages into contiguous kernel virtual
1637  *	space.
1638  */
1639 void *vmap(struct page **pages, unsigned int count,
1640 		unsigned long flags, pgprot_t prot)
1641 {
1642 	struct vm_struct *area;
1643 	unsigned long size;		/* In bytes */
1644 
1645 	might_sleep();
1646 
1647 	if (count > totalram_pages())
1648 		return NULL;
1649 
1650 	size = (unsigned long)count << PAGE_SHIFT;
1651 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1652 	if (!area)
1653 		return NULL;
1654 
1655 	if (map_vm_area(area, prot, pages)) {
1656 		vunmap(area->addr);
1657 		return NULL;
1658 	}
1659 
1660 	return area->addr;
1661 }
1662 EXPORT_SYMBOL(vmap);
1663 
1664 static void *__vmalloc_node(unsigned long size, unsigned long align,
1665 			    gfp_t gfp_mask, pgprot_t prot,
1666 			    int node, const void *caller);
1667 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1668 				 pgprot_t prot, int node)
1669 {
1670 	struct page **pages;
1671 	unsigned int nr_pages, array_size, i;
1672 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1673 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1674 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1675 					0 :
1676 					__GFP_HIGHMEM;
1677 
1678 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1679 	array_size = (nr_pages * sizeof(struct page *));
1680 
1681 	area->nr_pages = nr_pages;
1682 	/* Please note that the recursion is strictly bounded. */
1683 	if (array_size > PAGE_SIZE) {
1684 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1685 				PAGE_KERNEL, node, area->caller);
1686 	} else {
1687 		pages = kmalloc_node(array_size, nested_gfp, node);
1688 	}
1689 	area->pages = pages;
1690 	if (!area->pages) {
1691 		remove_vm_area(area->addr);
1692 		kfree(area);
1693 		return NULL;
1694 	}
1695 
1696 	for (i = 0; i < area->nr_pages; i++) {
1697 		struct page *page;
1698 
1699 		if (node == NUMA_NO_NODE)
1700 			page = alloc_page(alloc_mask|highmem_mask);
1701 		else
1702 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1703 
1704 		if (unlikely(!page)) {
1705 			/* Successfully allocated i pages, free them in __vunmap() */
1706 			area->nr_pages = i;
1707 			goto fail;
1708 		}
1709 		area->pages[i] = page;
1710 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1711 			cond_resched();
1712 	}
1713 
1714 	if (map_vm_area(area, prot, pages))
1715 		goto fail;
1716 	return area->addr;
1717 
1718 fail:
1719 	warn_alloc(gfp_mask, NULL,
1720 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1721 			  (area->nr_pages*PAGE_SIZE), area->size);
1722 	__vfree(area->addr);
1723 	return NULL;
1724 }
1725 
1726 /**
1727  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1728  *	@size:		allocation size
1729  *	@align:		desired alignment
1730  *	@start:		vm area range start
1731  *	@end:		vm area range end
1732  *	@gfp_mask:	flags for the page level allocator
1733  *	@prot:		protection mask for the allocated pages
1734  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1735  *	@node:		node to use for allocation or NUMA_NO_NODE
1736  *	@caller:	caller's return address
1737  *
1738  *	Allocate enough pages to cover @size from the page level
1739  *	allocator with @gfp_mask flags.  Map them into contiguous
1740  *	kernel virtual space, using a pagetable protection of @prot.
1741  */
1742 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1743 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1744 			pgprot_t prot, unsigned long vm_flags, int node,
1745 			const void *caller)
1746 {
1747 	struct vm_struct *area;
1748 	void *addr;
1749 	unsigned long real_size = size;
1750 
1751 	size = PAGE_ALIGN(size);
1752 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
1753 		goto fail;
1754 
1755 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1756 				vm_flags, start, end, node, gfp_mask, caller);
1757 	if (!area)
1758 		goto fail;
1759 
1760 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1761 	if (!addr)
1762 		return NULL;
1763 
1764 	/*
1765 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1766 	 * flag. It means that vm_struct is not fully initialized.
1767 	 * Now, it is fully initialized, so remove this flag here.
1768 	 */
1769 	clear_vm_uninitialized_flag(area);
1770 
1771 	kmemleak_vmalloc(area, size, gfp_mask);
1772 
1773 	return addr;
1774 
1775 fail:
1776 	warn_alloc(gfp_mask, NULL,
1777 			  "vmalloc: allocation failure: %lu bytes", real_size);
1778 	return NULL;
1779 }
1780 
1781 /*
1782  * This is only for performance analysis of vmalloc and stress purpose.
1783  * It is required by vmalloc test module, therefore do not use it other
1784  * than that.
1785  */
1786 #ifdef CONFIG_TEST_VMALLOC_MODULE
1787 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
1788 #endif
1789 
1790 /**
1791  *	__vmalloc_node  -  allocate virtually contiguous memory
1792  *	@size:		allocation size
1793  *	@align:		desired alignment
1794  *	@gfp_mask:	flags for the page level allocator
1795  *	@prot:		protection mask for the allocated pages
1796  *	@node:		node to use for allocation or NUMA_NO_NODE
1797  *	@caller:	caller's return address
1798  *
1799  *	Allocate enough pages to cover @size from the page level
1800  *	allocator with @gfp_mask flags.  Map them into contiguous
1801  *	kernel virtual space, using a pagetable protection of @prot.
1802  *
1803  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1804  *	and __GFP_NOFAIL are not supported
1805  *
1806  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1807  *	with mm people.
1808  *
1809  */
1810 static void *__vmalloc_node(unsigned long size, unsigned long align,
1811 			    gfp_t gfp_mask, pgprot_t prot,
1812 			    int node, const void *caller)
1813 {
1814 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1815 				gfp_mask, prot, 0, node, caller);
1816 }
1817 
1818 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1819 {
1820 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1821 				__builtin_return_address(0));
1822 }
1823 EXPORT_SYMBOL(__vmalloc);
1824 
1825 static inline void *__vmalloc_node_flags(unsigned long size,
1826 					int node, gfp_t flags)
1827 {
1828 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1829 					node, __builtin_return_address(0));
1830 }
1831 
1832 
1833 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1834 				  void *caller)
1835 {
1836 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1837 }
1838 
1839 /**
1840  *	vmalloc  -  allocate virtually contiguous memory
1841  *	@size:		allocation size
1842  *	Allocate enough pages to cover @size from the page level
1843  *	allocator and map them into contiguous kernel virtual space.
1844  *
1845  *	For tight control over page level allocator and protection flags
1846  *	use __vmalloc() instead.
1847  */
1848 void *vmalloc(unsigned long size)
1849 {
1850 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1851 				    GFP_KERNEL);
1852 }
1853 EXPORT_SYMBOL(vmalloc);
1854 
1855 /**
1856  *	vzalloc - allocate virtually contiguous memory with zero fill
1857  *	@size:	allocation size
1858  *	Allocate enough pages to cover @size from the page level
1859  *	allocator and map them into contiguous kernel virtual space.
1860  *	The memory allocated is set to zero.
1861  *
1862  *	For tight control over page level allocator and protection flags
1863  *	use __vmalloc() instead.
1864  */
1865 void *vzalloc(unsigned long size)
1866 {
1867 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1868 				GFP_KERNEL | __GFP_ZERO);
1869 }
1870 EXPORT_SYMBOL(vzalloc);
1871 
1872 /**
1873  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1874  * @size: allocation size
1875  *
1876  * The resulting memory area is zeroed so it can be mapped to userspace
1877  * without leaking data.
1878  */
1879 void *vmalloc_user(unsigned long size)
1880 {
1881 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
1882 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
1883 				    VM_USERMAP, NUMA_NO_NODE,
1884 				    __builtin_return_address(0));
1885 }
1886 EXPORT_SYMBOL(vmalloc_user);
1887 
1888 /**
1889  *	vmalloc_node  -  allocate memory on a specific node
1890  *	@size:		allocation size
1891  *	@node:		numa node
1892  *
1893  *	Allocate enough pages to cover @size from the page level
1894  *	allocator and map them into contiguous kernel virtual space.
1895  *
1896  *	For tight control over page level allocator and protection flags
1897  *	use __vmalloc() instead.
1898  */
1899 void *vmalloc_node(unsigned long size, int node)
1900 {
1901 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1902 					node, __builtin_return_address(0));
1903 }
1904 EXPORT_SYMBOL(vmalloc_node);
1905 
1906 /**
1907  * vzalloc_node - allocate memory on a specific node with zero fill
1908  * @size:	allocation size
1909  * @node:	numa node
1910  *
1911  * Allocate enough pages to cover @size from the page level
1912  * allocator and map them into contiguous kernel virtual space.
1913  * The memory allocated is set to zero.
1914  *
1915  * For tight control over page level allocator and protection flags
1916  * use __vmalloc_node() instead.
1917  */
1918 void *vzalloc_node(unsigned long size, int node)
1919 {
1920 	return __vmalloc_node_flags(size, node,
1921 			 GFP_KERNEL | __GFP_ZERO);
1922 }
1923 EXPORT_SYMBOL(vzalloc_node);
1924 
1925 /**
1926  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1927  *	@size:		allocation size
1928  *
1929  *	Kernel-internal function to allocate enough pages to cover @size
1930  *	the page level allocator and map them into contiguous and
1931  *	executable kernel virtual space.
1932  *
1933  *	For tight control over page level allocator and protection flags
1934  *	use __vmalloc() instead.
1935  */
1936 
1937 void *vmalloc_exec(unsigned long size)
1938 {
1939 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1940 			      NUMA_NO_NODE, __builtin_return_address(0));
1941 }
1942 
1943 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1944 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1945 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1946 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1947 #else
1948 /*
1949  * 64b systems should always have either DMA or DMA32 zones. For others
1950  * GFP_DMA32 should do the right thing and use the normal zone.
1951  */
1952 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1953 #endif
1954 
1955 /**
1956  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1957  *	@size:		allocation size
1958  *
1959  *	Allocate enough 32bit PA addressable pages to cover @size from the
1960  *	page level allocator and map them into contiguous kernel virtual space.
1961  */
1962 void *vmalloc_32(unsigned long size)
1963 {
1964 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1965 			      NUMA_NO_NODE, __builtin_return_address(0));
1966 }
1967 EXPORT_SYMBOL(vmalloc_32);
1968 
1969 /**
1970  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1971  *	@size:		allocation size
1972  *
1973  * The resulting memory area is 32bit addressable and zeroed so it can be
1974  * mapped to userspace without leaking data.
1975  */
1976 void *vmalloc_32_user(unsigned long size)
1977 {
1978 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
1979 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1980 				    VM_USERMAP, NUMA_NO_NODE,
1981 				    __builtin_return_address(0));
1982 }
1983 EXPORT_SYMBOL(vmalloc_32_user);
1984 
1985 /*
1986  * small helper routine , copy contents to buf from addr.
1987  * If the page is not present, fill zero.
1988  */
1989 
1990 static int aligned_vread(char *buf, char *addr, unsigned long count)
1991 {
1992 	struct page *p;
1993 	int copied = 0;
1994 
1995 	while (count) {
1996 		unsigned long offset, length;
1997 
1998 		offset = offset_in_page(addr);
1999 		length = PAGE_SIZE - offset;
2000 		if (length > count)
2001 			length = count;
2002 		p = vmalloc_to_page(addr);
2003 		/*
2004 		 * To do safe access to this _mapped_ area, we need
2005 		 * lock. But adding lock here means that we need to add
2006 		 * overhead of vmalloc()/vfree() calles for this _debug_
2007 		 * interface, rarely used. Instead of that, we'll use
2008 		 * kmap() and get small overhead in this access function.
2009 		 */
2010 		if (p) {
2011 			/*
2012 			 * we can expect USER0 is not used (see vread/vwrite's
2013 			 * function description)
2014 			 */
2015 			void *map = kmap_atomic(p);
2016 			memcpy(buf, map + offset, length);
2017 			kunmap_atomic(map);
2018 		} else
2019 			memset(buf, 0, length);
2020 
2021 		addr += length;
2022 		buf += length;
2023 		copied += length;
2024 		count -= length;
2025 	}
2026 	return copied;
2027 }
2028 
2029 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2030 {
2031 	struct page *p;
2032 	int copied = 0;
2033 
2034 	while (count) {
2035 		unsigned long offset, length;
2036 
2037 		offset = offset_in_page(addr);
2038 		length = PAGE_SIZE - offset;
2039 		if (length > count)
2040 			length = count;
2041 		p = vmalloc_to_page(addr);
2042 		/*
2043 		 * To do safe access to this _mapped_ area, we need
2044 		 * lock. But adding lock here means that we need to add
2045 		 * overhead of vmalloc()/vfree() calles for this _debug_
2046 		 * interface, rarely used. Instead of that, we'll use
2047 		 * kmap() and get small overhead in this access function.
2048 		 */
2049 		if (p) {
2050 			/*
2051 			 * we can expect USER0 is not used (see vread/vwrite's
2052 			 * function description)
2053 			 */
2054 			void *map = kmap_atomic(p);
2055 			memcpy(map + offset, buf, length);
2056 			kunmap_atomic(map);
2057 		}
2058 		addr += length;
2059 		buf += length;
2060 		copied += length;
2061 		count -= length;
2062 	}
2063 	return copied;
2064 }
2065 
2066 /**
2067  *	vread() -  read vmalloc area in a safe way.
2068  *	@buf:		buffer for reading data
2069  *	@addr:		vm address.
2070  *	@count:		number of bytes to be read.
2071  *
2072  *	Returns # of bytes which addr and buf should be increased.
2073  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2074  *	includes any intersect with alive vmalloc area.
2075  *
2076  *	This function checks that addr is a valid vmalloc'ed area, and
2077  *	copy data from that area to a given buffer. If the given memory range
2078  *	of [addr...addr+count) includes some valid address, data is copied to
2079  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2080  *	IOREMAP area is treated as memory hole and no copy is done.
2081  *
2082  *	If [addr...addr+count) doesn't includes any intersects with alive
2083  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2084  *
2085  *	Note: In usual ops, vread() is never necessary because the caller
2086  *	should know vmalloc() area is valid and can use memcpy().
2087  *	This is for routines which have to access vmalloc area without
2088  *	any informaion, as /dev/kmem.
2089  *
2090  */
2091 
2092 long vread(char *buf, char *addr, unsigned long count)
2093 {
2094 	struct vmap_area *va;
2095 	struct vm_struct *vm;
2096 	char *vaddr, *buf_start = buf;
2097 	unsigned long buflen = count;
2098 	unsigned long n;
2099 
2100 	/* Don't allow overflow */
2101 	if ((unsigned long) addr + count < count)
2102 		count = -(unsigned long) addr;
2103 
2104 	spin_lock(&vmap_area_lock);
2105 	list_for_each_entry(va, &vmap_area_list, list) {
2106 		if (!count)
2107 			break;
2108 
2109 		if (!(va->flags & VM_VM_AREA))
2110 			continue;
2111 
2112 		vm = va->vm;
2113 		vaddr = (char *) vm->addr;
2114 		if (addr >= vaddr + get_vm_area_size(vm))
2115 			continue;
2116 		while (addr < vaddr) {
2117 			if (count == 0)
2118 				goto finished;
2119 			*buf = '\0';
2120 			buf++;
2121 			addr++;
2122 			count--;
2123 		}
2124 		n = vaddr + get_vm_area_size(vm) - addr;
2125 		if (n > count)
2126 			n = count;
2127 		if (!(vm->flags & VM_IOREMAP))
2128 			aligned_vread(buf, addr, n);
2129 		else /* IOREMAP area is treated as memory hole */
2130 			memset(buf, 0, n);
2131 		buf += n;
2132 		addr += n;
2133 		count -= n;
2134 	}
2135 finished:
2136 	spin_unlock(&vmap_area_lock);
2137 
2138 	if (buf == buf_start)
2139 		return 0;
2140 	/* zero-fill memory holes */
2141 	if (buf != buf_start + buflen)
2142 		memset(buf, 0, buflen - (buf - buf_start));
2143 
2144 	return buflen;
2145 }
2146 
2147 /**
2148  *	vwrite() -  write vmalloc area in a safe way.
2149  *	@buf:		buffer for source data
2150  *	@addr:		vm address.
2151  *	@count:		number of bytes to be read.
2152  *
2153  *	Returns # of bytes which addr and buf should be incresed.
2154  *	(same number to @count).
2155  *	If [addr...addr+count) doesn't includes any intersect with valid
2156  *	vmalloc area, returns 0.
2157  *
2158  *	This function checks that addr is a valid vmalloc'ed area, and
2159  *	copy data from a buffer to the given addr. If specified range of
2160  *	[addr...addr+count) includes some valid address, data is copied from
2161  *	proper area of @buf. If there are memory holes, no copy to hole.
2162  *	IOREMAP area is treated as memory hole and no copy is done.
2163  *
2164  *	If [addr...addr+count) doesn't includes any intersects with alive
2165  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2166  *
2167  *	Note: In usual ops, vwrite() is never necessary because the caller
2168  *	should know vmalloc() area is valid and can use memcpy().
2169  *	This is for routines which have to access vmalloc area without
2170  *	any informaion, as /dev/kmem.
2171  */
2172 
2173 long vwrite(char *buf, char *addr, unsigned long count)
2174 {
2175 	struct vmap_area *va;
2176 	struct vm_struct *vm;
2177 	char *vaddr;
2178 	unsigned long n, buflen;
2179 	int copied = 0;
2180 
2181 	/* Don't allow overflow */
2182 	if ((unsigned long) addr + count < count)
2183 		count = -(unsigned long) addr;
2184 	buflen = count;
2185 
2186 	spin_lock(&vmap_area_lock);
2187 	list_for_each_entry(va, &vmap_area_list, list) {
2188 		if (!count)
2189 			break;
2190 
2191 		if (!(va->flags & VM_VM_AREA))
2192 			continue;
2193 
2194 		vm = va->vm;
2195 		vaddr = (char *) vm->addr;
2196 		if (addr >= vaddr + get_vm_area_size(vm))
2197 			continue;
2198 		while (addr < vaddr) {
2199 			if (count == 0)
2200 				goto finished;
2201 			buf++;
2202 			addr++;
2203 			count--;
2204 		}
2205 		n = vaddr + get_vm_area_size(vm) - addr;
2206 		if (n > count)
2207 			n = count;
2208 		if (!(vm->flags & VM_IOREMAP)) {
2209 			aligned_vwrite(buf, addr, n);
2210 			copied++;
2211 		}
2212 		buf += n;
2213 		addr += n;
2214 		count -= n;
2215 	}
2216 finished:
2217 	spin_unlock(&vmap_area_lock);
2218 	if (!copied)
2219 		return 0;
2220 	return buflen;
2221 }
2222 
2223 /**
2224  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2225  *	@vma:		vma to cover
2226  *	@uaddr:		target user address to start at
2227  *	@kaddr:		virtual address of vmalloc kernel memory
2228  *	@size:		size of map area
2229  *
2230  *	Returns:	0 for success, -Exxx on failure
2231  *
2232  *	This function checks that @kaddr is a valid vmalloc'ed area,
2233  *	and that it is big enough to cover the range starting at
2234  *	@uaddr in @vma. Will return failure if that criteria isn't
2235  *	met.
2236  *
2237  *	Similar to remap_pfn_range() (see mm/memory.c)
2238  */
2239 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2240 				void *kaddr, unsigned long size)
2241 {
2242 	struct vm_struct *area;
2243 
2244 	size = PAGE_ALIGN(size);
2245 
2246 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2247 		return -EINVAL;
2248 
2249 	area = find_vm_area(kaddr);
2250 	if (!area)
2251 		return -EINVAL;
2252 
2253 	if (!(area->flags & VM_USERMAP))
2254 		return -EINVAL;
2255 
2256 	if (kaddr + size > area->addr + get_vm_area_size(area))
2257 		return -EINVAL;
2258 
2259 	do {
2260 		struct page *page = vmalloc_to_page(kaddr);
2261 		int ret;
2262 
2263 		ret = vm_insert_page(vma, uaddr, page);
2264 		if (ret)
2265 			return ret;
2266 
2267 		uaddr += PAGE_SIZE;
2268 		kaddr += PAGE_SIZE;
2269 		size -= PAGE_SIZE;
2270 	} while (size > 0);
2271 
2272 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2273 
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2277 
2278 /**
2279  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2280  *	@vma:		vma to cover (map full range of vma)
2281  *	@addr:		vmalloc memory
2282  *	@pgoff:		number of pages into addr before first page to map
2283  *
2284  *	Returns:	0 for success, -Exxx on failure
2285  *
2286  *	This function checks that addr is a valid vmalloc'ed area, and
2287  *	that it is big enough to cover the vma. Will return failure if
2288  *	that criteria isn't met.
2289  *
2290  *	Similar to remap_pfn_range() (see mm/memory.c)
2291  */
2292 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2293 						unsigned long pgoff)
2294 {
2295 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2296 					   addr + (pgoff << PAGE_SHIFT),
2297 					   vma->vm_end - vma->vm_start);
2298 }
2299 EXPORT_SYMBOL(remap_vmalloc_range);
2300 
2301 /*
2302  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2303  * have one.
2304  */
2305 void __weak vmalloc_sync_all(void)
2306 {
2307 }
2308 
2309 
2310 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2311 {
2312 	pte_t ***p = data;
2313 
2314 	if (p) {
2315 		*(*p) = pte;
2316 		(*p)++;
2317 	}
2318 	return 0;
2319 }
2320 
2321 /**
2322  *	alloc_vm_area - allocate a range of kernel address space
2323  *	@size:		size of the area
2324  *	@ptes:		returns the PTEs for the address space
2325  *
2326  *	Returns:	NULL on failure, vm_struct on success
2327  *
2328  *	This function reserves a range of kernel address space, and
2329  *	allocates pagetables to map that range.  No actual mappings
2330  *	are created.
2331  *
2332  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2333  *	allocated for the VM area are returned.
2334  */
2335 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2336 {
2337 	struct vm_struct *area;
2338 
2339 	area = get_vm_area_caller(size, VM_IOREMAP,
2340 				__builtin_return_address(0));
2341 	if (area == NULL)
2342 		return NULL;
2343 
2344 	/*
2345 	 * This ensures that page tables are constructed for this region
2346 	 * of kernel virtual address space and mapped into init_mm.
2347 	 */
2348 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2349 				size, f, ptes ? &ptes : NULL)) {
2350 		free_vm_area(area);
2351 		return NULL;
2352 	}
2353 
2354 	return area;
2355 }
2356 EXPORT_SYMBOL_GPL(alloc_vm_area);
2357 
2358 void free_vm_area(struct vm_struct *area)
2359 {
2360 	struct vm_struct *ret;
2361 	ret = remove_vm_area(area->addr);
2362 	BUG_ON(ret != area);
2363 	kfree(area);
2364 }
2365 EXPORT_SYMBOL_GPL(free_vm_area);
2366 
2367 #ifdef CONFIG_SMP
2368 static struct vmap_area *node_to_va(struct rb_node *n)
2369 {
2370 	return rb_entry_safe(n, struct vmap_area, rb_node);
2371 }
2372 
2373 /**
2374  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2375  * @end: target address
2376  * @pnext: out arg for the next vmap_area
2377  * @pprev: out arg for the previous vmap_area
2378  *
2379  * Returns: %true if either or both of next and prev are found,
2380  *	    %false if no vmap_area exists
2381  *
2382  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2383  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2384  */
2385 static bool pvm_find_next_prev(unsigned long end,
2386 			       struct vmap_area **pnext,
2387 			       struct vmap_area **pprev)
2388 {
2389 	struct rb_node *n = vmap_area_root.rb_node;
2390 	struct vmap_area *va = NULL;
2391 
2392 	while (n) {
2393 		va = rb_entry(n, struct vmap_area, rb_node);
2394 		if (end < va->va_end)
2395 			n = n->rb_left;
2396 		else if (end > va->va_end)
2397 			n = n->rb_right;
2398 		else
2399 			break;
2400 	}
2401 
2402 	if (!va)
2403 		return false;
2404 
2405 	if (va->va_end > end) {
2406 		*pnext = va;
2407 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2408 	} else {
2409 		*pprev = va;
2410 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2411 	}
2412 	return true;
2413 }
2414 
2415 /**
2416  * pvm_determine_end - find the highest aligned address between two vmap_areas
2417  * @pnext: in/out arg for the next vmap_area
2418  * @pprev: in/out arg for the previous vmap_area
2419  * @align: alignment
2420  *
2421  * Returns: determined end address
2422  *
2423  * Find the highest aligned address between *@pnext and *@pprev below
2424  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2425  * down address is between the end addresses of the two vmap_areas.
2426  *
2427  * Please note that the address returned by this function may fall
2428  * inside *@pnext vmap_area.  The caller is responsible for checking
2429  * that.
2430  */
2431 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2432 				       struct vmap_area **pprev,
2433 				       unsigned long align)
2434 {
2435 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2436 	unsigned long addr;
2437 
2438 	if (*pnext)
2439 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2440 	else
2441 		addr = vmalloc_end;
2442 
2443 	while (*pprev && (*pprev)->va_end > addr) {
2444 		*pnext = *pprev;
2445 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2446 	}
2447 
2448 	return addr;
2449 }
2450 
2451 /**
2452  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2453  * @offsets: array containing offset of each area
2454  * @sizes: array containing size of each area
2455  * @nr_vms: the number of areas to allocate
2456  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2457  *
2458  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2459  *	    vm_structs on success, %NULL on failure
2460  *
2461  * Percpu allocator wants to use congruent vm areas so that it can
2462  * maintain the offsets among percpu areas.  This function allocates
2463  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2464  * be scattered pretty far, distance between two areas easily going up
2465  * to gigabytes.  To avoid interacting with regular vmallocs, these
2466  * areas are allocated from top.
2467  *
2468  * Despite its complicated look, this allocator is rather simple.  It
2469  * does everything top-down and scans areas from the end looking for
2470  * matching slot.  While scanning, if any of the areas overlaps with
2471  * existing vmap_area, the base address is pulled down to fit the
2472  * area.  Scanning is repeated till all the areas fit and then all
2473  * necessary data structures are inserted and the result is returned.
2474  */
2475 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2476 				     const size_t *sizes, int nr_vms,
2477 				     size_t align)
2478 {
2479 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2480 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2481 	struct vmap_area **vas, *prev, *next;
2482 	struct vm_struct **vms;
2483 	int area, area2, last_area, term_area;
2484 	unsigned long base, start, end, last_end;
2485 	bool purged = false;
2486 
2487 	/* verify parameters and allocate data structures */
2488 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2489 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2490 		start = offsets[area];
2491 		end = start + sizes[area];
2492 
2493 		/* is everything aligned properly? */
2494 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2495 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2496 
2497 		/* detect the area with the highest address */
2498 		if (start > offsets[last_area])
2499 			last_area = area;
2500 
2501 		for (area2 = area + 1; area2 < nr_vms; area2++) {
2502 			unsigned long start2 = offsets[area2];
2503 			unsigned long end2 = start2 + sizes[area2];
2504 
2505 			BUG_ON(start2 < end && start < end2);
2506 		}
2507 	}
2508 	last_end = offsets[last_area] + sizes[last_area];
2509 
2510 	if (vmalloc_end - vmalloc_start < last_end) {
2511 		WARN_ON(true);
2512 		return NULL;
2513 	}
2514 
2515 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2516 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2517 	if (!vas || !vms)
2518 		goto err_free2;
2519 
2520 	for (area = 0; area < nr_vms; area++) {
2521 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2522 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2523 		if (!vas[area] || !vms[area])
2524 			goto err_free;
2525 	}
2526 retry:
2527 	spin_lock(&vmap_area_lock);
2528 
2529 	/* start scanning - we scan from the top, begin with the last area */
2530 	area = term_area = last_area;
2531 	start = offsets[area];
2532 	end = start + sizes[area];
2533 
2534 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2535 		base = vmalloc_end - last_end;
2536 		goto found;
2537 	}
2538 	base = pvm_determine_end(&next, &prev, align) - end;
2539 
2540 	while (true) {
2541 		BUG_ON(next && next->va_end <= base + end);
2542 		BUG_ON(prev && prev->va_end > base + end);
2543 
2544 		/*
2545 		 * base might have underflowed, add last_end before
2546 		 * comparing.
2547 		 */
2548 		if (base + last_end < vmalloc_start + last_end) {
2549 			spin_unlock(&vmap_area_lock);
2550 			if (!purged) {
2551 				purge_vmap_area_lazy();
2552 				purged = true;
2553 				goto retry;
2554 			}
2555 			goto err_free;
2556 		}
2557 
2558 		/*
2559 		 * If next overlaps, move base downwards so that it's
2560 		 * right below next and then recheck.
2561 		 */
2562 		if (next && next->va_start < base + end) {
2563 			base = pvm_determine_end(&next, &prev, align) - end;
2564 			term_area = area;
2565 			continue;
2566 		}
2567 
2568 		/*
2569 		 * If prev overlaps, shift down next and prev and move
2570 		 * base so that it's right below new next and then
2571 		 * recheck.
2572 		 */
2573 		if (prev && prev->va_end > base + start)  {
2574 			next = prev;
2575 			prev = node_to_va(rb_prev(&next->rb_node));
2576 			base = pvm_determine_end(&next, &prev, align) - end;
2577 			term_area = area;
2578 			continue;
2579 		}
2580 
2581 		/*
2582 		 * This area fits, move on to the previous one.  If
2583 		 * the previous one is the terminal one, we're done.
2584 		 */
2585 		area = (area + nr_vms - 1) % nr_vms;
2586 		if (area == term_area)
2587 			break;
2588 		start = offsets[area];
2589 		end = start + sizes[area];
2590 		pvm_find_next_prev(base + end, &next, &prev);
2591 	}
2592 found:
2593 	/* we've found a fitting base, insert all va's */
2594 	for (area = 0; area < nr_vms; area++) {
2595 		struct vmap_area *va = vas[area];
2596 
2597 		va->va_start = base + offsets[area];
2598 		va->va_end = va->va_start + sizes[area];
2599 		__insert_vmap_area(va);
2600 	}
2601 
2602 	vmap_area_pcpu_hole = base + offsets[last_area];
2603 
2604 	spin_unlock(&vmap_area_lock);
2605 
2606 	/* insert all vm's */
2607 	for (area = 0; area < nr_vms; area++)
2608 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2609 				 pcpu_get_vm_areas);
2610 
2611 	kfree(vas);
2612 	return vms;
2613 
2614 err_free:
2615 	for (area = 0; area < nr_vms; area++) {
2616 		kfree(vas[area]);
2617 		kfree(vms[area]);
2618 	}
2619 err_free2:
2620 	kfree(vas);
2621 	kfree(vms);
2622 	return NULL;
2623 }
2624 
2625 /**
2626  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2627  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2628  * @nr_vms: the number of allocated areas
2629  *
2630  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2631  */
2632 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2633 {
2634 	int i;
2635 
2636 	for (i = 0; i < nr_vms; i++)
2637 		free_vm_area(vms[i]);
2638 	kfree(vms);
2639 }
2640 #endif	/* CONFIG_SMP */
2641 
2642 #ifdef CONFIG_PROC_FS
2643 static void *s_start(struct seq_file *m, loff_t *pos)
2644 	__acquires(&vmap_area_lock)
2645 {
2646 	spin_lock(&vmap_area_lock);
2647 	return seq_list_start(&vmap_area_list, *pos);
2648 }
2649 
2650 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2651 {
2652 	return seq_list_next(p, &vmap_area_list, pos);
2653 }
2654 
2655 static void s_stop(struct seq_file *m, void *p)
2656 	__releases(&vmap_area_lock)
2657 {
2658 	spin_unlock(&vmap_area_lock);
2659 }
2660 
2661 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2662 {
2663 	if (IS_ENABLED(CONFIG_NUMA)) {
2664 		unsigned int nr, *counters = m->private;
2665 
2666 		if (!counters)
2667 			return;
2668 
2669 		if (v->flags & VM_UNINITIALIZED)
2670 			return;
2671 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2672 		smp_rmb();
2673 
2674 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2675 
2676 		for (nr = 0; nr < v->nr_pages; nr++)
2677 			counters[page_to_nid(v->pages[nr])]++;
2678 
2679 		for_each_node_state(nr, N_HIGH_MEMORY)
2680 			if (counters[nr])
2681 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2682 	}
2683 }
2684 
2685 static int s_show(struct seq_file *m, void *p)
2686 {
2687 	struct vmap_area *va;
2688 	struct vm_struct *v;
2689 
2690 	va = list_entry(p, struct vmap_area, list);
2691 
2692 	/*
2693 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2694 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2695 	 */
2696 	if (!(va->flags & VM_VM_AREA)) {
2697 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2698 			(void *)va->va_start, (void *)va->va_end,
2699 			va->va_end - va->va_start,
2700 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2701 
2702 		return 0;
2703 	}
2704 
2705 	v = va->vm;
2706 
2707 	seq_printf(m, "0x%pK-0x%pK %7ld",
2708 		v->addr, v->addr + v->size, v->size);
2709 
2710 	if (v->caller)
2711 		seq_printf(m, " %pS", v->caller);
2712 
2713 	if (v->nr_pages)
2714 		seq_printf(m, " pages=%d", v->nr_pages);
2715 
2716 	if (v->phys_addr)
2717 		seq_printf(m, " phys=%pa", &v->phys_addr);
2718 
2719 	if (v->flags & VM_IOREMAP)
2720 		seq_puts(m, " ioremap");
2721 
2722 	if (v->flags & VM_ALLOC)
2723 		seq_puts(m, " vmalloc");
2724 
2725 	if (v->flags & VM_MAP)
2726 		seq_puts(m, " vmap");
2727 
2728 	if (v->flags & VM_USERMAP)
2729 		seq_puts(m, " user");
2730 
2731 	if (is_vmalloc_addr(v->pages))
2732 		seq_puts(m, " vpages");
2733 
2734 	show_numa_info(m, v);
2735 	seq_putc(m, '\n');
2736 	return 0;
2737 }
2738 
2739 static const struct seq_operations vmalloc_op = {
2740 	.start = s_start,
2741 	.next = s_next,
2742 	.stop = s_stop,
2743 	.show = s_show,
2744 };
2745 
2746 static int __init proc_vmalloc_init(void)
2747 {
2748 	if (IS_ENABLED(CONFIG_NUMA))
2749 		proc_create_seq_private("vmallocinfo", 0400, NULL,
2750 				&vmalloc_op,
2751 				nr_node_ids * sizeof(unsigned int), NULL);
2752 	else
2753 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2754 	return 0;
2755 }
2756 module_init(proc_vmalloc_init);
2757 
2758 #endif
2759 
2760