1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/notifier.h> 25 #include <linux/rbtree.h> 26 #include <linux/radix-tree.h> 27 #include <linux/rcupdate.h> 28 #include <linux/pfn.h> 29 #include <linux/kmemleak.h> 30 #include <linux/atomic.h> 31 #include <linux/compiler.h> 32 #include <linux/llist.h> 33 #include <linux/bitops.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/tlbflush.h> 37 #include <asm/shmparam.h> 38 39 #include "internal.h" 40 41 struct vfree_deferred { 42 struct llist_head list; 43 struct work_struct wq; 44 }; 45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 46 47 static void __vunmap(const void *, int); 48 49 static void free_work(struct work_struct *w) 50 { 51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 52 struct llist_node *t, *llnode; 53 54 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 55 __vunmap((void *)llnode, 1); 56 } 57 58 /*** Page table manipulation functions ***/ 59 60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 61 { 62 pte_t *pte; 63 64 pte = pte_offset_kernel(pmd, addr); 65 do { 66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 67 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 68 } while (pte++, addr += PAGE_SIZE, addr != end); 69 } 70 71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 72 { 73 pmd_t *pmd; 74 unsigned long next; 75 76 pmd = pmd_offset(pud, addr); 77 do { 78 next = pmd_addr_end(addr, end); 79 if (pmd_clear_huge(pmd)) 80 continue; 81 if (pmd_none_or_clear_bad(pmd)) 82 continue; 83 vunmap_pte_range(pmd, addr, next); 84 } while (pmd++, addr = next, addr != end); 85 } 86 87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 88 { 89 pud_t *pud; 90 unsigned long next; 91 92 pud = pud_offset(p4d, addr); 93 do { 94 next = pud_addr_end(addr, end); 95 if (pud_clear_huge(pud)) 96 continue; 97 if (pud_none_or_clear_bad(pud)) 98 continue; 99 vunmap_pmd_range(pud, addr, next); 100 } while (pud++, addr = next, addr != end); 101 } 102 103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 104 { 105 p4d_t *p4d; 106 unsigned long next; 107 108 p4d = p4d_offset(pgd, addr); 109 do { 110 next = p4d_addr_end(addr, end); 111 if (p4d_clear_huge(p4d)) 112 continue; 113 if (p4d_none_or_clear_bad(p4d)) 114 continue; 115 vunmap_pud_range(p4d, addr, next); 116 } while (p4d++, addr = next, addr != end); 117 } 118 119 static void vunmap_page_range(unsigned long addr, unsigned long end) 120 { 121 pgd_t *pgd; 122 unsigned long next; 123 124 BUG_ON(addr >= end); 125 pgd = pgd_offset_k(addr); 126 do { 127 next = pgd_addr_end(addr, end); 128 if (pgd_none_or_clear_bad(pgd)) 129 continue; 130 vunmap_p4d_range(pgd, addr, next); 131 } while (pgd++, addr = next, addr != end); 132 } 133 134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 136 { 137 pte_t *pte; 138 139 /* 140 * nr is a running index into the array which helps higher level 141 * callers keep track of where we're up to. 142 */ 143 144 pte = pte_alloc_kernel(pmd, addr); 145 if (!pte) 146 return -ENOMEM; 147 do { 148 struct page *page = pages[*nr]; 149 150 if (WARN_ON(!pte_none(*pte))) 151 return -EBUSY; 152 if (WARN_ON(!page)) 153 return -ENOMEM; 154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 155 (*nr)++; 156 } while (pte++, addr += PAGE_SIZE, addr != end); 157 return 0; 158 } 159 160 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 161 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc(&init_mm, pud, addr); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 172 return -ENOMEM; 173 } while (pmd++, addr = next, addr != end); 174 return 0; 175 } 176 177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 179 { 180 pud_t *pud; 181 unsigned long next; 182 183 pud = pud_alloc(&init_mm, p4d, addr); 184 if (!pud) 185 return -ENOMEM; 186 do { 187 next = pud_addr_end(addr, end); 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 189 return -ENOMEM; 190 } while (pud++, addr = next, addr != end); 191 return 0; 192 } 193 194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 195 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 196 { 197 p4d_t *p4d; 198 unsigned long next; 199 200 p4d = p4d_alloc(&init_mm, pgd, addr); 201 if (!p4d) 202 return -ENOMEM; 203 do { 204 next = p4d_addr_end(addr, end); 205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 206 return -ENOMEM; 207 } while (p4d++, addr = next, addr != end); 208 return 0; 209 } 210 211 /* 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 213 * will have pfns corresponding to the "pages" array. 214 * 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 216 */ 217 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 218 pgprot_t prot, struct page **pages) 219 { 220 pgd_t *pgd; 221 unsigned long next; 222 unsigned long addr = start; 223 int err = 0; 224 int nr = 0; 225 226 BUG_ON(addr >= end); 227 pgd = pgd_offset_k(addr); 228 do { 229 next = pgd_addr_end(addr, end); 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 231 if (err) 232 return err; 233 } while (pgd++, addr = next, addr != end); 234 235 return nr; 236 } 237 238 static int vmap_page_range(unsigned long start, unsigned long end, 239 pgprot_t prot, struct page **pages) 240 { 241 int ret; 242 243 ret = vmap_page_range_noflush(start, end, prot, pages); 244 flush_cache_vmap(start, end); 245 return ret; 246 } 247 248 int is_vmalloc_or_module_addr(const void *x) 249 { 250 /* 251 * ARM, x86-64 and sparc64 put modules in a special place, 252 * and fall back on vmalloc() if that fails. Others 253 * just put it in the vmalloc space. 254 */ 255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 256 unsigned long addr = (unsigned long)x; 257 if (addr >= MODULES_VADDR && addr < MODULES_END) 258 return 1; 259 #endif 260 return is_vmalloc_addr(x); 261 } 262 263 /* 264 * Walk a vmap address to the struct page it maps. 265 */ 266 struct page *vmalloc_to_page(const void *vmalloc_addr) 267 { 268 unsigned long addr = (unsigned long) vmalloc_addr; 269 struct page *page = NULL; 270 pgd_t *pgd = pgd_offset_k(addr); 271 p4d_t *p4d; 272 pud_t *pud; 273 pmd_t *pmd; 274 pte_t *ptep, pte; 275 276 /* 277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 278 * architectures that do not vmalloc module space 279 */ 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 281 282 if (pgd_none(*pgd)) 283 return NULL; 284 p4d = p4d_offset(pgd, addr); 285 if (p4d_none(*p4d)) 286 return NULL; 287 pud = pud_offset(p4d, addr); 288 289 /* 290 * Don't dereference bad PUD or PMD (below) entries. This will also 291 * identify huge mappings, which we may encounter on architectures 292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 293 * identified as vmalloc addresses by is_vmalloc_addr(), but are 294 * not [unambiguously] associated with a struct page, so there is 295 * no correct value to return for them. 296 */ 297 WARN_ON_ONCE(pud_bad(*pud)); 298 if (pud_none(*pud) || pud_bad(*pud)) 299 return NULL; 300 pmd = pmd_offset(pud, addr); 301 WARN_ON_ONCE(pmd_bad(*pmd)); 302 if (pmd_none(*pmd) || pmd_bad(*pmd)) 303 return NULL; 304 305 ptep = pte_offset_map(pmd, addr); 306 pte = *ptep; 307 if (pte_present(pte)) 308 page = pte_page(pte); 309 pte_unmap(ptep); 310 return page; 311 } 312 EXPORT_SYMBOL(vmalloc_to_page); 313 314 /* 315 * Map a vmalloc()-space virtual address to the physical page frame number. 316 */ 317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 318 { 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 320 } 321 EXPORT_SYMBOL(vmalloc_to_pfn); 322 323 324 /*** Global kva allocator ***/ 325 326 #define VM_LAZY_FREE 0x02 327 #define VM_VM_AREA 0x04 328 329 static DEFINE_SPINLOCK(vmap_area_lock); 330 /* Export for kexec only */ 331 LIST_HEAD(vmap_area_list); 332 static LLIST_HEAD(vmap_purge_list); 333 static struct rb_root vmap_area_root = RB_ROOT; 334 335 /* The vmap cache globals are protected by vmap_area_lock */ 336 static struct rb_node *free_vmap_cache; 337 static unsigned long cached_hole_size; 338 static unsigned long cached_vstart; 339 static unsigned long cached_align; 340 341 static unsigned long vmap_area_pcpu_hole; 342 343 static struct vmap_area *__find_vmap_area(unsigned long addr) 344 { 345 struct rb_node *n = vmap_area_root.rb_node; 346 347 while (n) { 348 struct vmap_area *va; 349 350 va = rb_entry(n, struct vmap_area, rb_node); 351 if (addr < va->va_start) 352 n = n->rb_left; 353 else if (addr >= va->va_end) 354 n = n->rb_right; 355 else 356 return va; 357 } 358 359 return NULL; 360 } 361 362 static void __insert_vmap_area(struct vmap_area *va) 363 { 364 struct rb_node **p = &vmap_area_root.rb_node; 365 struct rb_node *parent = NULL; 366 struct rb_node *tmp; 367 368 while (*p) { 369 struct vmap_area *tmp_va; 370 371 parent = *p; 372 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 373 if (va->va_start < tmp_va->va_end) 374 p = &(*p)->rb_left; 375 else if (va->va_end > tmp_va->va_start) 376 p = &(*p)->rb_right; 377 else 378 BUG(); 379 } 380 381 rb_link_node(&va->rb_node, parent, p); 382 rb_insert_color(&va->rb_node, &vmap_area_root); 383 384 /* address-sort this list */ 385 tmp = rb_prev(&va->rb_node); 386 if (tmp) { 387 struct vmap_area *prev; 388 prev = rb_entry(tmp, struct vmap_area, rb_node); 389 list_add_rcu(&va->list, &prev->list); 390 } else 391 list_add_rcu(&va->list, &vmap_area_list); 392 } 393 394 static void purge_vmap_area_lazy(void); 395 396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 397 398 /* 399 * Allocate a region of KVA of the specified size and alignment, within the 400 * vstart and vend. 401 */ 402 static struct vmap_area *alloc_vmap_area(unsigned long size, 403 unsigned long align, 404 unsigned long vstart, unsigned long vend, 405 int node, gfp_t gfp_mask) 406 { 407 struct vmap_area *va; 408 struct rb_node *n; 409 unsigned long addr; 410 int purged = 0; 411 struct vmap_area *first; 412 413 BUG_ON(!size); 414 BUG_ON(offset_in_page(size)); 415 BUG_ON(!is_power_of_2(align)); 416 417 might_sleep(); 418 419 va = kmalloc_node(sizeof(struct vmap_area), 420 gfp_mask & GFP_RECLAIM_MASK, node); 421 if (unlikely(!va)) 422 return ERR_PTR(-ENOMEM); 423 424 /* 425 * Only scan the relevant parts containing pointers to other objects 426 * to avoid false negatives. 427 */ 428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 429 430 retry: 431 spin_lock(&vmap_area_lock); 432 /* 433 * Invalidate cache if we have more permissive parameters. 434 * cached_hole_size notes the largest hole noticed _below_ 435 * the vmap_area cached in free_vmap_cache: if size fits 436 * into that hole, we want to scan from vstart to reuse 437 * the hole instead of allocating above free_vmap_cache. 438 * Note that __free_vmap_area may update free_vmap_cache 439 * without updating cached_hole_size or cached_align. 440 */ 441 if (!free_vmap_cache || 442 size < cached_hole_size || 443 vstart < cached_vstart || 444 align < cached_align) { 445 nocache: 446 cached_hole_size = 0; 447 free_vmap_cache = NULL; 448 } 449 /* record if we encounter less permissive parameters */ 450 cached_vstart = vstart; 451 cached_align = align; 452 453 /* find starting point for our search */ 454 if (free_vmap_cache) { 455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 456 addr = ALIGN(first->va_end, align); 457 if (addr < vstart) 458 goto nocache; 459 if (addr + size < addr) 460 goto overflow; 461 462 } else { 463 addr = ALIGN(vstart, align); 464 if (addr + size < addr) 465 goto overflow; 466 467 n = vmap_area_root.rb_node; 468 first = NULL; 469 470 while (n) { 471 struct vmap_area *tmp; 472 tmp = rb_entry(n, struct vmap_area, rb_node); 473 if (tmp->va_end >= addr) { 474 first = tmp; 475 if (tmp->va_start <= addr) 476 break; 477 n = n->rb_left; 478 } else 479 n = n->rb_right; 480 } 481 482 if (!first) 483 goto found; 484 } 485 486 /* from the starting point, walk areas until a suitable hole is found */ 487 while (addr + size > first->va_start && addr + size <= vend) { 488 if (addr + cached_hole_size < first->va_start) 489 cached_hole_size = first->va_start - addr; 490 addr = ALIGN(first->va_end, align); 491 if (addr + size < addr) 492 goto overflow; 493 494 if (list_is_last(&first->list, &vmap_area_list)) 495 goto found; 496 497 first = list_next_entry(first, list); 498 } 499 500 found: 501 /* 502 * Check also calculated address against the vstart, 503 * because it can be 0 because of big align request. 504 */ 505 if (addr + size > vend || addr < vstart) 506 goto overflow; 507 508 va->va_start = addr; 509 va->va_end = addr + size; 510 va->flags = 0; 511 __insert_vmap_area(va); 512 free_vmap_cache = &va->rb_node; 513 spin_unlock(&vmap_area_lock); 514 515 BUG_ON(!IS_ALIGNED(va->va_start, align)); 516 BUG_ON(va->va_start < vstart); 517 BUG_ON(va->va_end > vend); 518 519 return va; 520 521 overflow: 522 spin_unlock(&vmap_area_lock); 523 if (!purged) { 524 purge_vmap_area_lazy(); 525 purged = 1; 526 goto retry; 527 } 528 529 if (gfpflags_allow_blocking(gfp_mask)) { 530 unsigned long freed = 0; 531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 532 if (freed > 0) { 533 purged = 0; 534 goto retry; 535 } 536 } 537 538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 540 size); 541 kfree(va); 542 return ERR_PTR(-EBUSY); 543 } 544 545 int register_vmap_purge_notifier(struct notifier_block *nb) 546 { 547 return blocking_notifier_chain_register(&vmap_notify_list, nb); 548 } 549 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 550 551 int unregister_vmap_purge_notifier(struct notifier_block *nb) 552 { 553 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 554 } 555 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 556 557 static void __free_vmap_area(struct vmap_area *va) 558 { 559 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 560 561 if (free_vmap_cache) { 562 if (va->va_end < cached_vstart) { 563 free_vmap_cache = NULL; 564 } else { 565 struct vmap_area *cache; 566 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 567 if (va->va_start <= cache->va_start) { 568 free_vmap_cache = rb_prev(&va->rb_node); 569 /* 570 * We don't try to update cached_hole_size or 571 * cached_align, but it won't go very wrong. 572 */ 573 } 574 } 575 } 576 rb_erase(&va->rb_node, &vmap_area_root); 577 RB_CLEAR_NODE(&va->rb_node); 578 list_del_rcu(&va->list); 579 580 /* 581 * Track the highest possible candidate for pcpu area 582 * allocation. Areas outside of vmalloc area can be returned 583 * here too, consider only end addresses which fall inside 584 * vmalloc area proper. 585 */ 586 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 587 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 588 589 kfree_rcu(va, rcu_head); 590 } 591 592 /* 593 * Free a region of KVA allocated by alloc_vmap_area 594 */ 595 static void free_vmap_area(struct vmap_area *va) 596 { 597 spin_lock(&vmap_area_lock); 598 __free_vmap_area(va); 599 spin_unlock(&vmap_area_lock); 600 } 601 602 /* 603 * Clear the pagetable entries of a given vmap_area 604 */ 605 static void unmap_vmap_area(struct vmap_area *va) 606 { 607 vunmap_page_range(va->va_start, va->va_end); 608 } 609 610 /* 611 * lazy_max_pages is the maximum amount of virtual address space we gather up 612 * before attempting to purge with a TLB flush. 613 * 614 * There is a tradeoff here: a larger number will cover more kernel page tables 615 * and take slightly longer to purge, but it will linearly reduce the number of 616 * global TLB flushes that must be performed. It would seem natural to scale 617 * this number up linearly with the number of CPUs (because vmapping activity 618 * could also scale linearly with the number of CPUs), however it is likely 619 * that in practice, workloads might be constrained in other ways that mean 620 * vmap activity will not scale linearly with CPUs. Also, I want to be 621 * conservative and not introduce a big latency on huge systems, so go with 622 * a less aggressive log scale. It will still be an improvement over the old 623 * code, and it will be simple to change the scale factor if we find that it 624 * becomes a problem on bigger systems. 625 */ 626 static unsigned long lazy_max_pages(void) 627 { 628 unsigned int log; 629 630 log = fls(num_online_cpus()); 631 632 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 633 } 634 635 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 636 637 /* 638 * Serialize vmap purging. There is no actual criticial section protected 639 * by this look, but we want to avoid concurrent calls for performance 640 * reasons and to make the pcpu_get_vm_areas more deterministic. 641 */ 642 static DEFINE_MUTEX(vmap_purge_lock); 643 644 /* for per-CPU blocks */ 645 static void purge_fragmented_blocks_allcpus(void); 646 647 /* 648 * called before a call to iounmap() if the caller wants vm_area_struct's 649 * immediately freed. 650 */ 651 void set_iounmap_nonlazy(void) 652 { 653 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 654 } 655 656 /* 657 * Purges all lazily-freed vmap areas. 658 */ 659 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 660 { 661 struct llist_node *valist; 662 struct vmap_area *va; 663 struct vmap_area *n_va; 664 bool do_free = false; 665 666 lockdep_assert_held(&vmap_purge_lock); 667 668 valist = llist_del_all(&vmap_purge_list); 669 llist_for_each_entry(va, valist, purge_list) { 670 if (va->va_start < start) 671 start = va->va_start; 672 if (va->va_end > end) 673 end = va->va_end; 674 do_free = true; 675 } 676 677 if (!do_free) 678 return false; 679 680 flush_tlb_kernel_range(start, end); 681 682 spin_lock(&vmap_area_lock); 683 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 684 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 685 686 __free_vmap_area(va); 687 atomic_sub(nr, &vmap_lazy_nr); 688 cond_resched_lock(&vmap_area_lock); 689 } 690 spin_unlock(&vmap_area_lock); 691 return true; 692 } 693 694 /* 695 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 696 * is already purging. 697 */ 698 static void try_purge_vmap_area_lazy(void) 699 { 700 if (mutex_trylock(&vmap_purge_lock)) { 701 __purge_vmap_area_lazy(ULONG_MAX, 0); 702 mutex_unlock(&vmap_purge_lock); 703 } 704 } 705 706 /* 707 * Kick off a purge of the outstanding lazy areas. 708 */ 709 static void purge_vmap_area_lazy(void) 710 { 711 mutex_lock(&vmap_purge_lock); 712 purge_fragmented_blocks_allcpus(); 713 __purge_vmap_area_lazy(ULONG_MAX, 0); 714 mutex_unlock(&vmap_purge_lock); 715 } 716 717 /* 718 * Free a vmap area, caller ensuring that the area has been unmapped 719 * and flush_cache_vunmap had been called for the correct range 720 * previously. 721 */ 722 static void free_vmap_area_noflush(struct vmap_area *va) 723 { 724 int nr_lazy; 725 726 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 727 &vmap_lazy_nr); 728 729 /* After this point, we may free va at any time */ 730 llist_add(&va->purge_list, &vmap_purge_list); 731 732 if (unlikely(nr_lazy > lazy_max_pages())) 733 try_purge_vmap_area_lazy(); 734 } 735 736 /* 737 * Free and unmap a vmap area 738 */ 739 static void free_unmap_vmap_area(struct vmap_area *va) 740 { 741 flush_cache_vunmap(va->va_start, va->va_end); 742 unmap_vmap_area(va); 743 if (debug_pagealloc_enabled()) 744 flush_tlb_kernel_range(va->va_start, va->va_end); 745 746 free_vmap_area_noflush(va); 747 } 748 749 static struct vmap_area *find_vmap_area(unsigned long addr) 750 { 751 struct vmap_area *va; 752 753 spin_lock(&vmap_area_lock); 754 va = __find_vmap_area(addr); 755 spin_unlock(&vmap_area_lock); 756 757 return va; 758 } 759 760 /*** Per cpu kva allocator ***/ 761 762 /* 763 * vmap space is limited especially on 32 bit architectures. Ensure there is 764 * room for at least 16 percpu vmap blocks per CPU. 765 */ 766 /* 767 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 768 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 769 * instead (we just need a rough idea) 770 */ 771 #if BITS_PER_LONG == 32 772 #define VMALLOC_SPACE (128UL*1024*1024) 773 #else 774 #define VMALLOC_SPACE (128UL*1024*1024*1024) 775 #endif 776 777 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 778 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 779 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 780 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 781 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 782 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 783 #define VMAP_BBMAP_BITS \ 784 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 785 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 786 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 787 788 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 789 790 static bool vmap_initialized __read_mostly = false; 791 792 struct vmap_block_queue { 793 spinlock_t lock; 794 struct list_head free; 795 }; 796 797 struct vmap_block { 798 spinlock_t lock; 799 struct vmap_area *va; 800 unsigned long free, dirty; 801 unsigned long dirty_min, dirty_max; /*< dirty range */ 802 struct list_head free_list; 803 struct rcu_head rcu_head; 804 struct list_head purge; 805 }; 806 807 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 808 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 809 810 /* 811 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 812 * in the free path. Could get rid of this if we change the API to return a 813 * "cookie" from alloc, to be passed to free. But no big deal yet. 814 */ 815 static DEFINE_SPINLOCK(vmap_block_tree_lock); 816 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 817 818 /* 819 * We should probably have a fallback mechanism to allocate virtual memory 820 * out of partially filled vmap blocks. However vmap block sizing should be 821 * fairly reasonable according to the vmalloc size, so it shouldn't be a 822 * big problem. 823 */ 824 825 static unsigned long addr_to_vb_idx(unsigned long addr) 826 { 827 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 828 addr /= VMAP_BLOCK_SIZE; 829 return addr; 830 } 831 832 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 833 { 834 unsigned long addr; 835 836 addr = va_start + (pages_off << PAGE_SHIFT); 837 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 838 return (void *)addr; 839 } 840 841 /** 842 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 843 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 844 * @order: how many 2^order pages should be occupied in newly allocated block 845 * @gfp_mask: flags for the page level allocator 846 * 847 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 848 */ 849 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 850 { 851 struct vmap_block_queue *vbq; 852 struct vmap_block *vb; 853 struct vmap_area *va; 854 unsigned long vb_idx; 855 int node, err; 856 void *vaddr; 857 858 node = numa_node_id(); 859 860 vb = kmalloc_node(sizeof(struct vmap_block), 861 gfp_mask & GFP_RECLAIM_MASK, node); 862 if (unlikely(!vb)) 863 return ERR_PTR(-ENOMEM); 864 865 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 866 VMALLOC_START, VMALLOC_END, 867 node, gfp_mask); 868 if (IS_ERR(va)) { 869 kfree(vb); 870 return ERR_CAST(va); 871 } 872 873 err = radix_tree_preload(gfp_mask); 874 if (unlikely(err)) { 875 kfree(vb); 876 free_vmap_area(va); 877 return ERR_PTR(err); 878 } 879 880 vaddr = vmap_block_vaddr(va->va_start, 0); 881 spin_lock_init(&vb->lock); 882 vb->va = va; 883 /* At least something should be left free */ 884 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 885 vb->free = VMAP_BBMAP_BITS - (1UL << order); 886 vb->dirty = 0; 887 vb->dirty_min = VMAP_BBMAP_BITS; 888 vb->dirty_max = 0; 889 INIT_LIST_HEAD(&vb->free_list); 890 891 vb_idx = addr_to_vb_idx(va->va_start); 892 spin_lock(&vmap_block_tree_lock); 893 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 894 spin_unlock(&vmap_block_tree_lock); 895 BUG_ON(err); 896 radix_tree_preload_end(); 897 898 vbq = &get_cpu_var(vmap_block_queue); 899 spin_lock(&vbq->lock); 900 list_add_tail_rcu(&vb->free_list, &vbq->free); 901 spin_unlock(&vbq->lock); 902 put_cpu_var(vmap_block_queue); 903 904 return vaddr; 905 } 906 907 static void free_vmap_block(struct vmap_block *vb) 908 { 909 struct vmap_block *tmp; 910 unsigned long vb_idx; 911 912 vb_idx = addr_to_vb_idx(vb->va->va_start); 913 spin_lock(&vmap_block_tree_lock); 914 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 915 spin_unlock(&vmap_block_tree_lock); 916 BUG_ON(tmp != vb); 917 918 free_vmap_area_noflush(vb->va); 919 kfree_rcu(vb, rcu_head); 920 } 921 922 static void purge_fragmented_blocks(int cpu) 923 { 924 LIST_HEAD(purge); 925 struct vmap_block *vb; 926 struct vmap_block *n_vb; 927 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 928 929 rcu_read_lock(); 930 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 931 932 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 933 continue; 934 935 spin_lock(&vb->lock); 936 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 937 vb->free = 0; /* prevent further allocs after releasing lock */ 938 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 939 vb->dirty_min = 0; 940 vb->dirty_max = VMAP_BBMAP_BITS; 941 spin_lock(&vbq->lock); 942 list_del_rcu(&vb->free_list); 943 spin_unlock(&vbq->lock); 944 spin_unlock(&vb->lock); 945 list_add_tail(&vb->purge, &purge); 946 } else 947 spin_unlock(&vb->lock); 948 } 949 rcu_read_unlock(); 950 951 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 952 list_del(&vb->purge); 953 free_vmap_block(vb); 954 } 955 } 956 957 static void purge_fragmented_blocks_allcpus(void) 958 { 959 int cpu; 960 961 for_each_possible_cpu(cpu) 962 purge_fragmented_blocks(cpu); 963 } 964 965 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 966 { 967 struct vmap_block_queue *vbq; 968 struct vmap_block *vb; 969 void *vaddr = NULL; 970 unsigned int order; 971 972 BUG_ON(offset_in_page(size)); 973 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 974 if (WARN_ON(size == 0)) { 975 /* 976 * Allocating 0 bytes isn't what caller wants since 977 * get_order(0) returns funny result. Just warn and terminate 978 * early. 979 */ 980 return NULL; 981 } 982 order = get_order(size); 983 984 rcu_read_lock(); 985 vbq = &get_cpu_var(vmap_block_queue); 986 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 987 unsigned long pages_off; 988 989 spin_lock(&vb->lock); 990 if (vb->free < (1UL << order)) { 991 spin_unlock(&vb->lock); 992 continue; 993 } 994 995 pages_off = VMAP_BBMAP_BITS - vb->free; 996 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 997 vb->free -= 1UL << order; 998 if (vb->free == 0) { 999 spin_lock(&vbq->lock); 1000 list_del_rcu(&vb->free_list); 1001 spin_unlock(&vbq->lock); 1002 } 1003 1004 spin_unlock(&vb->lock); 1005 break; 1006 } 1007 1008 put_cpu_var(vmap_block_queue); 1009 rcu_read_unlock(); 1010 1011 /* Allocate new block if nothing was found */ 1012 if (!vaddr) 1013 vaddr = new_vmap_block(order, gfp_mask); 1014 1015 return vaddr; 1016 } 1017 1018 static void vb_free(const void *addr, unsigned long size) 1019 { 1020 unsigned long offset; 1021 unsigned long vb_idx; 1022 unsigned int order; 1023 struct vmap_block *vb; 1024 1025 BUG_ON(offset_in_page(size)); 1026 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1027 1028 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1029 1030 order = get_order(size); 1031 1032 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1033 offset >>= PAGE_SHIFT; 1034 1035 vb_idx = addr_to_vb_idx((unsigned long)addr); 1036 rcu_read_lock(); 1037 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1038 rcu_read_unlock(); 1039 BUG_ON(!vb); 1040 1041 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1042 1043 if (debug_pagealloc_enabled()) 1044 flush_tlb_kernel_range((unsigned long)addr, 1045 (unsigned long)addr + size); 1046 1047 spin_lock(&vb->lock); 1048 1049 /* Expand dirty range */ 1050 vb->dirty_min = min(vb->dirty_min, offset); 1051 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1052 1053 vb->dirty += 1UL << order; 1054 if (vb->dirty == VMAP_BBMAP_BITS) { 1055 BUG_ON(vb->free); 1056 spin_unlock(&vb->lock); 1057 free_vmap_block(vb); 1058 } else 1059 spin_unlock(&vb->lock); 1060 } 1061 1062 /** 1063 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1064 * 1065 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1066 * to amortize TLB flushing overheads. What this means is that any page you 1067 * have now, may, in a former life, have been mapped into kernel virtual 1068 * address by the vmap layer and so there might be some CPUs with TLB entries 1069 * still referencing that page (additional to the regular 1:1 kernel mapping). 1070 * 1071 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1072 * be sure that none of the pages we have control over will have any aliases 1073 * from the vmap layer. 1074 */ 1075 void vm_unmap_aliases(void) 1076 { 1077 unsigned long start = ULONG_MAX, end = 0; 1078 int cpu; 1079 int flush = 0; 1080 1081 if (unlikely(!vmap_initialized)) 1082 return; 1083 1084 might_sleep(); 1085 1086 for_each_possible_cpu(cpu) { 1087 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1088 struct vmap_block *vb; 1089 1090 rcu_read_lock(); 1091 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1092 spin_lock(&vb->lock); 1093 if (vb->dirty) { 1094 unsigned long va_start = vb->va->va_start; 1095 unsigned long s, e; 1096 1097 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1098 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1099 1100 start = min(s, start); 1101 end = max(e, end); 1102 1103 flush = 1; 1104 } 1105 spin_unlock(&vb->lock); 1106 } 1107 rcu_read_unlock(); 1108 } 1109 1110 mutex_lock(&vmap_purge_lock); 1111 purge_fragmented_blocks_allcpus(); 1112 if (!__purge_vmap_area_lazy(start, end) && flush) 1113 flush_tlb_kernel_range(start, end); 1114 mutex_unlock(&vmap_purge_lock); 1115 } 1116 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1117 1118 /** 1119 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1120 * @mem: the pointer returned by vm_map_ram 1121 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1122 */ 1123 void vm_unmap_ram(const void *mem, unsigned int count) 1124 { 1125 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1126 unsigned long addr = (unsigned long)mem; 1127 struct vmap_area *va; 1128 1129 might_sleep(); 1130 BUG_ON(!addr); 1131 BUG_ON(addr < VMALLOC_START); 1132 BUG_ON(addr > VMALLOC_END); 1133 BUG_ON(!PAGE_ALIGNED(addr)); 1134 1135 if (likely(count <= VMAP_MAX_ALLOC)) { 1136 debug_check_no_locks_freed(mem, size); 1137 vb_free(mem, size); 1138 return; 1139 } 1140 1141 va = find_vmap_area(addr); 1142 BUG_ON(!va); 1143 debug_check_no_locks_freed((void *)va->va_start, 1144 (va->va_end - va->va_start)); 1145 free_unmap_vmap_area(va); 1146 } 1147 EXPORT_SYMBOL(vm_unmap_ram); 1148 1149 /** 1150 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1151 * @pages: an array of pointers to the pages to be mapped 1152 * @count: number of pages 1153 * @node: prefer to allocate data structures on this node 1154 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1155 * 1156 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1157 * faster than vmap so it's good. But if you mix long-life and short-life 1158 * objects with vm_map_ram(), it could consume lots of address space through 1159 * fragmentation (especially on a 32bit machine). You could see failures in 1160 * the end. Please use this function for short-lived objects. 1161 * 1162 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1163 */ 1164 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1165 { 1166 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1167 unsigned long addr; 1168 void *mem; 1169 1170 if (likely(count <= VMAP_MAX_ALLOC)) { 1171 mem = vb_alloc(size, GFP_KERNEL); 1172 if (IS_ERR(mem)) 1173 return NULL; 1174 addr = (unsigned long)mem; 1175 } else { 1176 struct vmap_area *va; 1177 va = alloc_vmap_area(size, PAGE_SIZE, 1178 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1179 if (IS_ERR(va)) 1180 return NULL; 1181 1182 addr = va->va_start; 1183 mem = (void *)addr; 1184 } 1185 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1186 vm_unmap_ram(mem, count); 1187 return NULL; 1188 } 1189 return mem; 1190 } 1191 EXPORT_SYMBOL(vm_map_ram); 1192 1193 static struct vm_struct *vmlist __initdata; 1194 /** 1195 * vm_area_add_early - add vmap area early during boot 1196 * @vm: vm_struct to add 1197 * 1198 * This function is used to add fixed kernel vm area to vmlist before 1199 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1200 * should contain proper values and the other fields should be zero. 1201 * 1202 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1203 */ 1204 void __init vm_area_add_early(struct vm_struct *vm) 1205 { 1206 struct vm_struct *tmp, **p; 1207 1208 BUG_ON(vmap_initialized); 1209 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1210 if (tmp->addr >= vm->addr) { 1211 BUG_ON(tmp->addr < vm->addr + vm->size); 1212 break; 1213 } else 1214 BUG_ON(tmp->addr + tmp->size > vm->addr); 1215 } 1216 vm->next = *p; 1217 *p = vm; 1218 } 1219 1220 /** 1221 * vm_area_register_early - register vmap area early during boot 1222 * @vm: vm_struct to register 1223 * @align: requested alignment 1224 * 1225 * This function is used to register kernel vm area before 1226 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1227 * proper values on entry and other fields should be zero. On return, 1228 * vm->addr contains the allocated address. 1229 * 1230 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1231 */ 1232 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1233 { 1234 static size_t vm_init_off __initdata; 1235 unsigned long addr; 1236 1237 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1238 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1239 1240 vm->addr = (void *)addr; 1241 1242 vm_area_add_early(vm); 1243 } 1244 1245 void __init vmalloc_init(void) 1246 { 1247 struct vmap_area *va; 1248 struct vm_struct *tmp; 1249 int i; 1250 1251 for_each_possible_cpu(i) { 1252 struct vmap_block_queue *vbq; 1253 struct vfree_deferred *p; 1254 1255 vbq = &per_cpu(vmap_block_queue, i); 1256 spin_lock_init(&vbq->lock); 1257 INIT_LIST_HEAD(&vbq->free); 1258 p = &per_cpu(vfree_deferred, i); 1259 init_llist_head(&p->list); 1260 INIT_WORK(&p->wq, free_work); 1261 } 1262 1263 /* Import existing vmlist entries. */ 1264 for (tmp = vmlist; tmp; tmp = tmp->next) { 1265 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1266 va->flags = VM_VM_AREA; 1267 va->va_start = (unsigned long)tmp->addr; 1268 va->va_end = va->va_start + tmp->size; 1269 va->vm = tmp; 1270 __insert_vmap_area(va); 1271 } 1272 1273 vmap_area_pcpu_hole = VMALLOC_END; 1274 1275 vmap_initialized = true; 1276 } 1277 1278 /** 1279 * map_kernel_range_noflush - map kernel VM area with the specified pages 1280 * @addr: start of the VM area to map 1281 * @size: size of the VM area to map 1282 * @prot: page protection flags to use 1283 * @pages: pages to map 1284 * 1285 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1286 * specify should have been allocated using get_vm_area() and its 1287 * friends. 1288 * 1289 * NOTE: 1290 * This function does NOT do any cache flushing. The caller is 1291 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1292 * before calling this function. 1293 * 1294 * RETURNS: 1295 * The number of pages mapped on success, -errno on failure. 1296 */ 1297 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1298 pgprot_t prot, struct page **pages) 1299 { 1300 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1301 } 1302 1303 /** 1304 * unmap_kernel_range_noflush - unmap kernel VM area 1305 * @addr: start of the VM area to unmap 1306 * @size: size of the VM area to unmap 1307 * 1308 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1309 * specify should have been allocated using get_vm_area() and its 1310 * friends. 1311 * 1312 * NOTE: 1313 * This function does NOT do any cache flushing. The caller is 1314 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1315 * before calling this function and flush_tlb_kernel_range() after. 1316 */ 1317 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1318 { 1319 vunmap_page_range(addr, addr + size); 1320 } 1321 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1322 1323 /** 1324 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1325 * @addr: start of the VM area to unmap 1326 * @size: size of the VM area to unmap 1327 * 1328 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1329 * the unmapping and tlb after. 1330 */ 1331 void unmap_kernel_range(unsigned long addr, unsigned long size) 1332 { 1333 unsigned long end = addr + size; 1334 1335 flush_cache_vunmap(addr, end); 1336 vunmap_page_range(addr, end); 1337 flush_tlb_kernel_range(addr, end); 1338 } 1339 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1340 1341 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1342 { 1343 unsigned long addr = (unsigned long)area->addr; 1344 unsigned long end = addr + get_vm_area_size(area); 1345 int err; 1346 1347 err = vmap_page_range(addr, end, prot, pages); 1348 1349 return err > 0 ? 0 : err; 1350 } 1351 EXPORT_SYMBOL_GPL(map_vm_area); 1352 1353 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1354 unsigned long flags, const void *caller) 1355 { 1356 spin_lock(&vmap_area_lock); 1357 vm->flags = flags; 1358 vm->addr = (void *)va->va_start; 1359 vm->size = va->va_end - va->va_start; 1360 vm->caller = caller; 1361 va->vm = vm; 1362 va->flags |= VM_VM_AREA; 1363 spin_unlock(&vmap_area_lock); 1364 } 1365 1366 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1367 { 1368 /* 1369 * Before removing VM_UNINITIALIZED, 1370 * we should make sure that vm has proper values. 1371 * Pair with smp_rmb() in show_numa_info(). 1372 */ 1373 smp_wmb(); 1374 vm->flags &= ~VM_UNINITIALIZED; 1375 } 1376 1377 static struct vm_struct *__get_vm_area_node(unsigned long size, 1378 unsigned long align, unsigned long flags, unsigned long start, 1379 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1380 { 1381 struct vmap_area *va; 1382 struct vm_struct *area; 1383 1384 BUG_ON(in_interrupt()); 1385 size = PAGE_ALIGN(size); 1386 if (unlikely(!size)) 1387 return NULL; 1388 1389 if (flags & VM_IOREMAP) 1390 align = 1ul << clamp_t(int, get_count_order_long(size), 1391 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1392 1393 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1394 if (unlikely(!area)) 1395 return NULL; 1396 1397 if (!(flags & VM_NO_GUARD)) 1398 size += PAGE_SIZE; 1399 1400 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1401 if (IS_ERR(va)) { 1402 kfree(area); 1403 return NULL; 1404 } 1405 1406 setup_vmalloc_vm(area, va, flags, caller); 1407 1408 return area; 1409 } 1410 1411 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1412 unsigned long start, unsigned long end) 1413 { 1414 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1415 GFP_KERNEL, __builtin_return_address(0)); 1416 } 1417 EXPORT_SYMBOL_GPL(__get_vm_area); 1418 1419 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1420 unsigned long start, unsigned long end, 1421 const void *caller) 1422 { 1423 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1424 GFP_KERNEL, caller); 1425 } 1426 1427 /** 1428 * get_vm_area - reserve a contiguous kernel virtual area 1429 * @size: size of the area 1430 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1431 * 1432 * Search an area of @size in the kernel virtual mapping area, 1433 * and reserved it for out purposes. Returns the area descriptor 1434 * on success or %NULL on failure. 1435 */ 1436 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1437 { 1438 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1439 NUMA_NO_NODE, GFP_KERNEL, 1440 __builtin_return_address(0)); 1441 } 1442 1443 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1444 const void *caller) 1445 { 1446 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1447 NUMA_NO_NODE, GFP_KERNEL, caller); 1448 } 1449 1450 /** 1451 * find_vm_area - find a continuous kernel virtual area 1452 * @addr: base address 1453 * 1454 * Search for the kernel VM area starting at @addr, and return it. 1455 * It is up to the caller to do all required locking to keep the returned 1456 * pointer valid. 1457 */ 1458 struct vm_struct *find_vm_area(const void *addr) 1459 { 1460 struct vmap_area *va; 1461 1462 va = find_vmap_area((unsigned long)addr); 1463 if (va && va->flags & VM_VM_AREA) 1464 return va->vm; 1465 1466 return NULL; 1467 } 1468 1469 /** 1470 * remove_vm_area - find and remove a continuous kernel virtual area 1471 * @addr: base address 1472 * 1473 * Search for the kernel VM area starting at @addr, and remove it. 1474 * This function returns the found VM area, but using it is NOT safe 1475 * on SMP machines, except for its size or flags. 1476 */ 1477 struct vm_struct *remove_vm_area(const void *addr) 1478 { 1479 struct vmap_area *va; 1480 1481 might_sleep(); 1482 1483 va = find_vmap_area((unsigned long)addr); 1484 if (va && va->flags & VM_VM_AREA) { 1485 struct vm_struct *vm = va->vm; 1486 1487 spin_lock(&vmap_area_lock); 1488 va->vm = NULL; 1489 va->flags &= ~VM_VM_AREA; 1490 va->flags |= VM_LAZY_FREE; 1491 spin_unlock(&vmap_area_lock); 1492 1493 kasan_free_shadow(vm); 1494 free_unmap_vmap_area(va); 1495 1496 return vm; 1497 } 1498 return NULL; 1499 } 1500 1501 static void __vunmap(const void *addr, int deallocate_pages) 1502 { 1503 struct vm_struct *area; 1504 1505 if (!addr) 1506 return; 1507 1508 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1509 addr)) 1510 return; 1511 1512 area = find_vm_area(addr); 1513 if (unlikely(!area)) { 1514 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1515 addr); 1516 return; 1517 } 1518 1519 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 1520 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 1521 1522 remove_vm_area(addr); 1523 if (deallocate_pages) { 1524 int i; 1525 1526 for (i = 0; i < area->nr_pages; i++) { 1527 struct page *page = area->pages[i]; 1528 1529 BUG_ON(!page); 1530 __free_pages(page, 0); 1531 } 1532 1533 kvfree(area->pages); 1534 } 1535 1536 kfree(area); 1537 return; 1538 } 1539 1540 static inline void __vfree_deferred(const void *addr) 1541 { 1542 /* 1543 * Use raw_cpu_ptr() because this can be called from preemptible 1544 * context. Preemption is absolutely fine here, because the llist_add() 1545 * implementation is lockless, so it works even if we are adding to 1546 * nother cpu's list. schedule_work() should be fine with this too. 1547 */ 1548 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1549 1550 if (llist_add((struct llist_node *)addr, &p->list)) 1551 schedule_work(&p->wq); 1552 } 1553 1554 /** 1555 * vfree_atomic - release memory allocated by vmalloc() 1556 * @addr: memory base address 1557 * 1558 * This one is just like vfree() but can be called in any atomic context 1559 * except NMIs. 1560 */ 1561 void vfree_atomic(const void *addr) 1562 { 1563 BUG_ON(in_nmi()); 1564 1565 kmemleak_free(addr); 1566 1567 if (!addr) 1568 return; 1569 __vfree_deferred(addr); 1570 } 1571 1572 static void __vfree(const void *addr) 1573 { 1574 if (unlikely(in_interrupt())) 1575 __vfree_deferred(addr); 1576 else 1577 __vunmap(addr, 1); 1578 } 1579 1580 /** 1581 * vfree - release memory allocated by vmalloc() 1582 * @addr: memory base address 1583 * 1584 * Free the virtually continuous memory area starting at @addr, as 1585 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1586 * NULL, no operation is performed. 1587 * 1588 * Must not be called in NMI context (strictly speaking, only if we don't 1589 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1590 * conventions for vfree() arch-depenedent would be a really bad idea) 1591 * 1592 * May sleep if called *not* from interrupt context. 1593 * 1594 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 1595 */ 1596 void vfree(const void *addr) 1597 { 1598 BUG_ON(in_nmi()); 1599 1600 kmemleak_free(addr); 1601 1602 might_sleep_if(!in_interrupt()); 1603 1604 if (!addr) 1605 return; 1606 1607 __vfree(addr); 1608 } 1609 EXPORT_SYMBOL(vfree); 1610 1611 /** 1612 * vunmap - release virtual mapping obtained by vmap() 1613 * @addr: memory base address 1614 * 1615 * Free the virtually contiguous memory area starting at @addr, 1616 * which was created from the page array passed to vmap(). 1617 * 1618 * Must not be called in interrupt context. 1619 */ 1620 void vunmap(const void *addr) 1621 { 1622 BUG_ON(in_interrupt()); 1623 might_sleep(); 1624 if (addr) 1625 __vunmap(addr, 0); 1626 } 1627 EXPORT_SYMBOL(vunmap); 1628 1629 /** 1630 * vmap - map an array of pages into virtually contiguous space 1631 * @pages: array of page pointers 1632 * @count: number of pages to map 1633 * @flags: vm_area->flags 1634 * @prot: page protection for the mapping 1635 * 1636 * Maps @count pages from @pages into contiguous kernel virtual 1637 * space. 1638 */ 1639 void *vmap(struct page **pages, unsigned int count, 1640 unsigned long flags, pgprot_t prot) 1641 { 1642 struct vm_struct *area; 1643 unsigned long size; /* In bytes */ 1644 1645 might_sleep(); 1646 1647 if (count > totalram_pages()) 1648 return NULL; 1649 1650 size = (unsigned long)count << PAGE_SHIFT; 1651 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1652 if (!area) 1653 return NULL; 1654 1655 if (map_vm_area(area, prot, pages)) { 1656 vunmap(area->addr); 1657 return NULL; 1658 } 1659 1660 return area->addr; 1661 } 1662 EXPORT_SYMBOL(vmap); 1663 1664 static void *__vmalloc_node(unsigned long size, unsigned long align, 1665 gfp_t gfp_mask, pgprot_t prot, 1666 int node, const void *caller); 1667 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1668 pgprot_t prot, int node) 1669 { 1670 struct page **pages; 1671 unsigned int nr_pages, array_size, i; 1672 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1673 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1674 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 1675 0 : 1676 __GFP_HIGHMEM; 1677 1678 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1679 array_size = (nr_pages * sizeof(struct page *)); 1680 1681 area->nr_pages = nr_pages; 1682 /* Please note that the recursion is strictly bounded. */ 1683 if (array_size > PAGE_SIZE) { 1684 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 1685 PAGE_KERNEL, node, area->caller); 1686 } else { 1687 pages = kmalloc_node(array_size, nested_gfp, node); 1688 } 1689 area->pages = pages; 1690 if (!area->pages) { 1691 remove_vm_area(area->addr); 1692 kfree(area); 1693 return NULL; 1694 } 1695 1696 for (i = 0; i < area->nr_pages; i++) { 1697 struct page *page; 1698 1699 if (node == NUMA_NO_NODE) 1700 page = alloc_page(alloc_mask|highmem_mask); 1701 else 1702 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 1703 1704 if (unlikely(!page)) { 1705 /* Successfully allocated i pages, free them in __vunmap() */ 1706 area->nr_pages = i; 1707 goto fail; 1708 } 1709 area->pages[i] = page; 1710 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 1711 cond_resched(); 1712 } 1713 1714 if (map_vm_area(area, prot, pages)) 1715 goto fail; 1716 return area->addr; 1717 1718 fail: 1719 warn_alloc(gfp_mask, NULL, 1720 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1721 (area->nr_pages*PAGE_SIZE), area->size); 1722 __vfree(area->addr); 1723 return NULL; 1724 } 1725 1726 /** 1727 * __vmalloc_node_range - allocate virtually contiguous memory 1728 * @size: allocation size 1729 * @align: desired alignment 1730 * @start: vm area range start 1731 * @end: vm area range end 1732 * @gfp_mask: flags for the page level allocator 1733 * @prot: protection mask for the allocated pages 1734 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1735 * @node: node to use for allocation or NUMA_NO_NODE 1736 * @caller: caller's return address 1737 * 1738 * Allocate enough pages to cover @size from the page level 1739 * allocator with @gfp_mask flags. Map them into contiguous 1740 * kernel virtual space, using a pagetable protection of @prot. 1741 */ 1742 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1743 unsigned long start, unsigned long end, gfp_t gfp_mask, 1744 pgprot_t prot, unsigned long vm_flags, int node, 1745 const void *caller) 1746 { 1747 struct vm_struct *area; 1748 void *addr; 1749 unsigned long real_size = size; 1750 1751 size = PAGE_ALIGN(size); 1752 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 1753 goto fail; 1754 1755 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1756 vm_flags, start, end, node, gfp_mask, caller); 1757 if (!area) 1758 goto fail; 1759 1760 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1761 if (!addr) 1762 return NULL; 1763 1764 /* 1765 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1766 * flag. It means that vm_struct is not fully initialized. 1767 * Now, it is fully initialized, so remove this flag here. 1768 */ 1769 clear_vm_uninitialized_flag(area); 1770 1771 kmemleak_vmalloc(area, size, gfp_mask); 1772 1773 return addr; 1774 1775 fail: 1776 warn_alloc(gfp_mask, NULL, 1777 "vmalloc: allocation failure: %lu bytes", real_size); 1778 return NULL; 1779 } 1780 1781 /* 1782 * This is only for performance analysis of vmalloc and stress purpose. 1783 * It is required by vmalloc test module, therefore do not use it other 1784 * than that. 1785 */ 1786 #ifdef CONFIG_TEST_VMALLOC_MODULE 1787 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 1788 #endif 1789 1790 /** 1791 * __vmalloc_node - allocate virtually contiguous memory 1792 * @size: allocation size 1793 * @align: desired alignment 1794 * @gfp_mask: flags for the page level allocator 1795 * @prot: protection mask for the allocated pages 1796 * @node: node to use for allocation or NUMA_NO_NODE 1797 * @caller: caller's return address 1798 * 1799 * Allocate enough pages to cover @size from the page level 1800 * allocator with @gfp_mask flags. Map them into contiguous 1801 * kernel virtual space, using a pagetable protection of @prot. 1802 * 1803 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 1804 * and __GFP_NOFAIL are not supported 1805 * 1806 * Any use of gfp flags outside of GFP_KERNEL should be consulted 1807 * with mm people. 1808 * 1809 */ 1810 static void *__vmalloc_node(unsigned long size, unsigned long align, 1811 gfp_t gfp_mask, pgprot_t prot, 1812 int node, const void *caller) 1813 { 1814 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1815 gfp_mask, prot, 0, node, caller); 1816 } 1817 1818 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1819 { 1820 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1821 __builtin_return_address(0)); 1822 } 1823 EXPORT_SYMBOL(__vmalloc); 1824 1825 static inline void *__vmalloc_node_flags(unsigned long size, 1826 int node, gfp_t flags) 1827 { 1828 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1829 node, __builtin_return_address(0)); 1830 } 1831 1832 1833 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 1834 void *caller) 1835 { 1836 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 1837 } 1838 1839 /** 1840 * vmalloc - allocate virtually contiguous memory 1841 * @size: allocation size 1842 * Allocate enough pages to cover @size from the page level 1843 * allocator and map them into contiguous kernel virtual space. 1844 * 1845 * For tight control over page level allocator and protection flags 1846 * use __vmalloc() instead. 1847 */ 1848 void *vmalloc(unsigned long size) 1849 { 1850 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1851 GFP_KERNEL); 1852 } 1853 EXPORT_SYMBOL(vmalloc); 1854 1855 /** 1856 * vzalloc - allocate virtually contiguous memory with zero fill 1857 * @size: allocation size 1858 * Allocate enough pages to cover @size from the page level 1859 * allocator and map them into contiguous kernel virtual space. 1860 * The memory allocated is set to zero. 1861 * 1862 * For tight control over page level allocator and protection flags 1863 * use __vmalloc() instead. 1864 */ 1865 void *vzalloc(unsigned long size) 1866 { 1867 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1868 GFP_KERNEL | __GFP_ZERO); 1869 } 1870 EXPORT_SYMBOL(vzalloc); 1871 1872 /** 1873 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1874 * @size: allocation size 1875 * 1876 * The resulting memory area is zeroed so it can be mapped to userspace 1877 * without leaking data. 1878 */ 1879 void *vmalloc_user(unsigned long size) 1880 { 1881 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 1882 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 1883 VM_USERMAP, NUMA_NO_NODE, 1884 __builtin_return_address(0)); 1885 } 1886 EXPORT_SYMBOL(vmalloc_user); 1887 1888 /** 1889 * vmalloc_node - allocate memory on a specific node 1890 * @size: allocation size 1891 * @node: numa node 1892 * 1893 * Allocate enough pages to cover @size from the page level 1894 * allocator and map them into contiguous kernel virtual space. 1895 * 1896 * For tight control over page level allocator and protection flags 1897 * use __vmalloc() instead. 1898 */ 1899 void *vmalloc_node(unsigned long size, int node) 1900 { 1901 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 1902 node, __builtin_return_address(0)); 1903 } 1904 EXPORT_SYMBOL(vmalloc_node); 1905 1906 /** 1907 * vzalloc_node - allocate memory on a specific node with zero fill 1908 * @size: allocation size 1909 * @node: numa node 1910 * 1911 * Allocate enough pages to cover @size from the page level 1912 * allocator and map them into contiguous kernel virtual space. 1913 * The memory allocated is set to zero. 1914 * 1915 * For tight control over page level allocator and protection flags 1916 * use __vmalloc_node() instead. 1917 */ 1918 void *vzalloc_node(unsigned long size, int node) 1919 { 1920 return __vmalloc_node_flags(size, node, 1921 GFP_KERNEL | __GFP_ZERO); 1922 } 1923 EXPORT_SYMBOL(vzalloc_node); 1924 1925 /** 1926 * vmalloc_exec - allocate virtually contiguous, executable memory 1927 * @size: allocation size 1928 * 1929 * Kernel-internal function to allocate enough pages to cover @size 1930 * the page level allocator and map them into contiguous and 1931 * executable kernel virtual space. 1932 * 1933 * For tight control over page level allocator and protection flags 1934 * use __vmalloc() instead. 1935 */ 1936 1937 void *vmalloc_exec(unsigned long size) 1938 { 1939 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC, 1940 NUMA_NO_NODE, __builtin_return_address(0)); 1941 } 1942 1943 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1944 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 1945 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1946 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 1947 #else 1948 /* 1949 * 64b systems should always have either DMA or DMA32 zones. For others 1950 * GFP_DMA32 should do the right thing and use the normal zone. 1951 */ 1952 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1953 #endif 1954 1955 /** 1956 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1957 * @size: allocation size 1958 * 1959 * Allocate enough 32bit PA addressable pages to cover @size from the 1960 * page level allocator and map them into contiguous kernel virtual space. 1961 */ 1962 void *vmalloc_32(unsigned long size) 1963 { 1964 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1965 NUMA_NO_NODE, __builtin_return_address(0)); 1966 } 1967 EXPORT_SYMBOL(vmalloc_32); 1968 1969 /** 1970 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1971 * @size: allocation size 1972 * 1973 * The resulting memory area is 32bit addressable and zeroed so it can be 1974 * mapped to userspace without leaking data. 1975 */ 1976 void *vmalloc_32_user(unsigned long size) 1977 { 1978 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 1979 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1980 VM_USERMAP, NUMA_NO_NODE, 1981 __builtin_return_address(0)); 1982 } 1983 EXPORT_SYMBOL(vmalloc_32_user); 1984 1985 /* 1986 * small helper routine , copy contents to buf from addr. 1987 * If the page is not present, fill zero. 1988 */ 1989 1990 static int aligned_vread(char *buf, char *addr, unsigned long count) 1991 { 1992 struct page *p; 1993 int copied = 0; 1994 1995 while (count) { 1996 unsigned long offset, length; 1997 1998 offset = offset_in_page(addr); 1999 length = PAGE_SIZE - offset; 2000 if (length > count) 2001 length = count; 2002 p = vmalloc_to_page(addr); 2003 /* 2004 * To do safe access to this _mapped_ area, we need 2005 * lock. But adding lock here means that we need to add 2006 * overhead of vmalloc()/vfree() calles for this _debug_ 2007 * interface, rarely used. Instead of that, we'll use 2008 * kmap() and get small overhead in this access function. 2009 */ 2010 if (p) { 2011 /* 2012 * we can expect USER0 is not used (see vread/vwrite's 2013 * function description) 2014 */ 2015 void *map = kmap_atomic(p); 2016 memcpy(buf, map + offset, length); 2017 kunmap_atomic(map); 2018 } else 2019 memset(buf, 0, length); 2020 2021 addr += length; 2022 buf += length; 2023 copied += length; 2024 count -= length; 2025 } 2026 return copied; 2027 } 2028 2029 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2030 { 2031 struct page *p; 2032 int copied = 0; 2033 2034 while (count) { 2035 unsigned long offset, length; 2036 2037 offset = offset_in_page(addr); 2038 length = PAGE_SIZE - offset; 2039 if (length > count) 2040 length = count; 2041 p = vmalloc_to_page(addr); 2042 /* 2043 * To do safe access to this _mapped_ area, we need 2044 * lock. But adding lock here means that we need to add 2045 * overhead of vmalloc()/vfree() calles for this _debug_ 2046 * interface, rarely used. Instead of that, we'll use 2047 * kmap() and get small overhead in this access function. 2048 */ 2049 if (p) { 2050 /* 2051 * we can expect USER0 is not used (see vread/vwrite's 2052 * function description) 2053 */ 2054 void *map = kmap_atomic(p); 2055 memcpy(map + offset, buf, length); 2056 kunmap_atomic(map); 2057 } 2058 addr += length; 2059 buf += length; 2060 copied += length; 2061 count -= length; 2062 } 2063 return copied; 2064 } 2065 2066 /** 2067 * vread() - read vmalloc area in a safe way. 2068 * @buf: buffer for reading data 2069 * @addr: vm address. 2070 * @count: number of bytes to be read. 2071 * 2072 * Returns # of bytes which addr and buf should be increased. 2073 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 2074 * includes any intersect with alive vmalloc area. 2075 * 2076 * This function checks that addr is a valid vmalloc'ed area, and 2077 * copy data from that area to a given buffer. If the given memory range 2078 * of [addr...addr+count) includes some valid address, data is copied to 2079 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2080 * IOREMAP area is treated as memory hole and no copy is done. 2081 * 2082 * If [addr...addr+count) doesn't includes any intersects with alive 2083 * vm_struct area, returns 0. @buf should be kernel's buffer. 2084 * 2085 * Note: In usual ops, vread() is never necessary because the caller 2086 * should know vmalloc() area is valid and can use memcpy(). 2087 * This is for routines which have to access vmalloc area without 2088 * any informaion, as /dev/kmem. 2089 * 2090 */ 2091 2092 long vread(char *buf, char *addr, unsigned long count) 2093 { 2094 struct vmap_area *va; 2095 struct vm_struct *vm; 2096 char *vaddr, *buf_start = buf; 2097 unsigned long buflen = count; 2098 unsigned long n; 2099 2100 /* Don't allow overflow */ 2101 if ((unsigned long) addr + count < count) 2102 count = -(unsigned long) addr; 2103 2104 spin_lock(&vmap_area_lock); 2105 list_for_each_entry(va, &vmap_area_list, list) { 2106 if (!count) 2107 break; 2108 2109 if (!(va->flags & VM_VM_AREA)) 2110 continue; 2111 2112 vm = va->vm; 2113 vaddr = (char *) vm->addr; 2114 if (addr >= vaddr + get_vm_area_size(vm)) 2115 continue; 2116 while (addr < vaddr) { 2117 if (count == 0) 2118 goto finished; 2119 *buf = '\0'; 2120 buf++; 2121 addr++; 2122 count--; 2123 } 2124 n = vaddr + get_vm_area_size(vm) - addr; 2125 if (n > count) 2126 n = count; 2127 if (!(vm->flags & VM_IOREMAP)) 2128 aligned_vread(buf, addr, n); 2129 else /* IOREMAP area is treated as memory hole */ 2130 memset(buf, 0, n); 2131 buf += n; 2132 addr += n; 2133 count -= n; 2134 } 2135 finished: 2136 spin_unlock(&vmap_area_lock); 2137 2138 if (buf == buf_start) 2139 return 0; 2140 /* zero-fill memory holes */ 2141 if (buf != buf_start + buflen) 2142 memset(buf, 0, buflen - (buf - buf_start)); 2143 2144 return buflen; 2145 } 2146 2147 /** 2148 * vwrite() - write vmalloc area in a safe way. 2149 * @buf: buffer for source data 2150 * @addr: vm address. 2151 * @count: number of bytes to be read. 2152 * 2153 * Returns # of bytes which addr and buf should be incresed. 2154 * (same number to @count). 2155 * If [addr...addr+count) doesn't includes any intersect with valid 2156 * vmalloc area, returns 0. 2157 * 2158 * This function checks that addr is a valid vmalloc'ed area, and 2159 * copy data from a buffer to the given addr. If specified range of 2160 * [addr...addr+count) includes some valid address, data is copied from 2161 * proper area of @buf. If there are memory holes, no copy to hole. 2162 * IOREMAP area is treated as memory hole and no copy is done. 2163 * 2164 * If [addr...addr+count) doesn't includes any intersects with alive 2165 * vm_struct area, returns 0. @buf should be kernel's buffer. 2166 * 2167 * Note: In usual ops, vwrite() is never necessary because the caller 2168 * should know vmalloc() area is valid and can use memcpy(). 2169 * This is for routines which have to access vmalloc area without 2170 * any informaion, as /dev/kmem. 2171 */ 2172 2173 long vwrite(char *buf, char *addr, unsigned long count) 2174 { 2175 struct vmap_area *va; 2176 struct vm_struct *vm; 2177 char *vaddr; 2178 unsigned long n, buflen; 2179 int copied = 0; 2180 2181 /* Don't allow overflow */ 2182 if ((unsigned long) addr + count < count) 2183 count = -(unsigned long) addr; 2184 buflen = count; 2185 2186 spin_lock(&vmap_area_lock); 2187 list_for_each_entry(va, &vmap_area_list, list) { 2188 if (!count) 2189 break; 2190 2191 if (!(va->flags & VM_VM_AREA)) 2192 continue; 2193 2194 vm = va->vm; 2195 vaddr = (char *) vm->addr; 2196 if (addr >= vaddr + get_vm_area_size(vm)) 2197 continue; 2198 while (addr < vaddr) { 2199 if (count == 0) 2200 goto finished; 2201 buf++; 2202 addr++; 2203 count--; 2204 } 2205 n = vaddr + get_vm_area_size(vm) - addr; 2206 if (n > count) 2207 n = count; 2208 if (!(vm->flags & VM_IOREMAP)) { 2209 aligned_vwrite(buf, addr, n); 2210 copied++; 2211 } 2212 buf += n; 2213 addr += n; 2214 count -= n; 2215 } 2216 finished: 2217 spin_unlock(&vmap_area_lock); 2218 if (!copied) 2219 return 0; 2220 return buflen; 2221 } 2222 2223 /** 2224 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2225 * @vma: vma to cover 2226 * @uaddr: target user address to start at 2227 * @kaddr: virtual address of vmalloc kernel memory 2228 * @size: size of map area 2229 * 2230 * Returns: 0 for success, -Exxx on failure 2231 * 2232 * This function checks that @kaddr is a valid vmalloc'ed area, 2233 * and that it is big enough to cover the range starting at 2234 * @uaddr in @vma. Will return failure if that criteria isn't 2235 * met. 2236 * 2237 * Similar to remap_pfn_range() (see mm/memory.c) 2238 */ 2239 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2240 void *kaddr, unsigned long size) 2241 { 2242 struct vm_struct *area; 2243 2244 size = PAGE_ALIGN(size); 2245 2246 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2247 return -EINVAL; 2248 2249 area = find_vm_area(kaddr); 2250 if (!area) 2251 return -EINVAL; 2252 2253 if (!(area->flags & VM_USERMAP)) 2254 return -EINVAL; 2255 2256 if (kaddr + size > area->addr + get_vm_area_size(area)) 2257 return -EINVAL; 2258 2259 do { 2260 struct page *page = vmalloc_to_page(kaddr); 2261 int ret; 2262 2263 ret = vm_insert_page(vma, uaddr, page); 2264 if (ret) 2265 return ret; 2266 2267 uaddr += PAGE_SIZE; 2268 kaddr += PAGE_SIZE; 2269 size -= PAGE_SIZE; 2270 } while (size > 0); 2271 2272 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2273 2274 return 0; 2275 } 2276 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2277 2278 /** 2279 * remap_vmalloc_range - map vmalloc pages to userspace 2280 * @vma: vma to cover (map full range of vma) 2281 * @addr: vmalloc memory 2282 * @pgoff: number of pages into addr before first page to map 2283 * 2284 * Returns: 0 for success, -Exxx on failure 2285 * 2286 * This function checks that addr is a valid vmalloc'ed area, and 2287 * that it is big enough to cover the vma. Will return failure if 2288 * that criteria isn't met. 2289 * 2290 * Similar to remap_pfn_range() (see mm/memory.c) 2291 */ 2292 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2293 unsigned long pgoff) 2294 { 2295 return remap_vmalloc_range_partial(vma, vma->vm_start, 2296 addr + (pgoff << PAGE_SHIFT), 2297 vma->vm_end - vma->vm_start); 2298 } 2299 EXPORT_SYMBOL(remap_vmalloc_range); 2300 2301 /* 2302 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2303 * have one. 2304 */ 2305 void __weak vmalloc_sync_all(void) 2306 { 2307 } 2308 2309 2310 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2311 { 2312 pte_t ***p = data; 2313 2314 if (p) { 2315 *(*p) = pte; 2316 (*p)++; 2317 } 2318 return 0; 2319 } 2320 2321 /** 2322 * alloc_vm_area - allocate a range of kernel address space 2323 * @size: size of the area 2324 * @ptes: returns the PTEs for the address space 2325 * 2326 * Returns: NULL on failure, vm_struct on success 2327 * 2328 * This function reserves a range of kernel address space, and 2329 * allocates pagetables to map that range. No actual mappings 2330 * are created. 2331 * 2332 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2333 * allocated for the VM area are returned. 2334 */ 2335 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2336 { 2337 struct vm_struct *area; 2338 2339 area = get_vm_area_caller(size, VM_IOREMAP, 2340 __builtin_return_address(0)); 2341 if (area == NULL) 2342 return NULL; 2343 2344 /* 2345 * This ensures that page tables are constructed for this region 2346 * of kernel virtual address space and mapped into init_mm. 2347 */ 2348 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2349 size, f, ptes ? &ptes : NULL)) { 2350 free_vm_area(area); 2351 return NULL; 2352 } 2353 2354 return area; 2355 } 2356 EXPORT_SYMBOL_GPL(alloc_vm_area); 2357 2358 void free_vm_area(struct vm_struct *area) 2359 { 2360 struct vm_struct *ret; 2361 ret = remove_vm_area(area->addr); 2362 BUG_ON(ret != area); 2363 kfree(area); 2364 } 2365 EXPORT_SYMBOL_GPL(free_vm_area); 2366 2367 #ifdef CONFIG_SMP 2368 static struct vmap_area *node_to_va(struct rb_node *n) 2369 { 2370 return rb_entry_safe(n, struct vmap_area, rb_node); 2371 } 2372 2373 /** 2374 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2375 * @end: target address 2376 * @pnext: out arg for the next vmap_area 2377 * @pprev: out arg for the previous vmap_area 2378 * 2379 * Returns: %true if either or both of next and prev are found, 2380 * %false if no vmap_area exists 2381 * 2382 * Find vmap_areas end addresses of which enclose @end. ie. if not 2383 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2384 */ 2385 static bool pvm_find_next_prev(unsigned long end, 2386 struct vmap_area **pnext, 2387 struct vmap_area **pprev) 2388 { 2389 struct rb_node *n = vmap_area_root.rb_node; 2390 struct vmap_area *va = NULL; 2391 2392 while (n) { 2393 va = rb_entry(n, struct vmap_area, rb_node); 2394 if (end < va->va_end) 2395 n = n->rb_left; 2396 else if (end > va->va_end) 2397 n = n->rb_right; 2398 else 2399 break; 2400 } 2401 2402 if (!va) 2403 return false; 2404 2405 if (va->va_end > end) { 2406 *pnext = va; 2407 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2408 } else { 2409 *pprev = va; 2410 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2411 } 2412 return true; 2413 } 2414 2415 /** 2416 * pvm_determine_end - find the highest aligned address between two vmap_areas 2417 * @pnext: in/out arg for the next vmap_area 2418 * @pprev: in/out arg for the previous vmap_area 2419 * @align: alignment 2420 * 2421 * Returns: determined end address 2422 * 2423 * Find the highest aligned address between *@pnext and *@pprev below 2424 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2425 * down address is between the end addresses of the two vmap_areas. 2426 * 2427 * Please note that the address returned by this function may fall 2428 * inside *@pnext vmap_area. The caller is responsible for checking 2429 * that. 2430 */ 2431 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2432 struct vmap_area **pprev, 2433 unsigned long align) 2434 { 2435 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2436 unsigned long addr; 2437 2438 if (*pnext) 2439 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2440 else 2441 addr = vmalloc_end; 2442 2443 while (*pprev && (*pprev)->va_end > addr) { 2444 *pnext = *pprev; 2445 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2446 } 2447 2448 return addr; 2449 } 2450 2451 /** 2452 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2453 * @offsets: array containing offset of each area 2454 * @sizes: array containing size of each area 2455 * @nr_vms: the number of areas to allocate 2456 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2457 * 2458 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2459 * vm_structs on success, %NULL on failure 2460 * 2461 * Percpu allocator wants to use congruent vm areas so that it can 2462 * maintain the offsets among percpu areas. This function allocates 2463 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2464 * be scattered pretty far, distance between two areas easily going up 2465 * to gigabytes. To avoid interacting with regular vmallocs, these 2466 * areas are allocated from top. 2467 * 2468 * Despite its complicated look, this allocator is rather simple. It 2469 * does everything top-down and scans areas from the end looking for 2470 * matching slot. While scanning, if any of the areas overlaps with 2471 * existing vmap_area, the base address is pulled down to fit the 2472 * area. Scanning is repeated till all the areas fit and then all 2473 * necessary data structures are inserted and the result is returned. 2474 */ 2475 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2476 const size_t *sizes, int nr_vms, 2477 size_t align) 2478 { 2479 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2480 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2481 struct vmap_area **vas, *prev, *next; 2482 struct vm_struct **vms; 2483 int area, area2, last_area, term_area; 2484 unsigned long base, start, end, last_end; 2485 bool purged = false; 2486 2487 /* verify parameters and allocate data structures */ 2488 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2489 for (last_area = 0, area = 0; area < nr_vms; area++) { 2490 start = offsets[area]; 2491 end = start + sizes[area]; 2492 2493 /* is everything aligned properly? */ 2494 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2495 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2496 2497 /* detect the area with the highest address */ 2498 if (start > offsets[last_area]) 2499 last_area = area; 2500 2501 for (area2 = area + 1; area2 < nr_vms; area2++) { 2502 unsigned long start2 = offsets[area2]; 2503 unsigned long end2 = start2 + sizes[area2]; 2504 2505 BUG_ON(start2 < end && start < end2); 2506 } 2507 } 2508 last_end = offsets[last_area] + sizes[last_area]; 2509 2510 if (vmalloc_end - vmalloc_start < last_end) { 2511 WARN_ON(true); 2512 return NULL; 2513 } 2514 2515 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2516 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2517 if (!vas || !vms) 2518 goto err_free2; 2519 2520 for (area = 0; area < nr_vms; area++) { 2521 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2522 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2523 if (!vas[area] || !vms[area]) 2524 goto err_free; 2525 } 2526 retry: 2527 spin_lock(&vmap_area_lock); 2528 2529 /* start scanning - we scan from the top, begin with the last area */ 2530 area = term_area = last_area; 2531 start = offsets[area]; 2532 end = start + sizes[area]; 2533 2534 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2535 base = vmalloc_end - last_end; 2536 goto found; 2537 } 2538 base = pvm_determine_end(&next, &prev, align) - end; 2539 2540 while (true) { 2541 BUG_ON(next && next->va_end <= base + end); 2542 BUG_ON(prev && prev->va_end > base + end); 2543 2544 /* 2545 * base might have underflowed, add last_end before 2546 * comparing. 2547 */ 2548 if (base + last_end < vmalloc_start + last_end) { 2549 spin_unlock(&vmap_area_lock); 2550 if (!purged) { 2551 purge_vmap_area_lazy(); 2552 purged = true; 2553 goto retry; 2554 } 2555 goto err_free; 2556 } 2557 2558 /* 2559 * If next overlaps, move base downwards so that it's 2560 * right below next and then recheck. 2561 */ 2562 if (next && next->va_start < base + end) { 2563 base = pvm_determine_end(&next, &prev, align) - end; 2564 term_area = area; 2565 continue; 2566 } 2567 2568 /* 2569 * If prev overlaps, shift down next and prev and move 2570 * base so that it's right below new next and then 2571 * recheck. 2572 */ 2573 if (prev && prev->va_end > base + start) { 2574 next = prev; 2575 prev = node_to_va(rb_prev(&next->rb_node)); 2576 base = pvm_determine_end(&next, &prev, align) - end; 2577 term_area = area; 2578 continue; 2579 } 2580 2581 /* 2582 * This area fits, move on to the previous one. If 2583 * the previous one is the terminal one, we're done. 2584 */ 2585 area = (area + nr_vms - 1) % nr_vms; 2586 if (area == term_area) 2587 break; 2588 start = offsets[area]; 2589 end = start + sizes[area]; 2590 pvm_find_next_prev(base + end, &next, &prev); 2591 } 2592 found: 2593 /* we've found a fitting base, insert all va's */ 2594 for (area = 0; area < nr_vms; area++) { 2595 struct vmap_area *va = vas[area]; 2596 2597 va->va_start = base + offsets[area]; 2598 va->va_end = va->va_start + sizes[area]; 2599 __insert_vmap_area(va); 2600 } 2601 2602 vmap_area_pcpu_hole = base + offsets[last_area]; 2603 2604 spin_unlock(&vmap_area_lock); 2605 2606 /* insert all vm's */ 2607 for (area = 0; area < nr_vms; area++) 2608 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2609 pcpu_get_vm_areas); 2610 2611 kfree(vas); 2612 return vms; 2613 2614 err_free: 2615 for (area = 0; area < nr_vms; area++) { 2616 kfree(vas[area]); 2617 kfree(vms[area]); 2618 } 2619 err_free2: 2620 kfree(vas); 2621 kfree(vms); 2622 return NULL; 2623 } 2624 2625 /** 2626 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2627 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2628 * @nr_vms: the number of allocated areas 2629 * 2630 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2631 */ 2632 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2633 { 2634 int i; 2635 2636 for (i = 0; i < nr_vms; i++) 2637 free_vm_area(vms[i]); 2638 kfree(vms); 2639 } 2640 #endif /* CONFIG_SMP */ 2641 2642 #ifdef CONFIG_PROC_FS 2643 static void *s_start(struct seq_file *m, loff_t *pos) 2644 __acquires(&vmap_area_lock) 2645 { 2646 spin_lock(&vmap_area_lock); 2647 return seq_list_start(&vmap_area_list, *pos); 2648 } 2649 2650 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2651 { 2652 return seq_list_next(p, &vmap_area_list, pos); 2653 } 2654 2655 static void s_stop(struct seq_file *m, void *p) 2656 __releases(&vmap_area_lock) 2657 { 2658 spin_unlock(&vmap_area_lock); 2659 } 2660 2661 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2662 { 2663 if (IS_ENABLED(CONFIG_NUMA)) { 2664 unsigned int nr, *counters = m->private; 2665 2666 if (!counters) 2667 return; 2668 2669 if (v->flags & VM_UNINITIALIZED) 2670 return; 2671 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2672 smp_rmb(); 2673 2674 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2675 2676 for (nr = 0; nr < v->nr_pages; nr++) 2677 counters[page_to_nid(v->pages[nr])]++; 2678 2679 for_each_node_state(nr, N_HIGH_MEMORY) 2680 if (counters[nr]) 2681 seq_printf(m, " N%u=%u", nr, counters[nr]); 2682 } 2683 } 2684 2685 static int s_show(struct seq_file *m, void *p) 2686 { 2687 struct vmap_area *va; 2688 struct vm_struct *v; 2689 2690 va = list_entry(p, struct vmap_area, list); 2691 2692 /* 2693 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2694 * behalf of vmap area is being tear down or vm_map_ram allocation. 2695 */ 2696 if (!(va->flags & VM_VM_AREA)) { 2697 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 2698 (void *)va->va_start, (void *)va->va_end, 2699 va->va_end - va->va_start, 2700 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 2701 2702 return 0; 2703 } 2704 2705 v = va->vm; 2706 2707 seq_printf(m, "0x%pK-0x%pK %7ld", 2708 v->addr, v->addr + v->size, v->size); 2709 2710 if (v->caller) 2711 seq_printf(m, " %pS", v->caller); 2712 2713 if (v->nr_pages) 2714 seq_printf(m, " pages=%d", v->nr_pages); 2715 2716 if (v->phys_addr) 2717 seq_printf(m, " phys=%pa", &v->phys_addr); 2718 2719 if (v->flags & VM_IOREMAP) 2720 seq_puts(m, " ioremap"); 2721 2722 if (v->flags & VM_ALLOC) 2723 seq_puts(m, " vmalloc"); 2724 2725 if (v->flags & VM_MAP) 2726 seq_puts(m, " vmap"); 2727 2728 if (v->flags & VM_USERMAP) 2729 seq_puts(m, " user"); 2730 2731 if (is_vmalloc_addr(v->pages)) 2732 seq_puts(m, " vpages"); 2733 2734 show_numa_info(m, v); 2735 seq_putc(m, '\n'); 2736 return 0; 2737 } 2738 2739 static const struct seq_operations vmalloc_op = { 2740 .start = s_start, 2741 .next = s_next, 2742 .stop = s_stop, 2743 .show = s_show, 2744 }; 2745 2746 static int __init proc_vmalloc_init(void) 2747 { 2748 if (IS_ENABLED(CONFIG_NUMA)) 2749 proc_create_seq_private("vmallocinfo", 0400, NULL, 2750 &vmalloc_op, 2751 nr_node_ids * sizeof(unsigned int), NULL); 2752 else 2753 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 2754 return 0; 2755 } 2756 module_init(proc_vmalloc_init); 2757 2758 #endif 2759 2760