1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/compiler.h> 31 #include <linux/llist.h> 32 #include <linux/bitops.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlbflush.h> 36 #include <asm/shmparam.h> 37 38 #include "internal.h" 39 40 struct vfree_deferred { 41 struct llist_head list; 42 struct work_struct wq; 43 }; 44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 45 46 static void __vunmap(const void *, int); 47 48 static void free_work(struct work_struct *w) 49 { 50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 51 struct llist_node *llnode = llist_del_all(&p->list); 52 while (llnode) { 53 void *p = llnode; 54 llnode = llist_next(llnode); 55 __vunmap(p, 1); 56 } 57 } 58 59 /*** Page table manipulation functions ***/ 60 61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 62 { 63 pte_t *pte; 64 65 pte = pte_offset_kernel(pmd, addr); 66 do { 67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 68 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 69 } while (pte++, addr += PAGE_SIZE, addr != end); 70 } 71 72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 73 { 74 pmd_t *pmd; 75 unsigned long next; 76 77 pmd = pmd_offset(pud, addr); 78 do { 79 next = pmd_addr_end(addr, end); 80 if (pmd_clear_huge(pmd)) 81 continue; 82 if (pmd_none_or_clear_bad(pmd)) 83 continue; 84 vunmap_pte_range(pmd, addr, next); 85 } while (pmd++, addr = next, addr != end); 86 } 87 88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 89 { 90 pud_t *pud; 91 unsigned long next; 92 93 pud = pud_offset(pgd, addr); 94 do { 95 next = pud_addr_end(addr, end); 96 if (pud_clear_huge(pud)) 97 continue; 98 if (pud_none_or_clear_bad(pud)) 99 continue; 100 vunmap_pmd_range(pud, addr, next); 101 } while (pud++, addr = next, addr != end); 102 } 103 104 static void vunmap_page_range(unsigned long addr, unsigned long end) 105 { 106 pgd_t *pgd; 107 unsigned long next; 108 109 BUG_ON(addr >= end); 110 pgd = pgd_offset_k(addr); 111 do { 112 next = pgd_addr_end(addr, end); 113 if (pgd_none_or_clear_bad(pgd)) 114 continue; 115 vunmap_pud_range(pgd, addr, next); 116 } while (pgd++, addr = next, addr != end); 117 } 118 119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 120 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 121 { 122 pte_t *pte; 123 124 /* 125 * nr is a running index into the array which helps higher level 126 * callers keep track of where we're up to. 127 */ 128 129 pte = pte_alloc_kernel(pmd, addr); 130 if (!pte) 131 return -ENOMEM; 132 do { 133 struct page *page = pages[*nr]; 134 135 if (WARN_ON(!pte_none(*pte))) 136 return -EBUSY; 137 if (WARN_ON(!page)) 138 return -ENOMEM; 139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 140 (*nr)++; 141 } while (pte++, addr += PAGE_SIZE, addr != end); 142 return 0; 143 } 144 145 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 146 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 147 { 148 pmd_t *pmd; 149 unsigned long next; 150 151 pmd = pmd_alloc(&init_mm, pud, addr); 152 if (!pmd) 153 return -ENOMEM; 154 do { 155 next = pmd_addr_end(addr, end); 156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 157 return -ENOMEM; 158 } while (pmd++, addr = next, addr != end); 159 return 0; 160 } 161 162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 163 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 164 { 165 pud_t *pud; 166 unsigned long next; 167 168 pud = pud_alloc(&init_mm, pgd, addr); 169 if (!pud) 170 return -ENOMEM; 171 do { 172 next = pud_addr_end(addr, end); 173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 174 return -ENOMEM; 175 } while (pud++, addr = next, addr != end); 176 return 0; 177 } 178 179 /* 180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 181 * will have pfns corresponding to the "pages" array. 182 * 183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 184 */ 185 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 186 pgprot_t prot, struct page **pages) 187 { 188 pgd_t *pgd; 189 unsigned long next; 190 unsigned long addr = start; 191 int err = 0; 192 int nr = 0; 193 194 BUG_ON(addr >= end); 195 pgd = pgd_offset_k(addr); 196 do { 197 next = pgd_addr_end(addr, end); 198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 199 if (err) 200 return err; 201 } while (pgd++, addr = next, addr != end); 202 203 return nr; 204 } 205 206 static int vmap_page_range(unsigned long start, unsigned long end, 207 pgprot_t prot, struct page **pages) 208 { 209 int ret; 210 211 ret = vmap_page_range_noflush(start, end, prot, pages); 212 flush_cache_vmap(start, end); 213 return ret; 214 } 215 216 int is_vmalloc_or_module_addr(const void *x) 217 { 218 /* 219 * ARM, x86-64 and sparc64 put modules in a special place, 220 * and fall back on vmalloc() if that fails. Others 221 * just put it in the vmalloc space. 222 */ 223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 224 unsigned long addr = (unsigned long)x; 225 if (addr >= MODULES_VADDR && addr < MODULES_END) 226 return 1; 227 #endif 228 return is_vmalloc_addr(x); 229 } 230 231 /* 232 * Walk a vmap address to the struct page it maps. 233 */ 234 struct page *vmalloc_to_page(const void *vmalloc_addr) 235 { 236 unsigned long addr = (unsigned long) vmalloc_addr; 237 struct page *page = NULL; 238 pgd_t *pgd = pgd_offset_k(addr); 239 240 /* 241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 242 * architectures that do not vmalloc module space 243 */ 244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 245 246 if (!pgd_none(*pgd)) { 247 pud_t *pud = pud_offset(pgd, addr); 248 if (!pud_none(*pud)) { 249 pmd_t *pmd = pmd_offset(pud, addr); 250 if (!pmd_none(*pmd)) { 251 pte_t *ptep, pte; 252 253 ptep = pte_offset_map(pmd, addr); 254 pte = *ptep; 255 if (pte_present(pte)) 256 page = pte_page(pte); 257 pte_unmap(ptep); 258 } 259 } 260 } 261 return page; 262 } 263 EXPORT_SYMBOL(vmalloc_to_page); 264 265 /* 266 * Map a vmalloc()-space virtual address to the physical page frame number. 267 */ 268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 269 { 270 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 271 } 272 EXPORT_SYMBOL(vmalloc_to_pfn); 273 274 275 /*** Global kva allocator ***/ 276 277 #define VM_LAZY_FREE 0x01 278 #define VM_LAZY_FREEING 0x02 279 #define VM_VM_AREA 0x04 280 281 static DEFINE_SPINLOCK(vmap_area_lock); 282 /* Export for kexec only */ 283 LIST_HEAD(vmap_area_list); 284 static struct rb_root vmap_area_root = RB_ROOT; 285 286 /* The vmap cache globals are protected by vmap_area_lock */ 287 static struct rb_node *free_vmap_cache; 288 static unsigned long cached_hole_size; 289 static unsigned long cached_vstart; 290 static unsigned long cached_align; 291 292 static unsigned long vmap_area_pcpu_hole; 293 294 static struct vmap_area *__find_vmap_area(unsigned long addr) 295 { 296 struct rb_node *n = vmap_area_root.rb_node; 297 298 while (n) { 299 struct vmap_area *va; 300 301 va = rb_entry(n, struct vmap_area, rb_node); 302 if (addr < va->va_start) 303 n = n->rb_left; 304 else if (addr >= va->va_end) 305 n = n->rb_right; 306 else 307 return va; 308 } 309 310 return NULL; 311 } 312 313 static void __insert_vmap_area(struct vmap_area *va) 314 { 315 struct rb_node **p = &vmap_area_root.rb_node; 316 struct rb_node *parent = NULL; 317 struct rb_node *tmp; 318 319 while (*p) { 320 struct vmap_area *tmp_va; 321 322 parent = *p; 323 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 324 if (va->va_start < tmp_va->va_end) 325 p = &(*p)->rb_left; 326 else if (va->va_end > tmp_va->va_start) 327 p = &(*p)->rb_right; 328 else 329 BUG(); 330 } 331 332 rb_link_node(&va->rb_node, parent, p); 333 rb_insert_color(&va->rb_node, &vmap_area_root); 334 335 /* address-sort this list */ 336 tmp = rb_prev(&va->rb_node); 337 if (tmp) { 338 struct vmap_area *prev; 339 prev = rb_entry(tmp, struct vmap_area, rb_node); 340 list_add_rcu(&va->list, &prev->list); 341 } else 342 list_add_rcu(&va->list, &vmap_area_list); 343 } 344 345 static void purge_vmap_area_lazy(void); 346 347 /* 348 * Allocate a region of KVA of the specified size and alignment, within the 349 * vstart and vend. 350 */ 351 static struct vmap_area *alloc_vmap_area(unsigned long size, 352 unsigned long align, 353 unsigned long vstart, unsigned long vend, 354 int node, gfp_t gfp_mask) 355 { 356 struct vmap_area *va; 357 struct rb_node *n; 358 unsigned long addr; 359 int purged = 0; 360 struct vmap_area *first; 361 362 BUG_ON(!size); 363 BUG_ON(offset_in_page(size)); 364 BUG_ON(!is_power_of_2(align)); 365 366 va = kmalloc_node(sizeof(struct vmap_area), 367 gfp_mask & GFP_RECLAIM_MASK, node); 368 if (unlikely(!va)) 369 return ERR_PTR(-ENOMEM); 370 371 /* 372 * Only scan the relevant parts containing pointers to other objects 373 * to avoid false negatives. 374 */ 375 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 376 377 retry: 378 spin_lock(&vmap_area_lock); 379 /* 380 * Invalidate cache if we have more permissive parameters. 381 * cached_hole_size notes the largest hole noticed _below_ 382 * the vmap_area cached in free_vmap_cache: if size fits 383 * into that hole, we want to scan from vstart to reuse 384 * the hole instead of allocating above free_vmap_cache. 385 * Note that __free_vmap_area may update free_vmap_cache 386 * without updating cached_hole_size or cached_align. 387 */ 388 if (!free_vmap_cache || 389 size < cached_hole_size || 390 vstart < cached_vstart || 391 align < cached_align) { 392 nocache: 393 cached_hole_size = 0; 394 free_vmap_cache = NULL; 395 } 396 /* record if we encounter less permissive parameters */ 397 cached_vstart = vstart; 398 cached_align = align; 399 400 /* find starting point for our search */ 401 if (free_vmap_cache) { 402 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 403 addr = ALIGN(first->va_end, align); 404 if (addr < vstart) 405 goto nocache; 406 if (addr + size < addr) 407 goto overflow; 408 409 } else { 410 addr = ALIGN(vstart, align); 411 if (addr + size < addr) 412 goto overflow; 413 414 n = vmap_area_root.rb_node; 415 first = NULL; 416 417 while (n) { 418 struct vmap_area *tmp; 419 tmp = rb_entry(n, struct vmap_area, rb_node); 420 if (tmp->va_end >= addr) { 421 first = tmp; 422 if (tmp->va_start <= addr) 423 break; 424 n = n->rb_left; 425 } else 426 n = n->rb_right; 427 } 428 429 if (!first) 430 goto found; 431 } 432 433 /* from the starting point, walk areas until a suitable hole is found */ 434 while (addr + size > first->va_start && addr + size <= vend) { 435 if (addr + cached_hole_size < first->va_start) 436 cached_hole_size = first->va_start - addr; 437 addr = ALIGN(first->va_end, align); 438 if (addr + size < addr) 439 goto overflow; 440 441 if (list_is_last(&first->list, &vmap_area_list)) 442 goto found; 443 444 first = list_next_entry(first, list); 445 } 446 447 found: 448 if (addr + size > vend) 449 goto overflow; 450 451 va->va_start = addr; 452 va->va_end = addr + size; 453 va->flags = 0; 454 __insert_vmap_area(va); 455 free_vmap_cache = &va->rb_node; 456 spin_unlock(&vmap_area_lock); 457 458 BUG_ON(!IS_ALIGNED(va->va_start, align)); 459 BUG_ON(va->va_start < vstart); 460 BUG_ON(va->va_end > vend); 461 462 return va; 463 464 overflow: 465 spin_unlock(&vmap_area_lock); 466 if (!purged) { 467 purge_vmap_area_lazy(); 468 purged = 1; 469 goto retry; 470 } 471 if (printk_ratelimit()) 472 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 473 size); 474 kfree(va); 475 return ERR_PTR(-EBUSY); 476 } 477 478 static void __free_vmap_area(struct vmap_area *va) 479 { 480 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 481 482 if (free_vmap_cache) { 483 if (va->va_end < cached_vstart) { 484 free_vmap_cache = NULL; 485 } else { 486 struct vmap_area *cache; 487 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 488 if (va->va_start <= cache->va_start) { 489 free_vmap_cache = rb_prev(&va->rb_node); 490 /* 491 * We don't try to update cached_hole_size or 492 * cached_align, but it won't go very wrong. 493 */ 494 } 495 } 496 } 497 rb_erase(&va->rb_node, &vmap_area_root); 498 RB_CLEAR_NODE(&va->rb_node); 499 list_del_rcu(&va->list); 500 501 /* 502 * Track the highest possible candidate for pcpu area 503 * allocation. Areas outside of vmalloc area can be returned 504 * here too, consider only end addresses which fall inside 505 * vmalloc area proper. 506 */ 507 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 508 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 509 510 kfree_rcu(va, rcu_head); 511 } 512 513 /* 514 * Free a region of KVA allocated by alloc_vmap_area 515 */ 516 static void free_vmap_area(struct vmap_area *va) 517 { 518 spin_lock(&vmap_area_lock); 519 __free_vmap_area(va); 520 spin_unlock(&vmap_area_lock); 521 } 522 523 /* 524 * Clear the pagetable entries of a given vmap_area 525 */ 526 static void unmap_vmap_area(struct vmap_area *va) 527 { 528 vunmap_page_range(va->va_start, va->va_end); 529 } 530 531 static void vmap_debug_free_range(unsigned long start, unsigned long end) 532 { 533 /* 534 * Unmap page tables and force a TLB flush immediately if pagealloc 535 * debugging is enabled. This catches use after free bugs similarly to 536 * those in linear kernel virtual address space after a page has been 537 * freed. 538 * 539 * All the lazy freeing logic is still retained, in order to minimise 540 * intrusiveness of this debugging feature. 541 * 542 * This is going to be *slow* (linear kernel virtual address debugging 543 * doesn't do a broadcast TLB flush so it is a lot faster). 544 */ 545 if (debug_pagealloc_enabled()) { 546 vunmap_page_range(start, end); 547 flush_tlb_kernel_range(start, end); 548 } 549 } 550 551 /* 552 * lazy_max_pages is the maximum amount of virtual address space we gather up 553 * before attempting to purge with a TLB flush. 554 * 555 * There is a tradeoff here: a larger number will cover more kernel page tables 556 * and take slightly longer to purge, but it will linearly reduce the number of 557 * global TLB flushes that must be performed. It would seem natural to scale 558 * this number up linearly with the number of CPUs (because vmapping activity 559 * could also scale linearly with the number of CPUs), however it is likely 560 * that in practice, workloads might be constrained in other ways that mean 561 * vmap activity will not scale linearly with CPUs. Also, I want to be 562 * conservative and not introduce a big latency on huge systems, so go with 563 * a less aggressive log scale. It will still be an improvement over the old 564 * code, and it will be simple to change the scale factor if we find that it 565 * becomes a problem on bigger systems. 566 */ 567 static unsigned long lazy_max_pages(void) 568 { 569 unsigned int log; 570 571 log = fls(num_online_cpus()); 572 573 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 574 } 575 576 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 577 578 /* for per-CPU blocks */ 579 static void purge_fragmented_blocks_allcpus(void); 580 581 /* 582 * called before a call to iounmap() if the caller wants vm_area_struct's 583 * immediately freed. 584 */ 585 void set_iounmap_nonlazy(void) 586 { 587 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 588 } 589 590 /* 591 * Purges all lazily-freed vmap areas. 592 * 593 * If sync is 0 then don't purge if there is already a purge in progress. 594 * If force_flush is 1, then flush kernel TLBs between *start and *end even 595 * if we found no lazy vmap areas to unmap (callers can use this to optimise 596 * their own TLB flushing). 597 * Returns with *start = min(*start, lowest purged address) 598 * *end = max(*end, highest purged address) 599 */ 600 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 601 int sync, int force_flush) 602 { 603 static DEFINE_SPINLOCK(purge_lock); 604 LIST_HEAD(valist); 605 struct vmap_area *va; 606 struct vmap_area *n_va; 607 int nr = 0; 608 609 /* 610 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 611 * should not expect such behaviour. This just simplifies locking for 612 * the case that isn't actually used at the moment anyway. 613 */ 614 if (!sync && !force_flush) { 615 if (!spin_trylock(&purge_lock)) 616 return; 617 } else 618 spin_lock(&purge_lock); 619 620 if (sync) 621 purge_fragmented_blocks_allcpus(); 622 623 rcu_read_lock(); 624 list_for_each_entry_rcu(va, &vmap_area_list, list) { 625 if (va->flags & VM_LAZY_FREE) { 626 if (va->va_start < *start) 627 *start = va->va_start; 628 if (va->va_end > *end) 629 *end = va->va_end; 630 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 631 list_add_tail(&va->purge_list, &valist); 632 va->flags |= VM_LAZY_FREEING; 633 va->flags &= ~VM_LAZY_FREE; 634 } 635 } 636 rcu_read_unlock(); 637 638 if (nr) 639 atomic_sub(nr, &vmap_lazy_nr); 640 641 if (nr || force_flush) 642 flush_tlb_kernel_range(*start, *end); 643 644 if (nr) { 645 spin_lock(&vmap_area_lock); 646 list_for_each_entry_safe(va, n_va, &valist, purge_list) 647 __free_vmap_area(va); 648 spin_unlock(&vmap_area_lock); 649 } 650 spin_unlock(&purge_lock); 651 } 652 653 /* 654 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 655 * is already purging. 656 */ 657 static void try_purge_vmap_area_lazy(void) 658 { 659 unsigned long start = ULONG_MAX, end = 0; 660 661 __purge_vmap_area_lazy(&start, &end, 0, 0); 662 } 663 664 /* 665 * Kick off a purge of the outstanding lazy areas. 666 */ 667 static void purge_vmap_area_lazy(void) 668 { 669 unsigned long start = ULONG_MAX, end = 0; 670 671 __purge_vmap_area_lazy(&start, &end, 1, 0); 672 } 673 674 /* 675 * Free a vmap area, caller ensuring that the area has been unmapped 676 * and flush_cache_vunmap had been called for the correct range 677 * previously. 678 */ 679 static void free_vmap_area_noflush(struct vmap_area *va) 680 { 681 va->flags |= VM_LAZY_FREE; 682 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 683 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 684 try_purge_vmap_area_lazy(); 685 } 686 687 /* 688 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 689 * called for the correct range previously. 690 */ 691 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 692 { 693 unmap_vmap_area(va); 694 free_vmap_area_noflush(va); 695 } 696 697 /* 698 * Free and unmap a vmap area 699 */ 700 static void free_unmap_vmap_area(struct vmap_area *va) 701 { 702 flush_cache_vunmap(va->va_start, va->va_end); 703 free_unmap_vmap_area_noflush(va); 704 } 705 706 static struct vmap_area *find_vmap_area(unsigned long addr) 707 { 708 struct vmap_area *va; 709 710 spin_lock(&vmap_area_lock); 711 va = __find_vmap_area(addr); 712 spin_unlock(&vmap_area_lock); 713 714 return va; 715 } 716 717 static void free_unmap_vmap_area_addr(unsigned long addr) 718 { 719 struct vmap_area *va; 720 721 va = find_vmap_area(addr); 722 BUG_ON(!va); 723 free_unmap_vmap_area(va); 724 } 725 726 727 /*** Per cpu kva allocator ***/ 728 729 /* 730 * vmap space is limited especially on 32 bit architectures. Ensure there is 731 * room for at least 16 percpu vmap blocks per CPU. 732 */ 733 /* 734 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 735 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 736 * instead (we just need a rough idea) 737 */ 738 #if BITS_PER_LONG == 32 739 #define VMALLOC_SPACE (128UL*1024*1024) 740 #else 741 #define VMALLOC_SPACE (128UL*1024*1024*1024) 742 #endif 743 744 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 745 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 746 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 747 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 748 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 749 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 750 #define VMAP_BBMAP_BITS \ 751 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 752 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 753 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 754 755 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 756 757 static bool vmap_initialized __read_mostly = false; 758 759 struct vmap_block_queue { 760 spinlock_t lock; 761 struct list_head free; 762 }; 763 764 struct vmap_block { 765 spinlock_t lock; 766 struct vmap_area *va; 767 unsigned long free, dirty; 768 unsigned long dirty_min, dirty_max; /*< dirty range */ 769 struct list_head free_list; 770 struct rcu_head rcu_head; 771 struct list_head purge; 772 }; 773 774 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 775 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 776 777 /* 778 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 779 * in the free path. Could get rid of this if we change the API to return a 780 * "cookie" from alloc, to be passed to free. But no big deal yet. 781 */ 782 static DEFINE_SPINLOCK(vmap_block_tree_lock); 783 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 784 785 /* 786 * We should probably have a fallback mechanism to allocate virtual memory 787 * out of partially filled vmap blocks. However vmap block sizing should be 788 * fairly reasonable according to the vmalloc size, so it shouldn't be a 789 * big problem. 790 */ 791 792 static unsigned long addr_to_vb_idx(unsigned long addr) 793 { 794 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 795 addr /= VMAP_BLOCK_SIZE; 796 return addr; 797 } 798 799 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 800 { 801 unsigned long addr; 802 803 addr = va_start + (pages_off << PAGE_SHIFT); 804 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 805 return (void *)addr; 806 } 807 808 /** 809 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 810 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 811 * @order: how many 2^order pages should be occupied in newly allocated block 812 * @gfp_mask: flags for the page level allocator 813 * 814 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 815 */ 816 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 817 { 818 struct vmap_block_queue *vbq; 819 struct vmap_block *vb; 820 struct vmap_area *va; 821 unsigned long vb_idx; 822 int node, err; 823 void *vaddr; 824 825 node = numa_node_id(); 826 827 vb = kmalloc_node(sizeof(struct vmap_block), 828 gfp_mask & GFP_RECLAIM_MASK, node); 829 if (unlikely(!vb)) 830 return ERR_PTR(-ENOMEM); 831 832 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 833 VMALLOC_START, VMALLOC_END, 834 node, gfp_mask); 835 if (IS_ERR(va)) { 836 kfree(vb); 837 return ERR_CAST(va); 838 } 839 840 err = radix_tree_preload(gfp_mask); 841 if (unlikely(err)) { 842 kfree(vb); 843 free_vmap_area(va); 844 return ERR_PTR(err); 845 } 846 847 vaddr = vmap_block_vaddr(va->va_start, 0); 848 spin_lock_init(&vb->lock); 849 vb->va = va; 850 /* At least something should be left free */ 851 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 852 vb->free = VMAP_BBMAP_BITS - (1UL << order); 853 vb->dirty = 0; 854 vb->dirty_min = VMAP_BBMAP_BITS; 855 vb->dirty_max = 0; 856 INIT_LIST_HEAD(&vb->free_list); 857 858 vb_idx = addr_to_vb_idx(va->va_start); 859 spin_lock(&vmap_block_tree_lock); 860 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 861 spin_unlock(&vmap_block_tree_lock); 862 BUG_ON(err); 863 radix_tree_preload_end(); 864 865 vbq = &get_cpu_var(vmap_block_queue); 866 spin_lock(&vbq->lock); 867 list_add_tail_rcu(&vb->free_list, &vbq->free); 868 spin_unlock(&vbq->lock); 869 put_cpu_var(vmap_block_queue); 870 871 return vaddr; 872 } 873 874 static void free_vmap_block(struct vmap_block *vb) 875 { 876 struct vmap_block *tmp; 877 unsigned long vb_idx; 878 879 vb_idx = addr_to_vb_idx(vb->va->va_start); 880 spin_lock(&vmap_block_tree_lock); 881 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 882 spin_unlock(&vmap_block_tree_lock); 883 BUG_ON(tmp != vb); 884 885 free_vmap_area_noflush(vb->va); 886 kfree_rcu(vb, rcu_head); 887 } 888 889 static void purge_fragmented_blocks(int cpu) 890 { 891 LIST_HEAD(purge); 892 struct vmap_block *vb; 893 struct vmap_block *n_vb; 894 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 895 896 rcu_read_lock(); 897 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 898 899 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 900 continue; 901 902 spin_lock(&vb->lock); 903 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 904 vb->free = 0; /* prevent further allocs after releasing lock */ 905 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 906 vb->dirty_min = 0; 907 vb->dirty_max = VMAP_BBMAP_BITS; 908 spin_lock(&vbq->lock); 909 list_del_rcu(&vb->free_list); 910 spin_unlock(&vbq->lock); 911 spin_unlock(&vb->lock); 912 list_add_tail(&vb->purge, &purge); 913 } else 914 spin_unlock(&vb->lock); 915 } 916 rcu_read_unlock(); 917 918 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 919 list_del(&vb->purge); 920 free_vmap_block(vb); 921 } 922 } 923 924 static void purge_fragmented_blocks_allcpus(void) 925 { 926 int cpu; 927 928 for_each_possible_cpu(cpu) 929 purge_fragmented_blocks(cpu); 930 } 931 932 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 933 { 934 struct vmap_block_queue *vbq; 935 struct vmap_block *vb; 936 void *vaddr = NULL; 937 unsigned int order; 938 939 BUG_ON(offset_in_page(size)); 940 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 941 if (WARN_ON(size == 0)) { 942 /* 943 * Allocating 0 bytes isn't what caller wants since 944 * get_order(0) returns funny result. Just warn and terminate 945 * early. 946 */ 947 return NULL; 948 } 949 order = get_order(size); 950 951 rcu_read_lock(); 952 vbq = &get_cpu_var(vmap_block_queue); 953 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 954 unsigned long pages_off; 955 956 spin_lock(&vb->lock); 957 if (vb->free < (1UL << order)) { 958 spin_unlock(&vb->lock); 959 continue; 960 } 961 962 pages_off = VMAP_BBMAP_BITS - vb->free; 963 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 964 vb->free -= 1UL << order; 965 if (vb->free == 0) { 966 spin_lock(&vbq->lock); 967 list_del_rcu(&vb->free_list); 968 spin_unlock(&vbq->lock); 969 } 970 971 spin_unlock(&vb->lock); 972 break; 973 } 974 975 put_cpu_var(vmap_block_queue); 976 rcu_read_unlock(); 977 978 /* Allocate new block if nothing was found */ 979 if (!vaddr) 980 vaddr = new_vmap_block(order, gfp_mask); 981 982 return vaddr; 983 } 984 985 static void vb_free(const void *addr, unsigned long size) 986 { 987 unsigned long offset; 988 unsigned long vb_idx; 989 unsigned int order; 990 struct vmap_block *vb; 991 992 BUG_ON(offset_in_page(size)); 993 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 994 995 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 996 997 order = get_order(size); 998 999 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1000 offset >>= PAGE_SHIFT; 1001 1002 vb_idx = addr_to_vb_idx((unsigned long)addr); 1003 rcu_read_lock(); 1004 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1005 rcu_read_unlock(); 1006 BUG_ON(!vb); 1007 1008 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1009 1010 spin_lock(&vb->lock); 1011 1012 /* Expand dirty range */ 1013 vb->dirty_min = min(vb->dirty_min, offset); 1014 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1015 1016 vb->dirty += 1UL << order; 1017 if (vb->dirty == VMAP_BBMAP_BITS) { 1018 BUG_ON(vb->free); 1019 spin_unlock(&vb->lock); 1020 free_vmap_block(vb); 1021 } else 1022 spin_unlock(&vb->lock); 1023 } 1024 1025 /** 1026 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1027 * 1028 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1029 * to amortize TLB flushing overheads. What this means is that any page you 1030 * have now, may, in a former life, have been mapped into kernel virtual 1031 * address by the vmap layer and so there might be some CPUs with TLB entries 1032 * still referencing that page (additional to the regular 1:1 kernel mapping). 1033 * 1034 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1035 * be sure that none of the pages we have control over will have any aliases 1036 * from the vmap layer. 1037 */ 1038 void vm_unmap_aliases(void) 1039 { 1040 unsigned long start = ULONG_MAX, end = 0; 1041 int cpu; 1042 int flush = 0; 1043 1044 if (unlikely(!vmap_initialized)) 1045 return; 1046 1047 for_each_possible_cpu(cpu) { 1048 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1049 struct vmap_block *vb; 1050 1051 rcu_read_lock(); 1052 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1053 spin_lock(&vb->lock); 1054 if (vb->dirty) { 1055 unsigned long va_start = vb->va->va_start; 1056 unsigned long s, e; 1057 1058 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1059 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1060 1061 start = min(s, start); 1062 end = max(e, end); 1063 1064 flush = 1; 1065 } 1066 spin_unlock(&vb->lock); 1067 } 1068 rcu_read_unlock(); 1069 } 1070 1071 __purge_vmap_area_lazy(&start, &end, 1, flush); 1072 } 1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1074 1075 /** 1076 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1077 * @mem: the pointer returned by vm_map_ram 1078 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1079 */ 1080 void vm_unmap_ram(const void *mem, unsigned int count) 1081 { 1082 unsigned long size = count << PAGE_SHIFT; 1083 unsigned long addr = (unsigned long)mem; 1084 1085 BUG_ON(!addr); 1086 BUG_ON(addr < VMALLOC_START); 1087 BUG_ON(addr > VMALLOC_END); 1088 BUG_ON(!PAGE_ALIGNED(addr)); 1089 1090 debug_check_no_locks_freed(mem, size); 1091 vmap_debug_free_range(addr, addr+size); 1092 1093 if (likely(count <= VMAP_MAX_ALLOC)) 1094 vb_free(mem, size); 1095 else 1096 free_unmap_vmap_area_addr(addr); 1097 } 1098 EXPORT_SYMBOL(vm_unmap_ram); 1099 1100 /** 1101 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1102 * @pages: an array of pointers to the pages to be mapped 1103 * @count: number of pages 1104 * @node: prefer to allocate data structures on this node 1105 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1106 * 1107 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1108 * faster than vmap so it's good. But if you mix long-life and short-life 1109 * objects with vm_map_ram(), it could consume lots of address space through 1110 * fragmentation (especially on a 32bit machine). You could see failures in 1111 * the end. Please use this function for short-lived objects. 1112 * 1113 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1114 */ 1115 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1116 { 1117 unsigned long size = count << PAGE_SHIFT; 1118 unsigned long addr; 1119 void *mem; 1120 1121 if (likely(count <= VMAP_MAX_ALLOC)) { 1122 mem = vb_alloc(size, GFP_KERNEL); 1123 if (IS_ERR(mem)) 1124 return NULL; 1125 addr = (unsigned long)mem; 1126 } else { 1127 struct vmap_area *va; 1128 va = alloc_vmap_area(size, PAGE_SIZE, 1129 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1130 if (IS_ERR(va)) 1131 return NULL; 1132 1133 addr = va->va_start; 1134 mem = (void *)addr; 1135 } 1136 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1137 vm_unmap_ram(mem, count); 1138 return NULL; 1139 } 1140 return mem; 1141 } 1142 EXPORT_SYMBOL(vm_map_ram); 1143 1144 static struct vm_struct *vmlist __initdata; 1145 /** 1146 * vm_area_add_early - add vmap area early during boot 1147 * @vm: vm_struct to add 1148 * 1149 * This function is used to add fixed kernel vm area to vmlist before 1150 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1151 * should contain proper values and the other fields should be zero. 1152 * 1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1154 */ 1155 void __init vm_area_add_early(struct vm_struct *vm) 1156 { 1157 struct vm_struct *tmp, **p; 1158 1159 BUG_ON(vmap_initialized); 1160 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1161 if (tmp->addr >= vm->addr) { 1162 BUG_ON(tmp->addr < vm->addr + vm->size); 1163 break; 1164 } else 1165 BUG_ON(tmp->addr + tmp->size > vm->addr); 1166 } 1167 vm->next = *p; 1168 *p = vm; 1169 } 1170 1171 /** 1172 * vm_area_register_early - register vmap area early during boot 1173 * @vm: vm_struct to register 1174 * @align: requested alignment 1175 * 1176 * This function is used to register kernel vm area before 1177 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1178 * proper values on entry and other fields should be zero. On return, 1179 * vm->addr contains the allocated address. 1180 * 1181 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1182 */ 1183 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1184 { 1185 static size_t vm_init_off __initdata; 1186 unsigned long addr; 1187 1188 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1189 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1190 1191 vm->addr = (void *)addr; 1192 1193 vm_area_add_early(vm); 1194 } 1195 1196 void __init vmalloc_init(void) 1197 { 1198 struct vmap_area *va; 1199 struct vm_struct *tmp; 1200 int i; 1201 1202 for_each_possible_cpu(i) { 1203 struct vmap_block_queue *vbq; 1204 struct vfree_deferred *p; 1205 1206 vbq = &per_cpu(vmap_block_queue, i); 1207 spin_lock_init(&vbq->lock); 1208 INIT_LIST_HEAD(&vbq->free); 1209 p = &per_cpu(vfree_deferred, i); 1210 init_llist_head(&p->list); 1211 INIT_WORK(&p->wq, free_work); 1212 } 1213 1214 /* Import existing vmlist entries. */ 1215 for (tmp = vmlist; tmp; tmp = tmp->next) { 1216 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1217 va->flags = VM_VM_AREA; 1218 va->va_start = (unsigned long)tmp->addr; 1219 va->va_end = va->va_start + tmp->size; 1220 va->vm = tmp; 1221 __insert_vmap_area(va); 1222 } 1223 1224 vmap_area_pcpu_hole = VMALLOC_END; 1225 1226 vmap_initialized = true; 1227 } 1228 1229 /** 1230 * map_kernel_range_noflush - map kernel VM area with the specified pages 1231 * @addr: start of the VM area to map 1232 * @size: size of the VM area to map 1233 * @prot: page protection flags to use 1234 * @pages: pages to map 1235 * 1236 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1237 * specify should have been allocated using get_vm_area() and its 1238 * friends. 1239 * 1240 * NOTE: 1241 * This function does NOT do any cache flushing. The caller is 1242 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1243 * before calling this function. 1244 * 1245 * RETURNS: 1246 * The number of pages mapped on success, -errno on failure. 1247 */ 1248 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1249 pgprot_t prot, struct page **pages) 1250 { 1251 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1252 } 1253 1254 /** 1255 * unmap_kernel_range_noflush - unmap kernel VM area 1256 * @addr: start of the VM area to unmap 1257 * @size: size of the VM area to unmap 1258 * 1259 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1260 * specify should have been allocated using get_vm_area() and its 1261 * friends. 1262 * 1263 * NOTE: 1264 * This function does NOT do any cache flushing. The caller is 1265 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1266 * before calling this function and flush_tlb_kernel_range() after. 1267 */ 1268 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1269 { 1270 vunmap_page_range(addr, addr + size); 1271 } 1272 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1273 1274 /** 1275 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1276 * @addr: start of the VM area to unmap 1277 * @size: size of the VM area to unmap 1278 * 1279 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1280 * the unmapping and tlb after. 1281 */ 1282 void unmap_kernel_range(unsigned long addr, unsigned long size) 1283 { 1284 unsigned long end = addr + size; 1285 1286 flush_cache_vunmap(addr, end); 1287 vunmap_page_range(addr, end); 1288 flush_tlb_kernel_range(addr, end); 1289 } 1290 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1291 1292 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1293 { 1294 unsigned long addr = (unsigned long)area->addr; 1295 unsigned long end = addr + get_vm_area_size(area); 1296 int err; 1297 1298 err = vmap_page_range(addr, end, prot, pages); 1299 1300 return err > 0 ? 0 : err; 1301 } 1302 EXPORT_SYMBOL_GPL(map_vm_area); 1303 1304 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1305 unsigned long flags, const void *caller) 1306 { 1307 spin_lock(&vmap_area_lock); 1308 vm->flags = flags; 1309 vm->addr = (void *)va->va_start; 1310 vm->size = va->va_end - va->va_start; 1311 vm->caller = caller; 1312 va->vm = vm; 1313 va->flags |= VM_VM_AREA; 1314 spin_unlock(&vmap_area_lock); 1315 } 1316 1317 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1318 { 1319 /* 1320 * Before removing VM_UNINITIALIZED, 1321 * we should make sure that vm has proper values. 1322 * Pair with smp_rmb() in show_numa_info(). 1323 */ 1324 smp_wmb(); 1325 vm->flags &= ~VM_UNINITIALIZED; 1326 } 1327 1328 static struct vm_struct *__get_vm_area_node(unsigned long size, 1329 unsigned long align, unsigned long flags, unsigned long start, 1330 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1331 { 1332 struct vmap_area *va; 1333 struct vm_struct *area; 1334 1335 BUG_ON(in_interrupt()); 1336 if (flags & VM_IOREMAP) 1337 align = 1ul << clamp_t(int, fls_long(size), 1338 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1339 1340 size = PAGE_ALIGN(size); 1341 if (unlikely(!size)) 1342 return NULL; 1343 1344 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1345 if (unlikely(!area)) 1346 return NULL; 1347 1348 if (!(flags & VM_NO_GUARD)) 1349 size += PAGE_SIZE; 1350 1351 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1352 if (IS_ERR(va)) { 1353 kfree(area); 1354 return NULL; 1355 } 1356 1357 setup_vmalloc_vm(area, va, flags, caller); 1358 1359 return area; 1360 } 1361 1362 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1363 unsigned long start, unsigned long end) 1364 { 1365 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1366 GFP_KERNEL, __builtin_return_address(0)); 1367 } 1368 EXPORT_SYMBOL_GPL(__get_vm_area); 1369 1370 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1371 unsigned long start, unsigned long end, 1372 const void *caller) 1373 { 1374 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1375 GFP_KERNEL, caller); 1376 } 1377 1378 /** 1379 * get_vm_area - reserve a contiguous kernel virtual area 1380 * @size: size of the area 1381 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1382 * 1383 * Search an area of @size in the kernel virtual mapping area, 1384 * and reserved it for out purposes. Returns the area descriptor 1385 * on success or %NULL on failure. 1386 */ 1387 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1388 { 1389 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1390 NUMA_NO_NODE, GFP_KERNEL, 1391 __builtin_return_address(0)); 1392 } 1393 1394 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1395 const void *caller) 1396 { 1397 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1398 NUMA_NO_NODE, GFP_KERNEL, caller); 1399 } 1400 1401 /** 1402 * find_vm_area - find a continuous kernel virtual area 1403 * @addr: base address 1404 * 1405 * Search for the kernel VM area starting at @addr, and return it. 1406 * It is up to the caller to do all required locking to keep the returned 1407 * pointer valid. 1408 */ 1409 struct vm_struct *find_vm_area(const void *addr) 1410 { 1411 struct vmap_area *va; 1412 1413 va = find_vmap_area((unsigned long)addr); 1414 if (va && va->flags & VM_VM_AREA) 1415 return va->vm; 1416 1417 return NULL; 1418 } 1419 1420 /** 1421 * remove_vm_area - find and remove a continuous kernel virtual area 1422 * @addr: base address 1423 * 1424 * Search for the kernel VM area starting at @addr, and remove it. 1425 * This function returns the found VM area, but using it is NOT safe 1426 * on SMP machines, except for its size or flags. 1427 */ 1428 struct vm_struct *remove_vm_area(const void *addr) 1429 { 1430 struct vmap_area *va; 1431 1432 va = find_vmap_area((unsigned long)addr); 1433 if (va && va->flags & VM_VM_AREA) { 1434 struct vm_struct *vm = va->vm; 1435 1436 spin_lock(&vmap_area_lock); 1437 va->vm = NULL; 1438 va->flags &= ~VM_VM_AREA; 1439 spin_unlock(&vmap_area_lock); 1440 1441 vmap_debug_free_range(va->va_start, va->va_end); 1442 kasan_free_shadow(vm); 1443 free_unmap_vmap_area(va); 1444 1445 return vm; 1446 } 1447 return NULL; 1448 } 1449 1450 static void __vunmap(const void *addr, int deallocate_pages) 1451 { 1452 struct vm_struct *area; 1453 1454 if (!addr) 1455 return; 1456 1457 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1458 addr)) 1459 return; 1460 1461 area = remove_vm_area(addr); 1462 if (unlikely(!area)) { 1463 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1464 addr); 1465 return; 1466 } 1467 1468 debug_check_no_locks_freed(addr, get_vm_area_size(area)); 1469 debug_check_no_obj_freed(addr, get_vm_area_size(area)); 1470 1471 if (deallocate_pages) { 1472 int i; 1473 1474 for (i = 0; i < area->nr_pages; i++) { 1475 struct page *page = area->pages[i]; 1476 1477 BUG_ON(!page); 1478 __free_kmem_pages(page, 0); 1479 } 1480 1481 kvfree(area->pages); 1482 } 1483 1484 kfree(area); 1485 return; 1486 } 1487 1488 /** 1489 * vfree - release memory allocated by vmalloc() 1490 * @addr: memory base address 1491 * 1492 * Free the virtually continuous memory area starting at @addr, as 1493 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1494 * NULL, no operation is performed. 1495 * 1496 * Must not be called in NMI context (strictly speaking, only if we don't 1497 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1498 * conventions for vfree() arch-depenedent would be a really bad idea) 1499 * 1500 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1501 */ 1502 void vfree(const void *addr) 1503 { 1504 BUG_ON(in_nmi()); 1505 1506 kmemleak_free(addr); 1507 1508 if (!addr) 1509 return; 1510 if (unlikely(in_interrupt())) { 1511 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1512 if (llist_add((struct llist_node *)addr, &p->list)) 1513 schedule_work(&p->wq); 1514 } else 1515 __vunmap(addr, 1); 1516 } 1517 EXPORT_SYMBOL(vfree); 1518 1519 /** 1520 * vunmap - release virtual mapping obtained by vmap() 1521 * @addr: memory base address 1522 * 1523 * Free the virtually contiguous memory area starting at @addr, 1524 * which was created from the page array passed to vmap(). 1525 * 1526 * Must not be called in interrupt context. 1527 */ 1528 void vunmap(const void *addr) 1529 { 1530 BUG_ON(in_interrupt()); 1531 might_sleep(); 1532 if (addr) 1533 __vunmap(addr, 0); 1534 } 1535 EXPORT_SYMBOL(vunmap); 1536 1537 /** 1538 * vmap - map an array of pages into virtually contiguous space 1539 * @pages: array of page pointers 1540 * @count: number of pages to map 1541 * @flags: vm_area->flags 1542 * @prot: page protection for the mapping 1543 * 1544 * Maps @count pages from @pages into contiguous kernel virtual 1545 * space. 1546 */ 1547 void *vmap(struct page **pages, unsigned int count, 1548 unsigned long flags, pgprot_t prot) 1549 { 1550 struct vm_struct *area; 1551 1552 might_sleep(); 1553 1554 if (count > totalram_pages) 1555 return NULL; 1556 1557 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1558 __builtin_return_address(0)); 1559 if (!area) 1560 return NULL; 1561 1562 if (map_vm_area(area, prot, pages)) { 1563 vunmap(area->addr); 1564 return NULL; 1565 } 1566 1567 return area->addr; 1568 } 1569 EXPORT_SYMBOL(vmap); 1570 1571 static void *__vmalloc_node(unsigned long size, unsigned long align, 1572 gfp_t gfp_mask, pgprot_t prot, 1573 int node, const void *caller); 1574 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1575 pgprot_t prot, int node) 1576 { 1577 const int order = 0; 1578 struct page **pages; 1579 unsigned int nr_pages, array_size, i; 1580 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1581 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1582 1583 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1584 array_size = (nr_pages * sizeof(struct page *)); 1585 1586 area->nr_pages = nr_pages; 1587 /* Please note that the recursion is strictly bounded. */ 1588 if (array_size > PAGE_SIZE) { 1589 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1590 PAGE_KERNEL, node, area->caller); 1591 } else { 1592 pages = kmalloc_node(array_size, nested_gfp, node); 1593 } 1594 area->pages = pages; 1595 if (!area->pages) { 1596 remove_vm_area(area->addr); 1597 kfree(area); 1598 return NULL; 1599 } 1600 1601 for (i = 0; i < area->nr_pages; i++) { 1602 struct page *page; 1603 1604 if (node == NUMA_NO_NODE) 1605 page = alloc_kmem_pages(alloc_mask, order); 1606 else 1607 page = alloc_kmem_pages_node(node, alloc_mask, order); 1608 1609 if (unlikely(!page)) { 1610 /* Successfully allocated i pages, free them in __vunmap() */ 1611 area->nr_pages = i; 1612 goto fail; 1613 } 1614 area->pages[i] = page; 1615 if (gfpflags_allow_blocking(gfp_mask)) 1616 cond_resched(); 1617 } 1618 1619 if (map_vm_area(area, prot, pages)) 1620 goto fail; 1621 return area->addr; 1622 1623 fail: 1624 warn_alloc_failed(gfp_mask, order, 1625 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1626 (area->nr_pages*PAGE_SIZE), area->size); 1627 vfree(area->addr); 1628 return NULL; 1629 } 1630 1631 /** 1632 * __vmalloc_node_range - allocate virtually contiguous memory 1633 * @size: allocation size 1634 * @align: desired alignment 1635 * @start: vm area range start 1636 * @end: vm area range end 1637 * @gfp_mask: flags for the page level allocator 1638 * @prot: protection mask for the allocated pages 1639 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1640 * @node: node to use for allocation or NUMA_NO_NODE 1641 * @caller: caller's return address 1642 * 1643 * Allocate enough pages to cover @size from the page level 1644 * allocator with @gfp_mask flags. Map them into contiguous 1645 * kernel virtual space, using a pagetable protection of @prot. 1646 */ 1647 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1648 unsigned long start, unsigned long end, gfp_t gfp_mask, 1649 pgprot_t prot, unsigned long vm_flags, int node, 1650 const void *caller) 1651 { 1652 struct vm_struct *area; 1653 void *addr; 1654 unsigned long real_size = size; 1655 1656 size = PAGE_ALIGN(size); 1657 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1658 goto fail; 1659 1660 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1661 vm_flags, start, end, node, gfp_mask, caller); 1662 if (!area) 1663 goto fail; 1664 1665 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1666 if (!addr) 1667 return NULL; 1668 1669 /* 1670 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1671 * flag. It means that vm_struct is not fully initialized. 1672 * Now, it is fully initialized, so remove this flag here. 1673 */ 1674 clear_vm_uninitialized_flag(area); 1675 1676 /* 1677 * A ref_count = 2 is needed because vm_struct allocated in 1678 * __get_vm_area_node() contains a reference to the virtual address of 1679 * the vmalloc'ed block. 1680 */ 1681 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1682 1683 return addr; 1684 1685 fail: 1686 warn_alloc_failed(gfp_mask, 0, 1687 "vmalloc: allocation failure: %lu bytes\n", 1688 real_size); 1689 return NULL; 1690 } 1691 1692 /** 1693 * __vmalloc_node - allocate virtually contiguous memory 1694 * @size: allocation size 1695 * @align: desired alignment 1696 * @gfp_mask: flags for the page level allocator 1697 * @prot: protection mask for the allocated pages 1698 * @node: node to use for allocation or NUMA_NO_NODE 1699 * @caller: caller's return address 1700 * 1701 * Allocate enough pages to cover @size from the page level 1702 * allocator with @gfp_mask flags. Map them into contiguous 1703 * kernel virtual space, using a pagetable protection of @prot. 1704 */ 1705 static void *__vmalloc_node(unsigned long size, unsigned long align, 1706 gfp_t gfp_mask, pgprot_t prot, 1707 int node, const void *caller) 1708 { 1709 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1710 gfp_mask, prot, 0, node, caller); 1711 } 1712 1713 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1714 { 1715 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1716 __builtin_return_address(0)); 1717 } 1718 EXPORT_SYMBOL(__vmalloc); 1719 1720 static inline void *__vmalloc_node_flags(unsigned long size, 1721 int node, gfp_t flags) 1722 { 1723 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1724 node, __builtin_return_address(0)); 1725 } 1726 1727 /** 1728 * vmalloc - allocate virtually contiguous memory 1729 * @size: allocation size 1730 * Allocate enough pages to cover @size from the page level 1731 * allocator and map them into contiguous kernel virtual space. 1732 * 1733 * For tight control over page level allocator and protection flags 1734 * use __vmalloc() instead. 1735 */ 1736 void *vmalloc(unsigned long size) 1737 { 1738 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1739 GFP_KERNEL | __GFP_HIGHMEM); 1740 } 1741 EXPORT_SYMBOL(vmalloc); 1742 1743 /** 1744 * vzalloc - allocate virtually contiguous memory with zero fill 1745 * @size: allocation size 1746 * Allocate enough pages to cover @size from the page level 1747 * allocator and map them into contiguous kernel virtual space. 1748 * The memory allocated is set to zero. 1749 * 1750 * For tight control over page level allocator and protection flags 1751 * use __vmalloc() instead. 1752 */ 1753 void *vzalloc(unsigned long size) 1754 { 1755 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1756 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1757 } 1758 EXPORT_SYMBOL(vzalloc); 1759 1760 /** 1761 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1762 * @size: allocation size 1763 * 1764 * The resulting memory area is zeroed so it can be mapped to userspace 1765 * without leaking data. 1766 */ 1767 void *vmalloc_user(unsigned long size) 1768 { 1769 struct vm_struct *area; 1770 void *ret; 1771 1772 ret = __vmalloc_node(size, SHMLBA, 1773 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1774 PAGE_KERNEL, NUMA_NO_NODE, 1775 __builtin_return_address(0)); 1776 if (ret) { 1777 area = find_vm_area(ret); 1778 area->flags |= VM_USERMAP; 1779 } 1780 return ret; 1781 } 1782 EXPORT_SYMBOL(vmalloc_user); 1783 1784 /** 1785 * vmalloc_node - allocate memory on a specific node 1786 * @size: allocation size 1787 * @node: numa node 1788 * 1789 * Allocate enough pages to cover @size from the page level 1790 * allocator and map them into contiguous kernel virtual space. 1791 * 1792 * For tight control over page level allocator and protection flags 1793 * use __vmalloc() instead. 1794 */ 1795 void *vmalloc_node(unsigned long size, int node) 1796 { 1797 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1798 node, __builtin_return_address(0)); 1799 } 1800 EXPORT_SYMBOL(vmalloc_node); 1801 1802 /** 1803 * vzalloc_node - allocate memory on a specific node with zero fill 1804 * @size: allocation size 1805 * @node: numa node 1806 * 1807 * Allocate enough pages to cover @size from the page level 1808 * allocator and map them into contiguous kernel virtual space. 1809 * The memory allocated is set to zero. 1810 * 1811 * For tight control over page level allocator and protection flags 1812 * use __vmalloc_node() instead. 1813 */ 1814 void *vzalloc_node(unsigned long size, int node) 1815 { 1816 return __vmalloc_node_flags(size, node, 1817 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1818 } 1819 EXPORT_SYMBOL(vzalloc_node); 1820 1821 #ifndef PAGE_KERNEL_EXEC 1822 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1823 #endif 1824 1825 /** 1826 * vmalloc_exec - allocate virtually contiguous, executable memory 1827 * @size: allocation size 1828 * 1829 * Kernel-internal function to allocate enough pages to cover @size 1830 * the page level allocator and map them into contiguous and 1831 * executable kernel virtual space. 1832 * 1833 * For tight control over page level allocator and protection flags 1834 * use __vmalloc() instead. 1835 */ 1836 1837 void *vmalloc_exec(unsigned long size) 1838 { 1839 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1840 NUMA_NO_NODE, __builtin_return_address(0)); 1841 } 1842 1843 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1844 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1845 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1846 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1847 #else 1848 #define GFP_VMALLOC32 GFP_KERNEL 1849 #endif 1850 1851 /** 1852 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1853 * @size: allocation size 1854 * 1855 * Allocate enough 32bit PA addressable pages to cover @size from the 1856 * page level allocator and map them into contiguous kernel virtual space. 1857 */ 1858 void *vmalloc_32(unsigned long size) 1859 { 1860 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1861 NUMA_NO_NODE, __builtin_return_address(0)); 1862 } 1863 EXPORT_SYMBOL(vmalloc_32); 1864 1865 /** 1866 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1867 * @size: allocation size 1868 * 1869 * The resulting memory area is 32bit addressable and zeroed so it can be 1870 * mapped to userspace without leaking data. 1871 */ 1872 void *vmalloc_32_user(unsigned long size) 1873 { 1874 struct vm_struct *area; 1875 void *ret; 1876 1877 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1878 NUMA_NO_NODE, __builtin_return_address(0)); 1879 if (ret) { 1880 area = find_vm_area(ret); 1881 area->flags |= VM_USERMAP; 1882 } 1883 return ret; 1884 } 1885 EXPORT_SYMBOL(vmalloc_32_user); 1886 1887 /* 1888 * small helper routine , copy contents to buf from addr. 1889 * If the page is not present, fill zero. 1890 */ 1891 1892 static int aligned_vread(char *buf, char *addr, unsigned long count) 1893 { 1894 struct page *p; 1895 int copied = 0; 1896 1897 while (count) { 1898 unsigned long offset, length; 1899 1900 offset = offset_in_page(addr); 1901 length = PAGE_SIZE - offset; 1902 if (length > count) 1903 length = count; 1904 p = vmalloc_to_page(addr); 1905 /* 1906 * To do safe access to this _mapped_ area, we need 1907 * lock. But adding lock here means that we need to add 1908 * overhead of vmalloc()/vfree() calles for this _debug_ 1909 * interface, rarely used. Instead of that, we'll use 1910 * kmap() and get small overhead in this access function. 1911 */ 1912 if (p) { 1913 /* 1914 * we can expect USER0 is not used (see vread/vwrite's 1915 * function description) 1916 */ 1917 void *map = kmap_atomic(p); 1918 memcpy(buf, map + offset, length); 1919 kunmap_atomic(map); 1920 } else 1921 memset(buf, 0, length); 1922 1923 addr += length; 1924 buf += length; 1925 copied += length; 1926 count -= length; 1927 } 1928 return copied; 1929 } 1930 1931 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1932 { 1933 struct page *p; 1934 int copied = 0; 1935 1936 while (count) { 1937 unsigned long offset, length; 1938 1939 offset = offset_in_page(addr); 1940 length = PAGE_SIZE - offset; 1941 if (length > count) 1942 length = count; 1943 p = vmalloc_to_page(addr); 1944 /* 1945 * To do safe access to this _mapped_ area, we need 1946 * lock. But adding lock here means that we need to add 1947 * overhead of vmalloc()/vfree() calles for this _debug_ 1948 * interface, rarely used. Instead of that, we'll use 1949 * kmap() and get small overhead in this access function. 1950 */ 1951 if (p) { 1952 /* 1953 * we can expect USER0 is not used (see vread/vwrite's 1954 * function description) 1955 */ 1956 void *map = kmap_atomic(p); 1957 memcpy(map + offset, buf, length); 1958 kunmap_atomic(map); 1959 } 1960 addr += length; 1961 buf += length; 1962 copied += length; 1963 count -= length; 1964 } 1965 return copied; 1966 } 1967 1968 /** 1969 * vread() - read vmalloc area in a safe way. 1970 * @buf: buffer for reading data 1971 * @addr: vm address. 1972 * @count: number of bytes to be read. 1973 * 1974 * Returns # of bytes which addr and buf should be increased. 1975 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1976 * includes any intersect with alive vmalloc area. 1977 * 1978 * This function checks that addr is a valid vmalloc'ed area, and 1979 * copy data from that area to a given buffer. If the given memory range 1980 * of [addr...addr+count) includes some valid address, data is copied to 1981 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1982 * IOREMAP area is treated as memory hole and no copy is done. 1983 * 1984 * If [addr...addr+count) doesn't includes any intersects with alive 1985 * vm_struct area, returns 0. @buf should be kernel's buffer. 1986 * 1987 * Note: In usual ops, vread() is never necessary because the caller 1988 * should know vmalloc() area is valid and can use memcpy(). 1989 * This is for routines which have to access vmalloc area without 1990 * any informaion, as /dev/kmem. 1991 * 1992 */ 1993 1994 long vread(char *buf, char *addr, unsigned long count) 1995 { 1996 struct vmap_area *va; 1997 struct vm_struct *vm; 1998 char *vaddr, *buf_start = buf; 1999 unsigned long buflen = count; 2000 unsigned long n; 2001 2002 /* Don't allow overflow */ 2003 if ((unsigned long) addr + count < count) 2004 count = -(unsigned long) addr; 2005 2006 spin_lock(&vmap_area_lock); 2007 list_for_each_entry(va, &vmap_area_list, list) { 2008 if (!count) 2009 break; 2010 2011 if (!(va->flags & VM_VM_AREA)) 2012 continue; 2013 2014 vm = va->vm; 2015 vaddr = (char *) vm->addr; 2016 if (addr >= vaddr + get_vm_area_size(vm)) 2017 continue; 2018 while (addr < vaddr) { 2019 if (count == 0) 2020 goto finished; 2021 *buf = '\0'; 2022 buf++; 2023 addr++; 2024 count--; 2025 } 2026 n = vaddr + get_vm_area_size(vm) - addr; 2027 if (n > count) 2028 n = count; 2029 if (!(vm->flags & VM_IOREMAP)) 2030 aligned_vread(buf, addr, n); 2031 else /* IOREMAP area is treated as memory hole */ 2032 memset(buf, 0, n); 2033 buf += n; 2034 addr += n; 2035 count -= n; 2036 } 2037 finished: 2038 spin_unlock(&vmap_area_lock); 2039 2040 if (buf == buf_start) 2041 return 0; 2042 /* zero-fill memory holes */ 2043 if (buf != buf_start + buflen) 2044 memset(buf, 0, buflen - (buf - buf_start)); 2045 2046 return buflen; 2047 } 2048 2049 /** 2050 * vwrite() - write vmalloc area in a safe way. 2051 * @buf: buffer for source data 2052 * @addr: vm address. 2053 * @count: number of bytes to be read. 2054 * 2055 * Returns # of bytes which addr and buf should be incresed. 2056 * (same number to @count). 2057 * If [addr...addr+count) doesn't includes any intersect with valid 2058 * vmalloc area, returns 0. 2059 * 2060 * This function checks that addr is a valid vmalloc'ed area, and 2061 * copy data from a buffer to the given addr. If specified range of 2062 * [addr...addr+count) includes some valid address, data is copied from 2063 * proper area of @buf. If there are memory holes, no copy to hole. 2064 * IOREMAP area is treated as memory hole and no copy is done. 2065 * 2066 * If [addr...addr+count) doesn't includes any intersects with alive 2067 * vm_struct area, returns 0. @buf should be kernel's buffer. 2068 * 2069 * Note: In usual ops, vwrite() is never necessary because the caller 2070 * should know vmalloc() area is valid and can use memcpy(). 2071 * This is for routines which have to access vmalloc area without 2072 * any informaion, as /dev/kmem. 2073 */ 2074 2075 long vwrite(char *buf, char *addr, unsigned long count) 2076 { 2077 struct vmap_area *va; 2078 struct vm_struct *vm; 2079 char *vaddr; 2080 unsigned long n, buflen; 2081 int copied = 0; 2082 2083 /* Don't allow overflow */ 2084 if ((unsigned long) addr + count < count) 2085 count = -(unsigned long) addr; 2086 buflen = count; 2087 2088 spin_lock(&vmap_area_lock); 2089 list_for_each_entry(va, &vmap_area_list, list) { 2090 if (!count) 2091 break; 2092 2093 if (!(va->flags & VM_VM_AREA)) 2094 continue; 2095 2096 vm = va->vm; 2097 vaddr = (char *) vm->addr; 2098 if (addr >= vaddr + get_vm_area_size(vm)) 2099 continue; 2100 while (addr < vaddr) { 2101 if (count == 0) 2102 goto finished; 2103 buf++; 2104 addr++; 2105 count--; 2106 } 2107 n = vaddr + get_vm_area_size(vm) - addr; 2108 if (n > count) 2109 n = count; 2110 if (!(vm->flags & VM_IOREMAP)) { 2111 aligned_vwrite(buf, addr, n); 2112 copied++; 2113 } 2114 buf += n; 2115 addr += n; 2116 count -= n; 2117 } 2118 finished: 2119 spin_unlock(&vmap_area_lock); 2120 if (!copied) 2121 return 0; 2122 return buflen; 2123 } 2124 2125 /** 2126 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2127 * @vma: vma to cover 2128 * @uaddr: target user address to start at 2129 * @kaddr: virtual address of vmalloc kernel memory 2130 * @size: size of map area 2131 * 2132 * Returns: 0 for success, -Exxx on failure 2133 * 2134 * This function checks that @kaddr is a valid vmalloc'ed area, 2135 * and that it is big enough to cover the range starting at 2136 * @uaddr in @vma. Will return failure if that criteria isn't 2137 * met. 2138 * 2139 * Similar to remap_pfn_range() (see mm/memory.c) 2140 */ 2141 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2142 void *kaddr, unsigned long size) 2143 { 2144 struct vm_struct *area; 2145 2146 size = PAGE_ALIGN(size); 2147 2148 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2149 return -EINVAL; 2150 2151 area = find_vm_area(kaddr); 2152 if (!area) 2153 return -EINVAL; 2154 2155 if (!(area->flags & VM_USERMAP)) 2156 return -EINVAL; 2157 2158 if (kaddr + size > area->addr + area->size) 2159 return -EINVAL; 2160 2161 do { 2162 struct page *page = vmalloc_to_page(kaddr); 2163 int ret; 2164 2165 ret = vm_insert_page(vma, uaddr, page); 2166 if (ret) 2167 return ret; 2168 2169 uaddr += PAGE_SIZE; 2170 kaddr += PAGE_SIZE; 2171 size -= PAGE_SIZE; 2172 } while (size > 0); 2173 2174 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2175 2176 return 0; 2177 } 2178 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2179 2180 /** 2181 * remap_vmalloc_range - map vmalloc pages to userspace 2182 * @vma: vma to cover (map full range of vma) 2183 * @addr: vmalloc memory 2184 * @pgoff: number of pages into addr before first page to map 2185 * 2186 * Returns: 0 for success, -Exxx on failure 2187 * 2188 * This function checks that addr is a valid vmalloc'ed area, and 2189 * that it is big enough to cover the vma. Will return failure if 2190 * that criteria isn't met. 2191 * 2192 * Similar to remap_pfn_range() (see mm/memory.c) 2193 */ 2194 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2195 unsigned long pgoff) 2196 { 2197 return remap_vmalloc_range_partial(vma, vma->vm_start, 2198 addr + (pgoff << PAGE_SHIFT), 2199 vma->vm_end - vma->vm_start); 2200 } 2201 EXPORT_SYMBOL(remap_vmalloc_range); 2202 2203 /* 2204 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2205 * have one. 2206 */ 2207 void __weak vmalloc_sync_all(void) 2208 { 2209 } 2210 2211 2212 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2213 { 2214 pte_t ***p = data; 2215 2216 if (p) { 2217 *(*p) = pte; 2218 (*p)++; 2219 } 2220 return 0; 2221 } 2222 2223 /** 2224 * alloc_vm_area - allocate a range of kernel address space 2225 * @size: size of the area 2226 * @ptes: returns the PTEs for the address space 2227 * 2228 * Returns: NULL on failure, vm_struct on success 2229 * 2230 * This function reserves a range of kernel address space, and 2231 * allocates pagetables to map that range. No actual mappings 2232 * are created. 2233 * 2234 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2235 * allocated for the VM area are returned. 2236 */ 2237 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2238 { 2239 struct vm_struct *area; 2240 2241 area = get_vm_area_caller(size, VM_IOREMAP, 2242 __builtin_return_address(0)); 2243 if (area == NULL) 2244 return NULL; 2245 2246 /* 2247 * This ensures that page tables are constructed for this region 2248 * of kernel virtual address space and mapped into init_mm. 2249 */ 2250 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2251 size, f, ptes ? &ptes : NULL)) { 2252 free_vm_area(area); 2253 return NULL; 2254 } 2255 2256 return area; 2257 } 2258 EXPORT_SYMBOL_GPL(alloc_vm_area); 2259 2260 void free_vm_area(struct vm_struct *area) 2261 { 2262 struct vm_struct *ret; 2263 ret = remove_vm_area(area->addr); 2264 BUG_ON(ret != area); 2265 kfree(area); 2266 } 2267 EXPORT_SYMBOL_GPL(free_vm_area); 2268 2269 #ifdef CONFIG_SMP 2270 static struct vmap_area *node_to_va(struct rb_node *n) 2271 { 2272 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2273 } 2274 2275 /** 2276 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2277 * @end: target address 2278 * @pnext: out arg for the next vmap_area 2279 * @pprev: out arg for the previous vmap_area 2280 * 2281 * Returns: %true if either or both of next and prev are found, 2282 * %false if no vmap_area exists 2283 * 2284 * Find vmap_areas end addresses of which enclose @end. ie. if not 2285 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2286 */ 2287 static bool pvm_find_next_prev(unsigned long end, 2288 struct vmap_area **pnext, 2289 struct vmap_area **pprev) 2290 { 2291 struct rb_node *n = vmap_area_root.rb_node; 2292 struct vmap_area *va = NULL; 2293 2294 while (n) { 2295 va = rb_entry(n, struct vmap_area, rb_node); 2296 if (end < va->va_end) 2297 n = n->rb_left; 2298 else if (end > va->va_end) 2299 n = n->rb_right; 2300 else 2301 break; 2302 } 2303 2304 if (!va) 2305 return false; 2306 2307 if (va->va_end > end) { 2308 *pnext = va; 2309 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2310 } else { 2311 *pprev = va; 2312 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2313 } 2314 return true; 2315 } 2316 2317 /** 2318 * pvm_determine_end - find the highest aligned address between two vmap_areas 2319 * @pnext: in/out arg for the next vmap_area 2320 * @pprev: in/out arg for the previous vmap_area 2321 * @align: alignment 2322 * 2323 * Returns: determined end address 2324 * 2325 * Find the highest aligned address between *@pnext and *@pprev below 2326 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2327 * down address is between the end addresses of the two vmap_areas. 2328 * 2329 * Please note that the address returned by this function may fall 2330 * inside *@pnext vmap_area. The caller is responsible for checking 2331 * that. 2332 */ 2333 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2334 struct vmap_area **pprev, 2335 unsigned long align) 2336 { 2337 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2338 unsigned long addr; 2339 2340 if (*pnext) 2341 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2342 else 2343 addr = vmalloc_end; 2344 2345 while (*pprev && (*pprev)->va_end > addr) { 2346 *pnext = *pprev; 2347 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2348 } 2349 2350 return addr; 2351 } 2352 2353 /** 2354 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2355 * @offsets: array containing offset of each area 2356 * @sizes: array containing size of each area 2357 * @nr_vms: the number of areas to allocate 2358 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2359 * 2360 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2361 * vm_structs on success, %NULL on failure 2362 * 2363 * Percpu allocator wants to use congruent vm areas so that it can 2364 * maintain the offsets among percpu areas. This function allocates 2365 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2366 * be scattered pretty far, distance between two areas easily going up 2367 * to gigabytes. To avoid interacting with regular vmallocs, these 2368 * areas are allocated from top. 2369 * 2370 * Despite its complicated look, this allocator is rather simple. It 2371 * does everything top-down and scans areas from the end looking for 2372 * matching slot. While scanning, if any of the areas overlaps with 2373 * existing vmap_area, the base address is pulled down to fit the 2374 * area. Scanning is repeated till all the areas fit and then all 2375 * necessary data structres are inserted and the result is returned. 2376 */ 2377 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2378 const size_t *sizes, int nr_vms, 2379 size_t align) 2380 { 2381 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2382 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2383 struct vmap_area **vas, *prev, *next; 2384 struct vm_struct **vms; 2385 int area, area2, last_area, term_area; 2386 unsigned long base, start, end, last_end; 2387 bool purged = false; 2388 2389 /* verify parameters and allocate data structures */ 2390 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2391 for (last_area = 0, area = 0; area < nr_vms; area++) { 2392 start = offsets[area]; 2393 end = start + sizes[area]; 2394 2395 /* is everything aligned properly? */ 2396 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2397 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2398 2399 /* detect the area with the highest address */ 2400 if (start > offsets[last_area]) 2401 last_area = area; 2402 2403 for (area2 = 0; area2 < nr_vms; area2++) { 2404 unsigned long start2 = offsets[area2]; 2405 unsigned long end2 = start2 + sizes[area2]; 2406 2407 if (area2 == area) 2408 continue; 2409 2410 BUG_ON(start2 >= start && start2 < end); 2411 BUG_ON(end2 <= end && end2 > start); 2412 } 2413 } 2414 last_end = offsets[last_area] + sizes[last_area]; 2415 2416 if (vmalloc_end - vmalloc_start < last_end) { 2417 WARN_ON(true); 2418 return NULL; 2419 } 2420 2421 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2422 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2423 if (!vas || !vms) 2424 goto err_free2; 2425 2426 for (area = 0; area < nr_vms; area++) { 2427 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2428 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2429 if (!vas[area] || !vms[area]) 2430 goto err_free; 2431 } 2432 retry: 2433 spin_lock(&vmap_area_lock); 2434 2435 /* start scanning - we scan from the top, begin with the last area */ 2436 area = term_area = last_area; 2437 start = offsets[area]; 2438 end = start + sizes[area]; 2439 2440 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2441 base = vmalloc_end - last_end; 2442 goto found; 2443 } 2444 base = pvm_determine_end(&next, &prev, align) - end; 2445 2446 while (true) { 2447 BUG_ON(next && next->va_end <= base + end); 2448 BUG_ON(prev && prev->va_end > base + end); 2449 2450 /* 2451 * base might have underflowed, add last_end before 2452 * comparing. 2453 */ 2454 if (base + last_end < vmalloc_start + last_end) { 2455 spin_unlock(&vmap_area_lock); 2456 if (!purged) { 2457 purge_vmap_area_lazy(); 2458 purged = true; 2459 goto retry; 2460 } 2461 goto err_free; 2462 } 2463 2464 /* 2465 * If next overlaps, move base downwards so that it's 2466 * right below next and then recheck. 2467 */ 2468 if (next && next->va_start < base + end) { 2469 base = pvm_determine_end(&next, &prev, align) - end; 2470 term_area = area; 2471 continue; 2472 } 2473 2474 /* 2475 * If prev overlaps, shift down next and prev and move 2476 * base so that it's right below new next and then 2477 * recheck. 2478 */ 2479 if (prev && prev->va_end > base + start) { 2480 next = prev; 2481 prev = node_to_va(rb_prev(&next->rb_node)); 2482 base = pvm_determine_end(&next, &prev, align) - end; 2483 term_area = area; 2484 continue; 2485 } 2486 2487 /* 2488 * This area fits, move on to the previous one. If 2489 * the previous one is the terminal one, we're done. 2490 */ 2491 area = (area + nr_vms - 1) % nr_vms; 2492 if (area == term_area) 2493 break; 2494 start = offsets[area]; 2495 end = start + sizes[area]; 2496 pvm_find_next_prev(base + end, &next, &prev); 2497 } 2498 found: 2499 /* we've found a fitting base, insert all va's */ 2500 for (area = 0; area < nr_vms; area++) { 2501 struct vmap_area *va = vas[area]; 2502 2503 va->va_start = base + offsets[area]; 2504 va->va_end = va->va_start + sizes[area]; 2505 __insert_vmap_area(va); 2506 } 2507 2508 vmap_area_pcpu_hole = base + offsets[last_area]; 2509 2510 spin_unlock(&vmap_area_lock); 2511 2512 /* insert all vm's */ 2513 for (area = 0; area < nr_vms; area++) 2514 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2515 pcpu_get_vm_areas); 2516 2517 kfree(vas); 2518 return vms; 2519 2520 err_free: 2521 for (area = 0; area < nr_vms; area++) { 2522 kfree(vas[area]); 2523 kfree(vms[area]); 2524 } 2525 err_free2: 2526 kfree(vas); 2527 kfree(vms); 2528 return NULL; 2529 } 2530 2531 /** 2532 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2533 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2534 * @nr_vms: the number of allocated areas 2535 * 2536 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2537 */ 2538 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2539 { 2540 int i; 2541 2542 for (i = 0; i < nr_vms; i++) 2543 free_vm_area(vms[i]); 2544 kfree(vms); 2545 } 2546 #endif /* CONFIG_SMP */ 2547 2548 #ifdef CONFIG_PROC_FS 2549 static void *s_start(struct seq_file *m, loff_t *pos) 2550 __acquires(&vmap_area_lock) 2551 { 2552 loff_t n = *pos; 2553 struct vmap_area *va; 2554 2555 spin_lock(&vmap_area_lock); 2556 va = list_first_entry(&vmap_area_list, typeof(*va), list); 2557 while (n > 0 && &va->list != &vmap_area_list) { 2558 n--; 2559 va = list_next_entry(va, list); 2560 } 2561 if (!n && &va->list != &vmap_area_list) 2562 return va; 2563 2564 return NULL; 2565 2566 } 2567 2568 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2569 { 2570 struct vmap_area *va = p, *next; 2571 2572 ++*pos; 2573 next = list_next_entry(va, list); 2574 if (&next->list != &vmap_area_list) 2575 return next; 2576 2577 return NULL; 2578 } 2579 2580 static void s_stop(struct seq_file *m, void *p) 2581 __releases(&vmap_area_lock) 2582 { 2583 spin_unlock(&vmap_area_lock); 2584 } 2585 2586 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2587 { 2588 if (IS_ENABLED(CONFIG_NUMA)) { 2589 unsigned int nr, *counters = m->private; 2590 2591 if (!counters) 2592 return; 2593 2594 if (v->flags & VM_UNINITIALIZED) 2595 return; 2596 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2597 smp_rmb(); 2598 2599 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2600 2601 for (nr = 0; nr < v->nr_pages; nr++) 2602 counters[page_to_nid(v->pages[nr])]++; 2603 2604 for_each_node_state(nr, N_HIGH_MEMORY) 2605 if (counters[nr]) 2606 seq_printf(m, " N%u=%u", nr, counters[nr]); 2607 } 2608 } 2609 2610 static int s_show(struct seq_file *m, void *p) 2611 { 2612 struct vmap_area *va = p; 2613 struct vm_struct *v; 2614 2615 /* 2616 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2617 * behalf of vmap area is being tear down or vm_map_ram allocation. 2618 */ 2619 if (!(va->flags & VM_VM_AREA)) 2620 return 0; 2621 2622 v = va->vm; 2623 2624 seq_printf(m, "0x%pK-0x%pK %7ld", 2625 v->addr, v->addr + v->size, v->size); 2626 2627 if (v->caller) 2628 seq_printf(m, " %pS", v->caller); 2629 2630 if (v->nr_pages) 2631 seq_printf(m, " pages=%d", v->nr_pages); 2632 2633 if (v->phys_addr) 2634 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2635 2636 if (v->flags & VM_IOREMAP) 2637 seq_puts(m, " ioremap"); 2638 2639 if (v->flags & VM_ALLOC) 2640 seq_puts(m, " vmalloc"); 2641 2642 if (v->flags & VM_MAP) 2643 seq_puts(m, " vmap"); 2644 2645 if (v->flags & VM_USERMAP) 2646 seq_puts(m, " user"); 2647 2648 if (is_vmalloc_addr(v->pages)) 2649 seq_puts(m, " vpages"); 2650 2651 show_numa_info(m, v); 2652 seq_putc(m, '\n'); 2653 return 0; 2654 } 2655 2656 static const struct seq_operations vmalloc_op = { 2657 .start = s_start, 2658 .next = s_next, 2659 .stop = s_stop, 2660 .show = s_show, 2661 }; 2662 2663 static int vmalloc_open(struct inode *inode, struct file *file) 2664 { 2665 if (IS_ENABLED(CONFIG_NUMA)) 2666 return seq_open_private(file, &vmalloc_op, 2667 nr_node_ids * sizeof(unsigned int)); 2668 else 2669 return seq_open(file, &vmalloc_op); 2670 } 2671 2672 static const struct file_operations proc_vmalloc_operations = { 2673 .open = vmalloc_open, 2674 .read = seq_read, 2675 .llseek = seq_lseek, 2676 .release = seq_release_private, 2677 }; 2678 2679 static int __init proc_vmalloc_init(void) 2680 { 2681 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2682 return 0; 2683 } 2684 module_init(proc_vmalloc_init); 2685 2686 #endif 2687 2688