xref: /linux/mm/vmalloc.c (revision 43bb48c38e817b5f89fce340f49436a605e47e66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 #include "pgalloc-track.h"
44 
45 bool is_vmalloc_addr(const void *x)
46 {
47 	unsigned long addr = (unsigned long)x;
48 
49 	return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52 
53 struct vfree_deferred {
54 	struct llist_head list;
55 	struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58 
59 static void __vunmap(const void *, int);
60 
61 static void free_work(struct work_struct *w)
62 {
63 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 	struct llist_node *t, *llnode;
65 
66 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 		__vunmap((void *)llnode, 1);
68 }
69 
70 /*** Page table manipulation functions ***/
71 
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 			     pgtbl_mod_mask *mask)
74 {
75 	pte_t *pte;
76 
77 	pte = pte_offset_kernel(pmd, addr);
78 	do {
79 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 	} while (pte++, addr += PAGE_SIZE, addr != end);
82 	*mask |= PGTBL_PTE_MODIFIED;
83 }
84 
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 			     pgtbl_mod_mask *mask)
87 {
88 	pmd_t *pmd;
89 	unsigned long next;
90 	int cleared;
91 
92 	pmd = pmd_offset(pud, addr);
93 	do {
94 		next = pmd_addr_end(addr, end);
95 
96 		cleared = pmd_clear_huge(pmd);
97 		if (cleared || pmd_bad(*pmd))
98 			*mask |= PGTBL_PMD_MODIFIED;
99 
100 		if (cleared)
101 			continue;
102 		if (pmd_none_or_clear_bad(pmd))
103 			continue;
104 		vunmap_pte_range(pmd, addr, next, mask);
105 
106 		cond_resched();
107 	} while (pmd++, addr = next, addr != end);
108 }
109 
110 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 			     pgtbl_mod_mask *mask)
112 {
113 	pud_t *pud;
114 	unsigned long next;
115 	int cleared;
116 
117 	pud = pud_offset(p4d, addr);
118 	do {
119 		next = pud_addr_end(addr, end);
120 
121 		cleared = pud_clear_huge(pud);
122 		if (cleared || pud_bad(*pud))
123 			*mask |= PGTBL_PUD_MODIFIED;
124 
125 		if (cleared)
126 			continue;
127 		if (pud_none_or_clear_bad(pud))
128 			continue;
129 		vunmap_pmd_range(pud, addr, next, mask);
130 	} while (pud++, addr = next, addr != end);
131 }
132 
133 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 			     pgtbl_mod_mask *mask)
135 {
136 	p4d_t *p4d;
137 	unsigned long next;
138 	int cleared;
139 
140 	p4d = p4d_offset(pgd, addr);
141 	do {
142 		next = p4d_addr_end(addr, end);
143 
144 		cleared = p4d_clear_huge(p4d);
145 		if (cleared || p4d_bad(*p4d))
146 			*mask |= PGTBL_P4D_MODIFIED;
147 
148 		if (cleared)
149 			continue;
150 		if (p4d_none_or_clear_bad(p4d))
151 			continue;
152 		vunmap_pud_range(p4d, addr, next, mask);
153 	} while (p4d++, addr = next, addr != end);
154 }
155 
156 /**
157  * unmap_kernel_range_noflush - unmap kernel VM area
158  * @start: start of the VM area to unmap
159  * @size: size of the VM area to unmap
160  *
161  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
162  * should have been allocated using get_vm_area() and its friends.
163  *
164  * NOTE:
165  * This function does NOT do any cache flushing.  The caller is responsible
166  * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167  * function and flush_tlb_kernel_range() after.
168  */
169 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
170 {
171 	unsigned long end = start + size;
172 	unsigned long next;
173 	pgd_t *pgd;
174 	unsigned long addr = start;
175 	pgtbl_mod_mask mask = 0;
176 
177 	BUG_ON(addr >= end);
178 	pgd = pgd_offset_k(addr);
179 	do {
180 		next = pgd_addr_end(addr, end);
181 		if (pgd_bad(*pgd))
182 			mask |= PGTBL_PGD_MODIFIED;
183 		if (pgd_none_or_clear_bad(pgd))
184 			continue;
185 		vunmap_p4d_range(pgd, addr, next, &mask);
186 	} while (pgd++, addr = next, addr != end);
187 
188 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 		arch_sync_kernel_mappings(start, end);
190 }
191 
192 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 		pgtbl_mod_mask *mask)
195 {
196 	pte_t *pte;
197 
198 	/*
199 	 * nr is a running index into the array which helps higher level
200 	 * callers keep track of where we're up to.
201 	 */
202 
203 	pte = pte_alloc_kernel_track(pmd, addr, mask);
204 	if (!pte)
205 		return -ENOMEM;
206 	do {
207 		struct page *page = pages[*nr];
208 
209 		if (WARN_ON(!pte_none(*pte)))
210 			return -EBUSY;
211 		if (WARN_ON(!page))
212 			return -ENOMEM;
213 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
214 		(*nr)++;
215 	} while (pte++, addr += PAGE_SIZE, addr != end);
216 	*mask |= PGTBL_PTE_MODIFIED;
217 	return 0;
218 }
219 
220 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 		pgtbl_mod_mask *mask)
223 {
224 	pmd_t *pmd;
225 	unsigned long next;
226 
227 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
228 	if (!pmd)
229 		return -ENOMEM;
230 	do {
231 		next = pmd_addr_end(addr, end);
232 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
233 			return -ENOMEM;
234 	} while (pmd++, addr = next, addr != end);
235 	return 0;
236 }
237 
238 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 		pgtbl_mod_mask *mask)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 
245 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
246 	if (!pud)
247 		return -ENOMEM;
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
251 			return -ENOMEM;
252 	} while (pud++, addr = next, addr != end);
253 	return 0;
254 }
255 
256 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 		pgtbl_mod_mask *mask)
259 {
260 	p4d_t *p4d;
261 	unsigned long next;
262 
263 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 	if (!p4d)
265 		return -ENOMEM;
266 	do {
267 		next = p4d_addr_end(addr, end);
268 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 			return -ENOMEM;
270 	} while (p4d++, addr = next, addr != end);
271 	return 0;
272 }
273 
274 /**
275  * map_kernel_range_noflush - map kernel VM area with the specified pages
276  * @addr: start of the VM area to map
277  * @size: size of the VM area to map
278  * @prot: page protection flags to use
279  * @pages: pages to map
280  *
281  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
282  * have been allocated using get_vm_area() and its friends.
283  *
284  * NOTE:
285  * This function does NOT do any cache flushing.  The caller is responsible for
286  * calling flush_cache_vmap() on to-be-mapped areas before calling this
287  * function.
288  *
289  * RETURNS:
290  * 0 on success, -errno on failure.
291  */
292 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 			     pgprot_t prot, struct page **pages)
294 {
295 	unsigned long start = addr;
296 	unsigned long end = addr + size;
297 	unsigned long next;
298 	pgd_t *pgd;
299 	int err = 0;
300 	int nr = 0;
301 	pgtbl_mod_mask mask = 0;
302 
303 	BUG_ON(addr >= end);
304 	pgd = pgd_offset_k(addr);
305 	do {
306 		next = pgd_addr_end(addr, end);
307 		if (pgd_bad(*pgd))
308 			mask |= PGTBL_PGD_MODIFIED;
309 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
310 		if (err)
311 			return err;
312 	} while (pgd++, addr = next, addr != end);
313 
314 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 		arch_sync_kernel_mappings(start, end);
316 
317 	return 0;
318 }
319 
320 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
321 		struct page **pages)
322 {
323 	int ret;
324 
325 	ret = map_kernel_range_noflush(start, size, prot, pages);
326 	flush_cache_vmap(start, start + size);
327 	return ret;
328 }
329 
330 int is_vmalloc_or_module_addr(const void *x)
331 {
332 	/*
333 	 * ARM, x86-64 and sparc64 put modules in a special place,
334 	 * and fall back on vmalloc() if that fails. Others
335 	 * just put it in the vmalloc space.
336 	 */
337 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 	unsigned long addr = (unsigned long)x;
339 	if (addr >= MODULES_VADDR && addr < MODULES_END)
340 		return 1;
341 #endif
342 	return is_vmalloc_addr(x);
343 }
344 
345 /*
346  * Walk a vmap address to the struct page it maps.
347  */
348 struct page *vmalloc_to_page(const void *vmalloc_addr)
349 {
350 	unsigned long addr = (unsigned long) vmalloc_addr;
351 	struct page *page = NULL;
352 	pgd_t *pgd = pgd_offset_k(addr);
353 	p4d_t *p4d;
354 	pud_t *pud;
355 	pmd_t *pmd;
356 	pte_t *ptep, pte;
357 
358 	/*
359 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 	 * architectures that do not vmalloc module space
361 	 */
362 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
363 
364 	if (pgd_none(*pgd))
365 		return NULL;
366 	p4d = p4d_offset(pgd, addr);
367 	if (p4d_none(*p4d))
368 		return NULL;
369 	pud = pud_offset(p4d, addr);
370 
371 	/*
372 	 * Don't dereference bad PUD or PMD (below) entries. This will also
373 	 * identify huge mappings, which we may encounter on architectures
374 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 	 * not [unambiguously] associated with a struct page, so there is
377 	 * no correct value to return for them.
378 	 */
379 	WARN_ON_ONCE(pud_bad(*pud));
380 	if (pud_none(*pud) || pud_bad(*pud))
381 		return NULL;
382 	pmd = pmd_offset(pud, addr);
383 	WARN_ON_ONCE(pmd_bad(*pmd));
384 	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 		return NULL;
386 
387 	ptep = pte_offset_map(pmd, addr);
388 	pte = *ptep;
389 	if (pte_present(pte))
390 		page = pte_page(pte);
391 	pte_unmap(ptep);
392 	return page;
393 }
394 EXPORT_SYMBOL(vmalloc_to_page);
395 
396 /*
397  * Map a vmalloc()-space virtual address to the physical page frame number.
398  */
399 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400 {
401 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402 }
403 EXPORT_SYMBOL(vmalloc_to_pfn);
404 
405 
406 /*** Global kva allocator ***/
407 
408 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410 
411 
412 static DEFINE_SPINLOCK(vmap_area_lock);
413 static DEFINE_SPINLOCK(free_vmap_area_lock);
414 /* Export for kexec only */
415 LIST_HEAD(vmap_area_list);
416 static LLIST_HEAD(vmap_purge_list);
417 static struct rb_root vmap_area_root = RB_ROOT;
418 static bool vmap_initialized __read_mostly;
419 
420 /*
421  * This kmem_cache is used for vmap_area objects. Instead of
422  * allocating from slab we reuse an object from this cache to
423  * make things faster. Especially in "no edge" splitting of
424  * free block.
425  */
426 static struct kmem_cache *vmap_area_cachep;
427 
428 /*
429  * This linked list is used in pair with free_vmap_area_root.
430  * It gives O(1) access to prev/next to perform fast coalescing.
431  */
432 static LIST_HEAD(free_vmap_area_list);
433 
434 /*
435  * This augment red-black tree represents the free vmap space.
436  * All vmap_area objects in this tree are sorted by va->va_start
437  * address. It is used for allocation and merging when a vmap
438  * object is released.
439  *
440  * Each vmap_area node contains a maximum available free block
441  * of its sub-tree, right or left. Therefore it is possible to
442  * find a lowest match of free area.
443  */
444 static struct rb_root free_vmap_area_root = RB_ROOT;
445 
446 /*
447  * Preload a CPU with one object for "no edge" split case. The
448  * aim is to get rid of allocations from the atomic context, thus
449  * to use more permissive allocation masks.
450  */
451 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
452 
453 static __always_inline unsigned long
454 va_size(struct vmap_area *va)
455 {
456 	return (va->va_end - va->va_start);
457 }
458 
459 static __always_inline unsigned long
460 get_subtree_max_size(struct rb_node *node)
461 {
462 	struct vmap_area *va;
463 
464 	va = rb_entry_safe(node, struct vmap_area, rb_node);
465 	return va ? va->subtree_max_size : 0;
466 }
467 
468 /*
469  * Gets called when remove the node and rotate.
470  */
471 static __always_inline unsigned long
472 compute_subtree_max_size(struct vmap_area *va)
473 {
474 	return max3(va_size(va),
475 		get_subtree_max_size(va->rb_node.rb_left),
476 		get_subtree_max_size(va->rb_node.rb_right));
477 }
478 
479 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
480 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
481 
482 static void purge_vmap_area_lazy(void);
483 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
484 static unsigned long lazy_max_pages(void);
485 
486 static atomic_long_t nr_vmalloc_pages;
487 
488 unsigned long vmalloc_nr_pages(void)
489 {
490 	return atomic_long_read(&nr_vmalloc_pages);
491 }
492 
493 static struct vmap_area *__find_vmap_area(unsigned long addr)
494 {
495 	struct rb_node *n = vmap_area_root.rb_node;
496 
497 	while (n) {
498 		struct vmap_area *va;
499 
500 		va = rb_entry(n, struct vmap_area, rb_node);
501 		if (addr < va->va_start)
502 			n = n->rb_left;
503 		else if (addr >= va->va_end)
504 			n = n->rb_right;
505 		else
506 			return va;
507 	}
508 
509 	return NULL;
510 }
511 
512 /*
513  * This function returns back addresses of parent node
514  * and its left or right link for further processing.
515  *
516  * Otherwise NULL is returned. In that case all further
517  * steps regarding inserting of conflicting overlap range
518  * have to be declined and actually considered as a bug.
519  */
520 static __always_inline struct rb_node **
521 find_va_links(struct vmap_area *va,
522 	struct rb_root *root, struct rb_node *from,
523 	struct rb_node **parent)
524 {
525 	struct vmap_area *tmp_va;
526 	struct rb_node **link;
527 
528 	if (root) {
529 		link = &root->rb_node;
530 		if (unlikely(!*link)) {
531 			*parent = NULL;
532 			return link;
533 		}
534 	} else {
535 		link = &from;
536 	}
537 
538 	/*
539 	 * Go to the bottom of the tree. When we hit the last point
540 	 * we end up with parent rb_node and correct direction, i name
541 	 * it link, where the new va->rb_node will be attached to.
542 	 */
543 	do {
544 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
545 
546 		/*
547 		 * During the traversal we also do some sanity check.
548 		 * Trigger the BUG() if there are sides(left/right)
549 		 * or full overlaps.
550 		 */
551 		if (va->va_start < tmp_va->va_end &&
552 				va->va_end <= tmp_va->va_start)
553 			link = &(*link)->rb_left;
554 		else if (va->va_end > tmp_va->va_start &&
555 				va->va_start >= tmp_va->va_end)
556 			link = &(*link)->rb_right;
557 		else {
558 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
559 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
560 
561 			return NULL;
562 		}
563 	} while (*link);
564 
565 	*parent = &tmp_va->rb_node;
566 	return link;
567 }
568 
569 static __always_inline struct list_head *
570 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
571 {
572 	struct list_head *list;
573 
574 	if (unlikely(!parent))
575 		/*
576 		 * The red-black tree where we try to find VA neighbors
577 		 * before merging or inserting is empty, i.e. it means
578 		 * there is no free vmap space. Normally it does not
579 		 * happen but we handle this case anyway.
580 		 */
581 		return NULL;
582 
583 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
584 	return (&parent->rb_right == link ? list->next : list);
585 }
586 
587 static __always_inline void
588 link_va(struct vmap_area *va, struct rb_root *root,
589 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
590 {
591 	/*
592 	 * VA is still not in the list, but we can
593 	 * identify its future previous list_head node.
594 	 */
595 	if (likely(parent)) {
596 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
597 		if (&parent->rb_right != link)
598 			head = head->prev;
599 	}
600 
601 	/* Insert to the rb-tree */
602 	rb_link_node(&va->rb_node, parent, link);
603 	if (root == &free_vmap_area_root) {
604 		/*
605 		 * Some explanation here. Just perform simple insertion
606 		 * to the tree. We do not set va->subtree_max_size to
607 		 * its current size before calling rb_insert_augmented().
608 		 * It is because of we populate the tree from the bottom
609 		 * to parent levels when the node _is_ in the tree.
610 		 *
611 		 * Therefore we set subtree_max_size to zero after insertion,
612 		 * to let __augment_tree_propagate_from() puts everything to
613 		 * the correct order later on.
614 		 */
615 		rb_insert_augmented(&va->rb_node,
616 			root, &free_vmap_area_rb_augment_cb);
617 		va->subtree_max_size = 0;
618 	} else {
619 		rb_insert_color(&va->rb_node, root);
620 	}
621 
622 	/* Address-sort this list */
623 	list_add(&va->list, head);
624 }
625 
626 static __always_inline void
627 unlink_va(struct vmap_area *va, struct rb_root *root)
628 {
629 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
630 		return;
631 
632 	if (root == &free_vmap_area_root)
633 		rb_erase_augmented(&va->rb_node,
634 			root, &free_vmap_area_rb_augment_cb);
635 	else
636 		rb_erase(&va->rb_node, root);
637 
638 	list_del(&va->list);
639 	RB_CLEAR_NODE(&va->rb_node);
640 }
641 
642 #if DEBUG_AUGMENT_PROPAGATE_CHECK
643 static void
644 augment_tree_propagate_check(void)
645 {
646 	struct vmap_area *va;
647 	unsigned long computed_size;
648 
649 	list_for_each_entry(va, &free_vmap_area_list, list) {
650 		computed_size = compute_subtree_max_size(va);
651 		if (computed_size != va->subtree_max_size)
652 			pr_emerg("tree is corrupted: %lu, %lu\n",
653 				va_size(va), va->subtree_max_size);
654 	}
655 }
656 #endif
657 
658 /*
659  * This function populates subtree_max_size from bottom to upper
660  * levels starting from VA point. The propagation must be done
661  * when VA size is modified by changing its va_start/va_end. Or
662  * in case of newly inserting of VA to the tree.
663  *
664  * It means that __augment_tree_propagate_from() must be called:
665  * - After VA has been inserted to the tree(free path);
666  * - After VA has been shrunk(allocation path);
667  * - After VA has been increased(merging path).
668  *
669  * Please note that, it does not mean that upper parent nodes
670  * and their subtree_max_size are recalculated all the time up
671  * to the root node.
672  *
673  *       4--8
674  *        /\
675  *       /  \
676  *      /    \
677  *    2--2  8--8
678  *
679  * For example if we modify the node 4, shrinking it to 2, then
680  * no any modification is required. If we shrink the node 2 to 1
681  * its subtree_max_size is updated only, and set to 1. If we shrink
682  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
683  * node becomes 4--6.
684  */
685 static __always_inline void
686 augment_tree_propagate_from(struct vmap_area *va)
687 {
688 	/*
689 	 * Populate the tree from bottom towards the root until
690 	 * the calculated maximum available size of checked node
691 	 * is equal to its current one.
692 	 */
693 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
694 
695 #if DEBUG_AUGMENT_PROPAGATE_CHECK
696 	augment_tree_propagate_check();
697 #endif
698 }
699 
700 static void
701 insert_vmap_area(struct vmap_area *va,
702 	struct rb_root *root, struct list_head *head)
703 {
704 	struct rb_node **link;
705 	struct rb_node *parent;
706 
707 	link = find_va_links(va, root, NULL, &parent);
708 	if (link)
709 		link_va(va, root, parent, link, head);
710 }
711 
712 static void
713 insert_vmap_area_augment(struct vmap_area *va,
714 	struct rb_node *from, struct rb_root *root,
715 	struct list_head *head)
716 {
717 	struct rb_node **link;
718 	struct rb_node *parent;
719 
720 	if (from)
721 		link = find_va_links(va, NULL, from, &parent);
722 	else
723 		link = find_va_links(va, root, NULL, &parent);
724 
725 	if (link) {
726 		link_va(va, root, parent, link, head);
727 		augment_tree_propagate_from(va);
728 	}
729 }
730 
731 /*
732  * Merge de-allocated chunk of VA memory with previous
733  * and next free blocks. If coalesce is not done a new
734  * free area is inserted. If VA has been merged, it is
735  * freed.
736  *
737  * Please note, it can return NULL in case of overlap
738  * ranges, followed by WARN() report. Despite it is a
739  * buggy behaviour, a system can be alive and keep
740  * ongoing.
741  */
742 static __always_inline struct vmap_area *
743 merge_or_add_vmap_area(struct vmap_area *va,
744 	struct rb_root *root, struct list_head *head)
745 {
746 	struct vmap_area *sibling;
747 	struct list_head *next;
748 	struct rb_node **link;
749 	struct rb_node *parent;
750 	bool merged = false;
751 
752 	/*
753 	 * Find a place in the tree where VA potentially will be
754 	 * inserted, unless it is merged with its sibling/siblings.
755 	 */
756 	link = find_va_links(va, root, NULL, &parent);
757 	if (!link)
758 		return NULL;
759 
760 	/*
761 	 * Get next node of VA to check if merging can be done.
762 	 */
763 	next = get_va_next_sibling(parent, link);
764 	if (unlikely(next == NULL))
765 		goto insert;
766 
767 	/*
768 	 * start            end
769 	 * |                |
770 	 * |<------VA------>|<-----Next----->|
771 	 *                  |                |
772 	 *                  start            end
773 	 */
774 	if (next != head) {
775 		sibling = list_entry(next, struct vmap_area, list);
776 		if (sibling->va_start == va->va_end) {
777 			sibling->va_start = va->va_start;
778 
779 			/* Free vmap_area object. */
780 			kmem_cache_free(vmap_area_cachep, va);
781 
782 			/* Point to the new merged area. */
783 			va = sibling;
784 			merged = true;
785 		}
786 	}
787 
788 	/*
789 	 * start            end
790 	 * |                |
791 	 * |<-----Prev----->|<------VA------>|
792 	 *                  |                |
793 	 *                  start            end
794 	 */
795 	if (next->prev != head) {
796 		sibling = list_entry(next->prev, struct vmap_area, list);
797 		if (sibling->va_end == va->va_start) {
798 			/*
799 			 * If both neighbors are coalesced, it is important
800 			 * to unlink the "next" node first, followed by merging
801 			 * with "previous" one. Otherwise the tree might not be
802 			 * fully populated if a sibling's augmented value is
803 			 * "normalized" because of rotation operations.
804 			 */
805 			if (merged)
806 				unlink_va(va, root);
807 
808 			sibling->va_end = va->va_end;
809 
810 			/* Free vmap_area object. */
811 			kmem_cache_free(vmap_area_cachep, va);
812 
813 			/* Point to the new merged area. */
814 			va = sibling;
815 			merged = true;
816 		}
817 	}
818 
819 insert:
820 	if (!merged)
821 		link_va(va, root, parent, link, head);
822 
823 	/*
824 	 * Last step is to check and update the tree.
825 	 */
826 	augment_tree_propagate_from(va);
827 	return va;
828 }
829 
830 static __always_inline bool
831 is_within_this_va(struct vmap_area *va, unsigned long size,
832 	unsigned long align, unsigned long vstart)
833 {
834 	unsigned long nva_start_addr;
835 
836 	if (va->va_start > vstart)
837 		nva_start_addr = ALIGN(va->va_start, align);
838 	else
839 		nva_start_addr = ALIGN(vstart, align);
840 
841 	/* Can be overflowed due to big size or alignment. */
842 	if (nva_start_addr + size < nva_start_addr ||
843 			nva_start_addr < vstart)
844 		return false;
845 
846 	return (nva_start_addr + size <= va->va_end);
847 }
848 
849 /*
850  * Find the first free block(lowest start address) in the tree,
851  * that will accomplish the request corresponding to passing
852  * parameters.
853  */
854 static __always_inline struct vmap_area *
855 find_vmap_lowest_match(unsigned long size,
856 	unsigned long align, unsigned long vstart)
857 {
858 	struct vmap_area *va;
859 	struct rb_node *node;
860 	unsigned long length;
861 
862 	/* Start from the root. */
863 	node = free_vmap_area_root.rb_node;
864 
865 	/* Adjust the search size for alignment overhead. */
866 	length = size + align - 1;
867 
868 	while (node) {
869 		va = rb_entry(node, struct vmap_area, rb_node);
870 
871 		if (get_subtree_max_size(node->rb_left) >= length &&
872 				vstart < va->va_start) {
873 			node = node->rb_left;
874 		} else {
875 			if (is_within_this_va(va, size, align, vstart))
876 				return va;
877 
878 			/*
879 			 * Does not make sense to go deeper towards the right
880 			 * sub-tree if it does not have a free block that is
881 			 * equal or bigger to the requested search length.
882 			 */
883 			if (get_subtree_max_size(node->rb_right) >= length) {
884 				node = node->rb_right;
885 				continue;
886 			}
887 
888 			/*
889 			 * OK. We roll back and find the first right sub-tree,
890 			 * that will satisfy the search criteria. It can happen
891 			 * only once due to "vstart" restriction.
892 			 */
893 			while ((node = rb_parent(node))) {
894 				va = rb_entry(node, struct vmap_area, rb_node);
895 				if (is_within_this_va(va, size, align, vstart))
896 					return va;
897 
898 				if (get_subtree_max_size(node->rb_right) >= length &&
899 						vstart <= va->va_start) {
900 					node = node->rb_right;
901 					break;
902 				}
903 			}
904 		}
905 	}
906 
907 	return NULL;
908 }
909 
910 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
911 #include <linux/random.h>
912 
913 static struct vmap_area *
914 find_vmap_lowest_linear_match(unsigned long size,
915 	unsigned long align, unsigned long vstart)
916 {
917 	struct vmap_area *va;
918 
919 	list_for_each_entry(va, &free_vmap_area_list, list) {
920 		if (!is_within_this_va(va, size, align, vstart))
921 			continue;
922 
923 		return va;
924 	}
925 
926 	return NULL;
927 }
928 
929 static void
930 find_vmap_lowest_match_check(unsigned long size)
931 {
932 	struct vmap_area *va_1, *va_2;
933 	unsigned long vstart;
934 	unsigned int rnd;
935 
936 	get_random_bytes(&rnd, sizeof(rnd));
937 	vstart = VMALLOC_START + rnd;
938 
939 	va_1 = find_vmap_lowest_match(size, 1, vstart);
940 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
941 
942 	if (va_1 != va_2)
943 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
944 			va_1, va_2, vstart);
945 }
946 #endif
947 
948 enum fit_type {
949 	NOTHING_FIT = 0,
950 	FL_FIT_TYPE = 1,	/* full fit */
951 	LE_FIT_TYPE = 2,	/* left edge fit */
952 	RE_FIT_TYPE = 3,	/* right edge fit */
953 	NE_FIT_TYPE = 4		/* no edge fit */
954 };
955 
956 static __always_inline enum fit_type
957 classify_va_fit_type(struct vmap_area *va,
958 	unsigned long nva_start_addr, unsigned long size)
959 {
960 	enum fit_type type;
961 
962 	/* Check if it is within VA. */
963 	if (nva_start_addr < va->va_start ||
964 			nva_start_addr + size > va->va_end)
965 		return NOTHING_FIT;
966 
967 	/* Now classify. */
968 	if (va->va_start == nva_start_addr) {
969 		if (va->va_end == nva_start_addr + size)
970 			type = FL_FIT_TYPE;
971 		else
972 			type = LE_FIT_TYPE;
973 	} else if (va->va_end == nva_start_addr + size) {
974 		type = RE_FIT_TYPE;
975 	} else {
976 		type = NE_FIT_TYPE;
977 	}
978 
979 	return type;
980 }
981 
982 static __always_inline int
983 adjust_va_to_fit_type(struct vmap_area *va,
984 	unsigned long nva_start_addr, unsigned long size,
985 	enum fit_type type)
986 {
987 	struct vmap_area *lva = NULL;
988 
989 	if (type == FL_FIT_TYPE) {
990 		/*
991 		 * No need to split VA, it fully fits.
992 		 *
993 		 * |               |
994 		 * V      NVA      V
995 		 * |---------------|
996 		 */
997 		unlink_va(va, &free_vmap_area_root);
998 		kmem_cache_free(vmap_area_cachep, va);
999 	} else if (type == LE_FIT_TYPE) {
1000 		/*
1001 		 * Split left edge of fit VA.
1002 		 *
1003 		 * |       |
1004 		 * V  NVA  V   R
1005 		 * |-------|-------|
1006 		 */
1007 		va->va_start += size;
1008 	} else if (type == RE_FIT_TYPE) {
1009 		/*
1010 		 * Split right edge of fit VA.
1011 		 *
1012 		 *         |       |
1013 		 *     L   V  NVA  V
1014 		 * |-------|-------|
1015 		 */
1016 		va->va_end = nva_start_addr;
1017 	} else if (type == NE_FIT_TYPE) {
1018 		/*
1019 		 * Split no edge of fit VA.
1020 		 *
1021 		 *     |       |
1022 		 *   L V  NVA  V R
1023 		 * |---|-------|---|
1024 		 */
1025 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1026 		if (unlikely(!lva)) {
1027 			/*
1028 			 * For percpu allocator we do not do any pre-allocation
1029 			 * and leave it as it is. The reason is it most likely
1030 			 * never ends up with NE_FIT_TYPE splitting. In case of
1031 			 * percpu allocations offsets and sizes are aligned to
1032 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1033 			 * are its main fitting cases.
1034 			 *
1035 			 * There are a few exceptions though, as an example it is
1036 			 * a first allocation (early boot up) when we have "one"
1037 			 * big free space that has to be split.
1038 			 *
1039 			 * Also we can hit this path in case of regular "vmap"
1040 			 * allocations, if "this" current CPU was not preloaded.
1041 			 * See the comment in alloc_vmap_area() why. If so, then
1042 			 * GFP_NOWAIT is used instead to get an extra object for
1043 			 * split purpose. That is rare and most time does not
1044 			 * occur.
1045 			 *
1046 			 * What happens if an allocation gets failed. Basically,
1047 			 * an "overflow" path is triggered to purge lazily freed
1048 			 * areas to free some memory, then, the "retry" path is
1049 			 * triggered to repeat one more time. See more details
1050 			 * in alloc_vmap_area() function.
1051 			 */
1052 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1053 			if (!lva)
1054 				return -1;
1055 		}
1056 
1057 		/*
1058 		 * Build the remainder.
1059 		 */
1060 		lva->va_start = va->va_start;
1061 		lva->va_end = nva_start_addr;
1062 
1063 		/*
1064 		 * Shrink this VA to remaining size.
1065 		 */
1066 		va->va_start = nva_start_addr + size;
1067 	} else {
1068 		return -1;
1069 	}
1070 
1071 	if (type != FL_FIT_TYPE) {
1072 		augment_tree_propagate_from(va);
1073 
1074 		if (lva)	/* type == NE_FIT_TYPE */
1075 			insert_vmap_area_augment(lva, &va->rb_node,
1076 				&free_vmap_area_root, &free_vmap_area_list);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /*
1083  * Returns a start address of the newly allocated area, if success.
1084  * Otherwise a vend is returned that indicates failure.
1085  */
1086 static __always_inline unsigned long
1087 __alloc_vmap_area(unsigned long size, unsigned long align,
1088 	unsigned long vstart, unsigned long vend)
1089 {
1090 	unsigned long nva_start_addr;
1091 	struct vmap_area *va;
1092 	enum fit_type type;
1093 	int ret;
1094 
1095 	va = find_vmap_lowest_match(size, align, vstart);
1096 	if (unlikely(!va))
1097 		return vend;
1098 
1099 	if (va->va_start > vstart)
1100 		nva_start_addr = ALIGN(va->va_start, align);
1101 	else
1102 		nva_start_addr = ALIGN(vstart, align);
1103 
1104 	/* Check the "vend" restriction. */
1105 	if (nva_start_addr + size > vend)
1106 		return vend;
1107 
1108 	/* Classify what we have found. */
1109 	type = classify_va_fit_type(va, nva_start_addr, size);
1110 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1111 		return vend;
1112 
1113 	/* Update the free vmap_area. */
1114 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1115 	if (ret)
1116 		return vend;
1117 
1118 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1119 	find_vmap_lowest_match_check(size);
1120 #endif
1121 
1122 	return nva_start_addr;
1123 }
1124 
1125 /*
1126  * Free a region of KVA allocated by alloc_vmap_area
1127  */
1128 static void free_vmap_area(struct vmap_area *va)
1129 {
1130 	/*
1131 	 * Remove from the busy tree/list.
1132 	 */
1133 	spin_lock(&vmap_area_lock);
1134 	unlink_va(va, &vmap_area_root);
1135 	spin_unlock(&vmap_area_lock);
1136 
1137 	/*
1138 	 * Insert/Merge it back to the free tree/list.
1139 	 */
1140 	spin_lock(&free_vmap_area_lock);
1141 	merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1142 	spin_unlock(&free_vmap_area_lock);
1143 }
1144 
1145 /*
1146  * Allocate a region of KVA of the specified size and alignment, within the
1147  * vstart and vend.
1148  */
1149 static struct vmap_area *alloc_vmap_area(unsigned long size,
1150 				unsigned long align,
1151 				unsigned long vstart, unsigned long vend,
1152 				int node, gfp_t gfp_mask)
1153 {
1154 	struct vmap_area *va, *pva;
1155 	unsigned long addr;
1156 	int purged = 0;
1157 	int ret;
1158 
1159 	BUG_ON(!size);
1160 	BUG_ON(offset_in_page(size));
1161 	BUG_ON(!is_power_of_2(align));
1162 
1163 	if (unlikely(!vmap_initialized))
1164 		return ERR_PTR(-EBUSY);
1165 
1166 	might_sleep();
1167 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1168 
1169 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1170 	if (unlikely(!va))
1171 		return ERR_PTR(-ENOMEM);
1172 
1173 	/*
1174 	 * Only scan the relevant parts containing pointers to other objects
1175 	 * to avoid false negatives.
1176 	 */
1177 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1178 
1179 retry:
1180 	/*
1181 	 * Preload this CPU with one extra vmap_area object. It is used
1182 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1183 	 * does not guarantee that an allocation occurs on a CPU that
1184 	 * is preloaded, instead we minimize the case when it is not.
1185 	 * It can happen because of cpu migration, because there is a
1186 	 * race until the below spinlock is taken.
1187 	 *
1188 	 * The preload is done in non-atomic context, thus it allows us
1189 	 * to use more permissive allocation masks to be more stable under
1190 	 * low memory condition and high memory pressure. In rare case,
1191 	 * if not preloaded, GFP_NOWAIT is used.
1192 	 *
1193 	 * Set "pva" to NULL here, because of "retry" path.
1194 	 */
1195 	pva = NULL;
1196 
1197 	if (!this_cpu_read(ne_fit_preload_node))
1198 		/*
1199 		 * Even if it fails we do not really care about that.
1200 		 * Just proceed as it is. If needed "overflow" path
1201 		 * will refill the cache we allocate from.
1202 		 */
1203 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1204 
1205 	spin_lock(&free_vmap_area_lock);
1206 
1207 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1208 		kmem_cache_free(vmap_area_cachep, pva);
1209 
1210 	/*
1211 	 * If an allocation fails, the "vend" address is
1212 	 * returned. Therefore trigger the overflow path.
1213 	 */
1214 	addr = __alloc_vmap_area(size, align, vstart, vend);
1215 	spin_unlock(&free_vmap_area_lock);
1216 
1217 	if (unlikely(addr == vend))
1218 		goto overflow;
1219 
1220 	va->va_start = addr;
1221 	va->va_end = addr + size;
1222 	va->vm = NULL;
1223 
1224 
1225 	spin_lock(&vmap_area_lock);
1226 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1227 	spin_unlock(&vmap_area_lock);
1228 
1229 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1230 	BUG_ON(va->va_start < vstart);
1231 	BUG_ON(va->va_end > vend);
1232 
1233 	ret = kasan_populate_vmalloc(addr, size);
1234 	if (ret) {
1235 		free_vmap_area(va);
1236 		return ERR_PTR(ret);
1237 	}
1238 
1239 	return va;
1240 
1241 overflow:
1242 	if (!purged) {
1243 		purge_vmap_area_lazy();
1244 		purged = 1;
1245 		goto retry;
1246 	}
1247 
1248 	if (gfpflags_allow_blocking(gfp_mask)) {
1249 		unsigned long freed = 0;
1250 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1251 		if (freed > 0) {
1252 			purged = 0;
1253 			goto retry;
1254 		}
1255 	}
1256 
1257 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1258 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1259 			size);
1260 
1261 	kmem_cache_free(vmap_area_cachep, va);
1262 	return ERR_PTR(-EBUSY);
1263 }
1264 
1265 int register_vmap_purge_notifier(struct notifier_block *nb)
1266 {
1267 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1268 }
1269 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1270 
1271 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1272 {
1273 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1274 }
1275 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1276 
1277 /*
1278  * lazy_max_pages is the maximum amount of virtual address space we gather up
1279  * before attempting to purge with a TLB flush.
1280  *
1281  * There is a tradeoff here: a larger number will cover more kernel page tables
1282  * and take slightly longer to purge, but it will linearly reduce the number of
1283  * global TLB flushes that must be performed. It would seem natural to scale
1284  * this number up linearly with the number of CPUs (because vmapping activity
1285  * could also scale linearly with the number of CPUs), however it is likely
1286  * that in practice, workloads might be constrained in other ways that mean
1287  * vmap activity will not scale linearly with CPUs. Also, I want to be
1288  * conservative and not introduce a big latency on huge systems, so go with
1289  * a less aggressive log scale. It will still be an improvement over the old
1290  * code, and it will be simple to change the scale factor if we find that it
1291  * becomes a problem on bigger systems.
1292  */
1293 static unsigned long lazy_max_pages(void)
1294 {
1295 	unsigned int log;
1296 
1297 	log = fls(num_online_cpus());
1298 
1299 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1300 }
1301 
1302 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1303 
1304 /*
1305  * Serialize vmap purging.  There is no actual criticial section protected
1306  * by this look, but we want to avoid concurrent calls for performance
1307  * reasons and to make the pcpu_get_vm_areas more deterministic.
1308  */
1309 static DEFINE_MUTEX(vmap_purge_lock);
1310 
1311 /* for per-CPU blocks */
1312 static void purge_fragmented_blocks_allcpus(void);
1313 
1314 /*
1315  * called before a call to iounmap() if the caller wants vm_area_struct's
1316  * immediately freed.
1317  */
1318 void set_iounmap_nonlazy(void)
1319 {
1320 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1321 }
1322 
1323 /*
1324  * Purges all lazily-freed vmap areas.
1325  */
1326 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1327 {
1328 	unsigned long resched_threshold;
1329 	struct llist_node *valist;
1330 	struct vmap_area *va;
1331 	struct vmap_area *n_va;
1332 
1333 	lockdep_assert_held(&vmap_purge_lock);
1334 
1335 	valist = llist_del_all(&vmap_purge_list);
1336 	if (unlikely(valist == NULL))
1337 		return false;
1338 
1339 	/*
1340 	 * TODO: to calculate a flush range without looping.
1341 	 * The list can be up to lazy_max_pages() elements.
1342 	 */
1343 	llist_for_each_entry(va, valist, purge_list) {
1344 		if (va->va_start < start)
1345 			start = va->va_start;
1346 		if (va->va_end > end)
1347 			end = va->va_end;
1348 	}
1349 
1350 	flush_tlb_kernel_range(start, end);
1351 	resched_threshold = lazy_max_pages() << 1;
1352 
1353 	spin_lock(&free_vmap_area_lock);
1354 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1355 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1356 		unsigned long orig_start = va->va_start;
1357 		unsigned long orig_end = va->va_end;
1358 
1359 		/*
1360 		 * Finally insert or merge lazily-freed area. It is
1361 		 * detached and there is no need to "unlink" it from
1362 		 * anything.
1363 		 */
1364 		va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1365 					    &free_vmap_area_list);
1366 
1367 		if (!va)
1368 			continue;
1369 
1370 		if (is_vmalloc_or_module_addr((void *)orig_start))
1371 			kasan_release_vmalloc(orig_start, orig_end,
1372 					      va->va_start, va->va_end);
1373 
1374 		atomic_long_sub(nr, &vmap_lazy_nr);
1375 
1376 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1377 			cond_resched_lock(&free_vmap_area_lock);
1378 	}
1379 	spin_unlock(&free_vmap_area_lock);
1380 	return true;
1381 }
1382 
1383 /*
1384  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1385  * is already purging.
1386  */
1387 static void try_purge_vmap_area_lazy(void)
1388 {
1389 	if (mutex_trylock(&vmap_purge_lock)) {
1390 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1391 		mutex_unlock(&vmap_purge_lock);
1392 	}
1393 }
1394 
1395 /*
1396  * Kick off a purge of the outstanding lazy areas.
1397  */
1398 static void purge_vmap_area_lazy(void)
1399 {
1400 	mutex_lock(&vmap_purge_lock);
1401 	purge_fragmented_blocks_allcpus();
1402 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1403 	mutex_unlock(&vmap_purge_lock);
1404 }
1405 
1406 /*
1407  * Free a vmap area, caller ensuring that the area has been unmapped
1408  * and flush_cache_vunmap had been called for the correct range
1409  * previously.
1410  */
1411 static void free_vmap_area_noflush(struct vmap_area *va)
1412 {
1413 	unsigned long nr_lazy;
1414 
1415 	spin_lock(&vmap_area_lock);
1416 	unlink_va(va, &vmap_area_root);
1417 	spin_unlock(&vmap_area_lock);
1418 
1419 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1420 				PAGE_SHIFT, &vmap_lazy_nr);
1421 
1422 	/* After this point, we may free va at any time */
1423 	llist_add(&va->purge_list, &vmap_purge_list);
1424 
1425 	if (unlikely(nr_lazy > lazy_max_pages()))
1426 		try_purge_vmap_area_lazy();
1427 }
1428 
1429 /*
1430  * Free and unmap a vmap area
1431  */
1432 static void free_unmap_vmap_area(struct vmap_area *va)
1433 {
1434 	flush_cache_vunmap(va->va_start, va->va_end);
1435 	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1436 	if (debug_pagealloc_enabled_static())
1437 		flush_tlb_kernel_range(va->va_start, va->va_end);
1438 
1439 	free_vmap_area_noflush(va);
1440 }
1441 
1442 static struct vmap_area *find_vmap_area(unsigned long addr)
1443 {
1444 	struct vmap_area *va;
1445 
1446 	spin_lock(&vmap_area_lock);
1447 	va = __find_vmap_area(addr);
1448 	spin_unlock(&vmap_area_lock);
1449 
1450 	return va;
1451 }
1452 
1453 /*** Per cpu kva allocator ***/
1454 
1455 /*
1456  * vmap space is limited especially on 32 bit architectures. Ensure there is
1457  * room for at least 16 percpu vmap blocks per CPU.
1458  */
1459 /*
1460  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1461  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1462  * instead (we just need a rough idea)
1463  */
1464 #if BITS_PER_LONG == 32
1465 #define VMALLOC_SPACE		(128UL*1024*1024)
1466 #else
1467 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1468 #endif
1469 
1470 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1471 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1472 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1473 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1474 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1475 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1476 #define VMAP_BBMAP_BITS		\
1477 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1478 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1479 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1480 
1481 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1482 
1483 struct vmap_block_queue {
1484 	spinlock_t lock;
1485 	struct list_head free;
1486 };
1487 
1488 struct vmap_block {
1489 	spinlock_t lock;
1490 	struct vmap_area *va;
1491 	unsigned long free, dirty;
1492 	unsigned long dirty_min, dirty_max; /*< dirty range */
1493 	struct list_head free_list;
1494 	struct rcu_head rcu_head;
1495 	struct list_head purge;
1496 };
1497 
1498 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1499 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1500 
1501 /*
1502  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1503  * in the free path. Could get rid of this if we change the API to return a
1504  * "cookie" from alloc, to be passed to free. But no big deal yet.
1505  */
1506 static DEFINE_XARRAY(vmap_blocks);
1507 
1508 /*
1509  * We should probably have a fallback mechanism to allocate virtual memory
1510  * out of partially filled vmap blocks. However vmap block sizing should be
1511  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1512  * big problem.
1513  */
1514 
1515 static unsigned long addr_to_vb_idx(unsigned long addr)
1516 {
1517 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1518 	addr /= VMAP_BLOCK_SIZE;
1519 	return addr;
1520 }
1521 
1522 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1523 {
1524 	unsigned long addr;
1525 
1526 	addr = va_start + (pages_off << PAGE_SHIFT);
1527 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1528 	return (void *)addr;
1529 }
1530 
1531 /**
1532  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1533  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1534  * @order:    how many 2^order pages should be occupied in newly allocated block
1535  * @gfp_mask: flags for the page level allocator
1536  *
1537  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1538  */
1539 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1540 {
1541 	struct vmap_block_queue *vbq;
1542 	struct vmap_block *vb;
1543 	struct vmap_area *va;
1544 	unsigned long vb_idx;
1545 	int node, err;
1546 	void *vaddr;
1547 
1548 	node = numa_node_id();
1549 
1550 	vb = kmalloc_node(sizeof(struct vmap_block),
1551 			gfp_mask & GFP_RECLAIM_MASK, node);
1552 	if (unlikely(!vb))
1553 		return ERR_PTR(-ENOMEM);
1554 
1555 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1556 					VMALLOC_START, VMALLOC_END,
1557 					node, gfp_mask);
1558 	if (IS_ERR(va)) {
1559 		kfree(vb);
1560 		return ERR_CAST(va);
1561 	}
1562 
1563 	vaddr = vmap_block_vaddr(va->va_start, 0);
1564 	spin_lock_init(&vb->lock);
1565 	vb->va = va;
1566 	/* At least something should be left free */
1567 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1568 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1569 	vb->dirty = 0;
1570 	vb->dirty_min = VMAP_BBMAP_BITS;
1571 	vb->dirty_max = 0;
1572 	INIT_LIST_HEAD(&vb->free_list);
1573 
1574 	vb_idx = addr_to_vb_idx(va->va_start);
1575 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1576 	if (err) {
1577 		kfree(vb);
1578 		free_vmap_area(va);
1579 		return ERR_PTR(err);
1580 	}
1581 
1582 	vbq = &get_cpu_var(vmap_block_queue);
1583 	spin_lock(&vbq->lock);
1584 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1585 	spin_unlock(&vbq->lock);
1586 	put_cpu_var(vmap_block_queue);
1587 
1588 	return vaddr;
1589 }
1590 
1591 static void free_vmap_block(struct vmap_block *vb)
1592 {
1593 	struct vmap_block *tmp;
1594 
1595 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1596 	BUG_ON(tmp != vb);
1597 
1598 	free_vmap_area_noflush(vb->va);
1599 	kfree_rcu(vb, rcu_head);
1600 }
1601 
1602 static void purge_fragmented_blocks(int cpu)
1603 {
1604 	LIST_HEAD(purge);
1605 	struct vmap_block *vb;
1606 	struct vmap_block *n_vb;
1607 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1608 
1609 	rcu_read_lock();
1610 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1611 
1612 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1613 			continue;
1614 
1615 		spin_lock(&vb->lock);
1616 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1617 			vb->free = 0; /* prevent further allocs after releasing lock */
1618 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1619 			vb->dirty_min = 0;
1620 			vb->dirty_max = VMAP_BBMAP_BITS;
1621 			spin_lock(&vbq->lock);
1622 			list_del_rcu(&vb->free_list);
1623 			spin_unlock(&vbq->lock);
1624 			spin_unlock(&vb->lock);
1625 			list_add_tail(&vb->purge, &purge);
1626 		} else
1627 			spin_unlock(&vb->lock);
1628 	}
1629 	rcu_read_unlock();
1630 
1631 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1632 		list_del(&vb->purge);
1633 		free_vmap_block(vb);
1634 	}
1635 }
1636 
1637 static void purge_fragmented_blocks_allcpus(void)
1638 {
1639 	int cpu;
1640 
1641 	for_each_possible_cpu(cpu)
1642 		purge_fragmented_blocks(cpu);
1643 }
1644 
1645 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1646 {
1647 	struct vmap_block_queue *vbq;
1648 	struct vmap_block *vb;
1649 	void *vaddr = NULL;
1650 	unsigned int order;
1651 
1652 	BUG_ON(offset_in_page(size));
1653 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1654 	if (WARN_ON(size == 0)) {
1655 		/*
1656 		 * Allocating 0 bytes isn't what caller wants since
1657 		 * get_order(0) returns funny result. Just warn and terminate
1658 		 * early.
1659 		 */
1660 		return NULL;
1661 	}
1662 	order = get_order(size);
1663 
1664 	rcu_read_lock();
1665 	vbq = &get_cpu_var(vmap_block_queue);
1666 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1667 		unsigned long pages_off;
1668 
1669 		spin_lock(&vb->lock);
1670 		if (vb->free < (1UL << order)) {
1671 			spin_unlock(&vb->lock);
1672 			continue;
1673 		}
1674 
1675 		pages_off = VMAP_BBMAP_BITS - vb->free;
1676 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1677 		vb->free -= 1UL << order;
1678 		if (vb->free == 0) {
1679 			spin_lock(&vbq->lock);
1680 			list_del_rcu(&vb->free_list);
1681 			spin_unlock(&vbq->lock);
1682 		}
1683 
1684 		spin_unlock(&vb->lock);
1685 		break;
1686 	}
1687 
1688 	put_cpu_var(vmap_block_queue);
1689 	rcu_read_unlock();
1690 
1691 	/* Allocate new block if nothing was found */
1692 	if (!vaddr)
1693 		vaddr = new_vmap_block(order, gfp_mask);
1694 
1695 	return vaddr;
1696 }
1697 
1698 static void vb_free(unsigned long addr, unsigned long size)
1699 {
1700 	unsigned long offset;
1701 	unsigned int order;
1702 	struct vmap_block *vb;
1703 
1704 	BUG_ON(offset_in_page(size));
1705 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1706 
1707 	flush_cache_vunmap(addr, addr + size);
1708 
1709 	order = get_order(size);
1710 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1711 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1712 
1713 	unmap_kernel_range_noflush(addr, size);
1714 
1715 	if (debug_pagealloc_enabled_static())
1716 		flush_tlb_kernel_range(addr, addr + size);
1717 
1718 	spin_lock(&vb->lock);
1719 
1720 	/* Expand dirty range */
1721 	vb->dirty_min = min(vb->dirty_min, offset);
1722 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1723 
1724 	vb->dirty += 1UL << order;
1725 	if (vb->dirty == VMAP_BBMAP_BITS) {
1726 		BUG_ON(vb->free);
1727 		spin_unlock(&vb->lock);
1728 		free_vmap_block(vb);
1729 	} else
1730 		spin_unlock(&vb->lock);
1731 }
1732 
1733 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1734 {
1735 	int cpu;
1736 
1737 	if (unlikely(!vmap_initialized))
1738 		return;
1739 
1740 	might_sleep();
1741 
1742 	for_each_possible_cpu(cpu) {
1743 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1744 		struct vmap_block *vb;
1745 
1746 		rcu_read_lock();
1747 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1748 			spin_lock(&vb->lock);
1749 			if (vb->dirty) {
1750 				unsigned long va_start = vb->va->va_start;
1751 				unsigned long s, e;
1752 
1753 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1754 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1755 
1756 				start = min(s, start);
1757 				end   = max(e, end);
1758 
1759 				flush = 1;
1760 			}
1761 			spin_unlock(&vb->lock);
1762 		}
1763 		rcu_read_unlock();
1764 	}
1765 
1766 	mutex_lock(&vmap_purge_lock);
1767 	purge_fragmented_blocks_allcpus();
1768 	if (!__purge_vmap_area_lazy(start, end) && flush)
1769 		flush_tlb_kernel_range(start, end);
1770 	mutex_unlock(&vmap_purge_lock);
1771 }
1772 
1773 /**
1774  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1775  *
1776  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1777  * to amortize TLB flushing overheads. What this means is that any page you
1778  * have now, may, in a former life, have been mapped into kernel virtual
1779  * address by the vmap layer and so there might be some CPUs with TLB entries
1780  * still referencing that page (additional to the regular 1:1 kernel mapping).
1781  *
1782  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1783  * be sure that none of the pages we have control over will have any aliases
1784  * from the vmap layer.
1785  */
1786 void vm_unmap_aliases(void)
1787 {
1788 	unsigned long start = ULONG_MAX, end = 0;
1789 	int flush = 0;
1790 
1791 	_vm_unmap_aliases(start, end, flush);
1792 }
1793 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1794 
1795 /**
1796  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1797  * @mem: the pointer returned by vm_map_ram
1798  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1799  */
1800 void vm_unmap_ram(const void *mem, unsigned int count)
1801 {
1802 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1803 	unsigned long addr = (unsigned long)mem;
1804 	struct vmap_area *va;
1805 
1806 	might_sleep();
1807 	BUG_ON(!addr);
1808 	BUG_ON(addr < VMALLOC_START);
1809 	BUG_ON(addr > VMALLOC_END);
1810 	BUG_ON(!PAGE_ALIGNED(addr));
1811 
1812 	kasan_poison_vmalloc(mem, size);
1813 
1814 	if (likely(count <= VMAP_MAX_ALLOC)) {
1815 		debug_check_no_locks_freed(mem, size);
1816 		vb_free(addr, size);
1817 		return;
1818 	}
1819 
1820 	va = find_vmap_area(addr);
1821 	BUG_ON(!va);
1822 	debug_check_no_locks_freed((void *)va->va_start,
1823 				    (va->va_end - va->va_start));
1824 	free_unmap_vmap_area(va);
1825 }
1826 EXPORT_SYMBOL(vm_unmap_ram);
1827 
1828 /**
1829  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1830  * @pages: an array of pointers to the pages to be mapped
1831  * @count: number of pages
1832  * @node: prefer to allocate data structures on this node
1833  *
1834  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1835  * faster than vmap so it's good.  But if you mix long-life and short-life
1836  * objects with vm_map_ram(), it could consume lots of address space through
1837  * fragmentation (especially on a 32bit machine).  You could see failures in
1838  * the end.  Please use this function for short-lived objects.
1839  *
1840  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1841  */
1842 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1843 {
1844 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1845 	unsigned long addr;
1846 	void *mem;
1847 
1848 	if (likely(count <= VMAP_MAX_ALLOC)) {
1849 		mem = vb_alloc(size, GFP_KERNEL);
1850 		if (IS_ERR(mem))
1851 			return NULL;
1852 		addr = (unsigned long)mem;
1853 	} else {
1854 		struct vmap_area *va;
1855 		va = alloc_vmap_area(size, PAGE_SIZE,
1856 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1857 		if (IS_ERR(va))
1858 			return NULL;
1859 
1860 		addr = va->va_start;
1861 		mem = (void *)addr;
1862 	}
1863 
1864 	kasan_unpoison_vmalloc(mem, size);
1865 
1866 	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1867 		vm_unmap_ram(mem, count);
1868 		return NULL;
1869 	}
1870 	return mem;
1871 }
1872 EXPORT_SYMBOL(vm_map_ram);
1873 
1874 static struct vm_struct *vmlist __initdata;
1875 
1876 /**
1877  * vm_area_add_early - add vmap area early during boot
1878  * @vm: vm_struct to add
1879  *
1880  * This function is used to add fixed kernel vm area to vmlist before
1881  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1882  * should contain proper values and the other fields should be zero.
1883  *
1884  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1885  */
1886 void __init vm_area_add_early(struct vm_struct *vm)
1887 {
1888 	struct vm_struct *tmp, **p;
1889 
1890 	BUG_ON(vmap_initialized);
1891 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1892 		if (tmp->addr >= vm->addr) {
1893 			BUG_ON(tmp->addr < vm->addr + vm->size);
1894 			break;
1895 		} else
1896 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1897 	}
1898 	vm->next = *p;
1899 	*p = vm;
1900 }
1901 
1902 /**
1903  * vm_area_register_early - register vmap area early during boot
1904  * @vm: vm_struct to register
1905  * @align: requested alignment
1906  *
1907  * This function is used to register kernel vm area before
1908  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1909  * proper values on entry and other fields should be zero.  On return,
1910  * vm->addr contains the allocated address.
1911  *
1912  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1913  */
1914 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1915 {
1916 	static size_t vm_init_off __initdata;
1917 	unsigned long addr;
1918 
1919 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1920 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1921 
1922 	vm->addr = (void *)addr;
1923 
1924 	vm_area_add_early(vm);
1925 }
1926 
1927 static void vmap_init_free_space(void)
1928 {
1929 	unsigned long vmap_start = 1;
1930 	const unsigned long vmap_end = ULONG_MAX;
1931 	struct vmap_area *busy, *free;
1932 
1933 	/*
1934 	 *     B     F     B     B     B     F
1935 	 * -|-----|.....|-----|-----|-----|.....|-
1936 	 *  |           The KVA space           |
1937 	 *  |<--------------------------------->|
1938 	 */
1939 	list_for_each_entry(busy, &vmap_area_list, list) {
1940 		if (busy->va_start - vmap_start > 0) {
1941 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1942 			if (!WARN_ON_ONCE(!free)) {
1943 				free->va_start = vmap_start;
1944 				free->va_end = busy->va_start;
1945 
1946 				insert_vmap_area_augment(free, NULL,
1947 					&free_vmap_area_root,
1948 						&free_vmap_area_list);
1949 			}
1950 		}
1951 
1952 		vmap_start = busy->va_end;
1953 	}
1954 
1955 	if (vmap_end - vmap_start > 0) {
1956 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1957 		if (!WARN_ON_ONCE(!free)) {
1958 			free->va_start = vmap_start;
1959 			free->va_end = vmap_end;
1960 
1961 			insert_vmap_area_augment(free, NULL,
1962 				&free_vmap_area_root,
1963 					&free_vmap_area_list);
1964 		}
1965 	}
1966 }
1967 
1968 void __init vmalloc_init(void)
1969 {
1970 	struct vmap_area *va;
1971 	struct vm_struct *tmp;
1972 	int i;
1973 
1974 	/*
1975 	 * Create the cache for vmap_area objects.
1976 	 */
1977 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1978 
1979 	for_each_possible_cpu(i) {
1980 		struct vmap_block_queue *vbq;
1981 		struct vfree_deferred *p;
1982 
1983 		vbq = &per_cpu(vmap_block_queue, i);
1984 		spin_lock_init(&vbq->lock);
1985 		INIT_LIST_HEAD(&vbq->free);
1986 		p = &per_cpu(vfree_deferred, i);
1987 		init_llist_head(&p->list);
1988 		INIT_WORK(&p->wq, free_work);
1989 	}
1990 
1991 	/* Import existing vmlist entries. */
1992 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1993 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1994 		if (WARN_ON_ONCE(!va))
1995 			continue;
1996 
1997 		va->va_start = (unsigned long)tmp->addr;
1998 		va->va_end = va->va_start + tmp->size;
1999 		va->vm = tmp;
2000 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2001 	}
2002 
2003 	/*
2004 	 * Now we can initialize a free vmap space.
2005 	 */
2006 	vmap_init_free_space();
2007 	vmap_initialized = true;
2008 }
2009 
2010 /**
2011  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2012  * @addr: start of the VM area to unmap
2013  * @size: size of the VM area to unmap
2014  *
2015  * Similar to unmap_kernel_range_noflush() but flushes vcache before
2016  * the unmapping and tlb after.
2017  */
2018 void unmap_kernel_range(unsigned long addr, unsigned long size)
2019 {
2020 	unsigned long end = addr + size;
2021 
2022 	flush_cache_vunmap(addr, end);
2023 	unmap_kernel_range_noflush(addr, size);
2024 	flush_tlb_kernel_range(addr, end);
2025 }
2026 
2027 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2028 	struct vmap_area *va, unsigned long flags, const void *caller)
2029 {
2030 	vm->flags = flags;
2031 	vm->addr = (void *)va->va_start;
2032 	vm->size = va->va_end - va->va_start;
2033 	vm->caller = caller;
2034 	va->vm = vm;
2035 }
2036 
2037 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2038 			      unsigned long flags, const void *caller)
2039 {
2040 	spin_lock(&vmap_area_lock);
2041 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2042 	spin_unlock(&vmap_area_lock);
2043 }
2044 
2045 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2046 {
2047 	/*
2048 	 * Before removing VM_UNINITIALIZED,
2049 	 * we should make sure that vm has proper values.
2050 	 * Pair with smp_rmb() in show_numa_info().
2051 	 */
2052 	smp_wmb();
2053 	vm->flags &= ~VM_UNINITIALIZED;
2054 }
2055 
2056 static struct vm_struct *__get_vm_area_node(unsigned long size,
2057 		unsigned long align, unsigned long flags, unsigned long start,
2058 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2059 {
2060 	struct vmap_area *va;
2061 	struct vm_struct *area;
2062 	unsigned long requested_size = size;
2063 
2064 	BUG_ON(in_interrupt());
2065 	size = PAGE_ALIGN(size);
2066 	if (unlikely(!size))
2067 		return NULL;
2068 
2069 	if (flags & VM_IOREMAP)
2070 		align = 1ul << clamp_t(int, get_count_order_long(size),
2071 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2072 
2073 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2074 	if (unlikely(!area))
2075 		return NULL;
2076 
2077 	if (!(flags & VM_NO_GUARD))
2078 		size += PAGE_SIZE;
2079 
2080 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2081 	if (IS_ERR(va)) {
2082 		kfree(area);
2083 		return NULL;
2084 	}
2085 
2086 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2087 
2088 	setup_vmalloc_vm(area, va, flags, caller);
2089 
2090 	return area;
2091 }
2092 
2093 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2094 				       unsigned long start, unsigned long end,
2095 				       const void *caller)
2096 {
2097 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2098 				  GFP_KERNEL, caller);
2099 }
2100 
2101 /**
2102  * get_vm_area - reserve a contiguous kernel virtual area
2103  * @size:	 size of the area
2104  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2105  *
2106  * Search an area of @size in the kernel virtual mapping area,
2107  * and reserved it for out purposes.  Returns the area descriptor
2108  * on success or %NULL on failure.
2109  *
2110  * Return: the area descriptor on success or %NULL on failure.
2111  */
2112 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2113 {
2114 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2115 				  NUMA_NO_NODE, GFP_KERNEL,
2116 				  __builtin_return_address(0));
2117 }
2118 
2119 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2120 				const void *caller)
2121 {
2122 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2123 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2124 }
2125 
2126 /**
2127  * find_vm_area - find a continuous kernel virtual area
2128  * @addr:	  base address
2129  *
2130  * Search for the kernel VM area starting at @addr, and return it.
2131  * It is up to the caller to do all required locking to keep the returned
2132  * pointer valid.
2133  *
2134  * Return: the area descriptor on success or %NULL on failure.
2135  */
2136 struct vm_struct *find_vm_area(const void *addr)
2137 {
2138 	struct vmap_area *va;
2139 
2140 	va = find_vmap_area((unsigned long)addr);
2141 	if (!va)
2142 		return NULL;
2143 
2144 	return va->vm;
2145 }
2146 
2147 /**
2148  * remove_vm_area - find and remove a continuous kernel virtual area
2149  * @addr:	    base address
2150  *
2151  * Search for the kernel VM area starting at @addr, and remove it.
2152  * This function returns the found VM area, but using it is NOT safe
2153  * on SMP machines, except for its size or flags.
2154  *
2155  * Return: the area descriptor on success or %NULL on failure.
2156  */
2157 struct vm_struct *remove_vm_area(const void *addr)
2158 {
2159 	struct vmap_area *va;
2160 
2161 	might_sleep();
2162 
2163 	spin_lock(&vmap_area_lock);
2164 	va = __find_vmap_area((unsigned long)addr);
2165 	if (va && va->vm) {
2166 		struct vm_struct *vm = va->vm;
2167 
2168 		va->vm = NULL;
2169 		spin_unlock(&vmap_area_lock);
2170 
2171 		kasan_free_shadow(vm);
2172 		free_unmap_vmap_area(va);
2173 
2174 		return vm;
2175 	}
2176 
2177 	spin_unlock(&vmap_area_lock);
2178 	return NULL;
2179 }
2180 
2181 static inline void set_area_direct_map(const struct vm_struct *area,
2182 				       int (*set_direct_map)(struct page *page))
2183 {
2184 	int i;
2185 
2186 	for (i = 0; i < area->nr_pages; i++)
2187 		if (page_address(area->pages[i]))
2188 			set_direct_map(area->pages[i]);
2189 }
2190 
2191 /* Handle removing and resetting vm mappings related to the vm_struct. */
2192 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2193 {
2194 	unsigned long start = ULONG_MAX, end = 0;
2195 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2196 	int flush_dmap = 0;
2197 	int i;
2198 
2199 	remove_vm_area(area->addr);
2200 
2201 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2202 	if (!flush_reset)
2203 		return;
2204 
2205 	/*
2206 	 * If not deallocating pages, just do the flush of the VM area and
2207 	 * return.
2208 	 */
2209 	if (!deallocate_pages) {
2210 		vm_unmap_aliases();
2211 		return;
2212 	}
2213 
2214 	/*
2215 	 * If execution gets here, flush the vm mapping and reset the direct
2216 	 * map. Find the start and end range of the direct mappings to make sure
2217 	 * the vm_unmap_aliases() flush includes the direct map.
2218 	 */
2219 	for (i = 0; i < area->nr_pages; i++) {
2220 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2221 		if (addr) {
2222 			start = min(addr, start);
2223 			end = max(addr + PAGE_SIZE, end);
2224 			flush_dmap = 1;
2225 		}
2226 	}
2227 
2228 	/*
2229 	 * Set direct map to something invalid so that it won't be cached if
2230 	 * there are any accesses after the TLB flush, then flush the TLB and
2231 	 * reset the direct map permissions to the default.
2232 	 */
2233 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2234 	_vm_unmap_aliases(start, end, flush_dmap);
2235 	set_area_direct_map(area, set_direct_map_default_noflush);
2236 }
2237 
2238 static void __vunmap(const void *addr, int deallocate_pages)
2239 {
2240 	struct vm_struct *area;
2241 
2242 	if (!addr)
2243 		return;
2244 
2245 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2246 			addr))
2247 		return;
2248 
2249 	area = find_vm_area(addr);
2250 	if (unlikely(!area)) {
2251 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2252 				addr);
2253 		return;
2254 	}
2255 
2256 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2257 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2258 
2259 	kasan_poison_vmalloc(area->addr, area->size);
2260 
2261 	vm_remove_mappings(area, deallocate_pages);
2262 
2263 	if (deallocate_pages) {
2264 		int i;
2265 
2266 		for (i = 0; i < area->nr_pages; i++) {
2267 			struct page *page = area->pages[i];
2268 
2269 			BUG_ON(!page);
2270 			__free_pages(page, 0);
2271 		}
2272 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2273 
2274 		kvfree(area->pages);
2275 	}
2276 
2277 	kfree(area);
2278 	return;
2279 }
2280 
2281 static inline void __vfree_deferred(const void *addr)
2282 {
2283 	/*
2284 	 * Use raw_cpu_ptr() because this can be called from preemptible
2285 	 * context. Preemption is absolutely fine here, because the llist_add()
2286 	 * implementation is lockless, so it works even if we are adding to
2287 	 * another cpu's list. schedule_work() should be fine with this too.
2288 	 */
2289 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2290 
2291 	if (llist_add((struct llist_node *)addr, &p->list))
2292 		schedule_work(&p->wq);
2293 }
2294 
2295 /**
2296  * vfree_atomic - release memory allocated by vmalloc()
2297  * @addr:	  memory base address
2298  *
2299  * This one is just like vfree() but can be called in any atomic context
2300  * except NMIs.
2301  */
2302 void vfree_atomic(const void *addr)
2303 {
2304 	BUG_ON(in_nmi());
2305 
2306 	kmemleak_free(addr);
2307 
2308 	if (!addr)
2309 		return;
2310 	__vfree_deferred(addr);
2311 }
2312 
2313 static void __vfree(const void *addr)
2314 {
2315 	if (unlikely(in_interrupt()))
2316 		__vfree_deferred(addr);
2317 	else
2318 		__vunmap(addr, 1);
2319 }
2320 
2321 /**
2322  * vfree - Release memory allocated by vmalloc()
2323  * @addr:  Memory base address
2324  *
2325  * Free the virtually continuous memory area starting at @addr, as obtained
2326  * from one of the vmalloc() family of APIs.  This will usually also free the
2327  * physical memory underlying the virtual allocation, but that memory is
2328  * reference counted, so it will not be freed until the last user goes away.
2329  *
2330  * If @addr is NULL, no operation is performed.
2331  *
2332  * Context:
2333  * May sleep if called *not* from interrupt context.
2334  * Must not be called in NMI context (strictly speaking, it could be
2335  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2336  * conventions for vfree() arch-depenedent would be a really bad idea).
2337  */
2338 void vfree(const void *addr)
2339 {
2340 	BUG_ON(in_nmi());
2341 
2342 	kmemleak_free(addr);
2343 
2344 	might_sleep_if(!in_interrupt());
2345 
2346 	if (!addr)
2347 		return;
2348 
2349 	__vfree(addr);
2350 }
2351 EXPORT_SYMBOL(vfree);
2352 
2353 /**
2354  * vunmap - release virtual mapping obtained by vmap()
2355  * @addr:   memory base address
2356  *
2357  * Free the virtually contiguous memory area starting at @addr,
2358  * which was created from the page array passed to vmap().
2359  *
2360  * Must not be called in interrupt context.
2361  */
2362 void vunmap(const void *addr)
2363 {
2364 	BUG_ON(in_interrupt());
2365 	might_sleep();
2366 	if (addr)
2367 		__vunmap(addr, 0);
2368 }
2369 EXPORT_SYMBOL(vunmap);
2370 
2371 /**
2372  * vmap - map an array of pages into virtually contiguous space
2373  * @pages: array of page pointers
2374  * @count: number of pages to map
2375  * @flags: vm_area->flags
2376  * @prot: page protection for the mapping
2377  *
2378  * Maps @count pages from @pages into contiguous kernel virtual space.
2379  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2380  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2381  * are transferred from the caller to vmap(), and will be freed / dropped when
2382  * vfree() is called on the return value.
2383  *
2384  * Return: the address of the area or %NULL on failure
2385  */
2386 void *vmap(struct page **pages, unsigned int count,
2387 	   unsigned long flags, pgprot_t prot)
2388 {
2389 	struct vm_struct *area;
2390 	unsigned long size;		/* In bytes */
2391 
2392 	might_sleep();
2393 
2394 	if (count > totalram_pages())
2395 		return NULL;
2396 
2397 	size = (unsigned long)count << PAGE_SHIFT;
2398 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2399 	if (!area)
2400 		return NULL;
2401 
2402 	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2403 			pages) < 0) {
2404 		vunmap(area->addr);
2405 		return NULL;
2406 	}
2407 
2408 	if (flags & VM_MAP_PUT_PAGES)
2409 		area->pages = pages;
2410 	return area->addr;
2411 }
2412 EXPORT_SYMBOL(vmap);
2413 
2414 #ifdef CONFIG_VMAP_PFN
2415 struct vmap_pfn_data {
2416 	unsigned long	*pfns;
2417 	pgprot_t	prot;
2418 	unsigned int	idx;
2419 };
2420 
2421 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2422 {
2423 	struct vmap_pfn_data *data = private;
2424 
2425 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2426 		return -EINVAL;
2427 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2428 	return 0;
2429 }
2430 
2431 /**
2432  * vmap_pfn - map an array of PFNs into virtually contiguous space
2433  * @pfns: array of PFNs
2434  * @count: number of pages to map
2435  * @prot: page protection for the mapping
2436  *
2437  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2438  * the start address of the mapping.
2439  */
2440 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2441 {
2442 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2443 	struct vm_struct *area;
2444 
2445 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2446 			__builtin_return_address(0));
2447 	if (!area)
2448 		return NULL;
2449 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2450 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2451 		free_vm_area(area);
2452 		return NULL;
2453 	}
2454 	return area->addr;
2455 }
2456 EXPORT_SYMBOL_GPL(vmap_pfn);
2457 #endif /* CONFIG_VMAP_PFN */
2458 
2459 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2460 				 pgprot_t prot, int node)
2461 {
2462 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2463 	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2464 	unsigned int array_size = nr_pages * sizeof(struct page *), i;
2465 	struct page **pages;
2466 
2467 	gfp_mask |= __GFP_NOWARN;
2468 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2469 		gfp_mask |= __GFP_HIGHMEM;
2470 
2471 	/* Please note that the recursion is strictly bounded. */
2472 	if (array_size > PAGE_SIZE) {
2473 		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2474 					area->caller);
2475 	} else {
2476 		pages = kmalloc_node(array_size, nested_gfp, node);
2477 	}
2478 
2479 	if (!pages) {
2480 		remove_vm_area(area->addr);
2481 		kfree(area);
2482 		return NULL;
2483 	}
2484 
2485 	area->pages = pages;
2486 	area->nr_pages = nr_pages;
2487 
2488 	for (i = 0; i < area->nr_pages; i++) {
2489 		struct page *page;
2490 
2491 		if (node == NUMA_NO_NODE)
2492 			page = alloc_page(gfp_mask);
2493 		else
2494 			page = alloc_pages_node(node, gfp_mask, 0);
2495 
2496 		if (unlikely(!page)) {
2497 			/* Successfully allocated i pages, free them in __vfree() */
2498 			area->nr_pages = i;
2499 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2500 			goto fail;
2501 		}
2502 		area->pages[i] = page;
2503 		if (gfpflags_allow_blocking(gfp_mask))
2504 			cond_resched();
2505 	}
2506 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2507 
2508 	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2509 			prot, pages) < 0)
2510 		goto fail;
2511 
2512 	return area->addr;
2513 
2514 fail:
2515 	warn_alloc(gfp_mask, NULL,
2516 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2517 			  (area->nr_pages*PAGE_SIZE), area->size);
2518 	__vfree(area->addr);
2519 	return NULL;
2520 }
2521 
2522 /**
2523  * __vmalloc_node_range - allocate virtually contiguous memory
2524  * @size:		  allocation size
2525  * @align:		  desired alignment
2526  * @start:		  vm area range start
2527  * @end:		  vm area range end
2528  * @gfp_mask:		  flags for the page level allocator
2529  * @prot:		  protection mask for the allocated pages
2530  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2531  * @node:		  node to use for allocation or NUMA_NO_NODE
2532  * @caller:		  caller's return address
2533  *
2534  * Allocate enough pages to cover @size from the page level
2535  * allocator with @gfp_mask flags.  Map them into contiguous
2536  * kernel virtual space, using a pagetable protection of @prot.
2537  *
2538  * Return: the address of the area or %NULL on failure
2539  */
2540 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2541 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2542 			pgprot_t prot, unsigned long vm_flags, int node,
2543 			const void *caller)
2544 {
2545 	struct vm_struct *area;
2546 	void *addr;
2547 	unsigned long real_size = size;
2548 
2549 	size = PAGE_ALIGN(size);
2550 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2551 		goto fail;
2552 
2553 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2554 				vm_flags, start, end, node, gfp_mask, caller);
2555 	if (!area)
2556 		goto fail;
2557 
2558 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2559 	if (!addr)
2560 		return NULL;
2561 
2562 	/*
2563 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2564 	 * flag. It means that vm_struct is not fully initialized.
2565 	 * Now, it is fully initialized, so remove this flag here.
2566 	 */
2567 	clear_vm_uninitialized_flag(area);
2568 
2569 	kmemleak_vmalloc(area, size, gfp_mask);
2570 
2571 	return addr;
2572 
2573 fail:
2574 	warn_alloc(gfp_mask, NULL,
2575 			  "vmalloc: allocation failure: %lu bytes", real_size);
2576 	return NULL;
2577 }
2578 
2579 /**
2580  * __vmalloc_node - allocate virtually contiguous memory
2581  * @size:	    allocation size
2582  * @align:	    desired alignment
2583  * @gfp_mask:	    flags for the page level allocator
2584  * @node:	    node to use for allocation or NUMA_NO_NODE
2585  * @caller:	    caller's return address
2586  *
2587  * Allocate enough pages to cover @size from the page level allocator with
2588  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2589  *
2590  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2591  * and __GFP_NOFAIL are not supported
2592  *
2593  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2594  * with mm people.
2595  *
2596  * Return: pointer to the allocated memory or %NULL on error
2597  */
2598 void *__vmalloc_node(unsigned long size, unsigned long align,
2599 			    gfp_t gfp_mask, int node, const void *caller)
2600 {
2601 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2602 				gfp_mask, PAGE_KERNEL, 0, node, caller);
2603 }
2604 /*
2605  * This is only for performance analysis of vmalloc and stress purpose.
2606  * It is required by vmalloc test module, therefore do not use it other
2607  * than that.
2608  */
2609 #ifdef CONFIG_TEST_VMALLOC_MODULE
2610 EXPORT_SYMBOL_GPL(__vmalloc_node);
2611 #endif
2612 
2613 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2614 {
2615 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2616 				__builtin_return_address(0));
2617 }
2618 EXPORT_SYMBOL(__vmalloc);
2619 
2620 /**
2621  * vmalloc - allocate virtually contiguous memory
2622  * @size:    allocation size
2623  *
2624  * Allocate enough pages to cover @size from the page level
2625  * allocator and map them into contiguous kernel virtual space.
2626  *
2627  * For tight control over page level allocator and protection flags
2628  * use __vmalloc() instead.
2629  *
2630  * Return: pointer to the allocated memory or %NULL on error
2631  */
2632 void *vmalloc(unsigned long size)
2633 {
2634 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2635 				__builtin_return_address(0));
2636 }
2637 EXPORT_SYMBOL(vmalloc);
2638 
2639 /**
2640  * vzalloc - allocate virtually contiguous memory with zero fill
2641  * @size:    allocation size
2642  *
2643  * Allocate enough pages to cover @size from the page level
2644  * allocator and map them into contiguous kernel virtual space.
2645  * The memory allocated is set to zero.
2646  *
2647  * For tight control over page level allocator and protection flags
2648  * use __vmalloc() instead.
2649  *
2650  * Return: pointer to the allocated memory or %NULL on error
2651  */
2652 void *vzalloc(unsigned long size)
2653 {
2654 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2655 				__builtin_return_address(0));
2656 }
2657 EXPORT_SYMBOL(vzalloc);
2658 
2659 /**
2660  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2661  * @size: allocation size
2662  *
2663  * The resulting memory area is zeroed so it can be mapped to userspace
2664  * without leaking data.
2665  *
2666  * Return: pointer to the allocated memory or %NULL on error
2667  */
2668 void *vmalloc_user(unsigned long size)
2669 {
2670 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2671 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2672 				    VM_USERMAP, NUMA_NO_NODE,
2673 				    __builtin_return_address(0));
2674 }
2675 EXPORT_SYMBOL(vmalloc_user);
2676 
2677 /**
2678  * vmalloc_node - allocate memory on a specific node
2679  * @size:	  allocation size
2680  * @node:	  numa node
2681  *
2682  * Allocate enough pages to cover @size from the page level
2683  * allocator and map them into contiguous kernel virtual space.
2684  *
2685  * For tight control over page level allocator and protection flags
2686  * use __vmalloc() instead.
2687  *
2688  * Return: pointer to the allocated memory or %NULL on error
2689  */
2690 void *vmalloc_node(unsigned long size, int node)
2691 {
2692 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2693 			__builtin_return_address(0));
2694 }
2695 EXPORT_SYMBOL(vmalloc_node);
2696 
2697 /**
2698  * vzalloc_node - allocate memory on a specific node with zero fill
2699  * @size:	allocation size
2700  * @node:	numa node
2701  *
2702  * Allocate enough pages to cover @size from the page level
2703  * allocator and map them into contiguous kernel virtual space.
2704  * The memory allocated is set to zero.
2705  *
2706  * Return: pointer to the allocated memory or %NULL on error
2707  */
2708 void *vzalloc_node(unsigned long size, int node)
2709 {
2710 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2711 				__builtin_return_address(0));
2712 }
2713 EXPORT_SYMBOL(vzalloc_node);
2714 
2715 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2716 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2717 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2718 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2719 #else
2720 /*
2721  * 64b systems should always have either DMA or DMA32 zones. For others
2722  * GFP_DMA32 should do the right thing and use the normal zone.
2723  */
2724 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2725 #endif
2726 
2727 /**
2728  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2729  * @size:	allocation size
2730  *
2731  * Allocate enough 32bit PA addressable pages to cover @size from the
2732  * page level allocator and map them into contiguous kernel virtual space.
2733  *
2734  * Return: pointer to the allocated memory or %NULL on error
2735  */
2736 void *vmalloc_32(unsigned long size)
2737 {
2738 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2739 			__builtin_return_address(0));
2740 }
2741 EXPORT_SYMBOL(vmalloc_32);
2742 
2743 /**
2744  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2745  * @size:	     allocation size
2746  *
2747  * The resulting memory area is 32bit addressable and zeroed so it can be
2748  * mapped to userspace without leaking data.
2749  *
2750  * Return: pointer to the allocated memory or %NULL on error
2751  */
2752 void *vmalloc_32_user(unsigned long size)
2753 {
2754 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2755 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2756 				    VM_USERMAP, NUMA_NO_NODE,
2757 				    __builtin_return_address(0));
2758 }
2759 EXPORT_SYMBOL(vmalloc_32_user);
2760 
2761 /*
2762  * small helper routine , copy contents to buf from addr.
2763  * If the page is not present, fill zero.
2764  */
2765 
2766 static int aligned_vread(char *buf, char *addr, unsigned long count)
2767 {
2768 	struct page *p;
2769 	int copied = 0;
2770 
2771 	while (count) {
2772 		unsigned long offset, length;
2773 
2774 		offset = offset_in_page(addr);
2775 		length = PAGE_SIZE - offset;
2776 		if (length > count)
2777 			length = count;
2778 		p = vmalloc_to_page(addr);
2779 		/*
2780 		 * To do safe access to this _mapped_ area, we need
2781 		 * lock. But adding lock here means that we need to add
2782 		 * overhead of vmalloc()/vfree() calles for this _debug_
2783 		 * interface, rarely used. Instead of that, we'll use
2784 		 * kmap() and get small overhead in this access function.
2785 		 */
2786 		if (p) {
2787 			/*
2788 			 * we can expect USER0 is not used (see vread/vwrite's
2789 			 * function description)
2790 			 */
2791 			void *map = kmap_atomic(p);
2792 			memcpy(buf, map + offset, length);
2793 			kunmap_atomic(map);
2794 		} else
2795 			memset(buf, 0, length);
2796 
2797 		addr += length;
2798 		buf += length;
2799 		copied += length;
2800 		count -= length;
2801 	}
2802 	return copied;
2803 }
2804 
2805 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2806 {
2807 	struct page *p;
2808 	int copied = 0;
2809 
2810 	while (count) {
2811 		unsigned long offset, length;
2812 
2813 		offset = offset_in_page(addr);
2814 		length = PAGE_SIZE - offset;
2815 		if (length > count)
2816 			length = count;
2817 		p = vmalloc_to_page(addr);
2818 		/*
2819 		 * To do safe access to this _mapped_ area, we need
2820 		 * lock. But adding lock here means that we need to add
2821 		 * overhead of vmalloc()/vfree() calles for this _debug_
2822 		 * interface, rarely used. Instead of that, we'll use
2823 		 * kmap() and get small overhead in this access function.
2824 		 */
2825 		if (p) {
2826 			/*
2827 			 * we can expect USER0 is not used (see vread/vwrite's
2828 			 * function description)
2829 			 */
2830 			void *map = kmap_atomic(p);
2831 			memcpy(map + offset, buf, length);
2832 			kunmap_atomic(map);
2833 		}
2834 		addr += length;
2835 		buf += length;
2836 		copied += length;
2837 		count -= length;
2838 	}
2839 	return copied;
2840 }
2841 
2842 /**
2843  * vread() - read vmalloc area in a safe way.
2844  * @buf:     buffer for reading data
2845  * @addr:    vm address.
2846  * @count:   number of bytes to be read.
2847  *
2848  * This function checks that addr is a valid vmalloc'ed area, and
2849  * copy data from that area to a given buffer. If the given memory range
2850  * of [addr...addr+count) includes some valid address, data is copied to
2851  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2852  * IOREMAP area is treated as memory hole and no copy is done.
2853  *
2854  * If [addr...addr+count) doesn't includes any intersects with alive
2855  * vm_struct area, returns 0. @buf should be kernel's buffer.
2856  *
2857  * Note: In usual ops, vread() is never necessary because the caller
2858  * should know vmalloc() area is valid and can use memcpy().
2859  * This is for routines which have to access vmalloc area without
2860  * any information, as /dev/kmem.
2861  *
2862  * Return: number of bytes for which addr and buf should be increased
2863  * (same number as @count) or %0 if [addr...addr+count) doesn't
2864  * include any intersection with valid vmalloc area
2865  */
2866 long vread(char *buf, char *addr, unsigned long count)
2867 {
2868 	struct vmap_area *va;
2869 	struct vm_struct *vm;
2870 	char *vaddr, *buf_start = buf;
2871 	unsigned long buflen = count;
2872 	unsigned long n;
2873 
2874 	/* Don't allow overflow */
2875 	if ((unsigned long) addr + count < count)
2876 		count = -(unsigned long) addr;
2877 
2878 	spin_lock(&vmap_area_lock);
2879 	list_for_each_entry(va, &vmap_area_list, list) {
2880 		if (!count)
2881 			break;
2882 
2883 		if (!va->vm)
2884 			continue;
2885 
2886 		vm = va->vm;
2887 		vaddr = (char *) vm->addr;
2888 		if (addr >= vaddr + get_vm_area_size(vm))
2889 			continue;
2890 		while (addr < vaddr) {
2891 			if (count == 0)
2892 				goto finished;
2893 			*buf = '\0';
2894 			buf++;
2895 			addr++;
2896 			count--;
2897 		}
2898 		n = vaddr + get_vm_area_size(vm) - addr;
2899 		if (n > count)
2900 			n = count;
2901 		if (!(vm->flags & VM_IOREMAP))
2902 			aligned_vread(buf, addr, n);
2903 		else /* IOREMAP area is treated as memory hole */
2904 			memset(buf, 0, n);
2905 		buf += n;
2906 		addr += n;
2907 		count -= n;
2908 	}
2909 finished:
2910 	spin_unlock(&vmap_area_lock);
2911 
2912 	if (buf == buf_start)
2913 		return 0;
2914 	/* zero-fill memory holes */
2915 	if (buf != buf_start + buflen)
2916 		memset(buf, 0, buflen - (buf - buf_start));
2917 
2918 	return buflen;
2919 }
2920 
2921 /**
2922  * vwrite() - write vmalloc area in a safe way.
2923  * @buf:      buffer for source data
2924  * @addr:     vm address.
2925  * @count:    number of bytes to be read.
2926  *
2927  * This function checks that addr is a valid vmalloc'ed area, and
2928  * copy data from a buffer to the given addr. If specified range of
2929  * [addr...addr+count) includes some valid address, data is copied from
2930  * proper area of @buf. If there are memory holes, no copy to hole.
2931  * IOREMAP area is treated as memory hole and no copy is done.
2932  *
2933  * If [addr...addr+count) doesn't includes any intersects with alive
2934  * vm_struct area, returns 0. @buf should be kernel's buffer.
2935  *
2936  * Note: In usual ops, vwrite() is never necessary because the caller
2937  * should know vmalloc() area is valid and can use memcpy().
2938  * This is for routines which have to access vmalloc area without
2939  * any information, as /dev/kmem.
2940  *
2941  * Return: number of bytes for which addr and buf should be
2942  * increased (same number as @count) or %0 if [addr...addr+count)
2943  * doesn't include any intersection with valid vmalloc area
2944  */
2945 long vwrite(char *buf, char *addr, unsigned long count)
2946 {
2947 	struct vmap_area *va;
2948 	struct vm_struct *vm;
2949 	char *vaddr;
2950 	unsigned long n, buflen;
2951 	int copied = 0;
2952 
2953 	/* Don't allow overflow */
2954 	if ((unsigned long) addr + count < count)
2955 		count = -(unsigned long) addr;
2956 	buflen = count;
2957 
2958 	spin_lock(&vmap_area_lock);
2959 	list_for_each_entry(va, &vmap_area_list, list) {
2960 		if (!count)
2961 			break;
2962 
2963 		if (!va->vm)
2964 			continue;
2965 
2966 		vm = va->vm;
2967 		vaddr = (char *) vm->addr;
2968 		if (addr >= vaddr + get_vm_area_size(vm))
2969 			continue;
2970 		while (addr < vaddr) {
2971 			if (count == 0)
2972 				goto finished;
2973 			buf++;
2974 			addr++;
2975 			count--;
2976 		}
2977 		n = vaddr + get_vm_area_size(vm) - addr;
2978 		if (n > count)
2979 			n = count;
2980 		if (!(vm->flags & VM_IOREMAP)) {
2981 			aligned_vwrite(buf, addr, n);
2982 			copied++;
2983 		}
2984 		buf += n;
2985 		addr += n;
2986 		count -= n;
2987 	}
2988 finished:
2989 	spin_unlock(&vmap_area_lock);
2990 	if (!copied)
2991 		return 0;
2992 	return buflen;
2993 }
2994 
2995 /**
2996  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2997  * @vma:		vma to cover
2998  * @uaddr:		target user address to start at
2999  * @kaddr:		virtual address of vmalloc kernel memory
3000  * @pgoff:		offset from @kaddr to start at
3001  * @size:		size of map area
3002  *
3003  * Returns:	0 for success, -Exxx on failure
3004  *
3005  * This function checks that @kaddr is a valid vmalloc'ed area,
3006  * and that it is big enough to cover the range starting at
3007  * @uaddr in @vma. Will return failure if that criteria isn't
3008  * met.
3009  *
3010  * Similar to remap_pfn_range() (see mm/memory.c)
3011  */
3012 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3013 				void *kaddr, unsigned long pgoff,
3014 				unsigned long size)
3015 {
3016 	struct vm_struct *area;
3017 	unsigned long off;
3018 	unsigned long end_index;
3019 
3020 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3021 		return -EINVAL;
3022 
3023 	size = PAGE_ALIGN(size);
3024 
3025 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3026 		return -EINVAL;
3027 
3028 	area = find_vm_area(kaddr);
3029 	if (!area)
3030 		return -EINVAL;
3031 
3032 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3033 		return -EINVAL;
3034 
3035 	if (check_add_overflow(size, off, &end_index) ||
3036 	    end_index > get_vm_area_size(area))
3037 		return -EINVAL;
3038 	kaddr += off;
3039 
3040 	do {
3041 		struct page *page = vmalloc_to_page(kaddr);
3042 		int ret;
3043 
3044 		ret = vm_insert_page(vma, uaddr, page);
3045 		if (ret)
3046 			return ret;
3047 
3048 		uaddr += PAGE_SIZE;
3049 		kaddr += PAGE_SIZE;
3050 		size -= PAGE_SIZE;
3051 	} while (size > 0);
3052 
3053 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3054 
3055 	return 0;
3056 }
3057 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3058 
3059 /**
3060  * remap_vmalloc_range - map vmalloc pages to userspace
3061  * @vma:		vma to cover (map full range of vma)
3062  * @addr:		vmalloc memory
3063  * @pgoff:		number of pages into addr before first page to map
3064  *
3065  * Returns:	0 for success, -Exxx on failure
3066  *
3067  * This function checks that addr is a valid vmalloc'ed area, and
3068  * that it is big enough to cover the vma. Will return failure if
3069  * that criteria isn't met.
3070  *
3071  * Similar to remap_pfn_range() (see mm/memory.c)
3072  */
3073 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3074 						unsigned long pgoff)
3075 {
3076 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3077 					   addr, pgoff,
3078 					   vma->vm_end - vma->vm_start);
3079 }
3080 EXPORT_SYMBOL(remap_vmalloc_range);
3081 
3082 void free_vm_area(struct vm_struct *area)
3083 {
3084 	struct vm_struct *ret;
3085 	ret = remove_vm_area(area->addr);
3086 	BUG_ON(ret != area);
3087 	kfree(area);
3088 }
3089 EXPORT_SYMBOL_GPL(free_vm_area);
3090 
3091 #ifdef CONFIG_SMP
3092 static struct vmap_area *node_to_va(struct rb_node *n)
3093 {
3094 	return rb_entry_safe(n, struct vmap_area, rb_node);
3095 }
3096 
3097 /**
3098  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3099  * @addr: target address
3100  *
3101  * Returns: vmap_area if it is found. If there is no such area
3102  *   the first highest(reverse order) vmap_area is returned
3103  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3104  *   if there are no any areas before @addr.
3105  */
3106 static struct vmap_area *
3107 pvm_find_va_enclose_addr(unsigned long addr)
3108 {
3109 	struct vmap_area *va, *tmp;
3110 	struct rb_node *n;
3111 
3112 	n = free_vmap_area_root.rb_node;
3113 	va = NULL;
3114 
3115 	while (n) {
3116 		tmp = rb_entry(n, struct vmap_area, rb_node);
3117 		if (tmp->va_start <= addr) {
3118 			va = tmp;
3119 			if (tmp->va_end >= addr)
3120 				break;
3121 
3122 			n = n->rb_right;
3123 		} else {
3124 			n = n->rb_left;
3125 		}
3126 	}
3127 
3128 	return va;
3129 }
3130 
3131 /**
3132  * pvm_determine_end_from_reverse - find the highest aligned address
3133  * of free block below VMALLOC_END
3134  * @va:
3135  *   in - the VA we start the search(reverse order);
3136  *   out - the VA with the highest aligned end address.
3137  *
3138  * Returns: determined end address within vmap_area
3139  */
3140 static unsigned long
3141 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3142 {
3143 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3144 	unsigned long addr;
3145 
3146 	if (likely(*va)) {
3147 		list_for_each_entry_from_reverse((*va),
3148 				&free_vmap_area_list, list) {
3149 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3150 			if ((*va)->va_start < addr)
3151 				return addr;
3152 		}
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 /**
3159  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3160  * @offsets: array containing offset of each area
3161  * @sizes: array containing size of each area
3162  * @nr_vms: the number of areas to allocate
3163  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3164  *
3165  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3166  *	    vm_structs on success, %NULL on failure
3167  *
3168  * Percpu allocator wants to use congruent vm areas so that it can
3169  * maintain the offsets among percpu areas.  This function allocates
3170  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3171  * be scattered pretty far, distance between two areas easily going up
3172  * to gigabytes.  To avoid interacting with regular vmallocs, these
3173  * areas are allocated from top.
3174  *
3175  * Despite its complicated look, this allocator is rather simple. It
3176  * does everything top-down and scans free blocks from the end looking
3177  * for matching base. While scanning, if any of the areas do not fit the
3178  * base address is pulled down to fit the area. Scanning is repeated till
3179  * all the areas fit and then all necessary data structures are inserted
3180  * and the result is returned.
3181  */
3182 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3183 				     const size_t *sizes, int nr_vms,
3184 				     size_t align)
3185 {
3186 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3187 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3188 	struct vmap_area **vas, *va;
3189 	struct vm_struct **vms;
3190 	int area, area2, last_area, term_area;
3191 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3192 	bool purged = false;
3193 	enum fit_type type;
3194 
3195 	/* verify parameters and allocate data structures */
3196 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3197 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3198 		start = offsets[area];
3199 		end = start + sizes[area];
3200 
3201 		/* is everything aligned properly? */
3202 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3203 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3204 
3205 		/* detect the area with the highest address */
3206 		if (start > offsets[last_area])
3207 			last_area = area;
3208 
3209 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3210 			unsigned long start2 = offsets[area2];
3211 			unsigned long end2 = start2 + sizes[area2];
3212 
3213 			BUG_ON(start2 < end && start < end2);
3214 		}
3215 	}
3216 	last_end = offsets[last_area] + sizes[last_area];
3217 
3218 	if (vmalloc_end - vmalloc_start < last_end) {
3219 		WARN_ON(true);
3220 		return NULL;
3221 	}
3222 
3223 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3224 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3225 	if (!vas || !vms)
3226 		goto err_free2;
3227 
3228 	for (area = 0; area < nr_vms; area++) {
3229 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3230 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3231 		if (!vas[area] || !vms[area])
3232 			goto err_free;
3233 	}
3234 retry:
3235 	spin_lock(&free_vmap_area_lock);
3236 
3237 	/* start scanning - we scan from the top, begin with the last area */
3238 	area = term_area = last_area;
3239 	start = offsets[area];
3240 	end = start + sizes[area];
3241 
3242 	va = pvm_find_va_enclose_addr(vmalloc_end);
3243 	base = pvm_determine_end_from_reverse(&va, align) - end;
3244 
3245 	while (true) {
3246 		/*
3247 		 * base might have underflowed, add last_end before
3248 		 * comparing.
3249 		 */
3250 		if (base + last_end < vmalloc_start + last_end)
3251 			goto overflow;
3252 
3253 		/*
3254 		 * Fitting base has not been found.
3255 		 */
3256 		if (va == NULL)
3257 			goto overflow;
3258 
3259 		/*
3260 		 * If required width exceeds current VA block, move
3261 		 * base downwards and then recheck.
3262 		 */
3263 		if (base + end > va->va_end) {
3264 			base = pvm_determine_end_from_reverse(&va, align) - end;
3265 			term_area = area;
3266 			continue;
3267 		}
3268 
3269 		/*
3270 		 * If this VA does not fit, move base downwards and recheck.
3271 		 */
3272 		if (base + start < va->va_start) {
3273 			va = node_to_va(rb_prev(&va->rb_node));
3274 			base = pvm_determine_end_from_reverse(&va, align) - end;
3275 			term_area = area;
3276 			continue;
3277 		}
3278 
3279 		/*
3280 		 * This area fits, move on to the previous one.  If
3281 		 * the previous one is the terminal one, we're done.
3282 		 */
3283 		area = (area + nr_vms - 1) % nr_vms;
3284 		if (area == term_area)
3285 			break;
3286 
3287 		start = offsets[area];
3288 		end = start + sizes[area];
3289 		va = pvm_find_va_enclose_addr(base + end);
3290 	}
3291 
3292 	/* we've found a fitting base, insert all va's */
3293 	for (area = 0; area < nr_vms; area++) {
3294 		int ret;
3295 
3296 		start = base + offsets[area];
3297 		size = sizes[area];
3298 
3299 		va = pvm_find_va_enclose_addr(start);
3300 		if (WARN_ON_ONCE(va == NULL))
3301 			/* It is a BUG(), but trigger recovery instead. */
3302 			goto recovery;
3303 
3304 		type = classify_va_fit_type(va, start, size);
3305 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3306 			/* It is a BUG(), but trigger recovery instead. */
3307 			goto recovery;
3308 
3309 		ret = adjust_va_to_fit_type(va, start, size, type);
3310 		if (unlikely(ret))
3311 			goto recovery;
3312 
3313 		/* Allocated area. */
3314 		va = vas[area];
3315 		va->va_start = start;
3316 		va->va_end = start + size;
3317 	}
3318 
3319 	spin_unlock(&free_vmap_area_lock);
3320 
3321 	/* populate the kasan shadow space */
3322 	for (area = 0; area < nr_vms; area++) {
3323 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3324 			goto err_free_shadow;
3325 
3326 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3327 				       sizes[area]);
3328 	}
3329 
3330 	/* insert all vm's */
3331 	spin_lock(&vmap_area_lock);
3332 	for (area = 0; area < nr_vms; area++) {
3333 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3334 
3335 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3336 				 pcpu_get_vm_areas);
3337 	}
3338 	spin_unlock(&vmap_area_lock);
3339 
3340 	kfree(vas);
3341 	return vms;
3342 
3343 recovery:
3344 	/*
3345 	 * Remove previously allocated areas. There is no
3346 	 * need in removing these areas from the busy tree,
3347 	 * because they are inserted only on the final step
3348 	 * and when pcpu_get_vm_areas() is success.
3349 	 */
3350 	while (area--) {
3351 		orig_start = vas[area]->va_start;
3352 		orig_end = vas[area]->va_end;
3353 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3354 					    &free_vmap_area_list);
3355 		if (va)
3356 			kasan_release_vmalloc(orig_start, orig_end,
3357 				va->va_start, va->va_end);
3358 		vas[area] = NULL;
3359 	}
3360 
3361 overflow:
3362 	spin_unlock(&free_vmap_area_lock);
3363 	if (!purged) {
3364 		purge_vmap_area_lazy();
3365 		purged = true;
3366 
3367 		/* Before "retry", check if we recover. */
3368 		for (area = 0; area < nr_vms; area++) {
3369 			if (vas[area])
3370 				continue;
3371 
3372 			vas[area] = kmem_cache_zalloc(
3373 				vmap_area_cachep, GFP_KERNEL);
3374 			if (!vas[area])
3375 				goto err_free;
3376 		}
3377 
3378 		goto retry;
3379 	}
3380 
3381 err_free:
3382 	for (area = 0; area < nr_vms; area++) {
3383 		if (vas[area])
3384 			kmem_cache_free(vmap_area_cachep, vas[area]);
3385 
3386 		kfree(vms[area]);
3387 	}
3388 err_free2:
3389 	kfree(vas);
3390 	kfree(vms);
3391 	return NULL;
3392 
3393 err_free_shadow:
3394 	spin_lock(&free_vmap_area_lock);
3395 	/*
3396 	 * We release all the vmalloc shadows, even the ones for regions that
3397 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3398 	 * being able to tolerate this case.
3399 	 */
3400 	for (area = 0; area < nr_vms; area++) {
3401 		orig_start = vas[area]->va_start;
3402 		orig_end = vas[area]->va_end;
3403 		va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3404 					    &free_vmap_area_list);
3405 		if (va)
3406 			kasan_release_vmalloc(orig_start, orig_end,
3407 				va->va_start, va->va_end);
3408 		vas[area] = NULL;
3409 		kfree(vms[area]);
3410 	}
3411 	spin_unlock(&free_vmap_area_lock);
3412 	kfree(vas);
3413 	kfree(vms);
3414 	return NULL;
3415 }
3416 
3417 /**
3418  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3419  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3420  * @nr_vms: the number of allocated areas
3421  *
3422  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3423  */
3424 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3425 {
3426 	int i;
3427 
3428 	for (i = 0; i < nr_vms; i++)
3429 		free_vm_area(vms[i]);
3430 	kfree(vms);
3431 }
3432 #endif	/* CONFIG_SMP */
3433 
3434 #ifdef CONFIG_PROC_FS
3435 static void *s_start(struct seq_file *m, loff_t *pos)
3436 	__acquires(&vmap_purge_lock)
3437 	__acquires(&vmap_area_lock)
3438 {
3439 	mutex_lock(&vmap_purge_lock);
3440 	spin_lock(&vmap_area_lock);
3441 
3442 	return seq_list_start(&vmap_area_list, *pos);
3443 }
3444 
3445 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3446 {
3447 	return seq_list_next(p, &vmap_area_list, pos);
3448 }
3449 
3450 static void s_stop(struct seq_file *m, void *p)
3451 	__releases(&vmap_purge_lock)
3452 	__releases(&vmap_area_lock)
3453 {
3454 	mutex_unlock(&vmap_purge_lock);
3455 	spin_unlock(&vmap_area_lock);
3456 }
3457 
3458 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3459 {
3460 	if (IS_ENABLED(CONFIG_NUMA)) {
3461 		unsigned int nr, *counters = m->private;
3462 
3463 		if (!counters)
3464 			return;
3465 
3466 		if (v->flags & VM_UNINITIALIZED)
3467 			return;
3468 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3469 		smp_rmb();
3470 
3471 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3472 
3473 		for (nr = 0; nr < v->nr_pages; nr++)
3474 			counters[page_to_nid(v->pages[nr])]++;
3475 
3476 		for_each_node_state(nr, N_HIGH_MEMORY)
3477 			if (counters[nr])
3478 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3479 	}
3480 }
3481 
3482 static void show_purge_info(struct seq_file *m)
3483 {
3484 	struct llist_node *head;
3485 	struct vmap_area *va;
3486 
3487 	head = READ_ONCE(vmap_purge_list.first);
3488 	if (head == NULL)
3489 		return;
3490 
3491 	llist_for_each_entry(va, head, purge_list) {
3492 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3493 			(void *)va->va_start, (void *)va->va_end,
3494 			va->va_end - va->va_start);
3495 	}
3496 }
3497 
3498 static int s_show(struct seq_file *m, void *p)
3499 {
3500 	struct vmap_area *va;
3501 	struct vm_struct *v;
3502 
3503 	va = list_entry(p, struct vmap_area, list);
3504 
3505 	/*
3506 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3507 	 * of vmap area is being tear down or vm_map_ram allocation.
3508 	 */
3509 	if (!va->vm) {
3510 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3511 			(void *)va->va_start, (void *)va->va_end,
3512 			va->va_end - va->va_start);
3513 
3514 		return 0;
3515 	}
3516 
3517 	v = va->vm;
3518 
3519 	seq_printf(m, "0x%pK-0x%pK %7ld",
3520 		v->addr, v->addr + v->size, v->size);
3521 
3522 	if (v->caller)
3523 		seq_printf(m, " %pS", v->caller);
3524 
3525 	if (v->nr_pages)
3526 		seq_printf(m, " pages=%d", v->nr_pages);
3527 
3528 	if (v->phys_addr)
3529 		seq_printf(m, " phys=%pa", &v->phys_addr);
3530 
3531 	if (v->flags & VM_IOREMAP)
3532 		seq_puts(m, " ioremap");
3533 
3534 	if (v->flags & VM_ALLOC)
3535 		seq_puts(m, " vmalloc");
3536 
3537 	if (v->flags & VM_MAP)
3538 		seq_puts(m, " vmap");
3539 
3540 	if (v->flags & VM_USERMAP)
3541 		seq_puts(m, " user");
3542 
3543 	if (v->flags & VM_DMA_COHERENT)
3544 		seq_puts(m, " dma-coherent");
3545 
3546 	if (is_vmalloc_addr(v->pages))
3547 		seq_puts(m, " vpages");
3548 
3549 	show_numa_info(m, v);
3550 	seq_putc(m, '\n');
3551 
3552 	/*
3553 	 * As a final step, dump "unpurged" areas. Note,
3554 	 * that entire "/proc/vmallocinfo" output will not
3555 	 * be address sorted, because the purge list is not
3556 	 * sorted.
3557 	 */
3558 	if (list_is_last(&va->list, &vmap_area_list))
3559 		show_purge_info(m);
3560 
3561 	return 0;
3562 }
3563 
3564 static const struct seq_operations vmalloc_op = {
3565 	.start = s_start,
3566 	.next = s_next,
3567 	.stop = s_stop,
3568 	.show = s_show,
3569 };
3570 
3571 static int __init proc_vmalloc_init(void)
3572 {
3573 	if (IS_ENABLED(CONFIG_NUMA))
3574 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3575 				&vmalloc_op,
3576 				nr_node_ids * sizeof(unsigned int), NULL);
3577 	else
3578 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3579 	return 0;
3580 }
3581 module_init(proc_vmalloc_init);
3582 
3583 #endif
3584