xref: /linux/mm/vmalloc.c (revision 3f58ff6b53c11773b1bd564082fae37d48e0cc40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 static void __vunmap(const void *, int);
93 
94 static void free_work(struct work_struct *w)
95 {
96 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
97 	struct llist_node *t, *llnode;
98 
99 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
100 		__vunmap((void *)llnode, 1);
101 }
102 
103 /*** Page table manipulation functions ***/
104 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
105 			phys_addr_t phys_addr, pgprot_t prot,
106 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
107 {
108 	pte_t *pte;
109 	u64 pfn;
110 	unsigned long size = PAGE_SIZE;
111 
112 	pfn = phys_addr >> PAGE_SHIFT;
113 	pte = pte_alloc_kernel_track(pmd, addr, mask);
114 	if (!pte)
115 		return -ENOMEM;
116 	do {
117 		BUG_ON(!pte_none(*pte));
118 
119 #ifdef CONFIG_HUGETLB_PAGE
120 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 		if (size != PAGE_SIZE) {
122 			pte_t entry = pfn_pte(pfn, prot);
123 
124 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 			set_huge_pte_at(&init_mm, addr, pte, entry);
126 			pfn += PFN_DOWN(size);
127 			continue;
128 		}
129 #endif
130 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
131 		pfn++;
132 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
133 	*mask |= PGTBL_PTE_MODIFIED;
134 	return 0;
135 }
136 
137 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
138 			phys_addr_t phys_addr, pgprot_t prot,
139 			unsigned int max_page_shift)
140 {
141 	if (max_page_shift < PMD_SHIFT)
142 		return 0;
143 
144 	if (!arch_vmap_pmd_supported(prot))
145 		return 0;
146 
147 	if ((end - addr) != PMD_SIZE)
148 		return 0;
149 
150 	if (!IS_ALIGNED(addr, PMD_SIZE))
151 		return 0;
152 
153 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
154 		return 0;
155 
156 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
157 		return 0;
158 
159 	return pmd_set_huge(pmd, phys_addr, prot);
160 }
161 
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
163 			phys_addr_t phys_addr, pgprot_t prot,
164 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 
175 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
176 					max_page_shift)) {
177 			*mask |= PGTBL_PMD_MODIFIED;
178 			continue;
179 		}
180 
181 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
182 			return -ENOMEM;
183 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
184 	return 0;
185 }
186 
187 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
188 			phys_addr_t phys_addr, pgprot_t prot,
189 			unsigned int max_page_shift)
190 {
191 	if (max_page_shift < PUD_SHIFT)
192 		return 0;
193 
194 	if (!arch_vmap_pud_supported(prot))
195 		return 0;
196 
197 	if ((end - addr) != PUD_SIZE)
198 		return 0;
199 
200 	if (!IS_ALIGNED(addr, PUD_SIZE))
201 		return 0;
202 
203 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
204 		return 0;
205 
206 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
207 		return 0;
208 
209 	return pud_set_huge(pud, phys_addr, prot);
210 }
211 
212 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
213 			phys_addr_t phys_addr, pgprot_t prot,
214 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
215 {
216 	pud_t *pud;
217 	unsigned long next;
218 
219 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
220 	if (!pud)
221 		return -ENOMEM;
222 	do {
223 		next = pud_addr_end(addr, end);
224 
225 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
226 					max_page_shift)) {
227 			*mask |= PGTBL_PUD_MODIFIED;
228 			continue;
229 		}
230 
231 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
232 					max_page_shift, mask))
233 			return -ENOMEM;
234 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
235 	return 0;
236 }
237 
238 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
239 			phys_addr_t phys_addr, pgprot_t prot,
240 			unsigned int max_page_shift)
241 {
242 	if (max_page_shift < P4D_SHIFT)
243 		return 0;
244 
245 	if (!arch_vmap_p4d_supported(prot))
246 		return 0;
247 
248 	if ((end - addr) != P4D_SIZE)
249 		return 0;
250 
251 	if (!IS_ALIGNED(addr, P4D_SIZE))
252 		return 0;
253 
254 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
255 		return 0;
256 
257 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
258 		return 0;
259 
260 	return p4d_set_huge(p4d, phys_addr, prot);
261 }
262 
263 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
264 			phys_addr_t phys_addr, pgprot_t prot,
265 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
266 {
267 	p4d_t *p4d;
268 	unsigned long next;
269 
270 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
271 	if (!p4d)
272 		return -ENOMEM;
273 	do {
274 		next = p4d_addr_end(addr, end);
275 
276 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
277 					max_page_shift)) {
278 			*mask |= PGTBL_P4D_MODIFIED;
279 			continue;
280 		}
281 
282 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
283 					max_page_shift, mask))
284 			return -ENOMEM;
285 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
286 	return 0;
287 }
288 
289 static int vmap_range_noflush(unsigned long addr, unsigned long end,
290 			phys_addr_t phys_addr, pgprot_t prot,
291 			unsigned int max_page_shift)
292 {
293 	pgd_t *pgd;
294 	unsigned long start;
295 	unsigned long next;
296 	int err;
297 	pgtbl_mod_mask mask = 0;
298 
299 	might_sleep();
300 	BUG_ON(addr >= end);
301 
302 	start = addr;
303 	pgd = pgd_offset_k(addr);
304 	do {
305 		next = pgd_addr_end(addr, end);
306 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
307 					max_page_shift, &mask);
308 		if (err)
309 			break;
310 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
311 
312 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
313 		arch_sync_kernel_mappings(start, end);
314 
315 	return err;
316 }
317 
318 int ioremap_page_range(unsigned long addr, unsigned long end,
319 		phys_addr_t phys_addr, pgprot_t prot)
320 {
321 	int err;
322 
323 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
324 				 ioremap_max_page_shift);
325 	flush_cache_vmap(addr, end);
326 	if (!err)
327 		kmsan_ioremap_page_range(addr, end, phys_addr, prot,
328 					 ioremap_max_page_shift);
329 	return err;
330 }
331 
332 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
333 			     pgtbl_mod_mask *mask)
334 {
335 	pte_t *pte;
336 
337 	pte = pte_offset_kernel(pmd, addr);
338 	do {
339 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
340 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
341 	} while (pte++, addr += PAGE_SIZE, addr != end);
342 	*mask |= PGTBL_PTE_MODIFIED;
343 }
344 
345 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
346 			     pgtbl_mod_mask *mask)
347 {
348 	pmd_t *pmd;
349 	unsigned long next;
350 	int cleared;
351 
352 	pmd = pmd_offset(pud, addr);
353 	do {
354 		next = pmd_addr_end(addr, end);
355 
356 		cleared = pmd_clear_huge(pmd);
357 		if (cleared || pmd_bad(*pmd))
358 			*mask |= PGTBL_PMD_MODIFIED;
359 
360 		if (cleared)
361 			continue;
362 		if (pmd_none_or_clear_bad(pmd))
363 			continue;
364 		vunmap_pte_range(pmd, addr, next, mask);
365 
366 		cond_resched();
367 	} while (pmd++, addr = next, addr != end);
368 }
369 
370 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
371 			     pgtbl_mod_mask *mask)
372 {
373 	pud_t *pud;
374 	unsigned long next;
375 	int cleared;
376 
377 	pud = pud_offset(p4d, addr);
378 	do {
379 		next = pud_addr_end(addr, end);
380 
381 		cleared = pud_clear_huge(pud);
382 		if (cleared || pud_bad(*pud))
383 			*mask |= PGTBL_PUD_MODIFIED;
384 
385 		if (cleared)
386 			continue;
387 		if (pud_none_or_clear_bad(pud))
388 			continue;
389 		vunmap_pmd_range(pud, addr, next, mask);
390 	} while (pud++, addr = next, addr != end);
391 }
392 
393 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
394 			     pgtbl_mod_mask *mask)
395 {
396 	p4d_t *p4d;
397 	unsigned long next;
398 
399 	p4d = p4d_offset(pgd, addr);
400 	do {
401 		next = p4d_addr_end(addr, end);
402 
403 		p4d_clear_huge(p4d);
404 		if (p4d_bad(*p4d))
405 			*mask |= PGTBL_P4D_MODIFIED;
406 
407 		if (p4d_none_or_clear_bad(p4d))
408 			continue;
409 		vunmap_pud_range(p4d, addr, next, mask);
410 	} while (p4d++, addr = next, addr != end);
411 }
412 
413 /*
414  * vunmap_range_noflush is similar to vunmap_range, but does not
415  * flush caches or TLBs.
416  *
417  * The caller is responsible for calling flush_cache_vmap() before calling
418  * this function, and flush_tlb_kernel_range after it has returned
419  * successfully (and before the addresses are expected to cause a page fault
420  * or be re-mapped for something else, if TLB flushes are being delayed or
421  * coalesced).
422  *
423  * This is an internal function only. Do not use outside mm/.
424  */
425 void __vunmap_range_noflush(unsigned long start, unsigned long end)
426 {
427 	unsigned long next;
428 	pgd_t *pgd;
429 	unsigned long addr = start;
430 	pgtbl_mod_mask mask = 0;
431 
432 	BUG_ON(addr >= end);
433 	pgd = pgd_offset_k(addr);
434 	do {
435 		next = pgd_addr_end(addr, end);
436 		if (pgd_bad(*pgd))
437 			mask |= PGTBL_PGD_MODIFIED;
438 		if (pgd_none_or_clear_bad(pgd))
439 			continue;
440 		vunmap_p4d_range(pgd, addr, next, &mask);
441 	} while (pgd++, addr = next, addr != end);
442 
443 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
444 		arch_sync_kernel_mappings(start, end);
445 }
446 
447 void vunmap_range_noflush(unsigned long start, unsigned long end)
448 {
449 	kmsan_vunmap_range_noflush(start, end);
450 	__vunmap_range_noflush(start, end);
451 }
452 
453 /**
454  * vunmap_range - unmap kernel virtual addresses
455  * @addr: start of the VM area to unmap
456  * @end: end of the VM area to unmap (non-inclusive)
457  *
458  * Clears any present PTEs in the virtual address range, flushes TLBs and
459  * caches. Any subsequent access to the address before it has been re-mapped
460  * is a kernel bug.
461  */
462 void vunmap_range(unsigned long addr, unsigned long end)
463 {
464 	flush_cache_vunmap(addr, end);
465 	vunmap_range_noflush(addr, end);
466 	flush_tlb_kernel_range(addr, end);
467 }
468 
469 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
471 		pgtbl_mod_mask *mask)
472 {
473 	pte_t *pte;
474 
475 	/*
476 	 * nr is a running index into the array which helps higher level
477 	 * callers keep track of where we're up to.
478 	 */
479 
480 	pte = pte_alloc_kernel_track(pmd, addr, mask);
481 	if (!pte)
482 		return -ENOMEM;
483 	do {
484 		struct page *page = pages[*nr];
485 
486 		if (WARN_ON(!pte_none(*pte)))
487 			return -EBUSY;
488 		if (WARN_ON(!page))
489 			return -ENOMEM;
490 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
491 			return -EINVAL;
492 
493 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
494 		(*nr)++;
495 	} while (pte++, addr += PAGE_SIZE, addr != end);
496 	*mask |= PGTBL_PTE_MODIFIED;
497 	return 0;
498 }
499 
500 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
501 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
502 		pgtbl_mod_mask *mask)
503 {
504 	pmd_t *pmd;
505 	unsigned long next;
506 
507 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
508 	if (!pmd)
509 		return -ENOMEM;
510 	do {
511 		next = pmd_addr_end(addr, end);
512 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
513 			return -ENOMEM;
514 	} while (pmd++, addr = next, addr != end);
515 	return 0;
516 }
517 
518 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
519 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
520 		pgtbl_mod_mask *mask)
521 {
522 	pud_t *pud;
523 	unsigned long next;
524 
525 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
526 	if (!pud)
527 		return -ENOMEM;
528 	do {
529 		next = pud_addr_end(addr, end);
530 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
531 			return -ENOMEM;
532 	} while (pud++, addr = next, addr != end);
533 	return 0;
534 }
535 
536 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
537 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
538 		pgtbl_mod_mask *mask)
539 {
540 	p4d_t *p4d;
541 	unsigned long next;
542 
543 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
544 	if (!p4d)
545 		return -ENOMEM;
546 	do {
547 		next = p4d_addr_end(addr, end);
548 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
549 			return -ENOMEM;
550 	} while (p4d++, addr = next, addr != end);
551 	return 0;
552 }
553 
554 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
555 		pgprot_t prot, struct page **pages)
556 {
557 	unsigned long start = addr;
558 	pgd_t *pgd;
559 	unsigned long next;
560 	int err = 0;
561 	int nr = 0;
562 	pgtbl_mod_mask mask = 0;
563 
564 	BUG_ON(addr >= end);
565 	pgd = pgd_offset_k(addr);
566 	do {
567 		next = pgd_addr_end(addr, end);
568 		if (pgd_bad(*pgd))
569 			mask |= PGTBL_PGD_MODIFIED;
570 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
571 		if (err)
572 			return err;
573 	} while (pgd++, addr = next, addr != end);
574 
575 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
576 		arch_sync_kernel_mappings(start, end);
577 
578 	return 0;
579 }
580 
581 /*
582  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
583  * flush caches.
584  *
585  * The caller is responsible for calling flush_cache_vmap() after this
586  * function returns successfully and before the addresses are accessed.
587  *
588  * This is an internal function only. Do not use outside mm/.
589  */
590 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
591 		pgprot_t prot, struct page **pages, unsigned int page_shift)
592 {
593 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
594 
595 	WARN_ON(page_shift < PAGE_SHIFT);
596 
597 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
598 			page_shift == PAGE_SHIFT)
599 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
600 
601 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
602 		int err;
603 
604 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
605 					page_to_phys(pages[i]), prot,
606 					page_shift);
607 		if (err)
608 			return err;
609 
610 		addr += 1UL << page_shift;
611 	}
612 
613 	return 0;
614 }
615 
616 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
617 		pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619 	kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
620 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 }
622 
623 /**
624  * vmap_pages_range - map pages to a kernel virtual address
625  * @addr: start of the VM area to map
626  * @end: end of the VM area to map (non-inclusive)
627  * @prot: page protection flags to use
628  * @pages: pages to map (always PAGE_SIZE pages)
629  * @page_shift: maximum shift that the pages may be mapped with, @pages must
630  * be aligned and contiguous up to at least this shift.
631  *
632  * RETURNS:
633  * 0 on success, -errno on failure.
634  */
635 static int vmap_pages_range(unsigned long addr, unsigned long end,
636 		pgprot_t prot, struct page **pages, unsigned int page_shift)
637 {
638 	int err;
639 
640 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
641 	flush_cache_vmap(addr, end);
642 	return err;
643 }
644 
645 int is_vmalloc_or_module_addr(const void *x)
646 {
647 	/*
648 	 * ARM, x86-64 and sparc64 put modules in a special place,
649 	 * and fall back on vmalloc() if that fails. Others
650 	 * just put it in the vmalloc space.
651 	 */
652 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
653 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
654 	if (addr >= MODULES_VADDR && addr < MODULES_END)
655 		return 1;
656 #endif
657 	return is_vmalloc_addr(x);
658 }
659 
660 /*
661  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
662  * return the tail page that corresponds to the base page address, which
663  * matches small vmap mappings.
664  */
665 struct page *vmalloc_to_page(const void *vmalloc_addr)
666 {
667 	unsigned long addr = (unsigned long) vmalloc_addr;
668 	struct page *page = NULL;
669 	pgd_t *pgd = pgd_offset_k(addr);
670 	p4d_t *p4d;
671 	pud_t *pud;
672 	pmd_t *pmd;
673 	pte_t *ptep, pte;
674 
675 	/*
676 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
677 	 * architectures that do not vmalloc module space
678 	 */
679 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
680 
681 	if (pgd_none(*pgd))
682 		return NULL;
683 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
684 		return NULL; /* XXX: no allowance for huge pgd */
685 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
686 		return NULL;
687 
688 	p4d = p4d_offset(pgd, addr);
689 	if (p4d_none(*p4d))
690 		return NULL;
691 	if (p4d_leaf(*p4d))
692 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
693 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
694 		return NULL;
695 
696 	pud = pud_offset(p4d, addr);
697 	if (pud_none(*pud))
698 		return NULL;
699 	if (pud_leaf(*pud))
700 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
701 	if (WARN_ON_ONCE(pud_bad(*pud)))
702 		return NULL;
703 
704 	pmd = pmd_offset(pud, addr);
705 	if (pmd_none(*pmd))
706 		return NULL;
707 	if (pmd_leaf(*pmd))
708 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
709 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
710 		return NULL;
711 
712 	ptep = pte_offset_map(pmd, addr);
713 	pte = *ptep;
714 	if (pte_present(pte))
715 		page = pte_page(pte);
716 	pte_unmap(ptep);
717 
718 	return page;
719 }
720 EXPORT_SYMBOL(vmalloc_to_page);
721 
722 /*
723  * Map a vmalloc()-space virtual address to the physical page frame number.
724  */
725 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
726 {
727 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
728 }
729 EXPORT_SYMBOL(vmalloc_to_pfn);
730 
731 
732 /*** Global kva allocator ***/
733 
734 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
735 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
736 
737 
738 static DEFINE_SPINLOCK(vmap_area_lock);
739 static DEFINE_SPINLOCK(free_vmap_area_lock);
740 /* Export for kexec only */
741 LIST_HEAD(vmap_area_list);
742 static struct rb_root vmap_area_root = RB_ROOT;
743 static bool vmap_initialized __read_mostly;
744 
745 static struct rb_root purge_vmap_area_root = RB_ROOT;
746 static LIST_HEAD(purge_vmap_area_list);
747 static DEFINE_SPINLOCK(purge_vmap_area_lock);
748 
749 /*
750  * This kmem_cache is used for vmap_area objects. Instead of
751  * allocating from slab we reuse an object from this cache to
752  * make things faster. Especially in "no edge" splitting of
753  * free block.
754  */
755 static struct kmem_cache *vmap_area_cachep;
756 
757 /*
758  * This linked list is used in pair with free_vmap_area_root.
759  * It gives O(1) access to prev/next to perform fast coalescing.
760  */
761 static LIST_HEAD(free_vmap_area_list);
762 
763 /*
764  * This augment red-black tree represents the free vmap space.
765  * All vmap_area objects in this tree are sorted by va->va_start
766  * address. It is used for allocation and merging when a vmap
767  * object is released.
768  *
769  * Each vmap_area node contains a maximum available free block
770  * of its sub-tree, right or left. Therefore it is possible to
771  * find a lowest match of free area.
772  */
773 static struct rb_root free_vmap_area_root = RB_ROOT;
774 
775 /*
776  * Preload a CPU with one object for "no edge" split case. The
777  * aim is to get rid of allocations from the atomic context, thus
778  * to use more permissive allocation masks.
779  */
780 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
781 
782 static __always_inline unsigned long
783 va_size(struct vmap_area *va)
784 {
785 	return (va->va_end - va->va_start);
786 }
787 
788 static __always_inline unsigned long
789 get_subtree_max_size(struct rb_node *node)
790 {
791 	struct vmap_area *va;
792 
793 	va = rb_entry_safe(node, struct vmap_area, rb_node);
794 	return va ? va->subtree_max_size : 0;
795 }
796 
797 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
798 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
799 
800 static void purge_vmap_area_lazy(void);
801 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
802 static void drain_vmap_area_work(struct work_struct *work);
803 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
804 
805 static atomic_long_t nr_vmalloc_pages;
806 
807 unsigned long vmalloc_nr_pages(void)
808 {
809 	return atomic_long_read(&nr_vmalloc_pages);
810 }
811 
812 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
813 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
814 {
815 	struct vmap_area *va = NULL;
816 	struct rb_node *n = vmap_area_root.rb_node;
817 
818 	addr = (unsigned long)kasan_reset_tag((void *)addr);
819 
820 	while (n) {
821 		struct vmap_area *tmp;
822 
823 		tmp = rb_entry(n, struct vmap_area, rb_node);
824 		if (tmp->va_end > addr) {
825 			va = tmp;
826 			if (tmp->va_start <= addr)
827 				break;
828 
829 			n = n->rb_left;
830 		} else
831 			n = n->rb_right;
832 	}
833 
834 	return va;
835 }
836 
837 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
838 {
839 	struct rb_node *n = root->rb_node;
840 
841 	addr = (unsigned long)kasan_reset_tag((void *)addr);
842 
843 	while (n) {
844 		struct vmap_area *va;
845 
846 		va = rb_entry(n, struct vmap_area, rb_node);
847 		if (addr < va->va_start)
848 			n = n->rb_left;
849 		else if (addr >= va->va_end)
850 			n = n->rb_right;
851 		else
852 			return va;
853 	}
854 
855 	return NULL;
856 }
857 
858 /*
859  * This function returns back addresses of parent node
860  * and its left or right link for further processing.
861  *
862  * Otherwise NULL is returned. In that case all further
863  * steps regarding inserting of conflicting overlap range
864  * have to be declined and actually considered as a bug.
865  */
866 static __always_inline struct rb_node **
867 find_va_links(struct vmap_area *va,
868 	struct rb_root *root, struct rb_node *from,
869 	struct rb_node **parent)
870 {
871 	struct vmap_area *tmp_va;
872 	struct rb_node **link;
873 
874 	if (root) {
875 		link = &root->rb_node;
876 		if (unlikely(!*link)) {
877 			*parent = NULL;
878 			return link;
879 		}
880 	} else {
881 		link = &from;
882 	}
883 
884 	/*
885 	 * Go to the bottom of the tree. When we hit the last point
886 	 * we end up with parent rb_node and correct direction, i name
887 	 * it link, where the new va->rb_node will be attached to.
888 	 */
889 	do {
890 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
891 
892 		/*
893 		 * During the traversal we also do some sanity check.
894 		 * Trigger the BUG() if there are sides(left/right)
895 		 * or full overlaps.
896 		 */
897 		if (va->va_end <= tmp_va->va_start)
898 			link = &(*link)->rb_left;
899 		else if (va->va_start >= tmp_va->va_end)
900 			link = &(*link)->rb_right;
901 		else {
902 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
903 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
904 
905 			return NULL;
906 		}
907 	} while (*link);
908 
909 	*parent = &tmp_va->rb_node;
910 	return link;
911 }
912 
913 static __always_inline struct list_head *
914 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
915 {
916 	struct list_head *list;
917 
918 	if (unlikely(!parent))
919 		/*
920 		 * The red-black tree where we try to find VA neighbors
921 		 * before merging or inserting is empty, i.e. it means
922 		 * there is no free vmap space. Normally it does not
923 		 * happen but we handle this case anyway.
924 		 */
925 		return NULL;
926 
927 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 	return (&parent->rb_right == link ? list->next : list);
929 }
930 
931 static __always_inline void
932 __link_va(struct vmap_area *va, struct rb_root *root,
933 	struct rb_node *parent, struct rb_node **link,
934 	struct list_head *head, bool augment)
935 {
936 	/*
937 	 * VA is still not in the list, but we can
938 	 * identify its future previous list_head node.
939 	 */
940 	if (likely(parent)) {
941 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
942 		if (&parent->rb_right != link)
943 			head = head->prev;
944 	}
945 
946 	/* Insert to the rb-tree */
947 	rb_link_node(&va->rb_node, parent, link);
948 	if (augment) {
949 		/*
950 		 * Some explanation here. Just perform simple insertion
951 		 * to the tree. We do not set va->subtree_max_size to
952 		 * its current size before calling rb_insert_augmented().
953 		 * It is because we populate the tree from the bottom
954 		 * to parent levels when the node _is_ in the tree.
955 		 *
956 		 * Therefore we set subtree_max_size to zero after insertion,
957 		 * to let __augment_tree_propagate_from() puts everything to
958 		 * the correct order later on.
959 		 */
960 		rb_insert_augmented(&va->rb_node,
961 			root, &free_vmap_area_rb_augment_cb);
962 		va->subtree_max_size = 0;
963 	} else {
964 		rb_insert_color(&va->rb_node, root);
965 	}
966 
967 	/* Address-sort this list */
968 	list_add(&va->list, head);
969 }
970 
971 static __always_inline void
972 link_va(struct vmap_area *va, struct rb_root *root,
973 	struct rb_node *parent, struct rb_node **link,
974 	struct list_head *head)
975 {
976 	__link_va(va, root, parent, link, head, false);
977 }
978 
979 static __always_inline void
980 link_va_augment(struct vmap_area *va, struct rb_root *root,
981 	struct rb_node *parent, struct rb_node **link,
982 	struct list_head *head)
983 {
984 	__link_va(va, root, parent, link, head, true);
985 }
986 
987 static __always_inline void
988 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
989 {
990 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
991 		return;
992 
993 	if (augment)
994 		rb_erase_augmented(&va->rb_node,
995 			root, &free_vmap_area_rb_augment_cb);
996 	else
997 		rb_erase(&va->rb_node, root);
998 
999 	list_del_init(&va->list);
1000 	RB_CLEAR_NODE(&va->rb_node);
1001 }
1002 
1003 static __always_inline void
1004 unlink_va(struct vmap_area *va, struct rb_root *root)
1005 {
1006 	__unlink_va(va, root, false);
1007 }
1008 
1009 static __always_inline void
1010 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1011 {
1012 	__unlink_va(va, root, true);
1013 }
1014 
1015 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1016 /*
1017  * Gets called when remove the node and rotate.
1018  */
1019 static __always_inline unsigned long
1020 compute_subtree_max_size(struct vmap_area *va)
1021 {
1022 	return max3(va_size(va),
1023 		get_subtree_max_size(va->rb_node.rb_left),
1024 		get_subtree_max_size(va->rb_node.rb_right));
1025 }
1026 
1027 static void
1028 augment_tree_propagate_check(void)
1029 {
1030 	struct vmap_area *va;
1031 	unsigned long computed_size;
1032 
1033 	list_for_each_entry(va, &free_vmap_area_list, list) {
1034 		computed_size = compute_subtree_max_size(va);
1035 		if (computed_size != va->subtree_max_size)
1036 			pr_emerg("tree is corrupted: %lu, %lu\n",
1037 				va_size(va), va->subtree_max_size);
1038 	}
1039 }
1040 #endif
1041 
1042 /*
1043  * This function populates subtree_max_size from bottom to upper
1044  * levels starting from VA point. The propagation must be done
1045  * when VA size is modified by changing its va_start/va_end. Or
1046  * in case of newly inserting of VA to the tree.
1047  *
1048  * It means that __augment_tree_propagate_from() must be called:
1049  * - After VA has been inserted to the tree(free path);
1050  * - After VA has been shrunk(allocation path);
1051  * - After VA has been increased(merging path).
1052  *
1053  * Please note that, it does not mean that upper parent nodes
1054  * and their subtree_max_size are recalculated all the time up
1055  * to the root node.
1056  *
1057  *       4--8
1058  *        /\
1059  *       /  \
1060  *      /    \
1061  *    2--2  8--8
1062  *
1063  * For example if we modify the node 4, shrinking it to 2, then
1064  * no any modification is required. If we shrink the node 2 to 1
1065  * its subtree_max_size is updated only, and set to 1. If we shrink
1066  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1067  * node becomes 4--6.
1068  */
1069 static __always_inline void
1070 augment_tree_propagate_from(struct vmap_area *va)
1071 {
1072 	/*
1073 	 * Populate the tree from bottom towards the root until
1074 	 * the calculated maximum available size of checked node
1075 	 * is equal to its current one.
1076 	 */
1077 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1078 
1079 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1080 	augment_tree_propagate_check();
1081 #endif
1082 }
1083 
1084 static void
1085 insert_vmap_area(struct vmap_area *va,
1086 	struct rb_root *root, struct list_head *head)
1087 {
1088 	struct rb_node **link;
1089 	struct rb_node *parent;
1090 
1091 	link = find_va_links(va, root, NULL, &parent);
1092 	if (link)
1093 		link_va(va, root, parent, link, head);
1094 }
1095 
1096 static void
1097 insert_vmap_area_augment(struct vmap_area *va,
1098 	struct rb_node *from, struct rb_root *root,
1099 	struct list_head *head)
1100 {
1101 	struct rb_node **link;
1102 	struct rb_node *parent;
1103 
1104 	if (from)
1105 		link = find_va_links(va, NULL, from, &parent);
1106 	else
1107 		link = find_va_links(va, root, NULL, &parent);
1108 
1109 	if (link) {
1110 		link_va_augment(va, root, parent, link, head);
1111 		augment_tree_propagate_from(va);
1112 	}
1113 }
1114 
1115 /*
1116  * Merge de-allocated chunk of VA memory with previous
1117  * and next free blocks. If coalesce is not done a new
1118  * free area is inserted. If VA has been merged, it is
1119  * freed.
1120  *
1121  * Please note, it can return NULL in case of overlap
1122  * ranges, followed by WARN() report. Despite it is a
1123  * buggy behaviour, a system can be alive and keep
1124  * ongoing.
1125  */
1126 static __always_inline struct vmap_area *
1127 __merge_or_add_vmap_area(struct vmap_area *va,
1128 	struct rb_root *root, struct list_head *head, bool augment)
1129 {
1130 	struct vmap_area *sibling;
1131 	struct list_head *next;
1132 	struct rb_node **link;
1133 	struct rb_node *parent;
1134 	bool merged = false;
1135 
1136 	/*
1137 	 * Find a place in the tree where VA potentially will be
1138 	 * inserted, unless it is merged with its sibling/siblings.
1139 	 */
1140 	link = find_va_links(va, root, NULL, &parent);
1141 	if (!link)
1142 		return NULL;
1143 
1144 	/*
1145 	 * Get next node of VA to check if merging can be done.
1146 	 */
1147 	next = get_va_next_sibling(parent, link);
1148 	if (unlikely(next == NULL))
1149 		goto insert;
1150 
1151 	/*
1152 	 * start            end
1153 	 * |                |
1154 	 * |<------VA------>|<-----Next----->|
1155 	 *                  |                |
1156 	 *                  start            end
1157 	 */
1158 	if (next != head) {
1159 		sibling = list_entry(next, struct vmap_area, list);
1160 		if (sibling->va_start == va->va_end) {
1161 			sibling->va_start = va->va_start;
1162 
1163 			/* Free vmap_area object. */
1164 			kmem_cache_free(vmap_area_cachep, va);
1165 
1166 			/* Point to the new merged area. */
1167 			va = sibling;
1168 			merged = true;
1169 		}
1170 	}
1171 
1172 	/*
1173 	 * start            end
1174 	 * |                |
1175 	 * |<-----Prev----->|<------VA------>|
1176 	 *                  |                |
1177 	 *                  start            end
1178 	 */
1179 	if (next->prev != head) {
1180 		sibling = list_entry(next->prev, struct vmap_area, list);
1181 		if (sibling->va_end == va->va_start) {
1182 			/*
1183 			 * If both neighbors are coalesced, it is important
1184 			 * to unlink the "next" node first, followed by merging
1185 			 * with "previous" one. Otherwise the tree might not be
1186 			 * fully populated if a sibling's augmented value is
1187 			 * "normalized" because of rotation operations.
1188 			 */
1189 			if (merged)
1190 				__unlink_va(va, root, augment);
1191 
1192 			sibling->va_end = va->va_end;
1193 
1194 			/* Free vmap_area object. */
1195 			kmem_cache_free(vmap_area_cachep, va);
1196 
1197 			/* Point to the new merged area. */
1198 			va = sibling;
1199 			merged = true;
1200 		}
1201 	}
1202 
1203 insert:
1204 	if (!merged)
1205 		__link_va(va, root, parent, link, head, augment);
1206 
1207 	return va;
1208 }
1209 
1210 static __always_inline struct vmap_area *
1211 merge_or_add_vmap_area(struct vmap_area *va,
1212 	struct rb_root *root, struct list_head *head)
1213 {
1214 	return __merge_or_add_vmap_area(va, root, head, false);
1215 }
1216 
1217 static __always_inline struct vmap_area *
1218 merge_or_add_vmap_area_augment(struct vmap_area *va,
1219 	struct rb_root *root, struct list_head *head)
1220 {
1221 	va = __merge_or_add_vmap_area(va, root, head, true);
1222 	if (va)
1223 		augment_tree_propagate_from(va);
1224 
1225 	return va;
1226 }
1227 
1228 static __always_inline bool
1229 is_within_this_va(struct vmap_area *va, unsigned long size,
1230 	unsigned long align, unsigned long vstart)
1231 {
1232 	unsigned long nva_start_addr;
1233 
1234 	if (va->va_start > vstart)
1235 		nva_start_addr = ALIGN(va->va_start, align);
1236 	else
1237 		nva_start_addr = ALIGN(vstart, align);
1238 
1239 	/* Can be overflowed due to big size or alignment. */
1240 	if (nva_start_addr + size < nva_start_addr ||
1241 			nva_start_addr < vstart)
1242 		return false;
1243 
1244 	return (nva_start_addr + size <= va->va_end);
1245 }
1246 
1247 /*
1248  * Find the first free block(lowest start address) in the tree,
1249  * that will accomplish the request corresponding to passing
1250  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1251  * a search length is adjusted to account for worst case alignment
1252  * overhead.
1253  */
1254 static __always_inline struct vmap_area *
1255 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1256 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1257 {
1258 	struct vmap_area *va;
1259 	struct rb_node *node;
1260 	unsigned long length;
1261 
1262 	/* Start from the root. */
1263 	node = root->rb_node;
1264 
1265 	/* Adjust the search size for alignment overhead. */
1266 	length = adjust_search_size ? size + align - 1 : size;
1267 
1268 	while (node) {
1269 		va = rb_entry(node, struct vmap_area, rb_node);
1270 
1271 		if (get_subtree_max_size(node->rb_left) >= length &&
1272 				vstart < va->va_start) {
1273 			node = node->rb_left;
1274 		} else {
1275 			if (is_within_this_va(va, size, align, vstart))
1276 				return va;
1277 
1278 			/*
1279 			 * Does not make sense to go deeper towards the right
1280 			 * sub-tree if it does not have a free block that is
1281 			 * equal or bigger to the requested search length.
1282 			 */
1283 			if (get_subtree_max_size(node->rb_right) >= length) {
1284 				node = node->rb_right;
1285 				continue;
1286 			}
1287 
1288 			/*
1289 			 * OK. We roll back and find the first right sub-tree,
1290 			 * that will satisfy the search criteria. It can happen
1291 			 * due to "vstart" restriction or an alignment overhead
1292 			 * that is bigger then PAGE_SIZE.
1293 			 */
1294 			while ((node = rb_parent(node))) {
1295 				va = rb_entry(node, struct vmap_area, rb_node);
1296 				if (is_within_this_va(va, size, align, vstart))
1297 					return va;
1298 
1299 				if (get_subtree_max_size(node->rb_right) >= length &&
1300 						vstart <= va->va_start) {
1301 					/*
1302 					 * Shift the vstart forward. Please note, we update it with
1303 					 * parent's start address adding "1" because we do not want
1304 					 * to enter same sub-tree after it has already been checked
1305 					 * and no suitable free block found there.
1306 					 */
1307 					vstart = va->va_start + 1;
1308 					node = node->rb_right;
1309 					break;
1310 				}
1311 			}
1312 		}
1313 	}
1314 
1315 	return NULL;
1316 }
1317 
1318 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1319 #include <linux/random.h>
1320 
1321 static struct vmap_area *
1322 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1323 	unsigned long align, unsigned long vstart)
1324 {
1325 	struct vmap_area *va;
1326 
1327 	list_for_each_entry(va, head, list) {
1328 		if (!is_within_this_va(va, size, align, vstart))
1329 			continue;
1330 
1331 		return va;
1332 	}
1333 
1334 	return NULL;
1335 }
1336 
1337 static void
1338 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1339 			     unsigned long size, unsigned long align)
1340 {
1341 	struct vmap_area *va_1, *va_2;
1342 	unsigned long vstart;
1343 	unsigned int rnd;
1344 
1345 	get_random_bytes(&rnd, sizeof(rnd));
1346 	vstart = VMALLOC_START + rnd;
1347 
1348 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1349 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1350 
1351 	if (va_1 != va_2)
1352 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1353 			va_1, va_2, vstart);
1354 }
1355 #endif
1356 
1357 enum fit_type {
1358 	NOTHING_FIT = 0,
1359 	FL_FIT_TYPE = 1,	/* full fit */
1360 	LE_FIT_TYPE = 2,	/* left edge fit */
1361 	RE_FIT_TYPE = 3,	/* right edge fit */
1362 	NE_FIT_TYPE = 4		/* no edge fit */
1363 };
1364 
1365 static __always_inline enum fit_type
1366 classify_va_fit_type(struct vmap_area *va,
1367 	unsigned long nva_start_addr, unsigned long size)
1368 {
1369 	enum fit_type type;
1370 
1371 	/* Check if it is within VA. */
1372 	if (nva_start_addr < va->va_start ||
1373 			nva_start_addr + size > va->va_end)
1374 		return NOTHING_FIT;
1375 
1376 	/* Now classify. */
1377 	if (va->va_start == nva_start_addr) {
1378 		if (va->va_end == nva_start_addr + size)
1379 			type = FL_FIT_TYPE;
1380 		else
1381 			type = LE_FIT_TYPE;
1382 	} else if (va->va_end == nva_start_addr + size) {
1383 		type = RE_FIT_TYPE;
1384 	} else {
1385 		type = NE_FIT_TYPE;
1386 	}
1387 
1388 	return type;
1389 }
1390 
1391 static __always_inline int
1392 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1393 		      struct vmap_area *va, unsigned long nva_start_addr,
1394 		      unsigned long size)
1395 {
1396 	struct vmap_area *lva = NULL;
1397 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1398 
1399 	if (type == FL_FIT_TYPE) {
1400 		/*
1401 		 * No need to split VA, it fully fits.
1402 		 *
1403 		 * |               |
1404 		 * V      NVA      V
1405 		 * |---------------|
1406 		 */
1407 		unlink_va_augment(va, root);
1408 		kmem_cache_free(vmap_area_cachep, va);
1409 	} else if (type == LE_FIT_TYPE) {
1410 		/*
1411 		 * Split left edge of fit VA.
1412 		 *
1413 		 * |       |
1414 		 * V  NVA  V   R
1415 		 * |-------|-------|
1416 		 */
1417 		va->va_start += size;
1418 	} else if (type == RE_FIT_TYPE) {
1419 		/*
1420 		 * Split right edge of fit VA.
1421 		 *
1422 		 *         |       |
1423 		 *     L   V  NVA  V
1424 		 * |-------|-------|
1425 		 */
1426 		va->va_end = nva_start_addr;
1427 	} else if (type == NE_FIT_TYPE) {
1428 		/*
1429 		 * Split no edge of fit VA.
1430 		 *
1431 		 *     |       |
1432 		 *   L V  NVA  V R
1433 		 * |---|-------|---|
1434 		 */
1435 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1436 		if (unlikely(!lva)) {
1437 			/*
1438 			 * For percpu allocator we do not do any pre-allocation
1439 			 * and leave it as it is. The reason is it most likely
1440 			 * never ends up with NE_FIT_TYPE splitting. In case of
1441 			 * percpu allocations offsets and sizes are aligned to
1442 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1443 			 * are its main fitting cases.
1444 			 *
1445 			 * There are a few exceptions though, as an example it is
1446 			 * a first allocation (early boot up) when we have "one"
1447 			 * big free space that has to be split.
1448 			 *
1449 			 * Also we can hit this path in case of regular "vmap"
1450 			 * allocations, if "this" current CPU was not preloaded.
1451 			 * See the comment in alloc_vmap_area() why. If so, then
1452 			 * GFP_NOWAIT is used instead to get an extra object for
1453 			 * split purpose. That is rare and most time does not
1454 			 * occur.
1455 			 *
1456 			 * What happens if an allocation gets failed. Basically,
1457 			 * an "overflow" path is triggered to purge lazily freed
1458 			 * areas to free some memory, then, the "retry" path is
1459 			 * triggered to repeat one more time. See more details
1460 			 * in alloc_vmap_area() function.
1461 			 */
1462 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1463 			if (!lva)
1464 				return -1;
1465 		}
1466 
1467 		/*
1468 		 * Build the remainder.
1469 		 */
1470 		lva->va_start = va->va_start;
1471 		lva->va_end = nva_start_addr;
1472 
1473 		/*
1474 		 * Shrink this VA to remaining size.
1475 		 */
1476 		va->va_start = nva_start_addr + size;
1477 	} else {
1478 		return -1;
1479 	}
1480 
1481 	if (type != FL_FIT_TYPE) {
1482 		augment_tree_propagate_from(va);
1483 
1484 		if (lva)	/* type == NE_FIT_TYPE */
1485 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1486 	}
1487 
1488 	return 0;
1489 }
1490 
1491 /*
1492  * Returns a start address of the newly allocated area, if success.
1493  * Otherwise a vend is returned that indicates failure.
1494  */
1495 static __always_inline unsigned long
1496 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1497 	unsigned long size, unsigned long align,
1498 	unsigned long vstart, unsigned long vend)
1499 {
1500 	bool adjust_search_size = true;
1501 	unsigned long nva_start_addr;
1502 	struct vmap_area *va;
1503 	int ret;
1504 
1505 	/*
1506 	 * Do not adjust when:
1507 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1508 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1509 	 *      aligned anyway;
1510 	 *   b) a short range where a requested size corresponds to exactly
1511 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1512 	 *      With adjusted search length an allocation would not succeed.
1513 	 */
1514 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1515 		adjust_search_size = false;
1516 
1517 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1518 	if (unlikely(!va))
1519 		return vend;
1520 
1521 	if (va->va_start > vstart)
1522 		nva_start_addr = ALIGN(va->va_start, align);
1523 	else
1524 		nva_start_addr = ALIGN(vstart, align);
1525 
1526 	/* Check the "vend" restriction. */
1527 	if (nva_start_addr + size > vend)
1528 		return vend;
1529 
1530 	/* Update the free vmap_area. */
1531 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1532 	if (WARN_ON_ONCE(ret))
1533 		return vend;
1534 
1535 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1536 	find_vmap_lowest_match_check(root, head, size, align);
1537 #endif
1538 
1539 	return nva_start_addr;
1540 }
1541 
1542 /*
1543  * Free a region of KVA allocated by alloc_vmap_area
1544  */
1545 static void free_vmap_area(struct vmap_area *va)
1546 {
1547 	/*
1548 	 * Remove from the busy tree/list.
1549 	 */
1550 	spin_lock(&vmap_area_lock);
1551 	unlink_va(va, &vmap_area_root);
1552 	spin_unlock(&vmap_area_lock);
1553 
1554 	/*
1555 	 * Insert/Merge it back to the free tree/list.
1556 	 */
1557 	spin_lock(&free_vmap_area_lock);
1558 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1559 	spin_unlock(&free_vmap_area_lock);
1560 }
1561 
1562 static inline void
1563 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1564 {
1565 	struct vmap_area *va = NULL;
1566 
1567 	/*
1568 	 * Preload this CPU with one extra vmap_area object. It is used
1569 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1570 	 * a CPU that does an allocation is preloaded.
1571 	 *
1572 	 * We do it in non-atomic context, thus it allows us to use more
1573 	 * permissive allocation masks to be more stable under low memory
1574 	 * condition and high memory pressure.
1575 	 */
1576 	if (!this_cpu_read(ne_fit_preload_node))
1577 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1578 
1579 	spin_lock(lock);
1580 
1581 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1582 		kmem_cache_free(vmap_area_cachep, va);
1583 }
1584 
1585 /*
1586  * Allocate a region of KVA of the specified size and alignment, within the
1587  * vstart and vend.
1588  */
1589 static struct vmap_area *alloc_vmap_area(unsigned long size,
1590 				unsigned long align,
1591 				unsigned long vstart, unsigned long vend,
1592 				int node, gfp_t gfp_mask)
1593 {
1594 	struct vmap_area *va;
1595 	unsigned long freed;
1596 	unsigned long addr;
1597 	int purged = 0;
1598 	int ret;
1599 
1600 	BUG_ON(!size);
1601 	BUG_ON(offset_in_page(size));
1602 	BUG_ON(!is_power_of_2(align));
1603 
1604 	if (unlikely(!vmap_initialized))
1605 		return ERR_PTR(-EBUSY);
1606 
1607 	might_sleep();
1608 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1609 
1610 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1611 	if (unlikely(!va))
1612 		return ERR_PTR(-ENOMEM);
1613 
1614 	/*
1615 	 * Only scan the relevant parts containing pointers to other objects
1616 	 * to avoid false negatives.
1617 	 */
1618 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1619 
1620 retry:
1621 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1622 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1623 		size, align, vstart, vend);
1624 	spin_unlock(&free_vmap_area_lock);
1625 
1626 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1627 
1628 	/*
1629 	 * If an allocation fails, the "vend" address is
1630 	 * returned. Therefore trigger the overflow path.
1631 	 */
1632 	if (unlikely(addr == vend))
1633 		goto overflow;
1634 
1635 	va->va_start = addr;
1636 	va->va_end = addr + size;
1637 	va->vm = NULL;
1638 
1639 	spin_lock(&vmap_area_lock);
1640 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1641 	spin_unlock(&vmap_area_lock);
1642 
1643 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1644 	BUG_ON(va->va_start < vstart);
1645 	BUG_ON(va->va_end > vend);
1646 
1647 	ret = kasan_populate_vmalloc(addr, size);
1648 	if (ret) {
1649 		free_vmap_area(va);
1650 		return ERR_PTR(ret);
1651 	}
1652 
1653 	return va;
1654 
1655 overflow:
1656 	if (!purged) {
1657 		purge_vmap_area_lazy();
1658 		purged = 1;
1659 		goto retry;
1660 	}
1661 
1662 	freed = 0;
1663 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1664 
1665 	if (freed > 0) {
1666 		purged = 0;
1667 		goto retry;
1668 	}
1669 
1670 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1671 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1672 			size);
1673 
1674 	kmem_cache_free(vmap_area_cachep, va);
1675 	return ERR_PTR(-EBUSY);
1676 }
1677 
1678 int register_vmap_purge_notifier(struct notifier_block *nb)
1679 {
1680 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1681 }
1682 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1683 
1684 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1685 {
1686 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1687 }
1688 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1689 
1690 /*
1691  * lazy_max_pages is the maximum amount of virtual address space we gather up
1692  * before attempting to purge with a TLB flush.
1693  *
1694  * There is a tradeoff here: a larger number will cover more kernel page tables
1695  * and take slightly longer to purge, but it will linearly reduce the number of
1696  * global TLB flushes that must be performed. It would seem natural to scale
1697  * this number up linearly with the number of CPUs (because vmapping activity
1698  * could also scale linearly with the number of CPUs), however it is likely
1699  * that in practice, workloads might be constrained in other ways that mean
1700  * vmap activity will not scale linearly with CPUs. Also, I want to be
1701  * conservative and not introduce a big latency on huge systems, so go with
1702  * a less aggressive log scale. It will still be an improvement over the old
1703  * code, and it will be simple to change the scale factor if we find that it
1704  * becomes a problem on bigger systems.
1705  */
1706 static unsigned long lazy_max_pages(void)
1707 {
1708 	unsigned int log;
1709 
1710 	log = fls(num_online_cpus());
1711 
1712 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1713 }
1714 
1715 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1716 
1717 /*
1718  * Serialize vmap purging.  There is no actual critical section protected
1719  * by this lock, but we want to avoid concurrent calls for performance
1720  * reasons and to make the pcpu_get_vm_areas more deterministic.
1721  */
1722 static DEFINE_MUTEX(vmap_purge_lock);
1723 
1724 /* for per-CPU blocks */
1725 static void purge_fragmented_blocks_allcpus(void);
1726 
1727 /*
1728  * Purges all lazily-freed vmap areas.
1729  */
1730 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1731 {
1732 	unsigned long resched_threshold;
1733 	unsigned int num_purged_areas = 0;
1734 	struct list_head local_purge_list;
1735 	struct vmap_area *va, *n_va;
1736 
1737 	lockdep_assert_held(&vmap_purge_lock);
1738 
1739 	spin_lock(&purge_vmap_area_lock);
1740 	purge_vmap_area_root = RB_ROOT;
1741 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1742 	spin_unlock(&purge_vmap_area_lock);
1743 
1744 	if (unlikely(list_empty(&local_purge_list)))
1745 		goto out;
1746 
1747 	start = min(start,
1748 		list_first_entry(&local_purge_list,
1749 			struct vmap_area, list)->va_start);
1750 
1751 	end = max(end,
1752 		list_last_entry(&local_purge_list,
1753 			struct vmap_area, list)->va_end);
1754 
1755 	flush_tlb_kernel_range(start, end);
1756 	resched_threshold = lazy_max_pages() << 1;
1757 
1758 	spin_lock(&free_vmap_area_lock);
1759 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1760 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1761 		unsigned long orig_start = va->va_start;
1762 		unsigned long orig_end = va->va_end;
1763 
1764 		/*
1765 		 * Finally insert or merge lazily-freed area. It is
1766 		 * detached and there is no need to "unlink" it from
1767 		 * anything.
1768 		 */
1769 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1770 				&free_vmap_area_list);
1771 
1772 		if (!va)
1773 			continue;
1774 
1775 		if (is_vmalloc_or_module_addr((void *)orig_start))
1776 			kasan_release_vmalloc(orig_start, orig_end,
1777 					      va->va_start, va->va_end);
1778 
1779 		atomic_long_sub(nr, &vmap_lazy_nr);
1780 		num_purged_areas++;
1781 
1782 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1783 			cond_resched_lock(&free_vmap_area_lock);
1784 	}
1785 	spin_unlock(&free_vmap_area_lock);
1786 
1787 out:
1788 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1789 	return num_purged_areas > 0;
1790 }
1791 
1792 /*
1793  * Kick off a purge of the outstanding lazy areas.
1794  */
1795 static void purge_vmap_area_lazy(void)
1796 {
1797 	mutex_lock(&vmap_purge_lock);
1798 	purge_fragmented_blocks_allcpus();
1799 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1800 	mutex_unlock(&vmap_purge_lock);
1801 }
1802 
1803 static void drain_vmap_area_work(struct work_struct *work)
1804 {
1805 	unsigned long nr_lazy;
1806 
1807 	do {
1808 		mutex_lock(&vmap_purge_lock);
1809 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1810 		mutex_unlock(&vmap_purge_lock);
1811 
1812 		/* Recheck if further work is required. */
1813 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1814 	} while (nr_lazy > lazy_max_pages());
1815 }
1816 
1817 /*
1818  * Free a vmap area, caller ensuring that the area has been unmapped
1819  * and flush_cache_vunmap had been called for the correct range
1820  * previously.
1821  */
1822 static void free_vmap_area_noflush(struct vmap_area *va)
1823 {
1824 	unsigned long nr_lazy_max = lazy_max_pages();
1825 	unsigned long va_start = va->va_start;
1826 	unsigned long nr_lazy;
1827 
1828 	spin_lock(&vmap_area_lock);
1829 	unlink_va(va, &vmap_area_root);
1830 	spin_unlock(&vmap_area_lock);
1831 
1832 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1833 				PAGE_SHIFT, &vmap_lazy_nr);
1834 
1835 	/*
1836 	 * Merge or place it to the purge tree/list.
1837 	 */
1838 	spin_lock(&purge_vmap_area_lock);
1839 	merge_or_add_vmap_area(va,
1840 		&purge_vmap_area_root, &purge_vmap_area_list);
1841 	spin_unlock(&purge_vmap_area_lock);
1842 
1843 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1844 
1845 	/* After this point, we may free va at any time */
1846 	if (unlikely(nr_lazy > nr_lazy_max))
1847 		schedule_work(&drain_vmap_work);
1848 }
1849 
1850 /*
1851  * Free and unmap a vmap area
1852  */
1853 static void free_unmap_vmap_area(struct vmap_area *va)
1854 {
1855 	flush_cache_vunmap(va->va_start, va->va_end);
1856 	vunmap_range_noflush(va->va_start, va->va_end);
1857 	if (debug_pagealloc_enabled_static())
1858 		flush_tlb_kernel_range(va->va_start, va->va_end);
1859 
1860 	free_vmap_area_noflush(va);
1861 }
1862 
1863 struct vmap_area *find_vmap_area(unsigned long addr)
1864 {
1865 	struct vmap_area *va;
1866 
1867 	spin_lock(&vmap_area_lock);
1868 	va = __find_vmap_area(addr, &vmap_area_root);
1869 	spin_unlock(&vmap_area_lock);
1870 
1871 	return va;
1872 }
1873 
1874 /*** Per cpu kva allocator ***/
1875 
1876 /*
1877  * vmap space is limited especially on 32 bit architectures. Ensure there is
1878  * room for at least 16 percpu vmap blocks per CPU.
1879  */
1880 /*
1881  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1882  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1883  * instead (we just need a rough idea)
1884  */
1885 #if BITS_PER_LONG == 32
1886 #define VMALLOC_SPACE		(128UL*1024*1024)
1887 #else
1888 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1889 #endif
1890 
1891 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1892 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1893 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1894 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1895 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1896 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1897 #define VMAP_BBMAP_BITS		\
1898 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1899 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1900 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1901 
1902 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1903 
1904 struct vmap_block_queue {
1905 	spinlock_t lock;
1906 	struct list_head free;
1907 };
1908 
1909 struct vmap_block {
1910 	spinlock_t lock;
1911 	struct vmap_area *va;
1912 	unsigned long free, dirty;
1913 	unsigned long dirty_min, dirty_max; /*< dirty range */
1914 	struct list_head free_list;
1915 	struct rcu_head rcu_head;
1916 	struct list_head purge;
1917 };
1918 
1919 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1920 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1921 
1922 /*
1923  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1924  * in the free path. Could get rid of this if we change the API to return a
1925  * "cookie" from alloc, to be passed to free. But no big deal yet.
1926  */
1927 static DEFINE_XARRAY(vmap_blocks);
1928 
1929 /*
1930  * We should probably have a fallback mechanism to allocate virtual memory
1931  * out of partially filled vmap blocks. However vmap block sizing should be
1932  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1933  * big problem.
1934  */
1935 
1936 static unsigned long addr_to_vb_idx(unsigned long addr)
1937 {
1938 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1939 	addr /= VMAP_BLOCK_SIZE;
1940 	return addr;
1941 }
1942 
1943 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1944 {
1945 	unsigned long addr;
1946 
1947 	addr = va_start + (pages_off << PAGE_SHIFT);
1948 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1949 	return (void *)addr;
1950 }
1951 
1952 /**
1953  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1954  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1955  * @order:    how many 2^order pages should be occupied in newly allocated block
1956  * @gfp_mask: flags for the page level allocator
1957  *
1958  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1959  */
1960 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1961 {
1962 	struct vmap_block_queue *vbq;
1963 	struct vmap_block *vb;
1964 	struct vmap_area *va;
1965 	unsigned long vb_idx;
1966 	int node, err;
1967 	void *vaddr;
1968 
1969 	node = numa_node_id();
1970 
1971 	vb = kmalloc_node(sizeof(struct vmap_block),
1972 			gfp_mask & GFP_RECLAIM_MASK, node);
1973 	if (unlikely(!vb))
1974 		return ERR_PTR(-ENOMEM);
1975 
1976 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1977 					VMALLOC_START, VMALLOC_END,
1978 					node, gfp_mask);
1979 	if (IS_ERR(va)) {
1980 		kfree(vb);
1981 		return ERR_CAST(va);
1982 	}
1983 
1984 	vaddr = vmap_block_vaddr(va->va_start, 0);
1985 	spin_lock_init(&vb->lock);
1986 	vb->va = va;
1987 	/* At least something should be left free */
1988 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1989 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1990 	vb->dirty = 0;
1991 	vb->dirty_min = VMAP_BBMAP_BITS;
1992 	vb->dirty_max = 0;
1993 	INIT_LIST_HEAD(&vb->free_list);
1994 
1995 	vb_idx = addr_to_vb_idx(va->va_start);
1996 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1997 	if (err) {
1998 		kfree(vb);
1999 		free_vmap_area(va);
2000 		return ERR_PTR(err);
2001 	}
2002 
2003 	vbq = raw_cpu_ptr(&vmap_block_queue);
2004 	spin_lock(&vbq->lock);
2005 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2006 	spin_unlock(&vbq->lock);
2007 
2008 	return vaddr;
2009 }
2010 
2011 static void free_vmap_block(struct vmap_block *vb)
2012 {
2013 	struct vmap_block *tmp;
2014 
2015 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
2016 	BUG_ON(tmp != vb);
2017 
2018 	free_vmap_area_noflush(vb->va);
2019 	kfree_rcu(vb, rcu_head);
2020 }
2021 
2022 static void purge_fragmented_blocks(int cpu)
2023 {
2024 	LIST_HEAD(purge);
2025 	struct vmap_block *vb;
2026 	struct vmap_block *n_vb;
2027 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2028 
2029 	rcu_read_lock();
2030 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2031 
2032 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2033 			continue;
2034 
2035 		spin_lock(&vb->lock);
2036 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2037 			vb->free = 0; /* prevent further allocs after releasing lock */
2038 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2039 			vb->dirty_min = 0;
2040 			vb->dirty_max = VMAP_BBMAP_BITS;
2041 			spin_lock(&vbq->lock);
2042 			list_del_rcu(&vb->free_list);
2043 			spin_unlock(&vbq->lock);
2044 			spin_unlock(&vb->lock);
2045 			list_add_tail(&vb->purge, &purge);
2046 		} else
2047 			spin_unlock(&vb->lock);
2048 	}
2049 	rcu_read_unlock();
2050 
2051 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2052 		list_del(&vb->purge);
2053 		free_vmap_block(vb);
2054 	}
2055 }
2056 
2057 static void purge_fragmented_blocks_allcpus(void)
2058 {
2059 	int cpu;
2060 
2061 	for_each_possible_cpu(cpu)
2062 		purge_fragmented_blocks(cpu);
2063 }
2064 
2065 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2066 {
2067 	struct vmap_block_queue *vbq;
2068 	struct vmap_block *vb;
2069 	void *vaddr = NULL;
2070 	unsigned int order;
2071 
2072 	BUG_ON(offset_in_page(size));
2073 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2074 	if (WARN_ON(size == 0)) {
2075 		/*
2076 		 * Allocating 0 bytes isn't what caller wants since
2077 		 * get_order(0) returns funny result. Just warn and terminate
2078 		 * early.
2079 		 */
2080 		return NULL;
2081 	}
2082 	order = get_order(size);
2083 
2084 	rcu_read_lock();
2085 	vbq = raw_cpu_ptr(&vmap_block_queue);
2086 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2087 		unsigned long pages_off;
2088 
2089 		spin_lock(&vb->lock);
2090 		if (vb->free < (1UL << order)) {
2091 			spin_unlock(&vb->lock);
2092 			continue;
2093 		}
2094 
2095 		pages_off = VMAP_BBMAP_BITS - vb->free;
2096 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2097 		vb->free -= 1UL << order;
2098 		if (vb->free == 0) {
2099 			spin_lock(&vbq->lock);
2100 			list_del_rcu(&vb->free_list);
2101 			spin_unlock(&vbq->lock);
2102 		}
2103 
2104 		spin_unlock(&vb->lock);
2105 		break;
2106 	}
2107 
2108 	rcu_read_unlock();
2109 
2110 	/* Allocate new block if nothing was found */
2111 	if (!vaddr)
2112 		vaddr = new_vmap_block(order, gfp_mask);
2113 
2114 	return vaddr;
2115 }
2116 
2117 static void vb_free(unsigned long addr, unsigned long size)
2118 {
2119 	unsigned long offset;
2120 	unsigned int order;
2121 	struct vmap_block *vb;
2122 
2123 	BUG_ON(offset_in_page(size));
2124 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2125 
2126 	flush_cache_vunmap(addr, addr + size);
2127 
2128 	order = get_order(size);
2129 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2130 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2131 
2132 	vunmap_range_noflush(addr, addr + size);
2133 
2134 	if (debug_pagealloc_enabled_static())
2135 		flush_tlb_kernel_range(addr, addr + size);
2136 
2137 	spin_lock(&vb->lock);
2138 
2139 	/* Expand dirty range */
2140 	vb->dirty_min = min(vb->dirty_min, offset);
2141 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2142 
2143 	vb->dirty += 1UL << order;
2144 	if (vb->dirty == VMAP_BBMAP_BITS) {
2145 		BUG_ON(vb->free);
2146 		spin_unlock(&vb->lock);
2147 		free_vmap_block(vb);
2148 	} else
2149 		spin_unlock(&vb->lock);
2150 }
2151 
2152 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2153 {
2154 	int cpu;
2155 
2156 	if (unlikely(!vmap_initialized))
2157 		return;
2158 
2159 	might_sleep();
2160 
2161 	for_each_possible_cpu(cpu) {
2162 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2163 		struct vmap_block *vb;
2164 
2165 		rcu_read_lock();
2166 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2167 			spin_lock(&vb->lock);
2168 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2169 				unsigned long va_start = vb->va->va_start;
2170 				unsigned long s, e;
2171 
2172 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2173 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2174 
2175 				start = min(s, start);
2176 				end   = max(e, end);
2177 
2178 				flush = 1;
2179 			}
2180 			spin_unlock(&vb->lock);
2181 		}
2182 		rcu_read_unlock();
2183 	}
2184 
2185 	mutex_lock(&vmap_purge_lock);
2186 	purge_fragmented_blocks_allcpus();
2187 	if (!__purge_vmap_area_lazy(start, end) && flush)
2188 		flush_tlb_kernel_range(start, end);
2189 	mutex_unlock(&vmap_purge_lock);
2190 }
2191 
2192 /**
2193  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2194  *
2195  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2196  * to amortize TLB flushing overheads. What this means is that any page you
2197  * have now, may, in a former life, have been mapped into kernel virtual
2198  * address by the vmap layer and so there might be some CPUs with TLB entries
2199  * still referencing that page (additional to the regular 1:1 kernel mapping).
2200  *
2201  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2202  * be sure that none of the pages we have control over will have any aliases
2203  * from the vmap layer.
2204  */
2205 void vm_unmap_aliases(void)
2206 {
2207 	unsigned long start = ULONG_MAX, end = 0;
2208 	int flush = 0;
2209 
2210 	_vm_unmap_aliases(start, end, flush);
2211 }
2212 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2213 
2214 /**
2215  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2216  * @mem: the pointer returned by vm_map_ram
2217  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2218  */
2219 void vm_unmap_ram(const void *mem, unsigned int count)
2220 {
2221 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2222 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2223 	struct vmap_area *va;
2224 
2225 	might_sleep();
2226 	BUG_ON(!addr);
2227 	BUG_ON(addr < VMALLOC_START);
2228 	BUG_ON(addr > VMALLOC_END);
2229 	BUG_ON(!PAGE_ALIGNED(addr));
2230 
2231 	kasan_poison_vmalloc(mem, size);
2232 
2233 	if (likely(count <= VMAP_MAX_ALLOC)) {
2234 		debug_check_no_locks_freed(mem, size);
2235 		vb_free(addr, size);
2236 		return;
2237 	}
2238 
2239 	va = find_vmap_area(addr);
2240 	BUG_ON(!va);
2241 	debug_check_no_locks_freed((void *)va->va_start,
2242 				    (va->va_end - va->va_start));
2243 	free_unmap_vmap_area(va);
2244 }
2245 EXPORT_SYMBOL(vm_unmap_ram);
2246 
2247 /**
2248  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2249  * @pages: an array of pointers to the pages to be mapped
2250  * @count: number of pages
2251  * @node: prefer to allocate data structures on this node
2252  *
2253  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2254  * faster than vmap so it's good.  But if you mix long-life and short-life
2255  * objects with vm_map_ram(), it could consume lots of address space through
2256  * fragmentation (especially on a 32bit machine).  You could see failures in
2257  * the end.  Please use this function for short-lived objects.
2258  *
2259  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2260  */
2261 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2262 {
2263 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2264 	unsigned long addr;
2265 	void *mem;
2266 
2267 	if (likely(count <= VMAP_MAX_ALLOC)) {
2268 		mem = vb_alloc(size, GFP_KERNEL);
2269 		if (IS_ERR(mem))
2270 			return NULL;
2271 		addr = (unsigned long)mem;
2272 	} else {
2273 		struct vmap_area *va;
2274 		va = alloc_vmap_area(size, PAGE_SIZE,
2275 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2276 		if (IS_ERR(va))
2277 			return NULL;
2278 
2279 		addr = va->va_start;
2280 		mem = (void *)addr;
2281 	}
2282 
2283 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2284 				pages, PAGE_SHIFT) < 0) {
2285 		vm_unmap_ram(mem, count);
2286 		return NULL;
2287 	}
2288 
2289 	/*
2290 	 * Mark the pages as accessible, now that they are mapped.
2291 	 * With hardware tag-based KASAN, marking is skipped for
2292 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2293 	 */
2294 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2295 
2296 	return mem;
2297 }
2298 EXPORT_SYMBOL(vm_map_ram);
2299 
2300 static struct vm_struct *vmlist __initdata;
2301 
2302 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2303 {
2304 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2305 	return vm->page_order;
2306 #else
2307 	return 0;
2308 #endif
2309 }
2310 
2311 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2312 {
2313 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2314 	vm->page_order = order;
2315 #else
2316 	BUG_ON(order != 0);
2317 #endif
2318 }
2319 
2320 /**
2321  * vm_area_add_early - add vmap area early during boot
2322  * @vm: vm_struct to add
2323  *
2324  * This function is used to add fixed kernel vm area to vmlist before
2325  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2326  * should contain proper values and the other fields should be zero.
2327  *
2328  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2329  */
2330 void __init vm_area_add_early(struct vm_struct *vm)
2331 {
2332 	struct vm_struct *tmp, **p;
2333 
2334 	BUG_ON(vmap_initialized);
2335 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2336 		if (tmp->addr >= vm->addr) {
2337 			BUG_ON(tmp->addr < vm->addr + vm->size);
2338 			break;
2339 		} else
2340 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2341 	}
2342 	vm->next = *p;
2343 	*p = vm;
2344 }
2345 
2346 /**
2347  * vm_area_register_early - register vmap area early during boot
2348  * @vm: vm_struct to register
2349  * @align: requested alignment
2350  *
2351  * This function is used to register kernel vm area before
2352  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2353  * proper values on entry and other fields should be zero.  On return,
2354  * vm->addr contains the allocated address.
2355  *
2356  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2357  */
2358 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2359 {
2360 	unsigned long addr = ALIGN(VMALLOC_START, align);
2361 	struct vm_struct *cur, **p;
2362 
2363 	BUG_ON(vmap_initialized);
2364 
2365 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2366 		if ((unsigned long)cur->addr - addr >= vm->size)
2367 			break;
2368 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2369 	}
2370 
2371 	BUG_ON(addr > VMALLOC_END - vm->size);
2372 	vm->addr = (void *)addr;
2373 	vm->next = *p;
2374 	*p = vm;
2375 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2376 }
2377 
2378 static void vmap_init_free_space(void)
2379 {
2380 	unsigned long vmap_start = 1;
2381 	const unsigned long vmap_end = ULONG_MAX;
2382 	struct vmap_area *busy, *free;
2383 
2384 	/*
2385 	 *     B     F     B     B     B     F
2386 	 * -|-----|.....|-----|-----|-----|.....|-
2387 	 *  |           The KVA space           |
2388 	 *  |<--------------------------------->|
2389 	 */
2390 	list_for_each_entry(busy, &vmap_area_list, list) {
2391 		if (busy->va_start - vmap_start > 0) {
2392 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2393 			if (!WARN_ON_ONCE(!free)) {
2394 				free->va_start = vmap_start;
2395 				free->va_end = busy->va_start;
2396 
2397 				insert_vmap_area_augment(free, NULL,
2398 					&free_vmap_area_root,
2399 						&free_vmap_area_list);
2400 			}
2401 		}
2402 
2403 		vmap_start = busy->va_end;
2404 	}
2405 
2406 	if (vmap_end - vmap_start > 0) {
2407 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2408 		if (!WARN_ON_ONCE(!free)) {
2409 			free->va_start = vmap_start;
2410 			free->va_end = vmap_end;
2411 
2412 			insert_vmap_area_augment(free, NULL,
2413 				&free_vmap_area_root,
2414 					&free_vmap_area_list);
2415 		}
2416 	}
2417 }
2418 
2419 void __init vmalloc_init(void)
2420 {
2421 	struct vmap_area *va;
2422 	struct vm_struct *tmp;
2423 	int i;
2424 
2425 	/*
2426 	 * Create the cache for vmap_area objects.
2427 	 */
2428 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2429 
2430 	for_each_possible_cpu(i) {
2431 		struct vmap_block_queue *vbq;
2432 		struct vfree_deferred *p;
2433 
2434 		vbq = &per_cpu(vmap_block_queue, i);
2435 		spin_lock_init(&vbq->lock);
2436 		INIT_LIST_HEAD(&vbq->free);
2437 		p = &per_cpu(vfree_deferred, i);
2438 		init_llist_head(&p->list);
2439 		INIT_WORK(&p->wq, free_work);
2440 	}
2441 
2442 	/* Import existing vmlist entries. */
2443 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2444 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2445 		if (WARN_ON_ONCE(!va))
2446 			continue;
2447 
2448 		va->va_start = (unsigned long)tmp->addr;
2449 		va->va_end = va->va_start + tmp->size;
2450 		va->vm = tmp;
2451 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2452 	}
2453 
2454 	/*
2455 	 * Now we can initialize a free vmap space.
2456 	 */
2457 	vmap_init_free_space();
2458 	vmap_initialized = true;
2459 }
2460 
2461 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2462 	struct vmap_area *va, unsigned long flags, const void *caller)
2463 {
2464 	vm->flags = flags;
2465 	vm->addr = (void *)va->va_start;
2466 	vm->size = va->va_end - va->va_start;
2467 	vm->caller = caller;
2468 	va->vm = vm;
2469 }
2470 
2471 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2472 			      unsigned long flags, const void *caller)
2473 {
2474 	spin_lock(&vmap_area_lock);
2475 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2476 	spin_unlock(&vmap_area_lock);
2477 }
2478 
2479 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2480 {
2481 	/*
2482 	 * Before removing VM_UNINITIALIZED,
2483 	 * we should make sure that vm has proper values.
2484 	 * Pair with smp_rmb() in show_numa_info().
2485 	 */
2486 	smp_wmb();
2487 	vm->flags &= ~VM_UNINITIALIZED;
2488 }
2489 
2490 static struct vm_struct *__get_vm_area_node(unsigned long size,
2491 		unsigned long align, unsigned long shift, unsigned long flags,
2492 		unsigned long start, unsigned long end, int node,
2493 		gfp_t gfp_mask, const void *caller)
2494 {
2495 	struct vmap_area *va;
2496 	struct vm_struct *area;
2497 	unsigned long requested_size = size;
2498 
2499 	BUG_ON(in_interrupt());
2500 	size = ALIGN(size, 1ul << shift);
2501 	if (unlikely(!size))
2502 		return NULL;
2503 
2504 	if (flags & VM_IOREMAP)
2505 		align = 1ul << clamp_t(int, get_count_order_long(size),
2506 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2507 
2508 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2509 	if (unlikely(!area))
2510 		return NULL;
2511 
2512 	if (!(flags & VM_NO_GUARD))
2513 		size += PAGE_SIZE;
2514 
2515 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2516 	if (IS_ERR(va)) {
2517 		kfree(area);
2518 		return NULL;
2519 	}
2520 
2521 	setup_vmalloc_vm(area, va, flags, caller);
2522 
2523 	/*
2524 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2525 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2526 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2527 	 * getting mapped in __vmalloc_node_range().
2528 	 * With hardware tag-based KASAN, marking is skipped for
2529 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2530 	 */
2531 	if (!(flags & VM_ALLOC))
2532 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2533 						    KASAN_VMALLOC_PROT_NORMAL);
2534 
2535 	return area;
2536 }
2537 
2538 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2539 				       unsigned long start, unsigned long end,
2540 				       const void *caller)
2541 {
2542 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2543 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2544 }
2545 
2546 /**
2547  * get_vm_area - reserve a contiguous kernel virtual area
2548  * @size:	 size of the area
2549  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2550  *
2551  * Search an area of @size in the kernel virtual mapping area,
2552  * and reserved it for out purposes.  Returns the area descriptor
2553  * on success or %NULL on failure.
2554  *
2555  * Return: the area descriptor on success or %NULL on failure.
2556  */
2557 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2558 {
2559 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2560 				  VMALLOC_START, VMALLOC_END,
2561 				  NUMA_NO_NODE, GFP_KERNEL,
2562 				  __builtin_return_address(0));
2563 }
2564 
2565 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2566 				const void *caller)
2567 {
2568 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2569 				  VMALLOC_START, VMALLOC_END,
2570 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2571 }
2572 
2573 /**
2574  * find_vm_area - find a continuous kernel virtual area
2575  * @addr:	  base address
2576  *
2577  * Search for the kernel VM area starting at @addr, and return it.
2578  * It is up to the caller to do all required locking to keep the returned
2579  * pointer valid.
2580  *
2581  * Return: the area descriptor on success or %NULL on failure.
2582  */
2583 struct vm_struct *find_vm_area(const void *addr)
2584 {
2585 	struct vmap_area *va;
2586 
2587 	va = find_vmap_area((unsigned long)addr);
2588 	if (!va)
2589 		return NULL;
2590 
2591 	return va->vm;
2592 }
2593 
2594 /**
2595  * remove_vm_area - find and remove a continuous kernel virtual area
2596  * @addr:	    base address
2597  *
2598  * Search for the kernel VM area starting at @addr, and remove it.
2599  * This function returns the found VM area, but using it is NOT safe
2600  * on SMP machines, except for its size or flags.
2601  *
2602  * Return: the area descriptor on success or %NULL on failure.
2603  */
2604 struct vm_struct *remove_vm_area(const void *addr)
2605 {
2606 	struct vmap_area *va;
2607 
2608 	might_sleep();
2609 
2610 	spin_lock(&vmap_area_lock);
2611 	va = __find_vmap_area((unsigned long)addr, &vmap_area_root);
2612 	if (va && va->vm) {
2613 		struct vm_struct *vm = va->vm;
2614 
2615 		va->vm = NULL;
2616 		spin_unlock(&vmap_area_lock);
2617 
2618 		kasan_free_module_shadow(vm);
2619 		free_unmap_vmap_area(va);
2620 
2621 		return vm;
2622 	}
2623 
2624 	spin_unlock(&vmap_area_lock);
2625 	return NULL;
2626 }
2627 
2628 static inline void set_area_direct_map(const struct vm_struct *area,
2629 				       int (*set_direct_map)(struct page *page))
2630 {
2631 	int i;
2632 
2633 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2634 	for (i = 0; i < area->nr_pages; i++)
2635 		if (page_address(area->pages[i]))
2636 			set_direct_map(area->pages[i]);
2637 }
2638 
2639 /* Handle removing and resetting vm mappings related to the vm_struct. */
2640 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2641 {
2642 	unsigned long start = ULONG_MAX, end = 0;
2643 	unsigned int page_order = vm_area_page_order(area);
2644 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2645 	int flush_dmap = 0;
2646 	int i;
2647 
2648 	remove_vm_area(area->addr);
2649 
2650 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2651 	if (!flush_reset)
2652 		return;
2653 
2654 	/*
2655 	 * If not deallocating pages, just do the flush of the VM area and
2656 	 * return.
2657 	 */
2658 	if (!deallocate_pages) {
2659 		vm_unmap_aliases();
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * If execution gets here, flush the vm mapping and reset the direct
2665 	 * map. Find the start and end range of the direct mappings to make sure
2666 	 * the vm_unmap_aliases() flush includes the direct map.
2667 	 */
2668 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2669 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2670 		if (addr) {
2671 			unsigned long page_size;
2672 
2673 			page_size = PAGE_SIZE << page_order;
2674 			start = min(addr, start);
2675 			end = max(addr + page_size, end);
2676 			flush_dmap = 1;
2677 		}
2678 	}
2679 
2680 	/*
2681 	 * Set direct map to something invalid so that it won't be cached if
2682 	 * there are any accesses after the TLB flush, then flush the TLB and
2683 	 * reset the direct map permissions to the default.
2684 	 */
2685 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2686 	_vm_unmap_aliases(start, end, flush_dmap);
2687 	set_area_direct_map(area, set_direct_map_default_noflush);
2688 }
2689 
2690 static void __vunmap(const void *addr, int deallocate_pages)
2691 {
2692 	struct vm_struct *area;
2693 
2694 	if (!addr)
2695 		return;
2696 
2697 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2698 			addr))
2699 		return;
2700 
2701 	area = find_vm_area(addr);
2702 	if (unlikely(!area)) {
2703 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2704 				addr);
2705 		return;
2706 	}
2707 
2708 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2709 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2710 
2711 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2712 
2713 	vm_remove_mappings(area, deallocate_pages);
2714 
2715 	if (deallocate_pages) {
2716 		int i;
2717 
2718 		for (i = 0; i < area->nr_pages; i++) {
2719 			struct page *page = area->pages[i];
2720 
2721 			BUG_ON(!page);
2722 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2723 			/*
2724 			 * High-order allocs for huge vmallocs are split, so
2725 			 * can be freed as an array of order-0 allocations
2726 			 */
2727 			__free_pages(page, 0);
2728 			cond_resched();
2729 		}
2730 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2731 
2732 		kvfree(area->pages);
2733 	}
2734 
2735 	kfree(area);
2736 }
2737 
2738 static inline void __vfree_deferred(const void *addr)
2739 {
2740 	/*
2741 	 * Use raw_cpu_ptr() because this can be called from preemptible
2742 	 * context. Preemption is absolutely fine here, because the llist_add()
2743 	 * implementation is lockless, so it works even if we are adding to
2744 	 * another cpu's list. schedule_work() should be fine with this too.
2745 	 */
2746 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2747 
2748 	if (llist_add((struct llist_node *)addr, &p->list))
2749 		schedule_work(&p->wq);
2750 }
2751 
2752 /**
2753  * vfree_atomic - release memory allocated by vmalloc()
2754  * @addr:	  memory base address
2755  *
2756  * This one is just like vfree() but can be called in any atomic context
2757  * except NMIs.
2758  */
2759 void vfree_atomic(const void *addr)
2760 {
2761 	BUG_ON(in_nmi());
2762 
2763 	kmemleak_free(addr);
2764 
2765 	if (!addr)
2766 		return;
2767 	__vfree_deferred(addr);
2768 }
2769 
2770 static void __vfree(const void *addr)
2771 {
2772 	if (unlikely(in_interrupt()))
2773 		__vfree_deferred(addr);
2774 	else
2775 		__vunmap(addr, 1);
2776 }
2777 
2778 /**
2779  * vfree - Release memory allocated by vmalloc()
2780  * @addr:  Memory base address
2781  *
2782  * Free the virtually continuous memory area starting at @addr, as obtained
2783  * from one of the vmalloc() family of APIs.  This will usually also free the
2784  * physical memory underlying the virtual allocation, but that memory is
2785  * reference counted, so it will not be freed until the last user goes away.
2786  *
2787  * If @addr is NULL, no operation is performed.
2788  *
2789  * Context:
2790  * May sleep if called *not* from interrupt context.
2791  * Must not be called in NMI context (strictly speaking, it could be
2792  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2793  * conventions for vfree() arch-dependent would be a really bad idea).
2794  */
2795 void vfree(const void *addr)
2796 {
2797 	BUG_ON(in_nmi());
2798 
2799 	kmemleak_free(addr);
2800 
2801 	might_sleep_if(!in_interrupt());
2802 
2803 	if (!addr)
2804 		return;
2805 
2806 	__vfree(addr);
2807 }
2808 EXPORT_SYMBOL(vfree);
2809 
2810 /**
2811  * vunmap - release virtual mapping obtained by vmap()
2812  * @addr:   memory base address
2813  *
2814  * Free the virtually contiguous memory area starting at @addr,
2815  * which was created from the page array passed to vmap().
2816  *
2817  * Must not be called in interrupt context.
2818  */
2819 void vunmap(const void *addr)
2820 {
2821 	BUG_ON(in_interrupt());
2822 	might_sleep();
2823 	if (addr)
2824 		__vunmap(addr, 0);
2825 }
2826 EXPORT_SYMBOL(vunmap);
2827 
2828 /**
2829  * vmap - map an array of pages into virtually contiguous space
2830  * @pages: array of page pointers
2831  * @count: number of pages to map
2832  * @flags: vm_area->flags
2833  * @prot: page protection for the mapping
2834  *
2835  * Maps @count pages from @pages into contiguous kernel virtual space.
2836  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2837  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2838  * are transferred from the caller to vmap(), and will be freed / dropped when
2839  * vfree() is called on the return value.
2840  *
2841  * Return: the address of the area or %NULL on failure
2842  */
2843 void *vmap(struct page **pages, unsigned int count,
2844 	   unsigned long flags, pgprot_t prot)
2845 {
2846 	struct vm_struct *area;
2847 	unsigned long addr;
2848 	unsigned long size;		/* In bytes */
2849 
2850 	might_sleep();
2851 
2852 	/*
2853 	 * Your top guard is someone else's bottom guard. Not having a top
2854 	 * guard compromises someone else's mappings too.
2855 	 */
2856 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2857 		flags &= ~VM_NO_GUARD;
2858 
2859 	if (count > totalram_pages())
2860 		return NULL;
2861 
2862 	size = (unsigned long)count << PAGE_SHIFT;
2863 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2864 	if (!area)
2865 		return NULL;
2866 
2867 	addr = (unsigned long)area->addr;
2868 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2869 				pages, PAGE_SHIFT) < 0) {
2870 		vunmap(area->addr);
2871 		return NULL;
2872 	}
2873 
2874 	if (flags & VM_MAP_PUT_PAGES) {
2875 		area->pages = pages;
2876 		area->nr_pages = count;
2877 	}
2878 	return area->addr;
2879 }
2880 EXPORT_SYMBOL(vmap);
2881 
2882 #ifdef CONFIG_VMAP_PFN
2883 struct vmap_pfn_data {
2884 	unsigned long	*pfns;
2885 	pgprot_t	prot;
2886 	unsigned int	idx;
2887 };
2888 
2889 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2890 {
2891 	struct vmap_pfn_data *data = private;
2892 
2893 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2894 		return -EINVAL;
2895 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2896 	return 0;
2897 }
2898 
2899 /**
2900  * vmap_pfn - map an array of PFNs into virtually contiguous space
2901  * @pfns: array of PFNs
2902  * @count: number of pages to map
2903  * @prot: page protection for the mapping
2904  *
2905  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2906  * the start address of the mapping.
2907  */
2908 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2909 {
2910 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2911 	struct vm_struct *area;
2912 
2913 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2914 			__builtin_return_address(0));
2915 	if (!area)
2916 		return NULL;
2917 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2918 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2919 		free_vm_area(area);
2920 		return NULL;
2921 	}
2922 	return area->addr;
2923 }
2924 EXPORT_SYMBOL_GPL(vmap_pfn);
2925 #endif /* CONFIG_VMAP_PFN */
2926 
2927 static inline unsigned int
2928 vm_area_alloc_pages(gfp_t gfp, int nid,
2929 		unsigned int order, unsigned int nr_pages, struct page **pages)
2930 {
2931 	unsigned int nr_allocated = 0;
2932 	struct page *page;
2933 	int i;
2934 
2935 	/*
2936 	 * For order-0 pages we make use of bulk allocator, if
2937 	 * the page array is partly or not at all populated due
2938 	 * to fails, fallback to a single page allocator that is
2939 	 * more permissive.
2940 	 */
2941 	if (!order) {
2942 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2943 
2944 		while (nr_allocated < nr_pages) {
2945 			unsigned int nr, nr_pages_request;
2946 
2947 			/*
2948 			 * A maximum allowed request is hard-coded and is 100
2949 			 * pages per call. That is done in order to prevent a
2950 			 * long preemption off scenario in the bulk-allocator
2951 			 * so the range is [1:100].
2952 			 */
2953 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2954 
2955 			/* memory allocation should consider mempolicy, we can't
2956 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2957 			 * otherwise memory may be allocated in only one node,
2958 			 * but mempolicy wants to alloc memory by interleaving.
2959 			 */
2960 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2961 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2962 							nr_pages_request,
2963 							pages + nr_allocated);
2964 
2965 			else
2966 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2967 							nr_pages_request,
2968 							pages + nr_allocated);
2969 
2970 			nr_allocated += nr;
2971 			cond_resched();
2972 
2973 			/*
2974 			 * If zero or pages were obtained partly,
2975 			 * fallback to a single page allocator.
2976 			 */
2977 			if (nr != nr_pages_request)
2978 				break;
2979 		}
2980 	}
2981 
2982 	/* High-order pages or fallback path if "bulk" fails. */
2983 
2984 	while (nr_allocated < nr_pages) {
2985 		if (fatal_signal_pending(current))
2986 			break;
2987 
2988 		if (nid == NUMA_NO_NODE)
2989 			page = alloc_pages(gfp, order);
2990 		else
2991 			page = alloc_pages_node(nid, gfp, order);
2992 		if (unlikely(!page))
2993 			break;
2994 		/*
2995 		 * Higher order allocations must be able to be treated as
2996 		 * indepdenent small pages by callers (as they can with
2997 		 * small-page vmallocs). Some drivers do their own refcounting
2998 		 * on vmalloc_to_page() pages, some use page->mapping,
2999 		 * page->lru, etc.
3000 		 */
3001 		if (order)
3002 			split_page(page, order);
3003 
3004 		/*
3005 		 * Careful, we allocate and map page-order pages, but
3006 		 * tracking is done per PAGE_SIZE page so as to keep the
3007 		 * vm_struct APIs independent of the physical/mapped size.
3008 		 */
3009 		for (i = 0; i < (1U << order); i++)
3010 			pages[nr_allocated + i] = page + i;
3011 
3012 		cond_resched();
3013 		nr_allocated += 1U << order;
3014 	}
3015 
3016 	return nr_allocated;
3017 }
3018 
3019 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3020 				 pgprot_t prot, unsigned int page_shift,
3021 				 int node)
3022 {
3023 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3024 	bool nofail = gfp_mask & __GFP_NOFAIL;
3025 	unsigned long addr = (unsigned long)area->addr;
3026 	unsigned long size = get_vm_area_size(area);
3027 	unsigned long array_size;
3028 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3029 	unsigned int page_order;
3030 	unsigned int flags;
3031 	int ret;
3032 
3033 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3034 	gfp_mask |= __GFP_NOWARN;
3035 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3036 		gfp_mask |= __GFP_HIGHMEM;
3037 
3038 	/* Please note that the recursion is strictly bounded. */
3039 	if (array_size > PAGE_SIZE) {
3040 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3041 					area->caller);
3042 	} else {
3043 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3044 	}
3045 
3046 	if (!area->pages) {
3047 		warn_alloc(gfp_mask, NULL,
3048 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3049 			nr_small_pages * PAGE_SIZE, array_size);
3050 		free_vm_area(area);
3051 		return NULL;
3052 	}
3053 
3054 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3055 	page_order = vm_area_page_order(area);
3056 
3057 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3058 		node, page_order, nr_small_pages, area->pages);
3059 
3060 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3061 	if (gfp_mask & __GFP_ACCOUNT) {
3062 		int i;
3063 
3064 		for (i = 0; i < area->nr_pages; i++)
3065 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3066 	}
3067 
3068 	/*
3069 	 * If not enough pages were obtained to accomplish an
3070 	 * allocation request, free them via __vfree() if any.
3071 	 */
3072 	if (area->nr_pages != nr_small_pages) {
3073 		warn_alloc(gfp_mask, NULL,
3074 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3075 			area->nr_pages * PAGE_SIZE, page_order);
3076 		goto fail;
3077 	}
3078 
3079 	/*
3080 	 * page tables allocations ignore external gfp mask, enforce it
3081 	 * by the scope API
3082 	 */
3083 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3084 		flags = memalloc_nofs_save();
3085 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3086 		flags = memalloc_noio_save();
3087 
3088 	do {
3089 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3090 			page_shift);
3091 		if (nofail && (ret < 0))
3092 			schedule_timeout_uninterruptible(1);
3093 	} while (nofail && (ret < 0));
3094 
3095 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3096 		memalloc_nofs_restore(flags);
3097 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3098 		memalloc_noio_restore(flags);
3099 
3100 	if (ret < 0) {
3101 		warn_alloc(gfp_mask, NULL,
3102 			"vmalloc error: size %lu, failed to map pages",
3103 			area->nr_pages * PAGE_SIZE);
3104 		goto fail;
3105 	}
3106 
3107 	return area->addr;
3108 
3109 fail:
3110 	__vfree(area->addr);
3111 	return NULL;
3112 }
3113 
3114 /**
3115  * __vmalloc_node_range - allocate virtually contiguous memory
3116  * @size:		  allocation size
3117  * @align:		  desired alignment
3118  * @start:		  vm area range start
3119  * @end:		  vm area range end
3120  * @gfp_mask:		  flags for the page level allocator
3121  * @prot:		  protection mask for the allocated pages
3122  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3123  * @node:		  node to use for allocation or NUMA_NO_NODE
3124  * @caller:		  caller's return address
3125  *
3126  * Allocate enough pages to cover @size from the page level
3127  * allocator with @gfp_mask flags. Please note that the full set of gfp
3128  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3129  * supported.
3130  * Zone modifiers are not supported. From the reclaim modifiers
3131  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3132  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3133  * __GFP_RETRY_MAYFAIL are not supported).
3134  *
3135  * __GFP_NOWARN can be used to suppress failures messages.
3136  *
3137  * Map them into contiguous kernel virtual space, using a pagetable
3138  * protection of @prot.
3139  *
3140  * Return: the address of the area or %NULL on failure
3141  */
3142 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3143 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3144 			pgprot_t prot, unsigned long vm_flags, int node,
3145 			const void *caller)
3146 {
3147 	struct vm_struct *area;
3148 	void *ret;
3149 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3150 	unsigned long real_size = size;
3151 	unsigned long real_align = align;
3152 	unsigned int shift = PAGE_SHIFT;
3153 
3154 	if (WARN_ON_ONCE(!size))
3155 		return NULL;
3156 
3157 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3158 		warn_alloc(gfp_mask, NULL,
3159 			"vmalloc error: size %lu, exceeds total pages",
3160 			real_size);
3161 		return NULL;
3162 	}
3163 
3164 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3165 		unsigned long size_per_node;
3166 
3167 		/*
3168 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3169 		 * others like modules don't yet expect huge pages in
3170 		 * their allocations due to apply_to_page_range not
3171 		 * supporting them.
3172 		 */
3173 
3174 		size_per_node = size;
3175 		if (node == NUMA_NO_NODE)
3176 			size_per_node /= num_online_nodes();
3177 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3178 			shift = PMD_SHIFT;
3179 		else
3180 			shift = arch_vmap_pte_supported_shift(size_per_node);
3181 
3182 		align = max(real_align, 1UL << shift);
3183 		size = ALIGN(real_size, 1UL << shift);
3184 	}
3185 
3186 again:
3187 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3188 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3189 				  gfp_mask, caller);
3190 	if (!area) {
3191 		bool nofail = gfp_mask & __GFP_NOFAIL;
3192 		warn_alloc(gfp_mask, NULL,
3193 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3194 			real_size, (nofail) ? ". Retrying." : "");
3195 		if (nofail) {
3196 			schedule_timeout_uninterruptible(1);
3197 			goto again;
3198 		}
3199 		goto fail;
3200 	}
3201 
3202 	/*
3203 	 * Prepare arguments for __vmalloc_area_node() and
3204 	 * kasan_unpoison_vmalloc().
3205 	 */
3206 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3207 		if (kasan_hw_tags_enabled()) {
3208 			/*
3209 			 * Modify protection bits to allow tagging.
3210 			 * This must be done before mapping.
3211 			 */
3212 			prot = arch_vmap_pgprot_tagged(prot);
3213 
3214 			/*
3215 			 * Skip page_alloc poisoning and zeroing for physical
3216 			 * pages backing VM_ALLOC mapping. Memory is instead
3217 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3218 			 */
3219 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3220 		}
3221 
3222 		/* Take note that the mapping is PAGE_KERNEL. */
3223 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3224 	}
3225 
3226 	/* Allocate physical pages and map them into vmalloc space. */
3227 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3228 	if (!ret)
3229 		goto fail;
3230 
3231 	/*
3232 	 * Mark the pages as accessible, now that they are mapped.
3233 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3234 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3235 	 * to make sure that memory is initialized under the same conditions.
3236 	 * Tag-based KASAN modes only assign tags to normal non-executable
3237 	 * allocations, see __kasan_unpoison_vmalloc().
3238 	 */
3239 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3240 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3241 	    (gfp_mask & __GFP_SKIP_ZERO))
3242 		kasan_flags |= KASAN_VMALLOC_INIT;
3243 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3244 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3245 
3246 	/*
3247 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3248 	 * flag. It means that vm_struct is not fully initialized.
3249 	 * Now, it is fully initialized, so remove this flag here.
3250 	 */
3251 	clear_vm_uninitialized_flag(area);
3252 
3253 	size = PAGE_ALIGN(size);
3254 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3255 		kmemleak_vmalloc(area, size, gfp_mask);
3256 
3257 	return area->addr;
3258 
3259 fail:
3260 	if (shift > PAGE_SHIFT) {
3261 		shift = PAGE_SHIFT;
3262 		align = real_align;
3263 		size = real_size;
3264 		goto again;
3265 	}
3266 
3267 	return NULL;
3268 }
3269 
3270 /**
3271  * __vmalloc_node - allocate virtually contiguous memory
3272  * @size:	    allocation size
3273  * @align:	    desired alignment
3274  * @gfp_mask:	    flags for the page level allocator
3275  * @node:	    node to use for allocation or NUMA_NO_NODE
3276  * @caller:	    caller's return address
3277  *
3278  * Allocate enough pages to cover @size from the page level allocator with
3279  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3280  *
3281  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3282  * and __GFP_NOFAIL are not supported
3283  *
3284  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3285  * with mm people.
3286  *
3287  * Return: pointer to the allocated memory or %NULL on error
3288  */
3289 void *__vmalloc_node(unsigned long size, unsigned long align,
3290 			    gfp_t gfp_mask, int node, const void *caller)
3291 {
3292 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3293 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3294 }
3295 /*
3296  * This is only for performance analysis of vmalloc and stress purpose.
3297  * It is required by vmalloc test module, therefore do not use it other
3298  * than that.
3299  */
3300 #ifdef CONFIG_TEST_VMALLOC_MODULE
3301 EXPORT_SYMBOL_GPL(__vmalloc_node);
3302 #endif
3303 
3304 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3305 {
3306 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3307 				__builtin_return_address(0));
3308 }
3309 EXPORT_SYMBOL(__vmalloc);
3310 
3311 /**
3312  * vmalloc - allocate virtually contiguous memory
3313  * @size:    allocation size
3314  *
3315  * Allocate enough pages to cover @size from the page level
3316  * allocator and map them into contiguous kernel virtual space.
3317  *
3318  * For tight control over page level allocator and protection flags
3319  * use __vmalloc() instead.
3320  *
3321  * Return: pointer to the allocated memory or %NULL on error
3322  */
3323 void *vmalloc(unsigned long size)
3324 {
3325 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3326 				__builtin_return_address(0));
3327 }
3328 EXPORT_SYMBOL(vmalloc);
3329 
3330 /**
3331  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3332  * @size:      allocation size
3333  * @gfp_mask:  flags for the page level allocator
3334  *
3335  * Allocate enough pages to cover @size from the page level
3336  * allocator and map them into contiguous kernel virtual space.
3337  * If @size is greater than or equal to PMD_SIZE, allow using
3338  * huge pages for the memory
3339  *
3340  * Return: pointer to the allocated memory or %NULL on error
3341  */
3342 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3343 {
3344 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3345 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3346 				    NUMA_NO_NODE, __builtin_return_address(0));
3347 }
3348 EXPORT_SYMBOL_GPL(vmalloc_huge);
3349 
3350 /**
3351  * vzalloc - allocate virtually contiguous memory with zero fill
3352  * @size:    allocation size
3353  *
3354  * Allocate enough pages to cover @size from the page level
3355  * allocator and map them into contiguous kernel virtual space.
3356  * The memory allocated is set to zero.
3357  *
3358  * For tight control over page level allocator and protection flags
3359  * use __vmalloc() instead.
3360  *
3361  * Return: pointer to the allocated memory or %NULL on error
3362  */
3363 void *vzalloc(unsigned long size)
3364 {
3365 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3366 				__builtin_return_address(0));
3367 }
3368 EXPORT_SYMBOL(vzalloc);
3369 
3370 /**
3371  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3372  * @size: allocation size
3373  *
3374  * The resulting memory area is zeroed so it can be mapped to userspace
3375  * without leaking data.
3376  *
3377  * Return: pointer to the allocated memory or %NULL on error
3378  */
3379 void *vmalloc_user(unsigned long size)
3380 {
3381 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3382 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3383 				    VM_USERMAP, NUMA_NO_NODE,
3384 				    __builtin_return_address(0));
3385 }
3386 EXPORT_SYMBOL(vmalloc_user);
3387 
3388 /**
3389  * vmalloc_node - allocate memory on a specific node
3390  * @size:	  allocation size
3391  * @node:	  numa node
3392  *
3393  * Allocate enough pages to cover @size from the page level
3394  * allocator and map them into contiguous kernel virtual space.
3395  *
3396  * For tight control over page level allocator and protection flags
3397  * use __vmalloc() instead.
3398  *
3399  * Return: pointer to the allocated memory or %NULL on error
3400  */
3401 void *vmalloc_node(unsigned long size, int node)
3402 {
3403 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3404 			__builtin_return_address(0));
3405 }
3406 EXPORT_SYMBOL(vmalloc_node);
3407 
3408 /**
3409  * vzalloc_node - allocate memory on a specific node with zero fill
3410  * @size:	allocation size
3411  * @node:	numa node
3412  *
3413  * Allocate enough pages to cover @size from the page level
3414  * allocator and map them into contiguous kernel virtual space.
3415  * The memory allocated is set to zero.
3416  *
3417  * Return: pointer to the allocated memory or %NULL on error
3418  */
3419 void *vzalloc_node(unsigned long size, int node)
3420 {
3421 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3422 				__builtin_return_address(0));
3423 }
3424 EXPORT_SYMBOL(vzalloc_node);
3425 
3426 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3427 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3428 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3429 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3430 #else
3431 /*
3432  * 64b systems should always have either DMA or DMA32 zones. For others
3433  * GFP_DMA32 should do the right thing and use the normal zone.
3434  */
3435 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3436 #endif
3437 
3438 /**
3439  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3440  * @size:	allocation size
3441  *
3442  * Allocate enough 32bit PA addressable pages to cover @size from the
3443  * page level allocator and map them into contiguous kernel virtual space.
3444  *
3445  * Return: pointer to the allocated memory or %NULL on error
3446  */
3447 void *vmalloc_32(unsigned long size)
3448 {
3449 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3450 			__builtin_return_address(0));
3451 }
3452 EXPORT_SYMBOL(vmalloc_32);
3453 
3454 /**
3455  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3456  * @size:	     allocation size
3457  *
3458  * The resulting memory area is 32bit addressable and zeroed so it can be
3459  * mapped to userspace without leaking data.
3460  *
3461  * Return: pointer to the allocated memory or %NULL on error
3462  */
3463 void *vmalloc_32_user(unsigned long size)
3464 {
3465 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3466 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3467 				    VM_USERMAP, NUMA_NO_NODE,
3468 				    __builtin_return_address(0));
3469 }
3470 EXPORT_SYMBOL(vmalloc_32_user);
3471 
3472 /*
3473  * small helper routine , copy contents to buf from addr.
3474  * If the page is not present, fill zero.
3475  */
3476 
3477 static int aligned_vread(char *buf, char *addr, unsigned long count)
3478 {
3479 	struct page *p;
3480 	int copied = 0;
3481 
3482 	while (count) {
3483 		unsigned long offset, length;
3484 
3485 		offset = offset_in_page(addr);
3486 		length = PAGE_SIZE - offset;
3487 		if (length > count)
3488 			length = count;
3489 		p = vmalloc_to_page(addr);
3490 		/*
3491 		 * To do safe access to this _mapped_ area, we need
3492 		 * lock. But adding lock here means that we need to add
3493 		 * overhead of vmalloc()/vfree() calls for this _debug_
3494 		 * interface, rarely used. Instead of that, we'll use
3495 		 * kmap() and get small overhead in this access function.
3496 		 */
3497 		if (p) {
3498 			/* We can expect USER0 is not used -- see vread() */
3499 			void *map = kmap_atomic(p);
3500 			memcpy(buf, map + offset, length);
3501 			kunmap_atomic(map);
3502 		} else
3503 			memset(buf, 0, length);
3504 
3505 		addr += length;
3506 		buf += length;
3507 		copied += length;
3508 		count -= length;
3509 	}
3510 	return copied;
3511 }
3512 
3513 /**
3514  * vread() - read vmalloc area in a safe way.
3515  * @buf:     buffer for reading data
3516  * @addr:    vm address.
3517  * @count:   number of bytes to be read.
3518  *
3519  * This function checks that addr is a valid vmalloc'ed area, and
3520  * copy data from that area to a given buffer. If the given memory range
3521  * of [addr...addr+count) includes some valid address, data is copied to
3522  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3523  * IOREMAP area is treated as memory hole and no copy is done.
3524  *
3525  * If [addr...addr+count) doesn't includes any intersects with alive
3526  * vm_struct area, returns 0. @buf should be kernel's buffer.
3527  *
3528  * Note: In usual ops, vread() is never necessary because the caller
3529  * should know vmalloc() area is valid and can use memcpy().
3530  * This is for routines which have to access vmalloc area without
3531  * any information, as /proc/kcore.
3532  *
3533  * Return: number of bytes for which addr and buf should be increased
3534  * (same number as @count) or %0 if [addr...addr+count) doesn't
3535  * include any intersection with valid vmalloc area
3536  */
3537 long vread(char *buf, char *addr, unsigned long count)
3538 {
3539 	struct vmap_area *va;
3540 	struct vm_struct *vm;
3541 	char *vaddr, *buf_start = buf;
3542 	unsigned long buflen = count;
3543 	unsigned long n;
3544 
3545 	addr = kasan_reset_tag(addr);
3546 
3547 	/* Don't allow overflow */
3548 	if ((unsigned long) addr + count < count)
3549 		count = -(unsigned long) addr;
3550 
3551 	spin_lock(&vmap_area_lock);
3552 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3553 	if (!va)
3554 		goto finished;
3555 
3556 	/* no intersects with alive vmap_area */
3557 	if ((unsigned long)addr + count <= va->va_start)
3558 		goto finished;
3559 
3560 	list_for_each_entry_from(va, &vmap_area_list, list) {
3561 		if (!count)
3562 			break;
3563 
3564 		if (!va->vm)
3565 			continue;
3566 
3567 		vm = va->vm;
3568 		vaddr = (char *) vm->addr;
3569 		if (addr >= vaddr + get_vm_area_size(vm))
3570 			continue;
3571 		while (addr < vaddr) {
3572 			if (count == 0)
3573 				goto finished;
3574 			*buf = '\0';
3575 			buf++;
3576 			addr++;
3577 			count--;
3578 		}
3579 		n = vaddr + get_vm_area_size(vm) - addr;
3580 		if (n > count)
3581 			n = count;
3582 		if (!(vm->flags & VM_IOREMAP))
3583 			aligned_vread(buf, addr, n);
3584 		else /* IOREMAP area is treated as memory hole */
3585 			memset(buf, 0, n);
3586 		buf += n;
3587 		addr += n;
3588 		count -= n;
3589 	}
3590 finished:
3591 	spin_unlock(&vmap_area_lock);
3592 
3593 	if (buf == buf_start)
3594 		return 0;
3595 	/* zero-fill memory holes */
3596 	if (buf != buf_start + buflen)
3597 		memset(buf, 0, buflen - (buf - buf_start));
3598 
3599 	return buflen;
3600 }
3601 
3602 /**
3603  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3604  * @vma:		vma to cover
3605  * @uaddr:		target user address to start at
3606  * @kaddr:		virtual address of vmalloc kernel memory
3607  * @pgoff:		offset from @kaddr to start at
3608  * @size:		size of map area
3609  *
3610  * Returns:	0 for success, -Exxx on failure
3611  *
3612  * This function checks that @kaddr is a valid vmalloc'ed area,
3613  * and that it is big enough to cover the range starting at
3614  * @uaddr in @vma. Will return failure if that criteria isn't
3615  * met.
3616  *
3617  * Similar to remap_pfn_range() (see mm/memory.c)
3618  */
3619 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3620 				void *kaddr, unsigned long pgoff,
3621 				unsigned long size)
3622 {
3623 	struct vm_struct *area;
3624 	unsigned long off;
3625 	unsigned long end_index;
3626 
3627 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3628 		return -EINVAL;
3629 
3630 	size = PAGE_ALIGN(size);
3631 
3632 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3633 		return -EINVAL;
3634 
3635 	area = find_vm_area(kaddr);
3636 	if (!area)
3637 		return -EINVAL;
3638 
3639 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3640 		return -EINVAL;
3641 
3642 	if (check_add_overflow(size, off, &end_index) ||
3643 	    end_index > get_vm_area_size(area))
3644 		return -EINVAL;
3645 	kaddr += off;
3646 
3647 	do {
3648 		struct page *page = vmalloc_to_page(kaddr);
3649 		int ret;
3650 
3651 		ret = vm_insert_page(vma, uaddr, page);
3652 		if (ret)
3653 			return ret;
3654 
3655 		uaddr += PAGE_SIZE;
3656 		kaddr += PAGE_SIZE;
3657 		size -= PAGE_SIZE;
3658 	} while (size > 0);
3659 
3660 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3661 
3662 	return 0;
3663 }
3664 
3665 /**
3666  * remap_vmalloc_range - map vmalloc pages to userspace
3667  * @vma:		vma to cover (map full range of vma)
3668  * @addr:		vmalloc memory
3669  * @pgoff:		number of pages into addr before first page to map
3670  *
3671  * Returns:	0 for success, -Exxx on failure
3672  *
3673  * This function checks that addr is a valid vmalloc'ed area, and
3674  * that it is big enough to cover the vma. Will return failure if
3675  * that criteria isn't met.
3676  *
3677  * Similar to remap_pfn_range() (see mm/memory.c)
3678  */
3679 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3680 						unsigned long pgoff)
3681 {
3682 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3683 					   addr, pgoff,
3684 					   vma->vm_end - vma->vm_start);
3685 }
3686 EXPORT_SYMBOL(remap_vmalloc_range);
3687 
3688 void free_vm_area(struct vm_struct *area)
3689 {
3690 	struct vm_struct *ret;
3691 	ret = remove_vm_area(area->addr);
3692 	BUG_ON(ret != area);
3693 	kfree(area);
3694 }
3695 EXPORT_SYMBOL_GPL(free_vm_area);
3696 
3697 #ifdef CONFIG_SMP
3698 static struct vmap_area *node_to_va(struct rb_node *n)
3699 {
3700 	return rb_entry_safe(n, struct vmap_area, rb_node);
3701 }
3702 
3703 /**
3704  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3705  * @addr: target address
3706  *
3707  * Returns: vmap_area if it is found. If there is no such area
3708  *   the first highest(reverse order) vmap_area is returned
3709  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3710  *   if there are no any areas before @addr.
3711  */
3712 static struct vmap_area *
3713 pvm_find_va_enclose_addr(unsigned long addr)
3714 {
3715 	struct vmap_area *va, *tmp;
3716 	struct rb_node *n;
3717 
3718 	n = free_vmap_area_root.rb_node;
3719 	va = NULL;
3720 
3721 	while (n) {
3722 		tmp = rb_entry(n, struct vmap_area, rb_node);
3723 		if (tmp->va_start <= addr) {
3724 			va = tmp;
3725 			if (tmp->va_end >= addr)
3726 				break;
3727 
3728 			n = n->rb_right;
3729 		} else {
3730 			n = n->rb_left;
3731 		}
3732 	}
3733 
3734 	return va;
3735 }
3736 
3737 /**
3738  * pvm_determine_end_from_reverse - find the highest aligned address
3739  * of free block below VMALLOC_END
3740  * @va:
3741  *   in - the VA we start the search(reverse order);
3742  *   out - the VA with the highest aligned end address.
3743  * @align: alignment for required highest address
3744  *
3745  * Returns: determined end address within vmap_area
3746  */
3747 static unsigned long
3748 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3749 {
3750 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3751 	unsigned long addr;
3752 
3753 	if (likely(*va)) {
3754 		list_for_each_entry_from_reverse((*va),
3755 				&free_vmap_area_list, list) {
3756 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3757 			if ((*va)->va_start < addr)
3758 				return addr;
3759 		}
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 /**
3766  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3767  * @offsets: array containing offset of each area
3768  * @sizes: array containing size of each area
3769  * @nr_vms: the number of areas to allocate
3770  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3771  *
3772  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3773  *	    vm_structs on success, %NULL on failure
3774  *
3775  * Percpu allocator wants to use congruent vm areas so that it can
3776  * maintain the offsets among percpu areas.  This function allocates
3777  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3778  * be scattered pretty far, distance between two areas easily going up
3779  * to gigabytes.  To avoid interacting with regular vmallocs, these
3780  * areas are allocated from top.
3781  *
3782  * Despite its complicated look, this allocator is rather simple. It
3783  * does everything top-down and scans free blocks from the end looking
3784  * for matching base. While scanning, if any of the areas do not fit the
3785  * base address is pulled down to fit the area. Scanning is repeated till
3786  * all the areas fit and then all necessary data structures are inserted
3787  * and the result is returned.
3788  */
3789 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3790 				     const size_t *sizes, int nr_vms,
3791 				     size_t align)
3792 {
3793 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3794 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3795 	struct vmap_area **vas, *va;
3796 	struct vm_struct **vms;
3797 	int area, area2, last_area, term_area;
3798 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3799 	bool purged = false;
3800 
3801 	/* verify parameters and allocate data structures */
3802 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3803 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3804 		start = offsets[area];
3805 		end = start + sizes[area];
3806 
3807 		/* is everything aligned properly? */
3808 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3809 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3810 
3811 		/* detect the area with the highest address */
3812 		if (start > offsets[last_area])
3813 			last_area = area;
3814 
3815 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3816 			unsigned long start2 = offsets[area2];
3817 			unsigned long end2 = start2 + sizes[area2];
3818 
3819 			BUG_ON(start2 < end && start < end2);
3820 		}
3821 	}
3822 	last_end = offsets[last_area] + sizes[last_area];
3823 
3824 	if (vmalloc_end - vmalloc_start < last_end) {
3825 		WARN_ON(true);
3826 		return NULL;
3827 	}
3828 
3829 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3830 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3831 	if (!vas || !vms)
3832 		goto err_free2;
3833 
3834 	for (area = 0; area < nr_vms; area++) {
3835 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3836 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3837 		if (!vas[area] || !vms[area])
3838 			goto err_free;
3839 	}
3840 retry:
3841 	spin_lock(&free_vmap_area_lock);
3842 
3843 	/* start scanning - we scan from the top, begin with the last area */
3844 	area = term_area = last_area;
3845 	start = offsets[area];
3846 	end = start + sizes[area];
3847 
3848 	va = pvm_find_va_enclose_addr(vmalloc_end);
3849 	base = pvm_determine_end_from_reverse(&va, align) - end;
3850 
3851 	while (true) {
3852 		/*
3853 		 * base might have underflowed, add last_end before
3854 		 * comparing.
3855 		 */
3856 		if (base + last_end < vmalloc_start + last_end)
3857 			goto overflow;
3858 
3859 		/*
3860 		 * Fitting base has not been found.
3861 		 */
3862 		if (va == NULL)
3863 			goto overflow;
3864 
3865 		/*
3866 		 * If required width exceeds current VA block, move
3867 		 * base downwards and then recheck.
3868 		 */
3869 		if (base + end > va->va_end) {
3870 			base = pvm_determine_end_from_reverse(&va, align) - end;
3871 			term_area = area;
3872 			continue;
3873 		}
3874 
3875 		/*
3876 		 * If this VA does not fit, move base downwards and recheck.
3877 		 */
3878 		if (base + start < va->va_start) {
3879 			va = node_to_va(rb_prev(&va->rb_node));
3880 			base = pvm_determine_end_from_reverse(&va, align) - end;
3881 			term_area = area;
3882 			continue;
3883 		}
3884 
3885 		/*
3886 		 * This area fits, move on to the previous one.  If
3887 		 * the previous one is the terminal one, we're done.
3888 		 */
3889 		area = (area + nr_vms - 1) % nr_vms;
3890 		if (area == term_area)
3891 			break;
3892 
3893 		start = offsets[area];
3894 		end = start + sizes[area];
3895 		va = pvm_find_va_enclose_addr(base + end);
3896 	}
3897 
3898 	/* we've found a fitting base, insert all va's */
3899 	for (area = 0; area < nr_vms; area++) {
3900 		int ret;
3901 
3902 		start = base + offsets[area];
3903 		size = sizes[area];
3904 
3905 		va = pvm_find_va_enclose_addr(start);
3906 		if (WARN_ON_ONCE(va == NULL))
3907 			/* It is a BUG(), but trigger recovery instead. */
3908 			goto recovery;
3909 
3910 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
3911 					    &free_vmap_area_list,
3912 					    va, start, size);
3913 		if (WARN_ON_ONCE(unlikely(ret)))
3914 			/* It is a BUG(), but trigger recovery instead. */
3915 			goto recovery;
3916 
3917 		/* Allocated area. */
3918 		va = vas[area];
3919 		va->va_start = start;
3920 		va->va_end = start + size;
3921 	}
3922 
3923 	spin_unlock(&free_vmap_area_lock);
3924 
3925 	/* populate the kasan shadow space */
3926 	for (area = 0; area < nr_vms; area++) {
3927 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3928 			goto err_free_shadow;
3929 	}
3930 
3931 	/* insert all vm's */
3932 	spin_lock(&vmap_area_lock);
3933 	for (area = 0; area < nr_vms; area++) {
3934 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3935 
3936 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3937 				 pcpu_get_vm_areas);
3938 	}
3939 	spin_unlock(&vmap_area_lock);
3940 
3941 	/*
3942 	 * Mark allocated areas as accessible. Do it now as a best-effort
3943 	 * approach, as they can be mapped outside of vmalloc code.
3944 	 * With hardware tag-based KASAN, marking is skipped for
3945 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3946 	 */
3947 	for (area = 0; area < nr_vms; area++)
3948 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3949 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3950 
3951 	kfree(vas);
3952 	return vms;
3953 
3954 recovery:
3955 	/*
3956 	 * Remove previously allocated areas. There is no
3957 	 * need in removing these areas from the busy tree,
3958 	 * because they are inserted only on the final step
3959 	 * and when pcpu_get_vm_areas() is success.
3960 	 */
3961 	while (area--) {
3962 		orig_start = vas[area]->va_start;
3963 		orig_end = vas[area]->va_end;
3964 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3965 				&free_vmap_area_list);
3966 		if (va)
3967 			kasan_release_vmalloc(orig_start, orig_end,
3968 				va->va_start, va->va_end);
3969 		vas[area] = NULL;
3970 	}
3971 
3972 overflow:
3973 	spin_unlock(&free_vmap_area_lock);
3974 	if (!purged) {
3975 		purge_vmap_area_lazy();
3976 		purged = true;
3977 
3978 		/* Before "retry", check if we recover. */
3979 		for (area = 0; area < nr_vms; area++) {
3980 			if (vas[area])
3981 				continue;
3982 
3983 			vas[area] = kmem_cache_zalloc(
3984 				vmap_area_cachep, GFP_KERNEL);
3985 			if (!vas[area])
3986 				goto err_free;
3987 		}
3988 
3989 		goto retry;
3990 	}
3991 
3992 err_free:
3993 	for (area = 0; area < nr_vms; area++) {
3994 		if (vas[area])
3995 			kmem_cache_free(vmap_area_cachep, vas[area]);
3996 
3997 		kfree(vms[area]);
3998 	}
3999 err_free2:
4000 	kfree(vas);
4001 	kfree(vms);
4002 	return NULL;
4003 
4004 err_free_shadow:
4005 	spin_lock(&free_vmap_area_lock);
4006 	/*
4007 	 * We release all the vmalloc shadows, even the ones for regions that
4008 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4009 	 * being able to tolerate this case.
4010 	 */
4011 	for (area = 0; area < nr_vms; area++) {
4012 		orig_start = vas[area]->va_start;
4013 		orig_end = vas[area]->va_end;
4014 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4015 				&free_vmap_area_list);
4016 		if (va)
4017 			kasan_release_vmalloc(orig_start, orig_end,
4018 				va->va_start, va->va_end);
4019 		vas[area] = NULL;
4020 		kfree(vms[area]);
4021 	}
4022 	spin_unlock(&free_vmap_area_lock);
4023 	kfree(vas);
4024 	kfree(vms);
4025 	return NULL;
4026 }
4027 
4028 /**
4029  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4030  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4031  * @nr_vms: the number of allocated areas
4032  *
4033  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4034  */
4035 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4036 {
4037 	int i;
4038 
4039 	for (i = 0; i < nr_vms; i++)
4040 		free_vm_area(vms[i]);
4041 	kfree(vms);
4042 }
4043 #endif	/* CONFIG_SMP */
4044 
4045 #ifdef CONFIG_PRINTK
4046 bool vmalloc_dump_obj(void *object)
4047 {
4048 	struct vm_struct *vm;
4049 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4050 
4051 	vm = find_vm_area(objp);
4052 	if (!vm)
4053 		return false;
4054 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4055 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4056 	return true;
4057 }
4058 #endif
4059 
4060 #ifdef CONFIG_PROC_FS
4061 static void *s_start(struct seq_file *m, loff_t *pos)
4062 	__acquires(&vmap_purge_lock)
4063 	__acquires(&vmap_area_lock)
4064 {
4065 	mutex_lock(&vmap_purge_lock);
4066 	spin_lock(&vmap_area_lock);
4067 
4068 	return seq_list_start(&vmap_area_list, *pos);
4069 }
4070 
4071 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4072 {
4073 	return seq_list_next(p, &vmap_area_list, pos);
4074 }
4075 
4076 static void s_stop(struct seq_file *m, void *p)
4077 	__releases(&vmap_area_lock)
4078 	__releases(&vmap_purge_lock)
4079 {
4080 	spin_unlock(&vmap_area_lock);
4081 	mutex_unlock(&vmap_purge_lock);
4082 }
4083 
4084 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4085 {
4086 	if (IS_ENABLED(CONFIG_NUMA)) {
4087 		unsigned int nr, *counters = m->private;
4088 		unsigned int step = 1U << vm_area_page_order(v);
4089 
4090 		if (!counters)
4091 			return;
4092 
4093 		if (v->flags & VM_UNINITIALIZED)
4094 			return;
4095 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4096 		smp_rmb();
4097 
4098 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4099 
4100 		for (nr = 0; nr < v->nr_pages; nr += step)
4101 			counters[page_to_nid(v->pages[nr])] += step;
4102 		for_each_node_state(nr, N_HIGH_MEMORY)
4103 			if (counters[nr])
4104 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4105 	}
4106 }
4107 
4108 static void show_purge_info(struct seq_file *m)
4109 {
4110 	struct vmap_area *va;
4111 
4112 	spin_lock(&purge_vmap_area_lock);
4113 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4114 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4115 			(void *)va->va_start, (void *)va->va_end,
4116 			va->va_end - va->va_start);
4117 	}
4118 	spin_unlock(&purge_vmap_area_lock);
4119 }
4120 
4121 static int s_show(struct seq_file *m, void *p)
4122 {
4123 	struct vmap_area *va;
4124 	struct vm_struct *v;
4125 
4126 	va = list_entry(p, struct vmap_area, list);
4127 
4128 	/*
4129 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4130 	 * of vmap area is being tear down or vm_map_ram allocation.
4131 	 */
4132 	if (!va->vm) {
4133 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4134 			(void *)va->va_start, (void *)va->va_end,
4135 			va->va_end - va->va_start);
4136 
4137 		goto final;
4138 	}
4139 
4140 	v = va->vm;
4141 
4142 	seq_printf(m, "0x%pK-0x%pK %7ld",
4143 		v->addr, v->addr + v->size, v->size);
4144 
4145 	if (v->caller)
4146 		seq_printf(m, " %pS", v->caller);
4147 
4148 	if (v->nr_pages)
4149 		seq_printf(m, " pages=%d", v->nr_pages);
4150 
4151 	if (v->phys_addr)
4152 		seq_printf(m, " phys=%pa", &v->phys_addr);
4153 
4154 	if (v->flags & VM_IOREMAP)
4155 		seq_puts(m, " ioremap");
4156 
4157 	if (v->flags & VM_ALLOC)
4158 		seq_puts(m, " vmalloc");
4159 
4160 	if (v->flags & VM_MAP)
4161 		seq_puts(m, " vmap");
4162 
4163 	if (v->flags & VM_USERMAP)
4164 		seq_puts(m, " user");
4165 
4166 	if (v->flags & VM_DMA_COHERENT)
4167 		seq_puts(m, " dma-coherent");
4168 
4169 	if (is_vmalloc_addr(v->pages))
4170 		seq_puts(m, " vpages");
4171 
4172 	show_numa_info(m, v);
4173 	seq_putc(m, '\n');
4174 
4175 	/*
4176 	 * As a final step, dump "unpurged" areas.
4177 	 */
4178 final:
4179 	if (list_is_last(&va->list, &vmap_area_list))
4180 		show_purge_info(m);
4181 
4182 	return 0;
4183 }
4184 
4185 static const struct seq_operations vmalloc_op = {
4186 	.start = s_start,
4187 	.next = s_next,
4188 	.stop = s_stop,
4189 	.show = s_show,
4190 };
4191 
4192 static int __init proc_vmalloc_init(void)
4193 {
4194 	if (IS_ENABLED(CONFIG_NUMA))
4195 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4196 				&vmalloc_op,
4197 				nr_node_ids * sizeof(unsigned int), NULL);
4198 	else
4199 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4200 	return 0;
4201 }
4202 module_init(proc_vmalloc_init);
4203 
4204 #endif
4205