1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 27 #include <asm/atomic.h> 28 #include <asm/uaccess.h> 29 #include <asm/tlbflush.h> 30 31 32 /*** Page table manipulation functions ***/ 33 34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 35 { 36 pte_t *pte; 37 38 pte = pte_offset_kernel(pmd, addr); 39 do { 40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 41 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 42 } while (pte++, addr += PAGE_SIZE, addr != end); 43 } 44 45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 46 { 47 pmd_t *pmd; 48 unsigned long next; 49 50 pmd = pmd_offset(pud, addr); 51 do { 52 next = pmd_addr_end(addr, end); 53 if (pmd_none_or_clear_bad(pmd)) 54 continue; 55 vunmap_pte_range(pmd, addr, next); 56 } while (pmd++, addr = next, addr != end); 57 } 58 59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 60 { 61 pud_t *pud; 62 unsigned long next; 63 64 pud = pud_offset(pgd, addr); 65 do { 66 next = pud_addr_end(addr, end); 67 if (pud_none_or_clear_bad(pud)) 68 continue; 69 vunmap_pmd_range(pud, addr, next); 70 } while (pud++, addr = next, addr != end); 71 } 72 73 static void vunmap_page_range(unsigned long addr, unsigned long end) 74 { 75 pgd_t *pgd; 76 unsigned long next; 77 78 BUG_ON(addr >= end); 79 pgd = pgd_offset_k(addr); 80 flush_cache_vunmap(addr, end); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 } 88 89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 91 { 92 pte_t *pte; 93 94 /* 95 * nr is a running index into the array which helps higher level 96 * callers keep track of where we're up to. 97 */ 98 99 pte = pte_alloc_kernel(pmd, addr); 100 if (!pte) 101 return -ENOMEM; 102 do { 103 struct page *page = pages[*nr]; 104 105 if (WARN_ON(!pte_none(*pte))) 106 return -EBUSY; 107 if (WARN_ON(!page)) 108 return -ENOMEM; 109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 110 (*nr)++; 111 } while (pte++, addr += PAGE_SIZE, addr != end); 112 return 0; 113 } 114 115 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 116 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 117 { 118 pmd_t *pmd; 119 unsigned long next; 120 121 pmd = pmd_alloc(&init_mm, pud, addr); 122 if (!pmd) 123 return -ENOMEM; 124 do { 125 next = pmd_addr_end(addr, end); 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 127 return -ENOMEM; 128 } while (pmd++, addr = next, addr != end); 129 return 0; 130 } 131 132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 133 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 134 { 135 pud_t *pud; 136 unsigned long next; 137 138 pud = pud_alloc(&init_mm, pgd, addr); 139 if (!pud) 140 return -ENOMEM; 141 do { 142 next = pud_addr_end(addr, end); 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 144 return -ENOMEM; 145 } while (pud++, addr = next, addr != end); 146 return 0; 147 } 148 149 /* 150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 151 * will have pfns corresponding to the "pages" array. 152 * 153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 154 */ 155 static int vmap_page_range(unsigned long addr, unsigned long end, 156 pgprot_t prot, struct page **pages) 157 { 158 pgd_t *pgd; 159 unsigned long next; 160 int err = 0; 161 int nr = 0; 162 163 BUG_ON(addr >= end); 164 pgd = pgd_offset_k(addr); 165 do { 166 next = pgd_addr_end(addr, end); 167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 168 if (err) 169 break; 170 } while (pgd++, addr = next, addr != end); 171 flush_cache_vmap(addr, end); 172 173 if (unlikely(err)) 174 return err; 175 return nr; 176 } 177 178 static inline int is_vmalloc_or_module_addr(const void *x) 179 { 180 /* 181 * x86-64 and sparc64 put modules in a special place, 182 * and fall back on vmalloc() if that fails. Others 183 * just put it in the vmalloc space. 184 */ 185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 186 unsigned long addr = (unsigned long)x; 187 if (addr >= MODULES_VADDR && addr < MODULES_END) 188 return 1; 189 #endif 190 return is_vmalloc_addr(x); 191 } 192 193 /* 194 * Walk a vmap address to the struct page it maps. 195 */ 196 struct page *vmalloc_to_page(const void *vmalloc_addr) 197 { 198 unsigned long addr = (unsigned long) vmalloc_addr; 199 struct page *page = NULL; 200 pgd_t *pgd = pgd_offset_k(addr); 201 202 /* 203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 204 * architectures that do not vmalloc module space 205 */ 206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 207 208 if (!pgd_none(*pgd)) { 209 pud_t *pud = pud_offset(pgd, addr); 210 if (!pud_none(*pud)) { 211 pmd_t *pmd = pmd_offset(pud, addr); 212 if (!pmd_none(*pmd)) { 213 pte_t *ptep, pte; 214 215 ptep = pte_offset_map(pmd, addr); 216 pte = *ptep; 217 if (pte_present(pte)) 218 page = pte_page(pte); 219 pte_unmap(ptep); 220 } 221 } 222 } 223 return page; 224 } 225 EXPORT_SYMBOL(vmalloc_to_page); 226 227 /* 228 * Map a vmalloc()-space virtual address to the physical page frame number. 229 */ 230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 231 { 232 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 233 } 234 EXPORT_SYMBOL(vmalloc_to_pfn); 235 236 237 /*** Global kva allocator ***/ 238 239 #define VM_LAZY_FREE 0x01 240 #define VM_LAZY_FREEING 0x02 241 #define VM_VM_AREA 0x04 242 243 struct vmap_area { 244 unsigned long va_start; 245 unsigned long va_end; 246 unsigned long flags; 247 struct rb_node rb_node; /* address sorted rbtree */ 248 struct list_head list; /* address sorted list */ 249 struct list_head purge_list; /* "lazy purge" list */ 250 void *private; 251 struct rcu_head rcu_head; 252 }; 253 254 static DEFINE_SPINLOCK(vmap_area_lock); 255 static struct rb_root vmap_area_root = RB_ROOT; 256 static LIST_HEAD(vmap_area_list); 257 258 static struct vmap_area *__find_vmap_area(unsigned long addr) 259 { 260 struct rb_node *n = vmap_area_root.rb_node; 261 262 while (n) { 263 struct vmap_area *va; 264 265 va = rb_entry(n, struct vmap_area, rb_node); 266 if (addr < va->va_start) 267 n = n->rb_left; 268 else if (addr > va->va_start) 269 n = n->rb_right; 270 else 271 return va; 272 } 273 274 return NULL; 275 } 276 277 static void __insert_vmap_area(struct vmap_area *va) 278 { 279 struct rb_node **p = &vmap_area_root.rb_node; 280 struct rb_node *parent = NULL; 281 struct rb_node *tmp; 282 283 while (*p) { 284 struct vmap_area *tmp; 285 286 parent = *p; 287 tmp = rb_entry(parent, struct vmap_area, rb_node); 288 if (va->va_start < tmp->va_end) 289 p = &(*p)->rb_left; 290 else if (va->va_end > tmp->va_start) 291 p = &(*p)->rb_right; 292 else 293 BUG(); 294 } 295 296 rb_link_node(&va->rb_node, parent, p); 297 rb_insert_color(&va->rb_node, &vmap_area_root); 298 299 /* address-sort this list so it is usable like the vmlist */ 300 tmp = rb_prev(&va->rb_node); 301 if (tmp) { 302 struct vmap_area *prev; 303 prev = rb_entry(tmp, struct vmap_area, rb_node); 304 list_add_rcu(&va->list, &prev->list); 305 } else 306 list_add_rcu(&va->list, &vmap_area_list); 307 } 308 309 static void purge_vmap_area_lazy(void); 310 311 /* 312 * Allocate a region of KVA of the specified size and alignment, within the 313 * vstart and vend. 314 */ 315 static struct vmap_area *alloc_vmap_area(unsigned long size, 316 unsigned long align, 317 unsigned long vstart, unsigned long vend, 318 int node, gfp_t gfp_mask) 319 { 320 struct vmap_area *va; 321 struct rb_node *n; 322 unsigned long addr; 323 int purged = 0; 324 325 BUG_ON(size & ~PAGE_MASK); 326 327 addr = ALIGN(vstart, align); 328 329 va = kmalloc_node(sizeof(struct vmap_area), 330 gfp_mask & GFP_RECLAIM_MASK, node); 331 if (unlikely(!va)) 332 return ERR_PTR(-ENOMEM); 333 334 retry: 335 spin_lock(&vmap_area_lock); 336 /* XXX: could have a last_hole cache */ 337 n = vmap_area_root.rb_node; 338 if (n) { 339 struct vmap_area *first = NULL; 340 341 do { 342 struct vmap_area *tmp; 343 tmp = rb_entry(n, struct vmap_area, rb_node); 344 if (tmp->va_end >= addr) { 345 if (!first && tmp->va_start < addr + size) 346 first = tmp; 347 n = n->rb_left; 348 } else { 349 first = tmp; 350 n = n->rb_right; 351 } 352 } while (n); 353 354 if (!first) 355 goto found; 356 357 if (first->va_end < addr) { 358 n = rb_next(&first->rb_node); 359 if (n) 360 first = rb_entry(n, struct vmap_area, rb_node); 361 else 362 goto found; 363 } 364 365 while (addr + size >= first->va_start && addr + size <= vend) { 366 addr = ALIGN(first->va_end + PAGE_SIZE, align); 367 368 n = rb_next(&first->rb_node); 369 if (n) 370 first = rb_entry(n, struct vmap_area, rb_node); 371 else 372 goto found; 373 } 374 } 375 found: 376 if (addr + size > vend) { 377 spin_unlock(&vmap_area_lock); 378 if (!purged) { 379 purge_vmap_area_lazy(); 380 purged = 1; 381 goto retry; 382 } 383 if (printk_ratelimit()) 384 printk(KERN_WARNING "vmap allocation failed: " 385 "use vmalloc=<size> to increase size.\n"); 386 return ERR_PTR(-EBUSY); 387 } 388 389 BUG_ON(addr & (align-1)); 390 391 va->va_start = addr; 392 va->va_end = addr + size; 393 va->flags = 0; 394 __insert_vmap_area(va); 395 spin_unlock(&vmap_area_lock); 396 397 return va; 398 } 399 400 static void rcu_free_va(struct rcu_head *head) 401 { 402 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 403 404 kfree(va); 405 } 406 407 static void __free_vmap_area(struct vmap_area *va) 408 { 409 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 410 rb_erase(&va->rb_node, &vmap_area_root); 411 RB_CLEAR_NODE(&va->rb_node); 412 list_del_rcu(&va->list); 413 414 call_rcu(&va->rcu_head, rcu_free_va); 415 } 416 417 /* 418 * Free a region of KVA allocated by alloc_vmap_area 419 */ 420 static void free_vmap_area(struct vmap_area *va) 421 { 422 spin_lock(&vmap_area_lock); 423 __free_vmap_area(va); 424 spin_unlock(&vmap_area_lock); 425 } 426 427 /* 428 * Clear the pagetable entries of a given vmap_area 429 */ 430 static void unmap_vmap_area(struct vmap_area *va) 431 { 432 vunmap_page_range(va->va_start, va->va_end); 433 } 434 435 /* 436 * lazy_max_pages is the maximum amount of virtual address space we gather up 437 * before attempting to purge with a TLB flush. 438 * 439 * There is a tradeoff here: a larger number will cover more kernel page tables 440 * and take slightly longer to purge, but it will linearly reduce the number of 441 * global TLB flushes that must be performed. It would seem natural to scale 442 * this number up linearly with the number of CPUs (because vmapping activity 443 * could also scale linearly with the number of CPUs), however it is likely 444 * that in practice, workloads might be constrained in other ways that mean 445 * vmap activity will not scale linearly with CPUs. Also, I want to be 446 * conservative and not introduce a big latency on huge systems, so go with 447 * a less aggressive log scale. It will still be an improvement over the old 448 * code, and it will be simple to change the scale factor if we find that it 449 * becomes a problem on bigger systems. 450 */ 451 static unsigned long lazy_max_pages(void) 452 { 453 unsigned int log; 454 455 log = fls(num_online_cpus()); 456 457 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 458 } 459 460 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 461 462 /* 463 * Purges all lazily-freed vmap areas. 464 * 465 * If sync is 0 then don't purge if there is already a purge in progress. 466 * If force_flush is 1, then flush kernel TLBs between *start and *end even 467 * if we found no lazy vmap areas to unmap (callers can use this to optimise 468 * their own TLB flushing). 469 * Returns with *start = min(*start, lowest purged address) 470 * *end = max(*end, highest purged address) 471 */ 472 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 473 int sync, int force_flush) 474 { 475 static DEFINE_SPINLOCK(purge_lock); 476 LIST_HEAD(valist); 477 struct vmap_area *va; 478 int nr = 0; 479 480 /* 481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 482 * should not expect such behaviour. This just simplifies locking for 483 * the case that isn't actually used at the moment anyway. 484 */ 485 if (!sync && !force_flush) { 486 if (!spin_trylock(&purge_lock)) 487 return; 488 } else 489 spin_lock(&purge_lock); 490 491 rcu_read_lock(); 492 list_for_each_entry_rcu(va, &vmap_area_list, list) { 493 if (va->flags & VM_LAZY_FREE) { 494 if (va->va_start < *start) 495 *start = va->va_start; 496 if (va->va_end > *end) 497 *end = va->va_end; 498 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 499 unmap_vmap_area(va); 500 list_add_tail(&va->purge_list, &valist); 501 va->flags |= VM_LAZY_FREEING; 502 va->flags &= ~VM_LAZY_FREE; 503 } 504 } 505 rcu_read_unlock(); 506 507 if (nr) { 508 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 509 atomic_sub(nr, &vmap_lazy_nr); 510 } 511 512 if (nr || force_flush) 513 flush_tlb_kernel_range(*start, *end); 514 515 if (nr) { 516 spin_lock(&vmap_area_lock); 517 list_for_each_entry(va, &valist, purge_list) 518 __free_vmap_area(va); 519 spin_unlock(&vmap_area_lock); 520 } 521 spin_unlock(&purge_lock); 522 } 523 524 /* 525 * Kick off a purge of the outstanding lazy areas. 526 */ 527 static void purge_vmap_area_lazy(void) 528 { 529 unsigned long start = ULONG_MAX, end = 0; 530 531 __purge_vmap_area_lazy(&start, &end, 0, 0); 532 } 533 534 /* 535 * Free and unmap a vmap area 536 */ 537 static void free_unmap_vmap_area(struct vmap_area *va) 538 { 539 va->flags |= VM_LAZY_FREE; 540 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 541 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 542 purge_vmap_area_lazy(); 543 } 544 545 static struct vmap_area *find_vmap_area(unsigned long addr) 546 { 547 struct vmap_area *va; 548 549 spin_lock(&vmap_area_lock); 550 va = __find_vmap_area(addr); 551 spin_unlock(&vmap_area_lock); 552 553 return va; 554 } 555 556 static void free_unmap_vmap_area_addr(unsigned long addr) 557 { 558 struct vmap_area *va; 559 560 va = find_vmap_area(addr); 561 BUG_ON(!va); 562 free_unmap_vmap_area(va); 563 } 564 565 566 /*** Per cpu kva allocator ***/ 567 568 /* 569 * vmap space is limited especially on 32 bit architectures. Ensure there is 570 * room for at least 16 percpu vmap blocks per CPU. 571 */ 572 /* 573 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 574 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 575 * instead (we just need a rough idea) 576 */ 577 #if BITS_PER_LONG == 32 578 #define VMALLOC_SPACE (128UL*1024*1024) 579 #else 580 #define VMALLOC_SPACE (128UL*1024*1024*1024) 581 #endif 582 583 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 584 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 585 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 586 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 587 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 588 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 589 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 590 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 591 VMALLOC_PAGES / NR_CPUS / 16)) 592 593 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 594 595 struct vmap_block_queue { 596 spinlock_t lock; 597 struct list_head free; 598 struct list_head dirty; 599 unsigned int nr_dirty; 600 }; 601 602 struct vmap_block { 603 spinlock_t lock; 604 struct vmap_area *va; 605 struct vmap_block_queue *vbq; 606 unsigned long free, dirty; 607 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 608 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 609 union { 610 struct { 611 struct list_head free_list; 612 struct list_head dirty_list; 613 }; 614 struct rcu_head rcu_head; 615 }; 616 }; 617 618 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 619 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 620 621 /* 622 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 623 * in the free path. Could get rid of this if we change the API to return a 624 * "cookie" from alloc, to be passed to free. But no big deal yet. 625 */ 626 static DEFINE_SPINLOCK(vmap_block_tree_lock); 627 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 628 629 /* 630 * We should probably have a fallback mechanism to allocate virtual memory 631 * out of partially filled vmap blocks. However vmap block sizing should be 632 * fairly reasonable according to the vmalloc size, so it shouldn't be a 633 * big problem. 634 */ 635 636 static unsigned long addr_to_vb_idx(unsigned long addr) 637 { 638 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 639 addr /= VMAP_BLOCK_SIZE; 640 return addr; 641 } 642 643 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 644 { 645 struct vmap_block_queue *vbq; 646 struct vmap_block *vb; 647 struct vmap_area *va; 648 unsigned long vb_idx; 649 int node, err; 650 651 node = numa_node_id(); 652 653 vb = kmalloc_node(sizeof(struct vmap_block), 654 gfp_mask & GFP_RECLAIM_MASK, node); 655 if (unlikely(!vb)) 656 return ERR_PTR(-ENOMEM); 657 658 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 659 VMALLOC_START, VMALLOC_END, 660 node, gfp_mask); 661 if (unlikely(IS_ERR(va))) { 662 kfree(vb); 663 return ERR_PTR(PTR_ERR(va)); 664 } 665 666 err = radix_tree_preload(gfp_mask); 667 if (unlikely(err)) { 668 kfree(vb); 669 free_vmap_area(va); 670 return ERR_PTR(err); 671 } 672 673 spin_lock_init(&vb->lock); 674 vb->va = va; 675 vb->free = VMAP_BBMAP_BITS; 676 vb->dirty = 0; 677 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 678 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 679 INIT_LIST_HEAD(&vb->free_list); 680 INIT_LIST_HEAD(&vb->dirty_list); 681 682 vb_idx = addr_to_vb_idx(va->va_start); 683 spin_lock(&vmap_block_tree_lock); 684 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 685 spin_unlock(&vmap_block_tree_lock); 686 BUG_ON(err); 687 radix_tree_preload_end(); 688 689 vbq = &get_cpu_var(vmap_block_queue); 690 vb->vbq = vbq; 691 spin_lock(&vbq->lock); 692 list_add(&vb->free_list, &vbq->free); 693 spin_unlock(&vbq->lock); 694 put_cpu_var(vmap_cpu_blocks); 695 696 return vb; 697 } 698 699 static void rcu_free_vb(struct rcu_head *head) 700 { 701 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 702 703 kfree(vb); 704 } 705 706 static void free_vmap_block(struct vmap_block *vb) 707 { 708 struct vmap_block *tmp; 709 unsigned long vb_idx; 710 711 spin_lock(&vb->vbq->lock); 712 if (!list_empty(&vb->free_list)) 713 list_del(&vb->free_list); 714 if (!list_empty(&vb->dirty_list)) 715 list_del(&vb->dirty_list); 716 spin_unlock(&vb->vbq->lock); 717 718 vb_idx = addr_to_vb_idx(vb->va->va_start); 719 spin_lock(&vmap_block_tree_lock); 720 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 721 spin_unlock(&vmap_block_tree_lock); 722 BUG_ON(tmp != vb); 723 724 free_unmap_vmap_area(vb->va); 725 call_rcu(&vb->rcu_head, rcu_free_vb); 726 } 727 728 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 729 { 730 struct vmap_block_queue *vbq; 731 struct vmap_block *vb; 732 unsigned long addr = 0; 733 unsigned int order; 734 735 BUG_ON(size & ~PAGE_MASK); 736 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 737 order = get_order(size); 738 739 again: 740 rcu_read_lock(); 741 vbq = &get_cpu_var(vmap_block_queue); 742 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 743 int i; 744 745 spin_lock(&vb->lock); 746 i = bitmap_find_free_region(vb->alloc_map, 747 VMAP_BBMAP_BITS, order); 748 749 if (i >= 0) { 750 addr = vb->va->va_start + (i << PAGE_SHIFT); 751 BUG_ON(addr_to_vb_idx(addr) != 752 addr_to_vb_idx(vb->va->va_start)); 753 vb->free -= 1UL << order; 754 if (vb->free == 0) { 755 spin_lock(&vbq->lock); 756 list_del_init(&vb->free_list); 757 spin_unlock(&vbq->lock); 758 } 759 spin_unlock(&vb->lock); 760 break; 761 } 762 spin_unlock(&vb->lock); 763 } 764 put_cpu_var(vmap_cpu_blocks); 765 rcu_read_unlock(); 766 767 if (!addr) { 768 vb = new_vmap_block(gfp_mask); 769 if (IS_ERR(vb)) 770 return vb; 771 goto again; 772 } 773 774 return (void *)addr; 775 } 776 777 static void vb_free(const void *addr, unsigned long size) 778 { 779 unsigned long offset; 780 unsigned long vb_idx; 781 unsigned int order; 782 struct vmap_block *vb; 783 784 BUG_ON(size & ~PAGE_MASK); 785 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 786 order = get_order(size); 787 788 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 789 790 vb_idx = addr_to_vb_idx((unsigned long)addr); 791 rcu_read_lock(); 792 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 793 rcu_read_unlock(); 794 BUG_ON(!vb); 795 796 spin_lock(&vb->lock); 797 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 798 if (!vb->dirty) { 799 spin_lock(&vb->vbq->lock); 800 list_add(&vb->dirty_list, &vb->vbq->dirty); 801 spin_unlock(&vb->vbq->lock); 802 } 803 vb->dirty += 1UL << order; 804 if (vb->dirty == VMAP_BBMAP_BITS) { 805 BUG_ON(vb->free || !list_empty(&vb->free_list)); 806 spin_unlock(&vb->lock); 807 free_vmap_block(vb); 808 } else 809 spin_unlock(&vb->lock); 810 } 811 812 /** 813 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 814 * 815 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 816 * to amortize TLB flushing overheads. What this means is that any page you 817 * have now, may, in a former life, have been mapped into kernel virtual 818 * address by the vmap layer and so there might be some CPUs with TLB entries 819 * still referencing that page (additional to the regular 1:1 kernel mapping). 820 * 821 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 822 * be sure that none of the pages we have control over will have any aliases 823 * from the vmap layer. 824 */ 825 void vm_unmap_aliases(void) 826 { 827 unsigned long start = ULONG_MAX, end = 0; 828 int cpu; 829 int flush = 0; 830 831 for_each_possible_cpu(cpu) { 832 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 833 struct vmap_block *vb; 834 835 rcu_read_lock(); 836 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 837 int i; 838 839 spin_lock(&vb->lock); 840 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 841 while (i < VMAP_BBMAP_BITS) { 842 unsigned long s, e; 843 int j; 844 j = find_next_zero_bit(vb->dirty_map, 845 VMAP_BBMAP_BITS, i); 846 847 s = vb->va->va_start + (i << PAGE_SHIFT); 848 e = vb->va->va_start + (j << PAGE_SHIFT); 849 vunmap_page_range(s, e); 850 flush = 1; 851 852 if (s < start) 853 start = s; 854 if (e > end) 855 end = e; 856 857 i = j; 858 i = find_next_bit(vb->dirty_map, 859 VMAP_BBMAP_BITS, i); 860 } 861 spin_unlock(&vb->lock); 862 } 863 rcu_read_unlock(); 864 } 865 866 __purge_vmap_area_lazy(&start, &end, 1, flush); 867 } 868 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 869 870 /** 871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 872 * @mem: the pointer returned by vm_map_ram 873 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 874 */ 875 void vm_unmap_ram(const void *mem, unsigned int count) 876 { 877 unsigned long size = count << PAGE_SHIFT; 878 unsigned long addr = (unsigned long)mem; 879 880 BUG_ON(!addr); 881 BUG_ON(addr < VMALLOC_START); 882 BUG_ON(addr > VMALLOC_END); 883 BUG_ON(addr & (PAGE_SIZE-1)); 884 885 debug_check_no_locks_freed(mem, size); 886 887 if (likely(count <= VMAP_MAX_ALLOC)) 888 vb_free(mem, size); 889 else 890 free_unmap_vmap_area_addr(addr); 891 } 892 EXPORT_SYMBOL(vm_unmap_ram); 893 894 /** 895 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 896 * @pages: an array of pointers to the pages to be mapped 897 * @count: number of pages 898 * @node: prefer to allocate data structures on this node 899 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 900 * @returns: a pointer to the address that has been mapped, or NULL on failure 901 */ 902 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 903 { 904 unsigned long size = count << PAGE_SHIFT; 905 unsigned long addr; 906 void *mem; 907 908 if (likely(count <= VMAP_MAX_ALLOC)) { 909 mem = vb_alloc(size, GFP_KERNEL); 910 if (IS_ERR(mem)) 911 return NULL; 912 addr = (unsigned long)mem; 913 } else { 914 struct vmap_area *va; 915 va = alloc_vmap_area(size, PAGE_SIZE, 916 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 917 if (IS_ERR(va)) 918 return NULL; 919 920 addr = va->va_start; 921 mem = (void *)addr; 922 } 923 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 924 vm_unmap_ram(mem, count); 925 return NULL; 926 } 927 return mem; 928 } 929 EXPORT_SYMBOL(vm_map_ram); 930 931 void __init vmalloc_init(void) 932 { 933 int i; 934 935 for_each_possible_cpu(i) { 936 struct vmap_block_queue *vbq; 937 938 vbq = &per_cpu(vmap_block_queue, i); 939 spin_lock_init(&vbq->lock); 940 INIT_LIST_HEAD(&vbq->free); 941 INIT_LIST_HEAD(&vbq->dirty); 942 vbq->nr_dirty = 0; 943 } 944 } 945 946 void unmap_kernel_range(unsigned long addr, unsigned long size) 947 { 948 unsigned long end = addr + size; 949 vunmap_page_range(addr, end); 950 flush_tlb_kernel_range(addr, end); 951 } 952 953 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 954 { 955 unsigned long addr = (unsigned long)area->addr; 956 unsigned long end = addr + area->size - PAGE_SIZE; 957 int err; 958 959 err = vmap_page_range(addr, end, prot, *pages); 960 if (err > 0) { 961 *pages += err; 962 err = 0; 963 } 964 965 return err; 966 } 967 EXPORT_SYMBOL_GPL(map_vm_area); 968 969 /*** Old vmalloc interfaces ***/ 970 DEFINE_RWLOCK(vmlist_lock); 971 struct vm_struct *vmlist; 972 973 static struct vm_struct *__get_vm_area_node(unsigned long size, 974 unsigned long flags, unsigned long start, unsigned long end, 975 int node, gfp_t gfp_mask, void *caller) 976 { 977 static struct vmap_area *va; 978 struct vm_struct *area; 979 struct vm_struct *tmp, **p; 980 unsigned long align = 1; 981 982 BUG_ON(in_interrupt()); 983 if (flags & VM_IOREMAP) { 984 int bit = fls(size); 985 986 if (bit > IOREMAP_MAX_ORDER) 987 bit = IOREMAP_MAX_ORDER; 988 else if (bit < PAGE_SHIFT) 989 bit = PAGE_SHIFT; 990 991 align = 1ul << bit; 992 } 993 994 size = PAGE_ALIGN(size); 995 if (unlikely(!size)) 996 return NULL; 997 998 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 999 if (unlikely(!area)) 1000 return NULL; 1001 1002 /* 1003 * We always allocate a guard page. 1004 */ 1005 size += PAGE_SIZE; 1006 1007 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1008 if (IS_ERR(va)) { 1009 kfree(area); 1010 return NULL; 1011 } 1012 1013 area->flags = flags; 1014 area->addr = (void *)va->va_start; 1015 area->size = size; 1016 area->pages = NULL; 1017 area->nr_pages = 0; 1018 area->phys_addr = 0; 1019 area->caller = caller; 1020 va->private = area; 1021 va->flags |= VM_VM_AREA; 1022 1023 write_lock(&vmlist_lock); 1024 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1025 if (tmp->addr >= area->addr) 1026 break; 1027 } 1028 area->next = *p; 1029 *p = area; 1030 write_unlock(&vmlist_lock); 1031 1032 return area; 1033 } 1034 1035 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1036 unsigned long start, unsigned long end) 1037 { 1038 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1039 __builtin_return_address(0)); 1040 } 1041 EXPORT_SYMBOL_GPL(__get_vm_area); 1042 1043 /** 1044 * get_vm_area - reserve a contiguous kernel virtual area 1045 * @size: size of the area 1046 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1047 * 1048 * Search an area of @size in the kernel virtual mapping area, 1049 * and reserved it for out purposes. Returns the area descriptor 1050 * on success or %NULL on failure. 1051 */ 1052 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1053 { 1054 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1055 -1, GFP_KERNEL, __builtin_return_address(0)); 1056 } 1057 1058 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1059 void *caller) 1060 { 1061 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1062 -1, GFP_KERNEL, caller); 1063 } 1064 1065 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1066 int node, gfp_t gfp_mask) 1067 { 1068 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1069 gfp_mask, __builtin_return_address(0)); 1070 } 1071 1072 static struct vm_struct *find_vm_area(const void *addr) 1073 { 1074 struct vmap_area *va; 1075 1076 va = find_vmap_area((unsigned long)addr); 1077 if (va && va->flags & VM_VM_AREA) 1078 return va->private; 1079 1080 return NULL; 1081 } 1082 1083 /** 1084 * remove_vm_area - find and remove a continuous kernel virtual area 1085 * @addr: base address 1086 * 1087 * Search for the kernel VM area starting at @addr, and remove it. 1088 * This function returns the found VM area, but using it is NOT safe 1089 * on SMP machines, except for its size or flags. 1090 */ 1091 struct vm_struct *remove_vm_area(const void *addr) 1092 { 1093 struct vmap_area *va; 1094 1095 va = find_vmap_area((unsigned long)addr); 1096 if (va && va->flags & VM_VM_AREA) { 1097 struct vm_struct *vm = va->private; 1098 struct vm_struct *tmp, **p; 1099 free_unmap_vmap_area(va); 1100 vm->size -= PAGE_SIZE; 1101 1102 write_lock(&vmlist_lock); 1103 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1104 ; 1105 *p = tmp->next; 1106 write_unlock(&vmlist_lock); 1107 1108 return vm; 1109 } 1110 return NULL; 1111 } 1112 1113 static void __vunmap(const void *addr, int deallocate_pages) 1114 { 1115 struct vm_struct *area; 1116 1117 if (!addr) 1118 return; 1119 1120 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1121 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1122 return; 1123 } 1124 1125 area = remove_vm_area(addr); 1126 if (unlikely(!area)) { 1127 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1128 addr); 1129 return; 1130 } 1131 1132 debug_check_no_locks_freed(addr, area->size); 1133 debug_check_no_obj_freed(addr, area->size); 1134 1135 if (deallocate_pages) { 1136 int i; 1137 1138 for (i = 0; i < area->nr_pages; i++) { 1139 struct page *page = area->pages[i]; 1140 1141 BUG_ON(!page); 1142 __free_page(page); 1143 } 1144 1145 if (area->flags & VM_VPAGES) 1146 vfree(area->pages); 1147 else 1148 kfree(area->pages); 1149 } 1150 1151 kfree(area); 1152 return; 1153 } 1154 1155 /** 1156 * vfree - release memory allocated by vmalloc() 1157 * @addr: memory base address 1158 * 1159 * Free the virtually continuous memory area starting at @addr, as 1160 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1161 * NULL, no operation is performed. 1162 * 1163 * Must not be called in interrupt context. 1164 */ 1165 void vfree(const void *addr) 1166 { 1167 BUG_ON(in_interrupt()); 1168 __vunmap(addr, 1); 1169 } 1170 EXPORT_SYMBOL(vfree); 1171 1172 /** 1173 * vunmap - release virtual mapping obtained by vmap() 1174 * @addr: memory base address 1175 * 1176 * Free the virtually contiguous memory area starting at @addr, 1177 * which was created from the page array passed to vmap(). 1178 * 1179 * Must not be called in interrupt context. 1180 */ 1181 void vunmap(const void *addr) 1182 { 1183 BUG_ON(in_interrupt()); 1184 __vunmap(addr, 0); 1185 } 1186 EXPORT_SYMBOL(vunmap); 1187 1188 /** 1189 * vmap - map an array of pages into virtually contiguous space 1190 * @pages: array of page pointers 1191 * @count: number of pages to map 1192 * @flags: vm_area->flags 1193 * @prot: page protection for the mapping 1194 * 1195 * Maps @count pages from @pages into contiguous kernel virtual 1196 * space. 1197 */ 1198 void *vmap(struct page **pages, unsigned int count, 1199 unsigned long flags, pgprot_t prot) 1200 { 1201 struct vm_struct *area; 1202 1203 if (count > num_physpages) 1204 return NULL; 1205 1206 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1207 __builtin_return_address(0)); 1208 if (!area) 1209 return NULL; 1210 1211 if (map_vm_area(area, prot, &pages)) { 1212 vunmap(area->addr); 1213 return NULL; 1214 } 1215 1216 return area->addr; 1217 } 1218 EXPORT_SYMBOL(vmap); 1219 1220 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1221 int node, void *caller); 1222 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1223 pgprot_t prot, int node, void *caller) 1224 { 1225 struct page **pages; 1226 unsigned int nr_pages, array_size, i; 1227 1228 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1229 array_size = (nr_pages * sizeof(struct page *)); 1230 1231 area->nr_pages = nr_pages; 1232 /* Please note that the recursion is strictly bounded. */ 1233 if (array_size > PAGE_SIZE) { 1234 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1235 PAGE_KERNEL, node, caller); 1236 area->flags |= VM_VPAGES; 1237 } else { 1238 pages = kmalloc_node(array_size, 1239 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1240 node); 1241 } 1242 area->pages = pages; 1243 area->caller = caller; 1244 if (!area->pages) { 1245 remove_vm_area(area->addr); 1246 kfree(area); 1247 return NULL; 1248 } 1249 1250 for (i = 0; i < area->nr_pages; i++) { 1251 struct page *page; 1252 1253 if (node < 0) 1254 page = alloc_page(gfp_mask); 1255 else 1256 page = alloc_pages_node(node, gfp_mask, 0); 1257 1258 if (unlikely(!page)) { 1259 /* Successfully allocated i pages, free them in __vunmap() */ 1260 area->nr_pages = i; 1261 goto fail; 1262 } 1263 area->pages[i] = page; 1264 } 1265 1266 if (map_vm_area(area, prot, &pages)) 1267 goto fail; 1268 return area->addr; 1269 1270 fail: 1271 vfree(area->addr); 1272 return NULL; 1273 } 1274 1275 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1276 { 1277 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1278 __builtin_return_address(0)); 1279 } 1280 1281 /** 1282 * __vmalloc_node - allocate virtually contiguous memory 1283 * @size: allocation size 1284 * @gfp_mask: flags for the page level allocator 1285 * @prot: protection mask for the allocated pages 1286 * @node: node to use for allocation or -1 1287 * @caller: caller's return address 1288 * 1289 * Allocate enough pages to cover @size from the page level 1290 * allocator with @gfp_mask flags. Map them into contiguous 1291 * kernel virtual space, using a pagetable protection of @prot. 1292 */ 1293 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1294 int node, void *caller) 1295 { 1296 struct vm_struct *area; 1297 1298 size = PAGE_ALIGN(size); 1299 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1300 return NULL; 1301 1302 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1303 node, gfp_mask, caller); 1304 1305 if (!area) 1306 return NULL; 1307 1308 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1309 } 1310 1311 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1312 { 1313 return __vmalloc_node(size, gfp_mask, prot, -1, 1314 __builtin_return_address(0)); 1315 } 1316 EXPORT_SYMBOL(__vmalloc); 1317 1318 /** 1319 * vmalloc - allocate virtually contiguous memory 1320 * @size: allocation size 1321 * Allocate enough pages to cover @size from the page level 1322 * allocator and map them into contiguous kernel virtual space. 1323 * 1324 * For tight control over page level allocator and protection flags 1325 * use __vmalloc() instead. 1326 */ 1327 void *vmalloc(unsigned long size) 1328 { 1329 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1330 -1, __builtin_return_address(0)); 1331 } 1332 EXPORT_SYMBOL(vmalloc); 1333 1334 /** 1335 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1336 * @size: allocation size 1337 * 1338 * The resulting memory area is zeroed so it can be mapped to userspace 1339 * without leaking data. 1340 */ 1341 void *vmalloc_user(unsigned long size) 1342 { 1343 struct vm_struct *area; 1344 void *ret; 1345 1346 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 1347 if (ret) { 1348 area = find_vm_area(ret); 1349 area->flags |= VM_USERMAP; 1350 } 1351 return ret; 1352 } 1353 EXPORT_SYMBOL(vmalloc_user); 1354 1355 /** 1356 * vmalloc_node - allocate memory on a specific node 1357 * @size: allocation size 1358 * @node: numa node 1359 * 1360 * Allocate enough pages to cover @size from the page level 1361 * allocator and map them into contiguous kernel virtual space. 1362 * 1363 * For tight control over page level allocator and protection flags 1364 * use __vmalloc() instead. 1365 */ 1366 void *vmalloc_node(unsigned long size, int node) 1367 { 1368 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1369 node, __builtin_return_address(0)); 1370 } 1371 EXPORT_SYMBOL(vmalloc_node); 1372 1373 #ifndef PAGE_KERNEL_EXEC 1374 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1375 #endif 1376 1377 /** 1378 * vmalloc_exec - allocate virtually contiguous, executable memory 1379 * @size: allocation size 1380 * 1381 * Kernel-internal function to allocate enough pages to cover @size 1382 * the page level allocator and map them into contiguous and 1383 * executable kernel virtual space. 1384 * 1385 * For tight control over page level allocator and protection flags 1386 * use __vmalloc() instead. 1387 */ 1388 1389 void *vmalloc_exec(unsigned long size) 1390 { 1391 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 1392 } 1393 1394 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1395 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1396 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1397 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1398 #else 1399 #define GFP_VMALLOC32 GFP_KERNEL 1400 #endif 1401 1402 /** 1403 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1404 * @size: allocation size 1405 * 1406 * Allocate enough 32bit PA addressable pages to cover @size from the 1407 * page level allocator and map them into contiguous kernel virtual space. 1408 */ 1409 void *vmalloc_32(unsigned long size) 1410 { 1411 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); 1412 } 1413 EXPORT_SYMBOL(vmalloc_32); 1414 1415 /** 1416 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1417 * @size: allocation size 1418 * 1419 * The resulting memory area is 32bit addressable and zeroed so it can be 1420 * mapped to userspace without leaking data. 1421 */ 1422 void *vmalloc_32_user(unsigned long size) 1423 { 1424 struct vm_struct *area; 1425 void *ret; 1426 1427 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 1428 if (ret) { 1429 area = find_vm_area(ret); 1430 area->flags |= VM_USERMAP; 1431 } 1432 return ret; 1433 } 1434 EXPORT_SYMBOL(vmalloc_32_user); 1435 1436 long vread(char *buf, char *addr, unsigned long count) 1437 { 1438 struct vm_struct *tmp; 1439 char *vaddr, *buf_start = buf; 1440 unsigned long n; 1441 1442 /* Don't allow overflow */ 1443 if ((unsigned long) addr + count < count) 1444 count = -(unsigned long) addr; 1445 1446 read_lock(&vmlist_lock); 1447 for (tmp = vmlist; tmp; tmp = tmp->next) { 1448 vaddr = (char *) tmp->addr; 1449 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1450 continue; 1451 while (addr < vaddr) { 1452 if (count == 0) 1453 goto finished; 1454 *buf = '\0'; 1455 buf++; 1456 addr++; 1457 count--; 1458 } 1459 n = vaddr + tmp->size - PAGE_SIZE - addr; 1460 do { 1461 if (count == 0) 1462 goto finished; 1463 *buf = *addr; 1464 buf++; 1465 addr++; 1466 count--; 1467 } while (--n > 0); 1468 } 1469 finished: 1470 read_unlock(&vmlist_lock); 1471 return buf - buf_start; 1472 } 1473 1474 long vwrite(char *buf, char *addr, unsigned long count) 1475 { 1476 struct vm_struct *tmp; 1477 char *vaddr, *buf_start = buf; 1478 unsigned long n; 1479 1480 /* Don't allow overflow */ 1481 if ((unsigned long) addr + count < count) 1482 count = -(unsigned long) addr; 1483 1484 read_lock(&vmlist_lock); 1485 for (tmp = vmlist; tmp; tmp = tmp->next) { 1486 vaddr = (char *) tmp->addr; 1487 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1488 continue; 1489 while (addr < vaddr) { 1490 if (count == 0) 1491 goto finished; 1492 buf++; 1493 addr++; 1494 count--; 1495 } 1496 n = vaddr + tmp->size - PAGE_SIZE - addr; 1497 do { 1498 if (count == 0) 1499 goto finished; 1500 *addr = *buf; 1501 buf++; 1502 addr++; 1503 count--; 1504 } while (--n > 0); 1505 } 1506 finished: 1507 read_unlock(&vmlist_lock); 1508 return buf - buf_start; 1509 } 1510 1511 /** 1512 * remap_vmalloc_range - map vmalloc pages to userspace 1513 * @vma: vma to cover (map full range of vma) 1514 * @addr: vmalloc memory 1515 * @pgoff: number of pages into addr before first page to map 1516 * 1517 * Returns: 0 for success, -Exxx on failure 1518 * 1519 * This function checks that addr is a valid vmalloc'ed area, and 1520 * that it is big enough to cover the vma. Will return failure if 1521 * that criteria isn't met. 1522 * 1523 * Similar to remap_pfn_range() (see mm/memory.c) 1524 */ 1525 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1526 unsigned long pgoff) 1527 { 1528 struct vm_struct *area; 1529 unsigned long uaddr = vma->vm_start; 1530 unsigned long usize = vma->vm_end - vma->vm_start; 1531 1532 if ((PAGE_SIZE-1) & (unsigned long)addr) 1533 return -EINVAL; 1534 1535 area = find_vm_area(addr); 1536 if (!area) 1537 return -EINVAL; 1538 1539 if (!(area->flags & VM_USERMAP)) 1540 return -EINVAL; 1541 1542 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1543 return -EINVAL; 1544 1545 addr += pgoff << PAGE_SHIFT; 1546 do { 1547 struct page *page = vmalloc_to_page(addr); 1548 int ret; 1549 1550 ret = vm_insert_page(vma, uaddr, page); 1551 if (ret) 1552 return ret; 1553 1554 uaddr += PAGE_SIZE; 1555 addr += PAGE_SIZE; 1556 usize -= PAGE_SIZE; 1557 } while (usize > 0); 1558 1559 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1560 vma->vm_flags |= VM_RESERVED; 1561 1562 return 0; 1563 } 1564 EXPORT_SYMBOL(remap_vmalloc_range); 1565 1566 /* 1567 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1568 * have one. 1569 */ 1570 void __attribute__((weak)) vmalloc_sync_all(void) 1571 { 1572 } 1573 1574 1575 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1576 { 1577 /* apply_to_page_range() does all the hard work. */ 1578 return 0; 1579 } 1580 1581 /** 1582 * alloc_vm_area - allocate a range of kernel address space 1583 * @size: size of the area 1584 * 1585 * Returns: NULL on failure, vm_struct on success 1586 * 1587 * This function reserves a range of kernel address space, and 1588 * allocates pagetables to map that range. No actual mappings 1589 * are created. If the kernel address space is not shared 1590 * between processes, it syncs the pagetable across all 1591 * processes. 1592 */ 1593 struct vm_struct *alloc_vm_area(size_t size) 1594 { 1595 struct vm_struct *area; 1596 1597 area = get_vm_area_caller(size, VM_IOREMAP, 1598 __builtin_return_address(0)); 1599 if (area == NULL) 1600 return NULL; 1601 1602 /* 1603 * This ensures that page tables are constructed for this region 1604 * of kernel virtual address space and mapped into init_mm. 1605 */ 1606 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1607 area->size, f, NULL)) { 1608 free_vm_area(area); 1609 return NULL; 1610 } 1611 1612 /* Make sure the pagetables are constructed in process kernel 1613 mappings */ 1614 vmalloc_sync_all(); 1615 1616 return area; 1617 } 1618 EXPORT_SYMBOL_GPL(alloc_vm_area); 1619 1620 void free_vm_area(struct vm_struct *area) 1621 { 1622 struct vm_struct *ret; 1623 ret = remove_vm_area(area->addr); 1624 BUG_ON(ret != area); 1625 kfree(area); 1626 } 1627 EXPORT_SYMBOL_GPL(free_vm_area); 1628 1629 1630 #ifdef CONFIG_PROC_FS 1631 static void *s_start(struct seq_file *m, loff_t *pos) 1632 { 1633 loff_t n = *pos; 1634 struct vm_struct *v; 1635 1636 read_lock(&vmlist_lock); 1637 v = vmlist; 1638 while (n > 0 && v) { 1639 n--; 1640 v = v->next; 1641 } 1642 if (!n) 1643 return v; 1644 1645 return NULL; 1646 1647 } 1648 1649 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1650 { 1651 struct vm_struct *v = p; 1652 1653 ++*pos; 1654 return v->next; 1655 } 1656 1657 static void s_stop(struct seq_file *m, void *p) 1658 { 1659 read_unlock(&vmlist_lock); 1660 } 1661 1662 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1663 { 1664 if (NUMA_BUILD) { 1665 unsigned int nr, *counters = m->private; 1666 1667 if (!counters) 1668 return; 1669 1670 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1671 1672 for (nr = 0; nr < v->nr_pages; nr++) 1673 counters[page_to_nid(v->pages[nr])]++; 1674 1675 for_each_node_state(nr, N_HIGH_MEMORY) 1676 if (counters[nr]) 1677 seq_printf(m, " N%u=%u", nr, counters[nr]); 1678 } 1679 } 1680 1681 static int s_show(struct seq_file *m, void *p) 1682 { 1683 struct vm_struct *v = p; 1684 1685 seq_printf(m, "0x%p-0x%p %7ld", 1686 v->addr, v->addr + v->size, v->size); 1687 1688 if (v->caller) { 1689 char buff[2 * KSYM_NAME_LEN]; 1690 1691 seq_putc(m, ' '); 1692 sprint_symbol(buff, (unsigned long)v->caller); 1693 seq_puts(m, buff); 1694 } 1695 1696 if (v->nr_pages) 1697 seq_printf(m, " pages=%d", v->nr_pages); 1698 1699 if (v->phys_addr) 1700 seq_printf(m, " phys=%lx", v->phys_addr); 1701 1702 if (v->flags & VM_IOREMAP) 1703 seq_printf(m, " ioremap"); 1704 1705 if (v->flags & VM_ALLOC) 1706 seq_printf(m, " vmalloc"); 1707 1708 if (v->flags & VM_MAP) 1709 seq_printf(m, " vmap"); 1710 1711 if (v->flags & VM_USERMAP) 1712 seq_printf(m, " user"); 1713 1714 if (v->flags & VM_VPAGES) 1715 seq_printf(m, " vpages"); 1716 1717 show_numa_info(m, v); 1718 seq_putc(m, '\n'); 1719 return 0; 1720 } 1721 1722 static const struct seq_operations vmalloc_op = { 1723 .start = s_start, 1724 .next = s_next, 1725 .stop = s_stop, 1726 .show = s_show, 1727 }; 1728 1729 static int vmalloc_open(struct inode *inode, struct file *file) 1730 { 1731 unsigned int *ptr = NULL; 1732 int ret; 1733 1734 if (NUMA_BUILD) 1735 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 1736 ret = seq_open(file, &vmalloc_op); 1737 if (!ret) { 1738 struct seq_file *m = file->private_data; 1739 m->private = ptr; 1740 } else 1741 kfree(ptr); 1742 return ret; 1743 } 1744 1745 static const struct file_operations proc_vmalloc_operations = { 1746 .open = vmalloc_open, 1747 .read = seq_read, 1748 .llseek = seq_lseek, 1749 .release = seq_release_private, 1750 }; 1751 1752 static int __init proc_vmalloc_init(void) 1753 { 1754 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 1755 return 0; 1756 } 1757 module_init(proc_vmalloc_init); 1758 #endif 1759 1760