1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 #include <linux/page_owner.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/vmalloc.h> 49 50 #include "internal.h" 51 #include "pgalloc-track.h" 52 53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 55 56 static int __init set_nohugeiomap(char *str) 57 { 58 ioremap_max_page_shift = PAGE_SHIFT; 59 return 0; 60 } 61 early_param("nohugeiomap", set_nohugeiomap); 62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 65 66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 67 static bool __ro_after_init vmap_allow_huge = true; 68 69 static int __init set_nohugevmalloc(char *str) 70 { 71 vmap_allow_huge = false; 72 return 0; 73 } 74 early_param("nohugevmalloc", set_nohugevmalloc); 75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 76 static const bool vmap_allow_huge = false; 77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 78 79 bool is_vmalloc_addr(const void *x) 80 { 81 unsigned long addr = (unsigned long)kasan_reset_tag(x); 82 83 return addr >= VMALLOC_START && addr < VMALLOC_END; 84 } 85 EXPORT_SYMBOL(is_vmalloc_addr); 86 87 struct vfree_deferred { 88 struct llist_head list; 89 struct work_struct wq; 90 }; 91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 92 93 /*** Page table manipulation functions ***/ 94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 95 phys_addr_t phys_addr, pgprot_t prot, 96 unsigned int max_page_shift, pgtbl_mod_mask *mask) 97 { 98 pte_t *pte; 99 u64 pfn; 100 struct page *page; 101 unsigned long size = PAGE_SIZE; 102 103 pfn = phys_addr >> PAGE_SHIFT; 104 pte = pte_alloc_kernel_track(pmd, addr, mask); 105 if (!pte) 106 return -ENOMEM; 107 do { 108 if (!pte_none(ptep_get(pte))) { 109 if (pfn_valid(pfn)) { 110 page = pfn_to_page(pfn); 111 dump_page(page, "remapping already mapped page"); 112 } 113 BUG(); 114 } 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry, size); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int vmap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 if (!err) 324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 325 ioremap_max_page_shift); 326 return err; 327 } 328 329 int ioremap_page_range(unsigned long addr, unsigned long end, 330 phys_addr_t phys_addr, pgprot_t prot) 331 { 332 struct vm_struct *area; 333 334 area = find_vm_area((void *)addr); 335 if (!area || !(area->flags & VM_IOREMAP)) { 336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 337 return -EINVAL; 338 } 339 if (addr != (unsigned long)area->addr || 340 (void *)end != area->addr + get_vm_area_size(area)) { 341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 342 addr, end, (long)area->addr, 343 (long)area->addr + get_vm_area_size(area)); 344 return -ERANGE; 345 } 346 return vmap_page_range(addr, end, phys_addr, prot); 347 } 348 349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 350 pgtbl_mod_mask *mask) 351 { 352 pte_t *pte; 353 354 pte = pte_offset_kernel(pmd, addr); 355 do { 356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 357 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 358 } while (pte++, addr += PAGE_SIZE, addr != end); 359 *mask |= PGTBL_PTE_MODIFIED; 360 } 361 362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 363 pgtbl_mod_mask *mask) 364 { 365 pmd_t *pmd; 366 unsigned long next; 367 int cleared; 368 369 pmd = pmd_offset(pud, addr); 370 do { 371 next = pmd_addr_end(addr, end); 372 373 cleared = pmd_clear_huge(pmd); 374 if (cleared || pmd_bad(*pmd)) 375 *mask |= PGTBL_PMD_MODIFIED; 376 377 if (cleared) 378 continue; 379 if (pmd_none_or_clear_bad(pmd)) 380 continue; 381 vunmap_pte_range(pmd, addr, next, mask); 382 383 cond_resched(); 384 } while (pmd++, addr = next, addr != end); 385 } 386 387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 pud_t *pud; 391 unsigned long next; 392 int cleared; 393 394 pud = pud_offset(p4d, addr); 395 do { 396 next = pud_addr_end(addr, end); 397 398 cleared = pud_clear_huge(pud); 399 if (cleared || pud_bad(*pud)) 400 *mask |= PGTBL_PUD_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (pud_none_or_clear_bad(pud)) 405 continue; 406 vunmap_pmd_range(pud, addr, next, mask); 407 } while (pud++, addr = next, addr != end); 408 } 409 410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 411 pgtbl_mod_mask *mask) 412 { 413 p4d_t *p4d; 414 unsigned long next; 415 416 p4d = p4d_offset(pgd, addr); 417 do { 418 next = p4d_addr_end(addr, end); 419 420 p4d_clear_huge(p4d); 421 if (p4d_bad(*p4d)) 422 *mask |= PGTBL_P4D_MODIFIED; 423 424 if (p4d_none_or_clear_bad(p4d)) 425 continue; 426 vunmap_pud_range(p4d, addr, next, mask); 427 } while (p4d++, addr = next, addr != end); 428 } 429 430 /* 431 * vunmap_range_noflush is similar to vunmap_range, but does not 432 * flush caches or TLBs. 433 * 434 * The caller is responsible for calling flush_cache_vmap() before calling 435 * this function, and flush_tlb_kernel_range after it has returned 436 * successfully (and before the addresses are expected to cause a page fault 437 * or be re-mapped for something else, if TLB flushes are being delayed or 438 * coalesced). 439 * 440 * This is an internal function only. Do not use outside mm/. 441 */ 442 void __vunmap_range_noflush(unsigned long start, unsigned long end) 443 { 444 unsigned long next; 445 pgd_t *pgd; 446 unsigned long addr = start; 447 pgtbl_mod_mask mask = 0; 448 449 BUG_ON(addr >= end); 450 pgd = pgd_offset_k(addr); 451 do { 452 next = pgd_addr_end(addr, end); 453 if (pgd_bad(*pgd)) 454 mask |= PGTBL_PGD_MODIFIED; 455 if (pgd_none_or_clear_bad(pgd)) 456 continue; 457 vunmap_p4d_range(pgd, addr, next, &mask); 458 } while (pgd++, addr = next, addr != end); 459 460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 461 arch_sync_kernel_mappings(start, end); 462 } 463 464 void vunmap_range_noflush(unsigned long start, unsigned long end) 465 { 466 kmsan_vunmap_range_noflush(start, end); 467 __vunmap_range_noflush(start, end); 468 } 469 470 /** 471 * vunmap_range - unmap kernel virtual addresses 472 * @addr: start of the VM area to unmap 473 * @end: end of the VM area to unmap (non-inclusive) 474 * 475 * Clears any present PTEs in the virtual address range, flushes TLBs and 476 * caches. Any subsequent access to the address before it has been re-mapped 477 * is a kernel bug. 478 */ 479 void vunmap_range(unsigned long addr, unsigned long end) 480 { 481 flush_cache_vunmap(addr, end); 482 vunmap_range_noflush(addr, end); 483 flush_tlb_kernel_range(addr, end); 484 } 485 486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 487 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 488 pgtbl_mod_mask *mask) 489 { 490 pte_t *pte; 491 492 /* 493 * nr is a running index into the array which helps higher level 494 * callers keep track of where we're up to. 495 */ 496 497 pte = pte_alloc_kernel_track(pmd, addr, mask); 498 if (!pte) 499 return -ENOMEM; 500 do { 501 struct page *page = pages[*nr]; 502 503 if (WARN_ON(!pte_none(ptep_get(pte)))) 504 return -EBUSY; 505 if (WARN_ON(!page)) 506 return -ENOMEM; 507 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 508 return -EINVAL; 509 510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 511 (*nr)++; 512 } while (pte++, addr += PAGE_SIZE, addr != end); 513 *mask |= PGTBL_PTE_MODIFIED; 514 return 0; 515 } 516 517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 518 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 519 pgtbl_mod_mask *mask) 520 { 521 pmd_t *pmd; 522 unsigned long next; 523 524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 525 if (!pmd) 526 return -ENOMEM; 527 do { 528 next = pmd_addr_end(addr, end); 529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 530 return -ENOMEM; 531 } while (pmd++, addr = next, addr != end); 532 return 0; 533 } 534 535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 536 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 537 pgtbl_mod_mask *mask) 538 { 539 pud_t *pud; 540 unsigned long next; 541 542 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 543 if (!pud) 544 return -ENOMEM; 545 do { 546 next = pud_addr_end(addr, end); 547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 548 return -ENOMEM; 549 } while (pud++, addr = next, addr != end); 550 return 0; 551 } 552 553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 554 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 555 pgtbl_mod_mask *mask) 556 { 557 p4d_t *p4d; 558 unsigned long next; 559 560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 561 if (!p4d) 562 return -ENOMEM; 563 do { 564 next = p4d_addr_end(addr, end); 565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 566 return -ENOMEM; 567 } while (p4d++, addr = next, addr != end); 568 return 0; 569 } 570 571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 572 pgprot_t prot, struct page **pages) 573 { 574 unsigned long start = addr; 575 pgd_t *pgd; 576 unsigned long next; 577 int err = 0; 578 int nr = 0; 579 pgtbl_mod_mask mask = 0; 580 581 BUG_ON(addr >= end); 582 pgd = pgd_offset_k(addr); 583 do { 584 next = pgd_addr_end(addr, end); 585 if (pgd_bad(*pgd)) 586 mask |= PGTBL_PGD_MODIFIED; 587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 588 if (err) 589 return err; 590 } while (pgd++, addr = next, addr != end); 591 592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 593 arch_sync_kernel_mappings(start, end); 594 595 return 0; 596 } 597 598 /* 599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 600 * flush caches. 601 * 602 * The caller is responsible for calling flush_cache_vmap() after this 603 * function returns successfully and before the addresses are accessed. 604 * 605 * This is an internal function only. Do not use outside mm/. 606 */ 607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 608 pgprot_t prot, struct page **pages, unsigned int page_shift) 609 { 610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 611 612 WARN_ON(page_shift < PAGE_SHIFT); 613 614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 615 page_shift == PAGE_SHIFT) 616 return vmap_small_pages_range_noflush(addr, end, prot, pages); 617 618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 619 int err; 620 621 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 622 page_to_phys(pages[i]), prot, 623 page_shift); 624 if (err) 625 return err; 626 627 addr += 1UL << page_shift; 628 } 629 630 return 0; 631 } 632 633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 634 pgprot_t prot, struct page **pages, unsigned int page_shift) 635 { 636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 637 page_shift); 638 639 if (ret) 640 return ret; 641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 642 } 643 644 /** 645 * vmap_pages_range - map pages to a kernel virtual address 646 * @addr: start of the VM area to map 647 * @end: end of the VM area to map (non-inclusive) 648 * @prot: page protection flags to use 649 * @pages: pages to map (always PAGE_SIZE pages) 650 * @page_shift: maximum shift that the pages may be mapped with, @pages must 651 * be aligned and contiguous up to at least this shift. 652 * 653 * RETURNS: 654 * 0 on success, -errno on failure. 655 */ 656 static int vmap_pages_range(unsigned long addr, unsigned long end, 657 pgprot_t prot, struct page **pages, unsigned int page_shift) 658 { 659 int err; 660 661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 662 flush_cache_vmap(addr, end); 663 return err; 664 } 665 666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 667 unsigned long end) 668 { 669 might_sleep(); 670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 671 return -EINVAL; 672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 673 return -EINVAL; 674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 675 return -EINVAL; 676 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 677 return -E2BIG; 678 if (start < (unsigned long)area->addr || 679 (void *)end > area->addr + get_vm_area_size(area)) 680 return -ERANGE; 681 return 0; 682 } 683 684 /** 685 * vm_area_map_pages - map pages inside given sparse vm_area 686 * @area: vm_area 687 * @start: start address inside vm_area 688 * @end: end address inside vm_area 689 * @pages: pages to map (always PAGE_SIZE pages) 690 */ 691 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 692 unsigned long end, struct page **pages) 693 { 694 int err; 695 696 err = check_sparse_vm_area(area, start, end); 697 if (err) 698 return err; 699 700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 701 } 702 703 /** 704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 705 * @area: vm_area 706 * @start: start address inside vm_area 707 * @end: end address inside vm_area 708 */ 709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 710 unsigned long end) 711 { 712 if (check_sparse_vm_area(area, start, end)) 713 return; 714 715 vunmap_range(start, end); 716 } 717 718 int is_vmalloc_or_module_addr(const void *x) 719 { 720 /* 721 * ARM, x86-64 and sparc64 put modules in a special place, 722 * and fall back on vmalloc() if that fails. Others 723 * just put it in the vmalloc space. 724 */ 725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) 726 unsigned long addr = (unsigned long)kasan_reset_tag(x); 727 if (addr >= MODULES_VADDR && addr < MODULES_END) 728 return 1; 729 #endif 730 return is_vmalloc_addr(x); 731 } 732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 733 734 /* 735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 736 * return the tail page that corresponds to the base page address, which 737 * matches small vmap mappings. 738 */ 739 struct page *vmalloc_to_page(const void *vmalloc_addr) 740 { 741 unsigned long addr = (unsigned long) vmalloc_addr; 742 struct page *page = NULL; 743 pgd_t *pgd = pgd_offset_k(addr); 744 p4d_t *p4d; 745 pud_t *pud; 746 pmd_t *pmd; 747 pte_t *ptep, pte; 748 749 /* 750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 751 * architectures that do not vmalloc module space 752 */ 753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 754 755 if (pgd_none(*pgd)) 756 return NULL; 757 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 758 return NULL; /* XXX: no allowance for huge pgd */ 759 if (WARN_ON_ONCE(pgd_bad(*pgd))) 760 return NULL; 761 762 p4d = p4d_offset(pgd, addr); 763 if (p4d_none(*p4d)) 764 return NULL; 765 if (p4d_leaf(*p4d)) 766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 767 if (WARN_ON_ONCE(p4d_bad(*p4d))) 768 return NULL; 769 770 pud = pud_offset(p4d, addr); 771 if (pud_none(*pud)) 772 return NULL; 773 if (pud_leaf(*pud)) 774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 775 if (WARN_ON_ONCE(pud_bad(*pud))) 776 return NULL; 777 778 pmd = pmd_offset(pud, addr); 779 if (pmd_none(*pmd)) 780 return NULL; 781 if (pmd_leaf(*pmd)) 782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 783 if (WARN_ON_ONCE(pmd_bad(*pmd))) 784 return NULL; 785 786 ptep = pte_offset_kernel(pmd, addr); 787 pte = ptep_get(ptep); 788 if (pte_present(pte)) 789 page = pte_page(pte); 790 791 return page; 792 } 793 EXPORT_SYMBOL(vmalloc_to_page); 794 795 /* 796 * Map a vmalloc()-space virtual address to the physical page frame number. 797 */ 798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 799 { 800 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 801 } 802 EXPORT_SYMBOL(vmalloc_to_pfn); 803 804 805 /*** Global kva allocator ***/ 806 807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 809 810 811 static DEFINE_SPINLOCK(free_vmap_area_lock); 812 static bool vmap_initialized __read_mostly; 813 814 /* 815 * This kmem_cache is used for vmap_area objects. Instead of 816 * allocating from slab we reuse an object from this cache to 817 * make things faster. Especially in "no edge" splitting of 818 * free block. 819 */ 820 static struct kmem_cache *vmap_area_cachep; 821 822 /* 823 * This linked list is used in pair with free_vmap_area_root. 824 * It gives O(1) access to prev/next to perform fast coalescing. 825 */ 826 static LIST_HEAD(free_vmap_area_list); 827 828 /* 829 * This augment red-black tree represents the free vmap space. 830 * All vmap_area objects in this tree are sorted by va->va_start 831 * address. It is used for allocation and merging when a vmap 832 * object is released. 833 * 834 * Each vmap_area node contains a maximum available free block 835 * of its sub-tree, right or left. Therefore it is possible to 836 * find a lowest match of free area. 837 */ 838 static struct rb_root free_vmap_area_root = RB_ROOT; 839 840 /* 841 * Preload a CPU with one object for "no edge" split case. The 842 * aim is to get rid of allocations from the atomic context, thus 843 * to use more permissive allocation masks. 844 */ 845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 846 847 /* 848 * This structure defines a single, solid model where a list and 849 * rb-tree are part of one entity protected by the lock. Nodes are 850 * sorted in ascending order, thus for O(1) access to left/right 851 * neighbors a list is used as well as for sequential traversal. 852 */ 853 struct rb_list { 854 struct rb_root root; 855 struct list_head head; 856 spinlock_t lock; 857 }; 858 859 /* 860 * A fast size storage contains VAs up to 1M size. A pool consists 861 * of linked between each other ready to go VAs of certain sizes. 862 * An index in the pool-array corresponds to number of pages + 1. 863 */ 864 #define MAX_VA_SIZE_PAGES 256 865 866 struct vmap_pool { 867 struct list_head head; 868 unsigned long len; 869 }; 870 871 /* 872 * An effective vmap-node logic. Users make use of nodes instead 873 * of a global heap. It allows to balance an access and mitigate 874 * contention. 875 */ 876 static struct vmap_node { 877 /* Simple size segregated storage. */ 878 struct vmap_pool pool[MAX_VA_SIZE_PAGES]; 879 spinlock_t pool_lock; 880 bool skip_populate; 881 882 /* Bookkeeping data of this node. */ 883 struct rb_list busy; 884 struct rb_list lazy; 885 886 /* 887 * Ready-to-free areas. 888 */ 889 struct list_head purge_list; 890 struct work_struct purge_work; 891 unsigned long nr_purged; 892 } single; 893 894 /* 895 * Initial setup consists of one single node, i.e. a balancing 896 * is fully disabled. Later on, after vmap is initialized these 897 * parameters are updated based on a system capacity. 898 */ 899 static struct vmap_node *vmap_nodes = &single; 900 static __read_mostly unsigned int nr_vmap_nodes = 1; 901 static __read_mostly unsigned int vmap_zone_size = 1; 902 903 static inline unsigned int 904 addr_to_node_id(unsigned long addr) 905 { 906 return (addr / vmap_zone_size) % nr_vmap_nodes; 907 } 908 909 static inline struct vmap_node * 910 addr_to_node(unsigned long addr) 911 { 912 return &vmap_nodes[addr_to_node_id(addr)]; 913 } 914 915 static inline struct vmap_node * 916 id_to_node(unsigned int id) 917 { 918 return &vmap_nodes[id % nr_vmap_nodes]; 919 } 920 921 /* 922 * We use the value 0 to represent "no node", that is why 923 * an encoded value will be the node-id incremented by 1. 924 * It is always greater then 0. A valid node_id which can 925 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id 926 * is not valid 0 is returned. 927 */ 928 static unsigned int 929 encode_vn_id(unsigned int node_id) 930 { 931 /* Can store U8_MAX [0:254] nodes. */ 932 if (node_id < nr_vmap_nodes) 933 return (node_id + 1) << BITS_PER_BYTE; 934 935 /* Warn and no node encoded. */ 936 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); 937 return 0; 938 } 939 940 /* 941 * Returns an encoded node-id, the valid range is within 942 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is 943 * returned if extracted data is wrong. 944 */ 945 static unsigned int 946 decode_vn_id(unsigned int val) 947 { 948 unsigned int node_id = (val >> BITS_PER_BYTE) - 1; 949 950 /* Can store U8_MAX [0:254] nodes. */ 951 if (node_id < nr_vmap_nodes) 952 return node_id; 953 954 /* If it was _not_ zero, warn. */ 955 WARN_ONCE(node_id != UINT_MAX, 956 "Decode wrong node id (%d)\n", node_id); 957 958 return nr_vmap_nodes; 959 } 960 961 static bool 962 is_vn_id_valid(unsigned int node_id) 963 { 964 if (node_id < nr_vmap_nodes) 965 return true; 966 967 return false; 968 } 969 970 static __always_inline unsigned long 971 va_size(struct vmap_area *va) 972 { 973 return (va->va_end - va->va_start); 974 } 975 976 static __always_inline unsigned long 977 get_subtree_max_size(struct rb_node *node) 978 { 979 struct vmap_area *va; 980 981 va = rb_entry_safe(node, struct vmap_area, rb_node); 982 return va ? va->subtree_max_size : 0; 983 } 984 985 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 986 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 987 988 static void reclaim_and_purge_vmap_areas(void); 989 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 990 static void drain_vmap_area_work(struct work_struct *work); 991 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 992 993 static atomic_long_t nr_vmalloc_pages; 994 995 unsigned long vmalloc_nr_pages(void) 996 { 997 return atomic_long_read(&nr_vmalloc_pages); 998 } 999 1000 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 1001 { 1002 struct rb_node *n = root->rb_node; 1003 1004 addr = (unsigned long)kasan_reset_tag((void *)addr); 1005 1006 while (n) { 1007 struct vmap_area *va; 1008 1009 va = rb_entry(n, struct vmap_area, rb_node); 1010 if (addr < va->va_start) 1011 n = n->rb_left; 1012 else if (addr >= va->va_end) 1013 n = n->rb_right; 1014 else 1015 return va; 1016 } 1017 1018 return NULL; 1019 } 1020 1021 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 1022 static struct vmap_area * 1023 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) 1024 { 1025 struct vmap_area *va = NULL; 1026 struct rb_node *n = root->rb_node; 1027 1028 addr = (unsigned long)kasan_reset_tag((void *)addr); 1029 1030 while (n) { 1031 struct vmap_area *tmp; 1032 1033 tmp = rb_entry(n, struct vmap_area, rb_node); 1034 if (tmp->va_end > addr) { 1035 va = tmp; 1036 if (tmp->va_start <= addr) 1037 break; 1038 1039 n = n->rb_left; 1040 } else 1041 n = n->rb_right; 1042 } 1043 1044 return va; 1045 } 1046 1047 /* 1048 * Returns a node where a first VA, that satisfies addr < va_end, resides. 1049 * If success, a node is locked. A user is responsible to unlock it when a 1050 * VA is no longer needed to be accessed. 1051 * 1052 * Returns NULL if nothing found. 1053 */ 1054 static struct vmap_node * 1055 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) 1056 { 1057 unsigned long va_start_lowest; 1058 struct vmap_node *vn; 1059 int i; 1060 1061 repeat: 1062 for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) { 1063 vn = &vmap_nodes[i]; 1064 1065 spin_lock(&vn->busy.lock); 1066 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); 1067 1068 if (*va) 1069 if (!va_start_lowest || (*va)->va_start < va_start_lowest) 1070 va_start_lowest = (*va)->va_start; 1071 spin_unlock(&vn->busy.lock); 1072 } 1073 1074 /* 1075 * Check if found VA exists, it might have gone away. In this case we 1076 * repeat the search because a VA has been removed concurrently and we 1077 * need to proceed to the next one, which is a rare case. 1078 */ 1079 if (va_start_lowest) { 1080 vn = addr_to_node(va_start_lowest); 1081 1082 spin_lock(&vn->busy.lock); 1083 *va = __find_vmap_area(va_start_lowest, &vn->busy.root); 1084 1085 if (*va) 1086 return vn; 1087 1088 spin_unlock(&vn->busy.lock); 1089 goto repeat; 1090 } 1091 1092 return NULL; 1093 } 1094 1095 /* 1096 * This function returns back addresses of parent node 1097 * and its left or right link for further processing. 1098 * 1099 * Otherwise NULL is returned. In that case all further 1100 * steps regarding inserting of conflicting overlap range 1101 * have to be declined and actually considered as a bug. 1102 */ 1103 static __always_inline struct rb_node ** 1104 find_va_links(struct vmap_area *va, 1105 struct rb_root *root, struct rb_node *from, 1106 struct rb_node **parent) 1107 { 1108 struct vmap_area *tmp_va; 1109 struct rb_node **link; 1110 1111 if (root) { 1112 link = &root->rb_node; 1113 if (unlikely(!*link)) { 1114 *parent = NULL; 1115 return link; 1116 } 1117 } else { 1118 link = &from; 1119 } 1120 1121 /* 1122 * Go to the bottom of the tree. When we hit the last point 1123 * we end up with parent rb_node and correct direction, i name 1124 * it link, where the new va->rb_node will be attached to. 1125 */ 1126 do { 1127 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 1128 1129 /* 1130 * During the traversal we also do some sanity check. 1131 * Trigger the BUG() if there are sides(left/right) 1132 * or full overlaps. 1133 */ 1134 if (va->va_end <= tmp_va->va_start) 1135 link = &(*link)->rb_left; 1136 else if (va->va_start >= tmp_va->va_end) 1137 link = &(*link)->rb_right; 1138 else { 1139 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 1140 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 1141 1142 return NULL; 1143 } 1144 } while (*link); 1145 1146 *parent = &tmp_va->rb_node; 1147 return link; 1148 } 1149 1150 static __always_inline struct list_head * 1151 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 1152 { 1153 struct list_head *list; 1154 1155 if (unlikely(!parent)) 1156 /* 1157 * The red-black tree where we try to find VA neighbors 1158 * before merging or inserting is empty, i.e. it means 1159 * there is no free vmap space. Normally it does not 1160 * happen but we handle this case anyway. 1161 */ 1162 return NULL; 1163 1164 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 1165 return (&parent->rb_right == link ? list->next : list); 1166 } 1167 1168 static __always_inline void 1169 __link_va(struct vmap_area *va, struct rb_root *root, 1170 struct rb_node *parent, struct rb_node **link, 1171 struct list_head *head, bool augment) 1172 { 1173 /* 1174 * VA is still not in the list, but we can 1175 * identify its future previous list_head node. 1176 */ 1177 if (likely(parent)) { 1178 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1179 if (&parent->rb_right != link) 1180 head = head->prev; 1181 } 1182 1183 /* Insert to the rb-tree */ 1184 rb_link_node(&va->rb_node, parent, link); 1185 if (augment) { 1186 /* 1187 * Some explanation here. Just perform simple insertion 1188 * to the tree. We do not set va->subtree_max_size to 1189 * its current size before calling rb_insert_augmented(). 1190 * It is because we populate the tree from the bottom 1191 * to parent levels when the node _is_ in the tree. 1192 * 1193 * Therefore we set subtree_max_size to zero after insertion, 1194 * to let __augment_tree_propagate_from() puts everything to 1195 * the correct order later on. 1196 */ 1197 rb_insert_augmented(&va->rb_node, 1198 root, &free_vmap_area_rb_augment_cb); 1199 va->subtree_max_size = 0; 1200 } else { 1201 rb_insert_color(&va->rb_node, root); 1202 } 1203 1204 /* Address-sort this list */ 1205 list_add(&va->list, head); 1206 } 1207 1208 static __always_inline void 1209 link_va(struct vmap_area *va, struct rb_root *root, 1210 struct rb_node *parent, struct rb_node **link, 1211 struct list_head *head) 1212 { 1213 __link_va(va, root, parent, link, head, false); 1214 } 1215 1216 static __always_inline void 1217 link_va_augment(struct vmap_area *va, struct rb_root *root, 1218 struct rb_node *parent, struct rb_node **link, 1219 struct list_head *head) 1220 { 1221 __link_va(va, root, parent, link, head, true); 1222 } 1223 1224 static __always_inline void 1225 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1226 { 1227 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1228 return; 1229 1230 if (augment) 1231 rb_erase_augmented(&va->rb_node, 1232 root, &free_vmap_area_rb_augment_cb); 1233 else 1234 rb_erase(&va->rb_node, root); 1235 1236 list_del_init(&va->list); 1237 RB_CLEAR_NODE(&va->rb_node); 1238 } 1239 1240 static __always_inline void 1241 unlink_va(struct vmap_area *va, struct rb_root *root) 1242 { 1243 __unlink_va(va, root, false); 1244 } 1245 1246 static __always_inline void 1247 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1248 { 1249 __unlink_va(va, root, true); 1250 } 1251 1252 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1253 /* 1254 * Gets called when remove the node and rotate. 1255 */ 1256 static __always_inline unsigned long 1257 compute_subtree_max_size(struct vmap_area *va) 1258 { 1259 return max3(va_size(va), 1260 get_subtree_max_size(va->rb_node.rb_left), 1261 get_subtree_max_size(va->rb_node.rb_right)); 1262 } 1263 1264 static void 1265 augment_tree_propagate_check(void) 1266 { 1267 struct vmap_area *va; 1268 unsigned long computed_size; 1269 1270 list_for_each_entry(va, &free_vmap_area_list, list) { 1271 computed_size = compute_subtree_max_size(va); 1272 if (computed_size != va->subtree_max_size) 1273 pr_emerg("tree is corrupted: %lu, %lu\n", 1274 va_size(va), va->subtree_max_size); 1275 } 1276 } 1277 #endif 1278 1279 /* 1280 * This function populates subtree_max_size from bottom to upper 1281 * levels starting from VA point. The propagation must be done 1282 * when VA size is modified by changing its va_start/va_end. Or 1283 * in case of newly inserting of VA to the tree. 1284 * 1285 * It means that __augment_tree_propagate_from() must be called: 1286 * - After VA has been inserted to the tree(free path); 1287 * - After VA has been shrunk(allocation path); 1288 * - After VA has been increased(merging path). 1289 * 1290 * Please note that, it does not mean that upper parent nodes 1291 * and their subtree_max_size are recalculated all the time up 1292 * to the root node. 1293 * 1294 * 4--8 1295 * /\ 1296 * / \ 1297 * / \ 1298 * 2--2 8--8 1299 * 1300 * For example if we modify the node 4, shrinking it to 2, then 1301 * no any modification is required. If we shrink the node 2 to 1 1302 * its subtree_max_size is updated only, and set to 1. If we shrink 1303 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1304 * node becomes 4--6. 1305 */ 1306 static __always_inline void 1307 augment_tree_propagate_from(struct vmap_area *va) 1308 { 1309 /* 1310 * Populate the tree from bottom towards the root until 1311 * the calculated maximum available size of checked node 1312 * is equal to its current one. 1313 */ 1314 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1315 1316 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1317 augment_tree_propagate_check(); 1318 #endif 1319 } 1320 1321 static void 1322 insert_vmap_area(struct vmap_area *va, 1323 struct rb_root *root, struct list_head *head) 1324 { 1325 struct rb_node **link; 1326 struct rb_node *parent; 1327 1328 link = find_va_links(va, root, NULL, &parent); 1329 if (link) 1330 link_va(va, root, parent, link, head); 1331 } 1332 1333 static void 1334 insert_vmap_area_augment(struct vmap_area *va, 1335 struct rb_node *from, struct rb_root *root, 1336 struct list_head *head) 1337 { 1338 struct rb_node **link; 1339 struct rb_node *parent; 1340 1341 if (from) 1342 link = find_va_links(va, NULL, from, &parent); 1343 else 1344 link = find_va_links(va, root, NULL, &parent); 1345 1346 if (link) { 1347 link_va_augment(va, root, parent, link, head); 1348 augment_tree_propagate_from(va); 1349 } 1350 } 1351 1352 /* 1353 * Merge de-allocated chunk of VA memory with previous 1354 * and next free blocks. If coalesce is not done a new 1355 * free area is inserted. If VA has been merged, it is 1356 * freed. 1357 * 1358 * Please note, it can return NULL in case of overlap 1359 * ranges, followed by WARN() report. Despite it is a 1360 * buggy behaviour, a system can be alive and keep 1361 * ongoing. 1362 */ 1363 static __always_inline struct vmap_area * 1364 __merge_or_add_vmap_area(struct vmap_area *va, 1365 struct rb_root *root, struct list_head *head, bool augment) 1366 { 1367 struct vmap_area *sibling; 1368 struct list_head *next; 1369 struct rb_node **link; 1370 struct rb_node *parent; 1371 bool merged = false; 1372 1373 /* 1374 * Find a place in the tree where VA potentially will be 1375 * inserted, unless it is merged with its sibling/siblings. 1376 */ 1377 link = find_va_links(va, root, NULL, &parent); 1378 if (!link) 1379 return NULL; 1380 1381 /* 1382 * Get next node of VA to check if merging can be done. 1383 */ 1384 next = get_va_next_sibling(parent, link); 1385 if (unlikely(next == NULL)) 1386 goto insert; 1387 1388 /* 1389 * start end 1390 * | | 1391 * |<------VA------>|<-----Next----->| 1392 * | | 1393 * start end 1394 */ 1395 if (next != head) { 1396 sibling = list_entry(next, struct vmap_area, list); 1397 if (sibling->va_start == va->va_end) { 1398 sibling->va_start = va->va_start; 1399 1400 /* Free vmap_area object. */ 1401 kmem_cache_free(vmap_area_cachep, va); 1402 1403 /* Point to the new merged area. */ 1404 va = sibling; 1405 merged = true; 1406 } 1407 } 1408 1409 /* 1410 * start end 1411 * | | 1412 * |<-----Prev----->|<------VA------>| 1413 * | | 1414 * start end 1415 */ 1416 if (next->prev != head) { 1417 sibling = list_entry(next->prev, struct vmap_area, list); 1418 if (sibling->va_end == va->va_start) { 1419 /* 1420 * If both neighbors are coalesced, it is important 1421 * to unlink the "next" node first, followed by merging 1422 * with "previous" one. Otherwise the tree might not be 1423 * fully populated if a sibling's augmented value is 1424 * "normalized" because of rotation operations. 1425 */ 1426 if (merged) 1427 __unlink_va(va, root, augment); 1428 1429 sibling->va_end = va->va_end; 1430 1431 /* Free vmap_area object. */ 1432 kmem_cache_free(vmap_area_cachep, va); 1433 1434 /* Point to the new merged area. */ 1435 va = sibling; 1436 merged = true; 1437 } 1438 } 1439 1440 insert: 1441 if (!merged) 1442 __link_va(va, root, parent, link, head, augment); 1443 1444 return va; 1445 } 1446 1447 static __always_inline struct vmap_area * 1448 merge_or_add_vmap_area(struct vmap_area *va, 1449 struct rb_root *root, struct list_head *head) 1450 { 1451 return __merge_or_add_vmap_area(va, root, head, false); 1452 } 1453 1454 static __always_inline struct vmap_area * 1455 merge_or_add_vmap_area_augment(struct vmap_area *va, 1456 struct rb_root *root, struct list_head *head) 1457 { 1458 va = __merge_or_add_vmap_area(va, root, head, true); 1459 if (va) 1460 augment_tree_propagate_from(va); 1461 1462 return va; 1463 } 1464 1465 static __always_inline bool 1466 is_within_this_va(struct vmap_area *va, unsigned long size, 1467 unsigned long align, unsigned long vstart) 1468 { 1469 unsigned long nva_start_addr; 1470 1471 if (va->va_start > vstart) 1472 nva_start_addr = ALIGN(va->va_start, align); 1473 else 1474 nva_start_addr = ALIGN(vstart, align); 1475 1476 /* Can be overflowed due to big size or alignment. */ 1477 if (nva_start_addr + size < nva_start_addr || 1478 nva_start_addr < vstart) 1479 return false; 1480 1481 return (nva_start_addr + size <= va->va_end); 1482 } 1483 1484 /* 1485 * Find the first free block(lowest start address) in the tree, 1486 * that will accomplish the request corresponding to passing 1487 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1488 * a search length is adjusted to account for worst case alignment 1489 * overhead. 1490 */ 1491 static __always_inline struct vmap_area * 1492 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1493 unsigned long align, unsigned long vstart, bool adjust_search_size) 1494 { 1495 struct vmap_area *va; 1496 struct rb_node *node; 1497 unsigned long length; 1498 1499 /* Start from the root. */ 1500 node = root->rb_node; 1501 1502 /* Adjust the search size for alignment overhead. */ 1503 length = adjust_search_size ? size + align - 1 : size; 1504 1505 while (node) { 1506 va = rb_entry(node, struct vmap_area, rb_node); 1507 1508 if (get_subtree_max_size(node->rb_left) >= length && 1509 vstart < va->va_start) { 1510 node = node->rb_left; 1511 } else { 1512 if (is_within_this_va(va, size, align, vstart)) 1513 return va; 1514 1515 /* 1516 * Does not make sense to go deeper towards the right 1517 * sub-tree if it does not have a free block that is 1518 * equal or bigger to the requested search length. 1519 */ 1520 if (get_subtree_max_size(node->rb_right) >= length) { 1521 node = node->rb_right; 1522 continue; 1523 } 1524 1525 /* 1526 * OK. We roll back and find the first right sub-tree, 1527 * that will satisfy the search criteria. It can happen 1528 * due to "vstart" restriction or an alignment overhead 1529 * that is bigger then PAGE_SIZE. 1530 */ 1531 while ((node = rb_parent(node))) { 1532 va = rb_entry(node, struct vmap_area, rb_node); 1533 if (is_within_this_va(va, size, align, vstart)) 1534 return va; 1535 1536 if (get_subtree_max_size(node->rb_right) >= length && 1537 vstart <= va->va_start) { 1538 /* 1539 * Shift the vstart forward. Please note, we update it with 1540 * parent's start address adding "1" because we do not want 1541 * to enter same sub-tree after it has already been checked 1542 * and no suitable free block found there. 1543 */ 1544 vstart = va->va_start + 1; 1545 node = node->rb_right; 1546 break; 1547 } 1548 } 1549 } 1550 } 1551 1552 return NULL; 1553 } 1554 1555 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1556 #include <linux/random.h> 1557 1558 static struct vmap_area * 1559 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1560 unsigned long align, unsigned long vstart) 1561 { 1562 struct vmap_area *va; 1563 1564 list_for_each_entry(va, head, list) { 1565 if (!is_within_this_va(va, size, align, vstart)) 1566 continue; 1567 1568 return va; 1569 } 1570 1571 return NULL; 1572 } 1573 1574 static void 1575 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1576 unsigned long size, unsigned long align) 1577 { 1578 struct vmap_area *va_1, *va_2; 1579 unsigned long vstart; 1580 unsigned int rnd; 1581 1582 get_random_bytes(&rnd, sizeof(rnd)); 1583 vstart = VMALLOC_START + rnd; 1584 1585 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1586 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1587 1588 if (va_1 != va_2) 1589 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1590 va_1, va_2, vstart); 1591 } 1592 #endif 1593 1594 enum fit_type { 1595 NOTHING_FIT = 0, 1596 FL_FIT_TYPE = 1, /* full fit */ 1597 LE_FIT_TYPE = 2, /* left edge fit */ 1598 RE_FIT_TYPE = 3, /* right edge fit */ 1599 NE_FIT_TYPE = 4 /* no edge fit */ 1600 }; 1601 1602 static __always_inline enum fit_type 1603 classify_va_fit_type(struct vmap_area *va, 1604 unsigned long nva_start_addr, unsigned long size) 1605 { 1606 enum fit_type type; 1607 1608 /* Check if it is within VA. */ 1609 if (nva_start_addr < va->va_start || 1610 nva_start_addr + size > va->va_end) 1611 return NOTHING_FIT; 1612 1613 /* Now classify. */ 1614 if (va->va_start == nva_start_addr) { 1615 if (va->va_end == nva_start_addr + size) 1616 type = FL_FIT_TYPE; 1617 else 1618 type = LE_FIT_TYPE; 1619 } else if (va->va_end == nva_start_addr + size) { 1620 type = RE_FIT_TYPE; 1621 } else { 1622 type = NE_FIT_TYPE; 1623 } 1624 1625 return type; 1626 } 1627 1628 static __always_inline int 1629 va_clip(struct rb_root *root, struct list_head *head, 1630 struct vmap_area *va, unsigned long nva_start_addr, 1631 unsigned long size) 1632 { 1633 struct vmap_area *lva = NULL; 1634 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1635 1636 if (type == FL_FIT_TYPE) { 1637 /* 1638 * No need to split VA, it fully fits. 1639 * 1640 * | | 1641 * V NVA V 1642 * |---------------| 1643 */ 1644 unlink_va_augment(va, root); 1645 kmem_cache_free(vmap_area_cachep, va); 1646 } else if (type == LE_FIT_TYPE) { 1647 /* 1648 * Split left edge of fit VA. 1649 * 1650 * | | 1651 * V NVA V R 1652 * |-------|-------| 1653 */ 1654 va->va_start += size; 1655 } else if (type == RE_FIT_TYPE) { 1656 /* 1657 * Split right edge of fit VA. 1658 * 1659 * | | 1660 * L V NVA V 1661 * |-------|-------| 1662 */ 1663 va->va_end = nva_start_addr; 1664 } else if (type == NE_FIT_TYPE) { 1665 /* 1666 * Split no edge of fit VA. 1667 * 1668 * | | 1669 * L V NVA V R 1670 * |---|-------|---| 1671 */ 1672 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1673 if (unlikely(!lva)) { 1674 /* 1675 * For percpu allocator we do not do any pre-allocation 1676 * and leave it as it is. The reason is it most likely 1677 * never ends up with NE_FIT_TYPE splitting. In case of 1678 * percpu allocations offsets and sizes are aligned to 1679 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1680 * are its main fitting cases. 1681 * 1682 * There are a few exceptions though, as an example it is 1683 * a first allocation (early boot up) when we have "one" 1684 * big free space that has to be split. 1685 * 1686 * Also we can hit this path in case of regular "vmap" 1687 * allocations, if "this" current CPU was not preloaded. 1688 * See the comment in alloc_vmap_area() why. If so, then 1689 * GFP_NOWAIT is used instead to get an extra object for 1690 * split purpose. That is rare and most time does not 1691 * occur. 1692 * 1693 * What happens if an allocation gets failed. Basically, 1694 * an "overflow" path is triggered to purge lazily freed 1695 * areas to free some memory, then, the "retry" path is 1696 * triggered to repeat one more time. See more details 1697 * in alloc_vmap_area() function. 1698 */ 1699 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1700 if (!lva) 1701 return -1; 1702 } 1703 1704 /* 1705 * Build the remainder. 1706 */ 1707 lva->va_start = va->va_start; 1708 lva->va_end = nva_start_addr; 1709 1710 /* 1711 * Shrink this VA to remaining size. 1712 */ 1713 va->va_start = nva_start_addr + size; 1714 } else { 1715 return -1; 1716 } 1717 1718 if (type != FL_FIT_TYPE) { 1719 augment_tree_propagate_from(va); 1720 1721 if (lva) /* type == NE_FIT_TYPE */ 1722 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1723 } 1724 1725 return 0; 1726 } 1727 1728 static unsigned long 1729 va_alloc(struct vmap_area *va, 1730 struct rb_root *root, struct list_head *head, 1731 unsigned long size, unsigned long align, 1732 unsigned long vstart, unsigned long vend) 1733 { 1734 unsigned long nva_start_addr; 1735 int ret; 1736 1737 if (va->va_start > vstart) 1738 nva_start_addr = ALIGN(va->va_start, align); 1739 else 1740 nva_start_addr = ALIGN(vstart, align); 1741 1742 /* Check the "vend" restriction. */ 1743 if (nva_start_addr + size > vend) 1744 return vend; 1745 1746 /* Update the free vmap_area. */ 1747 ret = va_clip(root, head, va, nva_start_addr, size); 1748 if (WARN_ON_ONCE(ret)) 1749 return vend; 1750 1751 return nva_start_addr; 1752 } 1753 1754 /* 1755 * Returns a start address of the newly allocated area, if success. 1756 * Otherwise a vend is returned that indicates failure. 1757 */ 1758 static __always_inline unsigned long 1759 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1760 unsigned long size, unsigned long align, 1761 unsigned long vstart, unsigned long vend) 1762 { 1763 bool adjust_search_size = true; 1764 unsigned long nva_start_addr; 1765 struct vmap_area *va; 1766 1767 /* 1768 * Do not adjust when: 1769 * a) align <= PAGE_SIZE, because it does not make any sense. 1770 * All blocks(their start addresses) are at least PAGE_SIZE 1771 * aligned anyway; 1772 * b) a short range where a requested size corresponds to exactly 1773 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1774 * With adjusted search length an allocation would not succeed. 1775 */ 1776 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1777 adjust_search_size = false; 1778 1779 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1780 if (unlikely(!va)) 1781 return vend; 1782 1783 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); 1784 if (nva_start_addr == vend) 1785 return vend; 1786 1787 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1788 find_vmap_lowest_match_check(root, head, size, align); 1789 #endif 1790 1791 return nva_start_addr; 1792 } 1793 1794 /* 1795 * Free a region of KVA allocated by alloc_vmap_area 1796 */ 1797 static void free_vmap_area(struct vmap_area *va) 1798 { 1799 struct vmap_node *vn = addr_to_node(va->va_start); 1800 1801 /* 1802 * Remove from the busy tree/list. 1803 */ 1804 spin_lock(&vn->busy.lock); 1805 unlink_va(va, &vn->busy.root); 1806 spin_unlock(&vn->busy.lock); 1807 1808 /* 1809 * Insert/Merge it back to the free tree/list. 1810 */ 1811 spin_lock(&free_vmap_area_lock); 1812 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1813 spin_unlock(&free_vmap_area_lock); 1814 } 1815 1816 static inline void 1817 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1818 { 1819 struct vmap_area *va = NULL; 1820 1821 /* 1822 * Preload this CPU with one extra vmap_area object. It is used 1823 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1824 * a CPU that does an allocation is preloaded. 1825 * 1826 * We do it in non-atomic context, thus it allows us to use more 1827 * permissive allocation masks to be more stable under low memory 1828 * condition and high memory pressure. 1829 */ 1830 if (!this_cpu_read(ne_fit_preload_node)) 1831 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1832 1833 spin_lock(lock); 1834 1835 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1836 kmem_cache_free(vmap_area_cachep, va); 1837 } 1838 1839 static struct vmap_pool * 1840 size_to_va_pool(struct vmap_node *vn, unsigned long size) 1841 { 1842 unsigned int idx = (size - 1) / PAGE_SIZE; 1843 1844 if (idx < MAX_VA_SIZE_PAGES) 1845 return &vn->pool[idx]; 1846 1847 return NULL; 1848 } 1849 1850 static bool 1851 node_pool_add_va(struct vmap_node *n, struct vmap_area *va) 1852 { 1853 struct vmap_pool *vp; 1854 1855 vp = size_to_va_pool(n, va_size(va)); 1856 if (!vp) 1857 return false; 1858 1859 spin_lock(&n->pool_lock); 1860 list_add(&va->list, &vp->head); 1861 WRITE_ONCE(vp->len, vp->len + 1); 1862 spin_unlock(&n->pool_lock); 1863 1864 return true; 1865 } 1866 1867 static struct vmap_area * 1868 node_pool_del_va(struct vmap_node *vn, unsigned long size, 1869 unsigned long align, unsigned long vstart, 1870 unsigned long vend) 1871 { 1872 struct vmap_area *va = NULL; 1873 struct vmap_pool *vp; 1874 int err = 0; 1875 1876 vp = size_to_va_pool(vn, size); 1877 if (!vp || list_empty(&vp->head)) 1878 return NULL; 1879 1880 spin_lock(&vn->pool_lock); 1881 if (!list_empty(&vp->head)) { 1882 va = list_first_entry(&vp->head, struct vmap_area, list); 1883 1884 if (IS_ALIGNED(va->va_start, align)) { 1885 /* 1886 * Do some sanity check and emit a warning 1887 * if one of below checks detects an error. 1888 */ 1889 err |= (va_size(va) != size); 1890 err |= (va->va_start < vstart); 1891 err |= (va->va_end > vend); 1892 1893 if (!WARN_ON_ONCE(err)) { 1894 list_del_init(&va->list); 1895 WRITE_ONCE(vp->len, vp->len - 1); 1896 } else { 1897 va = NULL; 1898 } 1899 } else { 1900 list_move_tail(&va->list, &vp->head); 1901 va = NULL; 1902 } 1903 } 1904 spin_unlock(&vn->pool_lock); 1905 1906 return va; 1907 } 1908 1909 static struct vmap_area * 1910 node_alloc(unsigned long size, unsigned long align, 1911 unsigned long vstart, unsigned long vend, 1912 unsigned long *addr, unsigned int *vn_id) 1913 { 1914 struct vmap_area *va; 1915 1916 *vn_id = 0; 1917 *addr = vend; 1918 1919 /* 1920 * Fallback to a global heap if not vmalloc or there 1921 * is only one node. 1922 */ 1923 if (vstart != VMALLOC_START || vend != VMALLOC_END || 1924 nr_vmap_nodes == 1) 1925 return NULL; 1926 1927 *vn_id = raw_smp_processor_id() % nr_vmap_nodes; 1928 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); 1929 *vn_id = encode_vn_id(*vn_id); 1930 1931 if (va) 1932 *addr = va->va_start; 1933 1934 return va; 1935 } 1936 1937 static inline void setup_vmalloc_vm(struct vm_struct *vm, 1938 struct vmap_area *va, unsigned long flags, const void *caller) 1939 { 1940 vm->flags = flags; 1941 vm->addr = (void *)va->va_start; 1942 vm->size = va->va_end - va->va_start; 1943 vm->caller = caller; 1944 va->vm = vm; 1945 } 1946 1947 /* 1948 * Allocate a region of KVA of the specified size and alignment, within the 1949 * vstart and vend. If vm is passed in, the two will also be bound. 1950 */ 1951 static struct vmap_area *alloc_vmap_area(unsigned long size, 1952 unsigned long align, 1953 unsigned long vstart, unsigned long vend, 1954 int node, gfp_t gfp_mask, 1955 unsigned long va_flags, struct vm_struct *vm) 1956 { 1957 struct vmap_node *vn; 1958 struct vmap_area *va; 1959 unsigned long freed; 1960 unsigned long addr; 1961 unsigned int vn_id; 1962 int purged = 0; 1963 int ret; 1964 1965 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1966 return ERR_PTR(-EINVAL); 1967 1968 if (unlikely(!vmap_initialized)) 1969 return ERR_PTR(-EBUSY); 1970 1971 might_sleep(); 1972 1973 /* 1974 * If a VA is obtained from a global heap(if it fails here) 1975 * it is anyway marked with this "vn_id" so it is returned 1976 * to this pool's node later. Such way gives a possibility 1977 * to populate pools based on users demand. 1978 * 1979 * On success a ready to go VA is returned. 1980 */ 1981 va = node_alloc(size, align, vstart, vend, &addr, &vn_id); 1982 if (!va) { 1983 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1984 1985 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1986 if (unlikely(!va)) 1987 return ERR_PTR(-ENOMEM); 1988 1989 /* 1990 * Only scan the relevant parts containing pointers to other objects 1991 * to avoid false negatives. 1992 */ 1993 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1994 } 1995 1996 retry: 1997 if (addr == vend) { 1998 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1999 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 2000 size, align, vstart, vend); 2001 spin_unlock(&free_vmap_area_lock); 2002 } 2003 2004 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 2005 2006 /* 2007 * If an allocation fails, the "vend" address is 2008 * returned. Therefore trigger the overflow path. 2009 */ 2010 if (unlikely(addr == vend)) 2011 goto overflow; 2012 2013 va->va_start = addr; 2014 va->va_end = addr + size; 2015 va->vm = NULL; 2016 va->flags = (va_flags | vn_id); 2017 2018 if (vm) { 2019 vm->addr = (void *)va->va_start; 2020 vm->size = va->va_end - va->va_start; 2021 va->vm = vm; 2022 } 2023 2024 vn = addr_to_node(va->va_start); 2025 2026 spin_lock(&vn->busy.lock); 2027 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 2028 spin_unlock(&vn->busy.lock); 2029 2030 BUG_ON(!IS_ALIGNED(va->va_start, align)); 2031 BUG_ON(va->va_start < vstart); 2032 BUG_ON(va->va_end > vend); 2033 2034 ret = kasan_populate_vmalloc(addr, size); 2035 if (ret) { 2036 free_vmap_area(va); 2037 return ERR_PTR(ret); 2038 } 2039 2040 return va; 2041 2042 overflow: 2043 if (!purged) { 2044 reclaim_and_purge_vmap_areas(); 2045 purged = 1; 2046 goto retry; 2047 } 2048 2049 freed = 0; 2050 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 2051 2052 if (freed > 0) { 2053 purged = 0; 2054 goto retry; 2055 } 2056 2057 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 2058 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 2059 size); 2060 2061 kmem_cache_free(vmap_area_cachep, va); 2062 return ERR_PTR(-EBUSY); 2063 } 2064 2065 int register_vmap_purge_notifier(struct notifier_block *nb) 2066 { 2067 return blocking_notifier_chain_register(&vmap_notify_list, nb); 2068 } 2069 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 2070 2071 int unregister_vmap_purge_notifier(struct notifier_block *nb) 2072 { 2073 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 2074 } 2075 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 2076 2077 /* 2078 * lazy_max_pages is the maximum amount of virtual address space we gather up 2079 * before attempting to purge with a TLB flush. 2080 * 2081 * There is a tradeoff here: a larger number will cover more kernel page tables 2082 * and take slightly longer to purge, but it will linearly reduce the number of 2083 * global TLB flushes that must be performed. It would seem natural to scale 2084 * this number up linearly with the number of CPUs (because vmapping activity 2085 * could also scale linearly with the number of CPUs), however it is likely 2086 * that in practice, workloads might be constrained in other ways that mean 2087 * vmap activity will not scale linearly with CPUs. Also, I want to be 2088 * conservative and not introduce a big latency on huge systems, so go with 2089 * a less aggressive log scale. It will still be an improvement over the old 2090 * code, and it will be simple to change the scale factor if we find that it 2091 * becomes a problem on bigger systems. 2092 */ 2093 static unsigned long lazy_max_pages(void) 2094 { 2095 unsigned int log; 2096 2097 log = fls(num_online_cpus()); 2098 2099 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 2100 } 2101 2102 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 2103 2104 /* 2105 * Serialize vmap purging. There is no actual critical section protected 2106 * by this lock, but we want to avoid concurrent calls for performance 2107 * reasons and to make the pcpu_get_vm_areas more deterministic. 2108 */ 2109 static DEFINE_MUTEX(vmap_purge_lock); 2110 2111 /* for per-CPU blocks */ 2112 static void purge_fragmented_blocks_allcpus(void); 2113 static cpumask_t purge_nodes; 2114 2115 static void 2116 reclaim_list_global(struct list_head *head) 2117 { 2118 struct vmap_area *va, *n; 2119 2120 if (list_empty(head)) 2121 return; 2122 2123 spin_lock(&free_vmap_area_lock); 2124 list_for_each_entry_safe(va, n, head, list) 2125 merge_or_add_vmap_area_augment(va, 2126 &free_vmap_area_root, &free_vmap_area_list); 2127 spin_unlock(&free_vmap_area_lock); 2128 } 2129 2130 static void 2131 decay_va_pool_node(struct vmap_node *vn, bool full_decay) 2132 { 2133 struct vmap_area *va, *nva; 2134 struct list_head decay_list; 2135 struct rb_root decay_root; 2136 unsigned long n_decay; 2137 int i; 2138 2139 decay_root = RB_ROOT; 2140 INIT_LIST_HEAD(&decay_list); 2141 2142 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 2143 struct list_head tmp_list; 2144 2145 if (list_empty(&vn->pool[i].head)) 2146 continue; 2147 2148 INIT_LIST_HEAD(&tmp_list); 2149 2150 /* Detach the pool, so no-one can access it. */ 2151 spin_lock(&vn->pool_lock); 2152 list_replace_init(&vn->pool[i].head, &tmp_list); 2153 spin_unlock(&vn->pool_lock); 2154 2155 if (full_decay) 2156 WRITE_ONCE(vn->pool[i].len, 0); 2157 2158 /* Decay a pool by ~25% out of left objects. */ 2159 n_decay = vn->pool[i].len >> 2; 2160 2161 list_for_each_entry_safe(va, nva, &tmp_list, list) { 2162 list_del_init(&va->list); 2163 merge_or_add_vmap_area(va, &decay_root, &decay_list); 2164 2165 if (!full_decay) { 2166 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); 2167 2168 if (!--n_decay) 2169 break; 2170 } 2171 } 2172 2173 /* 2174 * Attach the pool back if it has been partly decayed. 2175 * Please note, it is supposed that nobody(other contexts) 2176 * can populate the pool therefore a simple list replace 2177 * operation takes place here. 2178 */ 2179 if (!full_decay && !list_empty(&tmp_list)) { 2180 spin_lock(&vn->pool_lock); 2181 list_replace_init(&tmp_list, &vn->pool[i].head); 2182 spin_unlock(&vn->pool_lock); 2183 } 2184 } 2185 2186 reclaim_list_global(&decay_list); 2187 } 2188 2189 static void purge_vmap_node(struct work_struct *work) 2190 { 2191 struct vmap_node *vn = container_of(work, 2192 struct vmap_node, purge_work); 2193 struct vmap_area *va, *n_va; 2194 LIST_HEAD(local_list); 2195 2196 vn->nr_purged = 0; 2197 2198 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { 2199 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 2200 unsigned long orig_start = va->va_start; 2201 unsigned long orig_end = va->va_end; 2202 unsigned int vn_id = decode_vn_id(va->flags); 2203 2204 list_del_init(&va->list); 2205 2206 if (is_vmalloc_or_module_addr((void *)orig_start)) 2207 kasan_release_vmalloc(orig_start, orig_end, 2208 va->va_start, va->va_end); 2209 2210 atomic_long_sub(nr, &vmap_lazy_nr); 2211 vn->nr_purged++; 2212 2213 if (is_vn_id_valid(vn_id) && !vn->skip_populate) 2214 if (node_pool_add_va(vn, va)) 2215 continue; 2216 2217 /* Go back to global. */ 2218 list_add(&va->list, &local_list); 2219 } 2220 2221 reclaim_list_global(&local_list); 2222 } 2223 2224 /* 2225 * Purges all lazily-freed vmap areas. 2226 */ 2227 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, 2228 bool full_pool_decay) 2229 { 2230 unsigned long nr_purged_areas = 0; 2231 unsigned int nr_purge_helpers; 2232 unsigned int nr_purge_nodes; 2233 struct vmap_node *vn; 2234 int i; 2235 2236 lockdep_assert_held(&vmap_purge_lock); 2237 2238 /* 2239 * Use cpumask to mark which node has to be processed. 2240 */ 2241 purge_nodes = CPU_MASK_NONE; 2242 2243 for (i = 0; i < nr_vmap_nodes; i++) { 2244 vn = &vmap_nodes[i]; 2245 2246 INIT_LIST_HEAD(&vn->purge_list); 2247 vn->skip_populate = full_pool_decay; 2248 decay_va_pool_node(vn, full_pool_decay); 2249 2250 if (RB_EMPTY_ROOT(&vn->lazy.root)) 2251 continue; 2252 2253 spin_lock(&vn->lazy.lock); 2254 WRITE_ONCE(vn->lazy.root.rb_node, NULL); 2255 list_replace_init(&vn->lazy.head, &vn->purge_list); 2256 spin_unlock(&vn->lazy.lock); 2257 2258 start = min(start, list_first_entry(&vn->purge_list, 2259 struct vmap_area, list)->va_start); 2260 2261 end = max(end, list_last_entry(&vn->purge_list, 2262 struct vmap_area, list)->va_end); 2263 2264 cpumask_set_cpu(i, &purge_nodes); 2265 } 2266 2267 nr_purge_nodes = cpumask_weight(&purge_nodes); 2268 if (nr_purge_nodes > 0) { 2269 flush_tlb_kernel_range(start, end); 2270 2271 /* One extra worker is per a lazy_max_pages() full set minus one. */ 2272 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); 2273 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; 2274 2275 for_each_cpu(i, &purge_nodes) { 2276 vn = &vmap_nodes[i]; 2277 2278 if (nr_purge_helpers > 0) { 2279 INIT_WORK(&vn->purge_work, purge_vmap_node); 2280 2281 if (cpumask_test_cpu(i, cpu_online_mask)) 2282 schedule_work_on(i, &vn->purge_work); 2283 else 2284 schedule_work(&vn->purge_work); 2285 2286 nr_purge_helpers--; 2287 } else { 2288 vn->purge_work.func = NULL; 2289 purge_vmap_node(&vn->purge_work); 2290 nr_purged_areas += vn->nr_purged; 2291 } 2292 } 2293 2294 for_each_cpu(i, &purge_nodes) { 2295 vn = &vmap_nodes[i]; 2296 2297 if (vn->purge_work.func) { 2298 flush_work(&vn->purge_work); 2299 nr_purged_areas += vn->nr_purged; 2300 } 2301 } 2302 } 2303 2304 trace_purge_vmap_area_lazy(start, end, nr_purged_areas); 2305 return nr_purged_areas > 0; 2306 } 2307 2308 /* 2309 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 2310 */ 2311 static void reclaim_and_purge_vmap_areas(void) 2312 2313 { 2314 mutex_lock(&vmap_purge_lock); 2315 purge_fragmented_blocks_allcpus(); 2316 __purge_vmap_area_lazy(ULONG_MAX, 0, true); 2317 mutex_unlock(&vmap_purge_lock); 2318 } 2319 2320 static void drain_vmap_area_work(struct work_struct *work) 2321 { 2322 mutex_lock(&vmap_purge_lock); 2323 __purge_vmap_area_lazy(ULONG_MAX, 0, false); 2324 mutex_unlock(&vmap_purge_lock); 2325 } 2326 2327 /* 2328 * Free a vmap area, caller ensuring that the area has been unmapped, 2329 * unlinked and flush_cache_vunmap had been called for the correct 2330 * range previously. 2331 */ 2332 static void free_vmap_area_noflush(struct vmap_area *va) 2333 { 2334 unsigned long nr_lazy_max = lazy_max_pages(); 2335 unsigned long va_start = va->va_start; 2336 unsigned int vn_id = decode_vn_id(va->flags); 2337 struct vmap_node *vn; 2338 unsigned long nr_lazy; 2339 2340 if (WARN_ON_ONCE(!list_empty(&va->list))) 2341 return; 2342 2343 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 2344 PAGE_SHIFT, &vmap_lazy_nr); 2345 2346 /* 2347 * If it was request by a certain node we would like to 2348 * return it to that node, i.e. its pool for later reuse. 2349 */ 2350 vn = is_vn_id_valid(vn_id) ? 2351 id_to_node(vn_id):addr_to_node(va->va_start); 2352 2353 spin_lock(&vn->lazy.lock); 2354 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); 2355 spin_unlock(&vn->lazy.lock); 2356 2357 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 2358 2359 /* After this point, we may free va at any time */ 2360 if (unlikely(nr_lazy > nr_lazy_max)) 2361 schedule_work(&drain_vmap_work); 2362 } 2363 2364 /* 2365 * Free and unmap a vmap area 2366 */ 2367 static void free_unmap_vmap_area(struct vmap_area *va) 2368 { 2369 flush_cache_vunmap(va->va_start, va->va_end); 2370 vunmap_range_noflush(va->va_start, va->va_end); 2371 if (debug_pagealloc_enabled_static()) 2372 flush_tlb_kernel_range(va->va_start, va->va_end); 2373 2374 free_vmap_area_noflush(va); 2375 } 2376 2377 struct vmap_area *find_vmap_area(unsigned long addr) 2378 { 2379 struct vmap_node *vn; 2380 struct vmap_area *va; 2381 int i, j; 2382 2383 if (unlikely(!vmap_initialized)) 2384 return NULL; 2385 2386 /* 2387 * An addr_to_node_id(addr) converts an address to a node index 2388 * where a VA is located. If VA spans several zones and passed 2389 * addr is not the same as va->va_start, what is not common, we 2390 * may need to scan extra nodes. See an example: 2391 * 2392 * <----va----> 2393 * -|-----|-----|-----|-----|- 2394 * 1 2 0 1 2395 * 2396 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed 2397 * addr is within 2 or 0 nodes we should do extra work. 2398 */ 2399 i = j = addr_to_node_id(addr); 2400 do { 2401 vn = &vmap_nodes[i]; 2402 2403 spin_lock(&vn->busy.lock); 2404 va = __find_vmap_area(addr, &vn->busy.root); 2405 spin_unlock(&vn->busy.lock); 2406 2407 if (va) 2408 return va; 2409 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2410 2411 return NULL; 2412 } 2413 2414 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 2415 { 2416 struct vmap_node *vn; 2417 struct vmap_area *va; 2418 int i, j; 2419 2420 /* 2421 * Check the comment in the find_vmap_area() about the loop. 2422 */ 2423 i = j = addr_to_node_id(addr); 2424 do { 2425 vn = &vmap_nodes[i]; 2426 2427 spin_lock(&vn->busy.lock); 2428 va = __find_vmap_area(addr, &vn->busy.root); 2429 if (va) 2430 unlink_va(va, &vn->busy.root); 2431 spin_unlock(&vn->busy.lock); 2432 2433 if (va) 2434 return va; 2435 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2436 2437 return NULL; 2438 } 2439 2440 /*** Per cpu kva allocator ***/ 2441 2442 /* 2443 * vmap space is limited especially on 32 bit architectures. Ensure there is 2444 * room for at least 16 percpu vmap blocks per CPU. 2445 */ 2446 /* 2447 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 2448 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 2449 * instead (we just need a rough idea) 2450 */ 2451 #if BITS_PER_LONG == 32 2452 #define VMALLOC_SPACE (128UL*1024*1024) 2453 #else 2454 #define VMALLOC_SPACE (128UL*1024*1024*1024) 2455 #endif 2456 2457 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 2458 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 2459 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 2460 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 2461 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 2462 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 2463 #define VMAP_BBMAP_BITS \ 2464 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 2465 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 2466 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 2467 2468 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 2469 2470 /* 2471 * Purge threshold to prevent overeager purging of fragmented blocks for 2472 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 2473 */ 2474 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 2475 2476 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 2477 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 2478 #define VMAP_FLAGS_MASK 0x3 2479 2480 struct vmap_block_queue { 2481 spinlock_t lock; 2482 struct list_head free; 2483 2484 /* 2485 * An xarray requires an extra memory dynamically to 2486 * be allocated. If it is an issue, we can use rb-tree 2487 * instead. 2488 */ 2489 struct xarray vmap_blocks; 2490 }; 2491 2492 struct vmap_block { 2493 spinlock_t lock; 2494 struct vmap_area *va; 2495 unsigned long free, dirty; 2496 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2497 unsigned long dirty_min, dirty_max; /*< dirty range */ 2498 struct list_head free_list; 2499 struct rcu_head rcu_head; 2500 struct list_head purge; 2501 unsigned int cpu; 2502 }; 2503 2504 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2505 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2506 2507 /* 2508 * In order to fast access to any "vmap_block" associated with a 2509 * specific address, we use a hash. 2510 * 2511 * A per-cpu vmap_block_queue is used in both ways, to serialize 2512 * an access to free block chains among CPUs(alloc path) and it 2513 * also acts as a vmap_block hash(alloc/free paths). It means we 2514 * overload it, since we already have the per-cpu array which is 2515 * used as a hash table. When used as a hash a 'cpu' passed to 2516 * per_cpu() is not actually a CPU but rather a hash index. 2517 * 2518 * A hash function is addr_to_vb_xa() which hashes any address 2519 * to a specific index(in a hash) it belongs to. This then uses a 2520 * per_cpu() macro to access an array with generated index. 2521 * 2522 * An example: 2523 * 2524 * CPU_1 CPU_2 CPU_0 2525 * | | | 2526 * V V V 2527 * 0 10 20 30 40 50 60 2528 * |------|------|------|------|------|------|...<vmap address space> 2529 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2530 * 2531 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2532 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2533 * 2534 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2535 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2536 * 2537 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2538 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2539 * 2540 * This technique almost always avoids lock contention on insert/remove, 2541 * however xarray spinlocks protect against any contention that remains. 2542 */ 2543 static struct xarray * 2544 addr_to_vb_xa(unsigned long addr) 2545 { 2546 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; 2547 2548 /* 2549 * Please note, nr_cpu_ids points on a highest set 2550 * possible bit, i.e. we never invoke cpumask_next() 2551 * if an index points on it which is nr_cpu_ids - 1. 2552 */ 2553 if (!cpu_possible(index)) 2554 index = cpumask_next(index, cpu_possible_mask); 2555 2556 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2557 } 2558 2559 /* 2560 * We should probably have a fallback mechanism to allocate virtual memory 2561 * out of partially filled vmap blocks. However vmap block sizing should be 2562 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2563 * big problem. 2564 */ 2565 2566 static unsigned long addr_to_vb_idx(unsigned long addr) 2567 { 2568 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2569 addr /= VMAP_BLOCK_SIZE; 2570 return addr; 2571 } 2572 2573 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2574 { 2575 unsigned long addr; 2576 2577 addr = va_start + (pages_off << PAGE_SHIFT); 2578 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2579 return (void *)addr; 2580 } 2581 2582 /** 2583 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2584 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2585 * @order: how many 2^order pages should be occupied in newly allocated block 2586 * @gfp_mask: flags for the page level allocator 2587 * 2588 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2589 */ 2590 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2591 { 2592 struct vmap_block_queue *vbq; 2593 struct vmap_block *vb; 2594 struct vmap_area *va; 2595 struct xarray *xa; 2596 unsigned long vb_idx; 2597 int node, err; 2598 void *vaddr; 2599 2600 node = numa_node_id(); 2601 2602 vb = kmalloc_node(sizeof(struct vmap_block), 2603 gfp_mask & GFP_RECLAIM_MASK, node); 2604 if (unlikely(!vb)) 2605 return ERR_PTR(-ENOMEM); 2606 2607 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2608 VMALLOC_START, VMALLOC_END, 2609 node, gfp_mask, 2610 VMAP_RAM|VMAP_BLOCK, NULL); 2611 if (IS_ERR(va)) { 2612 kfree(vb); 2613 return ERR_CAST(va); 2614 } 2615 2616 vaddr = vmap_block_vaddr(va->va_start, 0); 2617 spin_lock_init(&vb->lock); 2618 vb->va = va; 2619 /* At least something should be left free */ 2620 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2621 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2622 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2623 vb->dirty = 0; 2624 vb->dirty_min = VMAP_BBMAP_BITS; 2625 vb->dirty_max = 0; 2626 bitmap_set(vb->used_map, 0, (1UL << order)); 2627 INIT_LIST_HEAD(&vb->free_list); 2628 2629 xa = addr_to_vb_xa(va->va_start); 2630 vb_idx = addr_to_vb_idx(va->va_start); 2631 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2632 if (err) { 2633 kfree(vb); 2634 free_vmap_area(va); 2635 return ERR_PTR(err); 2636 } 2637 /* 2638 * list_add_tail_rcu could happened in another core 2639 * rather than vb->cpu due to task migration, which 2640 * is safe as list_add_tail_rcu will ensure the list's 2641 * integrity together with list_for_each_rcu from read 2642 * side. 2643 */ 2644 vb->cpu = raw_smp_processor_id(); 2645 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); 2646 spin_lock(&vbq->lock); 2647 list_add_tail_rcu(&vb->free_list, &vbq->free); 2648 spin_unlock(&vbq->lock); 2649 2650 return vaddr; 2651 } 2652 2653 static void free_vmap_block(struct vmap_block *vb) 2654 { 2655 struct vmap_node *vn; 2656 struct vmap_block *tmp; 2657 struct xarray *xa; 2658 2659 xa = addr_to_vb_xa(vb->va->va_start); 2660 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2661 BUG_ON(tmp != vb); 2662 2663 vn = addr_to_node(vb->va->va_start); 2664 spin_lock(&vn->busy.lock); 2665 unlink_va(vb->va, &vn->busy.root); 2666 spin_unlock(&vn->busy.lock); 2667 2668 free_vmap_area_noflush(vb->va); 2669 kfree_rcu(vb, rcu_head); 2670 } 2671 2672 static bool purge_fragmented_block(struct vmap_block *vb, 2673 struct list_head *purge_list, bool force_purge) 2674 { 2675 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); 2676 2677 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2678 vb->dirty == VMAP_BBMAP_BITS) 2679 return false; 2680 2681 /* Don't overeagerly purge usable blocks unless requested */ 2682 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2683 return false; 2684 2685 /* prevent further allocs after releasing lock */ 2686 WRITE_ONCE(vb->free, 0); 2687 /* prevent purging it again */ 2688 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2689 vb->dirty_min = 0; 2690 vb->dirty_max = VMAP_BBMAP_BITS; 2691 spin_lock(&vbq->lock); 2692 list_del_rcu(&vb->free_list); 2693 spin_unlock(&vbq->lock); 2694 list_add_tail(&vb->purge, purge_list); 2695 return true; 2696 } 2697 2698 static void free_purged_blocks(struct list_head *purge_list) 2699 { 2700 struct vmap_block *vb, *n_vb; 2701 2702 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2703 list_del(&vb->purge); 2704 free_vmap_block(vb); 2705 } 2706 } 2707 2708 static void purge_fragmented_blocks(int cpu) 2709 { 2710 LIST_HEAD(purge); 2711 struct vmap_block *vb; 2712 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2713 2714 rcu_read_lock(); 2715 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2716 unsigned long free = READ_ONCE(vb->free); 2717 unsigned long dirty = READ_ONCE(vb->dirty); 2718 2719 if (free + dirty != VMAP_BBMAP_BITS || 2720 dirty == VMAP_BBMAP_BITS) 2721 continue; 2722 2723 spin_lock(&vb->lock); 2724 purge_fragmented_block(vb, &purge, true); 2725 spin_unlock(&vb->lock); 2726 } 2727 rcu_read_unlock(); 2728 free_purged_blocks(&purge); 2729 } 2730 2731 static void purge_fragmented_blocks_allcpus(void) 2732 { 2733 int cpu; 2734 2735 for_each_possible_cpu(cpu) 2736 purge_fragmented_blocks(cpu); 2737 } 2738 2739 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2740 { 2741 struct vmap_block_queue *vbq; 2742 struct vmap_block *vb; 2743 void *vaddr = NULL; 2744 unsigned int order; 2745 2746 BUG_ON(offset_in_page(size)); 2747 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2748 if (WARN_ON(size == 0)) { 2749 /* 2750 * Allocating 0 bytes isn't what caller wants since 2751 * get_order(0) returns funny result. Just warn and terminate 2752 * early. 2753 */ 2754 return ERR_PTR(-EINVAL); 2755 } 2756 order = get_order(size); 2757 2758 rcu_read_lock(); 2759 vbq = raw_cpu_ptr(&vmap_block_queue); 2760 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2761 unsigned long pages_off; 2762 2763 if (READ_ONCE(vb->free) < (1UL << order)) 2764 continue; 2765 2766 spin_lock(&vb->lock); 2767 if (vb->free < (1UL << order)) { 2768 spin_unlock(&vb->lock); 2769 continue; 2770 } 2771 2772 pages_off = VMAP_BBMAP_BITS - vb->free; 2773 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2774 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2775 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2776 if (vb->free == 0) { 2777 spin_lock(&vbq->lock); 2778 list_del_rcu(&vb->free_list); 2779 spin_unlock(&vbq->lock); 2780 } 2781 2782 spin_unlock(&vb->lock); 2783 break; 2784 } 2785 2786 rcu_read_unlock(); 2787 2788 /* Allocate new block if nothing was found */ 2789 if (!vaddr) 2790 vaddr = new_vmap_block(order, gfp_mask); 2791 2792 return vaddr; 2793 } 2794 2795 static void vb_free(unsigned long addr, unsigned long size) 2796 { 2797 unsigned long offset; 2798 unsigned int order; 2799 struct vmap_block *vb; 2800 struct xarray *xa; 2801 2802 BUG_ON(offset_in_page(size)); 2803 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2804 2805 flush_cache_vunmap(addr, addr + size); 2806 2807 order = get_order(size); 2808 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2809 2810 xa = addr_to_vb_xa(addr); 2811 vb = xa_load(xa, addr_to_vb_idx(addr)); 2812 2813 spin_lock(&vb->lock); 2814 bitmap_clear(vb->used_map, offset, (1UL << order)); 2815 spin_unlock(&vb->lock); 2816 2817 vunmap_range_noflush(addr, addr + size); 2818 2819 if (debug_pagealloc_enabled_static()) 2820 flush_tlb_kernel_range(addr, addr + size); 2821 2822 spin_lock(&vb->lock); 2823 2824 /* Expand the not yet TLB flushed dirty range */ 2825 vb->dirty_min = min(vb->dirty_min, offset); 2826 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2827 2828 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2829 if (vb->dirty == VMAP_BBMAP_BITS) { 2830 BUG_ON(vb->free); 2831 spin_unlock(&vb->lock); 2832 free_vmap_block(vb); 2833 } else 2834 spin_unlock(&vb->lock); 2835 } 2836 2837 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2838 { 2839 LIST_HEAD(purge_list); 2840 int cpu; 2841 2842 if (unlikely(!vmap_initialized)) 2843 return; 2844 2845 mutex_lock(&vmap_purge_lock); 2846 2847 for_each_possible_cpu(cpu) { 2848 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2849 struct vmap_block *vb; 2850 unsigned long idx; 2851 2852 rcu_read_lock(); 2853 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2854 spin_lock(&vb->lock); 2855 2856 /* 2857 * Try to purge a fragmented block first. If it's 2858 * not purgeable, check whether there is dirty 2859 * space to be flushed. 2860 */ 2861 if (!purge_fragmented_block(vb, &purge_list, false) && 2862 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2863 unsigned long va_start = vb->va->va_start; 2864 unsigned long s, e; 2865 2866 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2867 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2868 2869 start = min(s, start); 2870 end = max(e, end); 2871 2872 /* Prevent that this is flushed again */ 2873 vb->dirty_min = VMAP_BBMAP_BITS; 2874 vb->dirty_max = 0; 2875 2876 flush = 1; 2877 } 2878 spin_unlock(&vb->lock); 2879 } 2880 rcu_read_unlock(); 2881 } 2882 free_purged_blocks(&purge_list); 2883 2884 if (!__purge_vmap_area_lazy(start, end, false) && flush) 2885 flush_tlb_kernel_range(start, end); 2886 mutex_unlock(&vmap_purge_lock); 2887 } 2888 2889 /** 2890 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2891 * 2892 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2893 * to amortize TLB flushing overheads. What this means is that any page you 2894 * have now, may, in a former life, have been mapped into kernel virtual 2895 * address by the vmap layer and so there might be some CPUs with TLB entries 2896 * still referencing that page (additional to the regular 1:1 kernel mapping). 2897 * 2898 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2899 * be sure that none of the pages we have control over will have any aliases 2900 * from the vmap layer. 2901 */ 2902 void vm_unmap_aliases(void) 2903 { 2904 unsigned long start = ULONG_MAX, end = 0; 2905 int flush = 0; 2906 2907 _vm_unmap_aliases(start, end, flush); 2908 } 2909 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2910 2911 /** 2912 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2913 * @mem: the pointer returned by vm_map_ram 2914 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2915 */ 2916 void vm_unmap_ram(const void *mem, unsigned int count) 2917 { 2918 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2919 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2920 struct vmap_area *va; 2921 2922 might_sleep(); 2923 BUG_ON(!addr); 2924 BUG_ON(addr < VMALLOC_START); 2925 BUG_ON(addr > VMALLOC_END); 2926 BUG_ON(!PAGE_ALIGNED(addr)); 2927 2928 kasan_poison_vmalloc(mem, size); 2929 2930 if (likely(count <= VMAP_MAX_ALLOC)) { 2931 debug_check_no_locks_freed(mem, size); 2932 vb_free(addr, size); 2933 return; 2934 } 2935 2936 va = find_unlink_vmap_area(addr); 2937 if (WARN_ON_ONCE(!va)) 2938 return; 2939 2940 debug_check_no_locks_freed((void *)va->va_start, 2941 (va->va_end - va->va_start)); 2942 free_unmap_vmap_area(va); 2943 } 2944 EXPORT_SYMBOL(vm_unmap_ram); 2945 2946 /** 2947 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2948 * @pages: an array of pointers to the pages to be mapped 2949 * @count: number of pages 2950 * @node: prefer to allocate data structures on this node 2951 * 2952 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2953 * faster than vmap so it's good. But if you mix long-life and short-life 2954 * objects with vm_map_ram(), it could consume lots of address space through 2955 * fragmentation (especially on a 32bit machine). You could see failures in 2956 * the end. Please use this function for short-lived objects. 2957 * 2958 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2959 */ 2960 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2961 { 2962 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2963 unsigned long addr; 2964 void *mem; 2965 2966 if (likely(count <= VMAP_MAX_ALLOC)) { 2967 mem = vb_alloc(size, GFP_KERNEL); 2968 if (IS_ERR(mem)) 2969 return NULL; 2970 addr = (unsigned long)mem; 2971 } else { 2972 struct vmap_area *va; 2973 va = alloc_vmap_area(size, PAGE_SIZE, 2974 VMALLOC_START, VMALLOC_END, 2975 node, GFP_KERNEL, VMAP_RAM, 2976 NULL); 2977 if (IS_ERR(va)) 2978 return NULL; 2979 2980 addr = va->va_start; 2981 mem = (void *)addr; 2982 } 2983 2984 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2985 pages, PAGE_SHIFT) < 0) { 2986 vm_unmap_ram(mem, count); 2987 return NULL; 2988 } 2989 2990 /* 2991 * Mark the pages as accessible, now that they are mapped. 2992 * With hardware tag-based KASAN, marking is skipped for 2993 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2994 */ 2995 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2996 2997 return mem; 2998 } 2999 EXPORT_SYMBOL(vm_map_ram); 3000 3001 static struct vm_struct *vmlist __initdata; 3002 3003 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 3004 { 3005 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3006 return vm->page_order; 3007 #else 3008 return 0; 3009 #endif 3010 } 3011 3012 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 3013 { 3014 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3015 vm->page_order = order; 3016 #else 3017 BUG_ON(order != 0); 3018 #endif 3019 } 3020 3021 /** 3022 * vm_area_add_early - add vmap area early during boot 3023 * @vm: vm_struct to add 3024 * 3025 * This function is used to add fixed kernel vm area to vmlist before 3026 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 3027 * should contain proper values and the other fields should be zero. 3028 * 3029 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3030 */ 3031 void __init vm_area_add_early(struct vm_struct *vm) 3032 { 3033 struct vm_struct *tmp, **p; 3034 3035 BUG_ON(vmap_initialized); 3036 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 3037 if (tmp->addr >= vm->addr) { 3038 BUG_ON(tmp->addr < vm->addr + vm->size); 3039 break; 3040 } else 3041 BUG_ON(tmp->addr + tmp->size > vm->addr); 3042 } 3043 vm->next = *p; 3044 *p = vm; 3045 } 3046 3047 /** 3048 * vm_area_register_early - register vmap area early during boot 3049 * @vm: vm_struct to register 3050 * @align: requested alignment 3051 * 3052 * This function is used to register kernel vm area before 3053 * vmalloc_init() is called. @vm->size and @vm->flags should contain 3054 * proper values on entry and other fields should be zero. On return, 3055 * vm->addr contains the allocated address. 3056 * 3057 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3058 */ 3059 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 3060 { 3061 unsigned long addr = ALIGN(VMALLOC_START, align); 3062 struct vm_struct *cur, **p; 3063 3064 BUG_ON(vmap_initialized); 3065 3066 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 3067 if ((unsigned long)cur->addr - addr >= vm->size) 3068 break; 3069 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 3070 } 3071 3072 BUG_ON(addr > VMALLOC_END - vm->size); 3073 vm->addr = (void *)addr; 3074 vm->next = *p; 3075 *p = vm; 3076 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 3077 } 3078 3079 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 3080 { 3081 /* 3082 * Before removing VM_UNINITIALIZED, 3083 * we should make sure that vm has proper values. 3084 * Pair with smp_rmb() in show_numa_info(). 3085 */ 3086 smp_wmb(); 3087 vm->flags &= ~VM_UNINITIALIZED; 3088 } 3089 3090 static struct vm_struct *__get_vm_area_node(unsigned long size, 3091 unsigned long align, unsigned long shift, unsigned long flags, 3092 unsigned long start, unsigned long end, int node, 3093 gfp_t gfp_mask, const void *caller) 3094 { 3095 struct vmap_area *va; 3096 struct vm_struct *area; 3097 unsigned long requested_size = size; 3098 3099 BUG_ON(in_interrupt()); 3100 size = ALIGN(size, 1ul << shift); 3101 if (unlikely(!size)) 3102 return NULL; 3103 3104 if (flags & VM_IOREMAP) 3105 align = 1ul << clamp_t(int, get_count_order_long(size), 3106 PAGE_SHIFT, IOREMAP_MAX_ORDER); 3107 3108 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 3109 if (unlikely(!area)) 3110 return NULL; 3111 3112 if (!(flags & VM_NO_GUARD)) 3113 size += PAGE_SIZE; 3114 3115 area->flags = flags; 3116 area->caller = caller; 3117 3118 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); 3119 if (IS_ERR(va)) { 3120 kfree(area); 3121 return NULL; 3122 } 3123 3124 /* 3125 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 3126 * best-effort approach, as they can be mapped outside of vmalloc code. 3127 * For VM_ALLOC mappings, the pages are marked as accessible after 3128 * getting mapped in __vmalloc_node_range(). 3129 * With hardware tag-based KASAN, marking is skipped for 3130 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3131 */ 3132 if (!(flags & VM_ALLOC)) 3133 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 3134 KASAN_VMALLOC_PROT_NORMAL); 3135 3136 return area; 3137 } 3138 3139 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 3140 unsigned long start, unsigned long end, 3141 const void *caller) 3142 { 3143 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 3144 NUMA_NO_NODE, GFP_KERNEL, caller); 3145 } 3146 3147 /** 3148 * get_vm_area - reserve a contiguous kernel virtual area 3149 * @size: size of the area 3150 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 3151 * 3152 * Search an area of @size in the kernel virtual mapping area, 3153 * and reserved it for out purposes. Returns the area descriptor 3154 * on success or %NULL on failure. 3155 * 3156 * Return: the area descriptor on success or %NULL on failure. 3157 */ 3158 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 3159 { 3160 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3161 VMALLOC_START, VMALLOC_END, 3162 NUMA_NO_NODE, GFP_KERNEL, 3163 __builtin_return_address(0)); 3164 } 3165 3166 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 3167 const void *caller) 3168 { 3169 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3170 VMALLOC_START, VMALLOC_END, 3171 NUMA_NO_NODE, GFP_KERNEL, caller); 3172 } 3173 3174 /** 3175 * find_vm_area - find a continuous kernel virtual area 3176 * @addr: base address 3177 * 3178 * Search for the kernel VM area starting at @addr, and return it. 3179 * It is up to the caller to do all required locking to keep the returned 3180 * pointer valid. 3181 * 3182 * Return: the area descriptor on success or %NULL on failure. 3183 */ 3184 struct vm_struct *find_vm_area(const void *addr) 3185 { 3186 struct vmap_area *va; 3187 3188 va = find_vmap_area((unsigned long)addr); 3189 if (!va) 3190 return NULL; 3191 3192 return va->vm; 3193 } 3194 3195 /** 3196 * remove_vm_area - find and remove a continuous kernel virtual area 3197 * @addr: base address 3198 * 3199 * Search for the kernel VM area starting at @addr, and remove it. 3200 * This function returns the found VM area, but using it is NOT safe 3201 * on SMP machines, except for its size or flags. 3202 * 3203 * Return: the area descriptor on success or %NULL on failure. 3204 */ 3205 struct vm_struct *remove_vm_area(const void *addr) 3206 { 3207 struct vmap_area *va; 3208 struct vm_struct *vm; 3209 3210 might_sleep(); 3211 3212 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 3213 addr)) 3214 return NULL; 3215 3216 va = find_unlink_vmap_area((unsigned long)addr); 3217 if (!va || !va->vm) 3218 return NULL; 3219 vm = va->vm; 3220 3221 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 3222 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 3223 kasan_free_module_shadow(vm); 3224 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 3225 3226 free_unmap_vmap_area(va); 3227 return vm; 3228 } 3229 3230 static inline void set_area_direct_map(const struct vm_struct *area, 3231 int (*set_direct_map)(struct page *page)) 3232 { 3233 int i; 3234 3235 /* HUGE_VMALLOC passes small pages to set_direct_map */ 3236 for (i = 0; i < area->nr_pages; i++) 3237 if (page_address(area->pages[i])) 3238 set_direct_map(area->pages[i]); 3239 } 3240 3241 /* 3242 * Flush the vm mapping and reset the direct map. 3243 */ 3244 static void vm_reset_perms(struct vm_struct *area) 3245 { 3246 unsigned long start = ULONG_MAX, end = 0; 3247 unsigned int page_order = vm_area_page_order(area); 3248 int flush_dmap = 0; 3249 int i; 3250 3251 /* 3252 * Find the start and end range of the direct mappings to make sure that 3253 * the vm_unmap_aliases() flush includes the direct map. 3254 */ 3255 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 3256 unsigned long addr = (unsigned long)page_address(area->pages[i]); 3257 3258 if (addr) { 3259 unsigned long page_size; 3260 3261 page_size = PAGE_SIZE << page_order; 3262 start = min(addr, start); 3263 end = max(addr + page_size, end); 3264 flush_dmap = 1; 3265 } 3266 } 3267 3268 /* 3269 * Set direct map to something invalid so that it won't be cached if 3270 * there are any accesses after the TLB flush, then flush the TLB and 3271 * reset the direct map permissions to the default. 3272 */ 3273 set_area_direct_map(area, set_direct_map_invalid_noflush); 3274 _vm_unmap_aliases(start, end, flush_dmap); 3275 set_area_direct_map(area, set_direct_map_default_noflush); 3276 } 3277 3278 static void delayed_vfree_work(struct work_struct *w) 3279 { 3280 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 3281 struct llist_node *t, *llnode; 3282 3283 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 3284 vfree(llnode); 3285 } 3286 3287 /** 3288 * vfree_atomic - release memory allocated by vmalloc() 3289 * @addr: memory base address 3290 * 3291 * This one is just like vfree() but can be called in any atomic context 3292 * except NMIs. 3293 */ 3294 void vfree_atomic(const void *addr) 3295 { 3296 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 3297 3298 BUG_ON(in_nmi()); 3299 kmemleak_free(addr); 3300 3301 /* 3302 * Use raw_cpu_ptr() because this can be called from preemptible 3303 * context. Preemption is absolutely fine here, because the llist_add() 3304 * implementation is lockless, so it works even if we are adding to 3305 * another cpu's list. schedule_work() should be fine with this too. 3306 */ 3307 if (addr && llist_add((struct llist_node *)addr, &p->list)) 3308 schedule_work(&p->wq); 3309 } 3310 3311 /** 3312 * vfree - Release memory allocated by vmalloc() 3313 * @addr: Memory base address 3314 * 3315 * Free the virtually continuous memory area starting at @addr, as obtained 3316 * from one of the vmalloc() family of APIs. This will usually also free the 3317 * physical memory underlying the virtual allocation, but that memory is 3318 * reference counted, so it will not be freed until the last user goes away. 3319 * 3320 * If @addr is NULL, no operation is performed. 3321 * 3322 * Context: 3323 * May sleep if called *not* from interrupt context. 3324 * Must not be called in NMI context (strictly speaking, it could be 3325 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 3326 * conventions for vfree() arch-dependent would be a really bad idea). 3327 */ 3328 void vfree(const void *addr) 3329 { 3330 struct vm_struct *vm; 3331 int i; 3332 3333 if (unlikely(in_interrupt())) { 3334 vfree_atomic(addr); 3335 return; 3336 } 3337 3338 BUG_ON(in_nmi()); 3339 kmemleak_free(addr); 3340 might_sleep(); 3341 3342 if (!addr) 3343 return; 3344 3345 vm = remove_vm_area(addr); 3346 if (unlikely(!vm)) { 3347 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 3348 addr); 3349 return; 3350 } 3351 3352 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 3353 vm_reset_perms(vm); 3354 for (i = 0; i < vm->nr_pages; i++) { 3355 struct page *page = vm->pages[i]; 3356 3357 BUG_ON(!page); 3358 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 3359 /* 3360 * High-order allocs for huge vmallocs are split, so 3361 * can be freed as an array of order-0 allocations 3362 */ 3363 __free_page(page); 3364 cond_resched(); 3365 } 3366 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 3367 kvfree(vm->pages); 3368 kfree(vm); 3369 } 3370 EXPORT_SYMBOL(vfree); 3371 3372 /** 3373 * vunmap - release virtual mapping obtained by vmap() 3374 * @addr: memory base address 3375 * 3376 * Free the virtually contiguous memory area starting at @addr, 3377 * which was created from the page array passed to vmap(). 3378 * 3379 * Must not be called in interrupt context. 3380 */ 3381 void vunmap(const void *addr) 3382 { 3383 struct vm_struct *vm; 3384 3385 BUG_ON(in_interrupt()); 3386 might_sleep(); 3387 3388 if (!addr) 3389 return; 3390 vm = remove_vm_area(addr); 3391 if (unlikely(!vm)) { 3392 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 3393 addr); 3394 return; 3395 } 3396 kfree(vm); 3397 } 3398 EXPORT_SYMBOL(vunmap); 3399 3400 /** 3401 * vmap - map an array of pages into virtually contiguous space 3402 * @pages: array of page pointers 3403 * @count: number of pages to map 3404 * @flags: vm_area->flags 3405 * @prot: page protection for the mapping 3406 * 3407 * Maps @count pages from @pages into contiguous kernel virtual space. 3408 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 3409 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 3410 * are transferred from the caller to vmap(), and will be freed / dropped when 3411 * vfree() is called on the return value. 3412 * 3413 * Return: the address of the area or %NULL on failure 3414 */ 3415 void *vmap(struct page **pages, unsigned int count, 3416 unsigned long flags, pgprot_t prot) 3417 { 3418 struct vm_struct *area; 3419 unsigned long addr; 3420 unsigned long size; /* In bytes */ 3421 3422 might_sleep(); 3423 3424 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 3425 return NULL; 3426 3427 /* 3428 * Your top guard is someone else's bottom guard. Not having a top 3429 * guard compromises someone else's mappings too. 3430 */ 3431 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 3432 flags &= ~VM_NO_GUARD; 3433 3434 if (count > totalram_pages()) 3435 return NULL; 3436 3437 size = (unsigned long)count << PAGE_SHIFT; 3438 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 3439 if (!area) 3440 return NULL; 3441 3442 addr = (unsigned long)area->addr; 3443 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 3444 pages, PAGE_SHIFT) < 0) { 3445 vunmap(area->addr); 3446 return NULL; 3447 } 3448 3449 if (flags & VM_MAP_PUT_PAGES) { 3450 area->pages = pages; 3451 area->nr_pages = count; 3452 } 3453 return area->addr; 3454 } 3455 EXPORT_SYMBOL(vmap); 3456 3457 #ifdef CONFIG_VMAP_PFN 3458 struct vmap_pfn_data { 3459 unsigned long *pfns; 3460 pgprot_t prot; 3461 unsigned int idx; 3462 }; 3463 3464 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3465 { 3466 struct vmap_pfn_data *data = private; 3467 unsigned long pfn = data->pfns[data->idx]; 3468 pte_t ptent; 3469 3470 if (WARN_ON_ONCE(pfn_valid(pfn))) 3471 return -EINVAL; 3472 3473 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3474 set_pte_at(&init_mm, addr, pte, ptent); 3475 3476 data->idx++; 3477 return 0; 3478 } 3479 3480 /** 3481 * vmap_pfn - map an array of PFNs into virtually contiguous space 3482 * @pfns: array of PFNs 3483 * @count: number of pages to map 3484 * @prot: page protection for the mapping 3485 * 3486 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3487 * the start address of the mapping. 3488 */ 3489 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3490 { 3491 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3492 struct vm_struct *area; 3493 3494 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3495 __builtin_return_address(0)); 3496 if (!area) 3497 return NULL; 3498 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3499 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3500 free_vm_area(area); 3501 return NULL; 3502 } 3503 3504 flush_cache_vmap((unsigned long)area->addr, 3505 (unsigned long)area->addr + count * PAGE_SIZE); 3506 3507 return area->addr; 3508 } 3509 EXPORT_SYMBOL_GPL(vmap_pfn); 3510 #endif /* CONFIG_VMAP_PFN */ 3511 3512 static inline unsigned int 3513 vm_area_alloc_pages(gfp_t gfp, int nid, 3514 unsigned int order, unsigned int nr_pages, struct page **pages) 3515 { 3516 unsigned int nr_allocated = 0; 3517 gfp_t alloc_gfp = gfp; 3518 bool nofail = gfp & __GFP_NOFAIL; 3519 struct page *page; 3520 int i; 3521 3522 /* 3523 * For order-0 pages we make use of bulk allocator, if 3524 * the page array is partly or not at all populated due 3525 * to fails, fallback to a single page allocator that is 3526 * more permissive. 3527 */ 3528 if (!order) { 3529 /* bulk allocator doesn't support nofail req. officially */ 3530 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 3531 3532 while (nr_allocated < nr_pages) { 3533 unsigned int nr, nr_pages_request; 3534 3535 /* 3536 * A maximum allowed request is hard-coded and is 100 3537 * pages per call. That is done in order to prevent a 3538 * long preemption off scenario in the bulk-allocator 3539 * so the range is [1:100]. 3540 */ 3541 nr_pages_request = min(100U, nr_pages - nr_allocated); 3542 3543 /* memory allocation should consider mempolicy, we can't 3544 * wrongly use nearest node when nid == NUMA_NO_NODE, 3545 * otherwise memory may be allocated in only one node, 3546 * but mempolicy wants to alloc memory by interleaving. 3547 */ 3548 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3549 nr = alloc_pages_bulk_array_mempolicy_noprof(bulk_gfp, 3550 nr_pages_request, 3551 pages + nr_allocated); 3552 3553 else 3554 nr = alloc_pages_bulk_array_node_noprof(bulk_gfp, nid, 3555 nr_pages_request, 3556 pages + nr_allocated); 3557 3558 nr_allocated += nr; 3559 cond_resched(); 3560 3561 /* 3562 * If zero or pages were obtained partly, 3563 * fallback to a single page allocator. 3564 */ 3565 if (nr != nr_pages_request) 3566 break; 3567 } 3568 } else if (gfp & __GFP_NOFAIL) { 3569 /* 3570 * Higher order nofail allocations are really expensive and 3571 * potentially dangerous (pre-mature OOM, disruptive reclaim 3572 * and compaction etc. 3573 */ 3574 alloc_gfp &= ~__GFP_NOFAIL; 3575 } 3576 3577 /* High-order pages or fallback path if "bulk" fails. */ 3578 while (nr_allocated < nr_pages) { 3579 if (!nofail && fatal_signal_pending(current)) 3580 break; 3581 3582 if (nid == NUMA_NO_NODE) 3583 page = alloc_pages_noprof(alloc_gfp, order); 3584 else 3585 page = alloc_pages_node_noprof(nid, alloc_gfp, order); 3586 if (unlikely(!page)) { 3587 if (!nofail) 3588 break; 3589 3590 /* fall back to the zero order allocations */ 3591 alloc_gfp |= __GFP_NOFAIL; 3592 order = 0; 3593 continue; 3594 } 3595 3596 /* 3597 * Higher order allocations must be able to be treated as 3598 * indepdenent small pages by callers (as they can with 3599 * small-page vmallocs). Some drivers do their own refcounting 3600 * on vmalloc_to_page() pages, some use page->mapping, 3601 * page->lru, etc. 3602 */ 3603 if (order) 3604 split_page(page, order); 3605 3606 /* 3607 * Careful, we allocate and map page-order pages, but 3608 * tracking is done per PAGE_SIZE page so as to keep the 3609 * vm_struct APIs independent of the physical/mapped size. 3610 */ 3611 for (i = 0; i < (1U << order); i++) 3612 pages[nr_allocated + i] = page + i; 3613 3614 cond_resched(); 3615 nr_allocated += 1U << order; 3616 } 3617 3618 return nr_allocated; 3619 } 3620 3621 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3622 pgprot_t prot, unsigned int page_shift, 3623 int node) 3624 { 3625 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3626 bool nofail = gfp_mask & __GFP_NOFAIL; 3627 unsigned long addr = (unsigned long)area->addr; 3628 unsigned long size = get_vm_area_size(area); 3629 unsigned long array_size; 3630 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3631 unsigned int page_order; 3632 unsigned int flags; 3633 int ret; 3634 3635 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3636 3637 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3638 gfp_mask |= __GFP_HIGHMEM; 3639 3640 /* Please note that the recursion is strictly bounded. */ 3641 if (array_size > PAGE_SIZE) { 3642 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, 3643 area->caller); 3644 } else { 3645 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); 3646 } 3647 3648 if (!area->pages) { 3649 warn_alloc(gfp_mask, NULL, 3650 "vmalloc error: size %lu, failed to allocated page array size %lu", 3651 nr_small_pages * PAGE_SIZE, array_size); 3652 free_vm_area(area); 3653 return NULL; 3654 } 3655 3656 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3657 page_order = vm_area_page_order(area); 3658 3659 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3660 node, page_order, nr_small_pages, area->pages); 3661 3662 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3663 if (gfp_mask & __GFP_ACCOUNT) { 3664 int i; 3665 3666 for (i = 0; i < area->nr_pages; i++) 3667 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3668 } 3669 3670 /* 3671 * If not enough pages were obtained to accomplish an 3672 * allocation request, free them via vfree() if any. 3673 */ 3674 if (area->nr_pages != nr_small_pages) { 3675 /* 3676 * vm_area_alloc_pages() can fail due to insufficient memory but 3677 * also:- 3678 * 3679 * - a pending fatal signal 3680 * - insufficient huge page-order pages 3681 * 3682 * Since we always retry allocations at order-0 in the huge page 3683 * case a warning for either is spurious. 3684 */ 3685 if (!fatal_signal_pending(current) && page_order == 0) 3686 warn_alloc(gfp_mask, NULL, 3687 "vmalloc error: size %lu, failed to allocate pages", 3688 area->nr_pages * PAGE_SIZE); 3689 goto fail; 3690 } 3691 3692 /* 3693 * page tables allocations ignore external gfp mask, enforce it 3694 * by the scope API 3695 */ 3696 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3697 flags = memalloc_nofs_save(); 3698 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3699 flags = memalloc_noio_save(); 3700 3701 do { 3702 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3703 page_shift); 3704 if (nofail && (ret < 0)) 3705 schedule_timeout_uninterruptible(1); 3706 } while (nofail && (ret < 0)); 3707 3708 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3709 memalloc_nofs_restore(flags); 3710 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3711 memalloc_noio_restore(flags); 3712 3713 if (ret < 0) { 3714 warn_alloc(gfp_mask, NULL, 3715 "vmalloc error: size %lu, failed to map pages", 3716 area->nr_pages * PAGE_SIZE); 3717 goto fail; 3718 } 3719 3720 return area->addr; 3721 3722 fail: 3723 vfree(area->addr); 3724 return NULL; 3725 } 3726 3727 /** 3728 * __vmalloc_node_range - allocate virtually contiguous memory 3729 * @size: allocation size 3730 * @align: desired alignment 3731 * @start: vm area range start 3732 * @end: vm area range end 3733 * @gfp_mask: flags for the page level allocator 3734 * @prot: protection mask for the allocated pages 3735 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3736 * @node: node to use for allocation or NUMA_NO_NODE 3737 * @caller: caller's return address 3738 * 3739 * Allocate enough pages to cover @size from the page level 3740 * allocator with @gfp_mask flags. Please note that the full set of gfp 3741 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3742 * supported. 3743 * Zone modifiers are not supported. From the reclaim modifiers 3744 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3745 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3746 * __GFP_RETRY_MAYFAIL are not supported). 3747 * 3748 * __GFP_NOWARN can be used to suppress failures messages. 3749 * 3750 * Map them into contiguous kernel virtual space, using a pagetable 3751 * protection of @prot. 3752 * 3753 * Return: the address of the area or %NULL on failure 3754 */ 3755 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 3756 unsigned long start, unsigned long end, gfp_t gfp_mask, 3757 pgprot_t prot, unsigned long vm_flags, int node, 3758 const void *caller) 3759 { 3760 struct vm_struct *area; 3761 void *ret; 3762 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3763 unsigned long real_size = size; 3764 unsigned long real_align = align; 3765 unsigned int shift = PAGE_SHIFT; 3766 3767 if (WARN_ON_ONCE(!size)) 3768 return NULL; 3769 3770 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3771 warn_alloc(gfp_mask, NULL, 3772 "vmalloc error: size %lu, exceeds total pages", 3773 real_size); 3774 return NULL; 3775 } 3776 3777 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3778 unsigned long size_per_node; 3779 3780 /* 3781 * Try huge pages. Only try for PAGE_KERNEL allocations, 3782 * others like modules don't yet expect huge pages in 3783 * their allocations due to apply_to_page_range not 3784 * supporting them. 3785 */ 3786 3787 size_per_node = size; 3788 if (node == NUMA_NO_NODE) 3789 size_per_node /= num_online_nodes(); 3790 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3791 shift = PMD_SHIFT; 3792 else 3793 shift = arch_vmap_pte_supported_shift(size_per_node); 3794 3795 align = max(real_align, 1UL << shift); 3796 size = ALIGN(real_size, 1UL << shift); 3797 } 3798 3799 again: 3800 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3801 VM_UNINITIALIZED | vm_flags, start, end, node, 3802 gfp_mask, caller); 3803 if (!area) { 3804 bool nofail = gfp_mask & __GFP_NOFAIL; 3805 warn_alloc(gfp_mask, NULL, 3806 "vmalloc error: size %lu, vm_struct allocation failed%s", 3807 real_size, (nofail) ? ". Retrying." : ""); 3808 if (nofail) { 3809 schedule_timeout_uninterruptible(1); 3810 goto again; 3811 } 3812 goto fail; 3813 } 3814 3815 /* 3816 * Prepare arguments for __vmalloc_area_node() and 3817 * kasan_unpoison_vmalloc(). 3818 */ 3819 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3820 if (kasan_hw_tags_enabled()) { 3821 /* 3822 * Modify protection bits to allow tagging. 3823 * This must be done before mapping. 3824 */ 3825 prot = arch_vmap_pgprot_tagged(prot); 3826 3827 /* 3828 * Skip page_alloc poisoning and zeroing for physical 3829 * pages backing VM_ALLOC mapping. Memory is instead 3830 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3831 */ 3832 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3833 } 3834 3835 /* Take note that the mapping is PAGE_KERNEL. */ 3836 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3837 } 3838 3839 /* Allocate physical pages and map them into vmalloc space. */ 3840 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3841 if (!ret) 3842 goto fail; 3843 3844 /* 3845 * Mark the pages as accessible, now that they are mapped. 3846 * The condition for setting KASAN_VMALLOC_INIT should complement the 3847 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3848 * to make sure that memory is initialized under the same conditions. 3849 * Tag-based KASAN modes only assign tags to normal non-executable 3850 * allocations, see __kasan_unpoison_vmalloc(). 3851 */ 3852 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3853 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3854 (gfp_mask & __GFP_SKIP_ZERO)) 3855 kasan_flags |= KASAN_VMALLOC_INIT; 3856 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3857 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3858 3859 /* 3860 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3861 * flag. It means that vm_struct is not fully initialized. 3862 * Now, it is fully initialized, so remove this flag here. 3863 */ 3864 clear_vm_uninitialized_flag(area); 3865 3866 size = PAGE_ALIGN(size); 3867 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3868 kmemleak_vmalloc(area, size, gfp_mask); 3869 3870 return area->addr; 3871 3872 fail: 3873 if (shift > PAGE_SHIFT) { 3874 shift = PAGE_SHIFT; 3875 align = real_align; 3876 size = real_size; 3877 goto again; 3878 } 3879 3880 return NULL; 3881 } 3882 3883 /** 3884 * __vmalloc_node - allocate virtually contiguous memory 3885 * @size: allocation size 3886 * @align: desired alignment 3887 * @gfp_mask: flags for the page level allocator 3888 * @node: node to use for allocation or NUMA_NO_NODE 3889 * @caller: caller's return address 3890 * 3891 * Allocate enough pages to cover @size from the page level allocator with 3892 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3893 * 3894 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3895 * and __GFP_NOFAIL are not supported 3896 * 3897 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3898 * with mm people. 3899 * 3900 * Return: pointer to the allocated memory or %NULL on error 3901 */ 3902 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, 3903 gfp_t gfp_mask, int node, const void *caller) 3904 { 3905 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 3906 gfp_mask, PAGE_KERNEL, 0, node, caller); 3907 } 3908 /* 3909 * This is only for performance analysis of vmalloc and stress purpose. 3910 * It is required by vmalloc test module, therefore do not use it other 3911 * than that. 3912 */ 3913 #ifdef CONFIG_TEST_VMALLOC_MODULE 3914 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); 3915 #endif 3916 3917 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 3918 { 3919 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, 3920 __builtin_return_address(0)); 3921 } 3922 EXPORT_SYMBOL(__vmalloc_noprof); 3923 3924 /** 3925 * vmalloc - allocate virtually contiguous memory 3926 * @size: allocation size 3927 * 3928 * Allocate enough pages to cover @size from the page level 3929 * allocator and map them into contiguous kernel virtual space. 3930 * 3931 * For tight control over page level allocator and protection flags 3932 * use __vmalloc() instead. 3933 * 3934 * Return: pointer to the allocated memory or %NULL on error 3935 */ 3936 void *vmalloc_noprof(unsigned long size) 3937 { 3938 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3939 __builtin_return_address(0)); 3940 } 3941 EXPORT_SYMBOL(vmalloc_noprof); 3942 3943 /** 3944 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3945 * @size: allocation size 3946 * @gfp_mask: flags for the page level allocator 3947 * 3948 * Allocate enough pages to cover @size from the page level 3949 * allocator and map them into contiguous kernel virtual space. 3950 * If @size is greater than or equal to PMD_SIZE, allow using 3951 * huge pages for the memory 3952 * 3953 * Return: pointer to the allocated memory or %NULL on error 3954 */ 3955 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) 3956 { 3957 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 3958 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3959 NUMA_NO_NODE, __builtin_return_address(0)); 3960 } 3961 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof); 3962 3963 /** 3964 * vzalloc - allocate virtually contiguous memory with zero fill 3965 * @size: allocation size 3966 * 3967 * Allocate enough pages to cover @size from the page level 3968 * allocator and map them into contiguous kernel virtual space. 3969 * The memory allocated is set to zero. 3970 * 3971 * For tight control over page level allocator and protection flags 3972 * use __vmalloc() instead. 3973 * 3974 * Return: pointer to the allocated memory or %NULL on error 3975 */ 3976 void *vzalloc_noprof(unsigned long size) 3977 { 3978 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3979 __builtin_return_address(0)); 3980 } 3981 EXPORT_SYMBOL(vzalloc_noprof); 3982 3983 /** 3984 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3985 * @size: allocation size 3986 * 3987 * The resulting memory area is zeroed so it can be mapped to userspace 3988 * without leaking data. 3989 * 3990 * Return: pointer to the allocated memory or %NULL on error 3991 */ 3992 void *vmalloc_user_noprof(unsigned long size) 3993 { 3994 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3995 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3996 VM_USERMAP, NUMA_NO_NODE, 3997 __builtin_return_address(0)); 3998 } 3999 EXPORT_SYMBOL(vmalloc_user_noprof); 4000 4001 /** 4002 * vmalloc_node - allocate memory on a specific node 4003 * @size: allocation size 4004 * @node: numa node 4005 * 4006 * Allocate enough pages to cover @size from the page level 4007 * allocator and map them into contiguous kernel virtual space. 4008 * 4009 * For tight control over page level allocator and protection flags 4010 * use __vmalloc() instead. 4011 * 4012 * Return: pointer to the allocated memory or %NULL on error 4013 */ 4014 void *vmalloc_node_noprof(unsigned long size, int node) 4015 { 4016 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, 4017 __builtin_return_address(0)); 4018 } 4019 EXPORT_SYMBOL(vmalloc_node_noprof); 4020 4021 /** 4022 * vzalloc_node - allocate memory on a specific node with zero fill 4023 * @size: allocation size 4024 * @node: numa node 4025 * 4026 * Allocate enough pages to cover @size from the page level 4027 * allocator and map them into contiguous kernel virtual space. 4028 * The memory allocated is set to zero. 4029 * 4030 * Return: pointer to the allocated memory or %NULL on error 4031 */ 4032 void *vzalloc_node_noprof(unsigned long size, int node) 4033 { 4034 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, 4035 __builtin_return_address(0)); 4036 } 4037 EXPORT_SYMBOL(vzalloc_node_noprof); 4038 4039 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 4040 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4041 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 4042 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 4043 #else 4044 /* 4045 * 64b systems should always have either DMA or DMA32 zones. For others 4046 * GFP_DMA32 should do the right thing and use the normal zone. 4047 */ 4048 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4049 #endif 4050 4051 /** 4052 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 4053 * @size: allocation size 4054 * 4055 * Allocate enough 32bit PA addressable pages to cover @size from the 4056 * page level allocator and map them into contiguous kernel virtual space. 4057 * 4058 * Return: pointer to the allocated memory or %NULL on error 4059 */ 4060 void *vmalloc_32_noprof(unsigned long size) 4061 { 4062 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 4063 __builtin_return_address(0)); 4064 } 4065 EXPORT_SYMBOL(vmalloc_32_noprof); 4066 4067 /** 4068 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 4069 * @size: allocation size 4070 * 4071 * The resulting memory area is 32bit addressable and zeroed so it can be 4072 * mapped to userspace without leaking data. 4073 * 4074 * Return: pointer to the allocated memory or %NULL on error 4075 */ 4076 void *vmalloc_32_user_noprof(unsigned long size) 4077 { 4078 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4079 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 4080 VM_USERMAP, NUMA_NO_NODE, 4081 __builtin_return_address(0)); 4082 } 4083 EXPORT_SYMBOL(vmalloc_32_user_noprof); 4084 4085 /* 4086 * Atomically zero bytes in the iterator. 4087 * 4088 * Returns the number of zeroed bytes. 4089 */ 4090 static size_t zero_iter(struct iov_iter *iter, size_t count) 4091 { 4092 size_t remains = count; 4093 4094 while (remains > 0) { 4095 size_t num, copied; 4096 4097 num = min_t(size_t, remains, PAGE_SIZE); 4098 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 4099 remains -= copied; 4100 4101 if (copied < num) 4102 break; 4103 } 4104 4105 return count - remains; 4106 } 4107 4108 /* 4109 * small helper routine, copy contents to iter from addr. 4110 * If the page is not present, fill zero. 4111 * 4112 * Returns the number of copied bytes. 4113 */ 4114 static size_t aligned_vread_iter(struct iov_iter *iter, 4115 const char *addr, size_t count) 4116 { 4117 size_t remains = count; 4118 struct page *page; 4119 4120 while (remains > 0) { 4121 unsigned long offset, length; 4122 size_t copied = 0; 4123 4124 offset = offset_in_page(addr); 4125 length = PAGE_SIZE - offset; 4126 if (length > remains) 4127 length = remains; 4128 page = vmalloc_to_page(addr); 4129 /* 4130 * To do safe access to this _mapped_ area, we need lock. But 4131 * adding lock here means that we need to add overhead of 4132 * vmalloc()/vfree() calls for this _debug_ interface, rarely 4133 * used. Instead of that, we'll use an local mapping via 4134 * copy_page_to_iter_nofault() and accept a small overhead in 4135 * this access function. 4136 */ 4137 if (page) 4138 copied = copy_page_to_iter_nofault(page, offset, 4139 length, iter); 4140 else 4141 copied = zero_iter(iter, length); 4142 4143 addr += copied; 4144 remains -= copied; 4145 4146 if (copied != length) 4147 break; 4148 } 4149 4150 return count - remains; 4151 } 4152 4153 /* 4154 * Read from a vm_map_ram region of memory. 4155 * 4156 * Returns the number of copied bytes. 4157 */ 4158 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 4159 size_t count, unsigned long flags) 4160 { 4161 char *start; 4162 struct vmap_block *vb; 4163 struct xarray *xa; 4164 unsigned long offset; 4165 unsigned int rs, re; 4166 size_t remains, n; 4167 4168 /* 4169 * If it's area created by vm_map_ram() interface directly, but 4170 * not further subdividing and delegating management to vmap_block, 4171 * handle it here. 4172 */ 4173 if (!(flags & VMAP_BLOCK)) 4174 return aligned_vread_iter(iter, addr, count); 4175 4176 remains = count; 4177 4178 /* 4179 * Area is split into regions and tracked with vmap_block, read out 4180 * each region and zero fill the hole between regions. 4181 */ 4182 xa = addr_to_vb_xa((unsigned long) addr); 4183 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 4184 if (!vb) 4185 goto finished_zero; 4186 4187 spin_lock(&vb->lock); 4188 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 4189 spin_unlock(&vb->lock); 4190 goto finished_zero; 4191 } 4192 4193 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 4194 size_t copied; 4195 4196 if (remains == 0) 4197 goto finished; 4198 4199 start = vmap_block_vaddr(vb->va->va_start, rs); 4200 4201 if (addr < start) { 4202 size_t to_zero = min_t(size_t, start - addr, remains); 4203 size_t zeroed = zero_iter(iter, to_zero); 4204 4205 addr += zeroed; 4206 remains -= zeroed; 4207 4208 if (remains == 0 || zeroed != to_zero) 4209 goto finished; 4210 } 4211 4212 /*it could start reading from the middle of used region*/ 4213 offset = offset_in_page(addr); 4214 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 4215 if (n > remains) 4216 n = remains; 4217 4218 copied = aligned_vread_iter(iter, start + offset, n); 4219 4220 addr += copied; 4221 remains -= copied; 4222 4223 if (copied != n) 4224 goto finished; 4225 } 4226 4227 spin_unlock(&vb->lock); 4228 4229 finished_zero: 4230 /* zero-fill the left dirty or free regions */ 4231 return count - remains + zero_iter(iter, remains); 4232 finished: 4233 /* We couldn't copy/zero everything */ 4234 spin_unlock(&vb->lock); 4235 return count - remains; 4236 } 4237 4238 /** 4239 * vread_iter() - read vmalloc area in a safe way to an iterator. 4240 * @iter: the iterator to which data should be written. 4241 * @addr: vm address. 4242 * @count: number of bytes to be read. 4243 * 4244 * This function checks that addr is a valid vmalloc'ed area, and 4245 * copy data from that area to a given buffer. If the given memory range 4246 * of [addr...addr+count) includes some valid address, data is copied to 4247 * proper area of @buf. If there are memory holes, they'll be zero-filled. 4248 * IOREMAP area is treated as memory hole and no copy is done. 4249 * 4250 * If [addr...addr+count) doesn't includes any intersects with alive 4251 * vm_struct area, returns 0. @buf should be kernel's buffer. 4252 * 4253 * Note: In usual ops, vread() is never necessary because the caller 4254 * should know vmalloc() area is valid and can use memcpy(). 4255 * This is for routines which have to access vmalloc area without 4256 * any information, as /proc/kcore. 4257 * 4258 * Return: number of bytes for which addr and buf should be increased 4259 * (same number as @count) or %0 if [addr...addr+count) doesn't 4260 * include any intersection with valid vmalloc area 4261 */ 4262 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 4263 { 4264 struct vmap_node *vn; 4265 struct vmap_area *va; 4266 struct vm_struct *vm; 4267 char *vaddr; 4268 size_t n, size, flags, remains; 4269 unsigned long next; 4270 4271 addr = kasan_reset_tag(addr); 4272 4273 /* Don't allow overflow */ 4274 if ((unsigned long) addr + count < count) 4275 count = -(unsigned long) addr; 4276 4277 remains = count; 4278 4279 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); 4280 if (!vn) 4281 goto finished_zero; 4282 4283 /* no intersects with alive vmap_area */ 4284 if ((unsigned long)addr + remains <= va->va_start) 4285 goto finished_zero; 4286 4287 do { 4288 size_t copied; 4289 4290 if (remains == 0) 4291 goto finished; 4292 4293 vm = va->vm; 4294 flags = va->flags & VMAP_FLAGS_MASK; 4295 /* 4296 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 4297 * be set together with VMAP_RAM. 4298 */ 4299 WARN_ON(flags == VMAP_BLOCK); 4300 4301 if (!vm && !flags) 4302 goto next_va; 4303 4304 if (vm && (vm->flags & VM_UNINITIALIZED)) 4305 goto next_va; 4306 4307 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4308 smp_rmb(); 4309 4310 vaddr = (char *) va->va_start; 4311 size = vm ? get_vm_area_size(vm) : va_size(va); 4312 4313 if (addr >= vaddr + size) 4314 goto next_va; 4315 4316 if (addr < vaddr) { 4317 size_t to_zero = min_t(size_t, vaddr - addr, remains); 4318 size_t zeroed = zero_iter(iter, to_zero); 4319 4320 addr += zeroed; 4321 remains -= zeroed; 4322 4323 if (remains == 0 || zeroed != to_zero) 4324 goto finished; 4325 } 4326 4327 n = vaddr + size - addr; 4328 if (n > remains) 4329 n = remains; 4330 4331 if (flags & VMAP_RAM) 4332 copied = vmap_ram_vread_iter(iter, addr, n, flags); 4333 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 4334 copied = aligned_vread_iter(iter, addr, n); 4335 else /* IOREMAP | SPARSE area is treated as memory hole */ 4336 copied = zero_iter(iter, n); 4337 4338 addr += copied; 4339 remains -= copied; 4340 4341 if (copied != n) 4342 goto finished; 4343 4344 next_va: 4345 next = va->va_end; 4346 spin_unlock(&vn->busy.lock); 4347 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); 4348 4349 finished_zero: 4350 if (vn) 4351 spin_unlock(&vn->busy.lock); 4352 4353 /* zero-fill memory holes */ 4354 return count - remains + zero_iter(iter, remains); 4355 finished: 4356 /* Nothing remains, or We couldn't copy/zero everything. */ 4357 if (vn) 4358 spin_unlock(&vn->busy.lock); 4359 4360 return count - remains; 4361 } 4362 4363 /** 4364 * remap_vmalloc_range_partial - map vmalloc pages to userspace 4365 * @vma: vma to cover 4366 * @uaddr: target user address to start at 4367 * @kaddr: virtual address of vmalloc kernel memory 4368 * @pgoff: offset from @kaddr to start at 4369 * @size: size of map area 4370 * 4371 * Returns: 0 for success, -Exxx on failure 4372 * 4373 * This function checks that @kaddr is a valid vmalloc'ed area, 4374 * and that it is big enough to cover the range starting at 4375 * @uaddr in @vma. Will return failure if that criteria isn't 4376 * met. 4377 * 4378 * Similar to remap_pfn_range() (see mm/memory.c) 4379 */ 4380 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 4381 void *kaddr, unsigned long pgoff, 4382 unsigned long size) 4383 { 4384 struct vm_struct *area; 4385 unsigned long off; 4386 unsigned long end_index; 4387 4388 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 4389 return -EINVAL; 4390 4391 size = PAGE_ALIGN(size); 4392 4393 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 4394 return -EINVAL; 4395 4396 area = find_vm_area(kaddr); 4397 if (!area) 4398 return -EINVAL; 4399 4400 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 4401 return -EINVAL; 4402 4403 if (check_add_overflow(size, off, &end_index) || 4404 end_index > get_vm_area_size(area)) 4405 return -EINVAL; 4406 kaddr += off; 4407 4408 do { 4409 struct page *page = vmalloc_to_page(kaddr); 4410 int ret; 4411 4412 ret = vm_insert_page(vma, uaddr, page); 4413 if (ret) 4414 return ret; 4415 4416 uaddr += PAGE_SIZE; 4417 kaddr += PAGE_SIZE; 4418 size -= PAGE_SIZE; 4419 } while (size > 0); 4420 4421 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 4422 4423 return 0; 4424 } 4425 4426 /** 4427 * remap_vmalloc_range - map vmalloc pages to userspace 4428 * @vma: vma to cover (map full range of vma) 4429 * @addr: vmalloc memory 4430 * @pgoff: number of pages into addr before first page to map 4431 * 4432 * Returns: 0 for success, -Exxx on failure 4433 * 4434 * This function checks that addr is a valid vmalloc'ed area, and 4435 * that it is big enough to cover the vma. Will return failure if 4436 * that criteria isn't met. 4437 * 4438 * Similar to remap_pfn_range() (see mm/memory.c) 4439 */ 4440 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 4441 unsigned long pgoff) 4442 { 4443 return remap_vmalloc_range_partial(vma, vma->vm_start, 4444 addr, pgoff, 4445 vma->vm_end - vma->vm_start); 4446 } 4447 EXPORT_SYMBOL(remap_vmalloc_range); 4448 4449 void free_vm_area(struct vm_struct *area) 4450 { 4451 struct vm_struct *ret; 4452 ret = remove_vm_area(area->addr); 4453 BUG_ON(ret != area); 4454 kfree(area); 4455 } 4456 EXPORT_SYMBOL_GPL(free_vm_area); 4457 4458 #ifdef CONFIG_SMP 4459 static struct vmap_area *node_to_va(struct rb_node *n) 4460 { 4461 return rb_entry_safe(n, struct vmap_area, rb_node); 4462 } 4463 4464 /** 4465 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4466 * @addr: target address 4467 * 4468 * Returns: vmap_area if it is found. If there is no such area 4469 * the first highest(reverse order) vmap_area is returned 4470 * i.e. va->va_start < addr && va->va_end < addr or NULL 4471 * if there are no any areas before @addr. 4472 */ 4473 static struct vmap_area * 4474 pvm_find_va_enclose_addr(unsigned long addr) 4475 { 4476 struct vmap_area *va, *tmp; 4477 struct rb_node *n; 4478 4479 n = free_vmap_area_root.rb_node; 4480 va = NULL; 4481 4482 while (n) { 4483 tmp = rb_entry(n, struct vmap_area, rb_node); 4484 if (tmp->va_start <= addr) { 4485 va = tmp; 4486 if (tmp->va_end >= addr) 4487 break; 4488 4489 n = n->rb_right; 4490 } else { 4491 n = n->rb_left; 4492 } 4493 } 4494 4495 return va; 4496 } 4497 4498 /** 4499 * pvm_determine_end_from_reverse - find the highest aligned address 4500 * of free block below VMALLOC_END 4501 * @va: 4502 * in - the VA we start the search(reverse order); 4503 * out - the VA with the highest aligned end address. 4504 * @align: alignment for required highest address 4505 * 4506 * Returns: determined end address within vmap_area 4507 */ 4508 static unsigned long 4509 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4510 { 4511 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4512 unsigned long addr; 4513 4514 if (likely(*va)) { 4515 list_for_each_entry_from_reverse((*va), 4516 &free_vmap_area_list, list) { 4517 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4518 if ((*va)->va_start < addr) 4519 return addr; 4520 } 4521 } 4522 4523 return 0; 4524 } 4525 4526 /** 4527 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4528 * @offsets: array containing offset of each area 4529 * @sizes: array containing size of each area 4530 * @nr_vms: the number of areas to allocate 4531 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4532 * 4533 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4534 * vm_structs on success, %NULL on failure 4535 * 4536 * Percpu allocator wants to use congruent vm areas so that it can 4537 * maintain the offsets among percpu areas. This function allocates 4538 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4539 * be scattered pretty far, distance between two areas easily going up 4540 * to gigabytes. To avoid interacting with regular vmallocs, these 4541 * areas are allocated from top. 4542 * 4543 * Despite its complicated look, this allocator is rather simple. It 4544 * does everything top-down and scans free blocks from the end looking 4545 * for matching base. While scanning, if any of the areas do not fit the 4546 * base address is pulled down to fit the area. Scanning is repeated till 4547 * all the areas fit and then all necessary data structures are inserted 4548 * and the result is returned. 4549 */ 4550 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4551 const size_t *sizes, int nr_vms, 4552 size_t align) 4553 { 4554 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4555 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4556 struct vmap_area **vas, *va; 4557 struct vm_struct **vms; 4558 int area, area2, last_area, term_area; 4559 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4560 bool purged = false; 4561 4562 /* verify parameters and allocate data structures */ 4563 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4564 for (last_area = 0, area = 0; area < nr_vms; area++) { 4565 start = offsets[area]; 4566 end = start + sizes[area]; 4567 4568 /* is everything aligned properly? */ 4569 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4570 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4571 4572 /* detect the area with the highest address */ 4573 if (start > offsets[last_area]) 4574 last_area = area; 4575 4576 for (area2 = area + 1; area2 < nr_vms; area2++) { 4577 unsigned long start2 = offsets[area2]; 4578 unsigned long end2 = start2 + sizes[area2]; 4579 4580 BUG_ON(start2 < end && start < end2); 4581 } 4582 } 4583 last_end = offsets[last_area] + sizes[last_area]; 4584 4585 if (vmalloc_end - vmalloc_start < last_end) { 4586 WARN_ON(true); 4587 return NULL; 4588 } 4589 4590 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4591 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4592 if (!vas || !vms) 4593 goto err_free2; 4594 4595 for (area = 0; area < nr_vms; area++) { 4596 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4597 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4598 if (!vas[area] || !vms[area]) 4599 goto err_free; 4600 } 4601 retry: 4602 spin_lock(&free_vmap_area_lock); 4603 4604 /* start scanning - we scan from the top, begin with the last area */ 4605 area = term_area = last_area; 4606 start = offsets[area]; 4607 end = start + sizes[area]; 4608 4609 va = pvm_find_va_enclose_addr(vmalloc_end); 4610 base = pvm_determine_end_from_reverse(&va, align) - end; 4611 4612 while (true) { 4613 /* 4614 * base might have underflowed, add last_end before 4615 * comparing. 4616 */ 4617 if (base + last_end < vmalloc_start + last_end) 4618 goto overflow; 4619 4620 /* 4621 * Fitting base has not been found. 4622 */ 4623 if (va == NULL) 4624 goto overflow; 4625 4626 /* 4627 * If required width exceeds current VA block, move 4628 * base downwards and then recheck. 4629 */ 4630 if (base + end > va->va_end) { 4631 base = pvm_determine_end_from_reverse(&va, align) - end; 4632 term_area = area; 4633 continue; 4634 } 4635 4636 /* 4637 * If this VA does not fit, move base downwards and recheck. 4638 */ 4639 if (base + start < va->va_start) { 4640 va = node_to_va(rb_prev(&va->rb_node)); 4641 base = pvm_determine_end_from_reverse(&va, align) - end; 4642 term_area = area; 4643 continue; 4644 } 4645 4646 /* 4647 * This area fits, move on to the previous one. If 4648 * the previous one is the terminal one, we're done. 4649 */ 4650 area = (area + nr_vms - 1) % nr_vms; 4651 if (area == term_area) 4652 break; 4653 4654 start = offsets[area]; 4655 end = start + sizes[area]; 4656 va = pvm_find_va_enclose_addr(base + end); 4657 } 4658 4659 /* we've found a fitting base, insert all va's */ 4660 for (area = 0; area < nr_vms; area++) { 4661 int ret; 4662 4663 start = base + offsets[area]; 4664 size = sizes[area]; 4665 4666 va = pvm_find_va_enclose_addr(start); 4667 if (WARN_ON_ONCE(va == NULL)) 4668 /* It is a BUG(), but trigger recovery instead. */ 4669 goto recovery; 4670 4671 ret = va_clip(&free_vmap_area_root, 4672 &free_vmap_area_list, va, start, size); 4673 if (WARN_ON_ONCE(unlikely(ret))) 4674 /* It is a BUG(), but trigger recovery instead. */ 4675 goto recovery; 4676 4677 /* Allocated area. */ 4678 va = vas[area]; 4679 va->va_start = start; 4680 va->va_end = start + size; 4681 } 4682 4683 spin_unlock(&free_vmap_area_lock); 4684 4685 /* populate the kasan shadow space */ 4686 for (area = 0; area < nr_vms; area++) { 4687 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4688 goto err_free_shadow; 4689 } 4690 4691 /* insert all vm's */ 4692 for (area = 0; area < nr_vms; area++) { 4693 struct vmap_node *vn = addr_to_node(vas[area]->va_start); 4694 4695 spin_lock(&vn->busy.lock); 4696 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); 4697 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 4698 pcpu_get_vm_areas); 4699 spin_unlock(&vn->busy.lock); 4700 } 4701 4702 /* 4703 * Mark allocated areas as accessible. Do it now as a best-effort 4704 * approach, as they can be mapped outside of vmalloc code. 4705 * With hardware tag-based KASAN, marking is skipped for 4706 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4707 */ 4708 for (area = 0; area < nr_vms; area++) 4709 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4710 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4711 4712 kfree(vas); 4713 return vms; 4714 4715 recovery: 4716 /* 4717 * Remove previously allocated areas. There is no 4718 * need in removing these areas from the busy tree, 4719 * because they are inserted only on the final step 4720 * and when pcpu_get_vm_areas() is success. 4721 */ 4722 while (area--) { 4723 orig_start = vas[area]->va_start; 4724 orig_end = vas[area]->va_end; 4725 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4726 &free_vmap_area_list); 4727 if (va) 4728 kasan_release_vmalloc(orig_start, orig_end, 4729 va->va_start, va->va_end); 4730 vas[area] = NULL; 4731 } 4732 4733 overflow: 4734 spin_unlock(&free_vmap_area_lock); 4735 if (!purged) { 4736 reclaim_and_purge_vmap_areas(); 4737 purged = true; 4738 4739 /* Before "retry", check if we recover. */ 4740 for (area = 0; area < nr_vms; area++) { 4741 if (vas[area]) 4742 continue; 4743 4744 vas[area] = kmem_cache_zalloc( 4745 vmap_area_cachep, GFP_KERNEL); 4746 if (!vas[area]) 4747 goto err_free; 4748 } 4749 4750 goto retry; 4751 } 4752 4753 err_free: 4754 for (area = 0; area < nr_vms; area++) { 4755 if (vas[area]) 4756 kmem_cache_free(vmap_area_cachep, vas[area]); 4757 4758 kfree(vms[area]); 4759 } 4760 err_free2: 4761 kfree(vas); 4762 kfree(vms); 4763 return NULL; 4764 4765 err_free_shadow: 4766 spin_lock(&free_vmap_area_lock); 4767 /* 4768 * We release all the vmalloc shadows, even the ones for regions that 4769 * hadn't been successfully added. This relies on kasan_release_vmalloc 4770 * being able to tolerate this case. 4771 */ 4772 for (area = 0; area < nr_vms; area++) { 4773 orig_start = vas[area]->va_start; 4774 orig_end = vas[area]->va_end; 4775 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4776 &free_vmap_area_list); 4777 if (va) 4778 kasan_release_vmalloc(orig_start, orig_end, 4779 va->va_start, va->va_end); 4780 vas[area] = NULL; 4781 kfree(vms[area]); 4782 } 4783 spin_unlock(&free_vmap_area_lock); 4784 kfree(vas); 4785 kfree(vms); 4786 return NULL; 4787 } 4788 4789 /** 4790 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4791 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4792 * @nr_vms: the number of allocated areas 4793 * 4794 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4795 */ 4796 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4797 { 4798 int i; 4799 4800 for (i = 0; i < nr_vms; i++) 4801 free_vm_area(vms[i]); 4802 kfree(vms); 4803 } 4804 #endif /* CONFIG_SMP */ 4805 4806 #ifdef CONFIG_PRINTK 4807 bool vmalloc_dump_obj(void *object) 4808 { 4809 const void *caller; 4810 struct vm_struct *vm; 4811 struct vmap_area *va; 4812 struct vmap_node *vn; 4813 unsigned long addr; 4814 unsigned int nr_pages; 4815 4816 addr = PAGE_ALIGN((unsigned long) object); 4817 vn = addr_to_node(addr); 4818 4819 if (!spin_trylock(&vn->busy.lock)) 4820 return false; 4821 4822 va = __find_vmap_area(addr, &vn->busy.root); 4823 if (!va || !va->vm) { 4824 spin_unlock(&vn->busy.lock); 4825 return false; 4826 } 4827 4828 vm = va->vm; 4829 addr = (unsigned long) vm->addr; 4830 caller = vm->caller; 4831 nr_pages = vm->nr_pages; 4832 spin_unlock(&vn->busy.lock); 4833 4834 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4835 nr_pages, addr, caller); 4836 4837 return true; 4838 } 4839 #endif 4840 4841 #ifdef CONFIG_PROC_FS 4842 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4843 { 4844 if (IS_ENABLED(CONFIG_NUMA)) { 4845 unsigned int nr, *counters = m->private; 4846 unsigned int step = 1U << vm_area_page_order(v); 4847 4848 if (!counters) 4849 return; 4850 4851 if (v->flags & VM_UNINITIALIZED) 4852 return; 4853 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4854 smp_rmb(); 4855 4856 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4857 4858 for (nr = 0; nr < v->nr_pages; nr += step) 4859 counters[page_to_nid(v->pages[nr])] += step; 4860 for_each_node_state(nr, N_HIGH_MEMORY) 4861 if (counters[nr]) 4862 seq_printf(m, " N%u=%u", nr, counters[nr]); 4863 } 4864 } 4865 4866 static void show_purge_info(struct seq_file *m) 4867 { 4868 struct vmap_node *vn; 4869 struct vmap_area *va; 4870 int i; 4871 4872 for (i = 0; i < nr_vmap_nodes; i++) { 4873 vn = &vmap_nodes[i]; 4874 4875 spin_lock(&vn->lazy.lock); 4876 list_for_each_entry(va, &vn->lazy.head, list) { 4877 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4878 (void *)va->va_start, (void *)va->va_end, 4879 va->va_end - va->va_start); 4880 } 4881 spin_unlock(&vn->lazy.lock); 4882 } 4883 } 4884 4885 static int vmalloc_info_show(struct seq_file *m, void *p) 4886 { 4887 struct vmap_node *vn; 4888 struct vmap_area *va; 4889 struct vm_struct *v; 4890 int i; 4891 4892 for (i = 0; i < nr_vmap_nodes; i++) { 4893 vn = &vmap_nodes[i]; 4894 4895 spin_lock(&vn->busy.lock); 4896 list_for_each_entry(va, &vn->busy.head, list) { 4897 if (!va->vm) { 4898 if (va->flags & VMAP_RAM) 4899 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4900 (void *)va->va_start, (void *)va->va_end, 4901 va->va_end - va->va_start); 4902 4903 continue; 4904 } 4905 4906 v = va->vm; 4907 4908 seq_printf(m, "0x%pK-0x%pK %7ld", 4909 v->addr, v->addr + v->size, v->size); 4910 4911 if (v->caller) 4912 seq_printf(m, " %pS", v->caller); 4913 4914 if (v->nr_pages) 4915 seq_printf(m, " pages=%d", v->nr_pages); 4916 4917 if (v->phys_addr) 4918 seq_printf(m, " phys=%pa", &v->phys_addr); 4919 4920 if (v->flags & VM_IOREMAP) 4921 seq_puts(m, " ioremap"); 4922 4923 if (v->flags & VM_SPARSE) 4924 seq_puts(m, " sparse"); 4925 4926 if (v->flags & VM_ALLOC) 4927 seq_puts(m, " vmalloc"); 4928 4929 if (v->flags & VM_MAP) 4930 seq_puts(m, " vmap"); 4931 4932 if (v->flags & VM_USERMAP) 4933 seq_puts(m, " user"); 4934 4935 if (v->flags & VM_DMA_COHERENT) 4936 seq_puts(m, " dma-coherent"); 4937 4938 if (is_vmalloc_addr(v->pages)) 4939 seq_puts(m, " vpages"); 4940 4941 show_numa_info(m, v); 4942 seq_putc(m, '\n'); 4943 } 4944 spin_unlock(&vn->busy.lock); 4945 } 4946 4947 /* 4948 * As a final step, dump "unpurged" areas. 4949 */ 4950 show_purge_info(m); 4951 return 0; 4952 } 4953 4954 static int __init proc_vmalloc_init(void) 4955 { 4956 void *priv_data = NULL; 4957 4958 if (IS_ENABLED(CONFIG_NUMA)) 4959 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 4960 4961 proc_create_single_data("vmallocinfo", 4962 0400, NULL, vmalloc_info_show, priv_data); 4963 4964 return 0; 4965 } 4966 module_init(proc_vmalloc_init); 4967 4968 #endif 4969 4970 static void __init vmap_init_free_space(void) 4971 { 4972 unsigned long vmap_start = 1; 4973 const unsigned long vmap_end = ULONG_MAX; 4974 struct vmap_area *free; 4975 struct vm_struct *busy; 4976 4977 /* 4978 * B F B B B F 4979 * -|-----|.....|-----|-----|-----|.....|- 4980 * | The KVA space | 4981 * |<--------------------------------->| 4982 */ 4983 for (busy = vmlist; busy; busy = busy->next) { 4984 if ((unsigned long) busy->addr - vmap_start > 0) { 4985 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 4986 if (!WARN_ON_ONCE(!free)) { 4987 free->va_start = vmap_start; 4988 free->va_end = (unsigned long) busy->addr; 4989 4990 insert_vmap_area_augment(free, NULL, 4991 &free_vmap_area_root, 4992 &free_vmap_area_list); 4993 } 4994 } 4995 4996 vmap_start = (unsigned long) busy->addr + busy->size; 4997 } 4998 4999 if (vmap_end - vmap_start > 0) { 5000 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5001 if (!WARN_ON_ONCE(!free)) { 5002 free->va_start = vmap_start; 5003 free->va_end = vmap_end; 5004 5005 insert_vmap_area_augment(free, NULL, 5006 &free_vmap_area_root, 5007 &free_vmap_area_list); 5008 } 5009 } 5010 } 5011 5012 static void vmap_init_nodes(void) 5013 { 5014 struct vmap_node *vn; 5015 int i, n; 5016 5017 #if BITS_PER_LONG == 64 5018 /* 5019 * A high threshold of max nodes is fixed and bound to 128, 5020 * thus a scale factor is 1 for systems where number of cores 5021 * are less or equal to specified threshold. 5022 * 5023 * As for NUMA-aware notes. For bigger systems, for example 5024 * NUMA with multi-sockets, where we can end-up with thousands 5025 * of cores in total, a "sub-numa-clustering" should be added. 5026 * 5027 * In this case a NUMA domain is considered as a single entity 5028 * with dedicated sub-nodes in it which describe one group or 5029 * set of cores. Therefore a per-domain purging is supposed to 5030 * be added as well as a per-domain balancing. 5031 */ 5032 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); 5033 5034 if (n > 1) { 5035 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); 5036 if (vn) { 5037 /* Node partition is 16 pages. */ 5038 vmap_zone_size = (1 << 4) * PAGE_SIZE; 5039 nr_vmap_nodes = n; 5040 vmap_nodes = vn; 5041 } else { 5042 pr_err("Failed to allocate an array. Disable a node layer\n"); 5043 } 5044 } 5045 #endif 5046 5047 for (n = 0; n < nr_vmap_nodes; n++) { 5048 vn = &vmap_nodes[n]; 5049 vn->busy.root = RB_ROOT; 5050 INIT_LIST_HEAD(&vn->busy.head); 5051 spin_lock_init(&vn->busy.lock); 5052 5053 vn->lazy.root = RB_ROOT; 5054 INIT_LIST_HEAD(&vn->lazy.head); 5055 spin_lock_init(&vn->lazy.lock); 5056 5057 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 5058 INIT_LIST_HEAD(&vn->pool[i].head); 5059 WRITE_ONCE(vn->pool[i].len, 0); 5060 } 5061 5062 spin_lock_init(&vn->pool_lock); 5063 } 5064 } 5065 5066 static unsigned long 5067 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5068 { 5069 unsigned long count; 5070 struct vmap_node *vn; 5071 int i, j; 5072 5073 for (count = 0, i = 0; i < nr_vmap_nodes; i++) { 5074 vn = &vmap_nodes[i]; 5075 5076 for (j = 0; j < MAX_VA_SIZE_PAGES; j++) 5077 count += READ_ONCE(vn->pool[j].len); 5078 } 5079 5080 return count ? count : SHRINK_EMPTY; 5081 } 5082 5083 static unsigned long 5084 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5085 { 5086 int i; 5087 5088 for (i = 0; i < nr_vmap_nodes; i++) 5089 decay_va_pool_node(&vmap_nodes[i], true); 5090 5091 return SHRINK_STOP; 5092 } 5093 5094 void __init vmalloc_init(void) 5095 { 5096 struct shrinker *vmap_node_shrinker; 5097 struct vmap_area *va; 5098 struct vmap_node *vn; 5099 struct vm_struct *tmp; 5100 int i; 5101 5102 /* 5103 * Create the cache for vmap_area objects. 5104 */ 5105 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 5106 5107 for_each_possible_cpu(i) { 5108 struct vmap_block_queue *vbq; 5109 struct vfree_deferred *p; 5110 5111 vbq = &per_cpu(vmap_block_queue, i); 5112 spin_lock_init(&vbq->lock); 5113 INIT_LIST_HEAD(&vbq->free); 5114 p = &per_cpu(vfree_deferred, i); 5115 init_llist_head(&p->list); 5116 INIT_WORK(&p->wq, delayed_vfree_work); 5117 xa_init(&vbq->vmap_blocks); 5118 } 5119 5120 /* 5121 * Setup nodes before importing vmlist. 5122 */ 5123 vmap_init_nodes(); 5124 5125 /* Import existing vmlist entries. */ 5126 for (tmp = vmlist; tmp; tmp = tmp->next) { 5127 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5128 if (WARN_ON_ONCE(!va)) 5129 continue; 5130 5131 va->va_start = (unsigned long)tmp->addr; 5132 va->va_end = va->va_start + tmp->size; 5133 va->vm = tmp; 5134 5135 vn = addr_to_node(va->va_start); 5136 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 5137 } 5138 5139 /* 5140 * Now we can initialize a free vmap space. 5141 */ 5142 vmap_init_free_space(); 5143 vmap_initialized = true; 5144 5145 vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); 5146 if (!vmap_node_shrinker) { 5147 pr_err("Failed to allocate vmap-node shrinker!\n"); 5148 return; 5149 } 5150 5151 vmap_node_shrinker->count_objects = vmap_node_shrink_count; 5152 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; 5153 shrinker_register(vmap_node_shrinker); 5154 } 5155