1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 */ 9 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/spinlock.h> 15 #include <linux/interrupt.h> 16 17 #include <linux/vmalloc.h> 18 19 #include <asm/uaccess.h> 20 #include <asm/tlbflush.h> 21 22 23 DEFINE_RWLOCK(vmlist_lock); 24 struct vm_struct *vmlist; 25 26 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 27 { 28 pte_t *pte; 29 30 pte = pte_offset_kernel(pmd, addr); 31 do { 32 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 33 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 34 } while (pte++, addr += PAGE_SIZE, addr != end); 35 } 36 37 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 38 unsigned long end) 39 { 40 pmd_t *pmd; 41 unsigned long next; 42 43 pmd = pmd_offset(pud, addr); 44 do { 45 next = pmd_addr_end(addr, end); 46 if (pmd_none_or_clear_bad(pmd)) 47 continue; 48 vunmap_pte_range(pmd, addr, next); 49 } while (pmd++, addr = next, addr != end); 50 } 51 52 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 53 unsigned long end) 54 { 55 pud_t *pud; 56 unsigned long next; 57 58 pud = pud_offset(pgd, addr); 59 do { 60 next = pud_addr_end(addr, end); 61 if (pud_none_or_clear_bad(pud)) 62 continue; 63 vunmap_pmd_range(pud, addr, next); 64 } while (pud++, addr = next, addr != end); 65 } 66 67 void unmap_vm_area(struct vm_struct *area) 68 { 69 pgd_t *pgd; 70 unsigned long next; 71 unsigned long addr = (unsigned long) area->addr; 72 unsigned long end = addr + area->size; 73 74 BUG_ON(addr >= end); 75 pgd = pgd_offset_k(addr); 76 flush_cache_vunmap(addr, end); 77 do { 78 next = pgd_addr_end(addr, end); 79 if (pgd_none_or_clear_bad(pgd)) 80 continue; 81 vunmap_pud_range(pgd, addr, next); 82 } while (pgd++, addr = next, addr != end); 83 flush_tlb_kernel_range((unsigned long) area->addr, end); 84 } 85 86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 87 unsigned long end, pgprot_t prot, struct page ***pages) 88 { 89 pte_t *pte; 90 91 pte = pte_alloc_kernel(&init_mm, pmd, addr); 92 if (!pte) 93 return -ENOMEM; 94 do { 95 struct page *page = **pages; 96 WARN_ON(!pte_none(*pte)); 97 if (!page) 98 return -ENOMEM; 99 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 100 (*pages)++; 101 } while (pte++, addr += PAGE_SIZE, addr != end); 102 return 0; 103 } 104 105 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 106 unsigned long end, pgprot_t prot, struct page ***pages) 107 { 108 pmd_t *pmd; 109 unsigned long next; 110 111 pmd = pmd_alloc(&init_mm, pud, addr); 112 if (!pmd) 113 return -ENOMEM; 114 do { 115 next = pmd_addr_end(addr, end); 116 if (vmap_pte_range(pmd, addr, next, prot, pages)) 117 return -ENOMEM; 118 } while (pmd++, addr = next, addr != end); 119 return 0; 120 } 121 122 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 123 unsigned long end, pgprot_t prot, struct page ***pages) 124 { 125 pud_t *pud; 126 unsigned long next; 127 128 pud = pud_alloc(&init_mm, pgd, addr); 129 if (!pud) 130 return -ENOMEM; 131 do { 132 next = pud_addr_end(addr, end); 133 if (vmap_pmd_range(pud, addr, next, prot, pages)) 134 return -ENOMEM; 135 } while (pud++, addr = next, addr != end); 136 return 0; 137 } 138 139 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 140 { 141 pgd_t *pgd; 142 unsigned long next; 143 unsigned long addr = (unsigned long) area->addr; 144 unsigned long end = addr + area->size - PAGE_SIZE; 145 int err; 146 147 BUG_ON(addr >= end); 148 pgd = pgd_offset_k(addr); 149 spin_lock(&init_mm.page_table_lock); 150 do { 151 next = pgd_addr_end(addr, end); 152 err = vmap_pud_range(pgd, addr, next, prot, pages); 153 if (err) 154 break; 155 } while (pgd++, addr = next, addr != end); 156 spin_unlock(&init_mm.page_table_lock); 157 flush_cache_vmap((unsigned long) area->addr, end); 158 return err; 159 } 160 161 #define IOREMAP_MAX_ORDER (7 + PAGE_SHIFT) /* 128 pages */ 162 163 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 164 unsigned long start, unsigned long end) 165 { 166 struct vm_struct **p, *tmp, *area; 167 unsigned long align = 1; 168 unsigned long addr; 169 170 if (flags & VM_IOREMAP) { 171 int bit = fls(size); 172 173 if (bit > IOREMAP_MAX_ORDER) 174 bit = IOREMAP_MAX_ORDER; 175 else if (bit < PAGE_SHIFT) 176 bit = PAGE_SHIFT; 177 178 align = 1ul << bit; 179 } 180 addr = ALIGN(start, align); 181 size = PAGE_ALIGN(size); 182 183 area = kmalloc(sizeof(*area), GFP_KERNEL); 184 if (unlikely(!area)) 185 return NULL; 186 187 if (unlikely(!size)) { 188 kfree (area); 189 return NULL; 190 } 191 192 /* 193 * We always allocate a guard page. 194 */ 195 size += PAGE_SIZE; 196 197 write_lock(&vmlist_lock); 198 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 199 if ((unsigned long)tmp->addr < addr) { 200 if((unsigned long)tmp->addr + tmp->size >= addr) 201 addr = ALIGN(tmp->size + 202 (unsigned long)tmp->addr, align); 203 continue; 204 } 205 if ((size + addr) < addr) 206 goto out; 207 if (size + addr <= (unsigned long)tmp->addr) 208 goto found; 209 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 210 if (addr > end - size) 211 goto out; 212 } 213 214 found: 215 area->next = *p; 216 *p = area; 217 218 area->flags = flags; 219 area->addr = (void *)addr; 220 area->size = size; 221 area->pages = NULL; 222 area->nr_pages = 0; 223 area->phys_addr = 0; 224 write_unlock(&vmlist_lock); 225 226 return area; 227 228 out: 229 write_unlock(&vmlist_lock); 230 kfree(area); 231 if (printk_ratelimit()) 232 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 233 return NULL; 234 } 235 236 /** 237 * get_vm_area - reserve a contingous kernel virtual area 238 * 239 * @size: size of the area 240 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 241 * 242 * Search an area of @size in the kernel virtual mapping area, 243 * and reserved it for out purposes. Returns the area descriptor 244 * on success or %NULL on failure. 245 */ 246 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 247 { 248 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 249 } 250 251 /* Caller must hold vmlist_lock */ 252 struct vm_struct *__remove_vm_area(void *addr) 253 { 254 struct vm_struct **p, *tmp; 255 256 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 257 if (tmp->addr == addr) 258 goto found; 259 } 260 return NULL; 261 262 found: 263 unmap_vm_area(tmp); 264 *p = tmp->next; 265 266 /* 267 * Remove the guard page. 268 */ 269 tmp->size -= PAGE_SIZE; 270 return tmp; 271 } 272 273 /** 274 * remove_vm_area - find and remove a contingous kernel virtual area 275 * 276 * @addr: base address 277 * 278 * Search for the kernel VM area starting at @addr, and remove it. 279 * This function returns the found VM area, but using it is NOT safe 280 * on SMP machines, except for its size or flags. 281 */ 282 struct vm_struct *remove_vm_area(void *addr) 283 { 284 struct vm_struct *v; 285 write_lock(&vmlist_lock); 286 v = __remove_vm_area(addr); 287 write_unlock(&vmlist_lock); 288 return v; 289 } 290 291 void __vunmap(void *addr, int deallocate_pages) 292 { 293 struct vm_struct *area; 294 295 if (!addr) 296 return; 297 298 if ((PAGE_SIZE-1) & (unsigned long)addr) { 299 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 300 WARN_ON(1); 301 return; 302 } 303 304 area = remove_vm_area(addr); 305 if (unlikely(!area)) { 306 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 307 addr); 308 WARN_ON(1); 309 return; 310 } 311 312 if (deallocate_pages) { 313 int i; 314 315 for (i = 0; i < area->nr_pages; i++) { 316 if (unlikely(!area->pages[i])) 317 BUG(); 318 __free_page(area->pages[i]); 319 } 320 321 if (area->nr_pages > PAGE_SIZE/sizeof(struct page *)) 322 vfree(area->pages); 323 else 324 kfree(area->pages); 325 } 326 327 kfree(area); 328 return; 329 } 330 331 /** 332 * vfree - release memory allocated by vmalloc() 333 * 334 * @addr: memory base address 335 * 336 * Free the virtually contiguous memory area starting at @addr, as 337 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). 338 * 339 * May not be called in interrupt context. 340 */ 341 void vfree(void *addr) 342 { 343 BUG_ON(in_interrupt()); 344 __vunmap(addr, 1); 345 } 346 347 EXPORT_SYMBOL(vfree); 348 349 /** 350 * vunmap - release virtual mapping obtained by vmap() 351 * 352 * @addr: memory base address 353 * 354 * Free the virtually contiguous memory area starting at @addr, 355 * which was created from the page array passed to vmap(). 356 * 357 * May not be called in interrupt context. 358 */ 359 void vunmap(void *addr) 360 { 361 BUG_ON(in_interrupt()); 362 __vunmap(addr, 0); 363 } 364 365 EXPORT_SYMBOL(vunmap); 366 367 /** 368 * vmap - map an array of pages into virtually contiguous space 369 * 370 * @pages: array of page pointers 371 * @count: number of pages to map 372 * @flags: vm_area->flags 373 * @prot: page protection for the mapping 374 * 375 * Maps @count pages from @pages into contiguous kernel virtual 376 * space. 377 */ 378 void *vmap(struct page **pages, unsigned int count, 379 unsigned long flags, pgprot_t prot) 380 { 381 struct vm_struct *area; 382 383 if (count > num_physpages) 384 return NULL; 385 386 area = get_vm_area((count << PAGE_SHIFT), flags); 387 if (!area) 388 return NULL; 389 if (map_vm_area(area, prot, &pages)) { 390 vunmap(area->addr); 391 return NULL; 392 } 393 394 return area->addr; 395 } 396 397 EXPORT_SYMBOL(vmap); 398 399 void *__vmalloc_area(struct vm_struct *area, unsigned int __nocast gfp_mask, pgprot_t prot) 400 { 401 struct page **pages; 402 unsigned int nr_pages, array_size, i; 403 404 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 405 array_size = (nr_pages * sizeof(struct page *)); 406 407 area->nr_pages = nr_pages; 408 /* Please note that the recursion is strictly bounded. */ 409 if (array_size > PAGE_SIZE) 410 pages = __vmalloc(array_size, gfp_mask, PAGE_KERNEL); 411 else 412 pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM)); 413 area->pages = pages; 414 if (!area->pages) { 415 remove_vm_area(area->addr); 416 kfree(area); 417 return NULL; 418 } 419 memset(area->pages, 0, array_size); 420 421 for (i = 0; i < area->nr_pages; i++) { 422 area->pages[i] = alloc_page(gfp_mask); 423 if (unlikely(!area->pages[i])) { 424 /* Successfully allocated i pages, free them in __vunmap() */ 425 area->nr_pages = i; 426 goto fail; 427 } 428 } 429 430 if (map_vm_area(area, prot, &pages)) 431 goto fail; 432 return area->addr; 433 434 fail: 435 vfree(area->addr); 436 return NULL; 437 } 438 439 /** 440 * __vmalloc - allocate virtually contiguous memory 441 * 442 * @size: allocation size 443 * @gfp_mask: flags for the page level allocator 444 * @prot: protection mask for the allocated pages 445 * 446 * Allocate enough pages to cover @size from the page level 447 * allocator with @gfp_mask flags. Map them into contiguous 448 * kernel virtual space, using a pagetable protection of @prot. 449 */ 450 void *__vmalloc(unsigned long size, unsigned int __nocast gfp_mask, pgprot_t prot) 451 { 452 struct vm_struct *area; 453 454 size = PAGE_ALIGN(size); 455 if (!size || (size >> PAGE_SHIFT) > num_physpages) 456 return NULL; 457 458 area = get_vm_area(size, VM_ALLOC); 459 if (!area) 460 return NULL; 461 462 return __vmalloc_area(area, gfp_mask, prot); 463 } 464 465 EXPORT_SYMBOL(__vmalloc); 466 467 /** 468 * vmalloc - allocate virtually contiguous memory 469 * 470 * @size: allocation size 471 * 472 * Allocate enough pages to cover @size from the page level 473 * allocator and map them into contiguous kernel virtual space. 474 * 475 * For tight cotrol over page level allocator and protection flags 476 * use __vmalloc() instead. 477 */ 478 void *vmalloc(unsigned long size) 479 { 480 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 481 } 482 483 EXPORT_SYMBOL(vmalloc); 484 485 #ifndef PAGE_KERNEL_EXEC 486 # define PAGE_KERNEL_EXEC PAGE_KERNEL 487 #endif 488 489 /** 490 * vmalloc_exec - allocate virtually contiguous, executable memory 491 * 492 * @size: allocation size 493 * 494 * Kernel-internal function to allocate enough pages to cover @size 495 * the page level allocator and map them into contiguous and 496 * executable kernel virtual space. 497 * 498 * For tight cotrol over page level allocator and protection flags 499 * use __vmalloc() instead. 500 */ 501 502 void *vmalloc_exec(unsigned long size) 503 { 504 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 505 } 506 507 /** 508 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 509 * 510 * @size: allocation size 511 * 512 * Allocate enough 32bit PA addressable pages to cover @size from the 513 * page level allocator and map them into contiguous kernel virtual space. 514 */ 515 void *vmalloc_32(unsigned long size) 516 { 517 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 518 } 519 520 EXPORT_SYMBOL(vmalloc_32); 521 522 long vread(char *buf, char *addr, unsigned long count) 523 { 524 struct vm_struct *tmp; 525 char *vaddr, *buf_start = buf; 526 unsigned long n; 527 528 /* Don't allow overflow */ 529 if ((unsigned long) addr + count < count) 530 count = -(unsigned long) addr; 531 532 read_lock(&vmlist_lock); 533 for (tmp = vmlist; tmp; tmp = tmp->next) { 534 vaddr = (char *) tmp->addr; 535 if (addr >= vaddr + tmp->size - PAGE_SIZE) 536 continue; 537 while (addr < vaddr) { 538 if (count == 0) 539 goto finished; 540 *buf = '\0'; 541 buf++; 542 addr++; 543 count--; 544 } 545 n = vaddr + tmp->size - PAGE_SIZE - addr; 546 do { 547 if (count == 0) 548 goto finished; 549 *buf = *addr; 550 buf++; 551 addr++; 552 count--; 553 } while (--n > 0); 554 } 555 finished: 556 read_unlock(&vmlist_lock); 557 return buf - buf_start; 558 } 559 560 long vwrite(char *buf, char *addr, unsigned long count) 561 { 562 struct vm_struct *tmp; 563 char *vaddr, *buf_start = buf; 564 unsigned long n; 565 566 /* Don't allow overflow */ 567 if ((unsigned long) addr + count < count) 568 count = -(unsigned long) addr; 569 570 read_lock(&vmlist_lock); 571 for (tmp = vmlist; tmp; tmp = tmp->next) { 572 vaddr = (char *) tmp->addr; 573 if (addr >= vaddr + tmp->size - PAGE_SIZE) 574 continue; 575 while (addr < vaddr) { 576 if (count == 0) 577 goto finished; 578 buf++; 579 addr++; 580 count--; 581 } 582 n = vaddr + tmp->size - PAGE_SIZE - addr; 583 do { 584 if (count == 0) 585 goto finished; 586 *addr = *buf; 587 buf++; 588 addr++; 589 count--; 590 } while (--n > 0); 591 } 592 finished: 593 read_unlock(&vmlist_lock); 594 return buf - buf_start; 595 } 596