xref: /linux/mm/vmalloc.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  */
9 
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/vmalloc.h>
18 
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 
22 
23 DEFINE_RWLOCK(vmlist_lock);
24 struct vm_struct *vmlist;
25 
26 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
27 {
28 	pte_t *pte;
29 
30 	pte = pte_offset_kernel(pmd, addr);
31 	do {
32 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
33 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
34 	} while (pte++, addr += PAGE_SIZE, addr != end);
35 }
36 
37 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
38 						unsigned long end)
39 {
40 	pmd_t *pmd;
41 	unsigned long next;
42 
43 	pmd = pmd_offset(pud, addr);
44 	do {
45 		next = pmd_addr_end(addr, end);
46 		if (pmd_none_or_clear_bad(pmd))
47 			continue;
48 		vunmap_pte_range(pmd, addr, next);
49 	} while (pmd++, addr = next, addr != end);
50 }
51 
52 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
53 						unsigned long end)
54 {
55 	pud_t *pud;
56 	unsigned long next;
57 
58 	pud = pud_offset(pgd, addr);
59 	do {
60 		next = pud_addr_end(addr, end);
61 		if (pud_none_or_clear_bad(pud))
62 			continue;
63 		vunmap_pmd_range(pud, addr, next);
64 	} while (pud++, addr = next, addr != end);
65 }
66 
67 void unmap_vm_area(struct vm_struct *area)
68 {
69 	pgd_t *pgd;
70 	unsigned long next;
71 	unsigned long addr = (unsigned long) area->addr;
72 	unsigned long end = addr + area->size;
73 
74 	BUG_ON(addr >= end);
75 	pgd = pgd_offset_k(addr);
76 	flush_cache_vunmap(addr, end);
77 	do {
78 		next = pgd_addr_end(addr, end);
79 		if (pgd_none_or_clear_bad(pgd))
80 			continue;
81 		vunmap_pud_range(pgd, addr, next);
82 	} while (pgd++, addr = next, addr != end);
83 	flush_tlb_kernel_range((unsigned long) area->addr, end);
84 }
85 
86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
87 			unsigned long end, pgprot_t prot, struct page ***pages)
88 {
89 	pte_t *pte;
90 
91 	pte = pte_alloc_kernel(&init_mm, pmd, addr);
92 	if (!pte)
93 		return -ENOMEM;
94 	do {
95 		struct page *page = **pages;
96 		WARN_ON(!pte_none(*pte));
97 		if (!page)
98 			return -ENOMEM;
99 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
100 		(*pages)++;
101 	} while (pte++, addr += PAGE_SIZE, addr != end);
102 	return 0;
103 }
104 
105 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
106 			unsigned long end, pgprot_t prot, struct page ***pages)
107 {
108 	pmd_t *pmd;
109 	unsigned long next;
110 
111 	pmd = pmd_alloc(&init_mm, pud, addr);
112 	if (!pmd)
113 		return -ENOMEM;
114 	do {
115 		next = pmd_addr_end(addr, end);
116 		if (vmap_pte_range(pmd, addr, next, prot, pages))
117 			return -ENOMEM;
118 	} while (pmd++, addr = next, addr != end);
119 	return 0;
120 }
121 
122 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
123 			unsigned long end, pgprot_t prot, struct page ***pages)
124 {
125 	pud_t *pud;
126 	unsigned long next;
127 
128 	pud = pud_alloc(&init_mm, pgd, addr);
129 	if (!pud)
130 		return -ENOMEM;
131 	do {
132 		next = pud_addr_end(addr, end);
133 		if (vmap_pmd_range(pud, addr, next, prot, pages))
134 			return -ENOMEM;
135 	} while (pud++, addr = next, addr != end);
136 	return 0;
137 }
138 
139 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
140 {
141 	pgd_t *pgd;
142 	unsigned long next;
143 	unsigned long addr = (unsigned long) area->addr;
144 	unsigned long end = addr + area->size - PAGE_SIZE;
145 	int err;
146 
147 	BUG_ON(addr >= end);
148 	pgd = pgd_offset_k(addr);
149 	spin_lock(&init_mm.page_table_lock);
150 	do {
151 		next = pgd_addr_end(addr, end);
152 		err = vmap_pud_range(pgd, addr, next, prot, pages);
153 		if (err)
154 			break;
155 	} while (pgd++, addr = next, addr != end);
156 	spin_unlock(&init_mm.page_table_lock);
157 	flush_cache_vmap((unsigned long) area->addr, end);
158 	return err;
159 }
160 
161 #define IOREMAP_MAX_ORDER	(7 + PAGE_SHIFT)	/* 128 pages */
162 
163 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
164 				unsigned long start, unsigned long end)
165 {
166 	struct vm_struct **p, *tmp, *area;
167 	unsigned long align = 1;
168 	unsigned long addr;
169 
170 	if (flags & VM_IOREMAP) {
171 		int bit = fls(size);
172 
173 		if (bit > IOREMAP_MAX_ORDER)
174 			bit = IOREMAP_MAX_ORDER;
175 		else if (bit < PAGE_SHIFT)
176 			bit = PAGE_SHIFT;
177 
178 		align = 1ul << bit;
179 	}
180 	addr = ALIGN(start, align);
181 	size = PAGE_ALIGN(size);
182 
183 	area = kmalloc(sizeof(*area), GFP_KERNEL);
184 	if (unlikely(!area))
185 		return NULL;
186 
187 	if (unlikely(!size)) {
188 		kfree (area);
189 		return NULL;
190 	}
191 
192 	/*
193 	 * We always allocate a guard page.
194 	 */
195 	size += PAGE_SIZE;
196 
197 	write_lock(&vmlist_lock);
198 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
199 		if ((unsigned long)tmp->addr < addr) {
200 			if((unsigned long)tmp->addr + tmp->size >= addr)
201 				addr = ALIGN(tmp->size +
202 					     (unsigned long)tmp->addr, align);
203 			continue;
204 		}
205 		if ((size + addr) < addr)
206 			goto out;
207 		if (size + addr <= (unsigned long)tmp->addr)
208 			goto found;
209 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
210 		if (addr > end - size)
211 			goto out;
212 	}
213 
214 found:
215 	area->next = *p;
216 	*p = area;
217 
218 	area->flags = flags;
219 	area->addr = (void *)addr;
220 	area->size = size;
221 	area->pages = NULL;
222 	area->nr_pages = 0;
223 	area->phys_addr = 0;
224 	write_unlock(&vmlist_lock);
225 
226 	return area;
227 
228 out:
229 	write_unlock(&vmlist_lock);
230 	kfree(area);
231 	if (printk_ratelimit())
232 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
233 	return NULL;
234 }
235 
236 /**
237  *	get_vm_area  -  reserve a contingous kernel virtual area
238  *
239  *	@size:		size of the area
240  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
241  *
242  *	Search an area of @size in the kernel virtual mapping area,
243  *	and reserved it for out purposes.  Returns the area descriptor
244  *	on success or %NULL on failure.
245  */
246 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
247 {
248 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
249 }
250 
251 /* Caller must hold vmlist_lock */
252 struct vm_struct *__remove_vm_area(void *addr)
253 {
254 	struct vm_struct **p, *tmp;
255 
256 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
257 		 if (tmp->addr == addr)
258 			 goto found;
259 	}
260 	return NULL;
261 
262 found:
263 	unmap_vm_area(tmp);
264 	*p = tmp->next;
265 
266 	/*
267 	 * Remove the guard page.
268 	 */
269 	tmp->size -= PAGE_SIZE;
270 	return tmp;
271 }
272 
273 /**
274  *	remove_vm_area  -  find and remove a contingous kernel virtual area
275  *
276  *	@addr:		base address
277  *
278  *	Search for the kernel VM area starting at @addr, and remove it.
279  *	This function returns the found VM area, but using it is NOT safe
280  *	on SMP machines, except for its size or flags.
281  */
282 struct vm_struct *remove_vm_area(void *addr)
283 {
284 	struct vm_struct *v;
285 	write_lock(&vmlist_lock);
286 	v = __remove_vm_area(addr);
287 	write_unlock(&vmlist_lock);
288 	return v;
289 }
290 
291 void __vunmap(void *addr, int deallocate_pages)
292 {
293 	struct vm_struct *area;
294 
295 	if (!addr)
296 		return;
297 
298 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
299 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
300 		WARN_ON(1);
301 		return;
302 	}
303 
304 	area = remove_vm_area(addr);
305 	if (unlikely(!area)) {
306 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
307 				addr);
308 		WARN_ON(1);
309 		return;
310 	}
311 
312 	if (deallocate_pages) {
313 		int i;
314 
315 		for (i = 0; i < area->nr_pages; i++) {
316 			if (unlikely(!area->pages[i]))
317 				BUG();
318 			__free_page(area->pages[i]);
319 		}
320 
321 		if (area->nr_pages > PAGE_SIZE/sizeof(struct page *))
322 			vfree(area->pages);
323 		else
324 			kfree(area->pages);
325 	}
326 
327 	kfree(area);
328 	return;
329 }
330 
331 /**
332  *	vfree  -  release memory allocated by vmalloc()
333  *
334  *	@addr:		memory base address
335  *
336  *	Free the virtually contiguous memory area starting at @addr, as
337  *	obtained from vmalloc(), vmalloc_32() or __vmalloc().
338  *
339  *	May not be called in interrupt context.
340  */
341 void vfree(void *addr)
342 {
343 	BUG_ON(in_interrupt());
344 	__vunmap(addr, 1);
345 }
346 
347 EXPORT_SYMBOL(vfree);
348 
349 /**
350  *	vunmap  -  release virtual mapping obtained by vmap()
351  *
352  *	@addr:		memory base address
353  *
354  *	Free the virtually contiguous memory area starting at @addr,
355  *	which was created from the page array passed to vmap().
356  *
357  *	May not be called in interrupt context.
358  */
359 void vunmap(void *addr)
360 {
361 	BUG_ON(in_interrupt());
362 	__vunmap(addr, 0);
363 }
364 
365 EXPORT_SYMBOL(vunmap);
366 
367 /**
368  *	vmap  -  map an array of pages into virtually contiguous space
369  *
370  *	@pages:		array of page pointers
371  *	@count:		number of pages to map
372  *	@flags:		vm_area->flags
373  *	@prot:		page protection for the mapping
374  *
375  *	Maps @count pages from @pages into contiguous kernel virtual
376  *	space.
377  */
378 void *vmap(struct page **pages, unsigned int count,
379 		unsigned long flags, pgprot_t prot)
380 {
381 	struct vm_struct *area;
382 
383 	if (count > num_physpages)
384 		return NULL;
385 
386 	area = get_vm_area((count << PAGE_SHIFT), flags);
387 	if (!area)
388 		return NULL;
389 	if (map_vm_area(area, prot, &pages)) {
390 		vunmap(area->addr);
391 		return NULL;
392 	}
393 
394 	return area->addr;
395 }
396 
397 EXPORT_SYMBOL(vmap);
398 
399 void *__vmalloc_area(struct vm_struct *area, unsigned int __nocast gfp_mask, pgprot_t prot)
400 {
401 	struct page **pages;
402 	unsigned int nr_pages, array_size, i;
403 
404 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
405 	array_size = (nr_pages * sizeof(struct page *));
406 
407 	area->nr_pages = nr_pages;
408 	/* Please note that the recursion is strictly bounded. */
409 	if (array_size > PAGE_SIZE)
410 		pages = __vmalloc(array_size, gfp_mask, PAGE_KERNEL);
411 	else
412 		pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM));
413 	area->pages = pages;
414 	if (!area->pages) {
415 		remove_vm_area(area->addr);
416 		kfree(area);
417 		return NULL;
418 	}
419 	memset(area->pages, 0, array_size);
420 
421 	for (i = 0; i < area->nr_pages; i++) {
422 		area->pages[i] = alloc_page(gfp_mask);
423 		if (unlikely(!area->pages[i])) {
424 			/* Successfully allocated i pages, free them in __vunmap() */
425 			area->nr_pages = i;
426 			goto fail;
427 		}
428 	}
429 
430 	if (map_vm_area(area, prot, &pages))
431 		goto fail;
432 	return area->addr;
433 
434 fail:
435 	vfree(area->addr);
436 	return NULL;
437 }
438 
439 /**
440  *	__vmalloc  -  allocate virtually contiguous memory
441  *
442  *	@size:		allocation size
443  *	@gfp_mask:	flags for the page level allocator
444  *	@prot:		protection mask for the allocated pages
445  *
446  *	Allocate enough pages to cover @size from the page level
447  *	allocator with @gfp_mask flags.  Map them into contiguous
448  *	kernel virtual space, using a pagetable protection of @prot.
449  */
450 void *__vmalloc(unsigned long size, unsigned int __nocast gfp_mask, pgprot_t prot)
451 {
452 	struct vm_struct *area;
453 
454 	size = PAGE_ALIGN(size);
455 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
456 		return NULL;
457 
458 	area = get_vm_area(size, VM_ALLOC);
459 	if (!area)
460 		return NULL;
461 
462 	return __vmalloc_area(area, gfp_mask, prot);
463 }
464 
465 EXPORT_SYMBOL(__vmalloc);
466 
467 /**
468  *	vmalloc  -  allocate virtually contiguous memory
469  *
470  *	@size:		allocation size
471  *
472  *	Allocate enough pages to cover @size from the page level
473  *	allocator and map them into contiguous kernel virtual space.
474  *
475  *	For tight cotrol over page level allocator and protection flags
476  *	use __vmalloc() instead.
477  */
478 void *vmalloc(unsigned long size)
479 {
480        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
481 }
482 
483 EXPORT_SYMBOL(vmalloc);
484 
485 #ifndef PAGE_KERNEL_EXEC
486 # define PAGE_KERNEL_EXEC PAGE_KERNEL
487 #endif
488 
489 /**
490  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
491  *
492  *	@size:		allocation size
493  *
494  *	Kernel-internal function to allocate enough pages to cover @size
495  *	the page level allocator and map them into contiguous and
496  *	executable kernel virtual space.
497  *
498  *	For tight cotrol over page level allocator and protection flags
499  *	use __vmalloc() instead.
500  */
501 
502 void *vmalloc_exec(unsigned long size)
503 {
504 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
505 }
506 
507 /**
508  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
509  *
510  *	@size:		allocation size
511  *
512  *	Allocate enough 32bit PA addressable pages to cover @size from the
513  *	page level allocator and map them into contiguous kernel virtual space.
514  */
515 void *vmalloc_32(unsigned long size)
516 {
517 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
518 }
519 
520 EXPORT_SYMBOL(vmalloc_32);
521 
522 long vread(char *buf, char *addr, unsigned long count)
523 {
524 	struct vm_struct *tmp;
525 	char *vaddr, *buf_start = buf;
526 	unsigned long n;
527 
528 	/* Don't allow overflow */
529 	if ((unsigned long) addr + count < count)
530 		count = -(unsigned long) addr;
531 
532 	read_lock(&vmlist_lock);
533 	for (tmp = vmlist; tmp; tmp = tmp->next) {
534 		vaddr = (char *) tmp->addr;
535 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
536 			continue;
537 		while (addr < vaddr) {
538 			if (count == 0)
539 				goto finished;
540 			*buf = '\0';
541 			buf++;
542 			addr++;
543 			count--;
544 		}
545 		n = vaddr + tmp->size - PAGE_SIZE - addr;
546 		do {
547 			if (count == 0)
548 				goto finished;
549 			*buf = *addr;
550 			buf++;
551 			addr++;
552 			count--;
553 		} while (--n > 0);
554 	}
555 finished:
556 	read_unlock(&vmlist_lock);
557 	return buf - buf_start;
558 }
559 
560 long vwrite(char *buf, char *addr, unsigned long count)
561 {
562 	struct vm_struct *tmp;
563 	char *vaddr, *buf_start = buf;
564 	unsigned long n;
565 
566 	/* Don't allow overflow */
567 	if ((unsigned long) addr + count < count)
568 		count = -(unsigned long) addr;
569 
570 	read_lock(&vmlist_lock);
571 	for (tmp = vmlist; tmp; tmp = tmp->next) {
572 		vaddr = (char *) tmp->addr;
573 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
574 			continue;
575 		while (addr < vaddr) {
576 			if (count == 0)
577 				goto finished;
578 			buf++;
579 			addr++;
580 			count--;
581 		}
582 		n = vaddr + tmp->size - PAGE_SIZE - addr;
583 		do {
584 			if (count == 0)
585 				goto finished;
586 			*addr = *buf;
587 			buf++;
588 			addr++;
589 			count--;
590 		} while (--n > 0);
591 	}
592 finished:
593 	read_unlock(&vmlist_lock);
594 	return buf - buf_start;
595 }
596