1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 void *private; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static LIST_HEAD(vmap_area_list); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 267 /* The vmap cache globals are protected by vmap_area_lock */ 268 static struct rb_node *free_vmap_cache; 269 static unsigned long cached_hole_size; 270 static unsigned long cached_vstart; 271 static unsigned long cached_align; 272 273 static unsigned long vmap_area_pcpu_hole; 274 275 static struct vmap_area *__find_vmap_area(unsigned long addr) 276 { 277 struct rb_node *n = vmap_area_root.rb_node; 278 279 while (n) { 280 struct vmap_area *va; 281 282 va = rb_entry(n, struct vmap_area, rb_node); 283 if (addr < va->va_start) 284 n = n->rb_left; 285 else if (addr > va->va_start) 286 n = n->rb_right; 287 else 288 return va; 289 } 290 291 return NULL; 292 } 293 294 static void __insert_vmap_area(struct vmap_area *va) 295 { 296 struct rb_node **p = &vmap_area_root.rb_node; 297 struct rb_node *parent = NULL; 298 struct rb_node *tmp; 299 300 while (*p) { 301 struct vmap_area *tmp_va; 302 303 parent = *p; 304 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 305 if (va->va_start < tmp_va->va_end) 306 p = &(*p)->rb_left; 307 else if (va->va_end > tmp_va->va_start) 308 p = &(*p)->rb_right; 309 else 310 BUG(); 311 } 312 313 rb_link_node(&va->rb_node, parent, p); 314 rb_insert_color(&va->rb_node, &vmap_area_root); 315 316 /* address-sort this list so it is usable like the vmlist */ 317 tmp = rb_prev(&va->rb_node); 318 if (tmp) { 319 struct vmap_area *prev; 320 prev = rb_entry(tmp, struct vmap_area, rb_node); 321 list_add_rcu(&va->list, &prev->list); 322 } else 323 list_add_rcu(&va->list, &vmap_area_list); 324 } 325 326 static void purge_vmap_area_lazy(void); 327 328 /* 329 * Allocate a region of KVA of the specified size and alignment, within the 330 * vstart and vend. 331 */ 332 static struct vmap_area *alloc_vmap_area(unsigned long size, 333 unsigned long align, 334 unsigned long vstart, unsigned long vend, 335 int node, gfp_t gfp_mask) 336 { 337 struct vmap_area *va; 338 struct rb_node *n; 339 unsigned long addr; 340 int purged = 0; 341 struct vmap_area *first; 342 343 BUG_ON(!size); 344 BUG_ON(size & ~PAGE_MASK); 345 BUG_ON(!is_power_of_2(align)); 346 347 va = kmalloc_node(sizeof(struct vmap_area), 348 gfp_mask & GFP_RECLAIM_MASK, node); 349 if (unlikely(!va)) 350 return ERR_PTR(-ENOMEM); 351 352 retry: 353 spin_lock(&vmap_area_lock); 354 /* 355 * Invalidate cache if we have more permissive parameters. 356 * cached_hole_size notes the largest hole noticed _below_ 357 * the vmap_area cached in free_vmap_cache: if size fits 358 * into that hole, we want to scan from vstart to reuse 359 * the hole instead of allocating above free_vmap_cache. 360 * Note that __free_vmap_area may update free_vmap_cache 361 * without updating cached_hole_size or cached_align. 362 */ 363 if (!free_vmap_cache || 364 size < cached_hole_size || 365 vstart < cached_vstart || 366 align < cached_align) { 367 nocache: 368 cached_hole_size = 0; 369 free_vmap_cache = NULL; 370 } 371 /* record if we encounter less permissive parameters */ 372 cached_vstart = vstart; 373 cached_align = align; 374 375 /* find starting point for our search */ 376 if (free_vmap_cache) { 377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 378 addr = ALIGN(first->va_end, align); 379 if (addr < vstart) 380 goto nocache; 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 } else { 385 addr = ALIGN(vstart, align); 386 if (addr + size - 1 < addr) 387 goto overflow; 388 389 n = vmap_area_root.rb_node; 390 first = NULL; 391 392 while (n) { 393 struct vmap_area *tmp; 394 tmp = rb_entry(n, struct vmap_area, rb_node); 395 if (tmp->va_end >= addr) { 396 first = tmp; 397 if (tmp->va_start <= addr) 398 break; 399 n = n->rb_left; 400 } else 401 n = n->rb_right; 402 } 403 404 if (!first) 405 goto found; 406 } 407 408 /* from the starting point, walk areas until a suitable hole is found */ 409 while (addr + size > first->va_start && addr + size <= vend) { 410 if (addr + cached_hole_size < first->va_start) 411 cached_hole_size = first->va_start - addr; 412 addr = ALIGN(first->va_end, align); 413 if (addr + size - 1 < addr) 414 goto overflow; 415 416 n = rb_next(&first->rb_node); 417 if (n) 418 first = rb_entry(n, struct vmap_area, rb_node); 419 else 420 goto found; 421 } 422 423 found: 424 if (addr + size > vend) 425 goto overflow; 426 427 va->va_start = addr; 428 va->va_end = addr + size; 429 va->flags = 0; 430 __insert_vmap_area(va); 431 free_vmap_cache = &va->rb_node; 432 spin_unlock(&vmap_area_lock); 433 434 BUG_ON(va->va_start & (align-1)); 435 BUG_ON(va->va_start < vstart); 436 BUG_ON(va->va_end > vend); 437 438 return va; 439 440 overflow: 441 spin_unlock(&vmap_area_lock); 442 if (!purged) { 443 purge_vmap_area_lazy(); 444 purged = 1; 445 goto retry; 446 } 447 if (printk_ratelimit()) 448 printk(KERN_WARNING 449 "vmap allocation for size %lu failed: " 450 "use vmalloc=<size> to increase size.\n", size); 451 kfree(va); 452 return ERR_PTR(-EBUSY); 453 } 454 455 static void __free_vmap_area(struct vmap_area *va) 456 { 457 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 458 459 if (free_vmap_cache) { 460 if (va->va_end < cached_vstart) { 461 free_vmap_cache = NULL; 462 } else { 463 struct vmap_area *cache; 464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 465 if (va->va_start <= cache->va_start) { 466 free_vmap_cache = rb_prev(&va->rb_node); 467 /* 468 * We don't try to update cached_hole_size or 469 * cached_align, but it won't go very wrong. 470 */ 471 } 472 } 473 } 474 rb_erase(&va->rb_node, &vmap_area_root); 475 RB_CLEAR_NODE(&va->rb_node); 476 list_del_rcu(&va->list); 477 478 /* 479 * Track the highest possible candidate for pcpu area 480 * allocation. Areas outside of vmalloc area can be returned 481 * here too, consider only end addresses which fall inside 482 * vmalloc area proper. 483 */ 484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 486 487 kfree_rcu(va, rcu_head); 488 } 489 490 /* 491 * Free a region of KVA allocated by alloc_vmap_area 492 */ 493 static void free_vmap_area(struct vmap_area *va) 494 { 495 spin_lock(&vmap_area_lock); 496 __free_vmap_area(va); 497 spin_unlock(&vmap_area_lock); 498 } 499 500 /* 501 * Clear the pagetable entries of a given vmap_area 502 */ 503 static void unmap_vmap_area(struct vmap_area *va) 504 { 505 vunmap_page_range(va->va_start, va->va_end); 506 } 507 508 static void vmap_debug_free_range(unsigned long start, unsigned long end) 509 { 510 /* 511 * Unmap page tables and force a TLB flush immediately if 512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 513 * bugs similarly to those in linear kernel virtual address 514 * space after a page has been freed. 515 * 516 * All the lazy freeing logic is still retained, in order to 517 * minimise intrusiveness of this debugging feature. 518 * 519 * This is going to be *slow* (linear kernel virtual address 520 * debugging doesn't do a broadcast TLB flush so it is a lot 521 * faster). 522 */ 523 #ifdef CONFIG_DEBUG_PAGEALLOC 524 vunmap_page_range(start, end); 525 flush_tlb_kernel_range(start, end); 526 #endif 527 } 528 529 /* 530 * lazy_max_pages is the maximum amount of virtual address space we gather up 531 * before attempting to purge with a TLB flush. 532 * 533 * There is a tradeoff here: a larger number will cover more kernel page tables 534 * and take slightly longer to purge, but it will linearly reduce the number of 535 * global TLB flushes that must be performed. It would seem natural to scale 536 * this number up linearly with the number of CPUs (because vmapping activity 537 * could also scale linearly with the number of CPUs), however it is likely 538 * that in practice, workloads might be constrained in other ways that mean 539 * vmap activity will not scale linearly with CPUs. Also, I want to be 540 * conservative and not introduce a big latency on huge systems, so go with 541 * a less aggressive log scale. It will still be an improvement over the old 542 * code, and it will be simple to change the scale factor if we find that it 543 * becomes a problem on bigger systems. 544 */ 545 static unsigned long lazy_max_pages(void) 546 { 547 unsigned int log; 548 549 log = fls(num_online_cpus()); 550 551 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 552 } 553 554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 555 556 /* for per-CPU blocks */ 557 static void purge_fragmented_blocks_allcpus(void); 558 559 /* 560 * called before a call to iounmap() if the caller wants vm_area_struct's 561 * immediately freed. 562 */ 563 void set_iounmap_nonlazy(void) 564 { 565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 566 } 567 568 /* 569 * Purges all lazily-freed vmap areas. 570 * 571 * If sync is 0 then don't purge if there is already a purge in progress. 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise 574 * their own TLB flushing). 575 * Returns with *start = min(*start, lowest purged address) 576 * *end = max(*end, highest purged address) 577 */ 578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 579 int sync, int force_flush) 580 { 581 static DEFINE_SPINLOCK(purge_lock); 582 LIST_HEAD(valist); 583 struct vmap_area *va; 584 struct vmap_area *n_va; 585 int nr = 0; 586 587 /* 588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 589 * should not expect such behaviour. This just simplifies locking for 590 * the case that isn't actually used at the moment anyway. 591 */ 592 if (!sync && !force_flush) { 593 if (!spin_trylock(&purge_lock)) 594 return; 595 } else 596 spin_lock(&purge_lock); 597 598 if (sync) 599 purge_fragmented_blocks_allcpus(); 600 601 rcu_read_lock(); 602 list_for_each_entry_rcu(va, &vmap_area_list, list) { 603 if (va->flags & VM_LAZY_FREE) { 604 if (va->va_start < *start) 605 *start = va->va_start; 606 if (va->va_end > *end) 607 *end = va->va_end; 608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 609 list_add_tail(&va->purge_list, &valist); 610 va->flags |= VM_LAZY_FREEING; 611 va->flags &= ~VM_LAZY_FREE; 612 } 613 } 614 rcu_read_unlock(); 615 616 if (nr) 617 atomic_sub(nr, &vmap_lazy_nr); 618 619 if (nr || force_flush) 620 flush_tlb_kernel_range(*start, *end); 621 622 if (nr) { 623 spin_lock(&vmap_area_lock); 624 list_for_each_entry_safe(va, n_va, &valist, purge_list) 625 __free_vmap_area(va); 626 spin_unlock(&vmap_area_lock); 627 } 628 spin_unlock(&purge_lock); 629 } 630 631 /* 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 633 * is already purging. 634 */ 635 static void try_purge_vmap_area_lazy(void) 636 { 637 unsigned long start = ULONG_MAX, end = 0; 638 639 __purge_vmap_area_lazy(&start, &end, 0, 0); 640 } 641 642 /* 643 * Kick off a purge of the outstanding lazy areas. 644 */ 645 static void purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 1, 0); 650 } 651 652 /* 653 * Free a vmap area, caller ensuring that the area has been unmapped 654 * and flush_cache_vunmap had been called for the correct range 655 * previously. 656 */ 657 static void free_vmap_area_noflush(struct vmap_area *va) 658 { 659 va->flags |= VM_LAZY_FREE; 660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 662 try_purge_vmap_area_lazy(); 663 } 664 665 /* 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 667 * called for the correct range previously. 668 */ 669 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 670 { 671 unmap_vmap_area(va); 672 free_vmap_area_noflush(va); 673 } 674 675 /* 676 * Free and unmap a vmap area 677 */ 678 static void free_unmap_vmap_area(struct vmap_area *va) 679 { 680 flush_cache_vunmap(va->va_start, va->va_end); 681 free_unmap_vmap_area_noflush(va); 682 } 683 684 static struct vmap_area *find_vmap_area(unsigned long addr) 685 { 686 struct vmap_area *va; 687 688 spin_lock(&vmap_area_lock); 689 va = __find_vmap_area(addr); 690 spin_unlock(&vmap_area_lock); 691 692 return va; 693 } 694 695 static void free_unmap_vmap_area_addr(unsigned long addr) 696 { 697 struct vmap_area *va; 698 699 va = find_vmap_area(addr); 700 BUG_ON(!va); 701 free_unmap_vmap_area(va); 702 } 703 704 705 /*** Per cpu kva allocator ***/ 706 707 /* 708 * vmap space is limited especially on 32 bit architectures. Ensure there is 709 * room for at least 16 percpu vmap blocks per CPU. 710 */ 711 /* 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 714 * instead (we just need a rough idea) 715 */ 716 #if BITS_PER_LONG == 32 717 #define VMALLOC_SPACE (128UL*1024*1024) 718 #else 719 #define VMALLOC_SPACE (128UL*1024*1024*1024) 720 #endif 721 722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 728 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 729 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 730 VMALLOC_PAGES / NR_CPUS / 16)) 731 732 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 733 734 static bool vmap_initialized __read_mostly = false; 735 736 struct vmap_block_queue { 737 spinlock_t lock; 738 struct list_head free; 739 }; 740 741 struct vmap_block { 742 spinlock_t lock; 743 struct vmap_area *va; 744 struct vmap_block_queue *vbq; 745 unsigned long free, dirty; 746 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 747 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 748 struct list_head free_list; 749 struct rcu_head rcu_head; 750 struct list_head purge; 751 }; 752 753 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 754 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 755 756 /* 757 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 758 * in the free path. Could get rid of this if we change the API to return a 759 * "cookie" from alloc, to be passed to free. But no big deal yet. 760 */ 761 static DEFINE_SPINLOCK(vmap_block_tree_lock); 762 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 763 764 /* 765 * We should probably have a fallback mechanism to allocate virtual memory 766 * out of partially filled vmap blocks. However vmap block sizing should be 767 * fairly reasonable according to the vmalloc size, so it shouldn't be a 768 * big problem. 769 */ 770 771 static unsigned long addr_to_vb_idx(unsigned long addr) 772 { 773 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 774 addr /= VMAP_BLOCK_SIZE; 775 return addr; 776 } 777 778 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 779 { 780 struct vmap_block_queue *vbq; 781 struct vmap_block *vb; 782 struct vmap_area *va; 783 unsigned long vb_idx; 784 int node, err; 785 786 node = numa_node_id(); 787 788 vb = kmalloc_node(sizeof(struct vmap_block), 789 gfp_mask & GFP_RECLAIM_MASK, node); 790 if (unlikely(!vb)) 791 return ERR_PTR(-ENOMEM); 792 793 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 794 VMALLOC_START, VMALLOC_END, 795 node, gfp_mask); 796 if (IS_ERR(va)) { 797 kfree(vb); 798 return ERR_CAST(va); 799 } 800 801 err = radix_tree_preload(gfp_mask); 802 if (unlikely(err)) { 803 kfree(vb); 804 free_vmap_area(va); 805 return ERR_PTR(err); 806 } 807 808 spin_lock_init(&vb->lock); 809 vb->va = va; 810 vb->free = VMAP_BBMAP_BITS; 811 vb->dirty = 0; 812 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 813 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 814 INIT_LIST_HEAD(&vb->free_list); 815 816 vb_idx = addr_to_vb_idx(va->va_start); 817 spin_lock(&vmap_block_tree_lock); 818 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 819 spin_unlock(&vmap_block_tree_lock); 820 BUG_ON(err); 821 radix_tree_preload_end(); 822 823 vbq = &get_cpu_var(vmap_block_queue); 824 vb->vbq = vbq; 825 spin_lock(&vbq->lock); 826 list_add_rcu(&vb->free_list, &vbq->free); 827 spin_unlock(&vbq->lock); 828 put_cpu_var(vmap_block_queue); 829 830 return vb; 831 } 832 833 static void free_vmap_block(struct vmap_block *vb) 834 { 835 struct vmap_block *tmp; 836 unsigned long vb_idx; 837 838 vb_idx = addr_to_vb_idx(vb->va->va_start); 839 spin_lock(&vmap_block_tree_lock); 840 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 841 spin_unlock(&vmap_block_tree_lock); 842 BUG_ON(tmp != vb); 843 844 free_vmap_area_noflush(vb->va); 845 kfree_rcu(vb, rcu_head); 846 } 847 848 static void purge_fragmented_blocks(int cpu) 849 { 850 LIST_HEAD(purge); 851 struct vmap_block *vb; 852 struct vmap_block *n_vb; 853 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 854 855 rcu_read_lock(); 856 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 857 858 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 859 continue; 860 861 spin_lock(&vb->lock); 862 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 863 vb->free = 0; /* prevent further allocs after releasing lock */ 864 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 865 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 866 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 867 spin_lock(&vbq->lock); 868 list_del_rcu(&vb->free_list); 869 spin_unlock(&vbq->lock); 870 spin_unlock(&vb->lock); 871 list_add_tail(&vb->purge, &purge); 872 } else 873 spin_unlock(&vb->lock); 874 } 875 rcu_read_unlock(); 876 877 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 878 list_del(&vb->purge); 879 free_vmap_block(vb); 880 } 881 } 882 883 static void purge_fragmented_blocks_thiscpu(void) 884 { 885 purge_fragmented_blocks(smp_processor_id()); 886 } 887 888 static void purge_fragmented_blocks_allcpus(void) 889 { 890 int cpu; 891 892 for_each_possible_cpu(cpu) 893 purge_fragmented_blocks(cpu); 894 } 895 896 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 897 { 898 struct vmap_block_queue *vbq; 899 struct vmap_block *vb; 900 unsigned long addr = 0; 901 unsigned int order; 902 int purge = 0; 903 904 BUG_ON(size & ~PAGE_MASK); 905 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 906 order = get_order(size); 907 908 again: 909 rcu_read_lock(); 910 vbq = &get_cpu_var(vmap_block_queue); 911 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 912 int i; 913 914 spin_lock(&vb->lock); 915 if (vb->free < 1UL << order) 916 goto next; 917 918 i = bitmap_find_free_region(vb->alloc_map, 919 VMAP_BBMAP_BITS, order); 920 921 if (i < 0) { 922 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 923 /* fragmented and no outstanding allocations */ 924 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 925 purge = 1; 926 } 927 goto next; 928 } 929 addr = vb->va->va_start + (i << PAGE_SHIFT); 930 BUG_ON(addr_to_vb_idx(addr) != 931 addr_to_vb_idx(vb->va->va_start)); 932 vb->free -= 1UL << order; 933 if (vb->free == 0) { 934 spin_lock(&vbq->lock); 935 list_del_rcu(&vb->free_list); 936 spin_unlock(&vbq->lock); 937 } 938 spin_unlock(&vb->lock); 939 break; 940 next: 941 spin_unlock(&vb->lock); 942 } 943 944 if (purge) 945 purge_fragmented_blocks_thiscpu(); 946 947 put_cpu_var(vmap_block_queue); 948 rcu_read_unlock(); 949 950 if (!addr) { 951 vb = new_vmap_block(gfp_mask); 952 if (IS_ERR(vb)) 953 return vb; 954 goto again; 955 } 956 957 return (void *)addr; 958 } 959 960 static void vb_free(const void *addr, unsigned long size) 961 { 962 unsigned long offset; 963 unsigned long vb_idx; 964 unsigned int order; 965 struct vmap_block *vb; 966 967 BUG_ON(size & ~PAGE_MASK); 968 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 969 970 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 971 972 order = get_order(size); 973 974 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 975 976 vb_idx = addr_to_vb_idx((unsigned long)addr); 977 rcu_read_lock(); 978 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 979 rcu_read_unlock(); 980 BUG_ON(!vb); 981 982 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 983 984 spin_lock(&vb->lock); 985 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 986 987 vb->dirty += 1UL << order; 988 if (vb->dirty == VMAP_BBMAP_BITS) { 989 BUG_ON(vb->free); 990 spin_unlock(&vb->lock); 991 free_vmap_block(vb); 992 } else 993 spin_unlock(&vb->lock); 994 } 995 996 /** 997 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 998 * 999 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1000 * to amortize TLB flushing overheads. What this means is that any page you 1001 * have now, may, in a former life, have been mapped into kernel virtual 1002 * address by the vmap layer and so there might be some CPUs with TLB entries 1003 * still referencing that page (additional to the regular 1:1 kernel mapping). 1004 * 1005 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1006 * be sure that none of the pages we have control over will have any aliases 1007 * from the vmap layer. 1008 */ 1009 void vm_unmap_aliases(void) 1010 { 1011 unsigned long start = ULONG_MAX, end = 0; 1012 int cpu; 1013 int flush = 0; 1014 1015 if (unlikely(!vmap_initialized)) 1016 return; 1017 1018 for_each_possible_cpu(cpu) { 1019 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1020 struct vmap_block *vb; 1021 1022 rcu_read_lock(); 1023 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1024 int i; 1025 1026 spin_lock(&vb->lock); 1027 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1028 while (i < VMAP_BBMAP_BITS) { 1029 unsigned long s, e; 1030 int j; 1031 j = find_next_zero_bit(vb->dirty_map, 1032 VMAP_BBMAP_BITS, i); 1033 1034 s = vb->va->va_start + (i << PAGE_SHIFT); 1035 e = vb->va->va_start + (j << PAGE_SHIFT); 1036 flush = 1; 1037 1038 if (s < start) 1039 start = s; 1040 if (e > end) 1041 end = e; 1042 1043 i = j; 1044 i = find_next_bit(vb->dirty_map, 1045 VMAP_BBMAP_BITS, i); 1046 } 1047 spin_unlock(&vb->lock); 1048 } 1049 rcu_read_unlock(); 1050 } 1051 1052 __purge_vmap_area_lazy(&start, &end, 1, flush); 1053 } 1054 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1055 1056 /** 1057 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1058 * @mem: the pointer returned by vm_map_ram 1059 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1060 */ 1061 void vm_unmap_ram(const void *mem, unsigned int count) 1062 { 1063 unsigned long size = count << PAGE_SHIFT; 1064 unsigned long addr = (unsigned long)mem; 1065 1066 BUG_ON(!addr); 1067 BUG_ON(addr < VMALLOC_START); 1068 BUG_ON(addr > VMALLOC_END); 1069 BUG_ON(addr & (PAGE_SIZE-1)); 1070 1071 debug_check_no_locks_freed(mem, size); 1072 vmap_debug_free_range(addr, addr+size); 1073 1074 if (likely(count <= VMAP_MAX_ALLOC)) 1075 vb_free(mem, size); 1076 else 1077 free_unmap_vmap_area_addr(addr); 1078 } 1079 EXPORT_SYMBOL(vm_unmap_ram); 1080 1081 /** 1082 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1083 * @pages: an array of pointers to the pages to be mapped 1084 * @count: number of pages 1085 * @node: prefer to allocate data structures on this node 1086 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1087 * 1088 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1089 */ 1090 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1091 { 1092 unsigned long size = count << PAGE_SHIFT; 1093 unsigned long addr; 1094 void *mem; 1095 1096 if (likely(count <= VMAP_MAX_ALLOC)) { 1097 mem = vb_alloc(size, GFP_KERNEL); 1098 if (IS_ERR(mem)) 1099 return NULL; 1100 addr = (unsigned long)mem; 1101 } else { 1102 struct vmap_area *va; 1103 va = alloc_vmap_area(size, PAGE_SIZE, 1104 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1105 if (IS_ERR(va)) 1106 return NULL; 1107 1108 addr = va->va_start; 1109 mem = (void *)addr; 1110 } 1111 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1112 vm_unmap_ram(mem, count); 1113 return NULL; 1114 } 1115 return mem; 1116 } 1117 EXPORT_SYMBOL(vm_map_ram); 1118 1119 /** 1120 * vm_area_register_early - register vmap area early during boot 1121 * @vm: vm_struct to register 1122 * @align: requested alignment 1123 * 1124 * This function is used to register kernel vm area before 1125 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1126 * proper values on entry and other fields should be zero. On return, 1127 * vm->addr contains the allocated address. 1128 * 1129 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1130 */ 1131 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1132 { 1133 static size_t vm_init_off __initdata; 1134 unsigned long addr; 1135 1136 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1137 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1138 1139 vm->addr = (void *)addr; 1140 1141 vm->next = vmlist; 1142 vmlist = vm; 1143 } 1144 1145 void __init vmalloc_init(void) 1146 { 1147 struct vmap_area *va; 1148 struct vm_struct *tmp; 1149 int i; 1150 1151 for_each_possible_cpu(i) { 1152 struct vmap_block_queue *vbq; 1153 1154 vbq = &per_cpu(vmap_block_queue, i); 1155 spin_lock_init(&vbq->lock); 1156 INIT_LIST_HEAD(&vbq->free); 1157 } 1158 1159 /* Import existing vmlist entries. */ 1160 for (tmp = vmlist; tmp; tmp = tmp->next) { 1161 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1162 va->flags = tmp->flags | VM_VM_AREA; 1163 va->va_start = (unsigned long)tmp->addr; 1164 va->va_end = va->va_start + tmp->size; 1165 __insert_vmap_area(va); 1166 } 1167 1168 vmap_area_pcpu_hole = VMALLOC_END; 1169 1170 vmap_initialized = true; 1171 } 1172 1173 /** 1174 * map_kernel_range_noflush - map kernel VM area with the specified pages 1175 * @addr: start of the VM area to map 1176 * @size: size of the VM area to map 1177 * @prot: page protection flags to use 1178 * @pages: pages to map 1179 * 1180 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1181 * specify should have been allocated using get_vm_area() and its 1182 * friends. 1183 * 1184 * NOTE: 1185 * This function does NOT do any cache flushing. The caller is 1186 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1187 * before calling this function. 1188 * 1189 * RETURNS: 1190 * The number of pages mapped on success, -errno on failure. 1191 */ 1192 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1193 pgprot_t prot, struct page **pages) 1194 { 1195 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1196 } 1197 1198 /** 1199 * unmap_kernel_range_noflush - unmap kernel VM area 1200 * @addr: start of the VM area to unmap 1201 * @size: size of the VM area to unmap 1202 * 1203 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1204 * specify should have been allocated using get_vm_area() and its 1205 * friends. 1206 * 1207 * NOTE: 1208 * This function does NOT do any cache flushing. The caller is 1209 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1210 * before calling this function and flush_tlb_kernel_range() after. 1211 */ 1212 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1213 { 1214 vunmap_page_range(addr, addr + size); 1215 } 1216 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1217 1218 /** 1219 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1220 * @addr: start of the VM area to unmap 1221 * @size: size of the VM area to unmap 1222 * 1223 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1224 * the unmapping and tlb after. 1225 */ 1226 void unmap_kernel_range(unsigned long addr, unsigned long size) 1227 { 1228 unsigned long end = addr + size; 1229 1230 flush_cache_vunmap(addr, end); 1231 vunmap_page_range(addr, end); 1232 flush_tlb_kernel_range(addr, end); 1233 } 1234 1235 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1236 { 1237 unsigned long addr = (unsigned long)area->addr; 1238 unsigned long end = addr + area->size - PAGE_SIZE; 1239 int err; 1240 1241 err = vmap_page_range(addr, end, prot, *pages); 1242 if (err > 0) { 1243 *pages += err; 1244 err = 0; 1245 } 1246 1247 return err; 1248 } 1249 EXPORT_SYMBOL_GPL(map_vm_area); 1250 1251 /*** Old vmalloc interfaces ***/ 1252 DEFINE_RWLOCK(vmlist_lock); 1253 struct vm_struct *vmlist; 1254 1255 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1256 unsigned long flags, void *caller) 1257 { 1258 struct vm_struct *tmp, **p; 1259 1260 vm->flags = flags; 1261 vm->addr = (void *)va->va_start; 1262 vm->size = va->va_end - va->va_start; 1263 vm->caller = caller; 1264 va->private = vm; 1265 va->flags |= VM_VM_AREA; 1266 1267 write_lock(&vmlist_lock); 1268 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1269 if (tmp->addr >= vm->addr) 1270 break; 1271 } 1272 vm->next = *p; 1273 *p = vm; 1274 write_unlock(&vmlist_lock); 1275 } 1276 1277 static struct vm_struct *__get_vm_area_node(unsigned long size, 1278 unsigned long align, unsigned long flags, unsigned long start, 1279 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1280 { 1281 static struct vmap_area *va; 1282 struct vm_struct *area; 1283 1284 BUG_ON(in_interrupt()); 1285 if (flags & VM_IOREMAP) { 1286 int bit = fls(size); 1287 1288 if (bit > IOREMAP_MAX_ORDER) 1289 bit = IOREMAP_MAX_ORDER; 1290 else if (bit < PAGE_SHIFT) 1291 bit = PAGE_SHIFT; 1292 1293 align = 1ul << bit; 1294 } 1295 1296 size = PAGE_ALIGN(size); 1297 if (unlikely(!size)) 1298 return NULL; 1299 1300 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1301 if (unlikely(!area)) 1302 return NULL; 1303 1304 /* 1305 * We always allocate a guard page. 1306 */ 1307 size += PAGE_SIZE; 1308 1309 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1310 if (IS_ERR(va)) { 1311 kfree(area); 1312 return NULL; 1313 } 1314 1315 insert_vmalloc_vm(area, va, flags, caller); 1316 return area; 1317 } 1318 1319 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1320 unsigned long start, unsigned long end) 1321 { 1322 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1323 __builtin_return_address(0)); 1324 } 1325 EXPORT_SYMBOL_GPL(__get_vm_area); 1326 1327 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1328 unsigned long start, unsigned long end, 1329 void *caller) 1330 { 1331 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1332 caller); 1333 } 1334 1335 /** 1336 * get_vm_area - reserve a contiguous kernel virtual area 1337 * @size: size of the area 1338 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1339 * 1340 * Search an area of @size in the kernel virtual mapping area, 1341 * and reserved it for out purposes. Returns the area descriptor 1342 * on success or %NULL on failure. 1343 */ 1344 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1345 { 1346 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1347 -1, GFP_KERNEL, __builtin_return_address(0)); 1348 } 1349 1350 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1351 void *caller) 1352 { 1353 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1354 -1, GFP_KERNEL, caller); 1355 } 1356 1357 static struct vm_struct *find_vm_area(const void *addr) 1358 { 1359 struct vmap_area *va; 1360 1361 va = find_vmap_area((unsigned long)addr); 1362 if (va && va->flags & VM_VM_AREA) 1363 return va->private; 1364 1365 return NULL; 1366 } 1367 1368 /** 1369 * remove_vm_area - find and remove a continuous kernel virtual area 1370 * @addr: base address 1371 * 1372 * Search for the kernel VM area starting at @addr, and remove it. 1373 * This function returns the found VM area, but using it is NOT safe 1374 * on SMP machines, except for its size or flags. 1375 */ 1376 struct vm_struct *remove_vm_area(const void *addr) 1377 { 1378 struct vmap_area *va; 1379 1380 va = find_vmap_area((unsigned long)addr); 1381 if (va && va->flags & VM_VM_AREA) { 1382 struct vm_struct *vm = va->private; 1383 struct vm_struct *tmp, **p; 1384 /* 1385 * remove from list and disallow access to this vm_struct 1386 * before unmap. (address range confliction is maintained by 1387 * vmap.) 1388 */ 1389 write_lock(&vmlist_lock); 1390 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1391 ; 1392 *p = tmp->next; 1393 write_unlock(&vmlist_lock); 1394 1395 vmap_debug_free_range(va->va_start, va->va_end); 1396 free_unmap_vmap_area(va); 1397 vm->size -= PAGE_SIZE; 1398 1399 return vm; 1400 } 1401 return NULL; 1402 } 1403 1404 static void __vunmap(const void *addr, int deallocate_pages) 1405 { 1406 struct vm_struct *area; 1407 1408 if (!addr) 1409 return; 1410 1411 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1412 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1413 return; 1414 } 1415 1416 area = remove_vm_area(addr); 1417 if (unlikely(!area)) { 1418 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1419 addr); 1420 return; 1421 } 1422 1423 debug_check_no_locks_freed(addr, area->size); 1424 debug_check_no_obj_freed(addr, area->size); 1425 1426 if (deallocate_pages) { 1427 int i; 1428 1429 for (i = 0; i < area->nr_pages; i++) { 1430 struct page *page = area->pages[i]; 1431 1432 BUG_ON(!page); 1433 __free_page(page); 1434 } 1435 1436 if (area->flags & VM_VPAGES) 1437 vfree(area->pages); 1438 else 1439 kfree(area->pages); 1440 } 1441 1442 kfree(area); 1443 return; 1444 } 1445 1446 /** 1447 * vfree - release memory allocated by vmalloc() 1448 * @addr: memory base address 1449 * 1450 * Free the virtually continuous memory area starting at @addr, as 1451 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1452 * NULL, no operation is performed. 1453 * 1454 * Must not be called in interrupt context. 1455 */ 1456 void vfree(const void *addr) 1457 { 1458 BUG_ON(in_interrupt()); 1459 1460 kmemleak_free(addr); 1461 1462 __vunmap(addr, 1); 1463 } 1464 EXPORT_SYMBOL(vfree); 1465 1466 /** 1467 * vunmap - release virtual mapping obtained by vmap() 1468 * @addr: memory base address 1469 * 1470 * Free the virtually contiguous memory area starting at @addr, 1471 * which was created from the page array passed to vmap(). 1472 * 1473 * Must not be called in interrupt context. 1474 */ 1475 void vunmap(const void *addr) 1476 { 1477 BUG_ON(in_interrupt()); 1478 might_sleep(); 1479 __vunmap(addr, 0); 1480 } 1481 EXPORT_SYMBOL(vunmap); 1482 1483 /** 1484 * vmap - map an array of pages into virtually contiguous space 1485 * @pages: array of page pointers 1486 * @count: number of pages to map 1487 * @flags: vm_area->flags 1488 * @prot: page protection for the mapping 1489 * 1490 * Maps @count pages from @pages into contiguous kernel virtual 1491 * space. 1492 */ 1493 void *vmap(struct page **pages, unsigned int count, 1494 unsigned long flags, pgprot_t prot) 1495 { 1496 struct vm_struct *area; 1497 1498 might_sleep(); 1499 1500 if (count > totalram_pages) 1501 return NULL; 1502 1503 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1504 __builtin_return_address(0)); 1505 if (!area) 1506 return NULL; 1507 1508 if (map_vm_area(area, prot, &pages)) { 1509 vunmap(area->addr); 1510 return NULL; 1511 } 1512 1513 return area->addr; 1514 } 1515 EXPORT_SYMBOL(vmap); 1516 1517 static void *__vmalloc_node(unsigned long size, unsigned long align, 1518 gfp_t gfp_mask, pgprot_t prot, 1519 int node, void *caller); 1520 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1521 pgprot_t prot, int node, void *caller) 1522 { 1523 const int order = 0; 1524 struct page **pages; 1525 unsigned int nr_pages, array_size, i; 1526 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1527 1528 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1529 array_size = (nr_pages * sizeof(struct page *)); 1530 1531 area->nr_pages = nr_pages; 1532 /* Please note that the recursion is strictly bounded. */ 1533 if (array_size > PAGE_SIZE) { 1534 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1535 PAGE_KERNEL, node, caller); 1536 area->flags |= VM_VPAGES; 1537 } else { 1538 pages = kmalloc_node(array_size, nested_gfp, node); 1539 } 1540 area->pages = pages; 1541 area->caller = caller; 1542 if (!area->pages) { 1543 remove_vm_area(area->addr); 1544 kfree(area); 1545 return NULL; 1546 } 1547 1548 for (i = 0; i < area->nr_pages; i++) { 1549 struct page *page; 1550 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1551 1552 if (node < 0) 1553 page = alloc_page(tmp_mask); 1554 else 1555 page = alloc_pages_node(node, tmp_mask, order); 1556 1557 if (unlikely(!page)) { 1558 /* Successfully allocated i pages, free them in __vunmap() */ 1559 area->nr_pages = i; 1560 goto fail; 1561 } 1562 area->pages[i] = page; 1563 } 1564 1565 if (map_vm_area(area, prot, &pages)) 1566 goto fail; 1567 return area->addr; 1568 1569 fail: 1570 warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, " 1571 "allocated %ld of %ld bytes\n", 1572 (area->nr_pages*PAGE_SIZE), area->size); 1573 vfree(area->addr); 1574 return NULL; 1575 } 1576 1577 /** 1578 * __vmalloc_node_range - allocate virtually contiguous memory 1579 * @size: allocation size 1580 * @align: desired alignment 1581 * @start: vm area range start 1582 * @end: vm area range end 1583 * @gfp_mask: flags for the page level allocator 1584 * @prot: protection mask for the allocated pages 1585 * @node: node to use for allocation or -1 1586 * @caller: caller's return address 1587 * 1588 * Allocate enough pages to cover @size from the page level 1589 * allocator with @gfp_mask flags. Map them into contiguous 1590 * kernel virtual space, using a pagetable protection of @prot. 1591 */ 1592 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1593 unsigned long start, unsigned long end, gfp_t gfp_mask, 1594 pgprot_t prot, int node, void *caller) 1595 { 1596 struct vm_struct *area; 1597 void *addr; 1598 unsigned long real_size = size; 1599 1600 size = PAGE_ALIGN(size); 1601 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1602 return NULL; 1603 1604 area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node, 1605 gfp_mask, caller); 1606 1607 if (!area) 1608 return NULL; 1609 1610 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1611 1612 /* 1613 * A ref_count = 3 is needed because the vm_struct and vmap_area 1614 * structures allocated in the __get_vm_area_node() function contain 1615 * references to the virtual address of the vmalloc'ed block. 1616 */ 1617 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1618 1619 return addr; 1620 } 1621 1622 /** 1623 * __vmalloc_node - allocate virtually contiguous memory 1624 * @size: allocation size 1625 * @align: desired alignment 1626 * @gfp_mask: flags for the page level allocator 1627 * @prot: protection mask for the allocated pages 1628 * @node: node to use for allocation or -1 1629 * @caller: caller's return address 1630 * 1631 * Allocate enough pages to cover @size from the page level 1632 * allocator with @gfp_mask flags. Map them into contiguous 1633 * kernel virtual space, using a pagetable protection of @prot. 1634 */ 1635 static void *__vmalloc_node(unsigned long size, unsigned long align, 1636 gfp_t gfp_mask, pgprot_t prot, 1637 int node, void *caller) 1638 { 1639 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1640 gfp_mask, prot, node, caller); 1641 } 1642 1643 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1644 { 1645 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1646 __builtin_return_address(0)); 1647 } 1648 EXPORT_SYMBOL(__vmalloc); 1649 1650 static inline void *__vmalloc_node_flags(unsigned long size, 1651 int node, gfp_t flags) 1652 { 1653 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1654 node, __builtin_return_address(0)); 1655 } 1656 1657 /** 1658 * vmalloc - allocate virtually contiguous memory 1659 * @size: allocation size 1660 * Allocate enough pages to cover @size from the page level 1661 * allocator and map them into contiguous kernel virtual space. 1662 * 1663 * For tight control over page level allocator and protection flags 1664 * use __vmalloc() instead. 1665 */ 1666 void *vmalloc(unsigned long size) 1667 { 1668 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1669 } 1670 EXPORT_SYMBOL(vmalloc); 1671 1672 /** 1673 * vzalloc - allocate virtually contiguous memory with zero fill 1674 * @size: allocation size 1675 * Allocate enough pages to cover @size from the page level 1676 * allocator and map them into contiguous kernel virtual space. 1677 * The memory allocated is set to zero. 1678 * 1679 * For tight control over page level allocator and protection flags 1680 * use __vmalloc() instead. 1681 */ 1682 void *vzalloc(unsigned long size) 1683 { 1684 return __vmalloc_node_flags(size, -1, 1685 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1686 } 1687 EXPORT_SYMBOL(vzalloc); 1688 1689 /** 1690 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1691 * @size: allocation size 1692 * 1693 * The resulting memory area is zeroed so it can be mapped to userspace 1694 * without leaking data. 1695 */ 1696 void *vmalloc_user(unsigned long size) 1697 { 1698 struct vm_struct *area; 1699 void *ret; 1700 1701 ret = __vmalloc_node(size, SHMLBA, 1702 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1703 PAGE_KERNEL, -1, __builtin_return_address(0)); 1704 if (ret) { 1705 area = find_vm_area(ret); 1706 area->flags |= VM_USERMAP; 1707 } 1708 return ret; 1709 } 1710 EXPORT_SYMBOL(vmalloc_user); 1711 1712 /** 1713 * vmalloc_node - allocate memory on a specific node 1714 * @size: allocation size 1715 * @node: numa node 1716 * 1717 * Allocate enough pages to cover @size from the page level 1718 * allocator and map them into contiguous kernel virtual space. 1719 * 1720 * For tight control over page level allocator and protection flags 1721 * use __vmalloc() instead. 1722 */ 1723 void *vmalloc_node(unsigned long size, int node) 1724 { 1725 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1726 node, __builtin_return_address(0)); 1727 } 1728 EXPORT_SYMBOL(vmalloc_node); 1729 1730 /** 1731 * vzalloc_node - allocate memory on a specific node with zero fill 1732 * @size: allocation size 1733 * @node: numa node 1734 * 1735 * Allocate enough pages to cover @size from the page level 1736 * allocator and map them into contiguous kernel virtual space. 1737 * The memory allocated is set to zero. 1738 * 1739 * For tight control over page level allocator and protection flags 1740 * use __vmalloc_node() instead. 1741 */ 1742 void *vzalloc_node(unsigned long size, int node) 1743 { 1744 return __vmalloc_node_flags(size, node, 1745 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1746 } 1747 EXPORT_SYMBOL(vzalloc_node); 1748 1749 #ifndef PAGE_KERNEL_EXEC 1750 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1751 #endif 1752 1753 /** 1754 * vmalloc_exec - allocate virtually contiguous, executable memory 1755 * @size: allocation size 1756 * 1757 * Kernel-internal function to allocate enough pages to cover @size 1758 * the page level allocator and map them into contiguous and 1759 * executable kernel virtual space. 1760 * 1761 * For tight control over page level allocator and protection flags 1762 * use __vmalloc() instead. 1763 */ 1764 1765 void *vmalloc_exec(unsigned long size) 1766 { 1767 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1768 -1, __builtin_return_address(0)); 1769 } 1770 1771 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1772 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1773 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1774 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1775 #else 1776 #define GFP_VMALLOC32 GFP_KERNEL 1777 #endif 1778 1779 /** 1780 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1781 * @size: allocation size 1782 * 1783 * Allocate enough 32bit PA addressable pages to cover @size from the 1784 * page level allocator and map them into contiguous kernel virtual space. 1785 */ 1786 void *vmalloc_32(unsigned long size) 1787 { 1788 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1789 -1, __builtin_return_address(0)); 1790 } 1791 EXPORT_SYMBOL(vmalloc_32); 1792 1793 /** 1794 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1795 * @size: allocation size 1796 * 1797 * The resulting memory area is 32bit addressable and zeroed so it can be 1798 * mapped to userspace without leaking data. 1799 */ 1800 void *vmalloc_32_user(unsigned long size) 1801 { 1802 struct vm_struct *area; 1803 void *ret; 1804 1805 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1806 -1, __builtin_return_address(0)); 1807 if (ret) { 1808 area = find_vm_area(ret); 1809 area->flags |= VM_USERMAP; 1810 } 1811 return ret; 1812 } 1813 EXPORT_SYMBOL(vmalloc_32_user); 1814 1815 /* 1816 * small helper routine , copy contents to buf from addr. 1817 * If the page is not present, fill zero. 1818 */ 1819 1820 static int aligned_vread(char *buf, char *addr, unsigned long count) 1821 { 1822 struct page *p; 1823 int copied = 0; 1824 1825 while (count) { 1826 unsigned long offset, length; 1827 1828 offset = (unsigned long)addr & ~PAGE_MASK; 1829 length = PAGE_SIZE - offset; 1830 if (length > count) 1831 length = count; 1832 p = vmalloc_to_page(addr); 1833 /* 1834 * To do safe access to this _mapped_ area, we need 1835 * lock. But adding lock here means that we need to add 1836 * overhead of vmalloc()/vfree() calles for this _debug_ 1837 * interface, rarely used. Instead of that, we'll use 1838 * kmap() and get small overhead in this access function. 1839 */ 1840 if (p) { 1841 /* 1842 * we can expect USER0 is not used (see vread/vwrite's 1843 * function description) 1844 */ 1845 void *map = kmap_atomic(p, KM_USER0); 1846 memcpy(buf, map + offset, length); 1847 kunmap_atomic(map, KM_USER0); 1848 } else 1849 memset(buf, 0, length); 1850 1851 addr += length; 1852 buf += length; 1853 copied += length; 1854 count -= length; 1855 } 1856 return copied; 1857 } 1858 1859 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1860 { 1861 struct page *p; 1862 int copied = 0; 1863 1864 while (count) { 1865 unsigned long offset, length; 1866 1867 offset = (unsigned long)addr & ~PAGE_MASK; 1868 length = PAGE_SIZE - offset; 1869 if (length > count) 1870 length = count; 1871 p = vmalloc_to_page(addr); 1872 /* 1873 * To do safe access to this _mapped_ area, we need 1874 * lock. But adding lock here means that we need to add 1875 * overhead of vmalloc()/vfree() calles for this _debug_ 1876 * interface, rarely used. Instead of that, we'll use 1877 * kmap() and get small overhead in this access function. 1878 */ 1879 if (p) { 1880 /* 1881 * we can expect USER0 is not used (see vread/vwrite's 1882 * function description) 1883 */ 1884 void *map = kmap_atomic(p, KM_USER0); 1885 memcpy(map + offset, buf, length); 1886 kunmap_atomic(map, KM_USER0); 1887 } 1888 addr += length; 1889 buf += length; 1890 copied += length; 1891 count -= length; 1892 } 1893 return copied; 1894 } 1895 1896 /** 1897 * vread() - read vmalloc area in a safe way. 1898 * @buf: buffer for reading data 1899 * @addr: vm address. 1900 * @count: number of bytes to be read. 1901 * 1902 * Returns # of bytes which addr and buf should be increased. 1903 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1904 * includes any intersect with alive vmalloc area. 1905 * 1906 * This function checks that addr is a valid vmalloc'ed area, and 1907 * copy data from that area to a given buffer. If the given memory range 1908 * of [addr...addr+count) includes some valid address, data is copied to 1909 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1910 * IOREMAP area is treated as memory hole and no copy is done. 1911 * 1912 * If [addr...addr+count) doesn't includes any intersects with alive 1913 * vm_struct area, returns 0. 1914 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1915 * the caller should guarantee KM_USER0 is not used. 1916 * 1917 * Note: In usual ops, vread() is never necessary because the caller 1918 * should know vmalloc() area is valid and can use memcpy(). 1919 * This is for routines which have to access vmalloc area without 1920 * any informaion, as /dev/kmem. 1921 * 1922 */ 1923 1924 long vread(char *buf, char *addr, unsigned long count) 1925 { 1926 struct vm_struct *tmp; 1927 char *vaddr, *buf_start = buf; 1928 unsigned long buflen = count; 1929 unsigned long n; 1930 1931 /* Don't allow overflow */ 1932 if ((unsigned long) addr + count < count) 1933 count = -(unsigned long) addr; 1934 1935 read_lock(&vmlist_lock); 1936 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1937 vaddr = (char *) tmp->addr; 1938 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1939 continue; 1940 while (addr < vaddr) { 1941 if (count == 0) 1942 goto finished; 1943 *buf = '\0'; 1944 buf++; 1945 addr++; 1946 count--; 1947 } 1948 n = vaddr + tmp->size - PAGE_SIZE - addr; 1949 if (n > count) 1950 n = count; 1951 if (!(tmp->flags & VM_IOREMAP)) 1952 aligned_vread(buf, addr, n); 1953 else /* IOREMAP area is treated as memory hole */ 1954 memset(buf, 0, n); 1955 buf += n; 1956 addr += n; 1957 count -= n; 1958 } 1959 finished: 1960 read_unlock(&vmlist_lock); 1961 1962 if (buf == buf_start) 1963 return 0; 1964 /* zero-fill memory holes */ 1965 if (buf != buf_start + buflen) 1966 memset(buf, 0, buflen - (buf - buf_start)); 1967 1968 return buflen; 1969 } 1970 1971 /** 1972 * vwrite() - write vmalloc area in a safe way. 1973 * @buf: buffer for source data 1974 * @addr: vm address. 1975 * @count: number of bytes to be read. 1976 * 1977 * Returns # of bytes which addr and buf should be incresed. 1978 * (same number to @count). 1979 * If [addr...addr+count) doesn't includes any intersect with valid 1980 * vmalloc area, returns 0. 1981 * 1982 * This function checks that addr is a valid vmalloc'ed area, and 1983 * copy data from a buffer to the given addr. If specified range of 1984 * [addr...addr+count) includes some valid address, data is copied from 1985 * proper area of @buf. If there are memory holes, no copy to hole. 1986 * IOREMAP area is treated as memory hole and no copy is done. 1987 * 1988 * If [addr...addr+count) doesn't includes any intersects with alive 1989 * vm_struct area, returns 0. 1990 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1991 * the caller should guarantee KM_USER0 is not used. 1992 * 1993 * Note: In usual ops, vwrite() is never necessary because the caller 1994 * should know vmalloc() area is valid and can use memcpy(). 1995 * This is for routines which have to access vmalloc area without 1996 * any informaion, as /dev/kmem. 1997 */ 1998 1999 long vwrite(char *buf, char *addr, unsigned long count) 2000 { 2001 struct vm_struct *tmp; 2002 char *vaddr; 2003 unsigned long n, buflen; 2004 int copied = 0; 2005 2006 /* Don't allow overflow */ 2007 if ((unsigned long) addr + count < count) 2008 count = -(unsigned long) addr; 2009 buflen = count; 2010 2011 read_lock(&vmlist_lock); 2012 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2013 vaddr = (char *) tmp->addr; 2014 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2015 continue; 2016 while (addr < vaddr) { 2017 if (count == 0) 2018 goto finished; 2019 buf++; 2020 addr++; 2021 count--; 2022 } 2023 n = vaddr + tmp->size - PAGE_SIZE - addr; 2024 if (n > count) 2025 n = count; 2026 if (!(tmp->flags & VM_IOREMAP)) { 2027 aligned_vwrite(buf, addr, n); 2028 copied++; 2029 } 2030 buf += n; 2031 addr += n; 2032 count -= n; 2033 } 2034 finished: 2035 read_unlock(&vmlist_lock); 2036 if (!copied) 2037 return 0; 2038 return buflen; 2039 } 2040 2041 /** 2042 * remap_vmalloc_range - map vmalloc pages to userspace 2043 * @vma: vma to cover (map full range of vma) 2044 * @addr: vmalloc memory 2045 * @pgoff: number of pages into addr before first page to map 2046 * 2047 * Returns: 0 for success, -Exxx on failure 2048 * 2049 * This function checks that addr is a valid vmalloc'ed area, and 2050 * that it is big enough to cover the vma. Will return failure if 2051 * that criteria isn't met. 2052 * 2053 * Similar to remap_pfn_range() (see mm/memory.c) 2054 */ 2055 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2056 unsigned long pgoff) 2057 { 2058 struct vm_struct *area; 2059 unsigned long uaddr = vma->vm_start; 2060 unsigned long usize = vma->vm_end - vma->vm_start; 2061 2062 if ((PAGE_SIZE-1) & (unsigned long)addr) 2063 return -EINVAL; 2064 2065 area = find_vm_area(addr); 2066 if (!area) 2067 return -EINVAL; 2068 2069 if (!(area->flags & VM_USERMAP)) 2070 return -EINVAL; 2071 2072 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2073 return -EINVAL; 2074 2075 addr += pgoff << PAGE_SHIFT; 2076 do { 2077 struct page *page = vmalloc_to_page(addr); 2078 int ret; 2079 2080 ret = vm_insert_page(vma, uaddr, page); 2081 if (ret) 2082 return ret; 2083 2084 uaddr += PAGE_SIZE; 2085 addr += PAGE_SIZE; 2086 usize -= PAGE_SIZE; 2087 } while (usize > 0); 2088 2089 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 2090 vma->vm_flags |= VM_RESERVED; 2091 2092 return 0; 2093 } 2094 EXPORT_SYMBOL(remap_vmalloc_range); 2095 2096 /* 2097 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2098 * have one. 2099 */ 2100 void __attribute__((weak)) vmalloc_sync_all(void) 2101 { 2102 } 2103 2104 2105 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2106 { 2107 /* apply_to_page_range() does all the hard work. */ 2108 return 0; 2109 } 2110 2111 /** 2112 * alloc_vm_area - allocate a range of kernel address space 2113 * @size: size of the area 2114 * 2115 * Returns: NULL on failure, vm_struct on success 2116 * 2117 * This function reserves a range of kernel address space, and 2118 * allocates pagetables to map that range. No actual mappings 2119 * are created. If the kernel address space is not shared 2120 * between processes, it syncs the pagetable across all 2121 * processes. 2122 */ 2123 struct vm_struct *alloc_vm_area(size_t size) 2124 { 2125 struct vm_struct *area; 2126 2127 area = get_vm_area_caller(size, VM_IOREMAP, 2128 __builtin_return_address(0)); 2129 if (area == NULL) 2130 return NULL; 2131 2132 /* 2133 * This ensures that page tables are constructed for this region 2134 * of kernel virtual address space and mapped into init_mm. 2135 */ 2136 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2137 area->size, f, NULL)) { 2138 free_vm_area(area); 2139 return NULL; 2140 } 2141 2142 return area; 2143 } 2144 EXPORT_SYMBOL_GPL(alloc_vm_area); 2145 2146 void free_vm_area(struct vm_struct *area) 2147 { 2148 struct vm_struct *ret; 2149 ret = remove_vm_area(area->addr); 2150 BUG_ON(ret != area); 2151 kfree(area); 2152 } 2153 EXPORT_SYMBOL_GPL(free_vm_area); 2154 2155 #ifdef CONFIG_SMP 2156 static struct vmap_area *node_to_va(struct rb_node *n) 2157 { 2158 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2159 } 2160 2161 /** 2162 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2163 * @end: target address 2164 * @pnext: out arg for the next vmap_area 2165 * @pprev: out arg for the previous vmap_area 2166 * 2167 * Returns: %true if either or both of next and prev are found, 2168 * %false if no vmap_area exists 2169 * 2170 * Find vmap_areas end addresses of which enclose @end. ie. if not 2171 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2172 */ 2173 static bool pvm_find_next_prev(unsigned long end, 2174 struct vmap_area **pnext, 2175 struct vmap_area **pprev) 2176 { 2177 struct rb_node *n = vmap_area_root.rb_node; 2178 struct vmap_area *va = NULL; 2179 2180 while (n) { 2181 va = rb_entry(n, struct vmap_area, rb_node); 2182 if (end < va->va_end) 2183 n = n->rb_left; 2184 else if (end > va->va_end) 2185 n = n->rb_right; 2186 else 2187 break; 2188 } 2189 2190 if (!va) 2191 return false; 2192 2193 if (va->va_end > end) { 2194 *pnext = va; 2195 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2196 } else { 2197 *pprev = va; 2198 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2199 } 2200 return true; 2201 } 2202 2203 /** 2204 * pvm_determine_end - find the highest aligned address between two vmap_areas 2205 * @pnext: in/out arg for the next vmap_area 2206 * @pprev: in/out arg for the previous vmap_area 2207 * @align: alignment 2208 * 2209 * Returns: determined end address 2210 * 2211 * Find the highest aligned address between *@pnext and *@pprev below 2212 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2213 * down address is between the end addresses of the two vmap_areas. 2214 * 2215 * Please note that the address returned by this function may fall 2216 * inside *@pnext vmap_area. The caller is responsible for checking 2217 * that. 2218 */ 2219 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2220 struct vmap_area **pprev, 2221 unsigned long align) 2222 { 2223 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2224 unsigned long addr; 2225 2226 if (*pnext) 2227 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2228 else 2229 addr = vmalloc_end; 2230 2231 while (*pprev && (*pprev)->va_end > addr) { 2232 *pnext = *pprev; 2233 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2234 } 2235 2236 return addr; 2237 } 2238 2239 /** 2240 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2241 * @offsets: array containing offset of each area 2242 * @sizes: array containing size of each area 2243 * @nr_vms: the number of areas to allocate 2244 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2245 * 2246 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2247 * vm_structs on success, %NULL on failure 2248 * 2249 * Percpu allocator wants to use congruent vm areas so that it can 2250 * maintain the offsets among percpu areas. This function allocates 2251 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2252 * be scattered pretty far, distance between two areas easily going up 2253 * to gigabytes. To avoid interacting with regular vmallocs, these 2254 * areas are allocated from top. 2255 * 2256 * Despite its complicated look, this allocator is rather simple. It 2257 * does everything top-down and scans areas from the end looking for 2258 * matching slot. While scanning, if any of the areas overlaps with 2259 * existing vmap_area, the base address is pulled down to fit the 2260 * area. Scanning is repeated till all the areas fit and then all 2261 * necessary data structres are inserted and the result is returned. 2262 */ 2263 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2264 const size_t *sizes, int nr_vms, 2265 size_t align) 2266 { 2267 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2268 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2269 struct vmap_area **vas, *prev, *next; 2270 struct vm_struct **vms; 2271 int area, area2, last_area, term_area; 2272 unsigned long base, start, end, last_end; 2273 bool purged = false; 2274 2275 /* verify parameters and allocate data structures */ 2276 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2277 for (last_area = 0, area = 0; area < nr_vms; area++) { 2278 start = offsets[area]; 2279 end = start + sizes[area]; 2280 2281 /* is everything aligned properly? */ 2282 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2283 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2284 2285 /* detect the area with the highest address */ 2286 if (start > offsets[last_area]) 2287 last_area = area; 2288 2289 for (area2 = 0; area2 < nr_vms; area2++) { 2290 unsigned long start2 = offsets[area2]; 2291 unsigned long end2 = start2 + sizes[area2]; 2292 2293 if (area2 == area) 2294 continue; 2295 2296 BUG_ON(start2 >= start && start2 < end); 2297 BUG_ON(end2 <= end && end2 > start); 2298 } 2299 } 2300 last_end = offsets[last_area] + sizes[last_area]; 2301 2302 if (vmalloc_end - vmalloc_start < last_end) { 2303 WARN_ON(true); 2304 return NULL; 2305 } 2306 2307 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL); 2308 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL); 2309 if (!vas || !vms) 2310 goto err_free; 2311 2312 for (area = 0; area < nr_vms; area++) { 2313 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2314 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2315 if (!vas[area] || !vms[area]) 2316 goto err_free; 2317 } 2318 retry: 2319 spin_lock(&vmap_area_lock); 2320 2321 /* start scanning - we scan from the top, begin with the last area */ 2322 area = term_area = last_area; 2323 start = offsets[area]; 2324 end = start + sizes[area]; 2325 2326 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2327 base = vmalloc_end - last_end; 2328 goto found; 2329 } 2330 base = pvm_determine_end(&next, &prev, align) - end; 2331 2332 while (true) { 2333 BUG_ON(next && next->va_end <= base + end); 2334 BUG_ON(prev && prev->va_end > base + end); 2335 2336 /* 2337 * base might have underflowed, add last_end before 2338 * comparing. 2339 */ 2340 if (base + last_end < vmalloc_start + last_end) { 2341 spin_unlock(&vmap_area_lock); 2342 if (!purged) { 2343 purge_vmap_area_lazy(); 2344 purged = true; 2345 goto retry; 2346 } 2347 goto err_free; 2348 } 2349 2350 /* 2351 * If next overlaps, move base downwards so that it's 2352 * right below next and then recheck. 2353 */ 2354 if (next && next->va_start < base + end) { 2355 base = pvm_determine_end(&next, &prev, align) - end; 2356 term_area = area; 2357 continue; 2358 } 2359 2360 /* 2361 * If prev overlaps, shift down next and prev and move 2362 * base so that it's right below new next and then 2363 * recheck. 2364 */ 2365 if (prev && prev->va_end > base + start) { 2366 next = prev; 2367 prev = node_to_va(rb_prev(&next->rb_node)); 2368 base = pvm_determine_end(&next, &prev, align) - end; 2369 term_area = area; 2370 continue; 2371 } 2372 2373 /* 2374 * This area fits, move on to the previous one. If 2375 * the previous one is the terminal one, we're done. 2376 */ 2377 area = (area + nr_vms - 1) % nr_vms; 2378 if (area == term_area) 2379 break; 2380 start = offsets[area]; 2381 end = start + sizes[area]; 2382 pvm_find_next_prev(base + end, &next, &prev); 2383 } 2384 found: 2385 /* we've found a fitting base, insert all va's */ 2386 for (area = 0; area < nr_vms; area++) { 2387 struct vmap_area *va = vas[area]; 2388 2389 va->va_start = base + offsets[area]; 2390 va->va_end = va->va_start + sizes[area]; 2391 __insert_vmap_area(va); 2392 } 2393 2394 vmap_area_pcpu_hole = base + offsets[last_area]; 2395 2396 spin_unlock(&vmap_area_lock); 2397 2398 /* insert all vm's */ 2399 for (area = 0; area < nr_vms; area++) 2400 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2401 pcpu_get_vm_areas); 2402 2403 kfree(vas); 2404 return vms; 2405 2406 err_free: 2407 for (area = 0; area < nr_vms; area++) { 2408 if (vas) 2409 kfree(vas[area]); 2410 if (vms) 2411 kfree(vms[area]); 2412 } 2413 kfree(vas); 2414 kfree(vms); 2415 return NULL; 2416 } 2417 2418 /** 2419 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2420 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2421 * @nr_vms: the number of allocated areas 2422 * 2423 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2424 */ 2425 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2426 { 2427 int i; 2428 2429 for (i = 0; i < nr_vms; i++) 2430 free_vm_area(vms[i]); 2431 kfree(vms); 2432 } 2433 #endif /* CONFIG_SMP */ 2434 2435 #ifdef CONFIG_PROC_FS 2436 static void *s_start(struct seq_file *m, loff_t *pos) 2437 __acquires(&vmlist_lock) 2438 { 2439 loff_t n = *pos; 2440 struct vm_struct *v; 2441 2442 read_lock(&vmlist_lock); 2443 v = vmlist; 2444 while (n > 0 && v) { 2445 n--; 2446 v = v->next; 2447 } 2448 if (!n) 2449 return v; 2450 2451 return NULL; 2452 2453 } 2454 2455 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2456 { 2457 struct vm_struct *v = p; 2458 2459 ++*pos; 2460 return v->next; 2461 } 2462 2463 static void s_stop(struct seq_file *m, void *p) 2464 __releases(&vmlist_lock) 2465 { 2466 read_unlock(&vmlist_lock); 2467 } 2468 2469 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2470 { 2471 if (NUMA_BUILD) { 2472 unsigned int nr, *counters = m->private; 2473 2474 if (!counters) 2475 return; 2476 2477 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2478 2479 for (nr = 0; nr < v->nr_pages; nr++) 2480 counters[page_to_nid(v->pages[nr])]++; 2481 2482 for_each_node_state(nr, N_HIGH_MEMORY) 2483 if (counters[nr]) 2484 seq_printf(m, " N%u=%u", nr, counters[nr]); 2485 } 2486 } 2487 2488 static int s_show(struct seq_file *m, void *p) 2489 { 2490 struct vm_struct *v = p; 2491 2492 seq_printf(m, "0x%p-0x%p %7ld", 2493 v->addr, v->addr + v->size, v->size); 2494 2495 if (v->caller) 2496 seq_printf(m, " %pS", v->caller); 2497 2498 if (v->nr_pages) 2499 seq_printf(m, " pages=%d", v->nr_pages); 2500 2501 if (v->phys_addr) 2502 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2503 2504 if (v->flags & VM_IOREMAP) 2505 seq_printf(m, " ioremap"); 2506 2507 if (v->flags & VM_ALLOC) 2508 seq_printf(m, " vmalloc"); 2509 2510 if (v->flags & VM_MAP) 2511 seq_printf(m, " vmap"); 2512 2513 if (v->flags & VM_USERMAP) 2514 seq_printf(m, " user"); 2515 2516 if (v->flags & VM_VPAGES) 2517 seq_printf(m, " vpages"); 2518 2519 show_numa_info(m, v); 2520 seq_putc(m, '\n'); 2521 return 0; 2522 } 2523 2524 static const struct seq_operations vmalloc_op = { 2525 .start = s_start, 2526 .next = s_next, 2527 .stop = s_stop, 2528 .show = s_show, 2529 }; 2530 2531 static int vmalloc_open(struct inode *inode, struct file *file) 2532 { 2533 unsigned int *ptr = NULL; 2534 int ret; 2535 2536 if (NUMA_BUILD) { 2537 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2538 if (ptr == NULL) 2539 return -ENOMEM; 2540 } 2541 ret = seq_open(file, &vmalloc_op); 2542 if (!ret) { 2543 struct seq_file *m = file->private_data; 2544 m->private = ptr; 2545 } else 2546 kfree(ptr); 2547 return ret; 2548 } 2549 2550 static const struct file_operations proc_vmalloc_operations = { 2551 .open = vmalloc_open, 2552 .read = seq_read, 2553 .llseek = seq_lseek, 2554 .release = seq_release_private, 2555 }; 2556 2557 static int __init proc_vmalloc_init(void) 2558 { 2559 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2560 return 0; 2561 } 2562 module_init(proc_vmalloc_init); 2563 #endif 2564 2565