1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/notifier.h> 25 #include <linux/rbtree.h> 26 #include <linux/radix-tree.h> 27 #include <linux/rcupdate.h> 28 #include <linux/pfn.h> 29 #include <linux/kmemleak.h> 30 #include <linux/atomic.h> 31 #include <linux/compiler.h> 32 #include <linux/llist.h> 33 #include <linux/bitops.h> 34 35 #include <linux/uaccess.h> 36 #include <asm/tlbflush.h> 37 #include <asm/shmparam.h> 38 39 #include "internal.h" 40 41 struct vfree_deferred { 42 struct llist_head list; 43 struct work_struct wq; 44 }; 45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 46 47 static void __vunmap(const void *, int); 48 49 static void free_work(struct work_struct *w) 50 { 51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 52 struct llist_node *t, *llnode; 53 54 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 55 __vunmap((void *)llnode, 1); 56 } 57 58 /*** Page table manipulation functions ***/ 59 60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 61 { 62 pte_t *pte; 63 64 pte = pte_offset_kernel(pmd, addr); 65 do { 66 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 67 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 68 } while (pte++, addr += PAGE_SIZE, addr != end); 69 } 70 71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 72 { 73 pmd_t *pmd; 74 unsigned long next; 75 76 pmd = pmd_offset(pud, addr); 77 do { 78 next = pmd_addr_end(addr, end); 79 if (pmd_clear_huge(pmd)) 80 continue; 81 if (pmd_none_or_clear_bad(pmd)) 82 continue; 83 vunmap_pte_range(pmd, addr, next); 84 } while (pmd++, addr = next, addr != end); 85 } 86 87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 88 { 89 pud_t *pud; 90 unsigned long next; 91 92 pud = pud_offset(p4d, addr); 93 do { 94 next = pud_addr_end(addr, end); 95 if (pud_clear_huge(pud)) 96 continue; 97 if (pud_none_or_clear_bad(pud)) 98 continue; 99 vunmap_pmd_range(pud, addr, next); 100 } while (pud++, addr = next, addr != end); 101 } 102 103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 104 { 105 p4d_t *p4d; 106 unsigned long next; 107 108 p4d = p4d_offset(pgd, addr); 109 do { 110 next = p4d_addr_end(addr, end); 111 if (p4d_clear_huge(p4d)) 112 continue; 113 if (p4d_none_or_clear_bad(p4d)) 114 continue; 115 vunmap_pud_range(p4d, addr, next); 116 } while (p4d++, addr = next, addr != end); 117 } 118 119 static void vunmap_page_range(unsigned long addr, unsigned long end) 120 { 121 pgd_t *pgd; 122 unsigned long next; 123 124 BUG_ON(addr >= end); 125 pgd = pgd_offset_k(addr); 126 do { 127 next = pgd_addr_end(addr, end); 128 if (pgd_none_or_clear_bad(pgd)) 129 continue; 130 vunmap_p4d_range(pgd, addr, next); 131 } while (pgd++, addr = next, addr != end); 132 } 133 134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 135 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 136 { 137 pte_t *pte; 138 139 /* 140 * nr is a running index into the array which helps higher level 141 * callers keep track of where we're up to. 142 */ 143 144 pte = pte_alloc_kernel(pmd, addr); 145 if (!pte) 146 return -ENOMEM; 147 do { 148 struct page *page = pages[*nr]; 149 150 if (WARN_ON(!pte_none(*pte))) 151 return -EBUSY; 152 if (WARN_ON(!page)) 153 return -ENOMEM; 154 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 155 (*nr)++; 156 } while (pte++, addr += PAGE_SIZE, addr != end); 157 return 0; 158 } 159 160 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 161 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc(&init_mm, pud, addr); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 172 return -ENOMEM; 173 } while (pmd++, addr = next, addr != end); 174 return 0; 175 } 176 177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 178 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 179 { 180 pud_t *pud; 181 unsigned long next; 182 183 pud = pud_alloc(&init_mm, p4d, addr); 184 if (!pud) 185 return -ENOMEM; 186 do { 187 next = pud_addr_end(addr, end); 188 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 189 return -ENOMEM; 190 } while (pud++, addr = next, addr != end); 191 return 0; 192 } 193 194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 195 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 196 { 197 p4d_t *p4d; 198 unsigned long next; 199 200 p4d = p4d_alloc(&init_mm, pgd, addr); 201 if (!p4d) 202 return -ENOMEM; 203 do { 204 next = p4d_addr_end(addr, end); 205 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 206 return -ENOMEM; 207 } while (p4d++, addr = next, addr != end); 208 return 0; 209 } 210 211 /* 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 213 * will have pfns corresponding to the "pages" array. 214 * 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 216 */ 217 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 218 pgprot_t prot, struct page **pages) 219 { 220 pgd_t *pgd; 221 unsigned long next; 222 unsigned long addr = start; 223 int err = 0; 224 int nr = 0; 225 226 BUG_ON(addr >= end); 227 pgd = pgd_offset_k(addr); 228 do { 229 next = pgd_addr_end(addr, end); 230 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 231 if (err) 232 return err; 233 } while (pgd++, addr = next, addr != end); 234 235 return nr; 236 } 237 238 static int vmap_page_range(unsigned long start, unsigned long end, 239 pgprot_t prot, struct page **pages) 240 { 241 int ret; 242 243 ret = vmap_page_range_noflush(start, end, prot, pages); 244 flush_cache_vmap(start, end); 245 return ret; 246 } 247 248 int is_vmalloc_or_module_addr(const void *x) 249 { 250 /* 251 * ARM, x86-64 and sparc64 put modules in a special place, 252 * and fall back on vmalloc() if that fails. Others 253 * just put it in the vmalloc space. 254 */ 255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 256 unsigned long addr = (unsigned long)x; 257 if (addr >= MODULES_VADDR && addr < MODULES_END) 258 return 1; 259 #endif 260 return is_vmalloc_addr(x); 261 } 262 263 /* 264 * Walk a vmap address to the struct page it maps. 265 */ 266 struct page *vmalloc_to_page(const void *vmalloc_addr) 267 { 268 unsigned long addr = (unsigned long) vmalloc_addr; 269 struct page *page = NULL; 270 pgd_t *pgd = pgd_offset_k(addr); 271 p4d_t *p4d; 272 pud_t *pud; 273 pmd_t *pmd; 274 pte_t *ptep, pte; 275 276 /* 277 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 278 * architectures that do not vmalloc module space 279 */ 280 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 281 282 if (pgd_none(*pgd)) 283 return NULL; 284 p4d = p4d_offset(pgd, addr); 285 if (p4d_none(*p4d)) 286 return NULL; 287 pud = pud_offset(p4d, addr); 288 289 /* 290 * Don't dereference bad PUD or PMD (below) entries. This will also 291 * identify huge mappings, which we may encounter on architectures 292 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 293 * identified as vmalloc addresses by is_vmalloc_addr(), but are 294 * not [unambiguously] associated with a struct page, so there is 295 * no correct value to return for them. 296 */ 297 WARN_ON_ONCE(pud_bad(*pud)); 298 if (pud_none(*pud) || pud_bad(*pud)) 299 return NULL; 300 pmd = pmd_offset(pud, addr); 301 WARN_ON_ONCE(pmd_bad(*pmd)); 302 if (pmd_none(*pmd) || pmd_bad(*pmd)) 303 return NULL; 304 305 ptep = pte_offset_map(pmd, addr); 306 pte = *ptep; 307 if (pte_present(pte)) 308 page = pte_page(pte); 309 pte_unmap(ptep); 310 return page; 311 } 312 EXPORT_SYMBOL(vmalloc_to_page); 313 314 /* 315 * Map a vmalloc()-space virtual address to the physical page frame number. 316 */ 317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 318 { 319 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 320 } 321 EXPORT_SYMBOL(vmalloc_to_pfn); 322 323 324 /*** Global kva allocator ***/ 325 326 #define VM_LAZY_FREE 0x02 327 #define VM_VM_AREA 0x04 328 329 static DEFINE_SPINLOCK(vmap_area_lock); 330 /* Export for kexec only */ 331 LIST_HEAD(vmap_area_list); 332 static LLIST_HEAD(vmap_purge_list); 333 static struct rb_root vmap_area_root = RB_ROOT; 334 335 /* The vmap cache globals are protected by vmap_area_lock */ 336 static struct rb_node *free_vmap_cache; 337 static unsigned long cached_hole_size; 338 static unsigned long cached_vstart; 339 static unsigned long cached_align; 340 341 static unsigned long vmap_area_pcpu_hole; 342 343 static struct vmap_area *__find_vmap_area(unsigned long addr) 344 { 345 struct rb_node *n = vmap_area_root.rb_node; 346 347 while (n) { 348 struct vmap_area *va; 349 350 va = rb_entry(n, struct vmap_area, rb_node); 351 if (addr < va->va_start) 352 n = n->rb_left; 353 else if (addr >= va->va_end) 354 n = n->rb_right; 355 else 356 return va; 357 } 358 359 return NULL; 360 } 361 362 static void __insert_vmap_area(struct vmap_area *va) 363 { 364 struct rb_node **p = &vmap_area_root.rb_node; 365 struct rb_node *parent = NULL; 366 struct rb_node *tmp; 367 368 while (*p) { 369 struct vmap_area *tmp_va; 370 371 parent = *p; 372 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 373 if (va->va_start < tmp_va->va_end) 374 p = &(*p)->rb_left; 375 else if (va->va_end > tmp_va->va_start) 376 p = &(*p)->rb_right; 377 else 378 BUG(); 379 } 380 381 rb_link_node(&va->rb_node, parent, p); 382 rb_insert_color(&va->rb_node, &vmap_area_root); 383 384 /* address-sort this list */ 385 tmp = rb_prev(&va->rb_node); 386 if (tmp) { 387 struct vmap_area *prev; 388 prev = rb_entry(tmp, struct vmap_area, rb_node); 389 list_add_rcu(&va->list, &prev->list); 390 } else 391 list_add_rcu(&va->list, &vmap_area_list); 392 } 393 394 static void purge_vmap_area_lazy(void); 395 396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 397 398 /* 399 * Allocate a region of KVA of the specified size and alignment, within the 400 * vstart and vend. 401 */ 402 static struct vmap_area *alloc_vmap_area(unsigned long size, 403 unsigned long align, 404 unsigned long vstart, unsigned long vend, 405 int node, gfp_t gfp_mask) 406 { 407 struct vmap_area *va; 408 struct rb_node *n; 409 unsigned long addr; 410 int purged = 0; 411 struct vmap_area *first; 412 413 BUG_ON(!size); 414 BUG_ON(offset_in_page(size)); 415 BUG_ON(!is_power_of_2(align)); 416 417 might_sleep(); 418 419 va = kmalloc_node(sizeof(struct vmap_area), 420 gfp_mask & GFP_RECLAIM_MASK, node); 421 if (unlikely(!va)) 422 return ERR_PTR(-ENOMEM); 423 424 /* 425 * Only scan the relevant parts containing pointers to other objects 426 * to avoid false negatives. 427 */ 428 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 429 430 retry: 431 spin_lock(&vmap_area_lock); 432 /* 433 * Invalidate cache if we have more permissive parameters. 434 * cached_hole_size notes the largest hole noticed _below_ 435 * the vmap_area cached in free_vmap_cache: if size fits 436 * into that hole, we want to scan from vstart to reuse 437 * the hole instead of allocating above free_vmap_cache. 438 * Note that __free_vmap_area may update free_vmap_cache 439 * without updating cached_hole_size or cached_align. 440 */ 441 if (!free_vmap_cache || 442 size < cached_hole_size || 443 vstart < cached_vstart || 444 align < cached_align) { 445 nocache: 446 cached_hole_size = 0; 447 free_vmap_cache = NULL; 448 } 449 /* record if we encounter less permissive parameters */ 450 cached_vstart = vstart; 451 cached_align = align; 452 453 /* find starting point for our search */ 454 if (free_vmap_cache) { 455 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 456 addr = ALIGN(first->va_end, align); 457 if (addr < vstart) 458 goto nocache; 459 if (addr + size < addr) 460 goto overflow; 461 462 } else { 463 addr = ALIGN(vstart, align); 464 if (addr + size < addr) 465 goto overflow; 466 467 n = vmap_area_root.rb_node; 468 first = NULL; 469 470 while (n) { 471 struct vmap_area *tmp; 472 tmp = rb_entry(n, struct vmap_area, rb_node); 473 if (tmp->va_end >= addr) { 474 first = tmp; 475 if (tmp->va_start <= addr) 476 break; 477 n = n->rb_left; 478 } else 479 n = n->rb_right; 480 } 481 482 if (!first) 483 goto found; 484 } 485 486 /* from the starting point, walk areas until a suitable hole is found */ 487 while (addr + size > first->va_start && addr + size <= vend) { 488 if (addr + cached_hole_size < first->va_start) 489 cached_hole_size = first->va_start - addr; 490 addr = ALIGN(first->va_end, align); 491 if (addr + size < addr) 492 goto overflow; 493 494 if (list_is_last(&first->list, &vmap_area_list)) 495 goto found; 496 497 first = list_next_entry(first, list); 498 } 499 500 found: 501 /* 502 * Check also calculated address against the vstart, 503 * because it can be 0 because of big align request. 504 */ 505 if (addr + size > vend || addr < vstart) 506 goto overflow; 507 508 va->va_start = addr; 509 va->va_end = addr + size; 510 va->flags = 0; 511 __insert_vmap_area(va); 512 free_vmap_cache = &va->rb_node; 513 spin_unlock(&vmap_area_lock); 514 515 BUG_ON(!IS_ALIGNED(va->va_start, align)); 516 BUG_ON(va->va_start < vstart); 517 BUG_ON(va->va_end > vend); 518 519 return va; 520 521 overflow: 522 spin_unlock(&vmap_area_lock); 523 if (!purged) { 524 purge_vmap_area_lazy(); 525 purged = 1; 526 goto retry; 527 } 528 529 if (gfpflags_allow_blocking(gfp_mask)) { 530 unsigned long freed = 0; 531 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 532 if (freed > 0) { 533 purged = 0; 534 goto retry; 535 } 536 } 537 538 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 539 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 540 size); 541 kfree(va); 542 return ERR_PTR(-EBUSY); 543 } 544 545 int register_vmap_purge_notifier(struct notifier_block *nb) 546 { 547 return blocking_notifier_chain_register(&vmap_notify_list, nb); 548 } 549 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 550 551 int unregister_vmap_purge_notifier(struct notifier_block *nb) 552 { 553 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 554 } 555 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 556 557 static void __free_vmap_area(struct vmap_area *va) 558 { 559 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 560 561 if (free_vmap_cache) { 562 if (va->va_end < cached_vstart) { 563 free_vmap_cache = NULL; 564 } else { 565 struct vmap_area *cache; 566 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 567 if (va->va_start <= cache->va_start) { 568 free_vmap_cache = rb_prev(&va->rb_node); 569 /* 570 * We don't try to update cached_hole_size or 571 * cached_align, but it won't go very wrong. 572 */ 573 } 574 } 575 } 576 rb_erase(&va->rb_node, &vmap_area_root); 577 RB_CLEAR_NODE(&va->rb_node); 578 list_del_rcu(&va->list); 579 580 /* 581 * Track the highest possible candidate for pcpu area 582 * allocation. Areas outside of vmalloc area can be returned 583 * here too, consider only end addresses which fall inside 584 * vmalloc area proper. 585 */ 586 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 587 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 588 589 kfree_rcu(va, rcu_head); 590 } 591 592 /* 593 * Free a region of KVA allocated by alloc_vmap_area 594 */ 595 static void free_vmap_area(struct vmap_area *va) 596 { 597 spin_lock(&vmap_area_lock); 598 __free_vmap_area(va); 599 spin_unlock(&vmap_area_lock); 600 } 601 602 /* 603 * Clear the pagetable entries of a given vmap_area 604 */ 605 static void unmap_vmap_area(struct vmap_area *va) 606 { 607 vunmap_page_range(va->va_start, va->va_end); 608 } 609 610 /* 611 * lazy_max_pages is the maximum amount of virtual address space we gather up 612 * before attempting to purge with a TLB flush. 613 * 614 * There is a tradeoff here: a larger number will cover more kernel page tables 615 * and take slightly longer to purge, but it will linearly reduce the number of 616 * global TLB flushes that must be performed. It would seem natural to scale 617 * this number up linearly with the number of CPUs (because vmapping activity 618 * could also scale linearly with the number of CPUs), however it is likely 619 * that in practice, workloads might be constrained in other ways that mean 620 * vmap activity will not scale linearly with CPUs. Also, I want to be 621 * conservative and not introduce a big latency on huge systems, so go with 622 * a less aggressive log scale. It will still be an improvement over the old 623 * code, and it will be simple to change the scale factor if we find that it 624 * becomes a problem on bigger systems. 625 */ 626 static unsigned long lazy_max_pages(void) 627 { 628 unsigned int log; 629 630 log = fls(num_online_cpus()); 631 632 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 633 } 634 635 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 636 637 /* 638 * Serialize vmap purging. There is no actual criticial section protected 639 * by this look, but we want to avoid concurrent calls for performance 640 * reasons and to make the pcpu_get_vm_areas more deterministic. 641 */ 642 static DEFINE_MUTEX(vmap_purge_lock); 643 644 /* for per-CPU blocks */ 645 static void purge_fragmented_blocks_allcpus(void); 646 647 /* 648 * called before a call to iounmap() if the caller wants vm_area_struct's 649 * immediately freed. 650 */ 651 void set_iounmap_nonlazy(void) 652 { 653 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 654 } 655 656 /* 657 * Purges all lazily-freed vmap areas. 658 */ 659 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 660 { 661 struct llist_node *valist; 662 struct vmap_area *va; 663 struct vmap_area *n_va; 664 bool do_free = false; 665 666 lockdep_assert_held(&vmap_purge_lock); 667 668 valist = llist_del_all(&vmap_purge_list); 669 llist_for_each_entry(va, valist, purge_list) { 670 if (va->va_start < start) 671 start = va->va_start; 672 if (va->va_end > end) 673 end = va->va_end; 674 do_free = true; 675 } 676 677 if (!do_free) 678 return false; 679 680 flush_tlb_kernel_range(start, end); 681 682 spin_lock(&vmap_area_lock); 683 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 684 int nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 685 686 __free_vmap_area(va); 687 atomic_sub(nr, &vmap_lazy_nr); 688 cond_resched_lock(&vmap_area_lock); 689 } 690 spin_unlock(&vmap_area_lock); 691 return true; 692 } 693 694 /* 695 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 696 * is already purging. 697 */ 698 static void try_purge_vmap_area_lazy(void) 699 { 700 if (mutex_trylock(&vmap_purge_lock)) { 701 __purge_vmap_area_lazy(ULONG_MAX, 0); 702 mutex_unlock(&vmap_purge_lock); 703 } 704 } 705 706 /* 707 * Kick off a purge of the outstanding lazy areas. 708 */ 709 static void purge_vmap_area_lazy(void) 710 { 711 mutex_lock(&vmap_purge_lock); 712 purge_fragmented_blocks_allcpus(); 713 __purge_vmap_area_lazy(ULONG_MAX, 0); 714 mutex_unlock(&vmap_purge_lock); 715 } 716 717 /* 718 * Free a vmap area, caller ensuring that the area has been unmapped 719 * and flush_cache_vunmap had been called for the correct range 720 * previously. 721 */ 722 static void free_vmap_area_noflush(struct vmap_area *va) 723 { 724 int nr_lazy; 725 726 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 727 &vmap_lazy_nr); 728 729 /* After this point, we may free va at any time */ 730 llist_add(&va->purge_list, &vmap_purge_list); 731 732 if (unlikely(nr_lazy > lazy_max_pages())) 733 try_purge_vmap_area_lazy(); 734 } 735 736 /* 737 * Free and unmap a vmap area 738 */ 739 static void free_unmap_vmap_area(struct vmap_area *va) 740 { 741 flush_cache_vunmap(va->va_start, va->va_end); 742 unmap_vmap_area(va); 743 if (debug_pagealloc_enabled()) 744 flush_tlb_kernel_range(va->va_start, va->va_end); 745 746 free_vmap_area_noflush(va); 747 } 748 749 static struct vmap_area *find_vmap_area(unsigned long addr) 750 { 751 struct vmap_area *va; 752 753 spin_lock(&vmap_area_lock); 754 va = __find_vmap_area(addr); 755 spin_unlock(&vmap_area_lock); 756 757 return va; 758 } 759 760 /*** Per cpu kva allocator ***/ 761 762 /* 763 * vmap space is limited especially on 32 bit architectures. Ensure there is 764 * room for at least 16 percpu vmap blocks per CPU. 765 */ 766 /* 767 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 768 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 769 * instead (we just need a rough idea) 770 */ 771 #if BITS_PER_LONG == 32 772 #define VMALLOC_SPACE (128UL*1024*1024) 773 #else 774 #define VMALLOC_SPACE (128UL*1024*1024*1024) 775 #endif 776 777 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 778 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 779 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 780 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 781 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 782 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 783 #define VMAP_BBMAP_BITS \ 784 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 785 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 786 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 787 788 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 789 790 static bool vmap_initialized __read_mostly = false; 791 792 struct vmap_block_queue { 793 spinlock_t lock; 794 struct list_head free; 795 }; 796 797 struct vmap_block { 798 spinlock_t lock; 799 struct vmap_area *va; 800 unsigned long free, dirty; 801 unsigned long dirty_min, dirty_max; /*< dirty range */ 802 struct list_head free_list; 803 struct rcu_head rcu_head; 804 struct list_head purge; 805 }; 806 807 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 808 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 809 810 /* 811 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 812 * in the free path. Could get rid of this if we change the API to return a 813 * "cookie" from alloc, to be passed to free. But no big deal yet. 814 */ 815 static DEFINE_SPINLOCK(vmap_block_tree_lock); 816 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 817 818 /* 819 * We should probably have a fallback mechanism to allocate virtual memory 820 * out of partially filled vmap blocks. However vmap block sizing should be 821 * fairly reasonable according to the vmalloc size, so it shouldn't be a 822 * big problem. 823 */ 824 825 static unsigned long addr_to_vb_idx(unsigned long addr) 826 { 827 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 828 addr /= VMAP_BLOCK_SIZE; 829 return addr; 830 } 831 832 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 833 { 834 unsigned long addr; 835 836 addr = va_start + (pages_off << PAGE_SHIFT); 837 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 838 return (void *)addr; 839 } 840 841 /** 842 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 843 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 844 * @order: how many 2^order pages should be occupied in newly allocated block 845 * @gfp_mask: flags for the page level allocator 846 * 847 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 848 */ 849 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 850 { 851 struct vmap_block_queue *vbq; 852 struct vmap_block *vb; 853 struct vmap_area *va; 854 unsigned long vb_idx; 855 int node, err; 856 void *vaddr; 857 858 node = numa_node_id(); 859 860 vb = kmalloc_node(sizeof(struct vmap_block), 861 gfp_mask & GFP_RECLAIM_MASK, node); 862 if (unlikely(!vb)) 863 return ERR_PTR(-ENOMEM); 864 865 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 866 VMALLOC_START, VMALLOC_END, 867 node, gfp_mask); 868 if (IS_ERR(va)) { 869 kfree(vb); 870 return ERR_CAST(va); 871 } 872 873 err = radix_tree_preload(gfp_mask); 874 if (unlikely(err)) { 875 kfree(vb); 876 free_vmap_area(va); 877 return ERR_PTR(err); 878 } 879 880 vaddr = vmap_block_vaddr(va->va_start, 0); 881 spin_lock_init(&vb->lock); 882 vb->va = va; 883 /* At least something should be left free */ 884 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 885 vb->free = VMAP_BBMAP_BITS - (1UL << order); 886 vb->dirty = 0; 887 vb->dirty_min = VMAP_BBMAP_BITS; 888 vb->dirty_max = 0; 889 INIT_LIST_HEAD(&vb->free_list); 890 891 vb_idx = addr_to_vb_idx(va->va_start); 892 spin_lock(&vmap_block_tree_lock); 893 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 894 spin_unlock(&vmap_block_tree_lock); 895 BUG_ON(err); 896 radix_tree_preload_end(); 897 898 vbq = &get_cpu_var(vmap_block_queue); 899 spin_lock(&vbq->lock); 900 list_add_tail_rcu(&vb->free_list, &vbq->free); 901 spin_unlock(&vbq->lock); 902 put_cpu_var(vmap_block_queue); 903 904 return vaddr; 905 } 906 907 static void free_vmap_block(struct vmap_block *vb) 908 { 909 struct vmap_block *tmp; 910 unsigned long vb_idx; 911 912 vb_idx = addr_to_vb_idx(vb->va->va_start); 913 spin_lock(&vmap_block_tree_lock); 914 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 915 spin_unlock(&vmap_block_tree_lock); 916 BUG_ON(tmp != vb); 917 918 free_vmap_area_noflush(vb->va); 919 kfree_rcu(vb, rcu_head); 920 } 921 922 static void purge_fragmented_blocks(int cpu) 923 { 924 LIST_HEAD(purge); 925 struct vmap_block *vb; 926 struct vmap_block *n_vb; 927 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 928 929 rcu_read_lock(); 930 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 931 932 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 933 continue; 934 935 spin_lock(&vb->lock); 936 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 937 vb->free = 0; /* prevent further allocs after releasing lock */ 938 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 939 vb->dirty_min = 0; 940 vb->dirty_max = VMAP_BBMAP_BITS; 941 spin_lock(&vbq->lock); 942 list_del_rcu(&vb->free_list); 943 spin_unlock(&vbq->lock); 944 spin_unlock(&vb->lock); 945 list_add_tail(&vb->purge, &purge); 946 } else 947 spin_unlock(&vb->lock); 948 } 949 rcu_read_unlock(); 950 951 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 952 list_del(&vb->purge); 953 free_vmap_block(vb); 954 } 955 } 956 957 static void purge_fragmented_blocks_allcpus(void) 958 { 959 int cpu; 960 961 for_each_possible_cpu(cpu) 962 purge_fragmented_blocks(cpu); 963 } 964 965 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 966 { 967 struct vmap_block_queue *vbq; 968 struct vmap_block *vb; 969 void *vaddr = NULL; 970 unsigned int order; 971 972 BUG_ON(offset_in_page(size)); 973 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 974 if (WARN_ON(size == 0)) { 975 /* 976 * Allocating 0 bytes isn't what caller wants since 977 * get_order(0) returns funny result. Just warn and terminate 978 * early. 979 */ 980 return NULL; 981 } 982 order = get_order(size); 983 984 rcu_read_lock(); 985 vbq = &get_cpu_var(vmap_block_queue); 986 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 987 unsigned long pages_off; 988 989 spin_lock(&vb->lock); 990 if (vb->free < (1UL << order)) { 991 spin_unlock(&vb->lock); 992 continue; 993 } 994 995 pages_off = VMAP_BBMAP_BITS - vb->free; 996 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 997 vb->free -= 1UL << order; 998 if (vb->free == 0) { 999 spin_lock(&vbq->lock); 1000 list_del_rcu(&vb->free_list); 1001 spin_unlock(&vbq->lock); 1002 } 1003 1004 spin_unlock(&vb->lock); 1005 break; 1006 } 1007 1008 put_cpu_var(vmap_block_queue); 1009 rcu_read_unlock(); 1010 1011 /* Allocate new block if nothing was found */ 1012 if (!vaddr) 1013 vaddr = new_vmap_block(order, gfp_mask); 1014 1015 return vaddr; 1016 } 1017 1018 static void vb_free(const void *addr, unsigned long size) 1019 { 1020 unsigned long offset; 1021 unsigned long vb_idx; 1022 unsigned int order; 1023 struct vmap_block *vb; 1024 1025 BUG_ON(offset_in_page(size)); 1026 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1027 1028 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1029 1030 order = get_order(size); 1031 1032 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1033 offset >>= PAGE_SHIFT; 1034 1035 vb_idx = addr_to_vb_idx((unsigned long)addr); 1036 rcu_read_lock(); 1037 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1038 rcu_read_unlock(); 1039 BUG_ON(!vb); 1040 1041 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1042 1043 if (debug_pagealloc_enabled()) 1044 flush_tlb_kernel_range((unsigned long)addr, 1045 (unsigned long)addr + size); 1046 1047 spin_lock(&vb->lock); 1048 1049 /* Expand dirty range */ 1050 vb->dirty_min = min(vb->dirty_min, offset); 1051 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1052 1053 vb->dirty += 1UL << order; 1054 if (vb->dirty == VMAP_BBMAP_BITS) { 1055 BUG_ON(vb->free); 1056 spin_unlock(&vb->lock); 1057 free_vmap_block(vb); 1058 } else 1059 spin_unlock(&vb->lock); 1060 } 1061 1062 /** 1063 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1064 * 1065 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1066 * to amortize TLB flushing overheads. What this means is that any page you 1067 * have now, may, in a former life, have been mapped into kernel virtual 1068 * address by the vmap layer and so there might be some CPUs with TLB entries 1069 * still referencing that page (additional to the regular 1:1 kernel mapping). 1070 * 1071 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1072 * be sure that none of the pages we have control over will have any aliases 1073 * from the vmap layer. 1074 */ 1075 void vm_unmap_aliases(void) 1076 { 1077 unsigned long start = ULONG_MAX, end = 0; 1078 int cpu; 1079 int flush = 0; 1080 1081 if (unlikely(!vmap_initialized)) 1082 return; 1083 1084 might_sleep(); 1085 1086 for_each_possible_cpu(cpu) { 1087 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1088 struct vmap_block *vb; 1089 1090 rcu_read_lock(); 1091 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1092 spin_lock(&vb->lock); 1093 if (vb->dirty) { 1094 unsigned long va_start = vb->va->va_start; 1095 unsigned long s, e; 1096 1097 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1098 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1099 1100 start = min(s, start); 1101 end = max(e, end); 1102 1103 flush = 1; 1104 } 1105 spin_unlock(&vb->lock); 1106 } 1107 rcu_read_unlock(); 1108 } 1109 1110 mutex_lock(&vmap_purge_lock); 1111 purge_fragmented_blocks_allcpus(); 1112 if (!__purge_vmap_area_lazy(start, end) && flush) 1113 flush_tlb_kernel_range(start, end); 1114 mutex_unlock(&vmap_purge_lock); 1115 } 1116 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1117 1118 /** 1119 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1120 * @mem: the pointer returned by vm_map_ram 1121 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1122 */ 1123 void vm_unmap_ram(const void *mem, unsigned int count) 1124 { 1125 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1126 unsigned long addr = (unsigned long)mem; 1127 struct vmap_area *va; 1128 1129 might_sleep(); 1130 BUG_ON(!addr); 1131 BUG_ON(addr < VMALLOC_START); 1132 BUG_ON(addr > VMALLOC_END); 1133 BUG_ON(!PAGE_ALIGNED(addr)); 1134 1135 if (likely(count <= VMAP_MAX_ALLOC)) { 1136 debug_check_no_locks_freed(mem, size); 1137 vb_free(mem, size); 1138 return; 1139 } 1140 1141 va = find_vmap_area(addr); 1142 BUG_ON(!va); 1143 debug_check_no_locks_freed((void *)va->va_start, 1144 (va->va_end - va->va_start)); 1145 free_unmap_vmap_area(va); 1146 } 1147 EXPORT_SYMBOL(vm_unmap_ram); 1148 1149 /** 1150 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1151 * @pages: an array of pointers to the pages to be mapped 1152 * @count: number of pages 1153 * @node: prefer to allocate data structures on this node 1154 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1155 * 1156 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1157 * faster than vmap so it's good. But if you mix long-life and short-life 1158 * objects with vm_map_ram(), it could consume lots of address space through 1159 * fragmentation (especially on a 32bit machine). You could see failures in 1160 * the end. Please use this function for short-lived objects. 1161 * 1162 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1163 */ 1164 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1165 { 1166 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1167 unsigned long addr; 1168 void *mem; 1169 1170 if (likely(count <= VMAP_MAX_ALLOC)) { 1171 mem = vb_alloc(size, GFP_KERNEL); 1172 if (IS_ERR(mem)) 1173 return NULL; 1174 addr = (unsigned long)mem; 1175 } else { 1176 struct vmap_area *va; 1177 va = alloc_vmap_area(size, PAGE_SIZE, 1178 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1179 if (IS_ERR(va)) 1180 return NULL; 1181 1182 addr = va->va_start; 1183 mem = (void *)addr; 1184 } 1185 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1186 vm_unmap_ram(mem, count); 1187 return NULL; 1188 } 1189 return mem; 1190 } 1191 EXPORT_SYMBOL(vm_map_ram); 1192 1193 static struct vm_struct *vmlist __initdata; 1194 1195 /** 1196 * vm_area_add_early - add vmap area early during boot 1197 * @vm: vm_struct to add 1198 * 1199 * This function is used to add fixed kernel vm area to vmlist before 1200 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1201 * should contain proper values and the other fields should be zero. 1202 * 1203 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1204 */ 1205 void __init vm_area_add_early(struct vm_struct *vm) 1206 { 1207 struct vm_struct *tmp, **p; 1208 1209 BUG_ON(vmap_initialized); 1210 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1211 if (tmp->addr >= vm->addr) { 1212 BUG_ON(tmp->addr < vm->addr + vm->size); 1213 break; 1214 } else 1215 BUG_ON(tmp->addr + tmp->size > vm->addr); 1216 } 1217 vm->next = *p; 1218 *p = vm; 1219 } 1220 1221 /** 1222 * vm_area_register_early - register vmap area early during boot 1223 * @vm: vm_struct to register 1224 * @align: requested alignment 1225 * 1226 * This function is used to register kernel vm area before 1227 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1228 * proper values on entry and other fields should be zero. On return, 1229 * vm->addr contains the allocated address. 1230 * 1231 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1232 */ 1233 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1234 { 1235 static size_t vm_init_off __initdata; 1236 unsigned long addr; 1237 1238 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1239 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1240 1241 vm->addr = (void *)addr; 1242 1243 vm_area_add_early(vm); 1244 } 1245 1246 void __init vmalloc_init(void) 1247 { 1248 struct vmap_area *va; 1249 struct vm_struct *tmp; 1250 int i; 1251 1252 for_each_possible_cpu(i) { 1253 struct vmap_block_queue *vbq; 1254 struct vfree_deferred *p; 1255 1256 vbq = &per_cpu(vmap_block_queue, i); 1257 spin_lock_init(&vbq->lock); 1258 INIT_LIST_HEAD(&vbq->free); 1259 p = &per_cpu(vfree_deferred, i); 1260 init_llist_head(&p->list); 1261 INIT_WORK(&p->wq, free_work); 1262 } 1263 1264 /* Import existing vmlist entries. */ 1265 for (tmp = vmlist; tmp; tmp = tmp->next) { 1266 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1267 va->flags = VM_VM_AREA; 1268 va->va_start = (unsigned long)tmp->addr; 1269 va->va_end = va->va_start + tmp->size; 1270 va->vm = tmp; 1271 __insert_vmap_area(va); 1272 } 1273 1274 vmap_area_pcpu_hole = VMALLOC_END; 1275 1276 vmap_initialized = true; 1277 } 1278 1279 /** 1280 * map_kernel_range_noflush - map kernel VM area with the specified pages 1281 * @addr: start of the VM area to map 1282 * @size: size of the VM area to map 1283 * @prot: page protection flags to use 1284 * @pages: pages to map 1285 * 1286 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1287 * specify should have been allocated using get_vm_area() and its 1288 * friends. 1289 * 1290 * NOTE: 1291 * This function does NOT do any cache flushing. The caller is 1292 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1293 * before calling this function. 1294 * 1295 * RETURNS: 1296 * The number of pages mapped on success, -errno on failure. 1297 */ 1298 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1299 pgprot_t prot, struct page **pages) 1300 { 1301 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1302 } 1303 1304 /** 1305 * unmap_kernel_range_noflush - unmap kernel VM area 1306 * @addr: start of the VM area to unmap 1307 * @size: size of the VM area to unmap 1308 * 1309 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1310 * specify should have been allocated using get_vm_area() and its 1311 * friends. 1312 * 1313 * NOTE: 1314 * This function does NOT do any cache flushing. The caller is 1315 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1316 * before calling this function and flush_tlb_kernel_range() after. 1317 */ 1318 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1319 { 1320 vunmap_page_range(addr, addr + size); 1321 } 1322 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1323 1324 /** 1325 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1326 * @addr: start of the VM area to unmap 1327 * @size: size of the VM area to unmap 1328 * 1329 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1330 * the unmapping and tlb after. 1331 */ 1332 void unmap_kernel_range(unsigned long addr, unsigned long size) 1333 { 1334 unsigned long end = addr + size; 1335 1336 flush_cache_vunmap(addr, end); 1337 vunmap_page_range(addr, end); 1338 flush_tlb_kernel_range(addr, end); 1339 } 1340 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1341 1342 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1343 { 1344 unsigned long addr = (unsigned long)area->addr; 1345 unsigned long end = addr + get_vm_area_size(area); 1346 int err; 1347 1348 err = vmap_page_range(addr, end, prot, pages); 1349 1350 return err > 0 ? 0 : err; 1351 } 1352 EXPORT_SYMBOL_GPL(map_vm_area); 1353 1354 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1355 unsigned long flags, const void *caller) 1356 { 1357 spin_lock(&vmap_area_lock); 1358 vm->flags = flags; 1359 vm->addr = (void *)va->va_start; 1360 vm->size = va->va_end - va->va_start; 1361 vm->caller = caller; 1362 va->vm = vm; 1363 va->flags |= VM_VM_AREA; 1364 spin_unlock(&vmap_area_lock); 1365 } 1366 1367 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1368 { 1369 /* 1370 * Before removing VM_UNINITIALIZED, 1371 * we should make sure that vm has proper values. 1372 * Pair with smp_rmb() in show_numa_info(). 1373 */ 1374 smp_wmb(); 1375 vm->flags &= ~VM_UNINITIALIZED; 1376 } 1377 1378 static struct vm_struct *__get_vm_area_node(unsigned long size, 1379 unsigned long align, unsigned long flags, unsigned long start, 1380 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1381 { 1382 struct vmap_area *va; 1383 struct vm_struct *area; 1384 1385 BUG_ON(in_interrupt()); 1386 size = PAGE_ALIGN(size); 1387 if (unlikely(!size)) 1388 return NULL; 1389 1390 if (flags & VM_IOREMAP) 1391 align = 1ul << clamp_t(int, get_count_order_long(size), 1392 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1393 1394 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1395 if (unlikely(!area)) 1396 return NULL; 1397 1398 if (!(flags & VM_NO_GUARD)) 1399 size += PAGE_SIZE; 1400 1401 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1402 if (IS_ERR(va)) { 1403 kfree(area); 1404 return NULL; 1405 } 1406 1407 setup_vmalloc_vm(area, va, flags, caller); 1408 1409 return area; 1410 } 1411 1412 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1413 unsigned long start, unsigned long end) 1414 { 1415 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1416 GFP_KERNEL, __builtin_return_address(0)); 1417 } 1418 EXPORT_SYMBOL_GPL(__get_vm_area); 1419 1420 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1421 unsigned long start, unsigned long end, 1422 const void *caller) 1423 { 1424 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1425 GFP_KERNEL, caller); 1426 } 1427 1428 /** 1429 * get_vm_area - reserve a contiguous kernel virtual area 1430 * @size: size of the area 1431 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1432 * 1433 * Search an area of @size in the kernel virtual mapping area, 1434 * and reserved it for out purposes. Returns the area descriptor 1435 * on success or %NULL on failure. 1436 * 1437 * Return: the area descriptor on success or %NULL on failure. 1438 */ 1439 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1440 { 1441 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1442 NUMA_NO_NODE, GFP_KERNEL, 1443 __builtin_return_address(0)); 1444 } 1445 1446 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1447 const void *caller) 1448 { 1449 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1450 NUMA_NO_NODE, GFP_KERNEL, caller); 1451 } 1452 1453 /** 1454 * find_vm_area - find a continuous kernel virtual area 1455 * @addr: base address 1456 * 1457 * Search for the kernel VM area starting at @addr, and return it. 1458 * It is up to the caller to do all required locking to keep the returned 1459 * pointer valid. 1460 * 1461 * Return: pointer to the found area or %NULL on faulure 1462 */ 1463 struct vm_struct *find_vm_area(const void *addr) 1464 { 1465 struct vmap_area *va; 1466 1467 va = find_vmap_area((unsigned long)addr); 1468 if (va && va->flags & VM_VM_AREA) 1469 return va->vm; 1470 1471 return NULL; 1472 } 1473 1474 /** 1475 * remove_vm_area - find and remove a continuous kernel virtual area 1476 * @addr: base address 1477 * 1478 * Search for the kernel VM area starting at @addr, and remove it. 1479 * This function returns the found VM area, but using it is NOT safe 1480 * on SMP machines, except for its size or flags. 1481 * 1482 * Return: pointer to the found area or %NULL on faulure 1483 */ 1484 struct vm_struct *remove_vm_area(const void *addr) 1485 { 1486 struct vmap_area *va; 1487 1488 might_sleep(); 1489 1490 va = find_vmap_area((unsigned long)addr); 1491 if (va && va->flags & VM_VM_AREA) { 1492 struct vm_struct *vm = va->vm; 1493 1494 spin_lock(&vmap_area_lock); 1495 va->vm = NULL; 1496 va->flags &= ~VM_VM_AREA; 1497 va->flags |= VM_LAZY_FREE; 1498 spin_unlock(&vmap_area_lock); 1499 1500 kasan_free_shadow(vm); 1501 free_unmap_vmap_area(va); 1502 1503 return vm; 1504 } 1505 return NULL; 1506 } 1507 1508 static void __vunmap(const void *addr, int deallocate_pages) 1509 { 1510 struct vm_struct *area; 1511 1512 if (!addr) 1513 return; 1514 1515 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1516 addr)) 1517 return; 1518 1519 area = find_vm_area(addr); 1520 if (unlikely(!area)) { 1521 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1522 addr); 1523 return; 1524 } 1525 1526 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 1527 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 1528 1529 remove_vm_area(addr); 1530 if (deallocate_pages) { 1531 int i; 1532 1533 for (i = 0; i < area->nr_pages; i++) { 1534 struct page *page = area->pages[i]; 1535 1536 BUG_ON(!page); 1537 __free_pages(page, 0); 1538 } 1539 1540 kvfree(area->pages); 1541 } 1542 1543 kfree(area); 1544 return; 1545 } 1546 1547 static inline void __vfree_deferred(const void *addr) 1548 { 1549 /* 1550 * Use raw_cpu_ptr() because this can be called from preemptible 1551 * context. Preemption is absolutely fine here, because the llist_add() 1552 * implementation is lockless, so it works even if we are adding to 1553 * nother cpu's list. schedule_work() should be fine with this too. 1554 */ 1555 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1556 1557 if (llist_add((struct llist_node *)addr, &p->list)) 1558 schedule_work(&p->wq); 1559 } 1560 1561 /** 1562 * vfree_atomic - release memory allocated by vmalloc() 1563 * @addr: memory base address 1564 * 1565 * This one is just like vfree() but can be called in any atomic context 1566 * except NMIs. 1567 */ 1568 void vfree_atomic(const void *addr) 1569 { 1570 BUG_ON(in_nmi()); 1571 1572 kmemleak_free(addr); 1573 1574 if (!addr) 1575 return; 1576 __vfree_deferred(addr); 1577 } 1578 1579 static void __vfree(const void *addr) 1580 { 1581 if (unlikely(in_interrupt())) 1582 __vfree_deferred(addr); 1583 else 1584 __vunmap(addr, 1); 1585 } 1586 1587 /** 1588 * vfree - release memory allocated by vmalloc() 1589 * @addr: memory base address 1590 * 1591 * Free the virtually continuous memory area starting at @addr, as 1592 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1593 * NULL, no operation is performed. 1594 * 1595 * Must not be called in NMI context (strictly speaking, only if we don't 1596 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1597 * conventions for vfree() arch-depenedent would be a really bad idea) 1598 * 1599 * May sleep if called *not* from interrupt context. 1600 * 1601 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 1602 */ 1603 void vfree(const void *addr) 1604 { 1605 BUG_ON(in_nmi()); 1606 1607 kmemleak_free(addr); 1608 1609 might_sleep_if(!in_interrupt()); 1610 1611 if (!addr) 1612 return; 1613 1614 __vfree(addr); 1615 } 1616 EXPORT_SYMBOL(vfree); 1617 1618 /** 1619 * vunmap - release virtual mapping obtained by vmap() 1620 * @addr: memory base address 1621 * 1622 * Free the virtually contiguous memory area starting at @addr, 1623 * which was created from the page array passed to vmap(). 1624 * 1625 * Must not be called in interrupt context. 1626 */ 1627 void vunmap(const void *addr) 1628 { 1629 BUG_ON(in_interrupt()); 1630 might_sleep(); 1631 if (addr) 1632 __vunmap(addr, 0); 1633 } 1634 EXPORT_SYMBOL(vunmap); 1635 1636 /** 1637 * vmap - map an array of pages into virtually contiguous space 1638 * @pages: array of page pointers 1639 * @count: number of pages to map 1640 * @flags: vm_area->flags 1641 * @prot: page protection for the mapping 1642 * 1643 * Maps @count pages from @pages into contiguous kernel virtual 1644 * space. 1645 * 1646 * Return: the address of the area or %NULL on failure 1647 */ 1648 void *vmap(struct page **pages, unsigned int count, 1649 unsigned long flags, pgprot_t prot) 1650 { 1651 struct vm_struct *area; 1652 unsigned long size; /* In bytes */ 1653 1654 might_sleep(); 1655 1656 if (count > totalram_pages()) 1657 return NULL; 1658 1659 size = (unsigned long)count << PAGE_SHIFT; 1660 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1661 if (!area) 1662 return NULL; 1663 1664 if (map_vm_area(area, prot, pages)) { 1665 vunmap(area->addr); 1666 return NULL; 1667 } 1668 1669 return area->addr; 1670 } 1671 EXPORT_SYMBOL(vmap); 1672 1673 static void *__vmalloc_node(unsigned long size, unsigned long align, 1674 gfp_t gfp_mask, pgprot_t prot, 1675 int node, const void *caller); 1676 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1677 pgprot_t prot, int node) 1678 { 1679 struct page **pages; 1680 unsigned int nr_pages, array_size, i; 1681 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1682 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1683 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 1684 0 : 1685 __GFP_HIGHMEM; 1686 1687 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1688 array_size = (nr_pages * sizeof(struct page *)); 1689 1690 area->nr_pages = nr_pages; 1691 /* Please note that the recursion is strictly bounded. */ 1692 if (array_size > PAGE_SIZE) { 1693 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 1694 PAGE_KERNEL, node, area->caller); 1695 } else { 1696 pages = kmalloc_node(array_size, nested_gfp, node); 1697 } 1698 area->pages = pages; 1699 if (!area->pages) { 1700 remove_vm_area(area->addr); 1701 kfree(area); 1702 return NULL; 1703 } 1704 1705 for (i = 0; i < area->nr_pages; i++) { 1706 struct page *page; 1707 1708 if (node == NUMA_NO_NODE) 1709 page = alloc_page(alloc_mask|highmem_mask); 1710 else 1711 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 1712 1713 if (unlikely(!page)) { 1714 /* Successfully allocated i pages, free them in __vunmap() */ 1715 area->nr_pages = i; 1716 goto fail; 1717 } 1718 area->pages[i] = page; 1719 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 1720 cond_resched(); 1721 } 1722 1723 if (map_vm_area(area, prot, pages)) 1724 goto fail; 1725 return area->addr; 1726 1727 fail: 1728 warn_alloc(gfp_mask, NULL, 1729 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1730 (area->nr_pages*PAGE_SIZE), area->size); 1731 __vfree(area->addr); 1732 return NULL; 1733 } 1734 1735 /** 1736 * __vmalloc_node_range - allocate virtually contiguous memory 1737 * @size: allocation size 1738 * @align: desired alignment 1739 * @start: vm area range start 1740 * @end: vm area range end 1741 * @gfp_mask: flags for the page level allocator 1742 * @prot: protection mask for the allocated pages 1743 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1744 * @node: node to use for allocation or NUMA_NO_NODE 1745 * @caller: caller's return address 1746 * 1747 * Allocate enough pages to cover @size from the page level 1748 * allocator with @gfp_mask flags. Map them into contiguous 1749 * kernel virtual space, using a pagetable protection of @prot. 1750 * 1751 * Return: the address of the area or %NULL on failure 1752 */ 1753 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1754 unsigned long start, unsigned long end, gfp_t gfp_mask, 1755 pgprot_t prot, unsigned long vm_flags, int node, 1756 const void *caller) 1757 { 1758 struct vm_struct *area; 1759 void *addr; 1760 unsigned long real_size = size; 1761 1762 size = PAGE_ALIGN(size); 1763 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 1764 goto fail; 1765 1766 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1767 vm_flags, start, end, node, gfp_mask, caller); 1768 if (!area) 1769 goto fail; 1770 1771 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1772 if (!addr) 1773 return NULL; 1774 1775 /* 1776 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1777 * flag. It means that vm_struct is not fully initialized. 1778 * Now, it is fully initialized, so remove this flag here. 1779 */ 1780 clear_vm_uninitialized_flag(area); 1781 1782 kmemleak_vmalloc(area, size, gfp_mask); 1783 1784 return addr; 1785 1786 fail: 1787 warn_alloc(gfp_mask, NULL, 1788 "vmalloc: allocation failure: %lu bytes", real_size); 1789 return NULL; 1790 } 1791 1792 /* 1793 * This is only for performance analysis of vmalloc and stress purpose. 1794 * It is required by vmalloc test module, therefore do not use it other 1795 * than that. 1796 */ 1797 #ifdef CONFIG_TEST_VMALLOC_MODULE 1798 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 1799 #endif 1800 1801 /** 1802 * __vmalloc_node - allocate virtually contiguous memory 1803 * @size: allocation size 1804 * @align: desired alignment 1805 * @gfp_mask: flags for the page level allocator 1806 * @prot: protection mask for the allocated pages 1807 * @node: node to use for allocation or NUMA_NO_NODE 1808 * @caller: caller's return address 1809 * 1810 * Allocate enough pages to cover @size from the page level 1811 * allocator with @gfp_mask flags. Map them into contiguous 1812 * kernel virtual space, using a pagetable protection of @prot. 1813 * 1814 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 1815 * and __GFP_NOFAIL are not supported 1816 * 1817 * Any use of gfp flags outside of GFP_KERNEL should be consulted 1818 * with mm people. 1819 * 1820 * Return: pointer to the allocated memory or %NULL on error 1821 */ 1822 static void *__vmalloc_node(unsigned long size, unsigned long align, 1823 gfp_t gfp_mask, pgprot_t prot, 1824 int node, const void *caller) 1825 { 1826 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1827 gfp_mask, prot, 0, node, caller); 1828 } 1829 1830 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1831 { 1832 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1833 __builtin_return_address(0)); 1834 } 1835 EXPORT_SYMBOL(__vmalloc); 1836 1837 static inline void *__vmalloc_node_flags(unsigned long size, 1838 int node, gfp_t flags) 1839 { 1840 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1841 node, __builtin_return_address(0)); 1842 } 1843 1844 1845 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 1846 void *caller) 1847 { 1848 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 1849 } 1850 1851 /** 1852 * vmalloc - allocate virtually contiguous memory 1853 * @size: allocation size 1854 * 1855 * Allocate enough pages to cover @size from the page level 1856 * allocator and map them into contiguous kernel virtual space. 1857 * 1858 * For tight control over page level allocator and protection flags 1859 * use __vmalloc() instead. 1860 * 1861 * Return: pointer to the allocated memory or %NULL on error 1862 */ 1863 void *vmalloc(unsigned long size) 1864 { 1865 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1866 GFP_KERNEL); 1867 } 1868 EXPORT_SYMBOL(vmalloc); 1869 1870 /** 1871 * vzalloc - allocate virtually contiguous memory with zero fill 1872 * @size: allocation size 1873 * 1874 * Allocate enough pages to cover @size from the page level 1875 * allocator and map them into contiguous kernel virtual space. 1876 * The memory allocated is set to zero. 1877 * 1878 * For tight control over page level allocator and protection flags 1879 * use __vmalloc() instead. 1880 * 1881 * Return: pointer to the allocated memory or %NULL on error 1882 */ 1883 void *vzalloc(unsigned long size) 1884 { 1885 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1886 GFP_KERNEL | __GFP_ZERO); 1887 } 1888 EXPORT_SYMBOL(vzalloc); 1889 1890 /** 1891 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1892 * @size: allocation size 1893 * 1894 * The resulting memory area is zeroed so it can be mapped to userspace 1895 * without leaking data. 1896 * 1897 * Return: pointer to the allocated memory or %NULL on error 1898 */ 1899 void *vmalloc_user(unsigned long size) 1900 { 1901 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 1902 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 1903 VM_USERMAP, NUMA_NO_NODE, 1904 __builtin_return_address(0)); 1905 } 1906 EXPORT_SYMBOL(vmalloc_user); 1907 1908 /** 1909 * vmalloc_node - allocate memory on a specific node 1910 * @size: allocation size 1911 * @node: numa node 1912 * 1913 * Allocate enough pages to cover @size from the page level 1914 * allocator and map them into contiguous kernel virtual space. 1915 * 1916 * For tight control over page level allocator and protection flags 1917 * use __vmalloc() instead. 1918 * 1919 * Return: pointer to the allocated memory or %NULL on error 1920 */ 1921 void *vmalloc_node(unsigned long size, int node) 1922 { 1923 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 1924 node, __builtin_return_address(0)); 1925 } 1926 EXPORT_SYMBOL(vmalloc_node); 1927 1928 /** 1929 * vzalloc_node - allocate memory on a specific node with zero fill 1930 * @size: allocation size 1931 * @node: numa node 1932 * 1933 * Allocate enough pages to cover @size from the page level 1934 * allocator and map them into contiguous kernel virtual space. 1935 * The memory allocated is set to zero. 1936 * 1937 * For tight control over page level allocator and protection flags 1938 * use __vmalloc_node() instead. 1939 * 1940 * Return: pointer to the allocated memory or %NULL on error 1941 */ 1942 void *vzalloc_node(unsigned long size, int node) 1943 { 1944 return __vmalloc_node_flags(size, node, 1945 GFP_KERNEL | __GFP_ZERO); 1946 } 1947 EXPORT_SYMBOL(vzalloc_node); 1948 1949 /** 1950 * vmalloc_exec - allocate virtually contiguous, executable memory 1951 * @size: allocation size 1952 * 1953 * Kernel-internal function to allocate enough pages to cover @size 1954 * the page level allocator and map them into contiguous and 1955 * executable kernel virtual space. 1956 * 1957 * For tight control over page level allocator and protection flags 1958 * use __vmalloc() instead. 1959 * 1960 * Return: pointer to the allocated memory or %NULL on error 1961 */ 1962 void *vmalloc_exec(unsigned long size) 1963 { 1964 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC, 1965 NUMA_NO_NODE, __builtin_return_address(0)); 1966 } 1967 1968 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1969 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 1970 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1971 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 1972 #else 1973 /* 1974 * 64b systems should always have either DMA or DMA32 zones. For others 1975 * GFP_DMA32 should do the right thing and use the normal zone. 1976 */ 1977 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1978 #endif 1979 1980 /** 1981 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1982 * @size: allocation size 1983 * 1984 * Allocate enough 32bit PA addressable pages to cover @size from the 1985 * page level allocator and map them into contiguous kernel virtual space. 1986 * 1987 * Return: pointer to the allocated memory or %NULL on error 1988 */ 1989 void *vmalloc_32(unsigned long size) 1990 { 1991 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1992 NUMA_NO_NODE, __builtin_return_address(0)); 1993 } 1994 EXPORT_SYMBOL(vmalloc_32); 1995 1996 /** 1997 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1998 * @size: allocation size 1999 * 2000 * The resulting memory area is 32bit addressable and zeroed so it can be 2001 * mapped to userspace without leaking data. 2002 * 2003 * Return: pointer to the allocated memory or %NULL on error 2004 */ 2005 void *vmalloc_32_user(unsigned long size) 2006 { 2007 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2008 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2009 VM_USERMAP, NUMA_NO_NODE, 2010 __builtin_return_address(0)); 2011 } 2012 EXPORT_SYMBOL(vmalloc_32_user); 2013 2014 /* 2015 * small helper routine , copy contents to buf from addr. 2016 * If the page is not present, fill zero. 2017 */ 2018 2019 static int aligned_vread(char *buf, char *addr, unsigned long count) 2020 { 2021 struct page *p; 2022 int copied = 0; 2023 2024 while (count) { 2025 unsigned long offset, length; 2026 2027 offset = offset_in_page(addr); 2028 length = PAGE_SIZE - offset; 2029 if (length > count) 2030 length = count; 2031 p = vmalloc_to_page(addr); 2032 /* 2033 * To do safe access to this _mapped_ area, we need 2034 * lock. But adding lock here means that we need to add 2035 * overhead of vmalloc()/vfree() calles for this _debug_ 2036 * interface, rarely used. Instead of that, we'll use 2037 * kmap() and get small overhead in this access function. 2038 */ 2039 if (p) { 2040 /* 2041 * we can expect USER0 is not used (see vread/vwrite's 2042 * function description) 2043 */ 2044 void *map = kmap_atomic(p); 2045 memcpy(buf, map + offset, length); 2046 kunmap_atomic(map); 2047 } else 2048 memset(buf, 0, length); 2049 2050 addr += length; 2051 buf += length; 2052 copied += length; 2053 count -= length; 2054 } 2055 return copied; 2056 } 2057 2058 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2059 { 2060 struct page *p; 2061 int copied = 0; 2062 2063 while (count) { 2064 unsigned long offset, length; 2065 2066 offset = offset_in_page(addr); 2067 length = PAGE_SIZE - offset; 2068 if (length > count) 2069 length = count; 2070 p = vmalloc_to_page(addr); 2071 /* 2072 * To do safe access to this _mapped_ area, we need 2073 * lock. But adding lock here means that we need to add 2074 * overhead of vmalloc()/vfree() calles for this _debug_ 2075 * interface, rarely used. Instead of that, we'll use 2076 * kmap() and get small overhead in this access function. 2077 */ 2078 if (p) { 2079 /* 2080 * we can expect USER0 is not used (see vread/vwrite's 2081 * function description) 2082 */ 2083 void *map = kmap_atomic(p); 2084 memcpy(map + offset, buf, length); 2085 kunmap_atomic(map); 2086 } 2087 addr += length; 2088 buf += length; 2089 copied += length; 2090 count -= length; 2091 } 2092 return copied; 2093 } 2094 2095 /** 2096 * vread() - read vmalloc area in a safe way. 2097 * @buf: buffer for reading data 2098 * @addr: vm address. 2099 * @count: number of bytes to be read. 2100 * 2101 * This function checks that addr is a valid vmalloc'ed area, and 2102 * copy data from that area to a given buffer. If the given memory range 2103 * of [addr...addr+count) includes some valid address, data is copied to 2104 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2105 * IOREMAP area is treated as memory hole and no copy is done. 2106 * 2107 * If [addr...addr+count) doesn't includes any intersects with alive 2108 * vm_struct area, returns 0. @buf should be kernel's buffer. 2109 * 2110 * Note: In usual ops, vread() is never necessary because the caller 2111 * should know vmalloc() area is valid and can use memcpy(). 2112 * This is for routines which have to access vmalloc area without 2113 * any informaion, as /dev/kmem. 2114 * 2115 * Return: number of bytes for which addr and buf should be increased 2116 * (same number as @count) or %0 if [addr...addr+count) doesn't 2117 * include any intersection with valid vmalloc area 2118 */ 2119 long vread(char *buf, char *addr, unsigned long count) 2120 { 2121 struct vmap_area *va; 2122 struct vm_struct *vm; 2123 char *vaddr, *buf_start = buf; 2124 unsigned long buflen = count; 2125 unsigned long n; 2126 2127 /* Don't allow overflow */ 2128 if ((unsigned long) addr + count < count) 2129 count = -(unsigned long) addr; 2130 2131 spin_lock(&vmap_area_lock); 2132 list_for_each_entry(va, &vmap_area_list, list) { 2133 if (!count) 2134 break; 2135 2136 if (!(va->flags & VM_VM_AREA)) 2137 continue; 2138 2139 vm = va->vm; 2140 vaddr = (char *) vm->addr; 2141 if (addr >= vaddr + get_vm_area_size(vm)) 2142 continue; 2143 while (addr < vaddr) { 2144 if (count == 0) 2145 goto finished; 2146 *buf = '\0'; 2147 buf++; 2148 addr++; 2149 count--; 2150 } 2151 n = vaddr + get_vm_area_size(vm) - addr; 2152 if (n > count) 2153 n = count; 2154 if (!(vm->flags & VM_IOREMAP)) 2155 aligned_vread(buf, addr, n); 2156 else /* IOREMAP area is treated as memory hole */ 2157 memset(buf, 0, n); 2158 buf += n; 2159 addr += n; 2160 count -= n; 2161 } 2162 finished: 2163 spin_unlock(&vmap_area_lock); 2164 2165 if (buf == buf_start) 2166 return 0; 2167 /* zero-fill memory holes */ 2168 if (buf != buf_start + buflen) 2169 memset(buf, 0, buflen - (buf - buf_start)); 2170 2171 return buflen; 2172 } 2173 2174 /** 2175 * vwrite() - write vmalloc area in a safe way. 2176 * @buf: buffer for source data 2177 * @addr: vm address. 2178 * @count: number of bytes to be read. 2179 * 2180 * This function checks that addr is a valid vmalloc'ed area, and 2181 * copy data from a buffer to the given addr. If specified range of 2182 * [addr...addr+count) includes some valid address, data is copied from 2183 * proper area of @buf. If there are memory holes, no copy to hole. 2184 * IOREMAP area is treated as memory hole and no copy is done. 2185 * 2186 * If [addr...addr+count) doesn't includes any intersects with alive 2187 * vm_struct area, returns 0. @buf should be kernel's buffer. 2188 * 2189 * Note: In usual ops, vwrite() is never necessary because the caller 2190 * should know vmalloc() area is valid and can use memcpy(). 2191 * This is for routines which have to access vmalloc area without 2192 * any informaion, as /dev/kmem. 2193 * 2194 * Return: number of bytes for which addr and buf should be 2195 * increased (same number as @count) or %0 if [addr...addr+count) 2196 * doesn't include any intersection with valid vmalloc area 2197 */ 2198 long vwrite(char *buf, char *addr, unsigned long count) 2199 { 2200 struct vmap_area *va; 2201 struct vm_struct *vm; 2202 char *vaddr; 2203 unsigned long n, buflen; 2204 int copied = 0; 2205 2206 /* Don't allow overflow */ 2207 if ((unsigned long) addr + count < count) 2208 count = -(unsigned long) addr; 2209 buflen = count; 2210 2211 spin_lock(&vmap_area_lock); 2212 list_for_each_entry(va, &vmap_area_list, list) { 2213 if (!count) 2214 break; 2215 2216 if (!(va->flags & VM_VM_AREA)) 2217 continue; 2218 2219 vm = va->vm; 2220 vaddr = (char *) vm->addr; 2221 if (addr >= vaddr + get_vm_area_size(vm)) 2222 continue; 2223 while (addr < vaddr) { 2224 if (count == 0) 2225 goto finished; 2226 buf++; 2227 addr++; 2228 count--; 2229 } 2230 n = vaddr + get_vm_area_size(vm) - addr; 2231 if (n > count) 2232 n = count; 2233 if (!(vm->flags & VM_IOREMAP)) { 2234 aligned_vwrite(buf, addr, n); 2235 copied++; 2236 } 2237 buf += n; 2238 addr += n; 2239 count -= n; 2240 } 2241 finished: 2242 spin_unlock(&vmap_area_lock); 2243 if (!copied) 2244 return 0; 2245 return buflen; 2246 } 2247 2248 /** 2249 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2250 * @vma: vma to cover 2251 * @uaddr: target user address to start at 2252 * @kaddr: virtual address of vmalloc kernel memory 2253 * @size: size of map area 2254 * 2255 * Returns: 0 for success, -Exxx on failure 2256 * 2257 * This function checks that @kaddr is a valid vmalloc'ed area, 2258 * and that it is big enough to cover the range starting at 2259 * @uaddr in @vma. Will return failure if that criteria isn't 2260 * met. 2261 * 2262 * Similar to remap_pfn_range() (see mm/memory.c) 2263 */ 2264 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2265 void *kaddr, unsigned long size) 2266 { 2267 struct vm_struct *area; 2268 2269 size = PAGE_ALIGN(size); 2270 2271 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2272 return -EINVAL; 2273 2274 area = find_vm_area(kaddr); 2275 if (!area) 2276 return -EINVAL; 2277 2278 if (!(area->flags & VM_USERMAP)) 2279 return -EINVAL; 2280 2281 if (kaddr + size > area->addr + get_vm_area_size(area)) 2282 return -EINVAL; 2283 2284 do { 2285 struct page *page = vmalloc_to_page(kaddr); 2286 int ret; 2287 2288 ret = vm_insert_page(vma, uaddr, page); 2289 if (ret) 2290 return ret; 2291 2292 uaddr += PAGE_SIZE; 2293 kaddr += PAGE_SIZE; 2294 size -= PAGE_SIZE; 2295 } while (size > 0); 2296 2297 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2298 2299 return 0; 2300 } 2301 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2302 2303 /** 2304 * remap_vmalloc_range - map vmalloc pages to userspace 2305 * @vma: vma to cover (map full range of vma) 2306 * @addr: vmalloc memory 2307 * @pgoff: number of pages into addr before first page to map 2308 * 2309 * Returns: 0 for success, -Exxx on failure 2310 * 2311 * This function checks that addr is a valid vmalloc'ed area, and 2312 * that it is big enough to cover the vma. Will return failure if 2313 * that criteria isn't met. 2314 * 2315 * Similar to remap_pfn_range() (see mm/memory.c) 2316 */ 2317 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2318 unsigned long pgoff) 2319 { 2320 return remap_vmalloc_range_partial(vma, vma->vm_start, 2321 addr + (pgoff << PAGE_SHIFT), 2322 vma->vm_end - vma->vm_start); 2323 } 2324 EXPORT_SYMBOL(remap_vmalloc_range); 2325 2326 /* 2327 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2328 * have one. 2329 */ 2330 void __weak vmalloc_sync_all(void) 2331 { 2332 } 2333 2334 2335 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2336 { 2337 pte_t ***p = data; 2338 2339 if (p) { 2340 *(*p) = pte; 2341 (*p)++; 2342 } 2343 return 0; 2344 } 2345 2346 /** 2347 * alloc_vm_area - allocate a range of kernel address space 2348 * @size: size of the area 2349 * @ptes: returns the PTEs for the address space 2350 * 2351 * Returns: NULL on failure, vm_struct on success 2352 * 2353 * This function reserves a range of kernel address space, and 2354 * allocates pagetables to map that range. No actual mappings 2355 * are created. 2356 * 2357 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2358 * allocated for the VM area are returned. 2359 */ 2360 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2361 { 2362 struct vm_struct *area; 2363 2364 area = get_vm_area_caller(size, VM_IOREMAP, 2365 __builtin_return_address(0)); 2366 if (area == NULL) 2367 return NULL; 2368 2369 /* 2370 * This ensures that page tables are constructed for this region 2371 * of kernel virtual address space and mapped into init_mm. 2372 */ 2373 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2374 size, f, ptes ? &ptes : NULL)) { 2375 free_vm_area(area); 2376 return NULL; 2377 } 2378 2379 return area; 2380 } 2381 EXPORT_SYMBOL_GPL(alloc_vm_area); 2382 2383 void free_vm_area(struct vm_struct *area) 2384 { 2385 struct vm_struct *ret; 2386 ret = remove_vm_area(area->addr); 2387 BUG_ON(ret != area); 2388 kfree(area); 2389 } 2390 EXPORT_SYMBOL_GPL(free_vm_area); 2391 2392 #ifdef CONFIG_SMP 2393 static struct vmap_area *node_to_va(struct rb_node *n) 2394 { 2395 return rb_entry_safe(n, struct vmap_area, rb_node); 2396 } 2397 2398 /** 2399 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2400 * @end: target address 2401 * @pnext: out arg for the next vmap_area 2402 * @pprev: out arg for the previous vmap_area 2403 * 2404 * Returns: %true if either or both of next and prev are found, 2405 * %false if no vmap_area exists 2406 * 2407 * Find vmap_areas end addresses of which enclose @end. ie. if not 2408 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2409 */ 2410 static bool pvm_find_next_prev(unsigned long end, 2411 struct vmap_area **pnext, 2412 struct vmap_area **pprev) 2413 { 2414 struct rb_node *n = vmap_area_root.rb_node; 2415 struct vmap_area *va = NULL; 2416 2417 while (n) { 2418 va = rb_entry(n, struct vmap_area, rb_node); 2419 if (end < va->va_end) 2420 n = n->rb_left; 2421 else if (end > va->va_end) 2422 n = n->rb_right; 2423 else 2424 break; 2425 } 2426 2427 if (!va) 2428 return false; 2429 2430 if (va->va_end > end) { 2431 *pnext = va; 2432 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2433 } else { 2434 *pprev = va; 2435 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2436 } 2437 return true; 2438 } 2439 2440 /** 2441 * pvm_determine_end - find the highest aligned address between two vmap_areas 2442 * @pnext: in/out arg for the next vmap_area 2443 * @pprev: in/out arg for the previous vmap_area 2444 * @align: alignment 2445 * 2446 * Returns: determined end address 2447 * 2448 * Find the highest aligned address between *@pnext and *@pprev below 2449 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2450 * down address is between the end addresses of the two vmap_areas. 2451 * 2452 * Please note that the address returned by this function may fall 2453 * inside *@pnext vmap_area. The caller is responsible for checking 2454 * that. 2455 */ 2456 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2457 struct vmap_area **pprev, 2458 unsigned long align) 2459 { 2460 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2461 unsigned long addr; 2462 2463 if (*pnext) 2464 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2465 else 2466 addr = vmalloc_end; 2467 2468 while (*pprev && (*pprev)->va_end > addr) { 2469 *pnext = *pprev; 2470 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2471 } 2472 2473 return addr; 2474 } 2475 2476 /** 2477 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2478 * @offsets: array containing offset of each area 2479 * @sizes: array containing size of each area 2480 * @nr_vms: the number of areas to allocate 2481 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2482 * 2483 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2484 * vm_structs on success, %NULL on failure 2485 * 2486 * Percpu allocator wants to use congruent vm areas so that it can 2487 * maintain the offsets among percpu areas. This function allocates 2488 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2489 * be scattered pretty far, distance between two areas easily going up 2490 * to gigabytes. To avoid interacting with regular vmallocs, these 2491 * areas are allocated from top. 2492 * 2493 * Despite its complicated look, this allocator is rather simple. It 2494 * does everything top-down and scans areas from the end looking for 2495 * matching slot. While scanning, if any of the areas overlaps with 2496 * existing vmap_area, the base address is pulled down to fit the 2497 * area. Scanning is repeated till all the areas fit and then all 2498 * necessary data structures are inserted and the result is returned. 2499 */ 2500 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2501 const size_t *sizes, int nr_vms, 2502 size_t align) 2503 { 2504 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2505 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2506 struct vmap_area **vas, *prev, *next; 2507 struct vm_struct **vms; 2508 int area, area2, last_area, term_area; 2509 unsigned long base, start, end, last_end; 2510 bool purged = false; 2511 2512 /* verify parameters and allocate data structures */ 2513 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2514 for (last_area = 0, area = 0; area < nr_vms; area++) { 2515 start = offsets[area]; 2516 end = start + sizes[area]; 2517 2518 /* is everything aligned properly? */ 2519 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2520 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2521 2522 /* detect the area with the highest address */ 2523 if (start > offsets[last_area]) 2524 last_area = area; 2525 2526 for (area2 = area + 1; area2 < nr_vms; area2++) { 2527 unsigned long start2 = offsets[area2]; 2528 unsigned long end2 = start2 + sizes[area2]; 2529 2530 BUG_ON(start2 < end && start < end2); 2531 } 2532 } 2533 last_end = offsets[last_area] + sizes[last_area]; 2534 2535 if (vmalloc_end - vmalloc_start < last_end) { 2536 WARN_ON(true); 2537 return NULL; 2538 } 2539 2540 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2541 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2542 if (!vas || !vms) 2543 goto err_free2; 2544 2545 for (area = 0; area < nr_vms; area++) { 2546 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2547 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2548 if (!vas[area] || !vms[area]) 2549 goto err_free; 2550 } 2551 retry: 2552 spin_lock(&vmap_area_lock); 2553 2554 /* start scanning - we scan from the top, begin with the last area */ 2555 area = term_area = last_area; 2556 start = offsets[area]; 2557 end = start + sizes[area]; 2558 2559 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2560 base = vmalloc_end - last_end; 2561 goto found; 2562 } 2563 base = pvm_determine_end(&next, &prev, align) - end; 2564 2565 while (true) { 2566 BUG_ON(next && next->va_end <= base + end); 2567 BUG_ON(prev && prev->va_end > base + end); 2568 2569 /* 2570 * base might have underflowed, add last_end before 2571 * comparing. 2572 */ 2573 if (base + last_end < vmalloc_start + last_end) { 2574 spin_unlock(&vmap_area_lock); 2575 if (!purged) { 2576 purge_vmap_area_lazy(); 2577 purged = true; 2578 goto retry; 2579 } 2580 goto err_free; 2581 } 2582 2583 /* 2584 * If next overlaps, move base downwards so that it's 2585 * right below next and then recheck. 2586 */ 2587 if (next && next->va_start < base + end) { 2588 base = pvm_determine_end(&next, &prev, align) - end; 2589 term_area = area; 2590 continue; 2591 } 2592 2593 /* 2594 * If prev overlaps, shift down next and prev and move 2595 * base so that it's right below new next and then 2596 * recheck. 2597 */ 2598 if (prev && prev->va_end > base + start) { 2599 next = prev; 2600 prev = node_to_va(rb_prev(&next->rb_node)); 2601 base = pvm_determine_end(&next, &prev, align) - end; 2602 term_area = area; 2603 continue; 2604 } 2605 2606 /* 2607 * This area fits, move on to the previous one. If 2608 * the previous one is the terminal one, we're done. 2609 */ 2610 area = (area + nr_vms - 1) % nr_vms; 2611 if (area == term_area) 2612 break; 2613 start = offsets[area]; 2614 end = start + sizes[area]; 2615 pvm_find_next_prev(base + end, &next, &prev); 2616 } 2617 found: 2618 /* we've found a fitting base, insert all va's */ 2619 for (area = 0; area < nr_vms; area++) { 2620 struct vmap_area *va = vas[area]; 2621 2622 va->va_start = base + offsets[area]; 2623 va->va_end = va->va_start + sizes[area]; 2624 __insert_vmap_area(va); 2625 } 2626 2627 vmap_area_pcpu_hole = base + offsets[last_area]; 2628 2629 spin_unlock(&vmap_area_lock); 2630 2631 /* insert all vm's */ 2632 for (area = 0; area < nr_vms; area++) 2633 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2634 pcpu_get_vm_areas); 2635 2636 kfree(vas); 2637 return vms; 2638 2639 err_free: 2640 for (area = 0; area < nr_vms; area++) { 2641 kfree(vas[area]); 2642 kfree(vms[area]); 2643 } 2644 err_free2: 2645 kfree(vas); 2646 kfree(vms); 2647 return NULL; 2648 } 2649 2650 /** 2651 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2652 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2653 * @nr_vms: the number of allocated areas 2654 * 2655 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2656 */ 2657 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2658 { 2659 int i; 2660 2661 for (i = 0; i < nr_vms; i++) 2662 free_vm_area(vms[i]); 2663 kfree(vms); 2664 } 2665 #endif /* CONFIG_SMP */ 2666 2667 #ifdef CONFIG_PROC_FS 2668 static void *s_start(struct seq_file *m, loff_t *pos) 2669 __acquires(&vmap_area_lock) 2670 { 2671 spin_lock(&vmap_area_lock); 2672 return seq_list_start(&vmap_area_list, *pos); 2673 } 2674 2675 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2676 { 2677 return seq_list_next(p, &vmap_area_list, pos); 2678 } 2679 2680 static void s_stop(struct seq_file *m, void *p) 2681 __releases(&vmap_area_lock) 2682 { 2683 spin_unlock(&vmap_area_lock); 2684 } 2685 2686 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2687 { 2688 if (IS_ENABLED(CONFIG_NUMA)) { 2689 unsigned int nr, *counters = m->private; 2690 2691 if (!counters) 2692 return; 2693 2694 if (v->flags & VM_UNINITIALIZED) 2695 return; 2696 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2697 smp_rmb(); 2698 2699 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2700 2701 for (nr = 0; nr < v->nr_pages; nr++) 2702 counters[page_to_nid(v->pages[nr])]++; 2703 2704 for_each_node_state(nr, N_HIGH_MEMORY) 2705 if (counters[nr]) 2706 seq_printf(m, " N%u=%u", nr, counters[nr]); 2707 } 2708 } 2709 2710 static int s_show(struct seq_file *m, void *p) 2711 { 2712 struct vmap_area *va; 2713 struct vm_struct *v; 2714 2715 va = list_entry(p, struct vmap_area, list); 2716 2717 /* 2718 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2719 * behalf of vmap area is being tear down or vm_map_ram allocation. 2720 */ 2721 if (!(va->flags & VM_VM_AREA)) { 2722 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 2723 (void *)va->va_start, (void *)va->va_end, 2724 va->va_end - va->va_start, 2725 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 2726 2727 return 0; 2728 } 2729 2730 v = va->vm; 2731 2732 seq_printf(m, "0x%pK-0x%pK %7ld", 2733 v->addr, v->addr + v->size, v->size); 2734 2735 if (v->caller) 2736 seq_printf(m, " %pS", v->caller); 2737 2738 if (v->nr_pages) 2739 seq_printf(m, " pages=%d", v->nr_pages); 2740 2741 if (v->phys_addr) 2742 seq_printf(m, " phys=%pa", &v->phys_addr); 2743 2744 if (v->flags & VM_IOREMAP) 2745 seq_puts(m, " ioremap"); 2746 2747 if (v->flags & VM_ALLOC) 2748 seq_puts(m, " vmalloc"); 2749 2750 if (v->flags & VM_MAP) 2751 seq_puts(m, " vmap"); 2752 2753 if (v->flags & VM_USERMAP) 2754 seq_puts(m, " user"); 2755 2756 if (is_vmalloc_addr(v->pages)) 2757 seq_puts(m, " vpages"); 2758 2759 show_numa_info(m, v); 2760 seq_putc(m, '\n'); 2761 return 0; 2762 } 2763 2764 static const struct seq_operations vmalloc_op = { 2765 .start = s_start, 2766 .next = s_next, 2767 .stop = s_stop, 2768 .show = s_show, 2769 }; 2770 2771 static int __init proc_vmalloc_init(void) 2772 { 2773 if (IS_ENABLED(CONFIG_NUMA)) 2774 proc_create_seq_private("vmallocinfo", 0400, NULL, 2775 &vmalloc_op, 2776 nr_node_ids * sizeof(unsigned int), NULL); 2777 else 2778 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 2779 return 0; 2780 } 2781 module_init(proc_vmalloc_init); 2782 2783 #endif 2784