1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 #include <linux/pfn.h> 27 #include <linux/kmemleak.h> 28 #include <linux/highmem.h> 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 static inline int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 void *private; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static struct rb_root vmap_area_root = RB_ROOT; 265 static LIST_HEAD(vmap_area_list); 266 static unsigned long vmap_area_pcpu_hole; 267 268 static struct vmap_area *__find_vmap_area(unsigned long addr) 269 { 270 struct rb_node *n = vmap_area_root.rb_node; 271 272 while (n) { 273 struct vmap_area *va; 274 275 va = rb_entry(n, struct vmap_area, rb_node); 276 if (addr < va->va_start) 277 n = n->rb_left; 278 else if (addr > va->va_start) 279 n = n->rb_right; 280 else 281 return va; 282 } 283 284 return NULL; 285 } 286 287 static void __insert_vmap_area(struct vmap_area *va) 288 { 289 struct rb_node **p = &vmap_area_root.rb_node; 290 struct rb_node *parent = NULL; 291 struct rb_node *tmp; 292 293 while (*p) { 294 struct vmap_area *tmp; 295 296 parent = *p; 297 tmp = rb_entry(parent, struct vmap_area, rb_node); 298 if (va->va_start < tmp->va_end) 299 p = &(*p)->rb_left; 300 else if (va->va_end > tmp->va_start) 301 p = &(*p)->rb_right; 302 else 303 BUG(); 304 } 305 306 rb_link_node(&va->rb_node, parent, p); 307 rb_insert_color(&va->rb_node, &vmap_area_root); 308 309 /* address-sort this list so it is usable like the vmlist */ 310 tmp = rb_prev(&va->rb_node); 311 if (tmp) { 312 struct vmap_area *prev; 313 prev = rb_entry(tmp, struct vmap_area, rb_node); 314 list_add_rcu(&va->list, &prev->list); 315 } else 316 list_add_rcu(&va->list, &vmap_area_list); 317 } 318 319 static void purge_vmap_area_lazy(void); 320 321 /* 322 * Allocate a region of KVA of the specified size and alignment, within the 323 * vstart and vend. 324 */ 325 static struct vmap_area *alloc_vmap_area(unsigned long size, 326 unsigned long align, 327 unsigned long vstart, unsigned long vend, 328 int node, gfp_t gfp_mask) 329 { 330 struct vmap_area *va; 331 struct rb_node *n; 332 unsigned long addr; 333 int purged = 0; 334 335 BUG_ON(!size); 336 BUG_ON(size & ~PAGE_MASK); 337 338 va = kmalloc_node(sizeof(struct vmap_area), 339 gfp_mask & GFP_RECLAIM_MASK, node); 340 if (unlikely(!va)) 341 return ERR_PTR(-ENOMEM); 342 343 retry: 344 addr = ALIGN(vstart, align); 345 346 spin_lock(&vmap_area_lock); 347 if (addr + size - 1 < addr) 348 goto overflow; 349 350 /* XXX: could have a last_hole cache */ 351 n = vmap_area_root.rb_node; 352 if (n) { 353 struct vmap_area *first = NULL; 354 355 do { 356 struct vmap_area *tmp; 357 tmp = rb_entry(n, struct vmap_area, rb_node); 358 if (tmp->va_end >= addr) { 359 if (!first && tmp->va_start < addr + size) 360 first = tmp; 361 n = n->rb_left; 362 } else { 363 first = tmp; 364 n = n->rb_right; 365 } 366 } while (n); 367 368 if (!first) 369 goto found; 370 371 if (first->va_end < addr) { 372 n = rb_next(&first->rb_node); 373 if (n) 374 first = rb_entry(n, struct vmap_area, rb_node); 375 else 376 goto found; 377 } 378 379 while (addr + size > first->va_start && addr + size <= vend) { 380 addr = ALIGN(first->va_end + PAGE_SIZE, align); 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 n = rb_next(&first->rb_node); 385 if (n) 386 first = rb_entry(n, struct vmap_area, rb_node); 387 else 388 goto found; 389 } 390 } 391 found: 392 if (addr + size > vend) { 393 overflow: 394 spin_unlock(&vmap_area_lock); 395 if (!purged) { 396 purge_vmap_area_lazy(); 397 purged = 1; 398 goto retry; 399 } 400 if (printk_ratelimit()) 401 printk(KERN_WARNING 402 "vmap allocation for size %lu failed: " 403 "use vmalloc=<size> to increase size.\n", size); 404 kfree(va); 405 return ERR_PTR(-EBUSY); 406 } 407 408 BUG_ON(addr & (align-1)); 409 410 va->va_start = addr; 411 va->va_end = addr + size; 412 va->flags = 0; 413 __insert_vmap_area(va); 414 spin_unlock(&vmap_area_lock); 415 416 return va; 417 } 418 419 static void rcu_free_va(struct rcu_head *head) 420 { 421 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 422 423 kfree(va); 424 } 425 426 static void __free_vmap_area(struct vmap_area *va) 427 { 428 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 429 rb_erase(&va->rb_node, &vmap_area_root); 430 RB_CLEAR_NODE(&va->rb_node); 431 list_del_rcu(&va->list); 432 433 /* 434 * Track the highest possible candidate for pcpu area 435 * allocation. Areas outside of vmalloc area can be returned 436 * here too, consider only end addresses which fall inside 437 * vmalloc area proper. 438 */ 439 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 440 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 441 442 call_rcu(&va->rcu_head, rcu_free_va); 443 } 444 445 /* 446 * Free a region of KVA allocated by alloc_vmap_area 447 */ 448 static void free_vmap_area(struct vmap_area *va) 449 { 450 spin_lock(&vmap_area_lock); 451 __free_vmap_area(va); 452 spin_unlock(&vmap_area_lock); 453 } 454 455 /* 456 * Clear the pagetable entries of a given vmap_area 457 */ 458 static void unmap_vmap_area(struct vmap_area *va) 459 { 460 vunmap_page_range(va->va_start, va->va_end); 461 } 462 463 static void vmap_debug_free_range(unsigned long start, unsigned long end) 464 { 465 /* 466 * Unmap page tables and force a TLB flush immediately if 467 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 468 * bugs similarly to those in linear kernel virtual address 469 * space after a page has been freed. 470 * 471 * All the lazy freeing logic is still retained, in order to 472 * minimise intrusiveness of this debugging feature. 473 * 474 * This is going to be *slow* (linear kernel virtual address 475 * debugging doesn't do a broadcast TLB flush so it is a lot 476 * faster). 477 */ 478 #ifdef CONFIG_DEBUG_PAGEALLOC 479 vunmap_page_range(start, end); 480 flush_tlb_kernel_range(start, end); 481 #endif 482 } 483 484 /* 485 * lazy_max_pages is the maximum amount of virtual address space we gather up 486 * before attempting to purge with a TLB flush. 487 * 488 * There is a tradeoff here: a larger number will cover more kernel page tables 489 * and take slightly longer to purge, but it will linearly reduce the number of 490 * global TLB flushes that must be performed. It would seem natural to scale 491 * this number up linearly with the number of CPUs (because vmapping activity 492 * could also scale linearly with the number of CPUs), however it is likely 493 * that in practice, workloads might be constrained in other ways that mean 494 * vmap activity will not scale linearly with CPUs. Also, I want to be 495 * conservative and not introduce a big latency on huge systems, so go with 496 * a less aggressive log scale. It will still be an improvement over the old 497 * code, and it will be simple to change the scale factor if we find that it 498 * becomes a problem on bigger systems. 499 */ 500 static unsigned long lazy_max_pages(void) 501 { 502 unsigned int log; 503 504 log = fls(num_online_cpus()); 505 506 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 507 } 508 509 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 510 511 /* 512 * Purges all lazily-freed vmap areas. 513 * 514 * If sync is 0 then don't purge if there is already a purge in progress. 515 * If force_flush is 1, then flush kernel TLBs between *start and *end even 516 * if we found no lazy vmap areas to unmap (callers can use this to optimise 517 * their own TLB flushing). 518 * Returns with *start = min(*start, lowest purged address) 519 * *end = max(*end, highest purged address) 520 */ 521 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 522 int sync, int force_flush) 523 { 524 static DEFINE_SPINLOCK(purge_lock); 525 LIST_HEAD(valist); 526 struct vmap_area *va; 527 struct vmap_area *n_va; 528 int nr = 0; 529 530 /* 531 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 532 * should not expect such behaviour. This just simplifies locking for 533 * the case that isn't actually used at the moment anyway. 534 */ 535 if (!sync && !force_flush) { 536 if (!spin_trylock(&purge_lock)) 537 return; 538 } else 539 spin_lock(&purge_lock); 540 541 rcu_read_lock(); 542 list_for_each_entry_rcu(va, &vmap_area_list, list) { 543 if (va->flags & VM_LAZY_FREE) { 544 if (va->va_start < *start) 545 *start = va->va_start; 546 if (va->va_end > *end) 547 *end = va->va_end; 548 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 549 unmap_vmap_area(va); 550 list_add_tail(&va->purge_list, &valist); 551 va->flags |= VM_LAZY_FREEING; 552 va->flags &= ~VM_LAZY_FREE; 553 } 554 } 555 rcu_read_unlock(); 556 557 if (nr) { 558 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 559 atomic_sub(nr, &vmap_lazy_nr); 560 } 561 562 if (nr || force_flush) 563 flush_tlb_kernel_range(*start, *end); 564 565 if (nr) { 566 spin_lock(&vmap_area_lock); 567 list_for_each_entry_safe(va, n_va, &valist, purge_list) 568 __free_vmap_area(va); 569 spin_unlock(&vmap_area_lock); 570 } 571 spin_unlock(&purge_lock); 572 } 573 574 /* 575 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 576 * is already purging. 577 */ 578 static void try_purge_vmap_area_lazy(void) 579 { 580 unsigned long start = ULONG_MAX, end = 0; 581 582 __purge_vmap_area_lazy(&start, &end, 0, 0); 583 } 584 585 /* 586 * Kick off a purge of the outstanding lazy areas. 587 */ 588 static void purge_vmap_area_lazy(void) 589 { 590 unsigned long start = ULONG_MAX, end = 0; 591 592 __purge_vmap_area_lazy(&start, &end, 1, 0); 593 } 594 595 /* 596 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 597 * called for the correct range previously. 598 */ 599 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 600 { 601 va->flags |= VM_LAZY_FREE; 602 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 603 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 604 try_purge_vmap_area_lazy(); 605 } 606 607 /* 608 * Free and unmap a vmap area 609 */ 610 static void free_unmap_vmap_area(struct vmap_area *va) 611 { 612 flush_cache_vunmap(va->va_start, va->va_end); 613 free_unmap_vmap_area_noflush(va); 614 } 615 616 static struct vmap_area *find_vmap_area(unsigned long addr) 617 { 618 struct vmap_area *va; 619 620 spin_lock(&vmap_area_lock); 621 va = __find_vmap_area(addr); 622 spin_unlock(&vmap_area_lock); 623 624 return va; 625 } 626 627 static void free_unmap_vmap_area_addr(unsigned long addr) 628 { 629 struct vmap_area *va; 630 631 va = find_vmap_area(addr); 632 BUG_ON(!va); 633 free_unmap_vmap_area(va); 634 } 635 636 637 /*** Per cpu kva allocator ***/ 638 639 /* 640 * vmap space is limited especially on 32 bit architectures. Ensure there is 641 * room for at least 16 percpu vmap blocks per CPU. 642 */ 643 /* 644 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 645 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 646 * instead (we just need a rough idea) 647 */ 648 #if BITS_PER_LONG == 32 649 #define VMALLOC_SPACE (128UL*1024*1024) 650 #else 651 #define VMALLOC_SPACE (128UL*1024*1024*1024) 652 #endif 653 654 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 655 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 656 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 657 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 658 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 659 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 660 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 661 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 662 VMALLOC_PAGES / NR_CPUS / 16)) 663 664 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 665 666 static bool vmap_initialized __read_mostly = false; 667 668 struct vmap_block_queue { 669 spinlock_t lock; 670 struct list_head free; 671 struct list_head dirty; 672 unsigned int nr_dirty; 673 }; 674 675 struct vmap_block { 676 spinlock_t lock; 677 struct vmap_area *va; 678 struct vmap_block_queue *vbq; 679 unsigned long free, dirty; 680 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 681 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 682 union { 683 struct list_head free_list; 684 struct rcu_head rcu_head; 685 }; 686 }; 687 688 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 689 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 690 691 /* 692 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 693 * in the free path. Could get rid of this if we change the API to return a 694 * "cookie" from alloc, to be passed to free. But no big deal yet. 695 */ 696 static DEFINE_SPINLOCK(vmap_block_tree_lock); 697 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 698 699 /* 700 * We should probably have a fallback mechanism to allocate virtual memory 701 * out of partially filled vmap blocks. However vmap block sizing should be 702 * fairly reasonable according to the vmalloc size, so it shouldn't be a 703 * big problem. 704 */ 705 706 static unsigned long addr_to_vb_idx(unsigned long addr) 707 { 708 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 709 addr /= VMAP_BLOCK_SIZE; 710 return addr; 711 } 712 713 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 714 { 715 struct vmap_block_queue *vbq; 716 struct vmap_block *vb; 717 struct vmap_area *va; 718 unsigned long vb_idx; 719 int node, err; 720 721 node = numa_node_id(); 722 723 vb = kmalloc_node(sizeof(struct vmap_block), 724 gfp_mask & GFP_RECLAIM_MASK, node); 725 if (unlikely(!vb)) 726 return ERR_PTR(-ENOMEM); 727 728 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 729 VMALLOC_START, VMALLOC_END, 730 node, gfp_mask); 731 if (unlikely(IS_ERR(va))) { 732 kfree(vb); 733 return ERR_PTR(PTR_ERR(va)); 734 } 735 736 err = radix_tree_preload(gfp_mask); 737 if (unlikely(err)) { 738 kfree(vb); 739 free_vmap_area(va); 740 return ERR_PTR(err); 741 } 742 743 spin_lock_init(&vb->lock); 744 vb->va = va; 745 vb->free = VMAP_BBMAP_BITS; 746 vb->dirty = 0; 747 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 748 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 749 INIT_LIST_HEAD(&vb->free_list); 750 751 vb_idx = addr_to_vb_idx(va->va_start); 752 spin_lock(&vmap_block_tree_lock); 753 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 754 spin_unlock(&vmap_block_tree_lock); 755 BUG_ON(err); 756 radix_tree_preload_end(); 757 758 vbq = &get_cpu_var(vmap_block_queue); 759 vb->vbq = vbq; 760 spin_lock(&vbq->lock); 761 list_add(&vb->free_list, &vbq->free); 762 spin_unlock(&vbq->lock); 763 put_cpu_var(vmap_cpu_blocks); 764 765 return vb; 766 } 767 768 static void rcu_free_vb(struct rcu_head *head) 769 { 770 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 771 772 kfree(vb); 773 } 774 775 static void free_vmap_block(struct vmap_block *vb) 776 { 777 struct vmap_block *tmp; 778 unsigned long vb_idx; 779 780 BUG_ON(!list_empty(&vb->free_list)); 781 782 vb_idx = addr_to_vb_idx(vb->va->va_start); 783 spin_lock(&vmap_block_tree_lock); 784 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 785 spin_unlock(&vmap_block_tree_lock); 786 BUG_ON(tmp != vb); 787 788 free_unmap_vmap_area_noflush(vb->va); 789 call_rcu(&vb->rcu_head, rcu_free_vb); 790 } 791 792 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 793 { 794 struct vmap_block_queue *vbq; 795 struct vmap_block *vb; 796 unsigned long addr = 0; 797 unsigned int order; 798 799 BUG_ON(size & ~PAGE_MASK); 800 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 801 order = get_order(size); 802 803 again: 804 rcu_read_lock(); 805 vbq = &get_cpu_var(vmap_block_queue); 806 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 807 int i; 808 809 spin_lock(&vb->lock); 810 i = bitmap_find_free_region(vb->alloc_map, 811 VMAP_BBMAP_BITS, order); 812 813 if (i >= 0) { 814 addr = vb->va->va_start + (i << PAGE_SHIFT); 815 BUG_ON(addr_to_vb_idx(addr) != 816 addr_to_vb_idx(vb->va->va_start)); 817 vb->free -= 1UL << order; 818 if (vb->free == 0) { 819 spin_lock(&vbq->lock); 820 list_del_init(&vb->free_list); 821 spin_unlock(&vbq->lock); 822 } 823 spin_unlock(&vb->lock); 824 break; 825 } 826 spin_unlock(&vb->lock); 827 } 828 put_cpu_var(vmap_cpu_blocks); 829 rcu_read_unlock(); 830 831 if (!addr) { 832 vb = new_vmap_block(gfp_mask); 833 if (IS_ERR(vb)) 834 return vb; 835 goto again; 836 } 837 838 return (void *)addr; 839 } 840 841 static void vb_free(const void *addr, unsigned long size) 842 { 843 unsigned long offset; 844 unsigned long vb_idx; 845 unsigned int order; 846 struct vmap_block *vb; 847 848 BUG_ON(size & ~PAGE_MASK); 849 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 850 851 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 852 853 order = get_order(size); 854 855 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 856 857 vb_idx = addr_to_vb_idx((unsigned long)addr); 858 rcu_read_lock(); 859 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 860 rcu_read_unlock(); 861 BUG_ON(!vb); 862 863 spin_lock(&vb->lock); 864 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 865 866 vb->dirty += 1UL << order; 867 if (vb->dirty == VMAP_BBMAP_BITS) { 868 BUG_ON(vb->free || !list_empty(&vb->free_list)); 869 spin_unlock(&vb->lock); 870 free_vmap_block(vb); 871 } else 872 spin_unlock(&vb->lock); 873 } 874 875 /** 876 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 877 * 878 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 879 * to amortize TLB flushing overheads. What this means is that any page you 880 * have now, may, in a former life, have been mapped into kernel virtual 881 * address by the vmap layer and so there might be some CPUs with TLB entries 882 * still referencing that page (additional to the regular 1:1 kernel mapping). 883 * 884 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 885 * be sure that none of the pages we have control over will have any aliases 886 * from the vmap layer. 887 */ 888 void vm_unmap_aliases(void) 889 { 890 unsigned long start = ULONG_MAX, end = 0; 891 int cpu; 892 int flush = 0; 893 894 if (unlikely(!vmap_initialized)) 895 return; 896 897 for_each_possible_cpu(cpu) { 898 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 899 struct vmap_block *vb; 900 901 rcu_read_lock(); 902 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 903 int i; 904 905 spin_lock(&vb->lock); 906 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 907 while (i < VMAP_BBMAP_BITS) { 908 unsigned long s, e; 909 int j; 910 j = find_next_zero_bit(vb->dirty_map, 911 VMAP_BBMAP_BITS, i); 912 913 s = vb->va->va_start + (i << PAGE_SHIFT); 914 e = vb->va->va_start + (j << PAGE_SHIFT); 915 vunmap_page_range(s, e); 916 flush = 1; 917 918 if (s < start) 919 start = s; 920 if (e > end) 921 end = e; 922 923 i = j; 924 i = find_next_bit(vb->dirty_map, 925 VMAP_BBMAP_BITS, i); 926 } 927 spin_unlock(&vb->lock); 928 } 929 rcu_read_unlock(); 930 } 931 932 __purge_vmap_area_lazy(&start, &end, 1, flush); 933 } 934 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 935 936 /** 937 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 938 * @mem: the pointer returned by vm_map_ram 939 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 940 */ 941 void vm_unmap_ram(const void *mem, unsigned int count) 942 { 943 unsigned long size = count << PAGE_SHIFT; 944 unsigned long addr = (unsigned long)mem; 945 946 BUG_ON(!addr); 947 BUG_ON(addr < VMALLOC_START); 948 BUG_ON(addr > VMALLOC_END); 949 BUG_ON(addr & (PAGE_SIZE-1)); 950 951 debug_check_no_locks_freed(mem, size); 952 vmap_debug_free_range(addr, addr+size); 953 954 if (likely(count <= VMAP_MAX_ALLOC)) 955 vb_free(mem, size); 956 else 957 free_unmap_vmap_area_addr(addr); 958 } 959 EXPORT_SYMBOL(vm_unmap_ram); 960 961 /** 962 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 963 * @pages: an array of pointers to the pages to be mapped 964 * @count: number of pages 965 * @node: prefer to allocate data structures on this node 966 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 967 * 968 * Returns: a pointer to the address that has been mapped, or %NULL on failure 969 */ 970 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 971 { 972 unsigned long size = count << PAGE_SHIFT; 973 unsigned long addr; 974 void *mem; 975 976 if (likely(count <= VMAP_MAX_ALLOC)) { 977 mem = vb_alloc(size, GFP_KERNEL); 978 if (IS_ERR(mem)) 979 return NULL; 980 addr = (unsigned long)mem; 981 } else { 982 struct vmap_area *va; 983 va = alloc_vmap_area(size, PAGE_SIZE, 984 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 985 if (IS_ERR(va)) 986 return NULL; 987 988 addr = va->va_start; 989 mem = (void *)addr; 990 } 991 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 992 vm_unmap_ram(mem, count); 993 return NULL; 994 } 995 return mem; 996 } 997 EXPORT_SYMBOL(vm_map_ram); 998 999 /** 1000 * vm_area_register_early - register vmap area early during boot 1001 * @vm: vm_struct to register 1002 * @align: requested alignment 1003 * 1004 * This function is used to register kernel vm area before 1005 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1006 * proper values on entry and other fields should be zero. On return, 1007 * vm->addr contains the allocated address. 1008 * 1009 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1010 */ 1011 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1012 { 1013 static size_t vm_init_off __initdata; 1014 unsigned long addr; 1015 1016 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1017 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1018 1019 vm->addr = (void *)addr; 1020 1021 vm->next = vmlist; 1022 vmlist = vm; 1023 } 1024 1025 void __init vmalloc_init(void) 1026 { 1027 struct vmap_area *va; 1028 struct vm_struct *tmp; 1029 int i; 1030 1031 for_each_possible_cpu(i) { 1032 struct vmap_block_queue *vbq; 1033 1034 vbq = &per_cpu(vmap_block_queue, i); 1035 spin_lock_init(&vbq->lock); 1036 INIT_LIST_HEAD(&vbq->free); 1037 INIT_LIST_HEAD(&vbq->dirty); 1038 vbq->nr_dirty = 0; 1039 } 1040 1041 /* Import existing vmlist entries. */ 1042 for (tmp = vmlist; tmp; tmp = tmp->next) { 1043 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1044 va->flags = tmp->flags | VM_VM_AREA; 1045 va->va_start = (unsigned long)tmp->addr; 1046 va->va_end = va->va_start + tmp->size; 1047 __insert_vmap_area(va); 1048 } 1049 1050 vmap_area_pcpu_hole = VMALLOC_END; 1051 1052 vmap_initialized = true; 1053 } 1054 1055 /** 1056 * map_kernel_range_noflush - map kernel VM area with the specified pages 1057 * @addr: start of the VM area to map 1058 * @size: size of the VM area to map 1059 * @prot: page protection flags to use 1060 * @pages: pages to map 1061 * 1062 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1063 * specify should have been allocated using get_vm_area() and its 1064 * friends. 1065 * 1066 * NOTE: 1067 * This function does NOT do any cache flushing. The caller is 1068 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1069 * before calling this function. 1070 * 1071 * RETURNS: 1072 * The number of pages mapped on success, -errno on failure. 1073 */ 1074 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1075 pgprot_t prot, struct page **pages) 1076 { 1077 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1078 } 1079 1080 /** 1081 * unmap_kernel_range_noflush - unmap kernel VM area 1082 * @addr: start of the VM area to unmap 1083 * @size: size of the VM area to unmap 1084 * 1085 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1086 * specify should have been allocated using get_vm_area() and its 1087 * friends. 1088 * 1089 * NOTE: 1090 * This function does NOT do any cache flushing. The caller is 1091 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1092 * before calling this function and flush_tlb_kernel_range() after. 1093 */ 1094 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1095 { 1096 vunmap_page_range(addr, addr + size); 1097 } 1098 1099 /** 1100 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1101 * @addr: start of the VM area to unmap 1102 * @size: size of the VM area to unmap 1103 * 1104 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1105 * the unmapping and tlb after. 1106 */ 1107 void unmap_kernel_range(unsigned long addr, unsigned long size) 1108 { 1109 unsigned long end = addr + size; 1110 1111 flush_cache_vunmap(addr, end); 1112 vunmap_page_range(addr, end); 1113 flush_tlb_kernel_range(addr, end); 1114 } 1115 1116 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1117 { 1118 unsigned long addr = (unsigned long)area->addr; 1119 unsigned long end = addr + area->size - PAGE_SIZE; 1120 int err; 1121 1122 err = vmap_page_range(addr, end, prot, *pages); 1123 if (err > 0) { 1124 *pages += err; 1125 err = 0; 1126 } 1127 1128 return err; 1129 } 1130 EXPORT_SYMBOL_GPL(map_vm_area); 1131 1132 /*** Old vmalloc interfaces ***/ 1133 DEFINE_RWLOCK(vmlist_lock); 1134 struct vm_struct *vmlist; 1135 1136 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1137 unsigned long flags, void *caller) 1138 { 1139 struct vm_struct *tmp, **p; 1140 1141 vm->flags = flags; 1142 vm->addr = (void *)va->va_start; 1143 vm->size = va->va_end - va->va_start; 1144 vm->caller = caller; 1145 va->private = vm; 1146 va->flags |= VM_VM_AREA; 1147 1148 write_lock(&vmlist_lock); 1149 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1150 if (tmp->addr >= vm->addr) 1151 break; 1152 } 1153 vm->next = *p; 1154 *p = vm; 1155 write_unlock(&vmlist_lock); 1156 } 1157 1158 static struct vm_struct *__get_vm_area_node(unsigned long size, 1159 unsigned long flags, unsigned long start, unsigned long end, 1160 int node, gfp_t gfp_mask, void *caller) 1161 { 1162 static struct vmap_area *va; 1163 struct vm_struct *area; 1164 unsigned long align = 1; 1165 1166 BUG_ON(in_interrupt()); 1167 if (flags & VM_IOREMAP) { 1168 int bit = fls(size); 1169 1170 if (bit > IOREMAP_MAX_ORDER) 1171 bit = IOREMAP_MAX_ORDER; 1172 else if (bit < PAGE_SHIFT) 1173 bit = PAGE_SHIFT; 1174 1175 align = 1ul << bit; 1176 } 1177 1178 size = PAGE_ALIGN(size); 1179 if (unlikely(!size)) 1180 return NULL; 1181 1182 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1183 if (unlikely(!area)) 1184 return NULL; 1185 1186 /* 1187 * We always allocate a guard page. 1188 */ 1189 size += PAGE_SIZE; 1190 1191 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1192 if (IS_ERR(va)) { 1193 kfree(area); 1194 return NULL; 1195 } 1196 1197 insert_vmalloc_vm(area, va, flags, caller); 1198 return area; 1199 } 1200 1201 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1202 unsigned long start, unsigned long end) 1203 { 1204 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1205 __builtin_return_address(0)); 1206 } 1207 EXPORT_SYMBOL_GPL(__get_vm_area); 1208 1209 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1210 unsigned long start, unsigned long end, 1211 void *caller) 1212 { 1213 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1214 caller); 1215 } 1216 1217 /** 1218 * get_vm_area - reserve a contiguous kernel virtual area 1219 * @size: size of the area 1220 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1221 * 1222 * Search an area of @size in the kernel virtual mapping area, 1223 * and reserved it for out purposes. Returns the area descriptor 1224 * on success or %NULL on failure. 1225 */ 1226 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1227 { 1228 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1229 -1, GFP_KERNEL, __builtin_return_address(0)); 1230 } 1231 1232 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1233 void *caller) 1234 { 1235 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1236 -1, GFP_KERNEL, caller); 1237 } 1238 1239 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1240 int node, gfp_t gfp_mask) 1241 { 1242 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1243 gfp_mask, __builtin_return_address(0)); 1244 } 1245 1246 static struct vm_struct *find_vm_area(const void *addr) 1247 { 1248 struct vmap_area *va; 1249 1250 va = find_vmap_area((unsigned long)addr); 1251 if (va && va->flags & VM_VM_AREA) 1252 return va->private; 1253 1254 return NULL; 1255 } 1256 1257 /** 1258 * remove_vm_area - find and remove a continuous kernel virtual area 1259 * @addr: base address 1260 * 1261 * Search for the kernel VM area starting at @addr, and remove it. 1262 * This function returns the found VM area, but using it is NOT safe 1263 * on SMP machines, except for its size or flags. 1264 */ 1265 struct vm_struct *remove_vm_area(const void *addr) 1266 { 1267 struct vmap_area *va; 1268 1269 va = find_vmap_area((unsigned long)addr); 1270 if (va && va->flags & VM_VM_AREA) { 1271 struct vm_struct *vm = va->private; 1272 struct vm_struct *tmp, **p; 1273 /* 1274 * remove from list and disallow access to this vm_struct 1275 * before unmap. (address range confliction is maintained by 1276 * vmap.) 1277 */ 1278 write_lock(&vmlist_lock); 1279 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1280 ; 1281 *p = tmp->next; 1282 write_unlock(&vmlist_lock); 1283 1284 vmap_debug_free_range(va->va_start, va->va_end); 1285 free_unmap_vmap_area(va); 1286 vm->size -= PAGE_SIZE; 1287 1288 return vm; 1289 } 1290 return NULL; 1291 } 1292 1293 static void __vunmap(const void *addr, int deallocate_pages) 1294 { 1295 struct vm_struct *area; 1296 1297 if (!addr) 1298 return; 1299 1300 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1301 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1302 return; 1303 } 1304 1305 area = remove_vm_area(addr); 1306 if (unlikely(!area)) { 1307 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1308 addr); 1309 return; 1310 } 1311 1312 debug_check_no_locks_freed(addr, area->size); 1313 debug_check_no_obj_freed(addr, area->size); 1314 1315 if (deallocate_pages) { 1316 int i; 1317 1318 for (i = 0; i < area->nr_pages; i++) { 1319 struct page *page = area->pages[i]; 1320 1321 BUG_ON(!page); 1322 __free_page(page); 1323 } 1324 1325 if (area->flags & VM_VPAGES) 1326 vfree(area->pages); 1327 else 1328 kfree(area->pages); 1329 } 1330 1331 kfree(area); 1332 return; 1333 } 1334 1335 /** 1336 * vfree - release memory allocated by vmalloc() 1337 * @addr: memory base address 1338 * 1339 * Free the virtually continuous memory area starting at @addr, as 1340 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1341 * NULL, no operation is performed. 1342 * 1343 * Must not be called in interrupt context. 1344 */ 1345 void vfree(const void *addr) 1346 { 1347 BUG_ON(in_interrupt()); 1348 1349 kmemleak_free(addr); 1350 1351 __vunmap(addr, 1); 1352 } 1353 EXPORT_SYMBOL(vfree); 1354 1355 /** 1356 * vunmap - release virtual mapping obtained by vmap() 1357 * @addr: memory base address 1358 * 1359 * Free the virtually contiguous memory area starting at @addr, 1360 * which was created from the page array passed to vmap(). 1361 * 1362 * Must not be called in interrupt context. 1363 */ 1364 void vunmap(const void *addr) 1365 { 1366 BUG_ON(in_interrupt()); 1367 might_sleep(); 1368 __vunmap(addr, 0); 1369 } 1370 EXPORT_SYMBOL(vunmap); 1371 1372 /** 1373 * vmap - map an array of pages into virtually contiguous space 1374 * @pages: array of page pointers 1375 * @count: number of pages to map 1376 * @flags: vm_area->flags 1377 * @prot: page protection for the mapping 1378 * 1379 * Maps @count pages from @pages into contiguous kernel virtual 1380 * space. 1381 */ 1382 void *vmap(struct page **pages, unsigned int count, 1383 unsigned long flags, pgprot_t prot) 1384 { 1385 struct vm_struct *area; 1386 1387 might_sleep(); 1388 1389 if (count > totalram_pages) 1390 return NULL; 1391 1392 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1393 __builtin_return_address(0)); 1394 if (!area) 1395 return NULL; 1396 1397 if (map_vm_area(area, prot, &pages)) { 1398 vunmap(area->addr); 1399 return NULL; 1400 } 1401 1402 return area->addr; 1403 } 1404 EXPORT_SYMBOL(vmap); 1405 1406 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1407 int node, void *caller); 1408 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1409 pgprot_t prot, int node, void *caller) 1410 { 1411 struct page **pages; 1412 unsigned int nr_pages, array_size, i; 1413 1414 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1415 array_size = (nr_pages * sizeof(struct page *)); 1416 1417 area->nr_pages = nr_pages; 1418 /* Please note that the recursion is strictly bounded. */ 1419 if (array_size > PAGE_SIZE) { 1420 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1421 PAGE_KERNEL, node, caller); 1422 area->flags |= VM_VPAGES; 1423 } else { 1424 pages = kmalloc_node(array_size, 1425 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1426 node); 1427 } 1428 area->pages = pages; 1429 area->caller = caller; 1430 if (!area->pages) { 1431 remove_vm_area(area->addr); 1432 kfree(area); 1433 return NULL; 1434 } 1435 1436 for (i = 0; i < area->nr_pages; i++) { 1437 struct page *page; 1438 1439 if (node < 0) 1440 page = alloc_page(gfp_mask); 1441 else 1442 page = alloc_pages_node(node, gfp_mask, 0); 1443 1444 if (unlikely(!page)) { 1445 /* Successfully allocated i pages, free them in __vunmap() */ 1446 area->nr_pages = i; 1447 goto fail; 1448 } 1449 area->pages[i] = page; 1450 } 1451 1452 if (map_vm_area(area, prot, &pages)) 1453 goto fail; 1454 return area->addr; 1455 1456 fail: 1457 vfree(area->addr); 1458 return NULL; 1459 } 1460 1461 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1462 { 1463 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, 1464 __builtin_return_address(0)); 1465 1466 /* 1467 * A ref_count = 3 is needed because the vm_struct and vmap_area 1468 * structures allocated in the __get_vm_area_node() function contain 1469 * references to the virtual address of the vmalloc'ed block. 1470 */ 1471 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); 1472 1473 return addr; 1474 } 1475 1476 /** 1477 * __vmalloc_node - allocate virtually contiguous memory 1478 * @size: allocation size 1479 * @gfp_mask: flags for the page level allocator 1480 * @prot: protection mask for the allocated pages 1481 * @node: node to use for allocation or -1 1482 * @caller: caller's return address 1483 * 1484 * Allocate enough pages to cover @size from the page level 1485 * allocator with @gfp_mask flags. Map them into contiguous 1486 * kernel virtual space, using a pagetable protection of @prot. 1487 */ 1488 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1489 int node, void *caller) 1490 { 1491 struct vm_struct *area; 1492 void *addr; 1493 unsigned long real_size = size; 1494 1495 size = PAGE_ALIGN(size); 1496 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1497 return NULL; 1498 1499 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1500 node, gfp_mask, caller); 1501 1502 if (!area) 1503 return NULL; 1504 1505 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1506 1507 /* 1508 * A ref_count = 3 is needed because the vm_struct and vmap_area 1509 * structures allocated in the __get_vm_area_node() function contain 1510 * references to the virtual address of the vmalloc'ed block. 1511 */ 1512 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1513 1514 return addr; 1515 } 1516 1517 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1518 { 1519 return __vmalloc_node(size, gfp_mask, prot, -1, 1520 __builtin_return_address(0)); 1521 } 1522 EXPORT_SYMBOL(__vmalloc); 1523 1524 /** 1525 * vmalloc - allocate virtually contiguous memory 1526 * @size: allocation size 1527 * Allocate enough pages to cover @size from the page level 1528 * allocator and map them into contiguous kernel virtual space. 1529 * 1530 * For tight control over page level allocator and protection flags 1531 * use __vmalloc() instead. 1532 */ 1533 void *vmalloc(unsigned long size) 1534 { 1535 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1536 -1, __builtin_return_address(0)); 1537 } 1538 EXPORT_SYMBOL(vmalloc); 1539 1540 /** 1541 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1542 * @size: allocation size 1543 * 1544 * The resulting memory area is zeroed so it can be mapped to userspace 1545 * without leaking data. 1546 */ 1547 void *vmalloc_user(unsigned long size) 1548 { 1549 struct vm_struct *area; 1550 void *ret; 1551 1552 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1553 PAGE_KERNEL, -1, __builtin_return_address(0)); 1554 if (ret) { 1555 area = find_vm_area(ret); 1556 area->flags |= VM_USERMAP; 1557 } 1558 return ret; 1559 } 1560 EXPORT_SYMBOL(vmalloc_user); 1561 1562 /** 1563 * vmalloc_node - allocate memory on a specific node 1564 * @size: allocation size 1565 * @node: numa node 1566 * 1567 * Allocate enough pages to cover @size from the page level 1568 * allocator and map them into contiguous kernel virtual space. 1569 * 1570 * For tight control over page level allocator and protection flags 1571 * use __vmalloc() instead. 1572 */ 1573 void *vmalloc_node(unsigned long size, int node) 1574 { 1575 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1576 node, __builtin_return_address(0)); 1577 } 1578 EXPORT_SYMBOL(vmalloc_node); 1579 1580 #ifndef PAGE_KERNEL_EXEC 1581 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1582 #endif 1583 1584 /** 1585 * vmalloc_exec - allocate virtually contiguous, executable memory 1586 * @size: allocation size 1587 * 1588 * Kernel-internal function to allocate enough pages to cover @size 1589 * the page level allocator and map them into contiguous and 1590 * executable kernel virtual space. 1591 * 1592 * For tight control over page level allocator and protection flags 1593 * use __vmalloc() instead. 1594 */ 1595 1596 void *vmalloc_exec(unsigned long size) 1597 { 1598 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1599 -1, __builtin_return_address(0)); 1600 } 1601 1602 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1603 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1604 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1605 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1606 #else 1607 #define GFP_VMALLOC32 GFP_KERNEL 1608 #endif 1609 1610 /** 1611 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1612 * @size: allocation size 1613 * 1614 * Allocate enough 32bit PA addressable pages to cover @size from the 1615 * page level allocator and map them into contiguous kernel virtual space. 1616 */ 1617 void *vmalloc_32(unsigned long size) 1618 { 1619 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, 1620 -1, __builtin_return_address(0)); 1621 } 1622 EXPORT_SYMBOL(vmalloc_32); 1623 1624 /** 1625 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1626 * @size: allocation size 1627 * 1628 * The resulting memory area is 32bit addressable and zeroed so it can be 1629 * mapped to userspace without leaking data. 1630 */ 1631 void *vmalloc_32_user(unsigned long size) 1632 { 1633 struct vm_struct *area; 1634 void *ret; 1635 1636 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1637 -1, __builtin_return_address(0)); 1638 if (ret) { 1639 area = find_vm_area(ret); 1640 area->flags |= VM_USERMAP; 1641 } 1642 return ret; 1643 } 1644 EXPORT_SYMBOL(vmalloc_32_user); 1645 1646 /* 1647 * small helper routine , copy contents to buf from addr. 1648 * If the page is not present, fill zero. 1649 */ 1650 1651 static int aligned_vread(char *buf, char *addr, unsigned long count) 1652 { 1653 struct page *p; 1654 int copied = 0; 1655 1656 while (count) { 1657 unsigned long offset, length; 1658 1659 offset = (unsigned long)addr & ~PAGE_MASK; 1660 length = PAGE_SIZE - offset; 1661 if (length > count) 1662 length = count; 1663 p = vmalloc_to_page(addr); 1664 /* 1665 * To do safe access to this _mapped_ area, we need 1666 * lock. But adding lock here means that we need to add 1667 * overhead of vmalloc()/vfree() calles for this _debug_ 1668 * interface, rarely used. Instead of that, we'll use 1669 * kmap() and get small overhead in this access function. 1670 */ 1671 if (p) { 1672 /* 1673 * we can expect USER0 is not used (see vread/vwrite's 1674 * function description) 1675 */ 1676 void *map = kmap_atomic(p, KM_USER0); 1677 memcpy(buf, map + offset, length); 1678 kunmap_atomic(map, KM_USER0); 1679 } else 1680 memset(buf, 0, length); 1681 1682 addr += length; 1683 buf += length; 1684 copied += length; 1685 count -= length; 1686 } 1687 return copied; 1688 } 1689 1690 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1691 { 1692 struct page *p; 1693 int copied = 0; 1694 1695 while (count) { 1696 unsigned long offset, length; 1697 1698 offset = (unsigned long)addr & ~PAGE_MASK; 1699 length = PAGE_SIZE - offset; 1700 if (length > count) 1701 length = count; 1702 p = vmalloc_to_page(addr); 1703 /* 1704 * To do safe access to this _mapped_ area, we need 1705 * lock. But adding lock here means that we need to add 1706 * overhead of vmalloc()/vfree() calles for this _debug_ 1707 * interface, rarely used. Instead of that, we'll use 1708 * kmap() and get small overhead in this access function. 1709 */ 1710 if (p) { 1711 /* 1712 * we can expect USER0 is not used (see vread/vwrite's 1713 * function description) 1714 */ 1715 void *map = kmap_atomic(p, KM_USER0); 1716 memcpy(map + offset, buf, length); 1717 kunmap_atomic(map, KM_USER0); 1718 } 1719 addr += length; 1720 buf += length; 1721 copied += length; 1722 count -= length; 1723 } 1724 return copied; 1725 } 1726 1727 /** 1728 * vread() - read vmalloc area in a safe way. 1729 * @buf: buffer for reading data 1730 * @addr: vm address. 1731 * @count: number of bytes to be read. 1732 * 1733 * Returns # of bytes which addr and buf should be increased. 1734 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1735 * includes any intersect with alive vmalloc area. 1736 * 1737 * This function checks that addr is a valid vmalloc'ed area, and 1738 * copy data from that area to a given buffer. If the given memory range 1739 * of [addr...addr+count) includes some valid address, data is copied to 1740 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1741 * IOREMAP area is treated as memory hole and no copy is done. 1742 * 1743 * If [addr...addr+count) doesn't includes any intersects with alive 1744 * vm_struct area, returns 0. 1745 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1746 * the caller should guarantee KM_USER0 is not used. 1747 * 1748 * Note: In usual ops, vread() is never necessary because the caller 1749 * should know vmalloc() area is valid and can use memcpy(). 1750 * This is for routines which have to access vmalloc area without 1751 * any informaion, as /dev/kmem. 1752 * 1753 */ 1754 1755 long vread(char *buf, char *addr, unsigned long count) 1756 { 1757 struct vm_struct *tmp; 1758 char *vaddr, *buf_start = buf; 1759 unsigned long buflen = count; 1760 unsigned long n; 1761 1762 /* Don't allow overflow */ 1763 if ((unsigned long) addr + count < count) 1764 count = -(unsigned long) addr; 1765 1766 read_lock(&vmlist_lock); 1767 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1768 vaddr = (char *) tmp->addr; 1769 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1770 continue; 1771 while (addr < vaddr) { 1772 if (count == 0) 1773 goto finished; 1774 *buf = '\0'; 1775 buf++; 1776 addr++; 1777 count--; 1778 } 1779 n = vaddr + tmp->size - PAGE_SIZE - addr; 1780 if (n > count) 1781 n = count; 1782 if (!(tmp->flags & VM_IOREMAP)) 1783 aligned_vread(buf, addr, n); 1784 else /* IOREMAP area is treated as memory hole */ 1785 memset(buf, 0, n); 1786 buf += n; 1787 addr += n; 1788 count -= n; 1789 } 1790 finished: 1791 read_unlock(&vmlist_lock); 1792 1793 if (buf == buf_start) 1794 return 0; 1795 /* zero-fill memory holes */ 1796 if (buf != buf_start + buflen) 1797 memset(buf, 0, buflen - (buf - buf_start)); 1798 1799 return buflen; 1800 } 1801 1802 /** 1803 * vwrite() - write vmalloc area in a safe way. 1804 * @buf: buffer for source data 1805 * @addr: vm address. 1806 * @count: number of bytes to be read. 1807 * 1808 * Returns # of bytes which addr and buf should be incresed. 1809 * (same number to @count). 1810 * If [addr...addr+count) doesn't includes any intersect with valid 1811 * vmalloc area, returns 0. 1812 * 1813 * This function checks that addr is a valid vmalloc'ed area, and 1814 * copy data from a buffer to the given addr. If specified range of 1815 * [addr...addr+count) includes some valid address, data is copied from 1816 * proper area of @buf. If there are memory holes, no copy to hole. 1817 * IOREMAP area is treated as memory hole and no copy is done. 1818 * 1819 * If [addr...addr+count) doesn't includes any intersects with alive 1820 * vm_struct area, returns 0. 1821 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1822 * the caller should guarantee KM_USER0 is not used. 1823 * 1824 * Note: In usual ops, vwrite() is never necessary because the caller 1825 * should know vmalloc() area is valid and can use memcpy(). 1826 * This is for routines which have to access vmalloc area without 1827 * any informaion, as /dev/kmem. 1828 * 1829 * The caller should guarantee KM_USER1 is not used. 1830 */ 1831 1832 long vwrite(char *buf, char *addr, unsigned long count) 1833 { 1834 struct vm_struct *tmp; 1835 char *vaddr; 1836 unsigned long n, buflen; 1837 int copied = 0; 1838 1839 /* Don't allow overflow */ 1840 if ((unsigned long) addr + count < count) 1841 count = -(unsigned long) addr; 1842 buflen = count; 1843 1844 read_lock(&vmlist_lock); 1845 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1846 vaddr = (char *) tmp->addr; 1847 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1848 continue; 1849 while (addr < vaddr) { 1850 if (count == 0) 1851 goto finished; 1852 buf++; 1853 addr++; 1854 count--; 1855 } 1856 n = vaddr + tmp->size - PAGE_SIZE - addr; 1857 if (n > count) 1858 n = count; 1859 if (!(tmp->flags & VM_IOREMAP)) { 1860 aligned_vwrite(buf, addr, n); 1861 copied++; 1862 } 1863 buf += n; 1864 addr += n; 1865 count -= n; 1866 } 1867 finished: 1868 read_unlock(&vmlist_lock); 1869 if (!copied) 1870 return 0; 1871 return buflen; 1872 } 1873 1874 /** 1875 * remap_vmalloc_range - map vmalloc pages to userspace 1876 * @vma: vma to cover (map full range of vma) 1877 * @addr: vmalloc memory 1878 * @pgoff: number of pages into addr before first page to map 1879 * 1880 * Returns: 0 for success, -Exxx on failure 1881 * 1882 * This function checks that addr is a valid vmalloc'ed area, and 1883 * that it is big enough to cover the vma. Will return failure if 1884 * that criteria isn't met. 1885 * 1886 * Similar to remap_pfn_range() (see mm/memory.c) 1887 */ 1888 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1889 unsigned long pgoff) 1890 { 1891 struct vm_struct *area; 1892 unsigned long uaddr = vma->vm_start; 1893 unsigned long usize = vma->vm_end - vma->vm_start; 1894 1895 if ((PAGE_SIZE-1) & (unsigned long)addr) 1896 return -EINVAL; 1897 1898 area = find_vm_area(addr); 1899 if (!area) 1900 return -EINVAL; 1901 1902 if (!(area->flags & VM_USERMAP)) 1903 return -EINVAL; 1904 1905 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1906 return -EINVAL; 1907 1908 addr += pgoff << PAGE_SHIFT; 1909 do { 1910 struct page *page = vmalloc_to_page(addr); 1911 int ret; 1912 1913 ret = vm_insert_page(vma, uaddr, page); 1914 if (ret) 1915 return ret; 1916 1917 uaddr += PAGE_SIZE; 1918 addr += PAGE_SIZE; 1919 usize -= PAGE_SIZE; 1920 } while (usize > 0); 1921 1922 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1923 vma->vm_flags |= VM_RESERVED; 1924 1925 return 0; 1926 } 1927 EXPORT_SYMBOL(remap_vmalloc_range); 1928 1929 /* 1930 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1931 * have one. 1932 */ 1933 void __attribute__((weak)) vmalloc_sync_all(void) 1934 { 1935 } 1936 1937 1938 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1939 { 1940 /* apply_to_page_range() does all the hard work. */ 1941 return 0; 1942 } 1943 1944 /** 1945 * alloc_vm_area - allocate a range of kernel address space 1946 * @size: size of the area 1947 * 1948 * Returns: NULL on failure, vm_struct on success 1949 * 1950 * This function reserves a range of kernel address space, and 1951 * allocates pagetables to map that range. No actual mappings 1952 * are created. If the kernel address space is not shared 1953 * between processes, it syncs the pagetable across all 1954 * processes. 1955 */ 1956 struct vm_struct *alloc_vm_area(size_t size) 1957 { 1958 struct vm_struct *area; 1959 1960 area = get_vm_area_caller(size, VM_IOREMAP, 1961 __builtin_return_address(0)); 1962 if (area == NULL) 1963 return NULL; 1964 1965 /* 1966 * This ensures that page tables are constructed for this region 1967 * of kernel virtual address space and mapped into init_mm. 1968 */ 1969 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1970 area->size, f, NULL)) { 1971 free_vm_area(area); 1972 return NULL; 1973 } 1974 1975 /* Make sure the pagetables are constructed in process kernel 1976 mappings */ 1977 vmalloc_sync_all(); 1978 1979 return area; 1980 } 1981 EXPORT_SYMBOL_GPL(alloc_vm_area); 1982 1983 void free_vm_area(struct vm_struct *area) 1984 { 1985 struct vm_struct *ret; 1986 ret = remove_vm_area(area->addr); 1987 BUG_ON(ret != area); 1988 kfree(area); 1989 } 1990 EXPORT_SYMBOL_GPL(free_vm_area); 1991 1992 static struct vmap_area *node_to_va(struct rb_node *n) 1993 { 1994 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 1995 } 1996 1997 /** 1998 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 1999 * @end: target address 2000 * @pnext: out arg for the next vmap_area 2001 * @pprev: out arg for the previous vmap_area 2002 * 2003 * Returns: %true if either or both of next and prev are found, 2004 * %false if no vmap_area exists 2005 * 2006 * Find vmap_areas end addresses of which enclose @end. ie. if not 2007 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2008 */ 2009 static bool pvm_find_next_prev(unsigned long end, 2010 struct vmap_area **pnext, 2011 struct vmap_area **pprev) 2012 { 2013 struct rb_node *n = vmap_area_root.rb_node; 2014 struct vmap_area *va = NULL; 2015 2016 while (n) { 2017 va = rb_entry(n, struct vmap_area, rb_node); 2018 if (end < va->va_end) 2019 n = n->rb_left; 2020 else if (end > va->va_end) 2021 n = n->rb_right; 2022 else 2023 break; 2024 } 2025 2026 if (!va) 2027 return false; 2028 2029 if (va->va_end > end) { 2030 *pnext = va; 2031 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2032 } else { 2033 *pprev = va; 2034 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2035 } 2036 return true; 2037 } 2038 2039 /** 2040 * pvm_determine_end - find the highest aligned address between two vmap_areas 2041 * @pnext: in/out arg for the next vmap_area 2042 * @pprev: in/out arg for the previous vmap_area 2043 * @align: alignment 2044 * 2045 * Returns: determined end address 2046 * 2047 * Find the highest aligned address between *@pnext and *@pprev below 2048 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2049 * down address is between the end addresses of the two vmap_areas. 2050 * 2051 * Please note that the address returned by this function may fall 2052 * inside *@pnext vmap_area. The caller is responsible for checking 2053 * that. 2054 */ 2055 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2056 struct vmap_area **pprev, 2057 unsigned long align) 2058 { 2059 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2060 unsigned long addr; 2061 2062 if (*pnext) 2063 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2064 else 2065 addr = vmalloc_end; 2066 2067 while (*pprev && (*pprev)->va_end > addr) { 2068 *pnext = *pprev; 2069 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2070 } 2071 2072 return addr; 2073 } 2074 2075 /** 2076 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2077 * @offsets: array containing offset of each area 2078 * @sizes: array containing size of each area 2079 * @nr_vms: the number of areas to allocate 2080 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2081 * @gfp_mask: allocation mask 2082 * 2083 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2084 * vm_structs on success, %NULL on failure 2085 * 2086 * Percpu allocator wants to use congruent vm areas so that it can 2087 * maintain the offsets among percpu areas. This function allocates 2088 * congruent vmalloc areas for it. These areas tend to be scattered 2089 * pretty far, distance between two areas easily going up to 2090 * gigabytes. To avoid interacting with regular vmallocs, these areas 2091 * are allocated from top. 2092 * 2093 * Despite its complicated look, this allocator is rather simple. It 2094 * does everything top-down and scans areas from the end looking for 2095 * matching slot. While scanning, if any of the areas overlaps with 2096 * existing vmap_area, the base address is pulled down to fit the 2097 * area. Scanning is repeated till all the areas fit and then all 2098 * necessary data structres are inserted and the result is returned. 2099 */ 2100 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2101 const size_t *sizes, int nr_vms, 2102 size_t align, gfp_t gfp_mask) 2103 { 2104 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2105 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2106 struct vmap_area **vas, *prev, *next; 2107 struct vm_struct **vms; 2108 int area, area2, last_area, term_area; 2109 unsigned long base, start, end, last_end; 2110 bool purged = false; 2111 2112 gfp_mask &= GFP_RECLAIM_MASK; 2113 2114 /* verify parameters and allocate data structures */ 2115 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2116 for (last_area = 0, area = 0; area < nr_vms; area++) { 2117 start = offsets[area]; 2118 end = start + sizes[area]; 2119 2120 /* is everything aligned properly? */ 2121 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2122 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2123 2124 /* detect the area with the highest address */ 2125 if (start > offsets[last_area]) 2126 last_area = area; 2127 2128 for (area2 = 0; area2 < nr_vms; area2++) { 2129 unsigned long start2 = offsets[area2]; 2130 unsigned long end2 = start2 + sizes[area2]; 2131 2132 if (area2 == area) 2133 continue; 2134 2135 BUG_ON(start2 >= start && start2 < end); 2136 BUG_ON(end2 <= end && end2 > start); 2137 } 2138 } 2139 last_end = offsets[last_area] + sizes[last_area]; 2140 2141 if (vmalloc_end - vmalloc_start < last_end) { 2142 WARN_ON(true); 2143 return NULL; 2144 } 2145 2146 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); 2147 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); 2148 if (!vas || !vms) 2149 goto err_free; 2150 2151 for (area = 0; area < nr_vms; area++) { 2152 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); 2153 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); 2154 if (!vas[area] || !vms[area]) 2155 goto err_free; 2156 } 2157 retry: 2158 spin_lock(&vmap_area_lock); 2159 2160 /* start scanning - we scan from the top, begin with the last area */ 2161 area = term_area = last_area; 2162 start = offsets[area]; 2163 end = start + sizes[area]; 2164 2165 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2166 base = vmalloc_end - last_end; 2167 goto found; 2168 } 2169 base = pvm_determine_end(&next, &prev, align) - end; 2170 2171 while (true) { 2172 BUG_ON(next && next->va_end <= base + end); 2173 BUG_ON(prev && prev->va_end > base + end); 2174 2175 /* 2176 * base might have underflowed, add last_end before 2177 * comparing. 2178 */ 2179 if (base + last_end < vmalloc_start + last_end) { 2180 spin_unlock(&vmap_area_lock); 2181 if (!purged) { 2182 purge_vmap_area_lazy(); 2183 purged = true; 2184 goto retry; 2185 } 2186 goto err_free; 2187 } 2188 2189 /* 2190 * If next overlaps, move base downwards so that it's 2191 * right below next and then recheck. 2192 */ 2193 if (next && next->va_start < base + end) { 2194 base = pvm_determine_end(&next, &prev, align) - end; 2195 term_area = area; 2196 continue; 2197 } 2198 2199 /* 2200 * If prev overlaps, shift down next and prev and move 2201 * base so that it's right below new next and then 2202 * recheck. 2203 */ 2204 if (prev && prev->va_end > base + start) { 2205 next = prev; 2206 prev = node_to_va(rb_prev(&next->rb_node)); 2207 base = pvm_determine_end(&next, &prev, align) - end; 2208 term_area = area; 2209 continue; 2210 } 2211 2212 /* 2213 * This area fits, move on to the previous one. If 2214 * the previous one is the terminal one, we're done. 2215 */ 2216 area = (area + nr_vms - 1) % nr_vms; 2217 if (area == term_area) 2218 break; 2219 start = offsets[area]; 2220 end = start + sizes[area]; 2221 pvm_find_next_prev(base + end, &next, &prev); 2222 } 2223 found: 2224 /* we've found a fitting base, insert all va's */ 2225 for (area = 0; area < nr_vms; area++) { 2226 struct vmap_area *va = vas[area]; 2227 2228 va->va_start = base + offsets[area]; 2229 va->va_end = va->va_start + sizes[area]; 2230 __insert_vmap_area(va); 2231 } 2232 2233 vmap_area_pcpu_hole = base + offsets[last_area]; 2234 2235 spin_unlock(&vmap_area_lock); 2236 2237 /* insert all vm's */ 2238 for (area = 0; area < nr_vms; area++) 2239 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2240 pcpu_get_vm_areas); 2241 2242 kfree(vas); 2243 return vms; 2244 2245 err_free: 2246 for (area = 0; area < nr_vms; area++) { 2247 if (vas) 2248 kfree(vas[area]); 2249 if (vms) 2250 kfree(vms[area]); 2251 } 2252 kfree(vas); 2253 kfree(vms); 2254 return NULL; 2255 } 2256 2257 /** 2258 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2259 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2260 * @nr_vms: the number of allocated areas 2261 * 2262 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2263 */ 2264 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2265 { 2266 int i; 2267 2268 for (i = 0; i < nr_vms; i++) 2269 free_vm_area(vms[i]); 2270 kfree(vms); 2271 } 2272 2273 #ifdef CONFIG_PROC_FS 2274 static void *s_start(struct seq_file *m, loff_t *pos) 2275 { 2276 loff_t n = *pos; 2277 struct vm_struct *v; 2278 2279 read_lock(&vmlist_lock); 2280 v = vmlist; 2281 while (n > 0 && v) { 2282 n--; 2283 v = v->next; 2284 } 2285 if (!n) 2286 return v; 2287 2288 return NULL; 2289 2290 } 2291 2292 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2293 { 2294 struct vm_struct *v = p; 2295 2296 ++*pos; 2297 return v->next; 2298 } 2299 2300 static void s_stop(struct seq_file *m, void *p) 2301 { 2302 read_unlock(&vmlist_lock); 2303 } 2304 2305 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2306 { 2307 if (NUMA_BUILD) { 2308 unsigned int nr, *counters = m->private; 2309 2310 if (!counters) 2311 return; 2312 2313 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2314 2315 for (nr = 0; nr < v->nr_pages; nr++) 2316 counters[page_to_nid(v->pages[nr])]++; 2317 2318 for_each_node_state(nr, N_HIGH_MEMORY) 2319 if (counters[nr]) 2320 seq_printf(m, " N%u=%u", nr, counters[nr]); 2321 } 2322 } 2323 2324 static int s_show(struct seq_file *m, void *p) 2325 { 2326 struct vm_struct *v = p; 2327 2328 seq_printf(m, "0x%p-0x%p %7ld", 2329 v->addr, v->addr + v->size, v->size); 2330 2331 if (v->caller) { 2332 char buff[KSYM_SYMBOL_LEN]; 2333 2334 seq_putc(m, ' '); 2335 sprint_symbol(buff, (unsigned long)v->caller); 2336 seq_puts(m, buff); 2337 } 2338 2339 if (v->nr_pages) 2340 seq_printf(m, " pages=%d", v->nr_pages); 2341 2342 if (v->phys_addr) 2343 seq_printf(m, " phys=%lx", v->phys_addr); 2344 2345 if (v->flags & VM_IOREMAP) 2346 seq_printf(m, " ioremap"); 2347 2348 if (v->flags & VM_ALLOC) 2349 seq_printf(m, " vmalloc"); 2350 2351 if (v->flags & VM_MAP) 2352 seq_printf(m, " vmap"); 2353 2354 if (v->flags & VM_USERMAP) 2355 seq_printf(m, " user"); 2356 2357 if (v->flags & VM_VPAGES) 2358 seq_printf(m, " vpages"); 2359 2360 show_numa_info(m, v); 2361 seq_putc(m, '\n'); 2362 return 0; 2363 } 2364 2365 static const struct seq_operations vmalloc_op = { 2366 .start = s_start, 2367 .next = s_next, 2368 .stop = s_stop, 2369 .show = s_show, 2370 }; 2371 2372 static int vmalloc_open(struct inode *inode, struct file *file) 2373 { 2374 unsigned int *ptr = NULL; 2375 int ret; 2376 2377 if (NUMA_BUILD) 2378 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2379 ret = seq_open(file, &vmalloc_op); 2380 if (!ret) { 2381 struct seq_file *m = file->private_data; 2382 m->private = ptr; 2383 } else 2384 kfree(ptr); 2385 return ret; 2386 } 2387 2388 static const struct file_operations proc_vmalloc_operations = { 2389 .open = vmalloc_open, 2390 .read = seq_read, 2391 .llseek = seq_lseek, 2392 .release = seq_release_private, 2393 }; 2394 2395 static int __init proc_vmalloc_init(void) 2396 { 2397 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2398 return 0; 2399 } 2400 module_init(proc_vmalloc_init); 2401 #endif 2402 2403