xref: /linux/mm/vmalloc.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/pfn.h>
27 #include <linux/kmemleak.h>
28 #include <linux/highmem.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			return err;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	return nr;
175 }
176 
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 			   pgprot_t prot, struct page **pages)
179 {
180 	int ret;
181 
182 	ret = vmap_page_range_noflush(start, end, prot, pages);
183 	flush_cache_vmap(start, end);
184 	return ret;
185 }
186 
187 static inline int is_vmalloc_or_module_addr(const void *x)
188 {
189 	/*
190 	 * ARM, x86-64 and sparc64 put modules in a special place,
191 	 * and fall back on vmalloc() if that fails. Others
192 	 * just put it in the vmalloc space.
193 	 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 	unsigned long addr = (unsigned long)x;
196 	if (addr >= MODULES_VADDR && addr < MODULES_END)
197 		return 1;
198 #endif
199 	return is_vmalloc_addr(x);
200 }
201 
202 /*
203  * Walk a vmap address to the struct page it maps.
204  */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 	unsigned long addr = (unsigned long) vmalloc_addr;
208 	struct page *page = NULL;
209 	pgd_t *pgd = pgd_offset_k(addr);
210 
211 	/*
212 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 	 * architectures that do not vmalloc module space
214 	 */
215 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216 
217 	if (!pgd_none(*pgd)) {
218 		pud_t *pud = pud_offset(pgd, addr);
219 		if (!pud_none(*pud)) {
220 			pmd_t *pmd = pmd_offset(pud, addr);
221 			if (!pmd_none(*pmd)) {
222 				pte_t *ptep, pte;
223 
224 				ptep = pte_offset_map(pmd, addr);
225 				pte = *ptep;
226 				if (pte_present(pte))
227 					page = pte_page(pte);
228 				pte_unmap(ptep);
229 			}
230 		}
231 	}
232 	return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235 
236 /*
237  * Map a vmalloc()-space virtual address to the physical page frame number.
238  */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244 
245 
246 /*** Global kva allocator ***/
247 
248 #define VM_LAZY_FREE	0x01
249 #define VM_LAZY_FREEING	0x02
250 #define VM_VM_AREA	0x04
251 
252 struct vmap_area {
253 	unsigned long va_start;
254 	unsigned long va_end;
255 	unsigned long flags;
256 	struct rb_node rb_node;		/* address sorted rbtree */
257 	struct list_head list;		/* address sorted list */
258 	struct list_head purge_list;	/* "lazy purge" list */
259 	void *private;
260 	struct rcu_head rcu_head;
261 };
262 
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static struct rb_root vmap_area_root = RB_ROOT;
265 static LIST_HEAD(vmap_area_list);
266 static unsigned long vmap_area_pcpu_hole;
267 
268 static struct vmap_area *__find_vmap_area(unsigned long addr)
269 {
270 	struct rb_node *n = vmap_area_root.rb_node;
271 
272 	while (n) {
273 		struct vmap_area *va;
274 
275 		va = rb_entry(n, struct vmap_area, rb_node);
276 		if (addr < va->va_start)
277 			n = n->rb_left;
278 		else if (addr > va->va_start)
279 			n = n->rb_right;
280 		else
281 			return va;
282 	}
283 
284 	return NULL;
285 }
286 
287 static void __insert_vmap_area(struct vmap_area *va)
288 {
289 	struct rb_node **p = &vmap_area_root.rb_node;
290 	struct rb_node *parent = NULL;
291 	struct rb_node *tmp;
292 
293 	while (*p) {
294 		struct vmap_area *tmp;
295 
296 		parent = *p;
297 		tmp = rb_entry(parent, struct vmap_area, rb_node);
298 		if (va->va_start < tmp->va_end)
299 			p = &(*p)->rb_left;
300 		else if (va->va_end > tmp->va_start)
301 			p = &(*p)->rb_right;
302 		else
303 			BUG();
304 	}
305 
306 	rb_link_node(&va->rb_node, parent, p);
307 	rb_insert_color(&va->rb_node, &vmap_area_root);
308 
309 	/* address-sort this list so it is usable like the vmlist */
310 	tmp = rb_prev(&va->rb_node);
311 	if (tmp) {
312 		struct vmap_area *prev;
313 		prev = rb_entry(tmp, struct vmap_area, rb_node);
314 		list_add_rcu(&va->list, &prev->list);
315 	} else
316 		list_add_rcu(&va->list, &vmap_area_list);
317 }
318 
319 static void purge_vmap_area_lazy(void);
320 
321 /*
322  * Allocate a region of KVA of the specified size and alignment, within the
323  * vstart and vend.
324  */
325 static struct vmap_area *alloc_vmap_area(unsigned long size,
326 				unsigned long align,
327 				unsigned long vstart, unsigned long vend,
328 				int node, gfp_t gfp_mask)
329 {
330 	struct vmap_area *va;
331 	struct rb_node *n;
332 	unsigned long addr;
333 	int purged = 0;
334 
335 	BUG_ON(!size);
336 	BUG_ON(size & ~PAGE_MASK);
337 
338 	va = kmalloc_node(sizeof(struct vmap_area),
339 			gfp_mask & GFP_RECLAIM_MASK, node);
340 	if (unlikely(!va))
341 		return ERR_PTR(-ENOMEM);
342 
343 retry:
344 	addr = ALIGN(vstart, align);
345 
346 	spin_lock(&vmap_area_lock);
347 	if (addr + size - 1 < addr)
348 		goto overflow;
349 
350 	/* XXX: could have a last_hole cache */
351 	n = vmap_area_root.rb_node;
352 	if (n) {
353 		struct vmap_area *first = NULL;
354 
355 		do {
356 			struct vmap_area *tmp;
357 			tmp = rb_entry(n, struct vmap_area, rb_node);
358 			if (tmp->va_end >= addr) {
359 				if (!first && tmp->va_start < addr + size)
360 					first = tmp;
361 				n = n->rb_left;
362 			} else {
363 				first = tmp;
364 				n = n->rb_right;
365 			}
366 		} while (n);
367 
368 		if (!first)
369 			goto found;
370 
371 		if (first->va_end < addr) {
372 			n = rb_next(&first->rb_node);
373 			if (n)
374 				first = rb_entry(n, struct vmap_area, rb_node);
375 			else
376 				goto found;
377 		}
378 
379 		while (addr + size > first->va_start && addr + size <= vend) {
380 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
381 			if (addr + size - 1 < addr)
382 				goto overflow;
383 
384 			n = rb_next(&first->rb_node);
385 			if (n)
386 				first = rb_entry(n, struct vmap_area, rb_node);
387 			else
388 				goto found;
389 		}
390 	}
391 found:
392 	if (addr + size > vend) {
393 overflow:
394 		spin_unlock(&vmap_area_lock);
395 		if (!purged) {
396 			purge_vmap_area_lazy();
397 			purged = 1;
398 			goto retry;
399 		}
400 		if (printk_ratelimit())
401 			printk(KERN_WARNING
402 				"vmap allocation for size %lu failed: "
403 				"use vmalloc=<size> to increase size.\n", size);
404 		kfree(va);
405 		return ERR_PTR(-EBUSY);
406 	}
407 
408 	BUG_ON(addr & (align-1));
409 
410 	va->va_start = addr;
411 	va->va_end = addr + size;
412 	va->flags = 0;
413 	__insert_vmap_area(va);
414 	spin_unlock(&vmap_area_lock);
415 
416 	return va;
417 }
418 
419 static void rcu_free_va(struct rcu_head *head)
420 {
421 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
422 
423 	kfree(va);
424 }
425 
426 static void __free_vmap_area(struct vmap_area *va)
427 {
428 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
429 	rb_erase(&va->rb_node, &vmap_area_root);
430 	RB_CLEAR_NODE(&va->rb_node);
431 	list_del_rcu(&va->list);
432 
433 	/*
434 	 * Track the highest possible candidate for pcpu area
435 	 * allocation.  Areas outside of vmalloc area can be returned
436 	 * here too, consider only end addresses which fall inside
437 	 * vmalloc area proper.
438 	 */
439 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
440 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
441 
442 	call_rcu(&va->rcu_head, rcu_free_va);
443 }
444 
445 /*
446  * Free a region of KVA allocated by alloc_vmap_area
447  */
448 static void free_vmap_area(struct vmap_area *va)
449 {
450 	spin_lock(&vmap_area_lock);
451 	__free_vmap_area(va);
452 	spin_unlock(&vmap_area_lock);
453 }
454 
455 /*
456  * Clear the pagetable entries of a given vmap_area
457  */
458 static void unmap_vmap_area(struct vmap_area *va)
459 {
460 	vunmap_page_range(va->va_start, va->va_end);
461 }
462 
463 static void vmap_debug_free_range(unsigned long start, unsigned long end)
464 {
465 	/*
466 	 * Unmap page tables and force a TLB flush immediately if
467 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
468 	 * bugs similarly to those in linear kernel virtual address
469 	 * space after a page has been freed.
470 	 *
471 	 * All the lazy freeing logic is still retained, in order to
472 	 * minimise intrusiveness of this debugging feature.
473 	 *
474 	 * This is going to be *slow* (linear kernel virtual address
475 	 * debugging doesn't do a broadcast TLB flush so it is a lot
476 	 * faster).
477 	 */
478 #ifdef CONFIG_DEBUG_PAGEALLOC
479 	vunmap_page_range(start, end);
480 	flush_tlb_kernel_range(start, end);
481 #endif
482 }
483 
484 /*
485  * lazy_max_pages is the maximum amount of virtual address space we gather up
486  * before attempting to purge with a TLB flush.
487  *
488  * There is a tradeoff here: a larger number will cover more kernel page tables
489  * and take slightly longer to purge, but it will linearly reduce the number of
490  * global TLB flushes that must be performed. It would seem natural to scale
491  * this number up linearly with the number of CPUs (because vmapping activity
492  * could also scale linearly with the number of CPUs), however it is likely
493  * that in practice, workloads might be constrained in other ways that mean
494  * vmap activity will not scale linearly with CPUs. Also, I want to be
495  * conservative and not introduce a big latency on huge systems, so go with
496  * a less aggressive log scale. It will still be an improvement over the old
497  * code, and it will be simple to change the scale factor if we find that it
498  * becomes a problem on bigger systems.
499  */
500 static unsigned long lazy_max_pages(void)
501 {
502 	unsigned int log;
503 
504 	log = fls(num_online_cpus());
505 
506 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
507 }
508 
509 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
510 
511 /*
512  * Purges all lazily-freed vmap areas.
513  *
514  * If sync is 0 then don't purge if there is already a purge in progress.
515  * If force_flush is 1, then flush kernel TLBs between *start and *end even
516  * if we found no lazy vmap areas to unmap (callers can use this to optimise
517  * their own TLB flushing).
518  * Returns with *start = min(*start, lowest purged address)
519  *              *end = max(*end, highest purged address)
520  */
521 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
522 					int sync, int force_flush)
523 {
524 	static DEFINE_SPINLOCK(purge_lock);
525 	LIST_HEAD(valist);
526 	struct vmap_area *va;
527 	struct vmap_area *n_va;
528 	int nr = 0;
529 
530 	/*
531 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
532 	 * should not expect such behaviour. This just simplifies locking for
533 	 * the case that isn't actually used at the moment anyway.
534 	 */
535 	if (!sync && !force_flush) {
536 		if (!spin_trylock(&purge_lock))
537 			return;
538 	} else
539 		spin_lock(&purge_lock);
540 
541 	rcu_read_lock();
542 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
543 		if (va->flags & VM_LAZY_FREE) {
544 			if (va->va_start < *start)
545 				*start = va->va_start;
546 			if (va->va_end > *end)
547 				*end = va->va_end;
548 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
549 			unmap_vmap_area(va);
550 			list_add_tail(&va->purge_list, &valist);
551 			va->flags |= VM_LAZY_FREEING;
552 			va->flags &= ~VM_LAZY_FREE;
553 		}
554 	}
555 	rcu_read_unlock();
556 
557 	if (nr) {
558 		BUG_ON(nr > atomic_read(&vmap_lazy_nr));
559 		atomic_sub(nr, &vmap_lazy_nr);
560 	}
561 
562 	if (nr || force_flush)
563 		flush_tlb_kernel_range(*start, *end);
564 
565 	if (nr) {
566 		spin_lock(&vmap_area_lock);
567 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
568 			__free_vmap_area(va);
569 		spin_unlock(&vmap_area_lock);
570 	}
571 	spin_unlock(&purge_lock);
572 }
573 
574 /*
575  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
576  * is already purging.
577  */
578 static void try_purge_vmap_area_lazy(void)
579 {
580 	unsigned long start = ULONG_MAX, end = 0;
581 
582 	__purge_vmap_area_lazy(&start, &end, 0, 0);
583 }
584 
585 /*
586  * Kick off a purge of the outstanding lazy areas.
587  */
588 static void purge_vmap_area_lazy(void)
589 {
590 	unsigned long start = ULONG_MAX, end = 0;
591 
592 	__purge_vmap_area_lazy(&start, &end, 1, 0);
593 }
594 
595 /*
596  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
597  * called for the correct range previously.
598  */
599 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
600 {
601 	va->flags |= VM_LAZY_FREE;
602 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
603 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
604 		try_purge_vmap_area_lazy();
605 }
606 
607 /*
608  * Free and unmap a vmap area
609  */
610 static void free_unmap_vmap_area(struct vmap_area *va)
611 {
612 	flush_cache_vunmap(va->va_start, va->va_end);
613 	free_unmap_vmap_area_noflush(va);
614 }
615 
616 static struct vmap_area *find_vmap_area(unsigned long addr)
617 {
618 	struct vmap_area *va;
619 
620 	spin_lock(&vmap_area_lock);
621 	va = __find_vmap_area(addr);
622 	spin_unlock(&vmap_area_lock);
623 
624 	return va;
625 }
626 
627 static void free_unmap_vmap_area_addr(unsigned long addr)
628 {
629 	struct vmap_area *va;
630 
631 	va = find_vmap_area(addr);
632 	BUG_ON(!va);
633 	free_unmap_vmap_area(va);
634 }
635 
636 
637 /*** Per cpu kva allocator ***/
638 
639 /*
640  * vmap space is limited especially on 32 bit architectures. Ensure there is
641  * room for at least 16 percpu vmap blocks per CPU.
642  */
643 /*
644  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
645  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
646  * instead (we just need a rough idea)
647  */
648 #if BITS_PER_LONG == 32
649 #define VMALLOC_SPACE		(128UL*1024*1024)
650 #else
651 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
652 #endif
653 
654 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
655 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
656 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
657 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
658 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
659 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
660 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
661 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
662 						VMALLOC_PAGES / NR_CPUS / 16))
663 
664 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
665 
666 static bool vmap_initialized __read_mostly = false;
667 
668 struct vmap_block_queue {
669 	spinlock_t lock;
670 	struct list_head free;
671 	struct list_head dirty;
672 	unsigned int nr_dirty;
673 };
674 
675 struct vmap_block {
676 	spinlock_t lock;
677 	struct vmap_area *va;
678 	struct vmap_block_queue *vbq;
679 	unsigned long free, dirty;
680 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
681 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
682 	union {
683 		struct list_head free_list;
684 		struct rcu_head rcu_head;
685 	};
686 };
687 
688 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
689 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
690 
691 /*
692  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
693  * in the free path. Could get rid of this if we change the API to return a
694  * "cookie" from alloc, to be passed to free. But no big deal yet.
695  */
696 static DEFINE_SPINLOCK(vmap_block_tree_lock);
697 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
698 
699 /*
700  * We should probably have a fallback mechanism to allocate virtual memory
701  * out of partially filled vmap blocks. However vmap block sizing should be
702  * fairly reasonable according to the vmalloc size, so it shouldn't be a
703  * big problem.
704  */
705 
706 static unsigned long addr_to_vb_idx(unsigned long addr)
707 {
708 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
709 	addr /= VMAP_BLOCK_SIZE;
710 	return addr;
711 }
712 
713 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
714 {
715 	struct vmap_block_queue *vbq;
716 	struct vmap_block *vb;
717 	struct vmap_area *va;
718 	unsigned long vb_idx;
719 	int node, err;
720 
721 	node = numa_node_id();
722 
723 	vb = kmalloc_node(sizeof(struct vmap_block),
724 			gfp_mask & GFP_RECLAIM_MASK, node);
725 	if (unlikely(!vb))
726 		return ERR_PTR(-ENOMEM);
727 
728 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
729 					VMALLOC_START, VMALLOC_END,
730 					node, gfp_mask);
731 	if (unlikely(IS_ERR(va))) {
732 		kfree(vb);
733 		return ERR_PTR(PTR_ERR(va));
734 	}
735 
736 	err = radix_tree_preload(gfp_mask);
737 	if (unlikely(err)) {
738 		kfree(vb);
739 		free_vmap_area(va);
740 		return ERR_PTR(err);
741 	}
742 
743 	spin_lock_init(&vb->lock);
744 	vb->va = va;
745 	vb->free = VMAP_BBMAP_BITS;
746 	vb->dirty = 0;
747 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
748 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
749 	INIT_LIST_HEAD(&vb->free_list);
750 
751 	vb_idx = addr_to_vb_idx(va->va_start);
752 	spin_lock(&vmap_block_tree_lock);
753 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
754 	spin_unlock(&vmap_block_tree_lock);
755 	BUG_ON(err);
756 	radix_tree_preload_end();
757 
758 	vbq = &get_cpu_var(vmap_block_queue);
759 	vb->vbq = vbq;
760 	spin_lock(&vbq->lock);
761 	list_add(&vb->free_list, &vbq->free);
762 	spin_unlock(&vbq->lock);
763 	put_cpu_var(vmap_cpu_blocks);
764 
765 	return vb;
766 }
767 
768 static void rcu_free_vb(struct rcu_head *head)
769 {
770 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
771 
772 	kfree(vb);
773 }
774 
775 static void free_vmap_block(struct vmap_block *vb)
776 {
777 	struct vmap_block *tmp;
778 	unsigned long vb_idx;
779 
780 	BUG_ON(!list_empty(&vb->free_list));
781 
782 	vb_idx = addr_to_vb_idx(vb->va->va_start);
783 	spin_lock(&vmap_block_tree_lock);
784 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
785 	spin_unlock(&vmap_block_tree_lock);
786 	BUG_ON(tmp != vb);
787 
788 	free_unmap_vmap_area_noflush(vb->va);
789 	call_rcu(&vb->rcu_head, rcu_free_vb);
790 }
791 
792 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
793 {
794 	struct vmap_block_queue *vbq;
795 	struct vmap_block *vb;
796 	unsigned long addr = 0;
797 	unsigned int order;
798 
799 	BUG_ON(size & ~PAGE_MASK);
800 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
801 	order = get_order(size);
802 
803 again:
804 	rcu_read_lock();
805 	vbq = &get_cpu_var(vmap_block_queue);
806 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
807 		int i;
808 
809 		spin_lock(&vb->lock);
810 		i = bitmap_find_free_region(vb->alloc_map,
811 						VMAP_BBMAP_BITS, order);
812 
813 		if (i >= 0) {
814 			addr = vb->va->va_start + (i << PAGE_SHIFT);
815 			BUG_ON(addr_to_vb_idx(addr) !=
816 					addr_to_vb_idx(vb->va->va_start));
817 			vb->free -= 1UL << order;
818 			if (vb->free == 0) {
819 				spin_lock(&vbq->lock);
820 				list_del_init(&vb->free_list);
821 				spin_unlock(&vbq->lock);
822 			}
823 			spin_unlock(&vb->lock);
824 			break;
825 		}
826 		spin_unlock(&vb->lock);
827 	}
828 	put_cpu_var(vmap_cpu_blocks);
829 	rcu_read_unlock();
830 
831 	if (!addr) {
832 		vb = new_vmap_block(gfp_mask);
833 		if (IS_ERR(vb))
834 			return vb;
835 		goto again;
836 	}
837 
838 	return (void *)addr;
839 }
840 
841 static void vb_free(const void *addr, unsigned long size)
842 {
843 	unsigned long offset;
844 	unsigned long vb_idx;
845 	unsigned int order;
846 	struct vmap_block *vb;
847 
848 	BUG_ON(size & ~PAGE_MASK);
849 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
850 
851 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
852 
853 	order = get_order(size);
854 
855 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
856 
857 	vb_idx = addr_to_vb_idx((unsigned long)addr);
858 	rcu_read_lock();
859 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
860 	rcu_read_unlock();
861 	BUG_ON(!vb);
862 
863 	spin_lock(&vb->lock);
864 	bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
865 
866 	vb->dirty += 1UL << order;
867 	if (vb->dirty == VMAP_BBMAP_BITS) {
868 		BUG_ON(vb->free || !list_empty(&vb->free_list));
869 		spin_unlock(&vb->lock);
870 		free_vmap_block(vb);
871 	} else
872 		spin_unlock(&vb->lock);
873 }
874 
875 /**
876  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
877  *
878  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
879  * to amortize TLB flushing overheads. What this means is that any page you
880  * have now, may, in a former life, have been mapped into kernel virtual
881  * address by the vmap layer and so there might be some CPUs with TLB entries
882  * still referencing that page (additional to the regular 1:1 kernel mapping).
883  *
884  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
885  * be sure that none of the pages we have control over will have any aliases
886  * from the vmap layer.
887  */
888 void vm_unmap_aliases(void)
889 {
890 	unsigned long start = ULONG_MAX, end = 0;
891 	int cpu;
892 	int flush = 0;
893 
894 	if (unlikely(!vmap_initialized))
895 		return;
896 
897 	for_each_possible_cpu(cpu) {
898 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
899 		struct vmap_block *vb;
900 
901 		rcu_read_lock();
902 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
903 			int i;
904 
905 			spin_lock(&vb->lock);
906 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
907 			while (i < VMAP_BBMAP_BITS) {
908 				unsigned long s, e;
909 				int j;
910 				j = find_next_zero_bit(vb->dirty_map,
911 					VMAP_BBMAP_BITS, i);
912 
913 				s = vb->va->va_start + (i << PAGE_SHIFT);
914 				e = vb->va->va_start + (j << PAGE_SHIFT);
915 				vunmap_page_range(s, e);
916 				flush = 1;
917 
918 				if (s < start)
919 					start = s;
920 				if (e > end)
921 					end = e;
922 
923 				i = j;
924 				i = find_next_bit(vb->dirty_map,
925 							VMAP_BBMAP_BITS, i);
926 			}
927 			spin_unlock(&vb->lock);
928 		}
929 		rcu_read_unlock();
930 	}
931 
932 	__purge_vmap_area_lazy(&start, &end, 1, flush);
933 }
934 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
935 
936 /**
937  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
938  * @mem: the pointer returned by vm_map_ram
939  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
940  */
941 void vm_unmap_ram(const void *mem, unsigned int count)
942 {
943 	unsigned long size = count << PAGE_SHIFT;
944 	unsigned long addr = (unsigned long)mem;
945 
946 	BUG_ON(!addr);
947 	BUG_ON(addr < VMALLOC_START);
948 	BUG_ON(addr > VMALLOC_END);
949 	BUG_ON(addr & (PAGE_SIZE-1));
950 
951 	debug_check_no_locks_freed(mem, size);
952 	vmap_debug_free_range(addr, addr+size);
953 
954 	if (likely(count <= VMAP_MAX_ALLOC))
955 		vb_free(mem, size);
956 	else
957 		free_unmap_vmap_area_addr(addr);
958 }
959 EXPORT_SYMBOL(vm_unmap_ram);
960 
961 /**
962  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
963  * @pages: an array of pointers to the pages to be mapped
964  * @count: number of pages
965  * @node: prefer to allocate data structures on this node
966  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
967  *
968  * Returns: a pointer to the address that has been mapped, or %NULL on failure
969  */
970 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
971 {
972 	unsigned long size = count << PAGE_SHIFT;
973 	unsigned long addr;
974 	void *mem;
975 
976 	if (likely(count <= VMAP_MAX_ALLOC)) {
977 		mem = vb_alloc(size, GFP_KERNEL);
978 		if (IS_ERR(mem))
979 			return NULL;
980 		addr = (unsigned long)mem;
981 	} else {
982 		struct vmap_area *va;
983 		va = alloc_vmap_area(size, PAGE_SIZE,
984 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
985 		if (IS_ERR(va))
986 			return NULL;
987 
988 		addr = va->va_start;
989 		mem = (void *)addr;
990 	}
991 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
992 		vm_unmap_ram(mem, count);
993 		return NULL;
994 	}
995 	return mem;
996 }
997 EXPORT_SYMBOL(vm_map_ram);
998 
999 /**
1000  * vm_area_register_early - register vmap area early during boot
1001  * @vm: vm_struct to register
1002  * @align: requested alignment
1003  *
1004  * This function is used to register kernel vm area before
1005  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1006  * proper values on entry and other fields should be zero.  On return,
1007  * vm->addr contains the allocated address.
1008  *
1009  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1010  */
1011 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1012 {
1013 	static size_t vm_init_off __initdata;
1014 	unsigned long addr;
1015 
1016 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1017 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1018 
1019 	vm->addr = (void *)addr;
1020 
1021 	vm->next = vmlist;
1022 	vmlist = vm;
1023 }
1024 
1025 void __init vmalloc_init(void)
1026 {
1027 	struct vmap_area *va;
1028 	struct vm_struct *tmp;
1029 	int i;
1030 
1031 	for_each_possible_cpu(i) {
1032 		struct vmap_block_queue *vbq;
1033 
1034 		vbq = &per_cpu(vmap_block_queue, i);
1035 		spin_lock_init(&vbq->lock);
1036 		INIT_LIST_HEAD(&vbq->free);
1037 		INIT_LIST_HEAD(&vbq->dirty);
1038 		vbq->nr_dirty = 0;
1039 	}
1040 
1041 	/* Import existing vmlist entries. */
1042 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1043 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1044 		va->flags = tmp->flags | VM_VM_AREA;
1045 		va->va_start = (unsigned long)tmp->addr;
1046 		va->va_end = va->va_start + tmp->size;
1047 		__insert_vmap_area(va);
1048 	}
1049 
1050 	vmap_area_pcpu_hole = VMALLOC_END;
1051 
1052 	vmap_initialized = true;
1053 }
1054 
1055 /**
1056  * map_kernel_range_noflush - map kernel VM area with the specified pages
1057  * @addr: start of the VM area to map
1058  * @size: size of the VM area to map
1059  * @prot: page protection flags to use
1060  * @pages: pages to map
1061  *
1062  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1063  * specify should have been allocated using get_vm_area() and its
1064  * friends.
1065  *
1066  * NOTE:
1067  * This function does NOT do any cache flushing.  The caller is
1068  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1069  * before calling this function.
1070  *
1071  * RETURNS:
1072  * The number of pages mapped on success, -errno on failure.
1073  */
1074 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1075 			     pgprot_t prot, struct page **pages)
1076 {
1077 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1078 }
1079 
1080 /**
1081  * unmap_kernel_range_noflush - unmap kernel VM area
1082  * @addr: start of the VM area to unmap
1083  * @size: size of the VM area to unmap
1084  *
1085  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1086  * specify should have been allocated using get_vm_area() and its
1087  * friends.
1088  *
1089  * NOTE:
1090  * This function does NOT do any cache flushing.  The caller is
1091  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1092  * before calling this function and flush_tlb_kernel_range() after.
1093  */
1094 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1095 {
1096 	vunmap_page_range(addr, addr + size);
1097 }
1098 
1099 /**
1100  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1101  * @addr: start of the VM area to unmap
1102  * @size: size of the VM area to unmap
1103  *
1104  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1105  * the unmapping and tlb after.
1106  */
1107 void unmap_kernel_range(unsigned long addr, unsigned long size)
1108 {
1109 	unsigned long end = addr + size;
1110 
1111 	flush_cache_vunmap(addr, end);
1112 	vunmap_page_range(addr, end);
1113 	flush_tlb_kernel_range(addr, end);
1114 }
1115 
1116 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1117 {
1118 	unsigned long addr = (unsigned long)area->addr;
1119 	unsigned long end = addr + area->size - PAGE_SIZE;
1120 	int err;
1121 
1122 	err = vmap_page_range(addr, end, prot, *pages);
1123 	if (err > 0) {
1124 		*pages += err;
1125 		err = 0;
1126 	}
1127 
1128 	return err;
1129 }
1130 EXPORT_SYMBOL_GPL(map_vm_area);
1131 
1132 /*** Old vmalloc interfaces ***/
1133 DEFINE_RWLOCK(vmlist_lock);
1134 struct vm_struct *vmlist;
1135 
1136 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1137 			      unsigned long flags, void *caller)
1138 {
1139 	struct vm_struct *tmp, **p;
1140 
1141 	vm->flags = flags;
1142 	vm->addr = (void *)va->va_start;
1143 	vm->size = va->va_end - va->va_start;
1144 	vm->caller = caller;
1145 	va->private = vm;
1146 	va->flags |= VM_VM_AREA;
1147 
1148 	write_lock(&vmlist_lock);
1149 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1150 		if (tmp->addr >= vm->addr)
1151 			break;
1152 	}
1153 	vm->next = *p;
1154 	*p = vm;
1155 	write_unlock(&vmlist_lock);
1156 }
1157 
1158 static struct vm_struct *__get_vm_area_node(unsigned long size,
1159 		unsigned long flags, unsigned long start, unsigned long end,
1160 		int node, gfp_t gfp_mask, void *caller)
1161 {
1162 	static struct vmap_area *va;
1163 	struct vm_struct *area;
1164 	unsigned long align = 1;
1165 
1166 	BUG_ON(in_interrupt());
1167 	if (flags & VM_IOREMAP) {
1168 		int bit = fls(size);
1169 
1170 		if (bit > IOREMAP_MAX_ORDER)
1171 			bit = IOREMAP_MAX_ORDER;
1172 		else if (bit < PAGE_SHIFT)
1173 			bit = PAGE_SHIFT;
1174 
1175 		align = 1ul << bit;
1176 	}
1177 
1178 	size = PAGE_ALIGN(size);
1179 	if (unlikely(!size))
1180 		return NULL;
1181 
1182 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1183 	if (unlikely(!area))
1184 		return NULL;
1185 
1186 	/*
1187 	 * We always allocate a guard page.
1188 	 */
1189 	size += PAGE_SIZE;
1190 
1191 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1192 	if (IS_ERR(va)) {
1193 		kfree(area);
1194 		return NULL;
1195 	}
1196 
1197 	insert_vmalloc_vm(area, va, flags, caller);
1198 	return area;
1199 }
1200 
1201 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1202 				unsigned long start, unsigned long end)
1203 {
1204 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1205 						__builtin_return_address(0));
1206 }
1207 EXPORT_SYMBOL_GPL(__get_vm_area);
1208 
1209 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1210 				       unsigned long start, unsigned long end,
1211 				       void *caller)
1212 {
1213 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1214 				  caller);
1215 }
1216 
1217 /**
1218  *	get_vm_area  -  reserve a contiguous kernel virtual area
1219  *	@size:		size of the area
1220  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1221  *
1222  *	Search an area of @size in the kernel virtual mapping area,
1223  *	and reserved it for out purposes.  Returns the area descriptor
1224  *	on success or %NULL on failure.
1225  */
1226 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1227 {
1228 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1229 				-1, GFP_KERNEL, __builtin_return_address(0));
1230 }
1231 
1232 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1233 				void *caller)
1234 {
1235 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1236 						-1, GFP_KERNEL, caller);
1237 }
1238 
1239 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1240 				   int node, gfp_t gfp_mask)
1241 {
1242 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1243 				  gfp_mask, __builtin_return_address(0));
1244 }
1245 
1246 static struct vm_struct *find_vm_area(const void *addr)
1247 {
1248 	struct vmap_area *va;
1249 
1250 	va = find_vmap_area((unsigned long)addr);
1251 	if (va && va->flags & VM_VM_AREA)
1252 		return va->private;
1253 
1254 	return NULL;
1255 }
1256 
1257 /**
1258  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1259  *	@addr:		base address
1260  *
1261  *	Search for the kernel VM area starting at @addr, and remove it.
1262  *	This function returns the found VM area, but using it is NOT safe
1263  *	on SMP machines, except for its size or flags.
1264  */
1265 struct vm_struct *remove_vm_area(const void *addr)
1266 {
1267 	struct vmap_area *va;
1268 
1269 	va = find_vmap_area((unsigned long)addr);
1270 	if (va && va->flags & VM_VM_AREA) {
1271 		struct vm_struct *vm = va->private;
1272 		struct vm_struct *tmp, **p;
1273 		/*
1274 		 * remove from list and disallow access to this vm_struct
1275 		 * before unmap. (address range confliction is maintained by
1276 		 * vmap.)
1277 		 */
1278 		write_lock(&vmlist_lock);
1279 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1280 			;
1281 		*p = tmp->next;
1282 		write_unlock(&vmlist_lock);
1283 
1284 		vmap_debug_free_range(va->va_start, va->va_end);
1285 		free_unmap_vmap_area(va);
1286 		vm->size -= PAGE_SIZE;
1287 
1288 		return vm;
1289 	}
1290 	return NULL;
1291 }
1292 
1293 static void __vunmap(const void *addr, int deallocate_pages)
1294 {
1295 	struct vm_struct *area;
1296 
1297 	if (!addr)
1298 		return;
1299 
1300 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1301 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1302 		return;
1303 	}
1304 
1305 	area = remove_vm_area(addr);
1306 	if (unlikely(!area)) {
1307 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1308 				addr);
1309 		return;
1310 	}
1311 
1312 	debug_check_no_locks_freed(addr, area->size);
1313 	debug_check_no_obj_freed(addr, area->size);
1314 
1315 	if (deallocate_pages) {
1316 		int i;
1317 
1318 		for (i = 0; i < area->nr_pages; i++) {
1319 			struct page *page = area->pages[i];
1320 
1321 			BUG_ON(!page);
1322 			__free_page(page);
1323 		}
1324 
1325 		if (area->flags & VM_VPAGES)
1326 			vfree(area->pages);
1327 		else
1328 			kfree(area->pages);
1329 	}
1330 
1331 	kfree(area);
1332 	return;
1333 }
1334 
1335 /**
1336  *	vfree  -  release memory allocated by vmalloc()
1337  *	@addr:		memory base address
1338  *
1339  *	Free the virtually continuous memory area starting at @addr, as
1340  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1341  *	NULL, no operation is performed.
1342  *
1343  *	Must not be called in interrupt context.
1344  */
1345 void vfree(const void *addr)
1346 {
1347 	BUG_ON(in_interrupt());
1348 
1349 	kmemleak_free(addr);
1350 
1351 	__vunmap(addr, 1);
1352 }
1353 EXPORT_SYMBOL(vfree);
1354 
1355 /**
1356  *	vunmap  -  release virtual mapping obtained by vmap()
1357  *	@addr:		memory base address
1358  *
1359  *	Free the virtually contiguous memory area starting at @addr,
1360  *	which was created from the page array passed to vmap().
1361  *
1362  *	Must not be called in interrupt context.
1363  */
1364 void vunmap(const void *addr)
1365 {
1366 	BUG_ON(in_interrupt());
1367 	might_sleep();
1368 	__vunmap(addr, 0);
1369 }
1370 EXPORT_SYMBOL(vunmap);
1371 
1372 /**
1373  *	vmap  -  map an array of pages into virtually contiguous space
1374  *	@pages:		array of page pointers
1375  *	@count:		number of pages to map
1376  *	@flags:		vm_area->flags
1377  *	@prot:		page protection for the mapping
1378  *
1379  *	Maps @count pages from @pages into contiguous kernel virtual
1380  *	space.
1381  */
1382 void *vmap(struct page **pages, unsigned int count,
1383 		unsigned long flags, pgprot_t prot)
1384 {
1385 	struct vm_struct *area;
1386 
1387 	might_sleep();
1388 
1389 	if (count > totalram_pages)
1390 		return NULL;
1391 
1392 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1393 					__builtin_return_address(0));
1394 	if (!area)
1395 		return NULL;
1396 
1397 	if (map_vm_area(area, prot, &pages)) {
1398 		vunmap(area->addr);
1399 		return NULL;
1400 	}
1401 
1402 	return area->addr;
1403 }
1404 EXPORT_SYMBOL(vmap);
1405 
1406 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1407 			    int node, void *caller);
1408 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1409 				 pgprot_t prot, int node, void *caller)
1410 {
1411 	struct page **pages;
1412 	unsigned int nr_pages, array_size, i;
1413 
1414 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1415 	array_size = (nr_pages * sizeof(struct page *));
1416 
1417 	area->nr_pages = nr_pages;
1418 	/* Please note that the recursion is strictly bounded. */
1419 	if (array_size > PAGE_SIZE) {
1420 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1421 				PAGE_KERNEL, node, caller);
1422 		area->flags |= VM_VPAGES;
1423 	} else {
1424 		pages = kmalloc_node(array_size,
1425 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1426 				node);
1427 	}
1428 	area->pages = pages;
1429 	area->caller = caller;
1430 	if (!area->pages) {
1431 		remove_vm_area(area->addr);
1432 		kfree(area);
1433 		return NULL;
1434 	}
1435 
1436 	for (i = 0; i < area->nr_pages; i++) {
1437 		struct page *page;
1438 
1439 		if (node < 0)
1440 			page = alloc_page(gfp_mask);
1441 		else
1442 			page = alloc_pages_node(node, gfp_mask, 0);
1443 
1444 		if (unlikely(!page)) {
1445 			/* Successfully allocated i pages, free them in __vunmap() */
1446 			area->nr_pages = i;
1447 			goto fail;
1448 		}
1449 		area->pages[i] = page;
1450 	}
1451 
1452 	if (map_vm_area(area, prot, &pages))
1453 		goto fail;
1454 	return area->addr;
1455 
1456 fail:
1457 	vfree(area->addr);
1458 	return NULL;
1459 }
1460 
1461 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1462 {
1463 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1464 					 __builtin_return_address(0));
1465 
1466 	/*
1467 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1468 	 * structures allocated in the __get_vm_area_node() function contain
1469 	 * references to the virtual address of the vmalloc'ed block.
1470 	 */
1471 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1472 
1473 	return addr;
1474 }
1475 
1476 /**
1477  *	__vmalloc_node  -  allocate virtually contiguous memory
1478  *	@size:		allocation size
1479  *	@gfp_mask:	flags for the page level allocator
1480  *	@prot:		protection mask for the allocated pages
1481  *	@node:		node to use for allocation or -1
1482  *	@caller:	caller's return address
1483  *
1484  *	Allocate enough pages to cover @size from the page level
1485  *	allocator with @gfp_mask flags.  Map them into contiguous
1486  *	kernel virtual space, using a pagetable protection of @prot.
1487  */
1488 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1489 						int node, void *caller)
1490 {
1491 	struct vm_struct *area;
1492 	void *addr;
1493 	unsigned long real_size = size;
1494 
1495 	size = PAGE_ALIGN(size);
1496 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1497 		return NULL;
1498 
1499 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1500 						node, gfp_mask, caller);
1501 
1502 	if (!area)
1503 		return NULL;
1504 
1505 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1506 
1507 	/*
1508 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1509 	 * structures allocated in the __get_vm_area_node() function contain
1510 	 * references to the virtual address of the vmalloc'ed block.
1511 	 */
1512 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1513 
1514 	return addr;
1515 }
1516 
1517 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1518 {
1519 	return __vmalloc_node(size, gfp_mask, prot, -1,
1520 				__builtin_return_address(0));
1521 }
1522 EXPORT_SYMBOL(__vmalloc);
1523 
1524 /**
1525  *	vmalloc  -  allocate virtually contiguous memory
1526  *	@size:		allocation size
1527  *	Allocate enough pages to cover @size from the page level
1528  *	allocator and map them into contiguous kernel virtual space.
1529  *
1530  *	For tight control over page level allocator and protection flags
1531  *	use __vmalloc() instead.
1532  */
1533 void *vmalloc(unsigned long size)
1534 {
1535 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1536 					-1, __builtin_return_address(0));
1537 }
1538 EXPORT_SYMBOL(vmalloc);
1539 
1540 /**
1541  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1542  * @size: allocation size
1543  *
1544  * The resulting memory area is zeroed so it can be mapped to userspace
1545  * without leaking data.
1546  */
1547 void *vmalloc_user(unsigned long size)
1548 {
1549 	struct vm_struct *area;
1550 	void *ret;
1551 
1552 	ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1553 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1554 	if (ret) {
1555 		area = find_vm_area(ret);
1556 		area->flags |= VM_USERMAP;
1557 	}
1558 	return ret;
1559 }
1560 EXPORT_SYMBOL(vmalloc_user);
1561 
1562 /**
1563  *	vmalloc_node  -  allocate memory on a specific node
1564  *	@size:		allocation size
1565  *	@node:		numa node
1566  *
1567  *	Allocate enough pages to cover @size from the page level
1568  *	allocator and map them into contiguous kernel virtual space.
1569  *
1570  *	For tight control over page level allocator and protection flags
1571  *	use __vmalloc() instead.
1572  */
1573 void *vmalloc_node(unsigned long size, int node)
1574 {
1575 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1576 					node, __builtin_return_address(0));
1577 }
1578 EXPORT_SYMBOL(vmalloc_node);
1579 
1580 #ifndef PAGE_KERNEL_EXEC
1581 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1582 #endif
1583 
1584 /**
1585  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1586  *	@size:		allocation size
1587  *
1588  *	Kernel-internal function to allocate enough pages to cover @size
1589  *	the page level allocator and map them into contiguous and
1590  *	executable kernel virtual space.
1591  *
1592  *	For tight control over page level allocator and protection flags
1593  *	use __vmalloc() instead.
1594  */
1595 
1596 void *vmalloc_exec(unsigned long size)
1597 {
1598 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1599 			      -1, __builtin_return_address(0));
1600 }
1601 
1602 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1603 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1604 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1605 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1606 #else
1607 #define GFP_VMALLOC32 GFP_KERNEL
1608 #endif
1609 
1610 /**
1611  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1612  *	@size:		allocation size
1613  *
1614  *	Allocate enough 32bit PA addressable pages to cover @size from the
1615  *	page level allocator and map them into contiguous kernel virtual space.
1616  */
1617 void *vmalloc_32(unsigned long size)
1618 {
1619 	return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1620 			      -1, __builtin_return_address(0));
1621 }
1622 EXPORT_SYMBOL(vmalloc_32);
1623 
1624 /**
1625  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1626  *	@size:		allocation size
1627  *
1628  * The resulting memory area is 32bit addressable and zeroed so it can be
1629  * mapped to userspace without leaking data.
1630  */
1631 void *vmalloc_32_user(unsigned long size)
1632 {
1633 	struct vm_struct *area;
1634 	void *ret;
1635 
1636 	ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1637 			     -1, __builtin_return_address(0));
1638 	if (ret) {
1639 		area = find_vm_area(ret);
1640 		area->flags |= VM_USERMAP;
1641 	}
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL(vmalloc_32_user);
1645 
1646 /*
1647  * small helper routine , copy contents to buf from addr.
1648  * If the page is not present, fill zero.
1649  */
1650 
1651 static int aligned_vread(char *buf, char *addr, unsigned long count)
1652 {
1653 	struct page *p;
1654 	int copied = 0;
1655 
1656 	while (count) {
1657 		unsigned long offset, length;
1658 
1659 		offset = (unsigned long)addr & ~PAGE_MASK;
1660 		length = PAGE_SIZE - offset;
1661 		if (length > count)
1662 			length = count;
1663 		p = vmalloc_to_page(addr);
1664 		/*
1665 		 * To do safe access to this _mapped_ area, we need
1666 		 * lock. But adding lock here means that we need to add
1667 		 * overhead of vmalloc()/vfree() calles for this _debug_
1668 		 * interface, rarely used. Instead of that, we'll use
1669 		 * kmap() and get small overhead in this access function.
1670 		 */
1671 		if (p) {
1672 			/*
1673 			 * we can expect USER0 is not used (see vread/vwrite's
1674 			 * function description)
1675 			 */
1676 			void *map = kmap_atomic(p, KM_USER0);
1677 			memcpy(buf, map + offset, length);
1678 			kunmap_atomic(map, KM_USER0);
1679 		} else
1680 			memset(buf, 0, length);
1681 
1682 		addr += length;
1683 		buf += length;
1684 		copied += length;
1685 		count -= length;
1686 	}
1687 	return copied;
1688 }
1689 
1690 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1691 {
1692 	struct page *p;
1693 	int copied = 0;
1694 
1695 	while (count) {
1696 		unsigned long offset, length;
1697 
1698 		offset = (unsigned long)addr & ~PAGE_MASK;
1699 		length = PAGE_SIZE - offset;
1700 		if (length > count)
1701 			length = count;
1702 		p = vmalloc_to_page(addr);
1703 		/*
1704 		 * To do safe access to this _mapped_ area, we need
1705 		 * lock. But adding lock here means that we need to add
1706 		 * overhead of vmalloc()/vfree() calles for this _debug_
1707 		 * interface, rarely used. Instead of that, we'll use
1708 		 * kmap() and get small overhead in this access function.
1709 		 */
1710 		if (p) {
1711 			/*
1712 			 * we can expect USER0 is not used (see vread/vwrite's
1713 			 * function description)
1714 			 */
1715 			void *map = kmap_atomic(p, KM_USER0);
1716 			memcpy(map + offset, buf, length);
1717 			kunmap_atomic(map, KM_USER0);
1718 		}
1719 		addr += length;
1720 		buf += length;
1721 		copied += length;
1722 		count -= length;
1723 	}
1724 	return copied;
1725 }
1726 
1727 /**
1728  *	vread() -  read vmalloc area in a safe way.
1729  *	@buf:		buffer for reading data
1730  *	@addr:		vm address.
1731  *	@count:		number of bytes to be read.
1732  *
1733  *	Returns # of bytes which addr and buf should be increased.
1734  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1735  *	includes any intersect with alive vmalloc area.
1736  *
1737  *	This function checks that addr is a valid vmalloc'ed area, and
1738  *	copy data from that area to a given buffer. If the given memory range
1739  *	of [addr...addr+count) includes some valid address, data is copied to
1740  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1741  *	IOREMAP area is treated as memory hole and no copy is done.
1742  *
1743  *	If [addr...addr+count) doesn't includes any intersects with alive
1744  *	vm_struct area, returns 0.
1745  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1746  *	the caller should guarantee KM_USER0 is not used.
1747  *
1748  *	Note: In usual ops, vread() is never necessary because the caller
1749  *	should know vmalloc() area is valid and can use memcpy().
1750  *	This is for routines which have to access vmalloc area without
1751  *	any informaion, as /dev/kmem.
1752  *
1753  */
1754 
1755 long vread(char *buf, char *addr, unsigned long count)
1756 {
1757 	struct vm_struct *tmp;
1758 	char *vaddr, *buf_start = buf;
1759 	unsigned long buflen = count;
1760 	unsigned long n;
1761 
1762 	/* Don't allow overflow */
1763 	if ((unsigned long) addr + count < count)
1764 		count = -(unsigned long) addr;
1765 
1766 	read_lock(&vmlist_lock);
1767 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1768 		vaddr = (char *) tmp->addr;
1769 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1770 			continue;
1771 		while (addr < vaddr) {
1772 			if (count == 0)
1773 				goto finished;
1774 			*buf = '\0';
1775 			buf++;
1776 			addr++;
1777 			count--;
1778 		}
1779 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1780 		if (n > count)
1781 			n = count;
1782 		if (!(tmp->flags & VM_IOREMAP))
1783 			aligned_vread(buf, addr, n);
1784 		else /* IOREMAP area is treated as memory hole */
1785 			memset(buf, 0, n);
1786 		buf += n;
1787 		addr += n;
1788 		count -= n;
1789 	}
1790 finished:
1791 	read_unlock(&vmlist_lock);
1792 
1793 	if (buf == buf_start)
1794 		return 0;
1795 	/* zero-fill memory holes */
1796 	if (buf != buf_start + buflen)
1797 		memset(buf, 0, buflen - (buf - buf_start));
1798 
1799 	return buflen;
1800 }
1801 
1802 /**
1803  *	vwrite() -  write vmalloc area in a safe way.
1804  *	@buf:		buffer for source data
1805  *	@addr:		vm address.
1806  *	@count:		number of bytes to be read.
1807  *
1808  *	Returns # of bytes which addr and buf should be incresed.
1809  *	(same number to @count).
1810  *	If [addr...addr+count) doesn't includes any intersect with valid
1811  *	vmalloc area, returns 0.
1812  *
1813  *	This function checks that addr is a valid vmalloc'ed area, and
1814  *	copy data from a buffer to the given addr. If specified range of
1815  *	[addr...addr+count) includes some valid address, data is copied from
1816  *	proper area of @buf. If there are memory holes, no copy to hole.
1817  *	IOREMAP area is treated as memory hole and no copy is done.
1818  *
1819  *	If [addr...addr+count) doesn't includes any intersects with alive
1820  *	vm_struct area, returns 0.
1821  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1822  *	the caller should guarantee KM_USER0 is not used.
1823  *
1824  *	Note: In usual ops, vwrite() is never necessary because the caller
1825  *	should know vmalloc() area is valid and can use memcpy().
1826  *	This is for routines which have to access vmalloc area without
1827  *	any informaion, as /dev/kmem.
1828  *
1829  *	The caller should guarantee KM_USER1 is not used.
1830  */
1831 
1832 long vwrite(char *buf, char *addr, unsigned long count)
1833 {
1834 	struct vm_struct *tmp;
1835 	char *vaddr;
1836 	unsigned long n, buflen;
1837 	int copied = 0;
1838 
1839 	/* Don't allow overflow */
1840 	if ((unsigned long) addr + count < count)
1841 		count = -(unsigned long) addr;
1842 	buflen = count;
1843 
1844 	read_lock(&vmlist_lock);
1845 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1846 		vaddr = (char *) tmp->addr;
1847 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1848 			continue;
1849 		while (addr < vaddr) {
1850 			if (count == 0)
1851 				goto finished;
1852 			buf++;
1853 			addr++;
1854 			count--;
1855 		}
1856 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1857 		if (n > count)
1858 			n = count;
1859 		if (!(tmp->flags & VM_IOREMAP)) {
1860 			aligned_vwrite(buf, addr, n);
1861 			copied++;
1862 		}
1863 		buf += n;
1864 		addr += n;
1865 		count -= n;
1866 	}
1867 finished:
1868 	read_unlock(&vmlist_lock);
1869 	if (!copied)
1870 		return 0;
1871 	return buflen;
1872 }
1873 
1874 /**
1875  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1876  *	@vma:		vma to cover (map full range of vma)
1877  *	@addr:		vmalloc memory
1878  *	@pgoff:		number of pages into addr before first page to map
1879  *
1880  *	Returns:	0 for success, -Exxx on failure
1881  *
1882  *	This function checks that addr is a valid vmalloc'ed area, and
1883  *	that it is big enough to cover the vma. Will return failure if
1884  *	that criteria isn't met.
1885  *
1886  *	Similar to remap_pfn_range() (see mm/memory.c)
1887  */
1888 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1889 						unsigned long pgoff)
1890 {
1891 	struct vm_struct *area;
1892 	unsigned long uaddr = vma->vm_start;
1893 	unsigned long usize = vma->vm_end - vma->vm_start;
1894 
1895 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1896 		return -EINVAL;
1897 
1898 	area = find_vm_area(addr);
1899 	if (!area)
1900 		return -EINVAL;
1901 
1902 	if (!(area->flags & VM_USERMAP))
1903 		return -EINVAL;
1904 
1905 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1906 		return -EINVAL;
1907 
1908 	addr += pgoff << PAGE_SHIFT;
1909 	do {
1910 		struct page *page = vmalloc_to_page(addr);
1911 		int ret;
1912 
1913 		ret = vm_insert_page(vma, uaddr, page);
1914 		if (ret)
1915 			return ret;
1916 
1917 		uaddr += PAGE_SIZE;
1918 		addr += PAGE_SIZE;
1919 		usize -= PAGE_SIZE;
1920 	} while (usize > 0);
1921 
1922 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1923 	vma->vm_flags |= VM_RESERVED;
1924 
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL(remap_vmalloc_range);
1928 
1929 /*
1930  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1931  * have one.
1932  */
1933 void  __attribute__((weak)) vmalloc_sync_all(void)
1934 {
1935 }
1936 
1937 
1938 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1939 {
1940 	/* apply_to_page_range() does all the hard work. */
1941 	return 0;
1942 }
1943 
1944 /**
1945  *	alloc_vm_area - allocate a range of kernel address space
1946  *	@size:		size of the area
1947  *
1948  *	Returns:	NULL on failure, vm_struct on success
1949  *
1950  *	This function reserves a range of kernel address space, and
1951  *	allocates pagetables to map that range.  No actual mappings
1952  *	are created.  If the kernel address space is not shared
1953  *	between processes, it syncs the pagetable across all
1954  *	processes.
1955  */
1956 struct vm_struct *alloc_vm_area(size_t size)
1957 {
1958 	struct vm_struct *area;
1959 
1960 	area = get_vm_area_caller(size, VM_IOREMAP,
1961 				__builtin_return_address(0));
1962 	if (area == NULL)
1963 		return NULL;
1964 
1965 	/*
1966 	 * This ensures that page tables are constructed for this region
1967 	 * of kernel virtual address space and mapped into init_mm.
1968 	 */
1969 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1970 				area->size, f, NULL)) {
1971 		free_vm_area(area);
1972 		return NULL;
1973 	}
1974 
1975 	/* Make sure the pagetables are constructed in process kernel
1976 	   mappings */
1977 	vmalloc_sync_all();
1978 
1979 	return area;
1980 }
1981 EXPORT_SYMBOL_GPL(alloc_vm_area);
1982 
1983 void free_vm_area(struct vm_struct *area)
1984 {
1985 	struct vm_struct *ret;
1986 	ret = remove_vm_area(area->addr);
1987 	BUG_ON(ret != area);
1988 	kfree(area);
1989 }
1990 EXPORT_SYMBOL_GPL(free_vm_area);
1991 
1992 static struct vmap_area *node_to_va(struct rb_node *n)
1993 {
1994 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
1995 }
1996 
1997 /**
1998  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
1999  * @end: target address
2000  * @pnext: out arg for the next vmap_area
2001  * @pprev: out arg for the previous vmap_area
2002  *
2003  * Returns: %true if either or both of next and prev are found,
2004  *	    %false if no vmap_area exists
2005  *
2006  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2007  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2008  */
2009 static bool pvm_find_next_prev(unsigned long end,
2010 			       struct vmap_area **pnext,
2011 			       struct vmap_area **pprev)
2012 {
2013 	struct rb_node *n = vmap_area_root.rb_node;
2014 	struct vmap_area *va = NULL;
2015 
2016 	while (n) {
2017 		va = rb_entry(n, struct vmap_area, rb_node);
2018 		if (end < va->va_end)
2019 			n = n->rb_left;
2020 		else if (end > va->va_end)
2021 			n = n->rb_right;
2022 		else
2023 			break;
2024 	}
2025 
2026 	if (!va)
2027 		return false;
2028 
2029 	if (va->va_end > end) {
2030 		*pnext = va;
2031 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2032 	} else {
2033 		*pprev = va;
2034 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2035 	}
2036 	return true;
2037 }
2038 
2039 /**
2040  * pvm_determine_end - find the highest aligned address between two vmap_areas
2041  * @pnext: in/out arg for the next vmap_area
2042  * @pprev: in/out arg for the previous vmap_area
2043  * @align: alignment
2044  *
2045  * Returns: determined end address
2046  *
2047  * Find the highest aligned address between *@pnext and *@pprev below
2048  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2049  * down address is between the end addresses of the two vmap_areas.
2050  *
2051  * Please note that the address returned by this function may fall
2052  * inside *@pnext vmap_area.  The caller is responsible for checking
2053  * that.
2054  */
2055 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2056 				       struct vmap_area **pprev,
2057 				       unsigned long align)
2058 {
2059 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2060 	unsigned long addr;
2061 
2062 	if (*pnext)
2063 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2064 	else
2065 		addr = vmalloc_end;
2066 
2067 	while (*pprev && (*pprev)->va_end > addr) {
2068 		*pnext = *pprev;
2069 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2070 	}
2071 
2072 	return addr;
2073 }
2074 
2075 /**
2076  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2077  * @offsets: array containing offset of each area
2078  * @sizes: array containing size of each area
2079  * @nr_vms: the number of areas to allocate
2080  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2081  * @gfp_mask: allocation mask
2082  *
2083  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2084  *	    vm_structs on success, %NULL on failure
2085  *
2086  * Percpu allocator wants to use congruent vm areas so that it can
2087  * maintain the offsets among percpu areas.  This function allocates
2088  * congruent vmalloc areas for it.  These areas tend to be scattered
2089  * pretty far, distance between two areas easily going up to
2090  * gigabytes.  To avoid interacting with regular vmallocs, these areas
2091  * are allocated from top.
2092  *
2093  * Despite its complicated look, this allocator is rather simple.  It
2094  * does everything top-down and scans areas from the end looking for
2095  * matching slot.  While scanning, if any of the areas overlaps with
2096  * existing vmap_area, the base address is pulled down to fit the
2097  * area.  Scanning is repeated till all the areas fit and then all
2098  * necessary data structres are inserted and the result is returned.
2099  */
2100 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2101 				     const size_t *sizes, int nr_vms,
2102 				     size_t align, gfp_t gfp_mask)
2103 {
2104 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2105 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2106 	struct vmap_area **vas, *prev, *next;
2107 	struct vm_struct **vms;
2108 	int area, area2, last_area, term_area;
2109 	unsigned long base, start, end, last_end;
2110 	bool purged = false;
2111 
2112 	gfp_mask &= GFP_RECLAIM_MASK;
2113 
2114 	/* verify parameters and allocate data structures */
2115 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2116 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2117 		start = offsets[area];
2118 		end = start + sizes[area];
2119 
2120 		/* is everything aligned properly? */
2121 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2122 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2123 
2124 		/* detect the area with the highest address */
2125 		if (start > offsets[last_area])
2126 			last_area = area;
2127 
2128 		for (area2 = 0; area2 < nr_vms; area2++) {
2129 			unsigned long start2 = offsets[area2];
2130 			unsigned long end2 = start2 + sizes[area2];
2131 
2132 			if (area2 == area)
2133 				continue;
2134 
2135 			BUG_ON(start2 >= start && start2 < end);
2136 			BUG_ON(end2 <= end && end2 > start);
2137 		}
2138 	}
2139 	last_end = offsets[last_area] + sizes[last_area];
2140 
2141 	if (vmalloc_end - vmalloc_start < last_end) {
2142 		WARN_ON(true);
2143 		return NULL;
2144 	}
2145 
2146 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2147 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2148 	if (!vas || !vms)
2149 		goto err_free;
2150 
2151 	for (area = 0; area < nr_vms; area++) {
2152 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2153 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2154 		if (!vas[area] || !vms[area])
2155 			goto err_free;
2156 	}
2157 retry:
2158 	spin_lock(&vmap_area_lock);
2159 
2160 	/* start scanning - we scan from the top, begin with the last area */
2161 	area = term_area = last_area;
2162 	start = offsets[area];
2163 	end = start + sizes[area];
2164 
2165 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2166 		base = vmalloc_end - last_end;
2167 		goto found;
2168 	}
2169 	base = pvm_determine_end(&next, &prev, align) - end;
2170 
2171 	while (true) {
2172 		BUG_ON(next && next->va_end <= base + end);
2173 		BUG_ON(prev && prev->va_end > base + end);
2174 
2175 		/*
2176 		 * base might have underflowed, add last_end before
2177 		 * comparing.
2178 		 */
2179 		if (base + last_end < vmalloc_start + last_end) {
2180 			spin_unlock(&vmap_area_lock);
2181 			if (!purged) {
2182 				purge_vmap_area_lazy();
2183 				purged = true;
2184 				goto retry;
2185 			}
2186 			goto err_free;
2187 		}
2188 
2189 		/*
2190 		 * If next overlaps, move base downwards so that it's
2191 		 * right below next and then recheck.
2192 		 */
2193 		if (next && next->va_start < base + end) {
2194 			base = pvm_determine_end(&next, &prev, align) - end;
2195 			term_area = area;
2196 			continue;
2197 		}
2198 
2199 		/*
2200 		 * If prev overlaps, shift down next and prev and move
2201 		 * base so that it's right below new next and then
2202 		 * recheck.
2203 		 */
2204 		if (prev && prev->va_end > base + start)  {
2205 			next = prev;
2206 			prev = node_to_va(rb_prev(&next->rb_node));
2207 			base = pvm_determine_end(&next, &prev, align) - end;
2208 			term_area = area;
2209 			continue;
2210 		}
2211 
2212 		/*
2213 		 * This area fits, move on to the previous one.  If
2214 		 * the previous one is the terminal one, we're done.
2215 		 */
2216 		area = (area + nr_vms - 1) % nr_vms;
2217 		if (area == term_area)
2218 			break;
2219 		start = offsets[area];
2220 		end = start + sizes[area];
2221 		pvm_find_next_prev(base + end, &next, &prev);
2222 	}
2223 found:
2224 	/* we've found a fitting base, insert all va's */
2225 	for (area = 0; area < nr_vms; area++) {
2226 		struct vmap_area *va = vas[area];
2227 
2228 		va->va_start = base + offsets[area];
2229 		va->va_end = va->va_start + sizes[area];
2230 		__insert_vmap_area(va);
2231 	}
2232 
2233 	vmap_area_pcpu_hole = base + offsets[last_area];
2234 
2235 	spin_unlock(&vmap_area_lock);
2236 
2237 	/* insert all vm's */
2238 	for (area = 0; area < nr_vms; area++)
2239 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2240 				  pcpu_get_vm_areas);
2241 
2242 	kfree(vas);
2243 	return vms;
2244 
2245 err_free:
2246 	for (area = 0; area < nr_vms; area++) {
2247 		if (vas)
2248 			kfree(vas[area]);
2249 		if (vms)
2250 			kfree(vms[area]);
2251 	}
2252 	kfree(vas);
2253 	kfree(vms);
2254 	return NULL;
2255 }
2256 
2257 /**
2258  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2259  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2260  * @nr_vms: the number of allocated areas
2261  *
2262  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2263  */
2264 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2265 {
2266 	int i;
2267 
2268 	for (i = 0; i < nr_vms; i++)
2269 		free_vm_area(vms[i]);
2270 	kfree(vms);
2271 }
2272 
2273 #ifdef CONFIG_PROC_FS
2274 static void *s_start(struct seq_file *m, loff_t *pos)
2275 {
2276 	loff_t n = *pos;
2277 	struct vm_struct *v;
2278 
2279 	read_lock(&vmlist_lock);
2280 	v = vmlist;
2281 	while (n > 0 && v) {
2282 		n--;
2283 		v = v->next;
2284 	}
2285 	if (!n)
2286 		return v;
2287 
2288 	return NULL;
2289 
2290 }
2291 
2292 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2293 {
2294 	struct vm_struct *v = p;
2295 
2296 	++*pos;
2297 	return v->next;
2298 }
2299 
2300 static void s_stop(struct seq_file *m, void *p)
2301 {
2302 	read_unlock(&vmlist_lock);
2303 }
2304 
2305 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2306 {
2307 	if (NUMA_BUILD) {
2308 		unsigned int nr, *counters = m->private;
2309 
2310 		if (!counters)
2311 			return;
2312 
2313 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2314 
2315 		for (nr = 0; nr < v->nr_pages; nr++)
2316 			counters[page_to_nid(v->pages[nr])]++;
2317 
2318 		for_each_node_state(nr, N_HIGH_MEMORY)
2319 			if (counters[nr])
2320 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2321 	}
2322 }
2323 
2324 static int s_show(struct seq_file *m, void *p)
2325 {
2326 	struct vm_struct *v = p;
2327 
2328 	seq_printf(m, "0x%p-0x%p %7ld",
2329 		v->addr, v->addr + v->size, v->size);
2330 
2331 	if (v->caller) {
2332 		char buff[KSYM_SYMBOL_LEN];
2333 
2334 		seq_putc(m, ' ');
2335 		sprint_symbol(buff, (unsigned long)v->caller);
2336 		seq_puts(m, buff);
2337 	}
2338 
2339 	if (v->nr_pages)
2340 		seq_printf(m, " pages=%d", v->nr_pages);
2341 
2342 	if (v->phys_addr)
2343 		seq_printf(m, " phys=%lx", v->phys_addr);
2344 
2345 	if (v->flags & VM_IOREMAP)
2346 		seq_printf(m, " ioremap");
2347 
2348 	if (v->flags & VM_ALLOC)
2349 		seq_printf(m, " vmalloc");
2350 
2351 	if (v->flags & VM_MAP)
2352 		seq_printf(m, " vmap");
2353 
2354 	if (v->flags & VM_USERMAP)
2355 		seq_printf(m, " user");
2356 
2357 	if (v->flags & VM_VPAGES)
2358 		seq_printf(m, " vpages");
2359 
2360 	show_numa_info(m, v);
2361 	seq_putc(m, '\n');
2362 	return 0;
2363 }
2364 
2365 static const struct seq_operations vmalloc_op = {
2366 	.start = s_start,
2367 	.next = s_next,
2368 	.stop = s_stop,
2369 	.show = s_show,
2370 };
2371 
2372 static int vmalloc_open(struct inode *inode, struct file *file)
2373 {
2374 	unsigned int *ptr = NULL;
2375 	int ret;
2376 
2377 	if (NUMA_BUILD)
2378 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2379 	ret = seq_open(file, &vmalloc_op);
2380 	if (!ret) {
2381 		struct seq_file *m = file->private_data;
2382 		m->private = ptr;
2383 	} else
2384 		kfree(ptr);
2385 	return ret;
2386 }
2387 
2388 static const struct file_operations proc_vmalloc_operations = {
2389 	.open		= vmalloc_open,
2390 	.read		= seq_read,
2391 	.llseek		= seq_lseek,
2392 	.release	= seq_release_private,
2393 };
2394 
2395 static int __init proc_vmalloc_init(void)
2396 {
2397 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2398 	return 0;
2399 }
2400 module_init(proc_vmalloc_init);
2401 #endif
2402 
2403