1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 struct vm_struct *vm; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static LIST_HEAD(vmap_area_list); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 267 /* The vmap cache globals are protected by vmap_area_lock */ 268 static struct rb_node *free_vmap_cache; 269 static unsigned long cached_hole_size; 270 static unsigned long cached_vstart; 271 static unsigned long cached_align; 272 273 static unsigned long vmap_area_pcpu_hole; 274 275 static struct vmap_area *__find_vmap_area(unsigned long addr) 276 { 277 struct rb_node *n = vmap_area_root.rb_node; 278 279 while (n) { 280 struct vmap_area *va; 281 282 va = rb_entry(n, struct vmap_area, rb_node); 283 if (addr < va->va_start) 284 n = n->rb_left; 285 else if (addr > va->va_start) 286 n = n->rb_right; 287 else 288 return va; 289 } 290 291 return NULL; 292 } 293 294 static void __insert_vmap_area(struct vmap_area *va) 295 { 296 struct rb_node **p = &vmap_area_root.rb_node; 297 struct rb_node *parent = NULL; 298 struct rb_node *tmp; 299 300 while (*p) { 301 struct vmap_area *tmp_va; 302 303 parent = *p; 304 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 305 if (va->va_start < tmp_va->va_end) 306 p = &(*p)->rb_left; 307 else if (va->va_end > tmp_va->va_start) 308 p = &(*p)->rb_right; 309 else 310 BUG(); 311 } 312 313 rb_link_node(&va->rb_node, parent, p); 314 rb_insert_color(&va->rb_node, &vmap_area_root); 315 316 /* address-sort this list so it is usable like the vmlist */ 317 tmp = rb_prev(&va->rb_node); 318 if (tmp) { 319 struct vmap_area *prev; 320 prev = rb_entry(tmp, struct vmap_area, rb_node); 321 list_add_rcu(&va->list, &prev->list); 322 } else 323 list_add_rcu(&va->list, &vmap_area_list); 324 } 325 326 static void purge_vmap_area_lazy(void); 327 328 /* 329 * Allocate a region of KVA of the specified size and alignment, within the 330 * vstart and vend. 331 */ 332 static struct vmap_area *alloc_vmap_area(unsigned long size, 333 unsigned long align, 334 unsigned long vstart, unsigned long vend, 335 int node, gfp_t gfp_mask) 336 { 337 struct vmap_area *va; 338 struct rb_node *n; 339 unsigned long addr; 340 int purged = 0; 341 struct vmap_area *first; 342 343 BUG_ON(!size); 344 BUG_ON(size & ~PAGE_MASK); 345 BUG_ON(!is_power_of_2(align)); 346 347 va = kmalloc_node(sizeof(struct vmap_area), 348 gfp_mask & GFP_RECLAIM_MASK, node); 349 if (unlikely(!va)) 350 return ERR_PTR(-ENOMEM); 351 352 retry: 353 spin_lock(&vmap_area_lock); 354 /* 355 * Invalidate cache if we have more permissive parameters. 356 * cached_hole_size notes the largest hole noticed _below_ 357 * the vmap_area cached in free_vmap_cache: if size fits 358 * into that hole, we want to scan from vstart to reuse 359 * the hole instead of allocating above free_vmap_cache. 360 * Note that __free_vmap_area may update free_vmap_cache 361 * without updating cached_hole_size or cached_align. 362 */ 363 if (!free_vmap_cache || 364 size < cached_hole_size || 365 vstart < cached_vstart || 366 align < cached_align) { 367 nocache: 368 cached_hole_size = 0; 369 free_vmap_cache = NULL; 370 } 371 /* record if we encounter less permissive parameters */ 372 cached_vstart = vstart; 373 cached_align = align; 374 375 /* find starting point for our search */ 376 if (free_vmap_cache) { 377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 378 addr = ALIGN(first->va_end, align); 379 if (addr < vstart) 380 goto nocache; 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 } else { 385 addr = ALIGN(vstart, align); 386 if (addr + size - 1 < addr) 387 goto overflow; 388 389 n = vmap_area_root.rb_node; 390 first = NULL; 391 392 while (n) { 393 struct vmap_area *tmp; 394 tmp = rb_entry(n, struct vmap_area, rb_node); 395 if (tmp->va_end >= addr) { 396 first = tmp; 397 if (tmp->va_start <= addr) 398 break; 399 n = n->rb_left; 400 } else 401 n = n->rb_right; 402 } 403 404 if (!first) 405 goto found; 406 } 407 408 /* from the starting point, walk areas until a suitable hole is found */ 409 while (addr + size > first->va_start && addr + size <= vend) { 410 if (addr + cached_hole_size < first->va_start) 411 cached_hole_size = first->va_start - addr; 412 addr = ALIGN(first->va_end, align); 413 if (addr + size - 1 < addr) 414 goto overflow; 415 416 n = rb_next(&first->rb_node); 417 if (n) 418 first = rb_entry(n, struct vmap_area, rb_node); 419 else 420 goto found; 421 } 422 423 found: 424 if (addr + size > vend) 425 goto overflow; 426 427 va->va_start = addr; 428 va->va_end = addr + size; 429 va->flags = 0; 430 __insert_vmap_area(va); 431 free_vmap_cache = &va->rb_node; 432 spin_unlock(&vmap_area_lock); 433 434 BUG_ON(va->va_start & (align-1)); 435 BUG_ON(va->va_start < vstart); 436 BUG_ON(va->va_end > vend); 437 438 return va; 439 440 overflow: 441 spin_unlock(&vmap_area_lock); 442 if (!purged) { 443 purge_vmap_area_lazy(); 444 purged = 1; 445 goto retry; 446 } 447 if (printk_ratelimit()) 448 printk(KERN_WARNING 449 "vmap allocation for size %lu failed: " 450 "use vmalloc=<size> to increase size.\n", size); 451 kfree(va); 452 return ERR_PTR(-EBUSY); 453 } 454 455 static void __free_vmap_area(struct vmap_area *va) 456 { 457 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 458 459 if (free_vmap_cache) { 460 if (va->va_end < cached_vstart) { 461 free_vmap_cache = NULL; 462 } else { 463 struct vmap_area *cache; 464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 465 if (va->va_start <= cache->va_start) { 466 free_vmap_cache = rb_prev(&va->rb_node); 467 /* 468 * We don't try to update cached_hole_size or 469 * cached_align, but it won't go very wrong. 470 */ 471 } 472 } 473 } 474 rb_erase(&va->rb_node, &vmap_area_root); 475 RB_CLEAR_NODE(&va->rb_node); 476 list_del_rcu(&va->list); 477 478 /* 479 * Track the highest possible candidate for pcpu area 480 * allocation. Areas outside of vmalloc area can be returned 481 * here too, consider only end addresses which fall inside 482 * vmalloc area proper. 483 */ 484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 486 487 kfree_rcu(va, rcu_head); 488 } 489 490 /* 491 * Free a region of KVA allocated by alloc_vmap_area 492 */ 493 static void free_vmap_area(struct vmap_area *va) 494 { 495 spin_lock(&vmap_area_lock); 496 __free_vmap_area(va); 497 spin_unlock(&vmap_area_lock); 498 } 499 500 /* 501 * Clear the pagetable entries of a given vmap_area 502 */ 503 static void unmap_vmap_area(struct vmap_area *va) 504 { 505 vunmap_page_range(va->va_start, va->va_end); 506 } 507 508 static void vmap_debug_free_range(unsigned long start, unsigned long end) 509 { 510 /* 511 * Unmap page tables and force a TLB flush immediately if 512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 513 * bugs similarly to those in linear kernel virtual address 514 * space after a page has been freed. 515 * 516 * All the lazy freeing logic is still retained, in order to 517 * minimise intrusiveness of this debugging feature. 518 * 519 * This is going to be *slow* (linear kernel virtual address 520 * debugging doesn't do a broadcast TLB flush so it is a lot 521 * faster). 522 */ 523 #ifdef CONFIG_DEBUG_PAGEALLOC 524 vunmap_page_range(start, end); 525 flush_tlb_kernel_range(start, end); 526 #endif 527 } 528 529 /* 530 * lazy_max_pages is the maximum amount of virtual address space we gather up 531 * before attempting to purge with a TLB flush. 532 * 533 * There is a tradeoff here: a larger number will cover more kernel page tables 534 * and take slightly longer to purge, but it will linearly reduce the number of 535 * global TLB flushes that must be performed. It would seem natural to scale 536 * this number up linearly with the number of CPUs (because vmapping activity 537 * could also scale linearly with the number of CPUs), however it is likely 538 * that in practice, workloads might be constrained in other ways that mean 539 * vmap activity will not scale linearly with CPUs. Also, I want to be 540 * conservative and not introduce a big latency on huge systems, so go with 541 * a less aggressive log scale. It will still be an improvement over the old 542 * code, and it will be simple to change the scale factor if we find that it 543 * becomes a problem on bigger systems. 544 */ 545 static unsigned long lazy_max_pages(void) 546 { 547 unsigned int log; 548 549 log = fls(num_online_cpus()); 550 551 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 552 } 553 554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 555 556 /* for per-CPU blocks */ 557 static void purge_fragmented_blocks_allcpus(void); 558 559 /* 560 * called before a call to iounmap() if the caller wants vm_area_struct's 561 * immediately freed. 562 */ 563 void set_iounmap_nonlazy(void) 564 { 565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 566 } 567 568 /* 569 * Purges all lazily-freed vmap areas. 570 * 571 * If sync is 0 then don't purge if there is already a purge in progress. 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise 574 * their own TLB flushing). 575 * Returns with *start = min(*start, lowest purged address) 576 * *end = max(*end, highest purged address) 577 */ 578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 579 int sync, int force_flush) 580 { 581 static DEFINE_SPINLOCK(purge_lock); 582 LIST_HEAD(valist); 583 struct vmap_area *va; 584 struct vmap_area *n_va; 585 int nr = 0; 586 587 /* 588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 589 * should not expect such behaviour. This just simplifies locking for 590 * the case that isn't actually used at the moment anyway. 591 */ 592 if (!sync && !force_flush) { 593 if (!spin_trylock(&purge_lock)) 594 return; 595 } else 596 spin_lock(&purge_lock); 597 598 if (sync) 599 purge_fragmented_blocks_allcpus(); 600 601 rcu_read_lock(); 602 list_for_each_entry_rcu(va, &vmap_area_list, list) { 603 if (va->flags & VM_LAZY_FREE) { 604 if (va->va_start < *start) 605 *start = va->va_start; 606 if (va->va_end > *end) 607 *end = va->va_end; 608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 609 list_add_tail(&va->purge_list, &valist); 610 va->flags |= VM_LAZY_FREEING; 611 va->flags &= ~VM_LAZY_FREE; 612 } 613 } 614 rcu_read_unlock(); 615 616 if (nr) 617 atomic_sub(nr, &vmap_lazy_nr); 618 619 if (nr || force_flush) 620 flush_tlb_kernel_range(*start, *end); 621 622 if (nr) { 623 spin_lock(&vmap_area_lock); 624 list_for_each_entry_safe(va, n_va, &valist, purge_list) 625 __free_vmap_area(va); 626 spin_unlock(&vmap_area_lock); 627 } 628 spin_unlock(&purge_lock); 629 } 630 631 /* 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 633 * is already purging. 634 */ 635 static void try_purge_vmap_area_lazy(void) 636 { 637 unsigned long start = ULONG_MAX, end = 0; 638 639 __purge_vmap_area_lazy(&start, &end, 0, 0); 640 } 641 642 /* 643 * Kick off a purge of the outstanding lazy areas. 644 */ 645 static void purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 1, 0); 650 } 651 652 /* 653 * Free a vmap area, caller ensuring that the area has been unmapped 654 * and flush_cache_vunmap had been called for the correct range 655 * previously. 656 */ 657 static void free_vmap_area_noflush(struct vmap_area *va) 658 { 659 va->flags |= VM_LAZY_FREE; 660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 662 try_purge_vmap_area_lazy(); 663 } 664 665 /* 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 667 * called for the correct range previously. 668 */ 669 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 670 { 671 unmap_vmap_area(va); 672 free_vmap_area_noflush(va); 673 } 674 675 /* 676 * Free and unmap a vmap area 677 */ 678 static void free_unmap_vmap_area(struct vmap_area *va) 679 { 680 flush_cache_vunmap(va->va_start, va->va_end); 681 free_unmap_vmap_area_noflush(va); 682 } 683 684 static struct vmap_area *find_vmap_area(unsigned long addr) 685 { 686 struct vmap_area *va; 687 688 spin_lock(&vmap_area_lock); 689 va = __find_vmap_area(addr); 690 spin_unlock(&vmap_area_lock); 691 692 return va; 693 } 694 695 static void free_unmap_vmap_area_addr(unsigned long addr) 696 { 697 struct vmap_area *va; 698 699 va = find_vmap_area(addr); 700 BUG_ON(!va); 701 free_unmap_vmap_area(va); 702 } 703 704 705 /*** Per cpu kva allocator ***/ 706 707 /* 708 * vmap space is limited especially on 32 bit architectures. Ensure there is 709 * room for at least 16 percpu vmap blocks per CPU. 710 */ 711 /* 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 714 * instead (we just need a rough idea) 715 */ 716 #if BITS_PER_LONG == 32 717 #define VMALLOC_SPACE (128UL*1024*1024) 718 #else 719 #define VMALLOC_SPACE (128UL*1024*1024*1024) 720 #endif 721 722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 728 #define VMAP_BBMAP_BITS \ 729 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 730 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 731 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 732 733 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 734 735 static bool vmap_initialized __read_mostly = false; 736 737 struct vmap_block_queue { 738 spinlock_t lock; 739 struct list_head free; 740 }; 741 742 struct vmap_block { 743 spinlock_t lock; 744 struct vmap_area *va; 745 struct vmap_block_queue *vbq; 746 unsigned long free, dirty; 747 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 748 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 749 struct list_head free_list; 750 struct rcu_head rcu_head; 751 struct list_head purge; 752 }; 753 754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 755 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 756 757 /* 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 759 * in the free path. Could get rid of this if we change the API to return a 760 * "cookie" from alloc, to be passed to free. But no big deal yet. 761 */ 762 static DEFINE_SPINLOCK(vmap_block_tree_lock); 763 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 764 765 /* 766 * We should probably have a fallback mechanism to allocate virtual memory 767 * out of partially filled vmap blocks. However vmap block sizing should be 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a 769 * big problem. 770 */ 771 772 static unsigned long addr_to_vb_idx(unsigned long addr) 773 { 774 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 775 addr /= VMAP_BLOCK_SIZE; 776 return addr; 777 } 778 779 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 780 { 781 struct vmap_block_queue *vbq; 782 struct vmap_block *vb; 783 struct vmap_area *va; 784 unsigned long vb_idx; 785 int node, err; 786 787 node = numa_node_id(); 788 789 vb = kmalloc_node(sizeof(struct vmap_block), 790 gfp_mask & GFP_RECLAIM_MASK, node); 791 if (unlikely(!vb)) 792 return ERR_PTR(-ENOMEM); 793 794 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 795 VMALLOC_START, VMALLOC_END, 796 node, gfp_mask); 797 if (IS_ERR(va)) { 798 kfree(vb); 799 return ERR_CAST(va); 800 } 801 802 err = radix_tree_preload(gfp_mask); 803 if (unlikely(err)) { 804 kfree(vb); 805 free_vmap_area(va); 806 return ERR_PTR(err); 807 } 808 809 spin_lock_init(&vb->lock); 810 vb->va = va; 811 vb->free = VMAP_BBMAP_BITS; 812 vb->dirty = 0; 813 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 814 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 815 INIT_LIST_HEAD(&vb->free_list); 816 817 vb_idx = addr_to_vb_idx(va->va_start); 818 spin_lock(&vmap_block_tree_lock); 819 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 820 spin_unlock(&vmap_block_tree_lock); 821 BUG_ON(err); 822 radix_tree_preload_end(); 823 824 vbq = &get_cpu_var(vmap_block_queue); 825 vb->vbq = vbq; 826 spin_lock(&vbq->lock); 827 list_add_rcu(&vb->free_list, &vbq->free); 828 spin_unlock(&vbq->lock); 829 put_cpu_var(vmap_block_queue); 830 831 return vb; 832 } 833 834 static void free_vmap_block(struct vmap_block *vb) 835 { 836 struct vmap_block *tmp; 837 unsigned long vb_idx; 838 839 vb_idx = addr_to_vb_idx(vb->va->va_start); 840 spin_lock(&vmap_block_tree_lock); 841 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 842 spin_unlock(&vmap_block_tree_lock); 843 BUG_ON(tmp != vb); 844 845 free_vmap_area_noflush(vb->va); 846 kfree_rcu(vb, rcu_head); 847 } 848 849 static void purge_fragmented_blocks(int cpu) 850 { 851 LIST_HEAD(purge); 852 struct vmap_block *vb; 853 struct vmap_block *n_vb; 854 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 855 856 rcu_read_lock(); 857 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 858 859 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 860 continue; 861 862 spin_lock(&vb->lock); 863 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 864 vb->free = 0; /* prevent further allocs after releasing lock */ 865 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 866 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 867 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 868 spin_lock(&vbq->lock); 869 list_del_rcu(&vb->free_list); 870 spin_unlock(&vbq->lock); 871 spin_unlock(&vb->lock); 872 list_add_tail(&vb->purge, &purge); 873 } else 874 spin_unlock(&vb->lock); 875 } 876 rcu_read_unlock(); 877 878 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 879 list_del(&vb->purge); 880 free_vmap_block(vb); 881 } 882 } 883 884 static void purge_fragmented_blocks_thiscpu(void) 885 { 886 purge_fragmented_blocks(smp_processor_id()); 887 } 888 889 static void purge_fragmented_blocks_allcpus(void) 890 { 891 int cpu; 892 893 for_each_possible_cpu(cpu) 894 purge_fragmented_blocks(cpu); 895 } 896 897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 898 { 899 struct vmap_block_queue *vbq; 900 struct vmap_block *vb; 901 unsigned long addr = 0; 902 unsigned int order; 903 int purge = 0; 904 905 BUG_ON(size & ~PAGE_MASK); 906 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 907 order = get_order(size); 908 909 again: 910 rcu_read_lock(); 911 vbq = &get_cpu_var(vmap_block_queue); 912 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 913 int i; 914 915 spin_lock(&vb->lock); 916 if (vb->free < 1UL << order) 917 goto next; 918 919 i = bitmap_find_free_region(vb->alloc_map, 920 VMAP_BBMAP_BITS, order); 921 922 if (i < 0) { 923 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 924 /* fragmented and no outstanding allocations */ 925 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 926 purge = 1; 927 } 928 goto next; 929 } 930 addr = vb->va->va_start + (i << PAGE_SHIFT); 931 BUG_ON(addr_to_vb_idx(addr) != 932 addr_to_vb_idx(vb->va->va_start)); 933 vb->free -= 1UL << order; 934 if (vb->free == 0) { 935 spin_lock(&vbq->lock); 936 list_del_rcu(&vb->free_list); 937 spin_unlock(&vbq->lock); 938 } 939 spin_unlock(&vb->lock); 940 break; 941 next: 942 spin_unlock(&vb->lock); 943 } 944 945 if (purge) 946 purge_fragmented_blocks_thiscpu(); 947 948 put_cpu_var(vmap_block_queue); 949 rcu_read_unlock(); 950 951 if (!addr) { 952 vb = new_vmap_block(gfp_mask); 953 if (IS_ERR(vb)) 954 return vb; 955 goto again; 956 } 957 958 return (void *)addr; 959 } 960 961 static void vb_free(const void *addr, unsigned long size) 962 { 963 unsigned long offset; 964 unsigned long vb_idx; 965 unsigned int order; 966 struct vmap_block *vb; 967 968 BUG_ON(size & ~PAGE_MASK); 969 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 970 971 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 972 973 order = get_order(size); 974 975 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 976 977 vb_idx = addr_to_vb_idx((unsigned long)addr); 978 rcu_read_lock(); 979 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 980 rcu_read_unlock(); 981 BUG_ON(!vb); 982 983 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 984 985 spin_lock(&vb->lock); 986 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 987 988 vb->dirty += 1UL << order; 989 if (vb->dirty == VMAP_BBMAP_BITS) { 990 BUG_ON(vb->free); 991 spin_unlock(&vb->lock); 992 free_vmap_block(vb); 993 } else 994 spin_unlock(&vb->lock); 995 } 996 997 /** 998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 999 * 1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1001 * to amortize TLB flushing overheads. What this means is that any page you 1002 * have now, may, in a former life, have been mapped into kernel virtual 1003 * address by the vmap layer and so there might be some CPUs with TLB entries 1004 * still referencing that page (additional to the regular 1:1 kernel mapping). 1005 * 1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1007 * be sure that none of the pages we have control over will have any aliases 1008 * from the vmap layer. 1009 */ 1010 void vm_unmap_aliases(void) 1011 { 1012 unsigned long start = ULONG_MAX, end = 0; 1013 int cpu; 1014 int flush = 0; 1015 1016 if (unlikely(!vmap_initialized)) 1017 return; 1018 1019 for_each_possible_cpu(cpu) { 1020 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1021 struct vmap_block *vb; 1022 1023 rcu_read_lock(); 1024 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1025 int i; 1026 1027 spin_lock(&vb->lock); 1028 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1029 while (i < VMAP_BBMAP_BITS) { 1030 unsigned long s, e; 1031 int j; 1032 j = find_next_zero_bit(vb->dirty_map, 1033 VMAP_BBMAP_BITS, i); 1034 1035 s = vb->va->va_start + (i << PAGE_SHIFT); 1036 e = vb->va->va_start + (j << PAGE_SHIFT); 1037 flush = 1; 1038 1039 if (s < start) 1040 start = s; 1041 if (e > end) 1042 end = e; 1043 1044 i = j; 1045 i = find_next_bit(vb->dirty_map, 1046 VMAP_BBMAP_BITS, i); 1047 } 1048 spin_unlock(&vb->lock); 1049 } 1050 rcu_read_unlock(); 1051 } 1052 1053 __purge_vmap_area_lazy(&start, &end, 1, flush); 1054 } 1055 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1056 1057 /** 1058 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1059 * @mem: the pointer returned by vm_map_ram 1060 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1061 */ 1062 void vm_unmap_ram(const void *mem, unsigned int count) 1063 { 1064 unsigned long size = count << PAGE_SHIFT; 1065 unsigned long addr = (unsigned long)mem; 1066 1067 BUG_ON(!addr); 1068 BUG_ON(addr < VMALLOC_START); 1069 BUG_ON(addr > VMALLOC_END); 1070 BUG_ON(addr & (PAGE_SIZE-1)); 1071 1072 debug_check_no_locks_freed(mem, size); 1073 vmap_debug_free_range(addr, addr+size); 1074 1075 if (likely(count <= VMAP_MAX_ALLOC)) 1076 vb_free(mem, size); 1077 else 1078 free_unmap_vmap_area_addr(addr); 1079 } 1080 EXPORT_SYMBOL(vm_unmap_ram); 1081 1082 /** 1083 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1084 * @pages: an array of pointers to the pages to be mapped 1085 * @count: number of pages 1086 * @node: prefer to allocate data structures on this node 1087 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1088 * 1089 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1090 */ 1091 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1092 { 1093 unsigned long size = count << PAGE_SHIFT; 1094 unsigned long addr; 1095 void *mem; 1096 1097 if (likely(count <= VMAP_MAX_ALLOC)) { 1098 mem = vb_alloc(size, GFP_KERNEL); 1099 if (IS_ERR(mem)) 1100 return NULL; 1101 addr = (unsigned long)mem; 1102 } else { 1103 struct vmap_area *va; 1104 va = alloc_vmap_area(size, PAGE_SIZE, 1105 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1106 if (IS_ERR(va)) 1107 return NULL; 1108 1109 addr = va->va_start; 1110 mem = (void *)addr; 1111 } 1112 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1113 vm_unmap_ram(mem, count); 1114 return NULL; 1115 } 1116 return mem; 1117 } 1118 EXPORT_SYMBOL(vm_map_ram); 1119 1120 /** 1121 * vm_area_add_early - add vmap area early during boot 1122 * @vm: vm_struct to add 1123 * 1124 * This function is used to add fixed kernel vm area to vmlist before 1125 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1126 * should contain proper values and the other fields should be zero. 1127 * 1128 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1129 */ 1130 void __init vm_area_add_early(struct vm_struct *vm) 1131 { 1132 struct vm_struct *tmp, **p; 1133 1134 BUG_ON(vmap_initialized); 1135 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1136 if (tmp->addr >= vm->addr) { 1137 BUG_ON(tmp->addr < vm->addr + vm->size); 1138 break; 1139 } else 1140 BUG_ON(tmp->addr + tmp->size > vm->addr); 1141 } 1142 vm->next = *p; 1143 *p = vm; 1144 } 1145 1146 /** 1147 * vm_area_register_early - register vmap area early during boot 1148 * @vm: vm_struct to register 1149 * @align: requested alignment 1150 * 1151 * This function is used to register kernel vm area before 1152 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1153 * proper values on entry and other fields should be zero. On return, 1154 * vm->addr contains the allocated address. 1155 * 1156 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1157 */ 1158 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1159 { 1160 static size_t vm_init_off __initdata; 1161 unsigned long addr; 1162 1163 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1164 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1165 1166 vm->addr = (void *)addr; 1167 1168 vm_area_add_early(vm); 1169 } 1170 1171 void __init vmalloc_init(void) 1172 { 1173 struct vmap_area *va; 1174 struct vm_struct *tmp; 1175 int i; 1176 1177 for_each_possible_cpu(i) { 1178 struct vmap_block_queue *vbq; 1179 1180 vbq = &per_cpu(vmap_block_queue, i); 1181 spin_lock_init(&vbq->lock); 1182 INIT_LIST_HEAD(&vbq->free); 1183 } 1184 1185 /* Import existing vmlist entries. */ 1186 for (tmp = vmlist; tmp; tmp = tmp->next) { 1187 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1188 va->flags = VM_VM_AREA; 1189 va->va_start = (unsigned long)tmp->addr; 1190 va->va_end = va->va_start + tmp->size; 1191 va->vm = tmp; 1192 __insert_vmap_area(va); 1193 } 1194 1195 vmap_area_pcpu_hole = VMALLOC_END; 1196 1197 vmap_initialized = true; 1198 } 1199 1200 /** 1201 * map_kernel_range_noflush - map kernel VM area with the specified pages 1202 * @addr: start of the VM area to map 1203 * @size: size of the VM area to map 1204 * @prot: page protection flags to use 1205 * @pages: pages to map 1206 * 1207 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1208 * specify should have been allocated using get_vm_area() and its 1209 * friends. 1210 * 1211 * NOTE: 1212 * This function does NOT do any cache flushing. The caller is 1213 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1214 * before calling this function. 1215 * 1216 * RETURNS: 1217 * The number of pages mapped on success, -errno on failure. 1218 */ 1219 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1220 pgprot_t prot, struct page **pages) 1221 { 1222 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1223 } 1224 1225 /** 1226 * unmap_kernel_range_noflush - unmap kernel VM area 1227 * @addr: start of the VM area to unmap 1228 * @size: size of the VM area to unmap 1229 * 1230 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1231 * specify should have been allocated using get_vm_area() and its 1232 * friends. 1233 * 1234 * NOTE: 1235 * This function does NOT do any cache flushing. The caller is 1236 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1237 * before calling this function and flush_tlb_kernel_range() after. 1238 */ 1239 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1240 { 1241 vunmap_page_range(addr, addr + size); 1242 } 1243 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1244 1245 /** 1246 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1247 * @addr: start of the VM area to unmap 1248 * @size: size of the VM area to unmap 1249 * 1250 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1251 * the unmapping and tlb after. 1252 */ 1253 void unmap_kernel_range(unsigned long addr, unsigned long size) 1254 { 1255 unsigned long end = addr + size; 1256 1257 flush_cache_vunmap(addr, end); 1258 vunmap_page_range(addr, end); 1259 flush_tlb_kernel_range(addr, end); 1260 } 1261 1262 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1263 { 1264 unsigned long addr = (unsigned long)area->addr; 1265 unsigned long end = addr + area->size - PAGE_SIZE; 1266 int err; 1267 1268 err = vmap_page_range(addr, end, prot, *pages); 1269 if (err > 0) { 1270 *pages += err; 1271 err = 0; 1272 } 1273 1274 return err; 1275 } 1276 EXPORT_SYMBOL_GPL(map_vm_area); 1277 1278 /*** Old vmalloc interfaces ***/ 1279 DEFINE_RWLOCK(vmlist_lock); 1280 struct vm_struct *vmlist; 1281 1282 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1283 unsigned long flags, void *caller) 1284 { 1285 vm->flags = flags; 1286 vm->addr = (void *)va->va_start; 1287 vm->size = va->va_end - va->va_start; 1288 vm->caller = caller; 1289 va->vm = vm; 1290 va->flags |= VM_VM_AREA; 1291 } 1292 1293 static void insert_vmalloc_vmlist(struct vm_struct *vm) 1294 { 1295 struct vm_struct *tmp, **p; 1296 1297 vm->flags &= ~VM_UNLIST; 1298 write_lock(&vmlist_lock); 1299 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1300 if (tmp->addr >= vm->addr) 1301 break; 1302 } 1303 vm->next = *p; 1304 *p = vm; 1305 write_unlock(&vmlist_lock); 1306 } 1307 1308 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1309 unsigned long flags, void *caller) 1310 { 1311 setup_vmalloc_vm(vm, va, flags, caller); 1312 insert_vmalloc_vmlist(vm); 1313 } 1314 1315 static struct vm_struct *__get_vm_area_node(unsigned long size, 1316 unsigned long align, unsigned long flags, unsigned long start, 1317 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1318 { 1319 struct vmap_area *va; 1320 struct vm_struct *area; 1321 1322 BUG_ON(in_interrupt()); 1323 if (flags & VM_IOREMAP) { 1324 int bit = fls(size); 1325 1326 if (bit > IOREMAP_MAX_ORDER) 1327 bit = IOREMAP_MAX_ORDER; 1328 else if (bit < PAGE_SHIFT) 1329 bit = PAGE_SHIFT; 1330 1331 align = 1ul << bit; 1332 } 1333 1334 size = PAGE_ALIGN(size); 1335 if (unlikely(!size)) 1336 return NULL; 1337 1338 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1339 if (unlikely(!area)) 1340 return NULL; 1341 1342 /* 1343 * We always allocate a guard page. 1344 */ 1345 size += PAGE_SIZE; 1346 1347 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1348 if (IS_ERR(va)) { 1349 kfree(area); 1350 return NULL; 1351 } 1352 1353 /* 1354 * When this function is called from __vmalloc_node_range, 1355 * we do not add vm_struct to vmlist here to avoid 1356 * accessing uninitialized members of vm_struct such as 1357 * pages and nr_pages fields. They will be set later. 1358 * To distinguish it from others, we use a VM_UNLIST flag. 1359 */ 1360 if (flags & VM_UNLIST) 1361 setup_vmalloc_vm(area, va, flags, caller); 1362 else 1363 insert_vmalloc_vm(area, va, flags, caller); 1364 1365 return area; 1366 } 1367 1368 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1369 unsigned long start, unsigned long end) 1370 { 1371 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1372 __builtin_return_address(0)); 1373 } 1374 EXPORT_SYMBOL_GPL(__get_vm_area); 1375 1376 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1377 unsigned long start, unsigned long end, 1378 void *caller) 1379 { 1380 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1381 caller); 1382 } 1383 1384 /** 1385 * get_vm_area - reserve a contiguous kernel virtual area 1386 * @size: size of the area 1387 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1388 * 1389 * Search an area of @size in the kernel virtual mapping area, 1390 * and reserved it for out purposes. Returns the area descriptor 1391 * on success or %NULL on failure. 1392 */ 1393 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1394 { 1395 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1396 -1, GFP_KERNEL, __builtin_return_address(0)); 1397 } 1398 1399 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1400 void *caller) 1401 { 1402 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1403 -1, GFP_KERNEL, caller); 1404 } 1405 1406 static struct vm_struct *find_vm_area(const void *addr) 1407 { 1408 struct vmap_area *va; 1409 1410 va = find_vmap_area((unsigned long)addr); 1411 if (va && va->flags & VM_VM_AREA) 1412 return va->vm; 1413 1414 return NULL; 1415 } 1416 1417 /** 1418 * remove_vm_area - find and remove a continuous kernel virtual area 1419 * @addr: base address 1420 * 1421 * Search for the kernel VM area starting at @addr, and remove it. 1422 * This function returns the found VM area, but using it is NOT safe 1423 * on SMP machines, except for its size or flags. 1424 */ 1425 struct vm_struct *remove_vm_area(const void *addr) 1426 { 1427 struct vmap_area *va; 1428 1429 va = find_vmap_area((unsigned long)addr); 1430 if (va && va->flags & VM_VM_AREA) { 1431 struct vm_struct *vm = va->vm; 1432 1433 if (!(vm->flags & VM_UNLIST)) { 1434 struct vm_struct *tmp, **p; 1435 /* 1436 * remove from list and disallow access to 1437 * this vm_struct before unmap. (address range 1438 * confliction is maintained by vmap.) 1439 */ 1440 write_lock(&vmlist_lock); 1441 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1442 ; 1443 *p = tmp->next; 1444 write_unlock(&vmlist_lock); 1445 } 1446 1447 vmap_debug_free_range(va->va_start, va->va_end); 1448 free_unmap_vmap_area(va); 1449 vm->size -= PAGE_SIZE; 1450 1451 return vm; 1452 } 1453 return NULL; 1454 } 1455 1456 static void __vunmap(const void *addr, int deallocate_pages) 1457 { 1458 struct vm_struct *area; 1459 1460 if (!addr) 1461 return; 1462 1463 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1464 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1465 return; 1466 } 1467 1468 area = remove_vm_area(addr); 1469 if (unlikely(!area)) { 1470 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1471 addr); 1472 return; 1473 } 1474 1475 debug_check_no_locks_freed(addr, area->size); 1476 debug_check_no_obj_freed(addr, area->size); 1477 1478 if (deallocate_pages) { 1479 int i; 1480 1481 for (i = 0; i < area->nr_pages; i++) { 1482 struct page *page = area->pages[i]; 1483 1484 BUG_ON(!page); 1485 __free_page(page); 1486 } 1487 1488 if (area->flags & VM_VPAGES) 1489 vfree(area->pages); 1490 else 1491 kfree(area->pages); 1492 } 1493 1494 kfree(area); 1495 return; 1496 } 1497 1498 /** 1499 * vfree - release memory allocated by vmalloc() 1500 * @addr: memory base address 1501 * 1502 * Free the virtually continuous memory area starting at @addr, as 1503 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1504 * NULL, no operation is performed. 1505 * 1506 * Must not be called in interrupt context. 1507 */ 1508 void vfree(const void *addr) 1509 { 1510 BUG_ON(in_interrupt()); 1511 1512 kmemleak_free(addr); 1513 1514 __vunmap(addr, 1); 1515 } 1516 EXPORT_SYMBOL(vfree); 1517 1518 /** 1519 * vunmap - release virtual mapping obtained by vmap() 1520 * @addr: memory base address 1521 * 1522 * Free the virtually contiguous memory area starting at @addr, 1523 * which was created from the page array passed to vmap(). 1524 * 1525 * Must not be called in interrupt context. 1526 */ 1527 void vunmap(const void *addr) 1528 { 1529 BUG_ON(in_interrupt()); 1530 might_sleep(); 1531 __vunmap(addr, 0); 1532 } 1533 EXPORT_SYMBOL(vunmap); 1534 1535 /** 1536 * vmap - map an array of pages into virtually contiguous space 1537 * @pages: array of page pointers 1538 * @count: number of pages to map 1539 * @flags: vm_area->flags 1540 * @prot: page protection for the mapping 1541 * 1542 * Maps @count pages from @pages into contiguous kernel virtual 1543 * space. 1544 */ 1545 void *vmap(struct page **pages, unsigned int count, 1546 unsigned long flags, pgprot_t prot) 1547 { 1548 struct vm_struct *area; 1549 1550 might_sleep(); 1551 1552 if (count > totalram_pages) 1553 return NULL; 1554 1555 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1556 __builtin_return_address(0)); 1557 if (!area) 1558 return NULL; 1559 1560 if (map_vm_area(area, prot, &pages)) { 1561 vunmap(area->addr); 1562 return NULL; 1563 } 1564 1565 return area->addr; 1566 } 1567 EXPORT_SYMBOL(vmap); 1568 1569 static void *__vmalloc_node(unsigned long size, unsigned long align, 1570 gfp_t gfp_mask, pgprot_t prot, 1571 int node, void *caller); 1572 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1573 pgprot_t prot, int node, void *caller) 1574 { 1575 const int order = 0; 1576 struct page **pages; 1577 unsigned int nr_pages, array_size, i; 1578 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1579 1580 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1581 array_size = (nr_pages * sizeof(struct page *)); 1582 1583 area->nr_pages = nr_pages; 1584 /* Please note that the recursion is strictly bounded. */ 1585 if (array_size > PAGE_SIZE) { 1586 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1587 PAGE_KERNEL, node, caller); 1588 area->flags |= VM_VPAGES; 1589 } else { 1590 pages = kmalloc_node(array_size, nested_gfp, node); 1591 } 1592 area->pages = pages; 1593 area->caller = caller; 1594 if (!area->pages) { 1595 remove_vm_area(area->addr); 1596 kfree(area); 1597 return NULL; 1598 } 1599 1600 for (i = 0; i < area->nr_pages; i++) { 1601 struct page *page; 1602 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1603 1604 if (node < 0) 1605 page = alloc_page(tmp_mask); 1606 else 1607 page = alloc_pages_node(node, tmp_mask, order); 1608 1609 if (unlikely(!page)) { 1610 /* Successfully allocated i pages, free them in __vunmap() */ 1611 area->nr_pages = i; 1612 goto fail; 1613 } 1614 area->pages[i] = page; 1615 } 1616 1617 if (map_vm_area(area, prot, &pages)) 1618 goto fail; 1619 return area->addr; 1620 1621 fail: 1622 warn_alloc_failed(gfp_mask, order, 1623 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1624 (area->nr_pages*PAGE_SIZE), area->size); 1625 vfree(area->addr); 1626 return NULL; 1627 } 1628 1629 /** 1630 * __vmalloc_node_range - allocate virtually contiguous memory 1631 * @size: allocation size 1632 * @align: desired alignment 1633 * @start: vm area range start 1634 * @end: vm area range end 1635 * @gfp_mask: flags for the page level allocator 1636 * @prot: protection mask for the allocated pages 1637 * @node: node to use for allocation or -1 1638 * @caller: caller's return address 1639 * 1640 * Allocate enough pages to cover @size from the page level 1641 * allocator with @gfp_mask flags. Map them into contiguous 1642 * kernel virtual space, using a pagetable protection of @prot. 1643 */ 1644 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1645 unsigned long start, unsigned long end, gfp_t gfp_mask, 1646 pgprot_t prot, int node, void *caller) 1647 { 1648 struct vm_struct *area; 1649 void *addr; 1650 unsigned long real_size = size; 1651 1652 size = PAGE_ALIGN(size); 1653 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1654 goto fail; 1655 1656 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, 1657 start, end, node, gfp_mask, caller); 1658 if (!area) 1659 goto fail; 1660 1661 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1662 if (!addr) 1663 return NULL; 1664 1665 /* 1666 * In this function, newly allocated vm_struct is not added 1667 * to vmlist at __get_vm_area_node(). so, it is added here. 1668 */ 1669 insert_vmalloc_vmlist(area); 1670 1671 /* 1672 * A ref_count = 3 is needed because the vm_struct and vmap_area 1673 * structures allocated in the __get_vm_area_node() function contain 1674 * references to the virtual address of the vmalloc'ed block. 1675 */ 1676 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1677 1678 return addr; 1679 1680 fail: 1681 warn_alloc_failed(gfp_mask, 0, 1682 "vmalloc: allocation failure: %lu bytes\n", 1683 real_size); 1684 return NULL; 1685 } 1686 1687 /** 1688 * __vmalloc_node - allocate virtually contiguous memory 1689 * @size: allocation size 1690 * @align: desired alignment 1691 * @gfp_mask: flags for the page level allocator 1692 * @prot: protection mask for the allocated pages 1693 * @node: node to use for allocation or -1 1694 * @caller: caller's return address 1695 * 1696 * Allocate enough pages to cover @size from the page level 1697 * allocator with @gfp_mask flags. Map them into contiguous 1698 * kernel virtual space, using a pagetable protection of @prot. 1699 */ 1700 static void *__vmalloc_node(unsigned long size, unsigned long align, 1701 gfp_t gfp_mask, pgprot_t prot, 1702 int node, void *caller) 1703 { 1704 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1705 gfp_mask, prot, node, caller); 1706 } 1707 1708 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1709 { 1710 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1711 __builtin_return_address(0)); 1712 } 1713 EXPORT_SYMBOL(__vmalloc); 1714 1715 static inline void *__vmalloc_node_flags(unsigned long size, 1716 int node, gfp_t flags) 1717 { 1718 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1719 node, __builtin_return_address(0)); 1720 } 1721 1722 /** 1723 * vmalloc - allocate virtually contiguous memory 1724 * @size: allocation size 1725 * Allocate enough pages to cover @size from the page level 1726 * allocator and map them into contiguous kernel virtual space. 1727 * 1728 * For tight control over page level allocator and protection flags 1729 * use __vmalloc() instead. 1730 */ 1731 void *vmalloc(unsigned long size) 1732 { 1733 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1734 } 1735 EXPORT_SYMBOL(vmalloc); 1736 1737 /** 1738 * vzalloc - allocate virtually contiguous memory with zero fill 1739 * @size: allocation size 1740 * Allocate enough pages to cover @size from the page level 1741 * allocator and map them into contiguous kernel virtual space. 1742 * The memory allocated is set to zero. 1743 * 1744 * For tight control over page level allocator and protection flags 1745 * use __vmalloc() instead. 1746 */ 1747 void *vzalloc(unsigned long size) 1748 { 1749 return __vmalloc_node_flags(size, -1, 1750 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1751 } 1752 EXPORT_SYMBOL(vzalloc); 1753 1754 /** 1755 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1756 * @size: allocation size 1757 * 1758 * The resulting memory area is zeroed so it can be mapped to userspace 1759 * without leaking data. 1760 */ 1761 void *vmalloc_user(unsigned long size) 1762 { 1763 struct vm_struct *area; 1764 void *ret; 1765 1766 ret = __vmalloc_node(size, SHMLBA, 1767 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1768 PAGE_KERNEL, -1, __builtin_return_address(0)); 1769 if (ret) { 1770 area = find_vm_area(ret); 1771 area->flags |= VM_USERMAP; 1772 } 1773 return ret; 1774 } 1775 EXPORT_SYMBOL(vmalloc_user); 1776 1777 /** 1778 * vmalloc_node - allocate memory on a specific node 1779 * @size: allocation size 1780 * @node: numa node 1781 * 1782 * Allocate enough pages to cover @size from the page level 1783 * allocator and map them into contiguous kernel virtual space. 1784 * 1785 * For tight control over page level allocator and protection flags 1786 * use __vmalloc() instead. 1787 */ 1788 void *vmalloc_node(unsigned long size, int node) 1789 { 1790 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1791 node, __builtin_return_address(0)); 1792 } 1793 EXPORT_SYMBOL(vmalloc_node); 1794 1795 /** 1796 * vzalloc_node - allocate memory on a specific node with zero fill 1797 * @size: allocation size 1798 * @node: numa node 1799 * 1800 * Allocate enough pages to cover @size from the page level 1801 * allocator and map them into contiguous kernel virtual space. 1802 * The memory allocated is set to zero. 1803 * 1804 * For tight control over page level allocator and protection flags 1805 * use __vmalloc_node() instead. 1806 */ 1807 void *vzalloc_node(unsigned long size, int node) 1808 { 1809 return __vmalloc_node_flags(size, node, 1810 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1811 } 1812 EXPORT_SYMBOL(vzalloc_node); 1813 1814 #ifndef PAGE_KERNEL_EXEC 1815 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1816 #endif 1817 1818 /** 1819 * vmalloc_exec - allocate virtually contiguous, executable memory 1820 * @size: allocation size 1821 * 1822 * Kernel-internal function to allocate enough pages to cover @size 1823 * the page level allocator and map them into contiguous and 1824 * executable kernel virtual space. 1825 * 1826 * For tight control over page level allocator and protection flags 1827 * use __vmalloc() instead. 1828 */ 1829 1830 void *vmalloc_exec(unsigned long size) 1831 { 1832 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1833 -1, __builtin_return_address(0)); 1834 } 1835 1836 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1837 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1838 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1839 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1840 #else 1841 #define GFP_VMALLOC32 GFP_KERNEL 1842 #endif 1843 1844 /** 1845 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1846 * @size: allocation size 1847 * 1848 * Allocate enough 32bit PA addressable pages to cover @size from the 1849 * page level allocator and map them into contiguous kernel virtual space. 1850 */ 1851 void *vmalloc_32(unsigned long size) 1852 { 1853 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1854 -1, __builtin_return_address(0)); 1855 } 1856 EXPORT_SYMBOL(vmalloc_32); 1857 1858 /** 1859 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1860 * @size: allocation size 1861 * 1862 * The resulting memory area is 32bit addressable and zeroed so it can be 1863 * mapped to userspace without leaking data. 1864 */ 1865 void *vmalloc_32_user(unsigned long size) 1866 { 1867 struct vm_struct *area; 1868 void *ret; 1869 1870 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1871 -1, __builtin_return_address(0)); 1872 if (ret) { 1873 area = find_vm_area(ret); 1874 area->flags |= VM_USERMAP; 1875 } 1876 return ret; 1877 } 1878 EXPORT_SYMBOL(vmalloc_32_user); 1879 1880 /* 1881 * small helper routine , copy contents to buf from addr. 1882 * If the page is not present, fill zero. 1883 */ 1884 1885 static int aligned_vread(char *buf, char *addr, unsigned long count) 1886 { 1887 struct page *p; 1888 int copied = 0; 1889 1890 while (count) { 1891 unsigned long offset, length; 1892 1893 offset = (unsigned long)addr & ~PAGE_MASK; 1894 length = PAGE_SIZE - offset; 1895 if (length > count) 1896 length = count; 1897 p = vmalloc_to_page(addr); 1898 /* 1899 * To do safe access to this _mapped_ area, we need 1900 * lock. But adding lock here means that we need to add 1901 * overhead of vmalloc()/vfree() calles for this _debug_ 1902 * interface, rarely used. Instead of that, we'll use 1903 * kmap() and get small overhead in this access function. 1904 */ 1905 if (p) { 1906 /* 1907 * we can expect USER0 is not used (see vread/vwrite's 1908 * function description) 1909 */ 1910 void *map = kmap_atomic(p); 1911 memcpy(buf, map + offset, length); 1912 kunmap_atomic(map); 1913 } else 1914 memset(buf, 0, length); 1915 1916 addr += length; 1917 buf += length; 1918 copied += length; 1919 count -= length; 1920 } 1921 return copied; 1922 } 1923 1924 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1925 { 1926 struct page *p; 1927 int copied = 0; 1928 1929 while (count) { 1930 unsigned long offset, length; 1931 1932 offset = (unsigned long)addr & ~PAGE_MASK; 1933 length = PAGE_SIZE - offset; 1934 if (length > count) 1935 length = count; 1936 p = vmalloc_to_page(addr); 1937 /* 1938 * To do safe access to this _mapped_ area, we need 1939 * lock. But adding lock here means that we need to add 1940 * overhead of vmalloc()/vfree() calles for this _debug_ 1941 * interface, rarely used. Instead of that, we'll use 1942 * kmap() and get small overhead in this access function. 1943 */ 1944 if (p) { 1945 /* 1946 * we can expect USER0 is not used (see vread/vwrite's 1947 * function description) 1948 */ 1949 void *map = kmap_atomic(p); 1950 memcpy(map + offset, buf, length); 1951 kunmap_atomic(map); 1952 } 1953 addr += length; 1954 buf += length; 1955 copied += length; 1956 count -= length; 1957 } 1958 return copied; 1959 } 1960 1961 /** 1962 * vread() - read vmalloc area in a safe way. 1963 * @buf: buffer for reading data 1964 * @addr: vm address. 1965 * @count: number of bytes to be read. 1966 * 1967 * Returns # of bytes which addr and buf should be increased. 1968 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1969 * includes any intersect with alive vmalloc area. 1970 * 1971 * This function checks that addr is a valid vmalloc'ed area, and 1972 * copy data from that area to a given buffer. If the given memory range 1973 * of [addr...addr+count) includes some valid address, data is copied to 1974 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1975 * IOREMAP area is treated as memory hole and no copy is done. 1976 * 1977 * If [addr...addr+count) doesn't includes any intersects with alive 1978 * vm_struct area, returns 0. 1979 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1980 * the caller should guarantee KM_USER0 is not used. 1981 * 1982 * Note: In usual ops, vread() is never necessary because the caller 1983 * should know vmalloc() area is valid and can use memcpy(). 1984 * This is for routines which have to access vmalloc area without 1985 * any informaion, as /dev/kmem. 1986 * 1987 */ 1988 1989 long vread(char *buf, char *addr, unsigned long count) 1990 { 1991 struct vm_struct *tmp; 1992 char *vaddr, *buf_start = buf; 1993 unsigned long buflen = count; 1994 unsigned long n; 1995 1996 /* Don't allow overflow */ 1997 if ((unsigned long) addr + count < count) 1998 count = -(unsigned long) addr; 1999 2000 read_lock(&vmlist_lock); 2001 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2002 vaddr = (char *) tmp->addr; 2003 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2004 continue; 2005 while (addr < vaddr) { 2006 if (count == 0) 2007 goto finished; 2008 *buf = '\0'; 2009 buf++; 2010 addr++; 2011 count--; 2012 } 2013 n = vaddr + tmp->size - PAGE_SIZE - addr; 2014 if (n > count) 2015 n = count; 2016 if (!(tmp->flags & VM_IOREMAP)) 2017 aligned_vread(buf, addr, n); 2018 else /* IOREMAP area is treated as memory hole */ 2019 memset(buf, 0, n); 2020 buf += n; 2021 addr += n; 2022 count -= n; 2023 } 2024 finished: 2025 read_unlock(&vmlist_lock); 2026 2027 if (buf == buf_start) 2028 return 0; 2029 /* zero-fill memory holes */ 2030 if (buf != buf_start + buflen) 2031 memset(buf, 0, buflen - (buf - buf_start)); 2032 2033 return buflen; 2034 } 2035 2036 /** 2037 * vwrite() - write vmalloc area in a safe way. 2038 * @buf: buffer for source data 2039 * @addr: vm address. 2040 * @count: number of bytes to be read. 2041 * 2042 * Returns # of bytes which addr and buf should be incresed. 2043 * (same number to @count). 2044 * If [addr...addr+count) doesn't includes any intersect with valid 2045 * vmalloc area, returns 0. 2046 * 2047 * This function checks that addr is a valid vmalloc'ed area, and 2048 * copy data from a buffer to the given addr. If specified range of 2049 * [addr...addr+count) includes some valid address, data is copied from 2050 * proper area of @buf. If there are memory holes, no copy to hole. 2051 * IOREMAP area is treated as memory hole and no copy is done. 2052 * 2053 * If [addr...addr+count) doesn't includes any intersects with alive 2054 * vm_struct area, returns 0. 2055 * @buf should be kernel's buffer. Because this function uses KM_USER0, 2056 * the caller should guarantee KM_USER0 is not used. 2057 * 2058 * Note: In usual ops, vwrite() is never necessary because the caller 2059 * should know vmalloc() area is valid and can use memcpy(). 2060 * This is for routines which have to access vmalloc area without 2061 * any informaion, as /dev/kmem. 2062 */ 2063 2064 long vwrite(char *buf, char *addr, unsigned long count) 2065 { 2066 struct vm_struct *tmp; 2067 char *vaddr; 2068 unsigned long n, buflen; 2069 int copied = 0; 2070 2071 /* Don't allow overflow */ 2072 if ((unsigned long) addr + count < count) 2073 count = -(unsigned long) addr; 2074 buflen = count; 2075 2076 read_lock(&vmlist_lock); 2077 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2078 vaddr = (char *) tmp->addr; 2079 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2080 continue; 2081 while (addr < vaddr) { 2082 if (count == 0) 2083 goto finished; 2084 buf++; 2085 addr++; 2086 count--; 2087 } 2088 n = vaddr + tmp->size - PAGE_SIZE - addr; 2089 if (n > count) 2090 n = count; 2091 if (!(tmp->flags & VM_IOREMAP)) { 2092 aligned_vwrite(buf, addr, n); 2093 copied++; 2094 } 2095 buf += n; 2096 addr += n; 2097 count -= n; 2098 } 2099 finished: 2100 read_unlock(&vmlist_lock); 2101 if (!copied) 2102 return 0; 2103 return buflen; 2104 } 2105 2106 /** 2107 * remap_vmalloc_range - map vmalloc pages to userspace 2108 * @vma: vma to cover (map full range of vma) 2109 * @addr: vmalloc memory 2110 * @pgoff: number of pages into addr before first page to map 2111 * 2112 * Returns: 0 for success, -Exxx on failure 2113 * 2114 * This function checks that addr is a valid vmalloc'ed area, and 2115 * that it is big enough to cover the vma. Will return failure if 2116 * that criteria isn't met. 2117 * 2118 * Similar to remap_pfn_range() (see mm/memory.c) 2119 */ 2120 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2121 unsigned long pgoff) 2122 { 2123 struct vm_struct *area; 2124 unsigned long uaddr = vma->vm_start; 2125 unsigned long usize = vma->vm_end - vma->vm_start; 2126 2127 if ((PAGE_SIZE-1) & (unsigned long)addr) 2128 return -EINVAL; 2129 2130 area = find_vm_area(addr); 2131 if (!area) 2132 return -EINVAL; 2133 2134 if (!(area->flags & VM_USERMAP)) 2135 return -EINVAL; 2136 2137 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2138 return -EINVAL; 2139 2140 addr += pgoff << PAGE_SHIFT; 2141 do { 2142 struct page *page = vmalloc_to_page(addr); 2143 int ret; 2144 2145 ret = vm_insert_page(vma, uaddr, page); 2146 if (ret) 2147 return ret; 2148 2149 uaddr += PAGE_SIZE; 2150 addr += PAGE_SIZE; 2151 usize -= PAGE_SIZE; 2152 } while (usize > 0); 2153 2154 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 2155 vma->vm_flags |= VM_RESERVED; 2156 2157 return 0; 2158 } 2159 EXPORT_SYMBOL(remap_vmalloc_range); 2160 2161 /* 2162 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2163 * have one. 2164 */ 2165 void __attribute__((weak)) vmalloc_sync_all(void) 2166 { 2167 } 2168 2169 2170 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2171 { 2172 pte_t ***p = data; 2173 2174 if (p) { 2175 *(*p) = pte; 2176 (*p)++; 2177 } 2178 return 0; 2179 } 2180 2181 /** 2182 * alloc_vm_area - allocate a range of kernel address space 2183 * @size: size of the area 2184 * @ptes: returns the PTEs for the address space 2185 * 2186 * Returns: NULL on failure, vm_struct on success 2187 * 2188 * This function reserves a range of kernel address space, and 2189 * allocates pagetables to map that range. No actual mappings 2190 * are created. 2191 * 2192 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2193 * allocated for the VM area are returned. 2194 */ 2195 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2196 { 2197 struct vm_struct *area; 2198 2199 area = get_vm_area_caller(size, VM_IOREMAP, 2200 __builtin_return_address(0)); 2201 if (area == NULL) 2202 return NULL; 2203 2204 /* 2205 * This ensures that page tables are constructed for this region 2206 * of kernel virtual address space and mapped into init_mm. 2207 */ 2208 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2209 size, f, ptes ? &ptes : NULL)) { 2210 free_vm_area(area); 2211 return NULL; 2212 } 2213 2214 return area; 2215 } 2216 EXPORT_SYMBOL_GPL(alloc_vm_area); 2217 2218 void free_vm_area(struct vm_struct *area) 2219 { 2220 struct vm_struct *ret; 2221 ret = remove_vm_area(area->addr); 2222 BUG_ON(ret != area); 2223 kfree(area); 2224 } 2225 EXPORT_SYMBOL_GPL(free_vm_area); 2226 2227 #ifdef CONFIG_SMP 2228 static struct vmap_area *node_to_va(struct rb_node *n) 2229 { 2230 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2231 } 2232 2233 /** 2234 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2235 * @end: target address 2236 * @pnext: out arg for the next vmap_area 2237 * @pprev: out arg for the previous vmap_area 2238 * 2239 * Returns: %true if either or both of next and prev are found, 2240 * %false if no vmap_area exists 2241 * 2242 * Find vmap_areas end addresses of which enclose @end. ie. if not 2243 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2244 */ 2245 static bool pvm_find_next_prev(unsigned long end, 2246 struct vmap_area **pnext, 2247 struct vmap_area **pprev) 2248 { 2249 struct rb_node *n = vmap_area_root.rb_node; 2250 struct vmap_area *va = NULL; 2251 2252 while (n) { 2253 va = rb_entry(n, struct vmap_area, rb_node); 2254 if (end < va->va_end) 2255 n = n->rb_left; 2256 else if (end > va->va_end) 2257 n = n->rb_right; 2258 else 2259 break; 2260 } 2261 2262 if (!va) 2263 return false; 2264 2265 if (va->va_end > end) { 2266 *pnext = va; 2267 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2268 } else { 2269 *pprev = va; 2270 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2271 } 2272 return true; 2273 } 2274 2275 /** 2276 * pvm_determine_end - find the highest aligned address between two vmap_areas 2277 * @pnext: in/out arg for the next vmap_area 2278 * @pprev: in/out arg for the previous vmap_area 2279 * @align: alignment 2280 * 2281 * Returns: determined end address 2282 * 2283 * Find the highest aligned address between *@pnext and *@pprev below 2284 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2285 * down address is between the end addresses of the two vmap_areas. 2286 * 2287 * Please note that the address returned by this function may fall 2288 * inside *@pnext vmap_area. The caller is responsible for checking 2289 * that. 2290 */ 2291 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2292 struct vmap_area **pprev, 2293 unsigned long align) 2294 { 2295 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2296 unsigned long addr; 2297 2298 if (*pnext) 2299 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2300 else 2301 addr = vmalloc_end; 2302 2303 while (*pprev && (*pprev)->va_end > addr) { 2304 *pnext = *pprev; 2305 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2306 } 2307 2308 return addr; 2309 } 2310 2311 /** 2312 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2313 * @offsets: array containing offset of each area 2314 * @sizes: array containing size of each area 2315 * @nr_vms: the number of areas to allocate 2316 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2317 * 2318 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2319 * vm_structs on success, %NULL on failure 2320 * 2321 * Percpu allocator wants to use congruent vm areas so that it can 2322 * maintain the offsets among percpu areas. This function allocates 2323 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2324 * be scattered pretty far, distance between two areas easily going up 2325 * to gigabytes. To avoid interacting with regular vmallocs, these 2326 * areas are allocated from top. 2327 * 2328 * Despite its complicated look, this allocator is rather simple. It 2329 * does everything top-down and scans areas from the end looking for 2330 * matching slot. While scanning, if any of the areas overlaps with 2331 * existing vmap_area, the base address is pulled down to fit the 2332 * area. Scanning is repeated till all the areas fit and then all 2333 * necessary data structres are inserted and the result is returned. 2334 */ 2335 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2336 const size_t *sizes, int nr_vms, 2337 size_t align) 2338 { 2339 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2340 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2341 struct vmap_area **vas, *prev, *next; 2342 struct vm_struct **vms; 2343 int area, area2, last_area, term_area; 2344 unsigned long base, start, end, last_end; 2345 bool purged = false; 2346 2347 /* verify parameters and allocate data structures */ 2348 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2349 for (last_area = 0, area = 0; area < nr_vms; area++) { 2350 start = offsets[area]; 2351 end = start + sizes[area]; 2352 2353 /* is everything aligned properly? */ 2354 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2355 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2356 2357 /* detect the area with the highest address */ 2358 if (start > offsets[last_area]) 2359 last_area = area; 2360 2361 for (area2 = 0; area2 < nr_vms; area2++) { 2362 unsigned long start2 = offsets[area2]; 2363 unsigned long end2 = start2 + sizes[area2]; 2364 2365 if (area2 == area) 2366 continue; 2367 2368 BUG_ON(start2 >= start && start2 < end); 2369 BUG_ON(end2 <= end && end2 > start); 2370 } 2371 } 2372 last_end = offsets[last_area] + sizes[last_area]; 2373 2374 if (vmalloc_end - vmalloc_start < last_end) { 2375 WARN_ON(true); 2376 return NULL; 2377 } 2378 2379 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2380 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2381 if (!vas || !vms) 2382 goto err_free2; 2383 2384 for (area = 0; area < nr_vms; area++) { 2385 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2386 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2387 if (!vas[area] || !vms[area]) 2388 goto err_free; 2389 } 2390 retry: 2391 spin_lock(&vmap_area_lock); 2392 2393 /* start scanning - we scan from the top, begin with the last area */ 2394 area = term_area = last_area; 2395 start = offsets[area]; 2396 end = start + sizes[area]; 2397 2398 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2399 base = vmalloc_end - last_end; 2400 goto found; 2401 } 2402 base = pvm_determine_end(&next, &prev, align) - end; 2403 2404 while (true) { 2405 BUG_ON(next && next->va_end <= base + end); 2406 BUG_ON(prev && prev->va_end > base + end); 2407 2408 /* 2409 * base might have underflowed, add last_end before 2410 * comparing. 2411 */ 2412 if (base + last_end < vmalloc_start + last_end) { 2413 spin_unlock(&vmap_area_lock); 2414 if (!purged) { 2415 purge_vmap_area_lazy(); 2416 purged = true; 2417 goto retry; 2418 } 2419 goto err_free; 2420 } 2421 2422 /* 2423 * If next overlaps, move base downwards so that it's 2424 * right below next and then recheck. 2425 */ 2426 if (next && next->va_start < base + end) { 2427 base = pvm_determine_end(&next, &prev, align) - end; 2428 term_area = area; 2429 continue; 2430 } 2431 2432 /* 2433 * If prev overlaps, shift down next and prev and move 2434 * base so that it's right below new next and then 2435 * recheck. 2436 */ 2437 if (prev && prev->va_end > base + start) { 2438 next = prev; 2439 prev = node_to_va(rb_prev(&next->rb_node)); 2440 base = pvm_determine_end(&next, &prev, align) - end; 2441 term_area = area; 2442 continue; 2443 } 2444 2445 /* 2446 * This area fits, move on to the previous one. If 2447 * the previous one is the terminal one, we're done. 2448 */ 2449 area = (area + nr_vms - 1) % nr_vms; 2450 if (area == term_area) 2451 break; 2452 start = offsets[area]; 2453 end = start + sizes[area]; 2454 pvm_find_next_prev(base + end, &next, &prev); 2455 } 2456 found: 2457 /* we've found a fitting base, insert all va's */ 2458 for (area = 0; area < nr_vms; area++) { 2459 struct vmap_area *va = vas[area]; 2460 2461 va->va_start = base + offsets[area]; 2462 va->va_end = va->va_start + sizes[area]; 2463 __insert_vmap_area(va); 2464 } 2465 2466 vmap_area_pcpu_hole = base + offsets[last_area]; 2467 2468 spin_unlock(&vmap_area_lock); 2469 2470 /* insert all vm's */ 2471 for (area = 0; area < nr_vms; area++) 2472 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2473 pcpu_get_vm_areas); 2474 2475 kfree(vas); 2476 return vms; 2477 2478 err_free: 2479 for (area = 0; area < nr_vms; area++) { 2480 kfree(vas[area]); 2481 kfree(vms[area]); 2482 } 2483 err_free2: 2484 kfree(vas); 2485 kfree(vms); 2486 return NULL; 2487 } 2488 2489 /** 2490 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2491 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2492 * @nr_vms: the number of allocated areas 2493 * 2494 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2495 */ 2496 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2497 { 2498 int i; 2499 2500 for (i = 0; i < nr_vms; i++) 2501 free_vm_area(vms[i]); 2502 kfree(vms); 2503 } 2504 #endif /* CONFIG_SMP */ 2505 2506 #ifdef CONFIG_PROC_FS 2507 static void *s_start(struct seq_file *m, loff_t *pos) 2508 __acquires(&vmlist_lock) 2509 { 2510 loff_t n = *pos; 2511 struct vm_struct *v; 2512 2513 read_lock(&vmlist_lock); 2514 v = vmlist; 2515 while (n > 0 && v) { 2516 n--; 2517 v = v->next; 2518 } 2519 if (!n) 2520 return v; 2521 2522 return NULL; 2523 2524 } 2525 2526 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2527 { 2528 struct vm_struct *v = p; 2529 2530 ++*pos; 2531 return v->next; 2532 } 2533 2534 static void s_stop(struct seq_file *m, void *p) 2535 __releases(&vmlist_lock) 2536 { 2537 read_unlock(&vmlist_lock); 2538 } 2539 2540 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2541 { 2542 if (NUMA_BUILD) { 2543 unsigned int nr, *counters = m->private; 2544 2545 if (!counters) 2546 return; 2547 2548 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2549 2550 for (nr = 0; nr < v->nr_pages; nr++) 2551 counters[page_to_nid(v->pages[nr])]++; 2552 2553 for_each_node_state(nr, N_HIGH_MEMORY) 2554 if (counters[nr]) 2555 seq_printf(m, " N%u=%u", nr, counters[nr]); 2556 } 2557 } 2558 2559 static int s_show(struct seq_file *m, void *p) 2560 { 2561 struct vm_struct *v = p; 2562 2563 seq_printf(m, "0x%p-0x%p %7ld", 2564 v->addr, v->addr + v->size, v->size); 2565 2566 if (v->caller) 2567 seq_printf(m, " %pS", v->caller); 2568 2569 if (v->nr_pages) 2570 seq_printf(m, " pages=%d", v->nr_pages); 2571 2572 if (v->phys_addr) 2573 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2574 2575 if (v->flags & VM_IOREMAP) 2576 seq_printf(m, " ioremap"); 2577 2578 if (v->flags & VM_ALLOC) 2579 seq_printf(m, " vmalloc"); 2580 2581 if (v->flags & VM_MAP) 2582 seq_printf(m, " vmap"); 2583 2584 if (v->flags & VM_USERMAP) 2585 seq_printf(m, " user"); 2586 2587 if (v->flags & VM_VPAGES) 2588 seq_printf(m, " vpages"); 2589 2590 show_numa_info(m, v); 2591 seq_putc(m, '\n'); 2592 return 0; 2593 } 2594 2595 static const struct seq_operations vmalloc_op = { 2596 .start = s_start, 2597 .next = s_next, 2598 .stop = s_stop, 2599 .show = s_show, 2600 }; 2601 2602 static int vmalloc_open(struct inode *inode, struct file *file) 2603 { 2604 unsigned int *ptr = NULL; 2605 int ret; 2606 2607 if (NUMA_BUILD) { 2608 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2609 if (ptr == NULL) 2610 return -ENOMEM; 2611 } 2612 ret = seq_open(file, &vmalloc_op); 2613 if (!ret) { 2614 struct seq_file *m = file->private_data; 2615 m->private = ptr; 2616 } else 2617 kfree(ptr); 2618 return ret; 2619 } 2620 2621 static const struct file_operations proc_vmalloc_operations = { 2622 .open = vmalloc_open, 2623 .read = seq_read, 2624 .llseek = seq_lseek, 2625 .release = seq_release_private, 2626 }; 2627 2628 static int __init proc_vmalloc_init(void) 2629 { 2630 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2631 return 0; 2632 } 2633 module_init(proc_vmalloc_init); 2634 #endif 2635 2636