1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 static DEFINE_SPINLOCK(vmap_area_lock); 253 /* Export for kexec only */ 254 LIST_HEAD(vmap_area_list); 255 static struct rb_root vmap_area_root = RB_ROOT; 256 257 /* The vmap cache globals are protected by vmap_area_lock */ 258 static struct rb_node *free_vmap_cache; 259 static unsigned long cached_hole_size; 260 static unsigned long cached_vstart; 261 static unsigned long cached_align; 262 263 static unsigned long vmap_area_pcpu_hole; 264 265 static struct vmap_area *__find_vmap_area(unsigned long addr) 266 { 267 struct rb_node *n = vmap_area_root.rb_node; 268 269 while (n) { 270 struct vmap_area *va; 271 272 va = rb_entry(n, struct vmap_area, rb_node); 273 if (addr < va->va_start) 274 n = n->rb_left; 275 else if (addr > va->va_start) 276 n = n->rb_right; 277 else 278 return va; 279 } 280 281 return NULL; 282 } 283 284 static void __insert_vmap_area(struct vmap_area *va) 285 { 286 struct rb_node **p = &vmap_area_root.rb_node; 287 struct rb_node *parent = NULL; 288 struct rb_node *tmp; 289 290 while (*p) { 291 struct vmap_area *tmp_va; 292 293 parent = *p; 294 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 295 if (va->va_start < tmp_va->va_end) 296 p = &(*p)->rb_left; 297 else if (va->va_end > tmp_va->va_start) 298 p = &(*p)->rb_right; 299 else 300 BUG(); 301 } 302 303 rb_link_node(&va->rb_node, parent, p); 304 rb_insert_color(&va->rb_node, &vmap_area_root); 305 306 /* address-sort this list */ 307 tmp = rb_prev(&va->rb_node); 308 if (tmp) { 309 struct vmap_area *prev; 310 prev = rb_entry(tmp, struct vmap_area, rb_node); 311 list_add_rcu(&va->list, &prev->list); 312 } else 313 list_add_rcu(&va->list, &vmap_area_list); 314 } 315 316 static void purge_vmap_area_lazy(void); 317 318 /* 319 * Allocate a region of KVA of the specified size and alignment, within the 320 * vstart and vend. 321 */ 322 static struct vmap_area *alloc_vmap_area(unsigned long size, 323 unsigned long align, 324 unsigned long vstart, unsigned long vend, 325 int node, gfp_t gfp_mask) 326 { 327 struct vmap_area *va; 328 struct rb_node *n; 329 unsigned long addr; 330 int purged = 0; 331 struct vmap_area *first; 332 333 BUG_ON(!size); 334 BUG_ON(size & ~PAGE_MASK); 335 BUG_ON(!is_power_of_2(align)); 336 337 va = kmalloc_node(sizeof(struct vmap_area), 338 gfp_mask & GFP_RECLAIM_MASK, node); 339 if (unlikely(!va)) 340 return ERR_PTR(-ENOMEM); 341 342 retry: 343 spin_lock(&vmap_area_lock); 344 /* 345 * Invalidate cache if we have more permissive parameters. 346 * cached_hole_size notes the largest hole noticed _below_ 347 * the vmap_area cached in free_vmap_cache: if size fits 348 * into that hole, we want to scan from vstart to reuse 349 * the hole instead of allocating above free_vmap_cache. 350 * Note that __free_vmap_area may update free_vmap_cache 351 * without updating cached_hole_size or cached_align. 352 */ 353 if (!free_vmap_cache || 354 size < cached_hole_size || 355 vstart < cached_vstart || 356 align < cached_align) { 357 nocache: 358 cached_hole_size = 0; 359 free_vmap_cache = NULL; 360 } 361 /* record if we encounter less permissive parameters */ 362 cached_vstart = vstart; 363 cached_align = align; 364 365 /* find starting point for our search */ 366 if (free_vmap_cache) { 367 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 368 addr = ALIGN(first->va_end, align); 369 if (addr < vstart) 370 goto nocache; 371 if (addr + size - 1 < addr) 372 goto overflow; 373 374 } else { 375 addr = ALIGN(vstart, align); 376 if (addr + size - 1 < addr) 377 goto overflow; 378 379 n = vmap_area_root.rb_node; 380 first = NULL; 381 382 while (n) { 383 struct vmap_area *tmp; 384 tmp = rb_entry(n, struct vmap_area, rb_node); 385 if (tmp->va_end >= addr) { 386 first = tmp; 387 if (tmp->va_start <= addr) 388 break; 389 n = n->rb_left; 390 } else 391 n = n->rb_right; 392 } 393 394 if (!first) 395 goto found; 396 } 397 398 /* from the starting point, walk areas until a suitable hole is found */ 399 while (addr + size > first->va_start && addr + size <= vend) { 400 if (addr + cached_hole_size < first->va_start) 401 cached_hole_size = first->va_start - addr; 402 addr = ALIGN(first->va_end, align); 403 if (addr + size - 1 < addr) 404 goto overflow; 405 406 if (list_is_last(&first->list, &vmap_area_list)) 407 goto found; 408 409 first = list_entry(first->list.next, 410 struct vmap_area, list); 411 } 412 413 found: 414 if (addr + size > vend) 415 goto overflow; 416 417 va->va_start = addr; 418 va->va_end = addr + size; 419 va->flags = 0; 420 __insert_vmap_area(va); 421 free_vmap_cache = &va->rb_node; 422 spin_unlock(&vmap_area_lock); 423 424 BUG_ON(va->va_start & (align-1)); 425 BUG_ON(va->va_start < vstart); 426 BUG_ON(va->va_end > vend); 427 428 return va; 429 430 overflow: 431 spin_unlock(&vmap_area_lock); 432 if (!purged) { 433 purge_vmap_area_lazy(); 434 purged = 1; 435 goto retry; 436 } 437 if (printk_ratelimit()) 438 printk(KERN_WARNING 439 "vmap allocation for size %lu failed: " 440 "use vmalloc=<size> to increase size.\n", size); 441 kfree(va); 442 return ERR_PTR(-EBUSY); 443 } 444 445 static void __free_vmap_area(struct vmap_area *va) 446 { 447 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 448 449 if (free_vmap_cache) { 450 if (va->va_end < cached_vstart) { 451 free_vmap_cache = NULL; 452 } else { 453 struct vmap_area *cache; 454 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 455 if (va->va_start <= cache->va_start) { 456 free_vmap_cache = rb_prev(&va->rb_node); 457 /* 458 * We don't try to update cached_hole_size or 459 * cached_align, but it won't go very wrong. 460 */ 461 } 462 } 463 } 464 rb_erase(&va->rb_node, &vmap_area_root); 465 RB_CLEAR_NODE(&va->rb_node); 466 list_del_rcu(&va->list); 467 468 /* 469 * Track the highest possible candidate for pcpu area 470 * allocation. Areas outside of vmalloc area can be returned 471 * here too, consider only end addresses which fall inside 472 * vmalloc area proper. 473 */ 474 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 475 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 476 477 kfree_rcu(va, rcu_head); 478 } 479 480 /* 481 * Free a region of KVA allocated by alloc_vmap_area 482 */ 483 static void free_vmap_area(struct vmap_area *va) 484 { 485 spin_lock(&vmap_area_lock); 486 __free_vmap_area(va); 487 spin_unlock(&vmap_area_lock); 488 } 489 490 /* 491 * Clear the pagetable entries of a given vmap_area 492 */ 493 static void unmap_vmap_area(struct vmap_area *va) 494 { 495 vunmap_page_range(va->va_start, va->va_end); 496 } 497 498 static void vmap_debug_free_range(unsigned long start, unsigned long end) 499 { 500 /* 501 * Unmap page tables and force a TLB flush immediately if 502 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 503 * bugs similarly to those in linear kernel virtual address 504 * space after a page has been freed. 505 * 506 * All the lazy freeing logic is still retained, in order to 507 * minimise intrusiveness of this debugging feature. 508 * 509 * This is going to be *slow* (linear kernel virtual address 510 * debugging doesn't do a broadcast TLB flush so it is a lot 511 * faster). 512 */ 513 #ifdef CONFIG_DEBUG_PAGEALLOC 514 vunmap_page_range(start, end); 515 flush_tlb_kernel_range(start, end); 516 #endif 517 } 518 519 /* 520 * lazy_max_pages is the maximum amount of virtual address space we gather up 521 * before attempting to purge with a TLB flush. 522 * 523 * There is a tradeoff here: a larger number will cover more kernel page tables 524 * and take slightly longer to purge, but it will linearly reduce the number of 525 * global TLB flushes that must be performed. It would seem natural to scale 526 * this number up linearly with the number of CPUs (because vmapping activity 527 * could also scale linearly with the number of CPUs), however it is likely 528 * that in practice, workloads might be constrained in other ways that mean 529 * vmap activity will not scale linearly with CPUs. Also, I want to be 530 * conservative and not introduce a big latency on huge systems, so go with 531 * a less aggressive log scale. It will still be an improvement over the old 532 * code, and it will be simple to change the scale factor if we find that it 533 * becomes a problem on bigger systems. 534 */ 535 static unsigned long lazy_max_pages(void) 536 { 537 unsigned int log; 538 539 log = fls(num_online_cpus()); 540 541 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 542 } 543 544 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 545 546 /* for per-CPU blocks */ 547 static void purge_fragmented_blocks_allcpus(void); 548 549 /* 550 * called before a call to iounmap() if the caller wants vm_area_struct's 551 * immediately freed. 552 */ 553 void set_iounmap_nonlazy(void) 554 { 555 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 556 } 557 558 /* 559 * Purges all lazily-freed vmap areas. 560 * 561 * If sync is 0 then don't purge if there is already a purge in progress. 562 * If force_flush is 1, then flush kernel TLBs between *start and *end even 563 * if we found no lazy vmap areas to unmap (callers can use this to optimise 564 * their own TLB flushing). 565 * Returns with *start = min(*start, lowest purged address) 566 * *end = max(*end, highest purged address) 567 */ 568 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 569 int sync, int force_flush) 570 { 571 static DEFINE_SPINLOCK(purge_lock); 572 LIST_HEAD(valist); 573 struct vmap_area *va; 574 struct vmap_area *n_va; 575 int nr = 0; 576 577 /* 578 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 579 * should not expect such behaviour. This just simplifies locking for 580 * the case that isn't actually used at the moment anyway. 581 */ 582 if (!sync && !force_flush) { 583 if (!spin_trylock(&purge_lock)) 584 return; 585 } else 586 spin_lock(&purge_lock); 587 588 if (sync) 589 purge_fragmented_blocks_allcpus(); 590 591 rcu_read_lock(); 592 list_for_each_entry_rcu(va, &vmap_area_list, list) { 593 if (va->flags & VM_LAZY_FREE) { 594 if (va->va_start < *start) 595 *start = va->va_start; 596 if (va->va_end > *end) 597 *end = va->va_end; 598 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 599 list_add_tail(&va->purge_list, &valist); 600 va->flags |= VM_LAZY_FREEING; 601 va->flags &= ~VM_LAZY_FREE; 602 } 603 } 604 rcu_read_unlock(); 605 606 if (nr) 607 atomic_sub(nr, &vmap_lazy_nr); 608 609 if (nr || force_flush) 610 flush_tlb_kernel_range(*start, *end); 611 612 if (nr) { 613 spin_lock(&vmap_area_lock); 614 list_for_each_entry_safe(va, n_va, &valist, purge_list) 615 __free_vmap_area(va); 616 spin_unlock(&vmap_area_lock); 617 } 618 spin_unlock(&purge_lock); 619 } 620 621 /* 622 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 623 * is already purging. 624 */ 625 static void try_purge_vmap_area_lazy(void) 626 { 627 unsigned long start = ULONG_MAX, end = 0; 628 629 __purge_vmap_area_lazy(&start, &end, 0, 0); 630 } 631 632 /* 633 * Kick off a purge of the outstanding lazy areas. 634 */ 635 static void purge_vmap_area_lazy(void) 636 { 637 unsigned long start = ULONG_MAX, end = 0; 638 639 __purge_vmap_area_lazy(&start, &end, 1, 0); 640 } 641 642 /* 643 * Free a vmap area, caller ensuring that the area has been unmapped 644 * and flush_cache_vunmap had been called for the correct range 645 * previously. 646 */ 647 static void free_vmap_area_noflush(struct vmap_area *va) 648 { 649 va->flags |= VM_LAZY_FREE; 650 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 651 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 652 try_purge_vmap_area_lazy(); 653 } 654 655 /* 656 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 657 * called for the correct range previously. 658 */ 659 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 660 { 661 unmap_vmap_area(va); 662 free_vmap_area_noflush(va); 663 } 664 665 /* 666 * Free and unmap a vmap area 667 */ 668 static void free_unmap_vmap_area(struct vmap_area *va) 669 { 670 flush_cache_vunmap(va->va_start, va->va_end); 671 free_unmap_vmap_area_noflush(va); 672 } 673 674 static struct vmap_area *find_vmap_area(unsigned long addr) 675 { 676 struct vmap_area *va; 677 678 spin_lock(&vmap_area_lock); 679 va = __find_vmap_area(addr); 680 spin_unlock(&vmap_area_lock); 681 682 return va; 683 } 684 685 static void free_unmap_vmap_area_addr(unsigned long addr) 686 { 687 struct vmap_area *va; 688 689 va = find_vmap_area(addr); 690 BUG_ON(!va); 691 free_unmap_vmap_area(va); 692 } 693 694 695 /*** Per cpu kva allocator ***/ 696 697 /* 698 * vmap space is limited especially on 32 bit architectures. Ensure there is 699 * room for at least 16 percpu vmap blocks per CPU. 700 */ 701 /* 702 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 703 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 704 * instead (we just need a rough idea) 705 */ 706 #if BITS_PER_LONG == 32 707 #define VMALLOC_SPACE (128UL*1024*1024) 708 #else 709 #define VMALLOC_SPACE (128UL*1024*1024*1024) 710 #endif 711 712 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 713 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 714 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 715 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 716 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 717 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 718 #define VMAP_BBMAP_BITS \ 719 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 720 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 721 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 722 723 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 724 725 static bool vmap_initialized __read_mostly = false; 726 727 struct vmap_block_queue { 728 spinlock_t lock; 729 struct list_head free; 730 }; 731 732 struct vmap_block { 733 spinlock_t lock; 734 struct vmap_area *va; 735 struct vmap_block_queue *vbq; 736 unsigned long free, dirty; 737 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 738 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 739 struct list_head free_list; 740 struct rcu_head rcu_head; 741 struct list_head purge; 742 }; 743 744 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 745 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 746 747 /* 748 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 749 * in the free path. Could get rid of this if we change the API to return a 750 * "cookie" from alloc, to be passed to free. But no big deal yet. 751 */ 752 static DEFINE_SPINLOCK(vmap_block_tree_lock); 753 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 754 755 /* 756 * We should probably have a fallback mechanism to allocate virtual memory 757 * out of partially filled vmap blocks. However vmap block sizing should be 758 * fairly reasonable according to the vmalloc size, so it shouldn't be a 759 * big problem. 760 */ 761 762 static unsigned long addr_to_vb_idx(unsigned long addr) 763 { 764 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 765 addr /= VMAP_BLOCK_SIZE; 766 return addr; 767 } 768 769 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 770 { 771 struct vmap_block_queue *vbq; 772 struct vmap_block *vb; 773 struct vmap_area *va; 774 unsigned long vb_idx; 775 int node, err; 776 777 node = numa_node_id(); 778 779 vb = kmalloc_node(sizeof(struct vmap_block), 780 gfp_mask & GFP_RECLAIM_MASK, node); 781 if (unlikely(!vb)) 782 return ERR_PTR(-ENOMEM); 783 784 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 785 VMALLOC_START, VMALLOC_END, 786 node, gfp_mask); 787 if (IS_ERR(va)) { 788 kfree(vb); 789 return ERR_CAST(va); 790 } 791 792 err = radix_tree_preload(gfp_mask); 793 if (unlikely(err)) { 794 kfree(vb); 795 free_vmap_area(va); 796 return ERR_PTR(err); 797 } 798 799 spin_lock_init(&vb->lock); 800 vb->va = va; 801 vb->free = VMAP_BBMAP_BITS; 802 vb->dirty = 0; 803 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 804 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 805 INIT_LIST_HEAD(&vb->free_list); 806 807 vb_idx = addr_to_vb_idx(va->va_start); 808 spin_lock(&vmap_block_tree_lock); 809 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 810 spin_unlock(&vmap_block_tree_lock); 811 BUG_ON(err); 812 radix_tree_preload_end(); 813 814 vbq = &get_cpu_var(vmap_block_queue); 815 vb->vbq = vbq; 816 spin_lock(&vbq->lock); 817 list_add_rcu(&vb->free_list, &vbq->free); 818 spin_unlock(&vbq->lock); 819 put_cpu_var(vmap_block_queue); 820 821 return vb; 822 } 823 824 static void free_vmap_block(struct vmap_block *vb) 825 { 826 struct vmap_block *tmp; 827 unsigned long vb_idx; 828 829 vb_idx = addr_to_vb_idx(vb->va->va_start); 830 spin_lock(&vmap_block_tree_lock); 831 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 832 spin_unlock(&vmap_block_tree_lock); 833 BUG_ON(tmp != vb); 834 835 free_vmap_area_noflush(vb->va); 836 kfree_rcu(vb, rcu_head); 837 } 838 839 static void purge_fragmented_blocks(int cpu) 840 { 841 LIST_HEAD(purge); 842 struct vmap_block *vb; 843 struct vmap_block *n_vb; 844 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 845 846 rcu_read_lock(); 847 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 848 849 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 850 continue; 851 852 spin_lock(&vb->lock); 853 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 854 vb->free = 0; /* prevent further allocs after releasing lock */ 855 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 856 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 857 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 858 spin_lock(&vbq->lock); 859 list_del_rcu(&vb->free_list); 860 spin_unlock(&vbq->lock); 861 spin_unlock(&vb->lock); 862 list_add_tail(&vb->purge, &purge); 863 } else 864 spin_unlock(&vb->lock); 865 } 866 rcu_read_unlock(); 867 868 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 869 list_del(&vb->purge); 870 free_vmap_block(vb); 871 } 872 } 873 874 static void purge_fragmented_blocks_thiscpu(void) 875 { 876 purge_fragmented_blocks(smp_processor_id()); 877 } 878 879 static void purge_fragmented_blocks_allcpus(void) 880 { 881 int cpu; 882 883 for_each_possible_cpu(cpu) 884 purge_fragmented_blocks(cpu); 885 } 886 887 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 888 { 889 struct vmap_block_queue *vbq; 890 struct vmap_block *vb; 891 unsigned long addr = 0; 892 unsigned int order; 893 int purge = 0; 894 895 BUG_ON(size & ~PAGE_MASK); 896 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 897 if (WARN_ON(size == 0)) { 898 /* 899 * Allocating 0 bytes isn't what caller wants since 900 * get_order(0) returns funny result. Just warn and terminate 901 * early. 902 */ 903 return NULL; 904 } 905 order = get_order(size); 906 907 again: 908 rcu_read_lock(); 909 vbq = &get_cpu_var(vmap_block_queue); 910 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 911 int i; 912 913 spin_lock(&vb->lock); 914 if (vb->free < 1UL << order) 915 goto next; 916 917 i = bitmap_find_free_region(vb->alloc_map, 918 VMAP_BBMAP_BITS, order); 919 920 if (i < 0) { 921 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 922 /* fragmented and no outstanding allocations */ 923 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 924 purge = 1; 925 } 926 goto next; 927 } 928 addr = vb->va->va_start + (i << PAGE_SHIFT); 929 BUG_ON(addr_to_vb_idx(addr) != 930 addr_to_vb_idx(vb->va->va_start)); 931 vb->free -= 1UL << order; 932 if (vb->free == 0) { 933 spin_lock(&vbq->lock); 934 list_del_rcu(&vb->free_list); 935 spin_unlock(&vbq->lock); 936 } 937 spin_unlock(&vb->lock); 938 break; 939 next: 940 spin_unlock(&vb->lock); 941 } 942 943 if (purge) 944 purge_fragmented_blocks_thiscpu(); 945 946 put_cpu_var(vmap_block_queue); 947 rcu_read_unlock(); 948 949 if (!addr) { 950 vb = new_vmap_block(gfp_mask); 951 if (IS_ERR(vb)) 952 return vb; 953 goto again; 954 } 955 956 return (void *)addr; 957 } 958 959 static void vb_free(const void *addr, unsigned long size) 960 { 961 unsigned long offset; 962 unsigned long vb_idx; 963 unsigned int order; 964 struct vmap_block *vb; 965 966 BUG_ON(size & ~PAGE_MASK); 967 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 968 969 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 970 971 order = get_order(size); 972 973 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 974 975 vb_idx = addr_to_vb_idx((unsigned long)addr); 976 rcu_read_lock(); 977 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 978 rcu_read_unlock(); 979 BUG_ON(!vb); 980 981 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 982 983 spin_lock(&vb->lock); 984 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 985 986 vb->dirty += 1UL << order; 987 if (vb->dirty == VMAP_BBMAP_BITS) { 988 BUG_ON(vb->free); 989 spin_unlock(&vb->lock); 990 free_vmap_block(vb); 991 } else 992 spin_unlock(&vb->lock); 993 } 994 995 /** 996 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 997 * 998 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 999 * to amortize TLB flushing overheads. What this means is that any page you 1000 * have now, may, in a former life, have been mapped into kernel virtual 1001 * address by the vmap layer and so there might be some CPUs with TLB entries 1002 * still referencing that page (additional to the regular 1:1 kernel mapping). 1003 * 1004 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1005 * be sure that none of the pages we have control over will have any aliases 1006 * from the vmap layer. 1007 */ 1008 void vm_unmap_aliases(void) 1009 { 1010 unsigned long start = ULONG_MAX, end = 0; 1011 int cpu; 1012 int flush = 0; 1013 1014 if (unlikely(!vmap_initialized)) 1015 return; 1016 1017 for_each_possible_cpu(cpu) { 1018 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1019 struct vmap_block *vb; 1020 1021 rcu_read_lock(); 1022 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1023 int i; 1024 1025 spin_lock(&vb->lock); 1026 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1027 while (i < VMAP_BBMAP_BITS) { 1028 unsigned long s, e; 1029 int j; 1030 j = find_next_zero_bit(vb->dirty_map, 1031 VMAP_BBMAP_BITS, i); 1032 1033 s = vb->va->va_start + (i << PAGE_SHIFT); 1034 e = vb->va->va_start + (j << PAGE_SHIFT); 1035 flush = 1; 1036 1037 if (s < start) 1038 start = s; 1039 if (e > end) 1040 end = e; 1041 1042 i = j; 1043 i = find_next_bit(vb->dirty_map, 1044 VMAP_BBMAP_BITS, i); 1045 } 1046 spin_unlock(&vb->lock); 1047 } 1048 rcu_read_unlock(); 1049 } 1050 1051 __purge_vmap_area_lazy(&start, &end, 1, flush); 1052 } 1053 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1054 1055 /** 1056 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1057 * @mem: the pointer returned by vm_map_ram 1058 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1059 */ 1060 void vm_unmap_ram(const void *mem, unsigned int count) 1061 { 1062 unsigned long size = count << PAGE_SHIFT; 1063 unsigned long addr = (unsigned long)mem; 1064 1065 BUG_ON(!addr); 1066 BUG_ON(addr < VMALLOC_START); 1067 BUG_ON(addr > VMALLOC_END); 1068 BUG_ON(addr & (PAGE_SIZE-1)); 1069 1070 debug_check_no_locks_freed(mem, size); 1071 vmap_debug_free_range(addr, addr+size); 1072 1073 if (likely(count <= VMAP_MAX_ALLOC)) 1074 vb_free(mem, size); 1075 else 1076 free_unmap_vmap_area_addr(addr); 1077 } 1078 EXPORT_SYMBOL(vm_unmap_ram); 1079 1080 /** 1081 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1082 * @pages: an array of pointers to the pages to be mapped 1083 * @count: number of pages 1084 * @node: prefer to allocate data structures on this node 1085 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1086 * 1087 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1088 */ 1089 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1090 { 1091 unsigned long size = count << PAGE_SHIFT; 1092 unsigned long addr; 1093 void *mem; 1094 1095 if (likely(count <= VMAP_MAX_ALLOC)) { 1096 mem = vb_alloc(size, GFP_KERNEL); 1097 if (IS_ERR(mem)) 1098 return NULL; 1099 addr = (unsigned long)mem; 1100 } else { 1101 struct vmap_area *va; 1102 va = alloc_vmap_area(size, PAGE_SIZE, 1103 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1104 if (IS_ERR(va)) 1105 return NULL; 1106 1107 addr = va->va_start; 1108 mem = (void *)addr; 1109 } 1110 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1111 vm_unmap_ram(mem, count); 1112 return NULL; 1113 } 1114 return mem; 1115 } 1116 EXPORT_SYMBOL(vm_map_ram); 1117 1118 static struct vm_struct *vmlist __initdata; 1119 /** 1120 * vm_area_add_early - add vmap area early during boot 1121 * @vm: vm_struct to add 1122 * 1123 * This function is used to add fixed kernel vm area to vmlist before 1124 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1125 * should contain proper values and the other fields should be zero. 1126 * 1127 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1128 */ 1129 void __init vm_area_add_early(struct vm_struct *vm) 1130 { 1131 struct vm_struct *tmp, **p; 1132 1133 BUG_ON(vmap_initialized); 1134 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1135 if (tmp->addr >= vm->addr) { 1136 BUG_ON(tmp->addr < vm->addr + vm->size); 1137 break; 1138 } else 1139 BUG_ON(tmp->addr + tmp->size > vm->addr); 1140 } 1141 vm->next = *p; 1142 *p = vm; 1143 } 1144 1145 /** 1146 * vm_area_register_early - register vmap area early during boot 1147 * @vm: vm_struct to register 1148 * @align: requested alignment 1149 * 1150 * This function is used to register kernel vm area before 1151 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1152 * proper values on entry and other fields should be zero. On return, 1153 * vm->addr contains the allocated address. 1154 * 1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1156 */ 1157 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1158 { 1159 static size_t vm_init_off __initdata; 1160 unsigned long addr; 1161 1162 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1163 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1164 1165 vm->addr = (void *)addr; 1166 1167 vm_area_add_early(vm); 1168 } 1169 1170 void __init vmalloc_init(void) 1171 { 1172 struct vmap_area *va; 1173 struct vm_struct *tmp; 1174 int i; 1175 1176 for_each_possible_cpu(i) { 1177 struct vmap_block_queue *vbq; 1178 1179 vbq = &per_cpu(vmap_block_queue, i); 1180 spin_lock_init(&vbq->lock); 1181 INIT_LIST_HEAD(&vbq->free); 1182 } 1183 1184 /* Import existing vmlist entries. */ 1185 for (tmp = vmlist; tmp; tmp = tmp->next) { 1186 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1187 va->flags = VM_VM_AREA; 1188 va->va_start = (unsigned long)tmp->addr; 1189 va->va_end = va->va_start + tmp->size; 1190 va->vm = tmp; 1191 __insert_vmap_area(va); 1192 } 1193 1194 vmap_area_pcpu_hole = VMALLOC_END; 1195 1196 vmap_initialized = true; 1197 } 1198 1199 /** 1200 * map_kernel_range_noflush - map kernel VM area with the specified pages 1201 * @addr: start of the VM area to map 1202 * @size: size of the VM area to map 1203 * @prot: page protection flags to use 1204 * @pages: pages to map 1205 * 1206 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1207 * specify should have been allocated using get_vm_area() and its 1208 * friends. 1209 * 1210 * NOTE: 1211 * This function does NOT do any cache flushing. The caller is 1212 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1213 * before calling this function. 1214 * 1215 * RETURNS: 1216 * The number of pages mapped on success, -errno on failure. 1217 */ 1218 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1219 pgprot_t prot, struct page **pages) 1220 { 1221 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1222 } 1223 1224 /** 1225 * unmap_kernel_range_noflush - unmap kernel VM area 1226 * @addr: start of the VM area to unmap 1227 * @size: size of the VM area to unmap 1228 * 1229 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1230 * specify should have been allocated using get_vm_area() and its 1231 * friends. 1232 * 1233 * NOTE: 1234 * This function does NOT do any cache flushing. The caller is 1235 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1236 * before calling this function and flush_tlb_kernel_range() after. 1237 */ 1238 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1239 { 1240 vunmap_page_range(addr, addr + size); 1241 } 1242 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1243 1244 /** 1245 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1246 * @addr: start of the VM area to unmap 1247 * @size: size of the VM area to unmap 1248 * 1249 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1250 * the unmapping and tlb after. 1251 */ 1252 void unmap_kernel_range(unsigned long addr, unsigned long size) 1253 { 1254 unsigned long end = addr + size; 1255 1256 flush_cache_vunmap(addr, end); 1257 vunmap_page_range(addr, end); 1258 flush_tlb_kernel_range(addr, end); 1259 } 1260 1261 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1262 { 1263 unsigned long addr = (unsigned long)area->addr; 1264 unsigned long end = addr + area->size - PAGE_SIZE; 1265 int err; 1266 1267 err = vmap_page_range(addr, end, prot, *pages); 1268 if (err > 0) { 1269 *pages += err; 1270 err = 0; 1271 } 1272 1273 return err; 1274 } 1275 EXPORT_SYMBOL_GPL(map_vm_area); 1276 1277 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1278 unsigned long flags, const void *caller) 1279 { 1280 spin_lock(&vmap_area_lock); 1281 vm->flags = flags; 1282 vm->addr = (void *)va->va_start; 1283 vm->size = va->va_end - va->va_start; 1284 vm->caller = caller; 1285 va->vm = vm; 1286 va->flags |= VM_VM_AREA; 1287 spin_unlock(&vmap_area_lock); 1288 } 1289 1290 static void clear_vm_unlist(struct vm_struct *vm) 1291 { 1292 /* 1293 * Before removing VM_UNLIST, 1294 * we should make sure that vm has proper values. 1295 * Pair with smp_rmb() in show_numa_info(). 1296 */ 1297 smp_wmb(); 1298 vm->flags &= ~VM_UNLIST; 1299 } 1300 1301 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1302 unsigned long flags, const void *caller) 1303 { 1304 setup_vmalloc_vm(vm, va, flags, caller); 1305 clear_vm_unlist(vm); 1306 } 1307 1308 static struct vm_struct *__get_vm_area_node(unsigned long size, 1309 unsigned long align, unsigned long flags, unsigned long start, 1310 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1311 { 1312 struct vmap_area *va; 1313 struct vm_struct *area; 1314 1315 BUG_ON(in_interrupt()); 1316 if (flags & VM_IOREMAP) { 1317 int bit = fls(size); 1318 1319 if (bit > IOREMAP_MAX_ORDER) 1320 bit = IOREMAP_MAX_ORDER; 1321 else if (bit < PAGE_SHIFT) 1322 bit = PAGE_SHIFT; 1323 1324 align = 1ul << bit; 1325 } 1326 1327 size = PAGE_ALIGN(size); 1328 if (unlikely(!size)) 1329 return NULL; 1330 1331 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1332 if (unlikely(!area)) 1333 return NULL; 1334 1335 /* 1336 * We always allocate a guard page. 1337 */ 1338 size += PAGE_SIZE; 1339 1340 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1341 if (IS_ERR(va)) { 1342 kfree(area); 1343 return NULL; 1344 } 1345 1346 /* 1347 * When this function is called from __vmalloc_node_range, 1348 * we add VM_UNLIST flag to avoid accessing uninitialized 1349 * members of vm_struct such as pages and nr_pages fields. 1350 * They will be set later. 1351 */ 1352 if (flags & VM_UNLIST) 1353 setup_vmalloc_vm(area, va, flags, caller); 1354 else 1355 insert_vmalloc_vm(area, va, flags, caller); 1356 1357 return area; 1358 } 1359 1360 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1361 unsigned long start, unsigned long end) 1362 { 1363 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1364 GFP_KERNEL, __builtin_return_address(0)); 1365 } 1366 EXPORT_SYMBOL_GPL(__get_vm_area); 1367 1368 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1369 unsigned long start, unsigned long end, 1370 const void *caller) 1371 { 1372 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1373 GFP_KERNEL, caller); 1374 } 1375 1376 /** 1377 * get_vm_area - reserve a contiguous kernel virtual area 1378 * @size: size of the area 1379 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1380 * 1381 * Search an area of @size in the kernel virtual mapping area, 1382 * and reserved it for out purposes. Returns the area descriptor 1383 * on success or %NULL on failure. 1384 */ 1385 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1386 { 1387 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1388 NUMA_NO_NODE, GFP_KERNEL, 1389 __builtin_return_address(0)); 1390 } 1391 1392 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1393 const void *caller) 1394 { 1395 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1396 NUMA_NO_NODE, GFP_KERNEL, caller); 1397 } 1398 1399 /** 1400 * find_vm_area - find a continuous kernel virtual area 1401 * @addr: base address 1402 * 1403 * Search for the kernel VM area starting at @addr, and return it. 1404 * It is up to the caller to do all required locking to keep the returned 1405 * pointer valid. 1406 */ 1407 struct vm_struct *find_vm_area(const void *addr) 1408 { 1409 struct vmap_area *va; 1410 1411 va = find_vmap_area((unsigned long)addr); 1412 if (va && va->flags & VM_VM_AREA) 1413 return va->vm; 1414 1415 return NULL; 1416 } 1417 1418 /** 1419 * remove_vm_area - find and remove a continuous kernel virtual area 1420 * @addr: base address 1421 * 1422 * Search for the kernel VM area starting at @addr, and remove it. 1423 * This function returns the found VM area, but using it is NOT safe 1424 * on SMP machines, except for its size or flags. 1425 */ 1426 struct vm_struct *remove_vm_area(const void *addr) 1427 { 1428 struct vmap_area *va; 1429 1430 va = find_vmap_area((unsigned long)addr); 1431 if (va && va->flags & VM_VM_AREA) { 1432 struct vm_struct *vm = va->vm; 1433 1434 spin_lock(&vmap_area_lock); 1435 va->vm = NULL; 1436 va->flags &= ~VM_VM_AREA; 1437 spin_unlock(&vmap_area_lock); 1438 1439 vmap_debug_free_range(va->va_start, va->va_end); 1440 free_unmap_vmap_area(va); 1441 vm->size -= PAGE_SIZE; 1442 1443 return vm; 1444 } 1445 return NULL; 1446 } 1447 1448 static void __vunmap(const void *addr, int deallocate_pages) 1449 { 1450 struct vm_struct *area; 1451 1452 if (!addr) 1453 return; 1454 1455 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1456 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1457 return; 1458 } 1459 1460 area = remove_vm_area(addr); 1461 if (unlikely(!area)) { 1462 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1463 addr); 1464 return; 1465 } 1466 1467 debug_check_no_locks_freed(addr, area->size); 1468 debug_check_no_obj_freed(addr, area->size); 1469 1470 if (deallocate_pages) { 1471 int i; 1472 1473 for (i = 0; i < area->nr_pages; i++) { 1474 struct page *page = area->pages[i]; 1475 1476 BUG_ON(!page); 1477 __free_page(page); 1478 } 1479 1480 if (area->flags & VM_VPAGES) 1481 vfree(area->pages); 1482 else 1483 kfree(area->pages); 1484 } 1485 1486 kfree(area); 1487 return; 1488 } 1489 1490 /** 1491 * vfree - release memory allocated by vmalloc() 1492 * @addr: memory base address 1493 * 1494 * Free the virtually continuous memory area starting at @addr, as 1495 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1496 * NULL, no operation is performed. 1497 * 1498 * Must not be called in interrupt context. 1499 */ 1500 void vfree(const void *addr) 1501 { 1502 BUG_ON(in_interrupt()); 1503 1504 kmemleak_free(addr); 1505 1506 __vunmap(addr, 1); 1507 } 1508 EXPORT_SYMBOL(vfree); 1509 1510 /** 1511 * vunmap - release virtual mapping obtained by vmap() 1512 * @addr: memory base address 1513 * 1514 * Free the virtually contiguous memory area starting at @addr, 1515 * which was created from the page array passed to vmap(). 1516 * 1517 * Must not be called in interrupt context. 1518 */ 1519 void vunmap(const void *addr) 1520 { 1521 BUG_ON(in_interrupt()); 1522 might_sleep(); 1523 __vunmap(addr, 0); 1524 } 1525 EXPORT_SYMBOL(vunmap); 1526 1527 /** 1528 * vmap - map an array of pages into virtually contiguous space 1529 * @pages: array of page pointers 1530 * @count: number of pages to map 1531 * @flags: vm_area->flags 1532 * @prot: page protection for the mapping 1533 * 1534 * Maps @count pages from @pages into contiguous kernel virtual 1535 * space. 1536 */ 1537 void *vmap(struct page **pages, unsigned int count, 1538 unsigned long flags, pgprot_t prot) 1539 { 1540 struct vm_struct *area; 1541 1542 might_sleep(); 1543 1544 if (count > totalram_pages) 1545 return NULL; 1546 1547 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1548 __builtin_return_address(0)); 1549 if (!area) 1550 return NULL; 1551 1552 if (map_vm_area(area, prot, &pages)) { 1553 vunmap(area->addr); 1554 return NULL; 1555 } 1556 1557 return area->addr; 1558 } 1559 EXPORT_SYMBOL(vmap); 1560 1561 static void *__vmalloc_node(unsigned long size, unsigned long align, 1562 gfp_t gfp_mask, pgprot_t prot, 1563 int node, const void *caller); 1564 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1565 pgprot_t prot, int node, const void *caller) 1566 { 1567 const int order = 0; 1568 struct page **pages; 1569 unsigned int nr_pages, array_size, i; 1570 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1571 1572 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1573 array_size = (nr_pages * sizeof(struct page *)); 1574 1575 area->nr_pages = nr_pages; 1576 /* Please note that the recursion is strictly bounded. */ 1577 if (array_size > PAGE_SIZE) { 1578 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1579 PAGE_KERNEL, node, caller); 1580 area->flags |= VM_VPAGES; 1581 } else { 1582 pages = kmalloc_node(array_size, nested_gfp, node); 1583 } 1584 area->pages = pages; 1585 area->caller = caller; 1586 if (!area->pages) { 1587 remove_vm_area(area->addr); 1588 kfree(area); 1589 return NULL; 1590 } 1591 1592 for (i = 0; i < area->nr_pages; i++) { 1593 struct page *page; 1594 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1595 1596 if (node < 0) 1597 page = alloc_page(tmp_mask); 1598 else 1599 page = alloc_pages_node(node, tmp_mask, order); 1600 1601 if (unlikely(!page)) { 1602 /* Successfully allocated i pages, free them in __vunmap() */ 1603 area->nr_pages = i; 1604 goto fail; 1605 } 1606 area->pages[i] = page; 1607 } 1608 1609 if (map_vm_area(area, prot, &pages)) 1610 goto fail; 1611 return area->addr; 1612 1613 fail: 1614 warn_alloc_failed(gfp_mask, order, 1615 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1616 (area->nr_pages*PAGE_SIZE), area->size); 1617 vfree(area->addr); 1618 return NULL; 1619 } 1620 1621 /** 1622 * __vmalloc_node_range - allocate virtually contiguous memory 1623 * @size: allocation size 1624 * @align: desired alignment 1625 * @start: vm area range start 1626 * @end: vm area range end 1627 * @gfp_mask: flags for the page level allocator 1628 * @prot: protection mask for the allocated pages 1629 * @node: node to use for allocation or NUMA_NO_NODE 1630 * @caller: caller's return address 1631 * 1632 * Allocate enough pages to cover @size from the page level 1633 * allocator with @gfp_mask flags. Map them into contiguous 1634 * kernel virtual space, using a pagetable protection of @prot. 1635 */ 1636 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1637 unsigned long start, unsigned long end, gfp_t gfp_mask, 1638 pgprot_t prot, int node, const void *caller) 1639 { 1640 struct vm_struct *area; 1641 void *addr; 1642 unsigned long real_size = size; 1643 1644 size = PAGE_ALIGN(size); 1645 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1646 goto fail; 1647 1648 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, 1649 start, end, node, gfp_mask, caller); 1650 if (!area) 1651 goto fail; 1652 1653 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1654 if (!addr) 1655 return NULL; 1656 1657 /* 1658 * In this function, newly allocated vm_struct has VM_UNLIST flag. 1659 * It means that vm_struct is not fully initialized. 1660 * Now, it is fully initialized, so remove this flag here. 1661 */ 1662 clear_vm_unlist(area); 1663 1664 /* 1665 * A ref_count = 3 is needed because the vm_struct and vmap_area 1666 * structures allocated in the __get_vm_area_node() function contain 1667 * references to the virtual address of the vmalloc'ed block. 1668 */ 1669 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1670 1671 return addr; 1672 1673 fail: 1674 warn_alloc_failed(gfp_mask, 0, 1675 "vmalloc: allocation failure: %lu bytes\n", 1676 real_size); 1677 return NULL; 1678 } 1679 1680 /** 1681 * __vmalloc_node - allocate virtually contiguous memory 1682 * @size: allocation size 1683 * @align: desired alignment 1684 * @gfp_mask: flags for the page level allocator 1685 * @prot: protection mask for the allocated pages 1686 * @node: node to use for allocation or NUMA_NO_NODE 1687 * @caller: caller's return address 1688 * 1689 * Allocate enough pages to cover @size from the page level 1690 * allocator with @gfp_mask flags. Map them into contiguous 1691 * kernel virtual space, using a pagetable protection of @prot. 1692 */ 1693 static void *__vmalloc_node(unsigned long size, unsigned long align, 1694 gfp_t gfp_mask, pgprot_t prot, 1695 int node, const void *caller) 1696 { 1697 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1698 gfp_mask, prot, node, caller); 1699 } 1700 1701 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1702 { 1703 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1704 __builtin_return_address(0)); 1705 } 1706 EXPORT_SYMBOL(__vmalloc); 1707 1708 static inline void *__vmalloc_node_flags(unsigned long size, 1709 int node, gfp_t flags) 1710 { 1711 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1712 node, __builtin_return_address(0)); 1713 } 1714 1715 /** 1716 * vmalloc - allocate virtually contiguous memory 1717 * @size: allocation size 1718 * Allocate enough pages to cover @size from the page level 1719 * allocator and map them into contiguous kernel virtual space. 1720 * 1721 * For tight control over page level allocator and protection flags 1722 * use __vmalloc() instead. 1723 */ 1724 void *vmalloc(unsigned long size) 1725 { 1726 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1727 GFP_KERNEL | __GFP_HIGHMEM); 1728 } 1729 EXPORT_SYMBOL(vmalloc); 1730 1731 /** 1732 * vzalloc - allocate virtually contiguous memory with zero fill 1733 * @size: allocation size 1734 * Allocate enough pages to cover @size from the page level 1735 * allocator and map them into contiguous kernel virtual space. 1736 * The memory allocated is set to zero. 1737 * 1738 * For tight control over page level allocator and protection flags 1739 * use __vmalloc() instead. 1740 */ 1741 void *vzalloc(unsigned long size) 1742 { 1743 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1744 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1745 } 1746 EXPORT_SYMBOL(vzalloc); 1747 1748 /** 1749 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1750 * @size: allocation size 1751 * 1752 * The resulting memory area is zeroed so it can be mapped to userspace 1753 * without leaking data. 1754 */ 1755 void *vmalloc_user(unsigned long size) 1756 { 1757 struct vm_struct *area; 1758 void *ret; 1759 1760 ret = __vmalloc_node(size, SHMLBA, 1761 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1762 PAGE_KERNEL, NUMA_NO_NODE, 1763 __builtin_return_address(0)); 1764 if (ret) { 1765 area = find_vm_area(ret); 1766 area->flags |= VM_USERMAP; 1767 } 1768 return ret; 1769 } 1770 EXPORT_SYMBOL(vmalloc_user); 1771 1772 /** 1773 * vmalloc_node - allocate memory on a specific node 1774 * @size: allocation size 1775 * @node: numa node 1776 * 1777 * Allocate enough pages to cover @size from the page level 1778 * allocator and map them into contiguous kernel virtual space. 1779 * 1780 * For tight control over page level allocator and protection flags 1781 * use __vmalloc() instead. 1782 */ 1783 void *vmalloc_node(unsigned long size, int node) 1784 { 1785 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1786 node, __builtin_return_address(0)); 1787 } 1788 EXPORT_SYMBOL(vmalloc_node); 1789 1790 /** 1791 * vzalloc_node - allocate memory on a specific node with zero fill 1792 * @size: allocation size 1793 * @node: numa node 1794 * 1795 * Allocate enough pages to cover @size from the page level 1796 * allocator and map them into contiguous kernel virtual space. 1797 * The memory allocated is set to zero. 1798 * 1799 * For tight control over page level allocator and protection flags 1800 * use __vmalloc_node() instead. 1801 */ 1802 void *vzalloc_node(unsigned long size, int node) 1803 { 1804 return __vmalloc_node_flags(size, node, 1805 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1806 } 1807 EXPORT_SYMBOL(vzalloc_node); 1808 1809 #ifndef PAGE_KERNEL_EXEC 1810 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1811 #endif 1812 1813 /** 1814 * vmalloc_exec - allocate virtually contiguous, executable memory 1815 * @size: allocation size 1816 * 1817 * Kernel-internal function to allocate enough pages to cover @size 1818 * the page level allocator and map them into contiguous and 1819 * executable kernel virtual space. 1820 * 1821 * For tight control over page level allocator and protection flags 1822 * use __vmalloc() instead. 1823 */ 1824 1825 void *vmalloc_exec(unsigned long size) 1826 { 1827 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1828 NUMA_NO_NODE, __builtin_return_address(0)); 1829 } 1830 1831 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1832 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1833 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1834 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1835 #else 1836 #define GFP_VMALLOC32 GFP_KERNEL 1837 #endif 1838 1839 /** 1840 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1841 * @size: allocation size 1842 * 1843 * Allocate enough 32bit PA addressable pages to cover @size from the 1844 * page level allocator and map them into contiguous kernel virtual space. 1845 */ 1846 void *vmalloc_32(unsigned long size) 1847 { 1848 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1849 NUMA_NO_NODE, __builtin_return_address(0)); 1850 } 1851 EXPORT_SYMBOL(vmalloc_32); 1852 1853 /** 1854 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1855 * @size: allocation size 1856 * 1857 * The resulting memory area is 32bit addressable and zeroed so it can be 1858 * mapped to userspace without leaking data. 1859 */ 1860 void *vmalloc_32_user(unsigned long size) 1861 { 1862 struct vm_struct *area; 1863 void *ret; 1864 1865 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1866 NUMA_NO_NODE, __builtin_return_address(0)); 1867 if (ret) { 1868 area = find_vm_area(ret); 1869 area->flags |= VM_USERMAP; 1870 } 1871 return ret; 1872 } 1873 EXPORT_SYMBOL(vmalloc_32_user); 1874 1875 /* 1876 * small helper routine , copy contents to buf from addr. 1877 * If the page is not present, fill zero. 1878 */ 1879 1880 static int aligned_vread(char *buf, char *addr, unsigned long count) 1881 { 1882 struct page *p; 1883 int copied = 0; 1884 1885 while (count) { 1886 unsigned long offset, length; 1887 1888 offset = (unsigned long)addr & ~PAGE_MASK; 1889 length = PAGE_SIZE - offset; 1890 if (length > count) 1891 length = count; 1892 p = vmalloc_to_page(addr); 1893 /* 1894 * To do safe access to this _mapped_ area, we need 1895 * lock. But adding lock here means that we need to add 1896 * overhead of vmalloc()/vfree() calles for this _debug_ 1897 * interface, rarely used. Instead of that, we'll use 1898 * kmap() and get small overhead in this access function. 1899 */ 1900 if (p) { 1901 /* 1902 * we can expect USER0 is not used (see vread/vwrite's 1903 * function description) 1904 */ 1905 void *map = kmap_atomic(p); 1906 memcpy(buf, map + offset, length); 1907 kunmap_atomic(map); 1908 } else 1909 memset(buf, 0, length); 1910 1911 addr += length; 1912 buf += length; 1913 copied += length; 1914 count -= length; 1915 } 1916 return copied; 1917 } 1918 1919 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1920 { 1921 struct page *p; 1922 int copied = 0; 1923 1924 while (count) { 1925 unsigned long offset, length; 1926 1927 offset = (unsigned long)addr & ~PAGE_MASK; 1928 length = PAGE_SIZE - offset; 1929 if (length > count) 1930 length = count; 1931 p = vmalloc_to_page(addr); 1932 /* 1933 * To do safe access to this _mapped_ area, we need 1934 * lock. But adding lock here means that we need to add 1935 * overhead of vmalloc()/vfree() calles for this _debug_ 1936 * interface, rarely used. Instead of that, we'll use 1937 * kmap() and get small overhead in this access function. 1938 */ 1939 if (p) { 1940 /* 1941 * we can expect USER0 is not used (see vread/vwrite's 1942 * function description) 1943 */ 1944 void *map = kmap_atomic(p); 1945 memcpy(map + offset, buf, length); 1946 kunmap_atomic(map); 1947 } 1948 addr += length; 1949 buf += length; 1950 copied += length; 1951 count -= length; 1952 } 1953 return copied; 1954 } 1955 1956 /** 1957 * vread() - read vmalloc area in a safe way. 1958 * @buf: buffer for reading data 1959 * @addr: vm address. 1960 * @count: number of bytes to be read. 1961 * 1962 * Returns # of bytes which addr and buf should be increased. 1963 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1964 * includes any intersect with alive vmalloc area. 1965 * 1966 * This function checks that addr is a valid vmalloc'ed area, and 1967 * copy data from that area to a given buffer. If the given memory range 1968 * of [addr...addr+count) includes some valid address, data is copied to 1969 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1970 * IOREMAP area is treated as memory hole and no copy is done. 1971 * 1972 * If [addr...addr+count) doesn't includes any intersects with alive 1973 * vm_struct area, returns 0. @buf should be kernel's buffer. 1974 * 1975 * Note: In usual ops, vread() is never necessary because the caller 1976 * should know vmalloc() area is valid and can use memcpy(). 1977 * This is for routines which have to access vmalloc area without 1978 * any informaion, as /dev/kmem. 1979 * 1980 */ 1981 1982 long vread(char *buf, char *addr, unsigned long count) 1983 { 1984 struct vmap_area *va; 1985 struct vm_struct *vm; 1986 char *vaddr, *buf_start = buf; 1987 unsigned long buflen = count; 1988 unsigned long n; 1989 1990 /* Don't allow overflow */ 1991 if ((unsigned long) addr + count < count) 1992 count = -(unsigned long) addr; 1993 1994 spin_lock(&vmap_area_lock); 1995 list_for_each_entry(va, &vmap_area_list, list) { 1996 if (!count) 1997 break; 1998 1999 if (!(va->flags & VM_VM_AREA)) 2000 continue; 2001 2002 vm = va->vm; 2003 vaddr = (char *) vm->addr; 2004 if (addr >= vaddr + vm->size - PAGE_SIZE) 2005 continue; 2006 while (addr < vaddr) { 2007 if (count == 0) 2008 goto finished; 2009 *buf = '\0'; 2010 buf++; 2011 addr++; 2012 count--; 2013 } 2014 n = vaddr + vm->size - PAGE_SIZE - addr; 2015 if (n > count) 2016 n = count; 2017 if (!(vm->flags & VM_IOREMAP)) 2018 aligned_vread(buf, addr, n); 2019 else /* IOREMAP area is treated as memory hole */ 2020 memset(buf, 0, n); 2021 buf += n; 2022 addr += n; 2023 count -= n; 2024 } 2025 finished: 2026 spin_unlock(&vmap_area_lock); 2027 2028 if (buf == buf_start) 2029 return 0; 2030 /* zero-fill memory holes */ 2031 if (buf != buf_start + buflen) 2032 memset(buf, 0, buflen - (buf - buf_start)); 2033 2034 return buflen; 2035 } 2036 2037 /** 2038 * vwrite() - write vmalloc area in a safe way. 2039 * @buf: buffer for source data 2040 * @addr: vm address. 2041 * @count: number of bytes to be read. 2042 * 2043 * Returns # of bytes which addr and buf should be incresed. 2044 * (same number to @count). 2045 * If [addr...addr+count) doesn't includes any intersect with valid 2046 * vmalloc area, returns 0. 2047 * 2048 * This function checks that addr is a valid vmalloc'ed area, and 2049 * copy data from a buffer to the given addr. If specified range of 2050 * [addr...addr+count) includes some valid address, data is copied from 2051 * proper area of @buf. If there are memory holes, no copy to hole. 2052 * IOREMAP area is treated as memory hole and no copy is done. 2053 * 2054 * If [addr...addr+count) doesn't includes any intersects with alive 2055 * vm_struct area, returns 0. @buf should be kernel's buffer. 2056 * 2057 * Note: In usual ops, vwrite() is never necessary because the caller 2058 * should know vmalloc() area is valid and can use memcpy(). 2059 * This is for routines which have to access vmalloc area without 2060 * any informaion, as /dev/kmem. 2061 */ 2062 2063 long vwrite(char *buf, char *addr, unsigned long count) 2064 { 2065 struct vmap_area *va; 2066 struct vm_struct *vm; 2067 char *vaddr; 2068 unsigned long n, buflen; 2069 int copied = 0; 2070 2071 /* Don't allow overflow */ 2072 if ((unsigned long) addr + count < count) 2073 count = -(unsigned long) addr; 2074 buflen = count; 2075 2076 spin_lock(&vmap_area_lock); 2077 list_for_each_entry(va, &vmap_area_list, list) { 2078 if (!count) 2079 break; 2080 2081 if (!(va->flags & VM_VM_AREA)) 2082 continue; 2083 2084 vm = va->vm; 2085 vaddr = (char *) vm->addr; 2086 if (addr >= vaddr + vm->size - PAGE_SIZE) 2087 continue; 2088 while (addr < vaddr) { 2089 if (count == 0) 2090 goto finished; 2091 buf++; 2092 addr++; 2093 count--; 2094 } 2095 n = vaddr + vm->size - PAGE_SIZE - addr; 2096 if (n > count) 2097 n = count; 2098 if (!(vm->flags & VM_IOREMAP)) { 2099 aligned_vwrite(buf, addr, n); 2100 copied++; 2101 } 2102 buf += n; 2103 addr += n; 2104 count -= n; 2105 } 2106 finished: 2107 spin_unlock(&vmap_area_lock); 2108 if (!copied) 2109 return 0; 2110 return buflen; 2111 } 2112 2113 /** 2114 * remap_vmalloc_range - map vmalloc pages to userspace 2115 * @vma: vma to cover (map full range of vma) 2116 * @addr: vmalloc memory 2117 * @pgoff: number of pages into addr before first page to map 2118 * 2119 * Returns: 0 for success, -Exxx on failure 2120 * 2121 * This function checks that addr is a valid vmalloc'ed area, and 2122 * that it is big enough to cover the vma. Will return failure if 2123 * that criteria isn't met. 2124 * 2125 * Similar to remap_pfn_range() (see mm/memory.c) 2126 */ 2127 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2128 unsigned long pgoff) 2129 { 2130 struct vm_struct *area; 2131 unsigned long uaddr = vma->vm_start; 2132 unsigned long usize = vma->vm_end - vma->vm_start; 2133 2134 if ((PAGE_SIZE-1) & (unsigned long)addr) 2135 return -EINVAL; 2136 2137 area = find_vm_area(addr); 2138 if (!area) 2139 return -EINVAL; 2140 2141 if (!(area->flags & VM_USERMAP)) 2142 return -EINVAL; 2143 2144 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2145 return -EINVAL; 2146 2147 addr += pgoff << PAGE_SHIFT; 2148 do { 2149 struct page *page = vmalloc_to_page(addr); 2150 int ret; 2151 2152 ret = vm_insert_page(vma, uaddr, page); 2153 if (ret) 2154 return ret; 2155 2156 uaddr += PAGE_SIZE; 2157 addr += PAGE_SIZE; 2158 usize -= PAGE_SIZE; 2159 } while (usize > 0); 2160 2161 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2162 2163 return 0; 2164 } 2165 EXPORT_SYMBOL(remap_vmalloc_range); 2166 2167 /* 2168 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2169 * have one. 2170 */ 2171 void __attribute__((weak)) vmalloc_sync_all(void) 2172 { 2173 } 2174 2175 2176 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2177 { 2178 pte_t ***p = data; 2179 2180 if (p) { 2181 *(*p) = pte; 2182 (*p)++; 2183 } 2184 return 0; 2185 } 2186 2187 /** 2188 * alloc_vm_area - allocate a range of kernel address space 2189 * @size: size of the area 2190 * @ptes: returns the PTEs for the address space 2191 * 2192 * Returns: NULL on failure, vm_struct on success 2193 * 2194 * This function reserves a range of kernel address space, and 2195 * allocates pagetables to map that range. No actual mappings 2196 * are created. 2197 * 2198 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2199 * allocated for the VM area are returned. 2200 */ 2201 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2202 { 2203 struct vm_struct *area; 2204 2205 area = get_vm_area_caller(size, VM_IOREMAP, 2206 __builtin_return_address(0)); 2207 if (area == NULL) 2208 return NULL; 2209 2210 /* 2211 * This ensures that page tables are constructed for this region 2212 * of kernel virtual address space and mapped into init_mm. 2213 */ 2214 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2215 size, f, ptes ? &ptes : NULL)) { 2216 free_vm_area(area); 2217 return NULL; 2218 } 2219 2220 return area; 2221 } 2222 EXPORT_SYMBOL_GPL(alloc_vm_area); 2223 2224 void free_vm_area(struct vm_struct *area) 2225 { 2226 struct vm_struct *ret; 2227 ret = remove_vm_area(area->addr); 2228 BUG_ON(ret != area); 2229 kfree(area); 2230 } 2231 EXPORT_SYMBOL_GPL(free_vm_area); 2232 2233 #ifdef CONFIG_SMP 2234 static struct vmap_area *node_to_va(struct rb_node *n) 2235 { 2236 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2237 } 2238 2239 /** 2240 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2241 * @end: target address 2242 * @pnext: out arg for the next vmap_area 2243 * @pprev: out arg for the previous vmap_area 2244 * 2245 * Returns: %true if either or both of next and prev are found, 2246 * %false if no vmap_area exists 2247 * 2248 * Find vmap_areas end addresses of which enclose @end. ie. if not 2249 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2250 */ 2251 static bool pvm_find_next_prev(unsigned long end, 2252 struct vmap_area **pnext, 2253 struct vmap_area **pprev) 2254 { 2255 struct rb_node *n = vmap_area_root.rb_node; 2256 struct vmap_area *va = NULL; 2257 2258 while (n) { 2259 va = rb_entry(n, struct vmap_area, rb_node); 2260 if (end < va->va_end) 2261 n = n->rb_left; 2262 else if (end > va->va_end) 2263 n = n->rb_right; 2264 else 2265 break; 2266 } 2267 2268 if (!va) 2269 return false; 2270 2271 if (va->va_end > end) { 2272 *pnext = va; 2273 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2274 } else { 2275 *pprev = va; 2276 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2277 } 2278 return true; 2279 } 2280 2281 /** 2282 * pvm_determine_end - find the highest aligned address between two vmap_areas 2283 * @pnext: in/out arg for the next vmap_area 2284 * @pprev: in/out arg for the previous vmap_area 2285 * @align: alignment 2286 * 2287 * Returns: determined end address 2288 * 2289 * Find the highest aligned address between *@pnext and *@pprev below 2290 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2291 * down address is between the end addresses of the two vmap_areas. 2292 * 2293 * Please note that the address returned by this function may fall 2294 * inside *@pnext vmap_area. The caller is responsible for checking 2295 * that. 2296 */ 2297 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2298 struct vmap_area **pprev, 2299 unsigned long align) 2300 { 2301 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2302 unsigned long addr; 2303 2304 if (*pnext) 2305 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2306 else 2307 addr = vmalloc_end; 2308 2309 while (*pprev && (*pprev)->va_end > addr) { 2310 *pnext = *pprev; 2311 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2312 } 2313 2314 return addr; 2315 } 2316 2317 /** 2318 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2319 * @offsets: array containing offset of each area 2320 * @sizes: array containing size of each area 2321 * @nr_vms: the number of areas to allocate 2322 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2323 * 2324 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2325 * vm_structs on success, %NULL on failure 2326 * 2327 * Percpu allocator wants to use congruent vm areas so that it can 2328 * maintain the offsets among percpu areas. This function allocates 2329 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2330 * be scattered pretty far, distance between two areas easily going up 2331 * to gigabytes. To avoid interacting with regular vmallocs, these 2332 * areas are allocated from top. 2333 * 2334 * Despite its complicated look, this allocator is rather simple. It 2335 * does everything top-down and scans areas from the end looking for 2336 * matching slot. While scanning, if any of the areas overlaps with 2337 * existing vmap_area, the base address is pulled down to fit the 2338 * area. Scanning is repeated till all the areas fit and then all 2339 * necessary data structres are inserted and the result is returned. 2340 */ 2341 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2342 const size_t *sizes, int nr_vms, 2343 size_t align) 2344 { 2345 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2346 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2347 struct vmap_area **vas, *prev, *next; 2348 struct vm_struct **vms; 2349 int area, area2, last_area, term_area; 2350 unsigned long base, start, end, last_end; 2351 bool purged = false; 2352 2353 /* verify parameters and allocate data structures */ 2354 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2355 for (last_area = 0, area = 0; area < nr_vms; area++) { 2356 start = offsets[area]; 2357 end = start + sizes[area]; 2358 2359 /* is everything aligned properly? */ 2360 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2361 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2362 2363 /* detect the area with the highest address */ 2364 if (start > offsets[last_area]) 2365 last_area = area; 2366 2367 for (area2 = 0; area2 < nr_vms; area2++) { 2368 unsigned long start2 = offsets[area2]; 2369 unsigned long end2 = start2 + sizes[area2]; 2370 2371 if (area2 == area) 2372 continue; 2373 2374 BUG_ON(start2 >= start && start2 < end); 2375 BUG_ON(end2 <= end && end2 > start); 2376 } 2377 } 2378 last_end = offsets[last_area] + sizes[last_area]; 2379 2380 if (vmalloc_end - vmalloc_start < last_end) { 2381 WARN_ON(true); 2382 return NULL; 2383 } 2384 2385 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2386 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2387 if (!vas || !vms) 2388 goto err_free2; 2389 2390 for (area = 0; area < nr_vms; area++) { 2391 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2392 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2393 if (!vas[area] || !vms[area]) 2394 goto err_free; 2395 } 2396 retry: 2397 spin_lock(&vmap_area_lock); 2398 2399 /* start scanning - we scan from the top, begin with the last area */ 2400 area = term_area = last_area; 2401 start = offsets[area]; 2402 end = start + sizes[area]; 2403 2404 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2405 base = vmalloc_end - last_end; 2406 goto found; 2407 } 2408 base = pvm_determine_end(&next, &prev, align) - end; 2409 2410 while (true) { 2411 BUG_ON(next && next->va_end <= base + end); 2412 BUG_ON(prev && prev->va_end > base + end); 2413 2414 /* 2415 * base might have underflowed, add last_end before 2416 * comparing. 2417 */ 2418 if (base + last_end < vmalloc_start + last_end) { 2419 spin_unlock(&vmap_area_lock); 2420 if (!purged) { 2421 purge_vmap_area_lazy(); 2422 purged = true; 2423 goto retry; 2424 } 2425 goto err_free; 2426 } 2427 2428 /* 2429 * If next overlaps, move base downwards so that it's 2430 * right below next and then recheck. 2431 */ 2432 if (next && next->va_start < base + end) { 2433 base = pvm_determine_end(&next, &prev, align) - end; 2434 term_area = area; 2435 continue; 2436 } 2437 2438 /* 2439 * If prev overlaps, shift down next and prev and move 2440 * base so that it's right below new next and then 2441 * recheck. 2442 */ 2443 if (prev && prev->va_end > base + start) { 2444 next = prev; 2445 prev = node_to_va(rb_prev(&next->rb_node)); 2446 base = pvm_determine_end(&next, &prev, align) - end; 2447 term_area = area; 2448 continue; 2449 } 2450 2451 /* 2452 * This area fits, move on to the previous one. If 2453 * the previous one is the terminal one, we're done. 2454 */ 2455 area = (area + nr_vms - 1) % nr_vms; 2456 if (area == term_area) 2457 break; 2458 start = offsets[area]; 2459 end = start + sizes[area]; 2460 pvm_find_next_prev(base + end, &next, &prev); 2461 } 2462 found: 2463 /* we've found a fitting base, insert all va's */ 2464 for (area = 0; area < nr_vms; area++) { 2465 struct vmap_area *va = vas[area]; 2466 2467 va->va_start = base + offsets[area]; 2468 va->va_end = va->va_start + sizes[area]; 2469 __insert_vmap_area(va); 2470 } 2471 2472 vmap_area_pcpu_hole = base + offsets[last_area]; 2473 2474 spin_unlock(&vmap_area_lock); 2475 2476 /* insert all vm's */ 2477 for (area = 0; area < nr_vms; area++) 2478 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2479 pcpu_get_vm_areas); 2480 2481 kfree(vas); 2482 return vms; 2483 2484 err_free: 2485 for (area = 0; area < nr_vms; area++) { 2486 kfree(vas[area]); 2487 kfree(vms[area]); 2488 } 2489 err_free2: 2490 kfree(vas); 2491 kfree(vms); 2492 return NULL; 2493 } 2494 2495 /** 2496 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2497 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2498 * @nr_vms: the number of allocated areas 2499 * 2500 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2501 */ 2502 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2503 { 2504 int i; 2505 2506 for (i = 0; i < nr_vms; i++) 2507 free_vm_area(vms[i]); 2508 kfree(vms); 2509 } 2510 #endif /* CONFIG_SMP */ 2511 2512 #ifdef CONFIG_PROC_FS 2513 static void *s_start(struct seq_file *m, loff_t *pos) 2514 __acquires(&vmap_area_lock) 2515 { 2516 loff_t n = *pos; 2517 struct vmap_area *va; 2518 2519 spin_lock(&vmap_area_lock); 2520 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2521 while (n > 0 && &va->list != &vmap_area_list) { 2522 n--; 2523 va = list_entry(va->list.next, typeof(*va), list); 2524 } 2525 if (!n && &va->list != &vmap_area_list) 2526 return va; 2527 2528 return NULL; 2529 2530 } 2531 2532 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2533 { 2534 struct vmap_area *va = p, *next; 2535 2536 ++*pos; 2537 next = list_entry(va->list.next, typeof(*va), list); 2538 if (&next->list != &vmap_area_list) 2539 return next; 2540 2541 return NULL; 2542 } 2543 2544 static void s_stop(struct seq_file *m, void *p) 2545 __releases(&vmap_area_lock) 2546 { 2547 spin_unlock(&vmap_area_lock); 2548 } 2549 2550 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2551 { 2552 if (IS_ENABLED(CONFIG_NUMA)) { 2553 unsigned int nr, *counters = m->private; 2554 2555 if (!counters) 2556 return; 2557 2558 /* Pair with smp_wmb() in clear_vm_unlist() */ 2559 smp_rmb(); 2560 if (v->flags & VM_UNLIST) 2561 return; 2562 2563 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2564 2565 for (nr = 0; nr < v->nr_pages; nr++) 2566 counters[page_to_nid(v->pages[nr])]++; 2567 2568 for_each_node_state(nr, N_HIGH_MEMORY) 2569 if (counters[nr]) 2570 seq_printf(m, " N%u=%u", nr, counters[nr]); 2571 } 2572 } 2573 2574 static int s_show(struct seq_file *m, void *p) 2575 { 2576 struct vmap_area *va = p; 2577 struct vm_struct *v; 2578 2579 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2580 return 0; 2581 2582 if (!(va->flags & VM_VM_AREA)) { 2583 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 2584 (void *)va->va_start, (void *)va->va_end, 2585 va->va_end - va->va_start); 2586 return 0; 2587 } 2588 2589 v = va->vm; 2590 2591 seq_printf(m, "0x%pK-0x%pK %7ld", 2592 v->addr, v->addr + v->size, v->size); 2593 2594 if (v->caller) 2595 seq_printf(m, " %pS", v->caller); 2596 2597 if (v->nr_pages) 2598 seq_printf(m, " pages=%d", v->nr_pages); 2599 2600 if (v->phys_addr) 2601 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2602 2603 if (v->flags & VM_IOREMAP) 2604 seq_printf(m, " ioremap"); 2605 2606 if (v->flags & VM_ALLOC) 2607 seq_printf(m, " vmalloc"); 2608 2609 if (v->flags & VM_MAP) 2610 seq_printf(m, " vmap"); 2611 2612 if (v->flags & VM_USERMAP) 2613 seq_printf(m, " user"); 2614 2615 if (v->flags & VM_VPAGES) 2616 seq_printf(m, " vpages"); 2617 2618 show_numa_info(m, v); 2619 seq_putc(m, '\n'); 2620 return 0; 2621 } 2622 2623 static const struct seq_operations vmalloc_op = { 2624 .start = s_start, 2625 .next = s_next, 2626 .stop = s_stop, 2627 .show = s_show, 2628 }; 2629 2630 static int vmalloc_open(struct inode *inode, struct file *file) 2631 { 2632 unsigned int *ptr = NULL; 2633 int ret; 2634 2635 if (IS_ENABLED(CONFIG_NUMA)) { 2636 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2637 if (ptr == NULL) 2638 return -ENOMEM; 2639 } 2640 ret = seq_open(file, &vmalloc_op); 2641 if (!ret) { 2642 struct seq_file *m = file->private_data; 2643 m->private = ptr; 2644 } else 2645 kfree(ptr); 2646 return ret; 2647 } 2648 2649 static const struct file_operations proc_vmalloc_operations = { 2650 .open = vmalloc_open, 2651 .read = seq_read, 2652 .llseek = seq_lseek, 2653 .release = seq_release_private, 2654 }; 2655 2656 static int __init proc_vmalloc_init(void) 2657 { 2658 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2659 return 0; 2660 } 2661 module_init(proc_vmalloc_init); 2662 2663 void get_vmalloc_info(struct vmalloc_info *vmi) 2664 { 2665 struct vmap_area *va; 2666 unsigned long free_area_size; 2667 unsigned long prev_end; 2668 2669 vmi->used = 0; 2670 vmi->largest_chunk = 0; 2671 2672 prev_end = VMALLOC_START; 2673 2674 spin_lock(&vmap_area_lock); 2675 2676 if (list_empty(&vmap_area_list)) { 2677 vmi->largest_chunk = VMALLOC_TOTAL; 2678 goto out; 2679 } 2680 2681 list_for_each_entry(va, &vmap_area_list, list) { 2682 unsigned long addr = va->va_start; 2683 2684 /* 2685 * Some archs keep another range for modules in vmalloc space 2686 */ 2687 if (addr < VMALLOC_START) 2688 continue; 2689 if (addr >= VMALLOC_END) 2690 break; 2691 2692 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2693 continue; 2694 2695 vmi->used += (va->va_end - va->va_start); 2696 2697 free_area_size = addr - prev_end; 2698 if (vmi->largest_chunk < free_area_size) 2699 vmi->largest_chunk = free_area_size; 2700 2701 prev_end = va->va_end; 2702 } 2703 2704 if (VMALLOC_END - prev_end > vmi->largest_chunk) 2705 vmi->largest_chunk = VMALLOC_END - prev_end; 2706 2707 out: 2708 spin_unlock(&vmap_area_lock); 2709 } 2710 #endif 2711 2712