xref: /linux/mm/vmalloc.c (revision 17afab1de42236ee2f6235f4383cc6f3f13f8a10)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			return err;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	return nr;
175 }
176 
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 			   pgprot_t prot, struct page **pages)
179 {
180 	int ret;
181 
182 	ret = vmap_page_range_noflush(start, end, prot, pages);
183 	flush_cache_vmap(start, end);
184 	return ret;
185 }
186 
187 int is_vmalloc_or_module_addr(const void *x)
188 {
189 	/*
190 	 * ARM, x86-64 and sparc64 put modules in a special place,
191 	 * and fall back on vmalloc() if that fails. Others
192 	 * just put it in the vmalloc space.
193 	 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 	unsigned long addr = (unsigned long)x;
196 	if (addr >= MODULES_VADDR && addr < MODULES_END)
197 		return 1;
198 #endif
199 	return is_vmalloc_addr(x);
200 }
201 
202 /*
203  * Walk a vmap address to the struct page it maps.
204  */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 	unsigned long addr = (unsigned long) vmalloc_addr;
208 	struct page *page = NULL;
209 	pgd_t *pgd = pgd_offset_k(addr);
210 
211 	/*
212 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 	 * architectures that do not vmalloc module space
214 	 */
215 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216 
217 	if (!pgd_none(*pgd)) {
218 		pud_t *pud = pud_offset(pgd, addr);
219 		if (!pud_none(*pud)) {
220 			pmd_t *pmd = pmd_offset(pud, addr);
221 			if (!pmd_none(*pmd)) {
222 				pte_t *ptep, pte;
223 
224 				ptep = pte_offset_map(pmd, addr);
225 				pte = *ptep;
226 				if (pte_present(pte))
227 					page = pte_page(pte);
228 				pte_unmap(ptep);
229 			}
230 		}
231 	}
232 	return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235 
236 /*
237  * Map a vmalloc()-space virtual address to the physical page frame number.
238  */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244 
245 
246 /*** Global kva allocator ***/
247 
248 #define VM_LAZY_FREE	0x01
249 #define VM_LAZY_FREEING	0x02
250 #define VM_VM_AREA	0x04
251 
252 static DEFINE_SPINLOCK(vmap_area_lock);
253 /* Export for kexec only */
254 LIST_HEAD(vmap_area_list);
255 static struct rb_root vmap_area_root = RB_ROOT;
256 
257 /* The vmap cache globals are protected by vmap_area_lock */
258 static struct rb_node *free_vmap_cache;
259 static unsigned long cached_hole_size;
260 static unsigned long cached_vstart;
261 static unsigned long cached_align;
262 
263 static unsigned long vmap_area_pcpu_hole;
264 
265 static struct vmap_area *__find_vmap_area(unsigned long addr)
266 {
267 	struct rb_node *n = vmap_area_root.rb_node;
268 
269 	while (n) {
270 		struct vmap_area *va;
271 
272 		va = rb_entry(n, struct vmap_area, rb_node);
273 		if (addr < va->va_start)
274 			n = n->rb_left;
275 		else if (addr > va->va_start)
276 			n = n->rb_right;
277 		else
278 			return va;
279 	}
280 
281 	return NULL;
282 }
283 
284 static void __insert_vmap_area(struct vmap_area *va)
285 {
286 	struct rb_node **p = &vmap_area_root.rb_node;
287 	struct rb_node *parent = NULL;
288 	struct rb_node *tmp;
289 
290 	while (*p) {
291 		struct vmap_area *tmp_va;
292 
293 		parent = *p;
294 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
295 		if (va->va_start < tmp_va->va_end)
296 			p = &(*p)->rb_left;
297 		else if (va->va_end > tmp_va->va_start)
298 			p = &(*p)->rb_right;
299 		else
300 			BUG();
301 	}
302 
303 	rb_link_node(&va->rb_node, parent, p);
304 	rb_insert_color(&va->rb_node, &vmap_area_root);
305 
306 	/* address-sort this list */
307 	tmp = rb_prev(&va->rb_node);
308 	if (tmp) {
309 		struct vmap_area *prev;
310 		prev = rb_entry(tmp, struct vmap_area, rb_node);
311 		list_add_rcu(&va->list, &prev->list);
312 	} else
313 		list_add_rcu(&va->list, &vmap_area_list);
314 }
315 
316 static void purge_vmap_area_lazy(void);
317 
318 /*
319  * Allocate a region of KVA of the specified size and alignment, within the
320  * vstart and vend.
321  */
322 static struct vmap_area *alloc_vmap_area(unsigned long size,
323 				unsigned long align,
324 				unsigned long vstart, unsigned long vend,
325 				int node, gfp_t gfp_mask)
326 {
327 	struct vmap_area *va;
328 	struct rb_node *n;
329 	unsigned long addr;
330 	int purged = 0;
331 	struct vmap_area *first;
332 
333 	BUG_ON(!size);
334 	BUG_ON(size & ~PAGE_MASK);
335 	BUG_ON(!is_power_of_2(align));
336 
337 	va = kmalloc_node(sizeof(struct vmap_area),
338 			gfp_mask & GFP_RECLAIM_MASK, node);
339 	if (unlikely(!va))
340 		return ERR_PTR(-ENOMEM);
341 
342 retry:
343 	spin_lock(&vmap_area_lock);
344 	/*
345 	 * Invalidate cache if we have more permissive parameters.
346 	 * cached_hole_size notes the largest hole noticed _below_
347 	 * the vmap_area cached in free_vmap_cache: if size fits
348 	 * into that hole, we want to scan from vstart to reuse
349 	 * the hole instead of allocating above free_vmap_cache.
350 	 * Note that __free_vmap_area may update free_vmap_cache
351 	 * without updating cached_hole_size or cached_align.
352 	 */
353 	if (!free_vmap_cache ||
354 			size < cached_hole_size ||
355 			vstart < cached_vstart ||
356 			align < cached_align) {
357 nocache:
358 		cached_hole_size = 0;
359 		free_vmap_cache = NULL;
360 	}
361 	/* record if we encounter less permissive parameters */
362 	cached_vstart = vstart;
363 	cached_align = align;
364 
365 	/* find starting point for our search */
366 	if (free_vmap_cache) {
367 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
368 		addr = ALIGN(first->va_end, align);
369 		if (addr < vstart)
370 			goto nocache;
371 		if (addr + size - 1 < addr)
372 			goto overflow;
373 
374 	} else {
375 		addr = ALIGN(vstart, align);
376 		if (addr + size - 1 < addr)
377 			goto overflow;
378 
379 		n = vmap_area_root.rb_node;
380 		first = NULL;
381 
382 		while (n) {
383 			struct vmap_area *tmp;
384 			tmp = rb_entry(n, struct vmap_area, rb_node);
385 			if (tmp->va_end >= addr) {
386 				first = tmp;
387 				if (tmp->va_start <= addr)
388 					break;
389 				n = n->rb_left;
390 			} else
391 				n = n->rb_right;
392 		}
393 
394 		if (!first)
395 			goto found;
396 	}
397 
398 	/* from the starting point, walk areas until a suitable hole is found */
399 	while (addr + size > first->va_start && addr + size <= vend) {
400 		if (addr + cached_hole_size < first->va_start)
401 			cached_hole_size = first->va_start - addr;
402 		addr = ALIGN(first->va_end, align);
403 		if (addr + size - 1 < addr)
404 			goto overflow;
405 
406 		if (list_is_last(&first->list, &vmap_area_list))
407 			goto found;
408 
409 		first = list_entry(first->list.next,
410 				struct vmap_area, list);
411 	}
412 
413 found:
414 	if (addr + size > vend)
415 		goto overflow;
416 
417 	va->va_start = addr;
418 	va->va_end = addr + size;
419 	va->flags = 0;
420 	__insert_vmap_area(va);
421 	free_vmap_cache = &va->rb_node;
422 	spin_unlock(&vmap_area_lock);
423 
424 	BUG_ON(va->va_start & (align-1));
425 	BUG_ON(va->va_start < vstart);
426 	BUG_ON(va->va_end > vend);
427 
428 	return va;
429 
430 overflow:
431 	spin_unlock(&vmap_area_lock);
432 	if (!purged) {
433 		purge_vmap_area_lazy();
434 		purged = 1;
435 		goto retry;
436 	}
437 	if (printk_ratelimit())
438 		printk(KERN_WARNING
439 			"vmap allocation for size %lu failed: "
440 			"use vmalloc=<size> to increase size.\n", size);
441 	kfree(va);
442 	return ERR_PTR(-EBUSY);
443 }
444 
445 static void __free_vmap_area(struct vmap_area *va)
446 {
447 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
448 
449 	if (free_vmap_cache) {
450 		if (va->va_end < cached_vstart) {
451 			free_vmap_cache = NULL;
452 		} else {
453 			struct vmap_area *cache;
454 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
455 			if (va->va_start <= cache->va_start) {
456 				free_vmap_cache = rb_prev(&va->rb_node);
457 				/*
458 				 * We don't try to update cached_hole_size or
459 				 * cached_align, but it won't go very wrong.
460 				 */
461 			}
462 		}
463 	}
464 	rb_erase(&va->rb_node, &vmap_area_root);
465 	RB_CLEAR_NODE(&va->rb_node);
466 	list_del_rcu(&va->list);
467 
468 	/*
469 	 * Track the highest possible candidate for pcpu area
470 	 * allocation.  Areas outside of vmalloc area can be returned
471 	 * here too, consider only end addresses which fall inside
472 	 * vmalloc area proper.
473 	 */
474 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
475 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
476 
477 	kfree_rcu(va, rcu_head);
478 }
479 
480 /*
481  * Free a region of KVA allocated by alloc_vmap_area
482  */
483 static void free_vmap_area(struct vmap_area *va)
484 {
485 	spin_lock(&vmap_area_lock);
486 	__free_vmap_area(va);
487 	spin_unlock(&vmap_area_lock);
488 }
489 
490 /*
491  * Clear the pagetable entries of a given vmap_area
492  */
493 static void unmap_vmap_area(struct vmap_area *va)
494 {
495 	vunmap_page_range(va->va_start, va->va_end);
496 }
497 
498 static void vmap_debug_free_range(unsigned long start, unsigned long end)
499 {
500 	/*
501 	 * Unmap page tables and force a TLB flush immediately if
502 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
503 	 * bugs similarly to those in linear kernel virtual address
504 	 * space after a page has been freed.
505 	 *
506 	 * All the lazy freeing logic is still retained, in order to
507 	 * minimise intrusiveness of this debugging feature.
508 	 *
509 	 * This is going to be *slow* (linear kernel virtual address
510 	 * debugging doesn't do a broadcast TLB flush so it is a lot
511 	 * faster).
512 	 */
513 #ifdef CONFIG_DEBUG_PAGEALLOC
514 	vunmap_page_range(start, end);
515 	flush_tlb_kernel_range(start, end);
516 #endif
517 }
518 
519 /*
520  * lazy_max_pages is the maximum amount of virtual address space we gather up
521  * before attempting to purge with a TLB flush.
522  *
523  * There is a tradeoff here: a larger number will cover more kernel page tables
524  * and take slightly longer to purge, but it will linearly reduce the number of
525  * global TLB flushes that must be performed. It would seem natural to scale
526  * this number up linearly with the number of CPUs (because vmapping activity
527  * could also scale linearly with the number of CPUs), however it is likely
528  * that in practice, workloads might be constrained in other ways that mean
529  * vmap activity will not scale linearly with CPUs. Also, I want to be
530  * conservative and not introduce a big latency on huge systems, so go with
531  * a less aggressive log scale. It will still be an improvement over the old
532  * code, and it will be simple to change the scale factor if we find that it
533  * becomes a problem on bigger systems.
534  */
535 static unsigned long lazy_max_pages(void)
536 {
537 	unsigned int log;
538 
539 	log = fls(num_online_cpus());
540 
541 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
542 }
543 
544 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
545 
546 /* for per-CPU blocks */
547 static void purge_fragmented_blocks_allcpus(void);
548 
549 /*
550  * called before a call to iounmap() if the caller wants vm_area_struct's
551  * immediately freed.
552  */
553 void set_iounmap_nonlazy(void)
554 {
555 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
556 }
557 
558 /*
559  * Purges all lazily-freed vmap areas.
560  *
561  * If sync is 0 then don't purge if there is already a purge in progress.
562  * If force_flush is 1, then flush kernel TLBs between *start and *end even
563  * if we found no lazy vmap areas to unmap (callers can use this to optimise
564  * their own TLB flushing).
565  * Returns with *start = min(*start, lowest purged address)
566  *              *end = max(*end, highest purged address)
567  */
568 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
569 					int sync, int force_flush)
570 {
571 	static DEFINE_SPINLOCK(purge_lock);
572 	LIST_HEAD(valist);
573 	struct vmap_area *va;
574 	struct vmap_area *n_va;
575 	int nr = 0;
576 
577 	/*
578 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
579 	 * should not expect such behaviour. This just simplifies locking for
580 	 * the case that isn't actually used at the moment anyway.
581 	 */
582 	if (!sync && !force_flush) {
583 		if (!spin_trylock(&purge_lock))
584 			return;
585 	} else
586 		spin_lock(&purge_lock);
587 
588 	if (sync)
589 		purge_fragmented_blocks_allcpus();
590 
591 	rcu_read_lock();
592 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
593 		if (va->flags & VM_LAZY_FREE) {
594 			if (va->va_start < *start)
595 				*start = va->va_start;
596 			if (va->va_end > *end)
597 				*end = va->va_end;
598 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
599 			list_add_tail(&va->purge_list, &valist);
600 			va->flags |= VM_LAZY_FREEING;
601 			va->flags &= ~VM_LAZY_FREE;
602 		}
603 	}
604 	rcu_read_unlock();
605 
606 	if (nr)
607 		atomic_sub(nr, &vmap_lazy_nr);
608 
609 	if (nr || force_flush)
610 		flush_tlb_kernel_range(*start, *end);
611 
612 	if (nr) {
613 		spin_lock(&vmap_area_lock);
614 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
615 			__free_vmap_area(va);
616 		spin_unlock(&vmap_area_lock);
617 	}
618 	spin_unlock(&purge_lock);
619 }
620 
621 /*
622  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
623  * is already purging.
624  */
625 static void try_purge_vmap_area_lazy(void)
626 {
627 	unsigned long start = ULONG_MAX, end = 0;
628 
629 	__purge_vmap_area_lazy(&start, &end, 0, 0);
630 }
631 
632 /*
633  * Kick off a purge of the outstanding lazy areas.
634  */
635 static void purge_vmap_area_lazy(void)
636 {
637 	unsigned long start = ULONG_MAX, end = 0;
638 
639 	__purge_vmap_area_lazy(&start, &end, 1, 0);
640 }
641 
642 /*
643  * Free a vmap area, caller ensuring that the area has been unmapped
644  * and flush_cache_vunmap had been called for the correct range
645  * previously.
646  */
647 static void free_vmap_area_noflush(struct vmap_area *va)
648 {
649 	va->flags |= VM_LAZY_FREE;
650 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
651 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
652 		try_purge_vmap_area_lazy();
653 }
654 
655 /*
656  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
657  * called for the correct range previously.
658  */
659 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
660 {
661 	unmap_vmap_area(va);
662 	free_vmap_area_noflush(va);
663 }
664 
665 /*
666  * Free and unmap a vmap area
667  */
668 static void free_unmap_vmap_area(struct vmap_area *va)
669 {
670 	flush_cache_vunmap(va->va_start, va->va_end);
671 	free_unmap_vmap_area_noflush(va);
672 }
673 
674 static struct vmap_area *find_vmap_area(unsigned long addr)
675 {
676 	struct vmap_area *va;
677 
678 	spin_lock(&vmap_area_lock);
679 	va = __find_vmap_area(addr);
680 	spin_unlock(&vmap_area_lock);
681 
682 	return va;
683 }
684 
685 static void free_unmap_vmap_area_addr(unsigned long addr)
686 {
687 	struct vmap_area *va;
688 
689 	va = find_vmap_area(addr);
690 	BUG_ON(!va);
691 	free_unmap_vmap_area(va);
692 }
693 
694 
695 /*** Per cpu kva allocator ***/
696 
697 /*
698  * vmap space is limited especially on 32 bit architectures. Ensure there is
699  * room for at least 16 percpu vmap blocks per CPU.
700  */
701 /*
702  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
703  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
704  * instead (we just need a rough idea)
705  */
706 #if BITS_PER_LONG == 32
707 #define VMALLOC_SPACE		(128UL*1024*1024)
708 #else
709 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
710 #endif
711 
712 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
713 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
714 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
715 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
716 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
717 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
718 #define VMAP_BBMAP_BITS		\
719 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
720 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
721 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
722 
723 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
724 
725 static bool vmap_initialized __read_mostly = false;
726 
727 struct vmap_block_queue {
728 	spinlock_t lock;
729 	struct list_head free;
730 };
731 
732 struct vmap_block {
733 	spinlock_t lock;
734 	struct vmap_area *va;
735 	struct vmap_block_queue *vbq;
736 	unsigned long free, dirty;
737 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
738 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
739 	struct list_head free_list;
740 	struct rcu_head rcu_head;
741 	struct list_head purge;
742 };
743 
744 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
745 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
746 
747 /*
748  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
749  * in the free path. Could get rid of this if we change the API to return a
750  * "cookie" from alloc, to be passed to free. But no big deal yet.
751  */
752 static DEFINE_SPINLOCK(vmap_block_tree_lock);
753 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
754 
755 /*
756  * We should probably have a fallback mechanism to allocate virtual memory
757  * out of partially filled vmap blocks. However vmap block sizing should be
758  * fairly reasonable according to the vmalloc size, so it shouldn't be a
759  * big problem.
760  */
761 
762 static unsigned long addr_to_vb_idx(unsigned long addr)
763 {
764 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
765 	addr /= VMAP_BLOCK_SIZE;
766 	return addr;
767 }
768 
769 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
770 {
771 	struct vmap_block_queue *vbq;
772 	struct vmap_block *vb;
773 	struct vmap_area *va;
774 	unsigned long vb_idx;
775 	int node, err;
776 
777 	node = numa_node_id();
778 
779 	vb = kmalloc_node(sizeof(struct vmap_block),
780 			gfp_mask & GFP_RECLAIM_MASK, node);
781 	if (unlikely(!vb))
782 		return ERR_PTR(-ENOMEM);
783 
784 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
785 					VMALLOC_START, VMALLOC_END,
786 					node, gfp_mask);
787 	if (IS_ERR(va)) {
788 		kfree(vb);
789 		return ERR_CAST(va);
790 	}
791 
792 	err = radix_tree_preload(gfp_mask);
793 	if (unlikely(err)) {
794 		kfree(vb);
795 		free_vmap_area(va);
796 		return ERR_PTR(err);
797 	}
798 
799 	spin_lock_init(&vb->lock);
800 	vb->va = va;
801 	vb->free = VMAP_BBMAP_BITS;
802 	vb->dirty = 0;
803 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
804 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
805 	INIT_LIST_HEAD(&vb->free_list);
806 
807 	vb_idx = addr_to_vb_idx(va->va_start);
808 	spin_lock(&vmap_block_tree_lock);
809 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
810 	spin_unlock(&vmap_block_tree_lock);
811 	BUG_ON(err);
812 	radix_tree_preload_end();
813 
814 	vbq = &get_cpu_var(vmap_block_queue);
815 	vb->vbq = vbq;
816 	spin_lock(&vbq->lock);
817 	list_add_rcu(&vb->free_list, &vbq->free);
818 	spin_unlock(&vbq->lock);
819 	put_cpu_var(vmap_block_queue);
820 
821 	return vb;
822 }
823 
824 static void free_vmap_block(struct vmap_block *vb)
825 {
826 	struct vmap_block *tmp;
827 	unsigned long vb_idx;
828 
829 	vb_idx = addr_to_vb_idx(vb->va->va_start);
830 	spin_lock(&vmap_block_tree_lock);
831 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
832 	spin_unlock(&vmap_block_tree_lock);
833 	BUG_ON(tmp != vb);
834 
835 	free_vmap_area_noflush(vb->va);
836 	kfree_rcu(vb, rcu_head);
837 }
838 
839 static void purge_fragmented_blocks(int cpu)
840 {
841 	LIST_HEAD(purge);
842 	struct vmap_block *vb;
843 	struct vmap_block *n_vb;
844 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
845 
846 	rcu_read_lock();
847 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
848 
849 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
850 			continue;
851 
852 		spin_lock(&vb->lock);
853 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
854 			vb->free = 0; /* prevent further allocs after releasing lock */
855 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
856 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
857 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
858 			spin_lock(&vbq->lock);
859 			list_del_rcu(&vb->free_list);
860 			spin_unlock(&vbq->lock);
861 			spin_unlock(&vb->lock);
862 			list_add_tail(&vb->purge, &purge);
863 		} else
864 			spin_unlock(&vb->lock);
865 	}
866 	rcu_read_unlock();
867 
868 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
869 		list_del(&vb->purge);
870 		free_vmap_block(vb);
871 	}
872 }
873 
874 static void purge_fragmented_blocks_thiscpu(void)
875 {
876 	purge_fragmented_blocks(smp_processor_id());
877 }
878 
879 static void purge_fragmented_blocks_allcpus(void)
880 {
881 	int cpu;
882 
883 	for_each_possible_cpu(cpu)
884 		purge_fragmented_blocks(cpu);
885 }
886 
887 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
888 {
889 	struct vmap_block_queue *vbq;
890 	struct vmap_block *vb;
891 	unsigned long addr = 0;
892 	unsigned int order;
893 	int purge = 0;
894 
895 	BUG_ON(size & ~PAGE_MASK);
896 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
897 	if (WARN_ON(size == 0)) {
898 		/*
899 		 * Allocating 0 bytes isn't what caller wants since
900 		 * get_order(0) returns funny result. Just warn and terminate
901 		 * early.
902 		 */
903 		return NULL;
904 	}
905 	order = get_order(size);
906 
907 again:
908 	rcu_read_lock();
909 	vbq = &get_cpu_var(vmap_block_queue);
910 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
911 		int i;
912 
913 		spin_lock(&vb->lock);
914 		if (vb->free < 1UL << order)
915 			goto next;
916 
917 		i = bitmap_find_free_region(vb->alloc_map,
918 						VMAP_BBMAP_BITS, order);
919 
920 		if (i < 0) {
921 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
922 				/* fragmented and no outstanding allocations */
923 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
924 				purge = 1;
925 			}
926 			goto next;
927 		}
928 		addr = vb->va->va_start + (i << PAGE_SHIFT);
929 		BUG_ON(addr_to_vb_idx(addr) !=
930 				addr_to_vb_idx(vb->va->va_start));
931 		vb->free -= 1UL << order;
932 		if (vb->free == 0) {
933 			spin_lock(&vbq->lock);
934 			list_del_rcu(&vb->free_list);
935 			spin_unlock(&vbq->lock);
936 		}
937 		spin_unlock(&vb->lock);
938 		break;
939 next:
940 		spin_unlock(&vb->lock);
941 	}
942 
943 	if (purge)
944 		purge_fragmented_blocks_thiscpu();
945 
946 	put_cpu_var(vmap_block_queue);
947 	rcu_read_unlock();
948 
949 	if (!addr) {
950 		vb = new_vmap_block(gfp_mask);
951 		if (IS_ERR(vb))
952 			return vb;
953 		goto again;
954 	}
955 
956 	return (void *)addr;
957 }
958 
959 static void vb_free(const void *addr, unsigned long size)
960 {
961 	unsigned long offset;
962 	unsigned long vb_idx;
963 	unsigned int order;
964 	struct vmap_block *vb;
965 
966 	BUG_ON(size & ~PAGE_MASK);
967 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
968 
969 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
970 
971 	order = get_order(size);
972 
973 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
974 
975 	vb_idx = addr_to_vb_idx((unsigned long)addr);
976 	rcu_read_lock();
977 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
978 	rcu_read_unlock();
979 	BUG_ON(!vb);
980 
981 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
982 
983 	spin_lock(&vb->lock);
984 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
985 
986 	vb->dirty += 1UL << order;
987 	if (vb->dirty == VMAP_BBMAP_BITS) {
988 		BUG_ON(vb->free);
989 		spin_unlock(&vb->lock);
990 		free_vmap_block(vb);
991 	} else
992 		spin_unlock(&vb->lock);
993 }
994 
995 /**
996  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
997  *
998  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
999  * to amortize TLB flushing overheads. What this means is that any page you
1000  * have now, may, in a former life, have been mapped into kernel virtual
1001  * address by the vmap layer and so there might be some CPUs with TLB entries
1002  * still referencing that page (additional to the regular 1:1 kernel mapping).
1003  *
1004  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1005  * be sure that none of the pages we have control over will have any aliases
1006  * from the vmap layer.
1007  */
1008 void vm_unmap_aliases(void)
1009 {
1010 	unsigned long start = ULONG_MAX, end = 0;
1011 	int cpu;
1012 	int flush = 0;
1013 
1014 	if (unlikely(!vmap_initialized))
1015 		return;
1016 
1017 	for_each_possible_cpu(cpu) {
1018 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1019 		struct vmap_block *vb;
1020 
1021 		rcu_read_lock();
1022 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1023 			int i;
1024 
1025 			spin_lock(&vb->lock);
1026 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1027 			while (i < VMAP_BBMAP_BITS) {
1028 				unsigned long s, e;
1029 				int j;
1030 				j = find_next_zero_bit(vb->dirty_map,
1031 					VMAP_BBMAP_BITS, i);
1032 
1033 				s = vb->va->va_start + (i << PAGE_SHIFT);
1034 				e = vb->va->va_start + (j << PAGE_SHIFT);
1035 				flush = 1;
1036 
1037 				if (s < start)
1038 					start = s;
1039 				if (e > end)
1040 					end = e;
1041 
1042 				i = j;
1043 				i = find_next_bit(vb->dirty_map,
1044 							VMAP_BBMAP_BITS, i);
1045 			}
1046 			spin_unlock(&vb->lock);
1047 		}
1048 		rcu_read_unlock();
1049 	}
1050 
1051 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1052 }
1053 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1054 
1055 /**
1056  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1057  * @mem: the pointer returned by vm_map_ram
1058  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1059  */
1060 void vm_unmap_ram(const void *mem, unsigned int count)
1061 {
1062 	unsigned long size = count << PAGE_SHIFT;
1063 	unsigned long addr = (unsigned long)mem;
1064 
1065 	BUG_ON(!addr);
1066 	BUG_ON(addr < VMALLOC_START);
1067 	BUG_ON(addr > VMALLOC_END);
1068 	BUG_ON(addr & (PAGE_SIZE-1));
1069 
1070 	debug_check_no_locks_freed(mem, size);
1071 	vmap_debug_free_range(addr, addr+size);
1072 
1073 	if (likely(count <= VMAP_MAX_ALLOC))
1074 		vb_free(mem, size);
1075 	else
1076 		free_unmap_vmap_area_addr(addr);
1077 }
1078 EXPORT_SYMBOL(vm_unmap_ram);
1079 
1080 /**
1081  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1082  * @pages: an array of pointers to the pages to be mapped
1083  * @count: number of pages
1084  * @node: prefer to allocate data structures on this node
1085  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1086  *
1087  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1088  */
1089 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1090 {
1091 	unsigned long size = count << PAGE_SHIFT;
1092 	unsigned long addr;
1093 	void *mem;
1094 
1095 	if (likely(count <= VMAP_MAX_ALLOC)) {
1096 		mem = vb_alloc(size, GFP_KERNEL);
1097 		if (IS_ERR(mem))
1098 			return NULL;
1099 		addr = (unsigned long)mem;
1100 	} else {
1101 		struct vmap_area *va;
1102 		va = alloc_vmap_area(size, PAGE_SIZE,
1103 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1104 		if (IS_ERR(va))
1105 			return NULL;
1106 
1107 		addr = va->va_start;
1108 		mem = (void *)addr;
1109 	}
1110 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1111 		vm_unmap_ram(mem, count);
1112 		return NULL;
1113 	}
1114 	return mem;
1115 }
1116 EXPORT_SYMBOL(vm_map_ram);
1117 
1118 static struct vm_struct *vmlist __initdata;
1119 /**
1120  * vm_area_add_early - add vmap area early during boot
1121  * @vm: vm_struct to add
1122  *
1123  * This function is used to add fixed kernel vm area to vmlist before
1124  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1125  * should contain proper values and the other fields should be zero.
1126  *
1127  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1128  */
1129 void __init vm_area_add_early(struct vm_struct *vm)
1130 {
1131 	struct vm_struct *tmp, **p;
1132 
1133 	BUG_ON(vmap_initialized);
1134 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1135 		if (tmp->addr >= vm->addr) {
1136 			BUG_ON(tmp->addr < vm->addr + vm->size);
1137 			break;
1138 		} else
1139 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1140 	}
1141 	vm->next = *p;
1142 	*p = vm;
1143 }
1144 
1145 /**
1146  * vm_area_register_early - register vmap area early during boot
1147  * @vm: vm_struct to register
1148  * @align: requested alignment
1149  *
1150  * This function is used to register kernel vm area before
1151  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1152  * proper values on entry and other fields should be zero.  On return,
1153  * vm->addr contains the allocated address.
1154  *
1155  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156  */
1157 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1158 {
1159 	static size_t vm_init_off __initdata;
1160 	unsigned long addr;
1161 
1162 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1163 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1164 
1165 	vm->addr = (void *)addr;
1166 
1167 	vm_area_add_early(vm);
1168 }
1169 
1170 void __init vmalloc_init(void)
1171 {
1172 	struct vmap_area *va;
1173 	struct vm_struct *tmp;
1174 	int i;
1175 
1176 	for_each_possible_cpu(i) {
1177 		struct vmap_block_queue *vbq;
1178 
1179 		vbq = &per_cpu(vmap_block_queue, i);
1180 		spin_lock_init(&vbq->lock);
1181 		INIT_LIST_HEAD(&vbq->free);
1182 	}
1183 
1184 	/* Import existing vmlist entries. */
1185 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1186 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1187 		va->flags = VM_VM_AREA;
1188 		va->va_start = (unsigned long)tmp->addr;
1189 		va->va_end = va->va_start + tmp->size;
1190 		va->vm = tmp;
1191 		__insert_vmap_area(va);
1192 	}
1193 
1194 	vmap_area_pcpu_hole = VMALLOC_END;
1195 
1196 	vmap_initialized = true;
1197 }
1198 
1199 /**
1200  * map_kernel_range_noflush - map kernel VM area with the specified pages
1201  * @addr: start of the VM area to map
1202  * @size: size of the VM area to map
1203  * @prot: page protection flags to use
1204  * @pages: pages to map
1205  *
1206  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1207  * specify should have been allocated using get_vm_area() and its
1208  * friends.
1209  *
1210  * NOTE:
1211  * This function does NOT do any cache flushing.  The caller is
1212  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1213  * before calling this function.
1214  *
1215  * RETURNS:
1216  * The number of pages mapped on success, -errno on failure.
1217  */
1218 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1219 			     pgprot_t prot, struct page **pages)
1220 {
1221 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1222 }
1223 
1224 /**
1225  * unmap_kernel_range_noflush - unmap kernel VM area
1226  * @addr: start of the VM area to unmap
1227  * @size: size of the VM area to unmap
1228  *
1229  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1230  * specify should have been allocated using get_vm_area() and its
1231  * friends.
1232  *
1233  * NOTE:
1234  * This function does NOT do any cache flushing.  The caller is
1235  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1236  * before calling this function and flush_tlb_kernel_range() after.
1237  */
1238 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1239 {
1240 	vunmap_page_range(addr, addr + size);
1241 }
1242 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1243 
1244 /**
1245  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1246  * @addr: start of the VM area to unmap
1247  * @size: size of the VM area to unmap
1248  *
1249  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1250  * the unmapping and tlb after.
1251  */
1252 void unmap_kernel_range(unsigned long addr, unsigned long size)
1253 {
1254 	unsigned long end = addr + size;
1255 
1256 	flush_cache_vunmap(addr, end);
1257 	vunmap_page_range(addr, end);
1258 	flush_tlb_kernel_range(addr, end);
1259 }
1260 
1261 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1262 {
1263 	unsigned long addr = (unsigned long)area->addr;
1264 	unsigned long end = addr + area->size - PAGE_SIZE;
1265 	int err;
1266 
1267 	err = vmap_page_range(addr, end, prot, *pages);
1268 	if (err > 0) {
1269 		*pages += err;
1270 		err = 0;
1271 	}
1272 
1273 	return err;
1274 }
1275 EXPORT_SYMBOL_GPL(map_vm_area);
1276 
1277 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1278 			      unsigned long flags, const void *caller)
1279 {
1280 	spin_lock(&vmap_area_lock);
1281 	vm->flags = flags;
1282 	vm->addr = (void *)va->va_start;
1283 	vm->size = va->va_end - va->va_start;
1284 	vm->caller = caller;
1285 	va->vm = vm;
1286 	va->flags |= VM_VM_AREA;
1287 	spin_unlock(&vmap_area_lock);
1288 }
1289 
1290 static void clear_vm_unlist(struct vm_struct *vm)
1291 {
1292 	/*
1293 	 * Before removing VM_UNLIST,
1294 	 * we should make sure that vm has proper values.
1295 	 * Pair with smp_rmb() in show_numa_info().
1296 	 */
1297 	smp_wmb();
1298 	vm->flags &= ~VM_UNLIST;
1299 }
1300 
1301 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1302 			      unsigned long flags, const void *caller)
1303 {
1304 	setup_vmalloc_vm(vm, va, flags, caller);
1305 	clear_vm_unlist(vm);
1306 }
1307 
1308 static struct vm_struct *__get_vm_area_node(unsigned long size,
1309 		unsigned long align, unsigned long flags, unsigned long start,
1310 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1311 {
1312 	struct vmap_area *va;
1313 	struct vm_struct *area;
1314 
1315 	BUG_ON(in_interrupt());
1316 	if (flags & VM_IOREMAP) {
1317 		int bit = fls(size);
1318 
1319 		if (bit > IOREMAP_MAX_ORDER)
1320 			bit = IOREMAP_MAX_ORDER;
1321 		else if (bit < PAGE_SHIFT)
1322 			bit = PAGE_SHIFT;
1323 
1324 		align = 1ul << bit;
1325 	}
1326 
1327 	size = PAGE_ALIGN(size);
1328 	if (unlikely(!size))
1329 		return NULL;
1330 
1331 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1332 	if (unlikely(!area))
1333 		return NULL;
1334 
1335 	/*
1336 	 * We always allocate a guard page.
1337 	 */
1338 	size += PAGE_SIZE;
1339 
1340 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1341 	if (IS_ERR(va)) {
1342 		kfree(area);
1343 		return NULL;
1344 	}
1345 
1346 	/*
1347 	 * When this function is called from __vmalloc_node_range,
1348 	 * we add VM_UNLIST flag to avoid accessing uninitialized
1349 	 * members of vm_struct such as pages and nr_pages fields.
1350 	 * They will be set later.
1351 	 */
1352 	if (flags & VM_UNLIST)
1353 		setup_vmalloc_vm(area, va, flags, caller);
1354 	else
1355 		insert_vmalloc_vm(area, va, flags, caller);
1356 
1357 	return area;
1358 }
1359 
1360 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1361 				unsigned long start, unsigned long end)
1362 {
1363 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1364 				  GFP_KERNEL, __builtin_return_address(0));
1365 }
1366 EXPORT_SYMBOL_GPL(__get_vm_area);
1367 
1368 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1369 				       unsigned long start, unsigned long end,
1370 				       const void *caller)
1371 {
1372 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1373 				  GFP_KERNEL, caller);
1374 }
1375 
1376 /**
1377  *	get_vm_area  -  reserve a contiguous kernel virtual area
1378  *	@size:		size of the area
1379  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1380  *
1381  *	Search an area of @size in the kernel virtual mapping area,
1382  *	and reserved it for out purposes.  Returns the area descriptor
1383  *	on success or %NULL on failure.
1384  */
1385 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1386 {
1387 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1388 				  NUMA_NO_NODE, GFP_KERNEL,
1389 				  __builtin_return_address(0));
1390 }
1391 
1392 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1393 				const void *caller)
1394 {
1395 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1396 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1397 }
1398 
1399 /**
1400  *	find_vm_area  -  find a continuous kernel virtual area
1401  *	@addr:		base address
1402  *
1403  *	Search for the kernel VM area starting at @addr, and return it.
1404  *	It is up to the caller to do all required locking to keep the returned
1405  *	pointer valid.
1406  */
1407 struct vm_struct *find_vm_area(const void *addr)
1408 {
1409 	struct vmap_area *va;
1410 
1411 	va = find_vmap_area((unsigned long)addr);
1412 	if (va && va->flags & VM_VM_AREA)
1413 		return va->vm;
1414 
1415 	return NULL;
1416 }
1417 
1418 /**
1419  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1420  *	@addr:		base address
1421  *
1422  *	Search for the kernel VM area starting at @addr, and remove it.
1423  *	This function returns the found VM area, but using it is NOT safe
1424  *	on SMP machines, except for its size or flags.
1425  */
1426 struct vm_struct *remove_vm_area(const void *addr)
1427 {
1428 	struct vmap_area *va;
1429 
1430 	va = find_vmap_area((unsigned long)addr);
1431 	if (va && va->flags & VM_VM_AREA) {
1432 		struct vm_struct *vm = va->vm;
1433 
1434 		spin_lock(&vmap_area_lock);
1435 		va->vm = NULL;
1436 		va->flags &= ~VM_VM_AREA;
1437 		spin_unlock(&vmap_area_lock);
1438 
1439 		vmap_debug_free_range(va->va_start, va->va_end);
1440 		free_unmap_vmap_area(va);
1441 		vm->size -= PAGE_SIZE;
1442 
1443 		return vm;
1444 	}
1445 	return NULL;
1446 }
1447 
1448 static void __vunmap(const void *addr, int deallocate_pages)
1449 {
1450 	struct vm_struct *area;
1451 
1452 	if (!addr)
1453 		return;
1454 
1455 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1456 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1457 		return;
1458 	}
1459 
1460 	area = remove_vm_area(addr);
1461 	if (unlikely(!area)) {
1462 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1463 				addr);
1464 		return;
1465 	}
1466 
1467 	debug_check_no_locks_freed(addr, area->size);
1468 	debug_check_no_obj_freed(addr, area->size);
1469 
1470 	if (deallocate_pages) {
1471 		int i;
1472 
1473 		for (i = 0; i < area->nr_pages; i++) {
1474 			struct page *page = area->pages[i];
1475 
1476 			BUG_ON(!page);
1477 			__free_page(page);
1478 		}
1479 
1480 		if (area->flags & VM_VPAGES)
1481 			vfree(area->pages);
1482 		else
1483 			kfree(area->pages);
1484 	}
1485 
1486 	kfree(area);
1487 	return;
1488 }
1489 
1490 /**
1491  *	vfree  -  release memory allocated by vmalloc()
1492  *	@addr:		memory base address
1493  *
1494  *	Free the virtually continuous memory area starting at @addr, as
1495  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1496  *	NULL, no operation is performed.
1497  *
1498  *	Must not be called in interrupt context.
1499  */
1500 void vfree(const void *addr)
1501 {
1502 	BUG_ON(in_interrupt());
1503 
1504 	kmemleak_free(addr);
1505 
1506 	__vunmap(addr, 1);
1507 }
1508 EXPORT_SYMBOL(vfree);
1509 
1510 /**
1511  *	vunmap  -  release virtual mapping obtained by vmap()
1512  *	@addr:		memory base address
1513  *
1514  *	Free the virtually contiguous memory area starting at @addr,
1515  *	which was created from the page array passed to vmap().
1516  *
1517  *	Must not be called in interrupt context.
1518  */
1519 void vunmap(const void *addr)
1520 {
1521 	BUG_ON(in_interrupt());
1522 	might_sleep();
1523 	__vunmap(addr, 0);
1524 }
1525 EXPORT_SYMBOL(vunmap);
1526 
1527 /**
1528  *	vmap  -  map an array of pages into virtually contiguous space
1529  *	@pages:		array of page pointers
1530  *	@count:		number of pages to map
1531  *	@flags:		vm_area->flags
1532  *	@prot:		page protection for the mapping
1533  *
1534  *	Maps @count pages from @pages into contiguous kernel virtual
1535  *	space.
1536  */
1537 void *vmap(struct page **pages, unsigned int count,
1538 		unsigned long flags, pgprot_t prot)
1539 {
1540 	struct vm_struct *area;
1541 
1542 	might_sleep();
1543 
1544 	if (count > totalram_pages)
1545 		return NULL;
1546 
1547 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1548 					__builtin_return_address(0));
1549 	if (!area)
1550 		return NULL;
1551 
1552 	if (map_vm_area(area, prot, &pages)) {
1553 		vunmap(area->addr);
1554 		return NULL;
1555 	}
1556 
1557 	return area->addr;
1558 }
1559 EXPORT_SYMBOL(vmap);
1560 
1561 static void *__vmalloc_node(unsigned long size, unsigned long align,
1562 			    gfp_t gfp_mask, pgprot_t prot,
1563 			    int node, const void *caller);
1564 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1565 				 pgprot_t prot, int node, const void *caller)
1566 {
1567 	const int order = 0;
1568 	struct page **pages;
1569 	unsigned int nr_pages, array_size, i;
1570 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1571 
1572 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1573 	array_size = (nr_pages * sizeof(struct page *));
1574 
1575 	area->nr_pages = nr_pages;
1576 	/* Please note that the recursion is strictly bounded. */
1577 	if (array_size > PAGE_SIZE) {
1578 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1579 				PAGE_KERNEL, node, caller);
1580 		area->flags |= VM_VPAGES;
1581 	} else {
1582 		pages = kmalloc_node(array_size, nested_gfp, node);
1583 	}
1584 	area->pages = pages;
1585 	area->caller = caller;
1586 	if (!area->pages) {
1587 		remove_vm_area(area->addr);
1588 		kfree(area);
1589 		return NULL;
1590 	}
1591 
1592 	for (i = 0; i < area->nr_pages; i++) {
1593 		struct page *page;
1594 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1595 
1596 		if (node < 0)
1597 			page = alloc_page(tmp_mask);
1598 		else
1599 			page = alloc_pages_node(node, tmp_mask, order);
1600 
1601 		if (unlikely(!page)) {
1602 			/* Successfully allocated i pages, free them in __vunmap() */
1603 			area->nr_pages = i;
1604 			goto fail;
1605 		}
1606 		area->pages[i] = page;
1607 	}
1608 
1609 	if (map_vm_area(area, prot, &pages))
1610 		goto fail;
1611 	return area->addr;
1612 
1613 fail:
1614 	warn_alloc_failed(gfp_mask, order,
1615 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1616 			  (area->nr_pages*PAGE_SIZE), area->size);
1617 	vfree(area->addr);
1618 	return NULL;
1619 }
1620 
1621 /**
1622  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1623  *	@size:		allocation size
1624  *	@align:		desired alignment
1625  *	@start:		vm area range start
1626  *	@end:		vm area range end
1627  *	@gfp_mask:	flags for the page level allocator
1628  *	@prot:		protection mask for the allocated pages
1629  *	@node:		node to use for allocation or NUMA_NO_NODE
1630  *	@caller:	caller's return address
1631  *
1632  *	Allocate enough pages to cover @size from the page level
1633  *	allocator with @gfp_mask flags.  Map them into contiguous
1634  *	kernel virtual space, using a pagetable protection of @prot.
1635  */
1636 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1637 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1638 			pgprot_t prot, int node, const void *caller)
1639 {
1640 	struct vm_struct *area;
1641 	void *addr;
1642 	unsigned long real_size = size;
1643 
1644 	size = PAGE_ALIGN(size);
1645 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1646 		goto fail;
1647 
1648 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1649 				  start, end, node, gfp_mask, caller);
1650 	if (!area)
1651 		goto fail;
1652 
1653 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1654 	if (!addr)
1655 		return NULL;
1656 
1657 	/*
1658 	 * In this function, newly allocated vm_struct has VM_UNLIST flag.
1659 	 * It means that vm_struct is not fully initialized.
1660 	 * Now, it is fully initialized, so remove this flag here.
1661 	 */
1662 	clear_vm_unlist(area);
1663 
1664 	/*
1665 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1666 	 * structures allocated in the __get_vm_area_node() function contain
1667 	 * references to the virtual address of the vmalloc'ed block.
1668 	 */
1669 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1670 
1671 	return addr;
1672 
1673 fail:
1674 	warn_alloc_failed(gfp_mask, 0,
1675 			  "vmalloc: allocation failure: %lu bytes\n",
1676 			  real_size);
1677 	return NULL;
1678 }
1679 
1680 /**
1681  *	__vmalloc_node  -  allocate virtually contiguous memory
1682  *	@size:		allocation size
1683  *	@align:		desired alignment
1684  *	@gfp_mask:	flags for the page level allocator
1685  *	@prot:		protection mask for the allocated pages
1686  *	@node:		node to use for allocation or NUMA_NO_NODE
1687  *	@caller:	caller's return address
1688  *
1689  *	Allocate enough pages to cover @size from the page level
1690  *	allocator with @gfp_mask flags.  Map them into contiguous
1691  *	kernel virtual space, using a pagetable protection of @prot.
1692  */
1693 static void *__vmalloc_node(unsigned long size, unsigned long align,
1694 			    gfp_t gfp_mask, pgprot_t prot,
1695 			    int node, const void *caller)
1696 {
1697 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1698 				gfp_mask, prot, node, caller);
1699 }
1700 
1701 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1702 {
1703 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1704 				__builtin_return_address(0));
1705 }
1706 EXPORT_SYMBOL(__vmalloc);
1707 
1708 static inline void *__vmalloc_node_flags(unsigned long size,
1709 					int node, gfp_t flags)
1710 {
1711 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1712 					node, __builtin_return_address(0));
1713 }
1714 
1715 /**
1716  *	vmalloc  -  allocate virtually contiguous memory
1717  *	@size:		allocation size
1718  *	Allocate enough pages to cover @size from the page level
1719  *	allocator and map them into contiguous kernel virtual space.
1720  *
1721  *	For tight control over page level allocator and protection flags
1722  *	use __vmalloc() instead.
1723  */
1724 void *vmalloc(unsigned long size)
1725 {
1726 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1727 				    GFP_KERNEL | __GFP_HIGHMEM);
1728 }
1729 EXPORT_SYMBOL(vmalloc);
1730 
1731 /**
1732  *	vzalloc - allocate virtually contiguous memory with zero fill
1733  *	@size:	allocation size
1734  *	Allocate enough pages to cover @size from the page level
1735  *	allocator and map them into contiguous kernel virtual space.
1736  *	The memory allocated is set to zero.
1737  *
1738  *	For tight control over page level allocator and protection flags
1739  *	use __vmalloc() instead.
1740  */
1741 void *vzalloc(unsigned long size)
1742 {
1743 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1744 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1745 }
1746 EXPORT_SYMBOL(vzalloc);
1747 
1748 /**
1749  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1750  * @size: allocation size
1751  *
1752  * The resulting memory area is zeroed so it can be mapped to userspace
1753  * without leaking data.
1754  */
1755 void *vmalloc_user(unsigned long size)
1756 {
1757 	struct vm_struct *area;
1758 	void *ret;
1759 
1760 	ret = __vmalloc_node(size, SHMLBA,
1761 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1762 			     PAGE_KERNEL, NUMA_NO_NODE,
1763 			     __builtin_return_address(0));
1764 	if (ret) {
1765 		area = find_vm_area(ret);
1766 		area->flags |= VM_USERMAP;
1767 	}
1768 	return ret;
1769 }
1770 EXPORT_SYMBOL(vmalloc_user);
1771 
1772 /**
1773  *	vmalloc_node  -  allocate memory on a specific node
1774  *	@size:		allocation size
1775  *	@node:		numa node
1776  *
1777  *	Allocate enough pages to cover @size from the page level
1778  *	allocator and map them into contiguous kernel virtual space.
1779  *
1780  *	For tight control over page level allocator and protection flags
1781  *	use __vmalloc() instead.
1782  */
1783 void *vmalloc_node(unsigned long size, int node)
1784 {
1785 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1786 					node, __builtin_return_address(0));
1787 }
1788 EXPORT_SYMBOL(vmalloc_node);
1789 
1790 /**
1791  * vzalloc_node - allocate memory on a specific node with zero fill
1792  * @size:	allocation size
1793  * @node:	numa node
1794  *
1795  * Allocate enough pages to cover @size from the page level
1796  * allocator and map them into contiguous kernel virtual space.
1797  * The memory allocated is set to zero.
1798  *
1799  * For tight control over page level allocator and protection flags
1800  * use __vmalloc_node() instead.
1801  */
1802 void *vzalloc_node(unsigned long size, int node)
1803 {
1804 	return __vmalloc_node_flags(size, node,
1805 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1806 }
1807 EXPORT_SYMBOL(vzalloc_node);
1808 
1809 #ifndef PAGE_KERNEL_EXEC
1810 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1811 #endif
1812 
1813 /**
1814  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1815  *	@size:		allocation size
1816  *
1817  *	Kernel-internal function to allocate enough pages to cover @size
1818  *	the page level allocator and map them into contiguous and
1819  *	executable kernel virtual space.
1820  *
1821  *	For tight control over page level allocator and protection flags
1822  *	use __vmalloc() instead.
1823  */
1824 
1825 void *vmalloc_exec(unsigned long size)
1826 {
1827 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1828 			      NUMA_NO_NODE, __builtin_return_address(0));
1829 }
1830 
1831 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1832 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1833 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1834 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1835 #else
1836 #define GFP_VMALLOC32 GFP_KERNEL
1837 #endif
1838 
1839 /**
1840  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1841  *	@size:		allocation size
1842  *
1843  *	Allocate enough 32bit PA addressable pages to cover @size from the
1844  *	page level allocator and map them into contiguous kernel virtual space.
1845  */
1846 void *vmalloc_32(unsigned long size)
1847 {
1848 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1849 			      NUMA_NO_NODE, __builtin_return_address(0));
1850 }
1851 EXPORT_SYMBOL(vmalloc_32);
1852 
1853 /**
1854  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1855  *	@size:		allocation size
1856  *
1857  * The resulting memory area is 32bit addressable and zeroed so it can be
1858  * mapped to userspace without leaking data.
1859  */
1860 void *vmalloc_32_user(unsigned long size)
1861 {
1862 	struct vm_struct *area;
1863 	void *ret;
1864 
1865 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1866 			     NUMA_NO_NODE, __builtin_return_address(0));
1867 	if (ret) {
1868 		area = find_vm_area(ret);
1869 		area->flags |= VM_USERMAP;
1870 	}
1871 	return ret;
1872 }
1873 EXPORT_SYMBOL(vmalloc_32_user);
1874 
1875 /*
1876  * small helper routine , copy contents to buf from addr.
1877  * If the page is not present, fill zero.
1878  */
1879 
1880 static int aligned_vread(char *buf, char *addr, unsigned long count)
1881 {
1882 	struct page *p;
1883 	int copied = 0;
1884 
1885 	while (count) {
1886 		unsigned long offset, length;
1887 
1888 		offset = (unsigned long)addr & ~PAGE_MASK;
1889 		length = PAGE_SIZE - offset;
1890 		if (length > count)
1891 			length = count;
1892 		p = vmalloc_to_page(addr);
1893 		/*
1894 		 * To do safe access to this _mapped_ area, we need
1895 		 * lock. But adding lock here means that we need to add
1896 		 * overhead of vmalloc()/vfree() calles for this _debug_
1897 		 * interface, rarely used. Instead of that, we'll use
1898 		 * kmap() and get small overhead in this access function.
1899 		 */
1900 		if (p) {
1901 			/*
1902 			 * we can expect USER0 is not used (see vread/vwrite's
1903 			 * function description)
1904 			 */
1905 			void *map = kmap_atomic(p);
1906 			memcpy(buf, map + offset, length);
1907 			kunmap_atomic(map);
1908 		} else
1909 			memset(buf, 0, length);
1910 
1911 		addr += length;
1912 		buf += length;
1913 		copied += length;
1914 		count -= length;
1915 	}
1916 	return copied;
1917 }
1918 
1919 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1920 {
1921 	struct page *p;
1922 	int copied = 0;
1923 
1924 	while (count) {
1925 		unsigned long offset, length;
1926 
1927 		offset = (unsigned long)addr & ~PAGE_MASK;
1928 		length = PAGE_SIZE - offset;
1929 		if (length > count)
1930 			length = count;
1931 		p = vmalloc_to_page(addr);
1932 		/*
1933 		 * To do safe access to this _mapped_ area, we need
1934 		 * lock. But adding lock here means that we need to add
1935 		 * overhead of vmalloc()/vfree() calles for this _debug_
1936 		 * interface, rarely used. Instead of that, we'll use
1937 		 * kmap() and get small overhead in this access function.
1938 		 */
1939 		if (p) {
1940 			/*
1941 			 * we can expect USER0 is not used (see vread/vwrite's
1942 			 * function description)
1943 			 */
1944 			void *map = kmap_atomic(p);
1945 			memcpy(map + offset, buf, length);
1946 			kunmap_atomic(map);
1947 		}
1948 		addr += length;
1949 		buf += length;
1950 		copied += length;
1951 		count -= length;
1952 	}
1953 	return copied;
1954 }
1955 
1956 /**
1957  *	vread() -  read vmalloc area in a safe way.
1958  *	@buf:		buffer for reading data
1959  *	@addr:		vm address.
1960  *	@count:		number of bytes to be read.
1961  *
1962  *	Returns # of bytes which addr and buf should be increased.
1963  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1964  *	includes any intersect with alive vmalloc area.
1965  *
1966  *	This function checks that addr is a valid vmalloc'ed area, and
1967  *	copy data from that area to a given buffer. If the given memory range
1968  *	of [addr...addr+count) includes some valid address, data is copied to
1969  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1970  *	IOREMAP area is treated as memory hole and no copy is done.
1971  *
1972  *	If [addr...addr+count) doesn't includes any intersects with alive
1973  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1974  *
1975  *	Note: In usual ops, vread() is never necessary because the caller
1976  *	should know vmalloc() area is valid and can use memcpy().
1977  *	This is for routines which have to access vmalloc area without
1978  *	any informaion, as /dev/kmem.
1979  *
1980  */
1981 
1982 long vread(char *buf, char *addr, unsigned long count)
1983 {
1984 	struct vmap_area *va;
1985 	struct vm_struct *vm;
1986 	char *vaddr, *buf_start = buf;
1987 	unsigned long buflen = count;
1988 	unsigned long n;
1989 
1990 	/* Don't allow overflow */
1991 	if ((unsigned long) addr + count < count)
1992 		count = -(unsigned long) addr;
1993 
1994 	spin_lock(&vmap_area_lock);
1995 	list_for_each_entry(va, &vmap_area_list, list) {
1996 		if (!count)
1997 			break;
1998 
1999 		if (!(va->flags & VM_VM_AREA))
2000 			continue;
2001 
2002 		vm = va->vm;
2003 		vaddr = (char *) vm->addr;
2004 		if (addr >= vaddr + vm->size - PAGE_SIZE)
2005 			continue;
2006 		while (addr < vaddr) {
2007 			if (count == 0)
2008 				goto finished;
2009 			*buf = '\0';
2010 			buf++;
2011 			addr++;
2012 			count--;
2013 		}
2014 		n = vaddr + vm->size - PAGE_SIZE - addr;
2015 		if (n > count)
2016 			n = count;
2017 		if (!(vm->flags & VM_IOREMAP))
2018 			aligned_vread(buf, addr, n);
2019 		else /* IOREMAP area is treated as memory hole */
2020 			memset(buf, 0, n);
2021 		buf += n;
2022 		addr += n;
2023 		count -= n;
2024 	}
2025 finished:
2026 	spin_unlock(&vmap_area_lock);
2027 
2028 	if (buf == buf_start)
2029 		return 0;
2030 	/* zero-fill memory holes */
2031 	if (buf != buf_start + buflen)
2032 		memset(buf, 0, buflen - (buf - buf_start));
2033 
2034 	return buflen;
2035 }
2036 
2037 /**
2038  *	vwrite() -  write vmalloc area in a safe way.
2039  *	@buf:		buffer for source data
2040  *	@addr:		vm address.
2041  *	@count:		number of bytes to be read.
2042  *
2043  *	Returns # of bytes which addr and buf should be incresed.
2044  *	(same number to @count).
2045  *	If [addr...addr+count) doesn't includes any intersect with valid
2046  *	vmalloc area, returns 0.
2047  *
2048  *	This function checks that addr is a valid vmalloc'ed area, and
2049  *	copy data from a buffer to the given addr. If specified range of
2050  *	[addr...addr+count) includes some valid address, data is copied from
2051  *	proper area of @buf. If there are memory holes, no copy to hole.
2052  *	IOREMAP area is treated as memory hole and no copy is done.
2053  *
2054  *	If [addr...addr+count) doesn't includes any intersects with alive
2055  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2056  *
2057  *	Note: In usual ops, vwrite() is never necessary because the caller
2058  *	should know vmalloc() area is valid and can use memcpy().
2059  *	This is for routines which have to access vmalloc area without
2060  *	any informaion, as /dev/kmem.
2061  */
2062 
2063 long vwrite(char *buf, char *addr, unsigned long count)
2064 {
2065 	struct vmap_area *va;
2066 	struct vm_struct *vm;
2067 	char *vaddr;
2068 	unsigned long n, buflen;
2069 	int copied = 0;
2070 
2071 	/* Don't allow overflow */
2072 	if ((unsigned long) addr + count < count)
2073 		count = -(unsigned long) addr;
2074 	buflen = count;
2075 
2076 	spin_lock(&vmap_area_lock);
2077 	list_for_each_entry(va, &vmap_area_list, list) {
2078 		if (!count)
2079 			break;
2080 
2081 		if (!(va->flags & VM_VM_AREA))
2082 			continue;
2083 
2084 		vm = va->vm;
2085 		vaddr = (char *) vm->addr;
2086 		if (addr >= vaddr + vm->size - PAGE_SIZE)
2087 			continue;
2088 		while (addr < vaddr) {
2089 			if (count == 0)
2090 				goto finished;
2091 			buf++;
2092 			addr++;
2093 			count--;
2094 		}
2095 		n = vaddr + vm->size - PAGE_SIZE - addr;
2096 		if (n > count)
2097 			n = count;
2098 		if (!(vm->flags & VM_IOREMAP)) {
2099 			aligned_vwrite(buf, addr, n);
2100 			copied++;
2101 		}
2102 		buf += n;
2103 		addr += n;
2104 		count -= n;
2105 	}
2106 finished:
2107 	spin_unlock(&vmap_area_lock);
2108 	if (!copied)
2109 		return 0;
2110 	return buflen;
2111 }
2112 
2113 /**
2114  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2115  *	@vma:		vma to cover (map full range of vma)
2116  *	@addr:		vmalloc memory
2117  *	@pgoff:		number of pages into addr before first page to map
2118  *
2119  *	Returns:	0 for success, -Exxx on failure
2120  *
2121  *	This function checks that addr is a valid vmalloc'ed area, and
2122  *	that it is big enough to cover the vma. Will return failure if
2123  *	that criteria isn't met.
2124  *
2125  *	Similar to remap_pfn_range() (see mm/memory.c)
2126  */
2127 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2128 						unsigned long pgoff)
2129 {
2130 	struct vm_struct *area;
2131 	unsigned long uaddr = vma->vm_start;
2132 	unsigned long usize = vma->vm_end - vma->vm_start;
2133 
2134 	if ((PAGE_SIZE-1) & (unsigned long)addr)
2135 		return -EINVAL;
2136 
2137 	area = find_vm_area(addr);
2138 	if (!area)
2139 		return -EINVAL;
2140 
2141 	if (!(area->flags & VM_USERMAP))
2142 		return -EINVAL;
2143 
2144 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2145 		return -EINVAL;
2146 
2147 	addr += pgoff << PAGE_SHIFT;
2148 	do {
2149 		struct page *page = vmalloc_to_page(addr);
2150 		int ret;
2151 
2152 		ret = vm_insert_page(vma, uaddr, page);
2153 		if (ret)
2154 			return ret;
2155 
2156 		uaddr += PAGE_SIZE;
2157 		addr += PAGE_SIZE;
2158 		usize -= PAGE_SIZE;
2159 	} while (usize > 0);
2160 
2161 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2162 
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL(remap_vmalloc_range);
2166 
2167 /*
2168  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2169  * have one.
2170  */
2171 void  __attribute__((weak)) vmalloc_sync_all(void)
2172 {
2173 }
2174 
2175 
2176 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2177 {
2178 	pte_t ***p = data;
2179 
2180 	if (p) {
2181 		*(*p) = pte;
2182 		(*p)++;
2183 	}
2184 	return 0;
2185 }
2186 
2187 /**
2188  *	alloc_vm_area - allocate a range of kernel address space
2189  *	@size:		size of the area
2190  *	@ptes:		returns the PTEs for the address space
2191  *
2192  *	Returns:	NULL on failure, vm_struct on success
2193  *
2194  *	This function reserves a range of kernel address space, and
2195  *	allocates pagetables to map that range.  No actual mappings
2196  *	are created.
2197  *
2198  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2199  *	allocated for the VM area are returned.
2200  */
2201 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2202 {
2203 	struct vm_struct *area;
2204 
2205 	area = get_vm_area_caller(size, VM_IOREMAP,
2206 				__builtin_return_address(0));
2207 	if (area == NULL)
2208 		return NULL;
2209 
2210 	/*
2211 	 * This ensures that page tables are constructed for this region
2212 	 * of kernel virtual address space and mapped into init_mm.
2213 	 */
2214 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2215 				size, f, ptes ? &ptes : NULL)) {
2216 		free_vm_area(area);
2217 		return NULL;
2218 	}
2219 
2220 	return area;
2221 }
2222 EXPORT_SYMBOL_GPL(alloc_vm_area);
2223 
2224 void free_vm_area(struct vm_struct *area)
2225 {
2226 	struct vm_struct *ret;
2227 	ret = remove_vm_area(area->addr);
2228 	BUG_ON(ret != area);
2229 	kfree(area);
2230 }
2231 EXPORT_SYMBOL_GPL(free_vm_area);
2232 
2233 #ifdef CONFIG_SMP
2234 static struct vmap_area *node_to_va(struct rb_node *n)
2235 {
2236 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2237 }
2238 
2239 /**
2240  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2241  * @end: target address
2242  * @pnext: out arg for the next vmap_area
2243  * @pprev: out arg for the previous vmap_area
2244  *
2245  * Returns: %true if either or both of next and prev are found,
2246  *	    %false if no vmap_area exists
2247  *
2248  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2249  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2250  */
2251 static bool pvm_find_next_prev(unsigned long end,
2252 			       struct vmap_area **pnext,
2253 			       struct vmap_area **pprev)
2254 {
2255 	struct rb_node *n = vmap_area_root.rb_node;
2256 	struct vmap_area *va = NULL;
2257 
2258 	while (n) {
2259 		va = rb_entry(n, struct vmap_area, rb_node);
2260 		if (end < va->va_end)
2261 			n = n->rb_left;
2262 		else if (end > va->va_end)
2263 			n = n->rb_right;
2264 		else
2265 			break;
2266 	}
2267 
2268 	if (!va)
2269 		return false;
2270 
2271 	if (va->va_end > end) {
2272 		*pnext = va;
2273 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2274 	} else {
2275 		*pprev = va;
2276 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2277 	}
2278 	return true;
2279 }
2280 
2281 /**
2282  * pvm_determine_end - find the highest aligned address between two vmap_areas
2283  * @pnext: in/out arg for the next vmap_area
2284  * @pprev: in/out arg for the previous vmap_area
2285  * @align: alignment
2286  *
2287  * Returns: determined end address
2288  *
2289  * Find the highest aligned address between *@pnext and *@pprev below
2290  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2291  * down address is between the end addresses of the two vmap_areas.
2292  *
2293  * Please note that the address returned by this function may fall
2294  * inside *@pnext vmap_area.  The caller is responsible for checking
2295  * that.
2296  */
2297 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2298 				       struct vmap_area **pprev,
2299 				       unsigned long align)
2300 {
2301 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2302 	unsigned long addr;
2303 
2304 	if (*pnext)
2305 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2306 	else
2307 		addr = vmalloc_end;
2308 
2309 	while (*pprev && (*pprev)->va_end > addr) {
2310 		*pnext = *pprev;
2311 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2312 	}
2313 
2314 	return addr;
2315 }
2316 
2317 /**
2318  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2319  * @offsets: array containing offset of each area
2320  * @sizes: array containing size of each area
2321  * @nr_vms: the number of areas to allocate
2322  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2323  *
2324  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2325  *	    vm_structs on success, %NULL on failure
2326  *
2327  * Percpu allocator wants to use congruent vm areas so that it can
2328  * maintain the offsets among percpu areas.  This function allocates
2329  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2330  * be scattered pretty far, distance between two areas easily going up
2331  * to gigabytes.  To avoid interacting with regular vmallocs, these
2332  * areas are allocated from top.
2333  *
2334  * Despite its complicated look, this allocator is rather simple.  It
2335  * does everything top-down and scans areas from the end looking for
2336  * matching slot.  While scanning, if any of the areas overlaps with
2337  * existing vmap_area, the base address is pulled down to fit the
2338  * area.  Scanning is repeated till all the areas fit and then all
2339  * necessary data structres are inserted and the result is returned.
2340  */
2341 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2342 				     const size_t *sizes, int nr_vms,
2343 				     size_t align)
2344 {
2345 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2346 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2347 	struct vmap_area **vas, *prev, *next;
2348 	struct vm_struct **vms;
2349 	int area, area2, last_area, term_area;
2350 	unsigned long base, start, end, last_end;
2351 	bool purged = false;
2352 
2353 	/* verify parameters and allocate data structures */
2354 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2355 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2356 		start = offsets[area];
2357 		end = start + sizes[area];
2358 
2359 		/* is everything aligned properly? */
2360 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2361 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2362 
2363 		/* detect the area with the highest address */
2364 		if (start > offsets[last_area])
2365 			last_area = area;
2366 
2367 		for (area2 = 0; area2 < nr_vms; area2++) {
2368 			unsigned long start2 = offsets[area2];
2369 			unsigned long end2 = start2 + sizes[area2];
2370 
2371 			if (area2 == area)
2372 				continue;
2373 
2374 			BUG_ON(start2 >= start && start2 < end);
2375 			BUG_ON(end2 <= end && end2 > start);
2376 		}
2377 	}
2378 	last_end = offsets[last_area] + sizes[last_area];
2379 
2380 	if (vmalloc_end - vmalloc_start < last_end) {
2381 		WARN_ON(true);
2382 		return NULL;
2383 	}
2384 
2385 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2386 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2387 	if (!vas || !vms)
2388 		goto err_free2;
2389 
2390 	for (area = 0; area < nr_vms; area++) {
2391 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2392 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2393 		if (!vas[area] || !vms[area])
2394 			goto err_free;
2395 	}
2396 retry:
2397 	spin_lock(&vmap_area_lock);
2398 
2399 	/* start scanning - we scan from the top, begin with the last area */
2400 	area = term_area = last_area;
2401 	start = offsets[area];
2402 	end = start + sizes[area];
2403 
2404 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2405 		base = vmalloc_end - last_end;
2406 		goto found;
2407 	}
2408 	base = pvm_determine_end(&next, &prev, align) - end;
2409 
2410 	while (true) {
2411 		BUG_ON(next && next->va_end <= base + end);
2412 		BUG_ON(prev && prev->va_end > base + end);
2413 
2414 		/*
2415 		 * base might have underflowed, add last_end before
2416 		 * comparing.
2417 		 */
2418 		if (base + last_end < vmalloc_start + last_end) {
2419 			spin_unlock(&vmap_area_lock);
2420 			if (!purged) {
2421 				purge_vmap_area_lazy();
2422 				purged = true;
2423 				goto retry;
2424 			}
2425 			goto err_free;
2426 		}
2427 
2428 		/*
2429 		 * If next overlaps, move base downwards so that it's
2430 		 * right below next and then recheck.
2431 		 */
2432 		if (next && next->va_start < base + end) {
2433 			base = pvm_determine_end(&next, &prev, align) - end;
2434 			term_area = area;
2435 			continue;
2436 		}
2437 
2438 		/*
2439 		 * If prev overlaps, shift down next and prev and move
2440 		 * base so that it's right below new next and then
2441 		 * recheck.
2442 		 */
2443 		if (prev && prev->va_end > base + start)  {
2444 			next = prev;
2445 			prev = node_to_va(rb_prev(&next->rb_node));
2446 			base = pvm_determine_end(&next, &prev, align) - end;
2447 			term_area = area;
2448 			continue;
2449 		}
2450 
2451 		/*
2452 		 * This area fits, move on to the previous one.  If
2453 		 * the previous one is the terminal one, we're done.
2454 		 */
2455 		area = (area + nr_vms - 1) % nr_vms;
2456 		if (area == term_area)
2457 			break;
2458 		start = offsets[area];
2459 		end = start + sizes[area];
2460 		pvm_find_next_prev(base + end, &next, &prev);
2461 	}
2462 found:
2463 	/* we've found a fitting base, insert all va's */
2464 	for (area = 0; area < nr_vms; area++) {
2465 		struct vmap_area *va = vas[area];
2466 
2467 		va->va_start = base + offsets[area];
2468 		va->va_end = va->va_start + sizes[area];
2469 		__insert_vmap_area(va);
2470 	}
2471 
2472 	vmap_area_pcpu_hole = base + offsets[last_area];
2473 
2474 	spin_unlock(&vmap_area_lock);
2475 
2476 	/* insert all vm's */
2477 	for (area = 0; area < nr_vms; area++)
2478 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2479 				  pcpu_get_vm_areas);
2480 
2481 	kfree(vas);
2482 	return vms;
2483 
2484 err_free:
2485 	for (area = 0; area < nr_vms; area++) {
2486 		kfree(vas[area]);
2487 		kfree(vms[area]);
2488 	}
2489 err_free2:
2490 	kfree(vas);
2491 	kfree(vms);
2492 	return NULL;
2493 }
2494 
2495 /**
2496  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2497  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2498  * @nr_vms: the number of allocated areas
2499  *
2500  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2501  */
2502 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2503 {
2504 	int i;
2505 
2506 	for (i = 0; i < nr_vms; i++)
2507 		free_vm_area(vms[i]);
2508 	kfree(vms);
2509 }
2510 #endif	/* CONFIG_SMP */
2511 
2512 #ifdef CONFIG_PROC_FS
2513 static void *s_start(struct seq_file *m, loff_t *pos)
2514 	__acquires(&vmap_area_lock)
2515 {
2516 	loff_t n = *pos;
2517 	struct vmap_area *va;
2518 
2519 	spin_lock(&vmap_area_lock);
2520 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2521 	while (n > 0 && &va->list != &vmap_area_list) {
2522 		n--;
2523 		va = list_entry(va->list.next, typeof(*va), list);
2524 	}
2525 	if (!n && &va->list != &vmap_area_list)
2526 		return va;
2527 
2528 	return NULL;
2529 
2530 }
2531 
2532 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2533 {
2534 	struct vmap_area *va = p, *next;
2535 
2536 	++*pos;
2537 	next = list_entry(va->list.next, typeof(*va), list);
2538 	if (&next->list != &vmap_area_list)
2539 		return next;
2540 
2541 	return NULL;
2542 }
2543 
2544 static void s_stop(struct seq_file *m, void *p)
2545 	__releases(&vmap_area_lock)
2546 {
2547 	spin_unlock(&vmap_area_lock);
2548 }
2549 
2550 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2551 {
2552 	if (IS_ENABLED(CONFIG_NUMA)) {
2553 		unsigned int nr, *counters = m->private;
2554 
2555 		if (!counters)
2556 			return;
2557 
2558 		/* Pair with smp_wmb() in clear_vm_unlist() */
2559 		smp_rmb();
2560 		if (v->flags & VM_UNLIST)
2561 			return;
2562 
2563 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2564 
2565 		for (nr = 0; nr < v->nr_pages; nr++)
2566 			counters[page_to_nid(v->pages[nr])]++;
2567 
2568 		for_each_node_state(nr, N_HIGH_MEMORY)
2569 			if (counters[nr])
2570 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2571 	}
2572 }
2573 
2574 static int s_show(struct seq_file *m, void *p)
2575 {
2576 	struct vmap_area *va = p;
2577 	struct vm_struct *v;
2578 
2579 	if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2580 		return 0;
2581 
2582 	if (!(va->flags & VM_VM_AREA)) {
2583 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2584 			(void *)va->va_start, (void *)va->va_end,
2585 					va->va_end - va->va_start);
2586 		return 0;
2587 	}
2588 
2589 	v = va->vm;
2590 
2591 	seq_printf(m, "0x%pK-0x%pK %7ld",
2592 		v->addr, v->addr + v->size, v->size);
2593 
2594 	if (v->caller)
2595 		seq_printf(m, " %pS", v->caller);
2596 
2597 	if (v->nr_pages)
2598 		seq_printf(m, " pages=%d", v->nr_pages);
2599 
2600 	if (v->phys_addr)
2601 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2602 
2603 	if (v->flags & VM_IOREMAP)
2604 		seq_printf(m, " ioremap");
2605 
2606 	if (v->flags & VM_ALLOC)
2607 		seq_printf(m, " vmalloc");
2608 
2609 	if (v->flags & VM_MAP)
2610 		seq_printf(m, " vmap");
2611 
2612 	if (v->flags & VM_USERMAP)
2613 		seq_printf(m, " user");
2614 
2615 	if (v->flags & VM_VPAGES)
2616 		seq_printf(m, " vpages");
2617 
2618 	show_numa_info(m, v);
2619 	seq_putc(m, '\n');
2620 	return 0;
2621 }
2622 
2623 static const struct seq_operations vmalloc_op = {
2624 	.start = s_start,
2625 	.next = s_next,
2626 	.stop = s_stop,
2627 	.show = s_show,
2628 };
2629 
2630 static int vmalloc_open(struct inode *inode, struct file *file)
2631 {
2632 	unsigned int *ptr = NULL;
2633 	int ret;
2634 
2635 	if (IS_ENABLED(CONFIG_NUMA)) {
2636 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2637 		if (ptr == NULL)
2638 			return -ENOMEM;
2639 	}
2640 	ret = seq_open(file, &vmalloc_op);
2641 	if (!ret) {
2642 		struct seq_file *m = file->private_data;
2643 		m->private = ptr;
2644 	} else
2645 		kfree(ptr);
2646 	return ret;
2647 }
2648 
2649 static const struct file_operations proc_vmalloc_operations = {
2650 	.open		= vmalloc_open,
2651 	.read		= seq_read,
2652 	.llseek		= seq_lseek,
2653 	.release	= seq_release_private,
2654 };
2655 
2656 static int __init proc_vmalloc_init(void)
2657 {
2658 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2659 	return 0;
2660 }
2661 module_init(proc_vmalloc_init);
2662 
2663 void get_vmalloc_info(struct vmalloc_info *vmi)
2664 {
2665 	struct vmap_area *va;
2666 	unsigned long free_area_size;
2667 	unsigned long prev_end;
2668 
2669 	vmi->used = 0;
2670 	vmi->largest_chunk = 0;
2671 
2672 	prev_end = VMALLOC_START;
2673 
2674 	spin_lock(&vmap_area_lock);
2675 
2676 	if (list_empty(&vmap_area_list)) {
2677 		vmi->largest_chunk = VMALLOC_TOTAL;
2678 		goto out;
2679 	}
2680 
2681 	list_for_each_entry(va, &vmap_area_list, list) {
2682 		unsigned long addr = va->va_start;
2683 
2684 		/*
2685 		 * Some archs keep another range for modules in vmalloc space
2686 		 */
2687 		if (addr < VMALLOC_START)
2688 			continue;
2689 		if (addr >= VMALLOC_END)
2690 			break;
2691 
2692 		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2693 			continue;
2694 
2695 		vmi->used += (va->va_end - va->va_start);
2696 
2697 		free_area_size = addr - prev_end;
2698 		if (vmi->largest_chunk < free_area_size)
2699 			vmi->largest_chunk = free_area_size;
2700 
2701 		prev_end = va->va_end;
2702 	}
2703 
2704 	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2705 		vmi->largest_chunk = VMALLOC_END - prev_end;
2706 
2707 out:
2708 	spin_unlock(&vmap_area_lock);
2709 }
2710 #endif
2711 
2712