xref: /linux/mm/vmalloc.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(ptep_get(pte)));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
307 int vmap_page_range(unsigned long addr, unsigned long end,
308 		    phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
321 int ioremap_page_range(unsigned long addr, unsigned long end,
322 		phys_addr_t phys_addr, pgprot_t prot)
323 {
324 	struct vm_struct *area;
325 
326 	area = find_vm_area((void *)addr);
327 	if (!area || !(area->flags & VM_IOREMAP)) {
328 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
329 		return -EINVAL;
330 	}
331 	if (addr != (unsigned long)area->addr ||
332 	    (void *)end != area->addr + get_vm_area_size(area)) {
333 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
334 			  addr, end, (long)area->addr,
335 			  (long)area->addr + get_vm_area_size(area));
336 		return -ERANGE;
337 	}
338 	return vmap_page_range(addr, end, phys_addr, prot);
339 }
340 
341 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
342 			     pgtbl_mod_mask *mask)
343 {
344 	pte_t *pte;
345 
346 	pte = pte_offset_kernel(pmd, addr);
347 	do {
348 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
349 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
350 	} while (pte++, addr += PAGE_SIZE, addr != end);
351 	*mask |= PGTBL_PTE_MODIFIED;
352 }
353 
354 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
355 			     pgtbl_mod_mask *mask)
356 {
357 	pmd_t *pmd;
358 	unsigned long next;
359 	int cleared;
360 
361 	pmd = pmd_offset(pud, addr);
362 	do {
363 		next = pmd_addr_end(addr, end);
364 
365 		cleared = pmd_clear_huge(pmd);
366 		if (cleared || pmd_bad(*pmd))
367 			*mask |= PGTBL_PMD_MODIFIED;
368 
369 		if (cleared)
370 			continue;
371 		if (pmd_none_or_clear_bad(pmd))
372 			continue;
373 		vunmap_pte_range(pmd, addr, next, mask);
374 
375 		cond_resched();
376 	} while (pmd++, addr = next, addr != end);
377 }
378 
379 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
380 			     pgtbl_mod_mask *mask)
381 {
382 	pud_t *pud;
383 	unsigned long next;
384 	int cleared;
385 
386 	pud = pud_offset(p4d, addr);
387 	do {
388 		next = pud_addr_end(addr, end);
389 
390 		cleared = pud_clear_huge(pud);
391 		if (cleared || pud_bad(*pud))
392 			*mask |= PGTBL_PUD_MODIFIED;
393 
394 		if (cleared)
395 			continue;
396 		if (pud_none_or_clear_bad(pud))
397 			continue;
398 		vunmap_pmd_range(pud, addr, next, mask);
399 	} while (pud++, addr = next, addr != end);
400 }
401 
402 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
403 			     pgtbl_mod_mask *mask)
404 {
405 	p4d_t *p4d;
406 	unsigned long next;
407 
408 	p4d = p4d_offset(pgd, addr);
409 	do {
410 		next = p4d_addr_end(addr, end);
411 
412 		p4d_clear_huge(p4d);
413 		if (p4d_bad(*p4d))
414 			*mask |= PGTBL_P4D_MODIFIED;
415 
416 		if (p4d_none_or_clear_bad(p4d))
417 			continue;
418 		vunmap_pud_range(p4d, addr, next, mask);
419 	} while (p4d++, addr = next, addr != end);
420 }
421 
422 /*
423  * vunmap_range_noflush is similar to vunmap_range, but does not
424  * flush caches or TLBs.
425  *
426  * The caller is responsible for calling flush_cache_vmap() before calling
427  * this function, and flush_tlb_kernel_range after it has returned
428  * successfully (and before the addresses are expected to cause a page fault
429  * or be re-mapped for something else, if TLB flushes are being delayed or
430  * coalesced).
431  *
432  * This is an internal function only. Do not use outside mm/.
433  */
434 void __vunmap_range_noflush(unsigned long start, unsigned long end)
435 {
436 	unsigned long next;
437 	pgd_t *pgd;
438 	unsigned long addr = start;
439 	pgtbl_mod_mask mask = 0;
440 
441 	BUG_ON(addr >= end);
442 	pgd = pgd_offset_k(addr);
443 	do {
444 		next = pgd_addr_end(addr, end);
445 		if (pgd_bad(*pgd))
446 			mask |= PGTBL_PGD_MODIFIED;
447 		if (pgd_none_or_clear_bad(pgd))
448 			continue;
449 		vunmap_p4d_range(pgd, addr, next, &mask);
450 	} while (pgd++, addr = next, addr != end);
451 
452 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
453 		arch_sync_kernel_mappings(start, end);
454 }
455 
456 void vunmap_range_noflush(unsigned long start, unsigned long end)
457 {
458 	kmsan_vunmap_range_noflush(start, end);
459 	__vunmap_range_noflush(start, end);
460 }
461 
462 /**
463  * vunmap_range - unmap kernel virtual addresses
464  * @addr: start of the VM area to unmap
465  * @end: end of the VM area to unmap (non-inclusive)
466  *
467  * Clears any present PTEs in the virtual address range, flushes TLBs and
468  * caches. Any subsequent access to the address before it has been re-mapped
469  * is a kernel bug.
470  */
471 void vunmap_range(unsigned long addr, unsigned long end)
472 {
473 	flush_cache_vunmap(addr, end);
474 	vunmap_range_noflush(addr, end);
475 	flush_tlb_kernel_range(addr, end);
476 }
477 
478 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
480 		pgtbl_mod_mask *mask)
481 {
482 	pte_t *pte;
483 
484 	/*
485 	 * nr is a running index into the array which helps higher level
486 	 * callers keep track of where we're up to.
487 	 */
488 
489 	pte = pte_alloc_kernel_track(pmd, addr, mask);
490 	if (!pte)
491 		return -ENOMEM;
492 	do {
493 		struct page *page = pages[*nr];
494 
495 		if (WARN_ON(!pte_none(ptep_get(pte))))
496 			return -EBUSY;
497 		if (WARN_ON(!page))
498 			return -ENOMEM;
499 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
500 			return -EINVAL;
501 
502 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
503 		(*nr)++;
504 	} while (pte++, addr += PAGE_SIZE, addr != end);
505 	*mask |= PGTBL_PTE_MODIFIED;
506 	return 0;
507 }
508 
509 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
510 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
511 		pgtbl_mod_mask *mask)
512 {
513 	pmd_t *pmd;
514 	unsigned long next;
515 
516 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
517 	if (!pmd)
518 		return -ENOMEM;
519 	do {
520 		next = pmd_addr_end(addr, end);
521 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
522 			return -ENOMEM;
523 	} while (pmd++, addr = next, addr != end);
524 	return 0;
525 }
526 
527 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
528 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
529 		pgtbl_mod_mask *mask)
530 {
531 	pud_t *pud;
532 	unsigned long next;
533 
534 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
535 	if (!pud)
536 		return -ENOMEM;
537 	do {
538 		next = pud_addr_end(addr, end);
539 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
540 			return -ENOMEM;
541 	} while (pud++, addr = next, addr != end);
542 	return 0;
543 }
544 
545 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
546 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
547 		pgtbl_mod_mask *mask)
548 {
549 	p4d_t *p4d;
550 	unsigned long next;
551 
552 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
553 	if (!p4d)
554 		return -ENOMEM;
555 	do {
556 		next = p4d_addr_end(addr, end);
557 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
558 			return -ENOMEM;
559 	} while (p4d++, addr = next, addr != end);
560 	return 0;
561 }
562 
563 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
564 		pgprot_t prot, struct page **pages)
565 {
566 	unsigned long start = addr;
567 	pgd_t *pgd;
568 	unsigned long next;
569 	int err = 0;
570 	int nr = 0;
571 	pgtbl_mod_mask mask = 0;
572 
573 	BUG_ON(addr >= end);
574 	pgd = pgd_offset_k(addr);
575 	do {
576 		next = pgd_addr_end(addr, end);
577 		if (pgd_bad(*pgd))
578 			mask |= PGTBL_PGD_MODIFIED;
579 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
580 		if (err)
581 			return err;
582 	} while (pgd++, addr = next, addr != end);
583 
584 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
585 		arch_sync_kernel_mappings(start, end);
586 
587 	return 0;
588 }
589 
590 /*
591  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
592  * flush caches.
593  *
594  * The caller is responsible for calling flush_cache_vmap() after this
595  * function returns successfully and before the addresses are accessed.
596  *
597  * This is an internal function only. Do not use outside mm/.
598  */
599 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
600 		pgprot_t prot, struct page **pages, unsigned int page_shift)
601 {
602 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
603 
604 	WARN_ON(page_shift < PAGE_SHIFT);
605 
606 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
607 			page_shift == PAGE_SHIFT)
608 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
609 
610 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
611 		int err;
612 
613 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
614 					page_to_phys(pages[i]), prot,
615 					page_shift);
616 		if (err)
617 			return err;
618 
619 		addr += 1UL << page_shift;
620 	}
621 
622 	return 0;
623 }
624 
625 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
626 		pgprot_t prot, struct page **pages, unsigned int page_shift)
627 {
628 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
629 						 page_shift);
630 
631 	if (ret)
632 		return ret;
633 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 }
635 
636 /**
637  * vmap_pages_range - map pages to a kernel virtual address
638  * @addr: start of the VM area to map
639  * @end: end of the VM area to map (non-inclusive)
640  * @prot: page protection flags to use
641  * @pages: pages to map (always PAGE_SIZE pages)
642  * @page_shift: maximum shift that the pages may be mapped with, @pages must
643  * be aligned and contiguous up to at least this shift.
644  *
645  * RETURNS:
646  * 0 on success, -errno on failure.
647  */
648 static int vmap_pages_range(unsigned long addr, unsigned long end,
649 		pgprot_t prot, struct page **pages, unsigned int page_shift)
650 {
651 	int err;
652 
653 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
654 	flush_cache_vmap(addr, end);
655 	return err;
656 }
657 
658 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
659 				unsigned long end)
660 {
661 	might_sleep();
662 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
663 		return -EINVAL;
664 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
665 		return -EINVAL;
666 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
667 		return -EINVAL;
668 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
669 		return -E2BIG;
670 	if (start < (unsigned long)area->addr ||
671 	    (void *)end > area->addr + get_vm_area_size(area))
672 		return -ERANGE;
673 	return 0;
674 }
675 
676 /**
677  * vm_area_map_pages - map pages inside given sparse vm_area
678  * @area: vm_area
679  * @start: start address inside vm_area
680  * @end: end address inside vm_area
681  * @pages: pages to map (always PAGE_SIZE pages)
682  */
683 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
684 		      unsigned long end, struct page **pages)
685 {
686 	int err;
687 
688 	err = check_sparse_vm_area(area, start, end);
689 	if (err)
690 		return err;
691 
692 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
693 }
694 
695 /**
696  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
697  * @area: vm_area
698  * @start: start address inside vm_area
699  * @end: end address inside vm_area
700  */
701 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
702 			 unsigned long end)
703 {
704 	if (check_sparse_vm_area(area, start, end))
705 		return;
706 
707 	vunmap_range(start, end);
708 }
709 
710 int is_vmalloc_or_module_addr(const void *x)
711 {
712 	/*
713 	 * ARM, x86-64 and sparc64 put modules in a special place,
714 	 * and fall back on vmalloc() if that fails. Others
715 	 * just put it in the vmalloc space.
716 	 */
717 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
718 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
719 	if (addr >= MODULES_VADDR && addr < MODULES_END)
720 		return 1;
721 #endif
722 	return is_vmalloc_addr(x);
723 }
724 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
725 
726 /*
727  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
728  * return the tail page that corresponds to the base page address, which
729  * matches small vmap mappings.
730  */
731 struct page *vmalloc_to_page(const void *vmalloc_addr)
732 {
733 	unsigned long addr = (unsigned long) vmalloc_addr;
734 	struct page *page = NULL;
735 	pgd_t *pgd = pgd_offset_k(addr);
736 	p4d_t *p4d;
737 	pud_t *pud;
738 	pmd_t *pmd;
739 	pte_t *ptep, pte;
740 
741 	/*
742 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
743 	 * architectures that do not vmalloc module space
744 	 */
745 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
746 
747 	if (pgd_none(*pgd))
748 		return NULL;
749 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
750 		return NULL; /* XXX: no allowance for huge pgd */
751 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
752 		return NULL;
753 
754 	p4d = p4d_offset(pgd, addr);
755 	if (p4d_none(*p4d))
756 		return NULL;
757 	if (p4d_leaf(*p4d))
758 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
759 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
760 		return NULL;
761 
762 	pud = pud_offset(p4d, addr);
763 	if (pud_none(*pud))
764 		return NULL;
765 	if (pud_leaf(*pud))
766 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
767 	if (WARN_ON_ONCE(pud_bad(*pud)))
768 		return NULL;
769 
770 	pmd = pmd_offset(pud, addr);
771 	if (pmd_none(*pmd))
772 		return NULL;
773 	if (pmd_leaf(*pmd))
774 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
775 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
776 		return NULL;
777 
778 	ptep = pte_offset_kernel(pmd, addr);
779 	pte = ptep_get(ptep);
780 	if (pte_present(pte))
781 		page = pte_page(pte);
782 
783 	return page;
784 }
785 EXPORT_SYMBOL(vmalloc_to_page);
786 
787 /*
788  * Map a vmalloc()-space virtual address to the physical page frame number.
789  */
790 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
791 {
792 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
793 }
794 EXPORT_SYMBOL(vmalloc_to_pfn);
795 
796 
797 /*** Global kva allocator ***/
798 
799 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
800 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
801 
802 
803 static DEFINE_SPINLOCK(free_vmap_area_lock);
804 static bool vmap_initialized __read_mostly;
805 
806 /*
807  * This kmem_cache is used for vmap_area objects. Instead of
808  * allocating from slab we reuse an object from this cache to
809  * make things faster. Especially in "no edge" splitting of
810  * free block.
811  */
812 static struct kmem_cache *vmap_area_cachep;
813 
814 /*
815  * This linked list is used in pair with free_vmap_area_root.
816  * It gives O(1) access to prev/next to perform fast coalescing.
817  */
818 static LIST_HEAD(free_vmap_area_list);
819 
820 /*
821  * This augment red-black tree represents the free vmap space.
822  * All vmap_area objects in this tree are sorted by va->va_start
823  * address. It is used for allocation and merging when a vmap
824  * object is released.
825  *
826  * Each vmap_area node contains a maximum available free block
827  * of its sub-tree, right or left. Therefore it is possible to
828  * find a lowest match of free area.
829  */
830 static struct rb_root free_vmap_area_root = RB_ROOT;
831 
832 /*
833  * Preload a CPU with one object for "no edge" split case. The
834  * aim is to get rid of allocations from the atomic context, thus
835  * to use more permissive allocation masks.
836  */
837 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
838 
839 /*
840  * This structure defines a single, solid model where a list and
841  * rb-tree are part of one entity protected by the lock. Nodes are
842  * sorted in ascending order, thus for O(1) access to left/right
843  * neighbors a list is used as well as for sequential traversal.
844  */
845 struct rb_list {
846 	struct rb_root root;
847 	struct list_head head;
848 	spinlock_t lock;
849 };
850 
851 /*
852  * A fast size storage contains VAs up to 1M size. A pool consists
853  * of linked between each other ready to go VAs of certain sizes.
854  * An index in the pool-array corresponds to number of pages + 1.
855  */
856 #define MAX_VA_SIZE_PAGES 256
857 
858 struct vmap_pool {
859 	struct list_head head;
860 	unsigned long len;
861 };
862 
863 /*
864  * An effective vmap-node logic. Users make use of nodes instead
865  * of a global heap. It allows to balance an access and mitigate
866  * contention.
867  */
868 static struct vmap_node {
869 	/* Simple size segregated storage. */
870 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
871 	spinlock_t pool_lock;
872 	bool skip_populate;
873 
874 	/* Bookkeeping data of this node. */
875 	struct rb_list busy;
876 	struct rb_list lazy;
877 
878 	/*
879 	 * Ready-to-free areas.
880 	 */
881 	struct list_head purge_list;
882 	struct work_struct purge_work;
883 	unsigned long nr_purged;
884 } single;
885 
886 /*
887  * Initial setup consists of one single node, i.e. a balancing
888  * is fully disabled. Later on, after vmap is initialized these
889  * parameters are updated based on a system capacity.
890  */
891 static struct vmap_node *vmap_nodes = &single;
892 static __read_mostly unsigned int nr_vmap_nodes = 1;
893 static __read_mostly unsigned int vmap_zone_size = 1;
894 
895 static inline unsigned int
896 addr_to_node_id(unsigned long addr)
897 {
898 	return (addr / vmap_zone_size) % nr_vmap_nodes;
899 }
900 
901 static inline struct vmap_node *
902 addr_to_node(unsigned long addr)
903 {
904 	return &vmap_nodes[addr_to_node_id(addr)];
905 }
906 
907 static inline struct vmap_node *
908 id_to_node(unsigned int id)
909 {
910 	return &vmap_nodes[id % nr_vmap_nodes];
911 }
912 
913 /*
914  * We use the value 0 to represent "no node", that is why
915  * an encoded value will be the node-id incremented by 1.
916  * It is always greater then 0. A valid node_id which can
917  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
918  * is not valid 0 is returned.
919  */
920 static unsigned int
921 encode_vn_id(unsigned int node_id)
922 {
923 	/* Can store U8_MAX [0:254] nodes. */
924 	if (node_id < nr_vmap_nodes)
925 		return (node_id + 1) << BITS_PER_BYTE;
926 
927 	/* Warn and no node encoded. */
928 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
929 	return 0;
930 }
931 
932 /*
933  * Returns an encoded node-id, the valid range is within
934  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
935  * returned if extracted data is wrong.
936  */
937 static unsigned int
938 decode_vn_id(unsigned int val)
939 {
940 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
941 
942 	/* Can store U8_MAX [0:254] nodes. */
943 	if (node_id < nr_vmap_nodes)
944 		return node_id;
945 
946 	/* If it was _not_ zero, warn. */
947 	WARN_ONCE(node_id != UINT_MAX,
948 		"Decode wrong node id (%d)\n", node_id);
949 
950 	return nr_vmap_nodes;
951 }
952 
953 static bool
954 is_vn_id_valid(unsigned int node_id)
955 {
956 	if (node_id < nr_vmap_nodes)
957 		return true;
958 
959 	return false;
960 }
961 
962 static __always_inline unsigned long
963 va_size(struct vmap_area *va)
964 {
965 	return (va->va_end - va->va_start);
966 }
967 
968 static __always_inline unsigned long
969 get_subtree_max_size(struct rb_node *node)
970 {
971 	struct vmap_area *va;
972 
973 	va = rb_entry_safe(node, struct vmap_area, rb_node);
974 	return va ? va->subtree_max_size : 0;
975 }
976 
977 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
978 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
979 
980 static void reclaim_and_purge_vmap_areas(void);
981 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
982 static void drain_vmap_area_work(struct work_struct *work);
983 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
984 
985 static atomic_long_t nr_vmalloc_pages;
986 
987 unsigned long vmalloc_nr_pages(void)
988 {
989 	return atomic_long_read(&nr_vmalloc_pages);
990 }
991 
992 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
993 {
994 	struct rb_node *n = root->rb_node;
995 
996 	addr = (unsigned long)kasan_reset_tag((void *)addr);
997 
998 	while (n) {
999 		struct vmap_area *va;
1000 
1001 		va = rb_entry(n, struct vmap_area, rb_node);
1002 		if (addr < va->va_start)
1003 			n = n->rb_left;
1004 		else if (addr >= va->va_end)
1005 			n = n->rb_right;
1006 		else
1007 			return va;
1008 	}
1009 
1010 	return NULL;
1011 }
1012 
1013 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1014 static struct vmap_area *
1015 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1016 {
1017 	struct vmap_area *va = NULL;
1018 	struct rb_node *n = root->rb_node;
1019 
1020 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1021 
1022 	while (n) {
1023 		struct vmap_area *tmp;
1024 
1025 		tmp = rb_entry(n, struct vmap_area, rb_node);
1026 		if (tmp->va_end > addr) {
1027 			va = tmp;
1028 			if (tmp->va_start <= addr)
1029 				break;
1030 
1031 			n = n->rb_left;
1032 		} else
1033 			n = n->rb_right;
1034 	}
1035 
1036 	return va;
1037 }
1038 
1039 /*
1040  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1041  * If success, a node is locked. A user is responsible to unlock it when a
1042  * VA is no longer needed to be accessed.
1043  *
1044  * Returns NULL if nothing found.
1045  */
1046 static struct vmap_node *
1047 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1048 {
1049 	unsigned long va_start_lowest;
1050 	struct vmap_node *vn;
1051 	int i;
1052 
1053 repeat:
1054 	for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1055 		vn = &vmap_nodes[i];
1056 
1057 		spin_lock(&vn->busy.lock);
1058 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1059 
1060 		if (*va)
1061 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1062 				va_start_lowest = (*va)->va_start;
1063 		spin_unlock(&vn->busy.lock);
1064 	}
1065 
1066 	/*
1067 	 * Check if found VA exists, it might have gone away.  In this case we
1068 	 * repeat the search because a VA has been removed concurrently and we
1069 	 * need to proceed to the next one, which is a rare case.
1070 	 */
1071 	if (va_start_lowest) {
1072 		vn = addr_to_node(va_start_lowest);
1073 
1074 		spin_lock(&vn->busy.lock);
1075 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1076 
1077 		if (*va)
1078 			return vn;
1079 
1080 		spin_unlock(&vn->busy.lock);
1081 		goto repeat;
1082 	}
1083 
1084 	return NULL;
1085 }
1086 
1087 /*
1088  * This function returns back addresses of parent node
1089  * and its left or right link for further processing.
1090  *
1091  * Otherwise NULL is returned. In that case all further
1092  * steps regarding inserting of conflicting overlap range
1093  * have to be declined and actually considered as a bug.
1094  */
1095 static __always_inline struct rb_node **
1096 find_va_links(struct vmap_area *va,
1097 	struct rb_root *root, struct rb_node *from,
1098 	struct rb_node **parent)
1099 {
1100 	struct vmap_area *tmp_va;
1101 	struct rb_node **link;
1102 
1103 	if (root) {
1104 		link = &root->rb_node;
1105 		if (unlikely(!*link)) {
1106 			*parent = NULL;
1107 			return link;
1108 		}
1109 	} else {
1110 		link = &from;
1111 	}
1112 
1113 	/*
1114 	 * Go to the bottom of the tree. When we hit the last point
1115 	 * we end up with parent rb_node and correct direction, i name
1116 	 * it link, where the new va->rb_node will be attached to.
1117 	 */
1118 	do {
1119 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1120 
1121 		/*
1122 		 * During the traversal we also do some sanity check.
1123 		 * Trigger the BUG() if there are sides(left/right)
1124 		 * or full overlaps.
1125 		 */
1126 		if (va->va_end <= tmp_va->va_start)
1127 			link = &(*link)->rb_left;
1128 		else if (va->va_start >= tmp_va->va_end)
1129 			link = &(*link)->rb_right;
1130 		else {
1131 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1132 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1133 
1134 			return NULL;
1135 		}
1136 	} while (*link);
1137 
1138 	*parent = &tmp_va->rb_node;
1139 	return link;
1140 }
1141 
1142 static __always_inline struct list_head *
1143 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1144 {
1145 	struct list_head *list;
1146 
1147 	if (unlikely(!parent))
1148 		/*
1149 		 * The red-black tree where we try to find VA neighbors
1150 		 * before merging or inserting is empty, i.e. it means
1151 		 * there is no free vmap space. Normally it does not
1152 		 * happen but we handle this case anyway.
1153 		 */
1154 		return NULL;
1155 
1156 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1157 	return (&parent->rb_right == link ? list->next : list);
1158 }
1159 
1160 static __always_inline void
1161 __link_va(struct vmap_area *va, struct rb_root *root,
1162 	struct rb_node *parent, struct rb_node **link,
1163 	struct list_head *head, bool augment)
1164 {
1165 	/*
1166 	 * VA is still not in the list, but we can
1167 	 * identify its future previous list_head node.
1168 	 */
1169 	if (likely(parent)) {
1170 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1171 		if (&parent->rb_right != link)
1172 			head = head->prev;
1173 	}
1174 
1175 	/* Insert to the rb-tree */
1176 	rb_link_node(&va->rb_node, parent, link);
1177 	if (augment) {
1178 		/*
1179 		 * Some explanation here. Just perform simple insertion
1180 		 * to the tree. We do not set va->subtree_max_size to
1181 		 * its current size before calling rb_insert_augmented().
1182 		 * It is because we populate the tree from the bottom
1183 		 * to parent levels when the node _is_ in the tree.
1184 		 *
1185 		 * Therefore we set subtree_max_size to zero after insertion,
1186 		 * to let __augment_tree_propagate_from() puts everything to
1187 		 * the correct order later on.
1188 		 */
1189 		rb_insert_augmented(&va->rb_node,
1190 			root, &free_vmap_area_rb_augment_cb);
1191 		va->subtree_max_size = 0;
1192 	} else {
1193 		rb_insert_color(&va->rb_node, root);
1194 	}
1195 
1196 	/* Address-sort this list */
1197 	list_add(&va->list, head);
1198 }
1199 
1200 static __always_inline void
1201 link_va(struct vmap_area *va, struct rb_root *root,
1202 	struct rb_node *parent, struct rb_node **link,
1203 	struct list_head *head)
1204 {
1205 	__link_va(va, root, parent, link, head, false);
1206 }
1207 
1208 static __always_inline void
1209 link_va_augment(struct vmap_area *va, struct rb_root *root,
1210 	struct rb_node *parent, struct rb_node **link,
1211 	struct list_head *head)
1212 {
1213 	__link_va(va, root, parent, link, head, true);
1214 }
1215 
1216 static __always_inline void
1217 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1218 {
1219 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1220 		return;
1221 
1222 	if (augment)
1223 		rb_erase_augmented(&va->rb_node,
1224 			root, &free_vmap_area_rb_augment_cb);
1225 	else
1226 		rb_erase(&va->rb_node, root);
1227 
1228 	list_del_init(&va->list);
1229 	RB_CLEAR_NODE(&va->rb_node);
1230 }
1231 
1232 static __always_inline void
1233 unlink_va(struct vmap_area *va, struct rb_root *root)
1234 {
1235 	__unlink_va(va, root, false);
1236 }
1237 
1238 static __always_inline void
1239 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1240 {
1241 	__unlink_va(va, root, true);
1242 }
1243 
1244 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1245 /*
1246  * Gets called when remove the node and rotate.
1247  */
1248 static __always_inline unsigned long
1249 compute_subtree_max_size(struct vmap_area *va)
1250 {
1251 	return max3(va_size(va),
1252 		get_subtree_max_size(va->rb_node.rb_left),
1253 		get_subtree_max_size(va->rb_node.rb_right));
1254 }
1255 
1256 static void
1257 augment_tree_propagate_check(void)
1258 {
1259 	struct vmap_area *va;
1260 	unsigned long computed_size;
1261 
1262 	list_for_each_entry(va, &free_vmap_area_list, list) {
1263 		computed_size = compute_subtree_max_size(va);
1264 		if (computed_size != va->subtree_max_size)
1265 			pr_emerg("tree is corrupted: %lu, %lu\n",
1266 				va_size(va), va->subtree_max_size);
1267 	}
1268 }
1269 #endif
1270 
1271 /*
1272  * This function populates subtree_max_size from bottom to upper
1273  * levels starting from VA point. The propagation must be done
1274  * when VA size is modified by changing its va_start/va_end. Or
1275  * in case of newly inserting of VA to the tree.
1276  *
1277  * It means that __augment_tree_propagate_from() must be called:
1278  * - After VA has been inserted to the tree(free path);
1279  * - After VA has been shrunk(allocation path);
1280  * - After VA has been increased(merging path).
1281  *
1282  * Please note that, it does not mean that upper parent nodes
1283  * and their subtree_max_size are recalculated all the time up
1284  * to the root node.
1285  *
1286  *       4--8
1287  *        /\
1288  *       /  \
1289  *      /    \
1290  *    2--2  8--8
1291  *
1292  * For example if we modify the node 4, shrinking it to 2, then
1293  * no any modification is required. If we shrink the node 2 to 1
1294  * its subtree_max_size is updated only, and set to 1. If we shrink
1295  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1296  * node becomes 4--6.
1297  */
1298 static __always_inline void
1299 augment_tree_propagate_from(struct vmap_area *va)
1300 {
1301 	/*
1302 	 * Populate the tree from bottom towards the root until
1303 	 * the calculated maximum available size of checked node
1304 	 * is equal to its current one.
1305 	 */
1306 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1307 
1308 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1309 	augment_tree_propagate_check();
1310 #endif
1311 }
1312 
1313 static void
1314 insert_vmap_area(struct vmap_area *va,
1315 	struct rb_root *root, struct list_head *head)
1316 {
1317 	struct rb_node **link;
1318 	struct rb_node *parent;
1319 
1320 	link = find_va_links(va, root, NULL, &parent);
1321 	if (link)
1322 		link_va(va, root, parent, link, head);
1323 }
1324 
1325 static void
1326 insert_vmap_area_augment(struct vmap_area *va,
1327 	struct rb_node *from, struct rb_root *root,
1328 	struct list_head *head)
1329 {
1330 	struct rb_node **link;
1331 	struct rb_node *parent;
1332 
1333 	if (from)
1334 		link = find_va_links(va, NULL, from, &parent);
1335 	else
1336 		link = find_va_links(va, root, NULL, &parent);
1337 
1338 	if (link) {
1339 		link_va_augment(va, root, parent, link, head);
1340 		augment_tree_propagate_from(va);
1341 	}
1342 }
1343 
1344 /*
1345  * Merge de-allocated chunk of VA memory with previous
1346  * and next free blocks. If coalesce is not done a new
1347  * free area is inserted. If VA has been merged, it is
1348  * freed.
1349  *
1350  * Please note, it can return NULL in case of overlap
1351  * ranges, followed by WARN() report. Despite it is a
1352  * buggy behaviour, a system can be alive and keep
1353  * ongoing.
1354  */
1355 static __always_inline struct vmap_area *
1356 __merge_or_add_vmap_area(struct vmap_area *va,
1357 	struct rb_root *root, struct list_head *head, bool augment)
1358 {
1359 	struct vmap_area *sibling;
1360 	struct list_head *next;
1361 	struct rb_node **link;
1362 	struct rb_node *parent;
1363 	bool merged = false;
1364 
1365 	/*
1366 	 * Find a place in the tree where VA potentially will be
1367 	 * inserted, unless it is merged with its sibling/siblings.
1368 	 */
1369 	link = find_va_links(va, root, NULL, &parent);
1370 	if (!link)
1371 		return NULL;
1372 
1373 	/*
1374 	 * Get next node of VA to check if merging can be done.
1375 	 */
1376 	next = get_va_next_sibling(parent, link);
1377 	if (unlikely(next == NULL))
1378 		goto insert;
1379 
1380 	/*
1381 	 * start            end
1382 	 * |                |
1383 	 * |<------VA------>|<-----Next----->|
1384 	 *                  |                |
1385 	 *                  start            end
1386 	 */
1387 	if (next != head) {
1388 		sibling = list_entry(next, struct vmap_area, list);
1389 		if (sibling->va_start == va->va_end) {
1390 			sibling->va_start = va->va_start;
1391 
1392 			/* Free vmap_area object. */
1393 			kmem_cache_free(vmap_area_cachep, va);
1394 
1395 			/* Point to the new merged area. */
1396 			va = sibling;
1397 			merged = true;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * start            end
1403 	 * |                |
1404 	 * |<-----Prev----->|<------VA------>|
1405 	 *                  |                |
1406 	 *                  start            end
1407 	 */
1408 	if (next->prev != head) {
1409 		sibling = list_entry(next->prev, struct vmap_area, list);
1410 		if (sibling->va_end == va->va_start) {
1411 			/*
1412 			 * If both neighbors are coalesced, it is important
1413 			 * to unlink the "next" node first, followed by merging
1414 			 * with "previous" one. Otherwise the tree might not be
1415 			 * fully populated if a sibling's augmented value is
1416 			 * "normalized" because of rotation operations.
1417 			 */
1418 			if (merged)
1419 				__unlink_va(va, root, augment);
1420 
1421 			sibling->va_end = va->va_end;
1422 
1423 			/* Free vmap_area object. */
1424 			kmem_cache_free(vmap_area_cachep, va);
1425 
1426 			/* Point to the new merged area. */
1427 			va = sibling;
1428 			merged = true;
1429 		}
1430 	}
1431 
1432 insert:
1433 	if (!merged)
1434 		__link_va(va, root, parent, link, head, augment);
1435 
1436 	return va;
1437 }
1438 
1439 static __always_inline struct vmap_area *
1440 merge_or_add_vmap_area(struct vmap_area *va,
1441 	struct rb_root *root, struct list_head *head)
1442 {
1443 	return __merge_or_add_vmap_area(va, root, head, false);
1444 }
1445 
1446 static __always_inline struct vmap_area *
1447 merge_or_add_vmap_area_augment(struct vmap_area *va,
1448 	struct rb_root *root, struct list_head *head)
1449 {
1450 	va = __merge_or_add_vmap_area(va, root, head, true);
1451 	if (va)
1452 		augment_tree_propagate_from(va);
1453 
1454 	return va;
1455 }
1456 
1457 static __always_inline bool
1458 is_within_this_va(struct vmap_area *va, unsigned long size,
1459 	unsigned long align, unsigned long vstart)
1460 {
1461 	unsigned long nva_start_addr;
1462 
1463 	if (va->va_start > vstart)
1464 		nva_start_addr = ALIGN(va->va_start, align);
1465 	else
1466 		nva_start_addr = ALIGN(vstart, align);
1467 
1468 	/* Can be overflowed due to big size or alignment. */
1469 	if (nva_start_addr + size < nva_start_addr ||
1470 			nva_start_addr < vstart)
1471 		return false;
1472 
1473 	return (nva_start_addr + size <= va->va_end);
1474 }
1475 
1476 /*
1477  * Find the first free block(lowest start address) in the tree,
1478  * that will accomplish the request corresponding to passing
1479  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1480  * a search length is adjusted to account for worst case alignment
1481  * overhead.
1482  */
1483 static __always_inline struct vmap_area *
1484 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1485 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1486 {
1487 	struct vmap_area *va;
1488 	struct rb_node *node;
1489 	unsigned long length;
1490 
1491 	/* Start from the root. */
1492 	node = root->rb_node;
1493 
1494 	/* Adjust the search size for alignment overhead. */
1495 	length = adjust_search_size ? size + align - 1 : size;
1496 
1497 	while (node) {
1498 		va = rb_entry(node, struct vmap_area, rb_node);
1499 
1500 		if (get_subtree_max_size(node->rb_left) >= length &&
1501 				vstart < va->va_start) {
1502 			node = node->rb_left;
1503 		} else {
1504 			if (is_within_this_va(va, size, align, vstart))
1505 				return va;
1506 
1507 			/*
1508 			 * Does not make sense to go deeper towards the right
1509 			 * sub-tree if it does not have a free block that is
1510 			 * equal or bigger to the requested search length.
1511 			 */
1512 			if (get_subtree_max_size(node->rb_right) >= length) {
1513 				node = node->rb_right;
1514 				continue;
1515 			}
1516 
1517 			/*
1518 			 * OK. We roll back and find the first right sub-tree,
1519 			 * that will satisfy the search criteria. It can happen
1520 			 * due to "vstart" restriction or an alignment overhead
1521 			 * that is bigger then PAGE_SIZE.
1522 			 */
1523 			while ((node = rb_parent(node))) {
1524 				va = rb_entry(node, struct vmap_area, rb_node);
1525 				if (is_within_this_va(va, size, align, vstart))
1526 					return va;
1527 
1528 				if (get_subtree_max_size(node->rb_right) >= length &&
1529 						vstart <= va->va_start) {
1530 					/*
1531 					 * Shift the vstart forward. Please note, we update it with
1532 					 * parent's start address adding "1" because we do not want
1533 					 * to enter same sub-tree after it has already been checked
1534 					 * and no suitable free block found there.
1535 					 */
1536 					vstart = va->va_start + 1;
1537 					node = node->rb_right;
1538 					break;
1539 				}
1540 			}
1541 		}
1542 	}
1543 
1544 	return NULL;
1545 }
1546 
1547 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1548 #include <linux/random.h>
1549 
1550 static struct vmap_area *
1551 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1552 	unsigned long align, unsigned long vstart)
1553 {
1554 	struct vmap_area *va;
1555 
1556 	list_for_each_entry(va, head, list) {
1557 		if (!is_within_this_va(va, size, align, vstart))
1558 			continue;
1559 
1560 		return va;
1561 	}
1562 
1563 	return NULL;
1564 }
1565 
1566 static void
1567 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1568 			     unsigned long size, unsigned long align)
1569 {
1570 	struct vmap_area *va_1, *va_2;
1571 	unsigned long vstart;
1572 	unsigned int rnd;
1573 
1574 	get_random_bytes(&rnd, sizeof(rnd));
1575 	vstart = VMALLOC_START + rnd;
1576 
1577 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1578 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1579 
1580 	if (va_1 != va_2)
1581 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1582 			va_1, va_2, vstart);
1583 }
1584 #endif
1585 
1586 enum fit_type {
1587 	NOTHING_FIT = 0,
1588 	FL_FIT_TYPE = 1,	/* full fit */
1589 	LE_FIT_TYPE = 2,	/* left edge fit */
1590 	RE_FIT_TYPE = 3,	/* right edge fit */
1591 	NE_FIT_TYPE = 4		/* no edge fit */
1592 };
1593 
1594 static __always_inline enum fit_type
1595 classify_va_fit_type(struct vmap_area *va,
1596 	unsigned long nva_start_addr, unsigned long size)
1597 {
1598 	enum fit_type type;
1599 
1600 	/* Check if it is within VA. */
1601 	if (nva_start_addr < va->va_start ||
1602 			nva_start_addr + size > va->va_end)
1603 		return NOTHING_FIT;
1604 
1605 	/* Now classify. */
1606 	if (va->va_start == nva_start_addr) {
1607 		if (va->va_end == nva_start_addr + size)
1608 			type = FL_FIT_TYPE;
1609 		else
1610 			type = LE_FIT_TYPE;
1611 	} else if (va->va_end == nva_start_addr + size) {
1612 		type = RE_FIT_TYPE;
1613 	} else {
1614 		type = NE_FIT_TYPE;
1615 	}
1616 
1617 	return type;
1618 }
1619 
1620 static __always_inline int
1621 va_clip(struct rb_root *root, struct list_head *head,
1622 		struct vmap_area *va, unsigned long nva_start_addr,
1623 		unsigned long size)
1624 {
1625 	struct vmap_area *lva = NULL;
1626 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1627 
1628 	if (type == FL_FIT_TYPE) {
1629 		/*
1630 		 * No need to split VA, it fully fits.
1631 		 *
1632 		 * |               |
1633 		 * V      NVA      V
1634 		 * |---------------|
1635 		 */
1636 		unlink_va_augment(va, root);
1637 		kmem_cache_free(vmap_area_cachep, va);
1638 	} else if (type == LE_FIT_TYPE) {
1639 		/*
1640 		 * Split left edge of fit VA.
1641 		 *
1642 		 * |       |
1643 		 * V  NVA  V   R
1644 		 * |-------|-------|
1645 		 */
1646 		va->va_start += size;
1647 	} else if (type == RE_FIT_TYPE) {
1648 		/*
1649 		 * Split right edge of fit VA.
1650 		 *
1651 		 *         |       |
1652 		 *     L   V  NVA  V
1653 		 * |-------|-------|
1654 		 */
1655 		va->va_end = nva_start_addr;
1656 	} else if (type == NE_FIT_TYPE) {
1657 		/*
1658 		 * Split no edge of fit VA.
1659 		 *
1660 		 *     |       |
1661 		 *   L V  NVA  V R
1662 		 * |---|-------|---|
1663 		 */
1664 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1665 		if (unlikely(!lva)) {
1666 			/*
1667 			 * For percpu allocator we do not do any pre-allocation
1668 			 * and leave it as it is. The reason is it most likely
1669 			 * never ends up with NE_FIT_TYPE splitting. In case of
1670 			 * percpu allocations offsets and sizes are aligned to
1671 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1672 			 * are its main fitting cases.
1673 			 *
1674 			 * There are a few exceptions though, as an example it is
1675 			 * a first allocation (early boot up) when we have "one"
1676 			 * big free space that has to be split.
1677 			 *
1678 			 * Also we can hit this path in case of regular "vmap"
1679 			 * allocations, if "this" current CPU was not preloaded.
1680 			 * See the comment in alloc_vmap_area() why. If so, then
1681 			 * GFP_NOWAIT is used instead to get an extra object for
1682 			 * split purpose. That is rare and most time does not
1683 			 * occur.
1684 			 *
1685 			 * What happens if an allocation gets failed. Basically,
1686 			 * an "overflow" path is triggered to purge lazily freed
1687 			 * areas to free some memory, then, the "retry" path is
1688 			 * triggered to repeat one more time. See more details
1689 			 * in alloc_vmap_area() function.
1690 			 */
1691 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1692 			if (!lva)
1693 				return -1;
1694 		}
1695 
1696 		/*
1697 		 * Build the remainder.
1698 		 */
1699 		lva->va_start = va->va_start;
1700 		lva->va_end = nva_start_addr;
1701 
1702 		/*
1703 		 * Shrink this VA to remaining size.
1704 		 */
1705 		va->va_start = nva_start_addr + size;
1706 	} else {
1707 		return -1;
1708 	}
1709 
1710 	if (type != FL_FIT_TYPE) {
1711 		augment_tree_propagate_from(va);
1712 
1713 		if (lva)	/* type == NE_FIT_TYPE */
1714 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static unsigned long
1721 va_alloc(struct vmap_area *va,
1722 		struct rb_root *root, struct list_head *head,
1723 		unsigned long size, unsigned long align,
1724 		unsigned long vstart, unsigned long vend)
1725 {
1726 	unsigned long nva_start_addr;
1727 	int ret;
1728 
1729 	if (va->va_start > vstart)
1730 		nva_start_addr = ALIGN(va->va_start, align);
1731 	else
1732 		nva_start_addr = ALIGN(vstart, align);
1733 
1734 	/* Check the "vend" restriction. */
1735 	if (nva_start_addr + size > vend)
1736 		return vend;
1737 
1738 	/* Update the free vmap_area. */
1739 	ret = va_clip(root, head, va, nva_start_addr, size);
1740 	if (WARN_ON_ONCE(ret))
1741 		return vend;
1742 
1743 	return nva_start_addr;
1744 }
1745 
1746 /*
1747  * Returns a start address of the newly allocated area, if success.
1748  * Otherwise a vend is returned that indicates failure.
1749  */
1750 static __always_inline unsigned long
1751 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1752 	unsigned long size, unsigned long align,
1753 	unsigned long vstart, unsigned long vend)
1754 {
1755 	bool adjust_search_size = true;
1756 	unsigned long nva_start_addr;
1757 	struct vmap_area *va;
1758 
1759 	/*
1760 	 * Do not adjust when:
1761 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1762 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1763 	 *      aligned anyway;
1764 	 *   b) a short range where a requested size corresponds to exactly
1765 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1766 	 *      With adjusted search length an allocation would not succeed.
1767 	 */
1768 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1769 		adjust_search_size = false;
1770 
1771 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1772 	if (unlikely(!va))
1773 		return vend;
1774 
1775 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1776 	if (nva_start_addr == vend)
1777 		return vend;
1778 
1779 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1780 	find_vmap_lowest_match_check(root, head, size, align);
1781 #endif
1782 
1783 	return nva_start_addr;
1784 }
1785 
1786 /*
1787  * Free a region of KVA allocated by alloc_vmap_area
1788  */
1789 static void free_vmap_area(struct vmap_area *va)
1790 {
1791 	struct vmap_node *vn = addr_to_node(va->va_start);
1792 
1793 	/*
1794 	 * Remove from the busy tree/list.
1795 	 */
1796 	spin_lock(&vn->busy.lock);
1797 	unlink_va(va, &vn->busy.root);
1798 	spin_unlock(&vn->busy.lock);
1799 
1800 	/*
1801 	 * Insert/Merge it back to the free tree/list.
1802 	 */
1803 	spin_lock(&free_vmap_area_lock);
1804 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1805 	spin_unlock(&free_vmap_area_lock);
1806 }
1807 
1808 static inline void
1809 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1810 {
1811 	struct vmap_area *va = NULL;
1812 
1813 	/*
1814 	 * Preload this CPU with one extra vmap_area object. It is used
1815 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1816 	 * a CPU that does an allocation is preloaded.
1817 	 *
1818 	 * We do it in non-atomic context, thus it allows us to use more
1819 	 * permissive allocation masks to be more stable under low memory
1820 	 * condition and high memory pressure.
1821 	 */
1822 	if (!this_cpu_read(ne_fit_preload_node))
1823 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1824 
1825 	spin_lock(lock);
1826 
1827 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1828 		kmem_cache_free(vmap_area_cachep, va);
1829 }
1830 
1831 static struct vmap_pool *
1832 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1833 {
1834 	unsigned int idx = (size - 1) / PAGE_SIZE;
1835 
1836 	if (idx < MAX_VA_SIZE_PAGES)
1837 		return &vn->pool[idx];
1838 
1839 	return NULL;
1840 }
1841 
1842 static bool
1843 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1844 {
1845 	struct vmap_pool *vp;
1846 
1847 	vp = size_to_va_pool(n, va_size(va));
1848 	if (!vp)
1849 		return false;
1850 
1851 	spin_lock(&n->pool_lock);
1852 	list_add(&va->list, &vp->head);
1853 	WRITE_ONCE(vp->len, vp->len + 1);
1854 	spin_unlock(&n->pool_lock);
1855 
1856 	return true;
1857 }
1858 
1859 static struct vmap_area *
1860 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1861 		unsigned long align, unsigned long vstart,
1862 		unsigned long vend)
1863 {
1864 	struct vmap_area *va = NULL;
1865 	struct vmap_pool *vp;
1866 	int err = 0;
1867 
1868 	vp = size_to_va_pool(vn, size);
1869 	if (!vp || list_empty(&vp->head))
1870 		return NULL;
1871 
1872 	spin_lock(&vn->pool_lock);
1873 	if (!list_empty(&vp->head)) {
1874 		va = list_first_entry(&vp->head, struct vmap_area, list);
1875 
1876 		if (IS_ALIGNED(va->va_start, align)) {
1877 			/*
1878 			 * Do some sanity check and emit a warning
1879 			 * if one of below checks detects an error.
1880 			 */
1881 			err |= (va_size(va) != size);
1882 			err |= (va->va_start < vstart);
1883 			err |= (va->va_end > vend);
1884 
1885 			if (!WARN_ON_ONCE(err)) {
1886 				list_del_init(&va->list);
1887 				WRITE_ONCE(vp->len, vp->len - 1);
1888 			} else {
1889 				va = NULL;
1890 			}
1891 		} else {
1892 			list_move_tail(&va->list, &vp->head);
1893 			va = NULL;
1894 		}
1895 	}
1896 	spin_unlock(&vn->pool_lock);
1897 
1898 	return va;
1899 }
1900 
1901 static struct vmap_area *
1902 node_alloc(unsigned long size, unsigned long align,
1903 		unsigned long vstart, unsigned long vend,
1904 		unsigned long *addr, unsigned int *vn_id)
1905 {
1906 	struct vmap_area *va;
1907 
1908 	*vn_id = 0;
1909 	*addr = vend;
1910 
1911 	/*
1912 	 * Fallback to a global heap if not vmalloc or there
1913 	 * is only one node.
1914 	 */
1915 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1916 			nr_vmap_nodes == 1)
1917 		return NULL;
1918 
1919 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1920 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1921 	*vn_id = encode_vn_id(*vn_id);
1922 
1923 	if (va)
1924 		*addr = va->va_start;
1925 
1926 	return va;
1927 }
1928 
1929 /*
1930  * Allocate a region of KVA of the specified size and alignment, within the
1931  * vstart and vend.
1932  */
1933 static struct vmap_area *alloc_vmap_area(unsigned long size,
1934 				unsigned long align,
1935 				unsigned long vstart, unsigned long vend,
1936 				int node, gfp_t gfp_mask,
1937 				unsigned long va_flags)
1938 {
1939 	struct vmap_node *vn;
1940 	struct vmap_area *va;
1941 	unsigned long freed;
1942 	unsigned long addr;
1943 	unsigned int vn_id;
1944 	int purged = 0;
1945 	int ret;
1946 
1947 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1948 		return ERR_PTR(-EINVAL);
1949 
1950 	if (unlikely(!vmap_initialized))
1951 		return ERR_PTR(-EBUSY);
1952 
1953 	might_sleep();
1954 
1955 	/*
1956 	 * If a VA is obtained from a global heap(if it fails here)
1957 	 * it is anyway marked with this "vn_id" so it is returned
1958 	 * to this pool's node later. Such way gives a possibility
1959 	 * to populate pools based on users demand.
1960 	 *
1961 	 * On success a ready to go VA is returned.
1962 	 */
1963 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1964 	if (!va) {
1965 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1966 
1967 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1968 		if (unlikely(!va))
1969 			return ERR_PTR(-ENOMEM);
1970 
1971 		/*
1972 		 * Only scan the relevant parts containing pointers to other objects
1973 		 * to avoid false negatives.
1974 		 */
1975 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1976 	}
1977 
1978 retry:
1979 	if (addr == vend) {
1980 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1981 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1982 			size, align, vstart, vend);
1983 		spin_unlock(&free_vmap_area_lock);
1984 	}
1985 
1986 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1987 
1988 	/*
1989 	 * If an allocation fails, the "vend" address is
1990 	 * returned. Therefore trigger the overflow path.
1991 	 */
1992 	if (unlikely(addr == vend))
1993 		goto overflow;
1994 
1995 	va->va_start = addr;
1996 	va->va_end = addr + size;
1997 	va->vm = NULL;
1998 	va->flags = (va_flags | vn_id);
1999 
2000 	vn = addr_to_node(va->va_start);
2001 
2002 	spin_lock(&vn->busy.lock);
2003 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2004 	spin_unlock(&vn->busy.lock);
2005 
2006 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2007 	BUG_ON(va->va_start < vstart);
2008 	BUG_ON(va->va_end > vend);
2009 
2010 	ret = kasan_populate_vmalloc(addr, size);
2011 	if (ret) {
2012 		free_vmap_area(va);
2013 		return ERR_PTR(ret);
2014 	}
2015 
2016 	return va;
2017 
2018 overflow:
2019 	if (!purged) {
2020 		reclaim_and_purge_vmap_areas();
2021 		purged = 1;
2022 		goto retry;
2023 	}
2024 
2025 	freed = 0;
2026 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2027 
2028 	if (freed > 0) {
2029 		purged = 0;
2030 		goto retry;
2031 	}
2032 
2033 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2034 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
2035 			size);
2036 
2037 	kmem_cache_free(vmap_area_cachep, va);
2038 	return ERR_PTR(-EBUSY);
2039 }
2040 
2041 int register_vmap_purge_notifier(struct notifier_block *nb)
2042 {
2043 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2044 }
2045 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2046 
2047 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2048 {
2049 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2050 }
2051 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2052 
2053 /*
2054  * lazy_max_pages is the maximum amount of virtual address space we gather up
2055  * before attempting to purge with a TLB flush.
2056  *
2057  * There is a tradeoff here: a larger number will cover more kernel page tables
2058  * and take slightly longer to purge, but it will linearly reduce the number of
2059  * global TLB flushes that must be performed. It would seem natural to scale
2060  * this number up linearly with the number of CPUs (because vmapping activity
2061  * could also scale linearly with the number of CPUs), however it is likely
2062  * that in practice, workloads might be constrained in other ways that mean
2063  * vmap activity will not scale linearly with CPUs. Also, I want to be
2064  * conservative and not introduce a big latency on huge systems, so go with
2065  * a less aggressive log scale. It will still be an improvement over the old
2066  * code, and it will be simple to change the scale factor if we find that it
2067  * becomes a problem on bigger systems.
2068  */
2069 static unsigned long lazy_max_pages(void)
2070 {
2071 	unsigned int log;
2072 
2073 	log = fls(num_online_cpus());
2074 
2075 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2076 }
2077 
2078 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2079 
2080 /*
2081  * Serialize vmap purging.  There is no actual critical section protected
2082  * by this lock, but we want to avoid concurrent calls for performance
2083  * reasons and to make the pcpu_get_vm_areas more deterministic.
2084  */
2085 static DEFINE_MUTEX(vmap_purge_lock);
2086 
2087 /* for per-CPU blocks */
2088 static void purge_fragmented_blocks_allcpus(void);
2089 static cpumask_t purge_nodes;
2090 
2091 static void
2092 reclaim_list_global(struct list_head *head)
2093 {
2094 	struct vmap_area *va, *n;
2095 
2096 	if (list_empty(head))
2097 		return;
2098 
2099 	spin_lock(&free_vmap_area_lock);
2100 	list_for_each_entry_safe(va, n, head, list)
2101 		merge_or_add_vmap_area_augment(va,
2102 			&free_vmap_area_root, &free_vmap_area_list);
2103 	spin_unlock(&free_vmap_area_lock);
2104 }
2105 
2106 static void
2107 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2108 {
2109 	struct vmap_area *va, *nva;
2110 	struct list_head decay_list;
2111 	struct rb_root decay_root;
2112 	unsigned long n_decay;
2113 	int i;
2114 
2115 	decay_root = RB_ROOT;
2116 	INIT_LIST_HEAD(&decay_list);
2117 
2118 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2119 		struct list_head tmp_list;
2120 
2121 		if (list_empty(&vn->pool[i].head))
2122 			continue;
2123 
2124 		INIT_LIST_HEAD(&tmp_list);
2125 
2126 		/* Detach the pool, so no-one can access it. */
2127 		spin_lock(&vn->pool_lock);
2128 		list_replace_init(&vn->pool[i].head, &tmp_list);
2129 		spin_unlock(&vn->pool_lock);
2130 
2131 		if (full_decay)
2132 			WRITE_ONCE(vn->pool[i].len, 0);
2133 
2134 		/* Decay a pool by ~25% out of left objects. */
2135 		n_decay = vn->pool[i].len >> 2;
2136 
2137 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2138 			list_del_init(&va->list);
2139 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2140 
2141 			if (!full_decay) {
2142 				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2143 
2144 				if (!--n_decay)
2145 					break;
2146 			}
2147 		}
2148 
2149 		/*
2150 		 * Attach the pool back if it has been partly decayed.
2151 		 * Please note, it is supposed that nobody(other contexts)
2152 		 * can populate the pool therefore a simple list replace
2153 		 * operation takes place here.
2154 		 */
2155 		if (!full_decay && !list_empty(&tmp_list)) {
2156 			spin_lock(&vn->pool_lock);
2157 			list_replace_init(&tmp_list, &vn->pool[i].head);
2158 			spin_unlock(&vn->pool_lock);
2159 		}
2160 	}
2161 
2162 	reclaim_list_global(&decay_list);
2163 }
2164 
2165 static void purge_vmap_node(struct work_struct *work)
2166 {
2167 	struct vmap_node *vn = container_of(work,
2168 		struct vmap_node, purge_work);
2169 	struct vmap_area *va, *n_va;
2170 	LIST_HEAD(local_list);
2171 
2172 	vn->nr_purged = 0;
2173 
2174 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2175 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
2176 		unsigned long orig_start = va->va_start;
2177 		unsigned long orig_end = va->va_end;
2178 		unsigned int vn_id = decode_vn_id(va->flags);
2179 
2180 		list_del_init(&va->list);
2181 
2182 		if (is_vmalloc_or_module_addr((void *)orig_start))
2183 			kasan_release_vmalloc(orig_start, orig_end,
2184 					      va->va_start, va->va_end);
2185 
2186 		atomic_long_sub(nr, &vmap_lazy_nr);
2187 		vn->nr_purged++;
2188 
2189 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2190 			if (node_pool_add_va(vn, va))
2191 				continue;
2192 
2193 		/* Go back to global. */
2194 		list_add(&va->list, &local_list);
2195 	}
2196 
2197 	reclaim_list_global(&local_list);
2198 }
2199 
2200 /*
2201  * Purges all lazily-freed vmap areas.
2202  */
2203 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2204 		bool full_pool_decay)
2205 {
2206 	unsigned long nr_purged_areas = 0;
2207 	unsigned int nr_purge_helpers;
2208 	unsigned int nr_purge_nodes;
2209 	struct vmap_node *vn;
2210 	int i;
2211 
2212 	lockdep_assert_held(&vmap_purge_lock);
2213 
2214 	/*
2215 	 * Use cpumask to mark which node has to be processed.
2216 	 */
2217 	purge_nodes = CPU_MASK_NONE;
2218 
2219 	for (i = 0; i < nr_vmap_nodes; i++) {
2220 		vn = &vmap_nodes[i];
2221 
2222 		INIT_LIST_HEAD(&vn->purge_list);
2223 		vn->skip_populate = full_pool_decay;
2224 		decay_va_pool_node(vn, full_pool_decay);
2225 
2226 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2227 			continue;
2228 
2229 		spin_lock(&vn->lazy.lock);
2230 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2231 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2232 		spin_unlock(&vn->lazy.lock);
2233 
2234 		start = min(start, list_first_entry(&vn->purge_list,
2235 			struct vmap_area, list)->va_start);
2236 
2237 		end = max(end, list_last_entry(&vn->purge_list,
2238 			struct vmap_area, list)->va_end);
2239 
2240 		cpumask_set_cpu(i, &purge_nodes);
2241 	}
2242 
2243 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2244 	if (nr_purge_nodes > 0) {
2245 		flush_tlb_kernel_range(start, end);
2246 
2247 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2248 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2249 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2250 
2251 		for_each_cpu(i, &purge_nodes) {
2252 			vn = &vmap_nodes[i];
2253 
2254 			if (nr_purge_helpers > 0) {
2255 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2256 
2257 				if (cpumask_test_cpu(i, cpu_online_mask))
2258 					schedule_work_on(i, &vn->purge_work);
2259 				else
2260 					schedule_work(&vn->purge_work);
2261 
2262 				nr_purge_helpers--;
2263 			} else {
2264 				vn->purge_work.func = NULL;
2265 				purge_vmap_node(&vn->purge_work);
2266 				nr_purged_areas += vn->nr_purged;
2267 			}
2268 		}
2269 
2270 		for_each_cpu(i, &purge_nodes) {
2271 			vn = &vmap_nodes[i];
2272 
2273 			if (vn->purge_work.func) {
2274 				flush_work(&vn->purge_work);
2275 				nr_purged_areas += vn->nr_purged;
2276 			}
2277 		}
2278 	}
2279 
2280 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2281 	return nr_purged_areas > 0;
2282 }
2283 
2284 /*
2285  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2286  */
2287 static void reclaim_and_purge_vmap_areas(void)
2288 
2289 {
2290 	mutex_lock(&vmap_purge_lock);
2291 	purge_fragmented_blocks_allcpus();
2292 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2293 	mutex_unlock(&vmap_purge_lock);
2294 }
2295 
2296 static void drain_vmap_area_work(struct work_struct *work)
2297 {
2298 	mutex_lock(&vmap_purge_lock);
2299 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2300 	mutex_unlock(&vmap_purge_lock);
2301 }
2302 
2303 /*
2304  * Free a vmap area, caller ensuring that the area has been unmapped,
2305  * unlinked and flush_cache_vunmap had been called for the correct
2306  * range previously.
2307  */
2308 static void free_vmap_area_noflush(struct vmap_area *va)
2309 {
2310 	unsigned long nr_lazy_max = lazy_max_pages();
2311 	unsigned long va_start = va->va_start;
2312 	unsigned int vn_id = decode_vn_id(va->flags);
2313 	struct vmap_node *vn;
2314 	unsigned long nr_lazy;
2315 
2316 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2317 		return;
2318 
2319 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2320 				PAGE_SHIFT, &vmap_lazy_nr);
2321 
2322 	/*
2323 	 * If it was request by a certain node we would like to
2324 	 * return it to that node, i.e. its pool for later reuse.
2325 	 */
2326 	vn = is_vn_id_valid(vn_id) ?
2327 		id_to_node(vn_id):addr_to_node(va->va_start);
2328 
2329 	spin_lock(&vn->lazy.lock);
2330 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2331 	spin_unlock(&vn->lazy.lock);
2332 
2333 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2334 
2335 	/* After this point, we may free va at any time */
2336 	if (unlikely(nr_lazy > nr_lazy_max))
2337 		schedule_work(&drain_vmap_work);
2338 }
2339 
2340 /*
2341  * Free and unmap a vmap area
2342  */
2343 static void free_unmap_vmap_area(struct vmap_area *va)
2344 {
2345 	flush_cache_vunmap(va->va_start, va->va_end);
2346 	vunmap_range_noflush(va->va_start, va->va_end);
2347 	if (debug_pagealloc_enabled_static())
2348 		flush_tlb_kernel_range(va->va_start, va->va_end);
2349 
2350 	free_vmap_area_noflush(va);
2351 }
2352 
2353 struct vmap_area *find_vmap_area(unsigned long addr)
2354 {
2355 	struct vmap_node *vn;
2356 	struct vmap_area *va;
2357 	int i, j;
2358 
2359 	if (unlikely(!vmap_initialized))
2360 		return NULL;
2361 
2362 	/*
2363 	 * An addr_to_node_id(addr) converts an address to a node index
2364 	 * where a VA is located. If VA spans several zones and passed
2365 	 * addr is not the same as va->va_start, what is not common, we
2366 	 * may need to scan extra nodes. See an example:
2367 	 *
2368 	 *      <----va---->
2369 	 * -|-----|-----|-----|-----|-
2370 	 *     1     2     0     1
2371 	 *
2372 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2373 	 * addr is within 2 or 0 nodes we should do extra work.
2374 	 */
2375 	i = j = addr_to_node_id(addr);
2376 	do {
2377 		vn = &vmap_nodes[i];
2378 
2379 		spin_lock(&vn->busy.lock);
2380 		va = __find_vmap_area(addr, &vn->busy.root);
2381 		spin_unlock(&vn->busy.lock);
2382 
2383 		if (va)
2384 			return va;
2385 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2386 
2387 	return NULL;
2388 }
2389 
2390 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2391 {
2392 	struct vmap_node *vn;
2393 	struct vmap_area *va;
2394 	int i, j;
2395 
2396 	/*
2397 	 * Check the comment in the find_vmap_area() about the loop.
2398 	 */
2399 	i = j = addr_to_node_id(addr);
2400 	do {
2401 		vn = &vmap_nodes[i];
2402 
2403 		spin_lock(&vn->busy.lock);
2404 		va = __find_vmap_area(addr, &vn->busy.root);
2405 		if (va)
2406 			unlink_va(va, &vn->busy.root);
2407 		spin_unlock(&vn->busy.lock);
2408 
2409 		if (va)
2410 			return va;
2411 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2412 
2413 	return NULL;
2414 }
2415 
2416 /*** Per cpu kva allocator ***/
2417 
2418 /*
2419  * vmap space is limited especially on 32 bit architectures. Ensure there is
2420  * room for at least 16 percpu vmap blocks per CPU.
2421  */
2422 /*
2423  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2424  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2425  * instead (we just need a rough idea)
2426  */
2427 #if BITS_PER_LONG == 32
2428 #define VMALLOC_SPACE		(128UL*1024*1024)
2429 #else
2430 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2431 #endif
2432 
2433 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2434 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2435 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2436 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2437 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2438 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2439 #define VMAP_BBMAP_BITS		\
2440 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2441 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2442 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2443 
2444 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2445 
2446 /*
2447  * Purge threshold to prevent overeager purging of fragmented blocks for
2448  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2449  */
2450 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2451 
2452 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2453 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2454 #define VMAP_FLAGS_MASK		0x3
2455 
2456 struct vmap_block_queue {
2457 	spinlock_t lock;
2458 	struct list_head free;
2459 
2460 	/*
2461 	 * An xarray requires an extra memory dynamically to
2462 	 * be allocated. If it is an issue, we can use rb-tree
2463 	 * instead.
2464 	 */
2465 	struct xarray vmap_blocks;
2466 };
2467 
2468 struct vmap_block {
2469 	spinlock_t lock;
2470 	struct vmap_area *va;
2471 	unsigned long free, dirty;
2472 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2473 	unsigned long dirty_min, dirty_max; /*< dirty range */
2474 	struct list_head free_list;
2475 	struct rcu_head rcu_head;
2476 	struct list_head purge;
2477 };
2478 
2479 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2480 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2481 
2482 /*
2483  * In order to fast access to any "vmap_block" associated with a
2484  * specific address, we use a hash.
2485  *
2486  * A per-cpu vmap_block_queue is used in both ways, to serialize
2487  * an access to free block chains among CPUs(alloc path) and it
2488  * also acts as a vmap_block hash(alloc/free paths). It means we
2489  * overload it, since we already have the per-cpu array which is
2490  * used as a hash table. When used as a hash a 'cpu' passed to
2491  * per_cpu() is not actually a CPU but rather a hash index.
2492  *
2493  * A hash function is addr_to_vb_xa() which hashes any address
2494  * to a specific index(in a hash) it belongs to. This then uses a
2495  * per_cpu() macro to access an array with generated index.
2496  *
2497  * An example:
2498  *
2499  *  CPU_1  CPU_2  CPU_0
2500  *    |      |      |
2501  *    V      V      V
2502  * 0     10     20     30     40     50     60
2503  * |------|------|------|------|------|------|...<vmap address space>
2504  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2505  *
2506  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2507  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2508  *
2509  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2510  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2511  *
2512  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2513  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2514  *
2515  * This technique almost always avoids lock contention on insert/remove,
2516  * however xarray spinlocks protect against any contention that remains.
2517  */
2518 static struct xarray *
2519 addr_to_vb_xa(unsigned long addr)
2520 {
2521 	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
2522 
2523 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2524 }
2525 
2526 /*
2527  * We should probably have a fallback mechanism to allocate virtual memory
2528  * out of partially filled vmap blocks. However vmap block sizing should be
2529  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2530  * big problem.
2531  */
2532 
2533 static unsigned long addr_to_vb_idx(unsigned long addr)
2534 {
2535 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2536 	addr /= VMAP_BLOCK_SIZE;
2537 	return addr;
2538 }
2539 
2540 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2541 {
2542 	unsigned long addr;
2543 
2544 	addr = va_start + (pages_off << PAGE_SHIFT);
2545 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2546 	return (void *)addr;
2547 }
2548 
2549 /**
2550  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2551  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2552  * @order:    how many 2^order pages should be occupied in newly allocated block
2553  * @gfp_mask: flags for the page level allocator
2554  *
2555  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2556  */
2557 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2558 {
2559 	struct vmap_block_queue *vbq;
2560 	struct vmap_block *vb;
2561 	struct vmap_area *va;
2562 	struct xarray *xa;
2563 	unsigned long vb_idx;
2564 	int node, err;
2565 	void *vaddr;
2566 
2567 	node = numa_node_id();
2568 
2569 	vb = kmalloc_node(sizeof(struct vmap_block),
2570 			gfp_mask & GFP_RECLAIM_MASK, node);
2571 	if (unlikely(!vb))
2572 		return ERR_PTR(-ENOMEM);
2573 
2574 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2575 					VMALLOC_START, VMALLOC_END,
2576 					node, gfp_mask,
2577 					VMAP_RAM|VMAP_BLOCK);
2578 	if (IS_ERR(va)) {
2579 		kfree(vb);
2580 		return ERR_CAST(va);
2581 	}
2582 
2583 	vaddr = vmap_block_vaddr(va->va_start, 0);
2584 	spin_lock_init(&vb->lock);
2585 	vb->va = va;
2586 	/* At least something should be left free */
2587 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2588 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2589 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2590 	vb->dirty = 0;
2591 	vb->dirty_min = VMAP_BBMAP_BITS;
2592 	vb->dirty_max = 0;
2593 	bitmap_set(vb->used_map, 0, (1UL << order));
2594 	INIT_LIST_HEAD(&vb->free_list);
2595 
2596 	xa = addr_to_vb_xa(va->va_start);
2597 	vb_idx = addr_to_vb_idx(va->va_start);
2598 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2599 	if (err) {
2600 		kfree(vb);
2601 		free_vmap_area(va);
2602 		return ERR_PTR(err);
2603 	}
2604 
2605 	vbq = raw_cpu_ptr(&vmap_block_queue);
2606 	spin_lock(&vbq->lock);
2607 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2608 	spin_unlock(&vbq->lock);
2609 
2610 	return vaddr;
2611 }
2612 
2613 static void free_vmap_block(struct vmap_block *vb)
2614 {
2615 	struct vmap_node *vn;
2616 	struct vmap_block *tmp;
2617 	struct xarray *xa;
2618 
2619 	xa = addr_to_vb_xa(vb->va->va_start);
2620 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2621 	BUG_ON(tmp != vb);
2622 
2623 	vn = addr_to_node(vb->va->va_start);
2624 	spin_lock(&vn->busy.lock);
2625 	unlink_va(vb->va, &vn->busy.root);
2626 	spin_unlock(&vn->busy.lock);
2627 
2628 	free_vmap_area_noflush(vb->va);
2629 	kfree_rcu(vb, rcu_head);
2630 }
2631 
2632 static bool purge_fragmented_block(struct vmap_block *vb,
2633 		struct vmap_block_queue *vbq, struct list_head *purge_list,
2634 		bool force_purge)
2635 {
2636 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2637 	    vb->dirty == VMAP_BBMAP_BITS)
2638 		return false;
2639 
2640 	/* Don't overeagerly purge usable blocks unless requested */
2641 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2642 		return false;
2643 
2644 	/* prevent further allocs after releasing lock */
2645 	WRITE_ONCE(vb->free, 0);
2646 	/* prevent purging it again */
2647 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2648 	vb->dirty_min = 0;
2649 	vb->dirty_max = VMAP_BBMAP_BITS;
2650 	spin_lock(&vbq->lock);
2651 	list_del_rcu(&vb->free_list);
2652 	spin_unlock(&vbq->lock);
2653 	list_add_tail(&vb->purge, purge_list);
2654 	return true;
2655 }
2656 
2657 static void free_purged_blocks(struct list_head *purge_list)
2658 {
2659 	struct vmap_block *vb, *n_vb;
2660 
2661 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2662 		list_del(&vb->purge);
2663 		free_vmap_block(vb);
2664 	}
2665 }
2666 
2667 static void purge_fragmented_blocks(int cpu)
2668 {
2669 	LIST_HEAD(purge);
2670 	struct vmap_block *vb;
2671 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2672 
2673 	rcu_read_lock();
2674 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2675 		unsigned long free = READ_ONCE(vb->free);
2676 		unsigned long dirty = READ_ONCE(vb->dirty);
2677 
2678 		if (free + dirty != VMAP_BBMAP_BITS ||
2679 		    dirty == VMAP_BBMAP_BITS)
2680 			continue;
2681 
2682 		spin_lock(&vb->lock);
2683 		purge_fragmented_block(vb, vbq, &purge, true);
2684 		spin_unlock(&vb->lock);
2685 	}
2686 	rcu_read_unlock();
2687 	free_purged_blocks(&purge);
2688 }
2689 
2690 static void purge_fragmented_blocks_allcpus(void)
2691 {
2692 	int cpu;
2693 
2694 	for_each_possible_cpu(cpu)
2695 		purge_fragmented_blocks(cpu);
2696 }
2697 
2698 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2699 {
2700 	struct vmap_block_queue *vbq;
2701 	struct vmap_block *vb;
2702 	void *vaddr = NULL;
2703 	unsigned int order;
2704 
2705 	BUG_ON(offset_in_page(size));
2706 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2707 	if (WARN_ON(size == 0)) {
2708 		/*
2709 		 * Allocating 0 bytes isn't what caller wants since
2710 		 * get_order(0) returns funny result. Just warn and terminate
2711 		 * early.
2712 		 */
2713 		return NULL;
2714 	}
2715 	order = get_order(size);
2716 
2717 	rcu_read_lock();
2718 	vbq = raw_cpu_ptr(&vmap_block_queue);
2719 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2720 		unsigned long pages_off;
2721 
2722 		if (READ_ONCE(vb->free) < (1UL << order))
2723 			continue;
2724 
2725 		spin_lock(&vb->lock);
2726 		if (vb->free < (1UL << order)) {
2727 			spin_unlock(&vb->lock);
2728 			continue;
2729 		}
2730 
2731 		pages_off = VMAP_BBMAP_BITS - vb->free;
2732 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2733 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2734 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2735 		if (vb->free == 0) {
2736 			spin_lock(&vbq->lock);
2737 			list_del_rcu(&vb->free_list);
2738 			spin_unlock(&vbq->lock);
2739 		}
2740 
2741 		spin_unlock(&vb->lock);
2742 		break;
2743 	}
2744 
2745 	rcu_read_unlock();
2746 
2747 	/* Allocate new block if nothing was found */
2748 	if (!vaddr)
2749 		vaddr = new_vmap_block(order, gfp_mask);
2750 
2751 	return vaddr;
2752 }
2753 
2754 static void vb_free(unsigned long addr, unsigned long size)
2755 {
2756 	unsigned long offset;
2757 	unsigned int order;
2758 	struct vmap_block *vb;
2759 	struct xarray *xa;
2760 
2761 	BUG_ON(offset_in_page(size));
2762 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2763 
2764 	flush_cache_vunmap(addr, addr + size);
2765 
2766 	order = get_order(size);
2767 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2768 
2769 	xa = addr_to_vb_xa(addr);
2770 	vb = xa_load(xa, addr_to_vb_idx(addr));
2771 
2772 	spin_lock(&vb->lock);
2773 	bitmap_clear(vb->used_map, offset, (1UL << order));
2774 	spin_unlock(&vb->lock);
2775 
2776 	vunmap_range_noflush(addr, addr + size);
2777 
2778 	if (debug_pagealloc_enabled_static())
2779 		flush_tlb_kernel_range(addr, addr + size);
2780 
2781 	spin_lock(&vb->lock);
2782 
2783 	/* Expand the not yet TLB flushed dirty range */
2784 	vb->dirty_min = min(vb->dirty_min, offset);
2785 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2786 
2787 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2788 	if (vb->dirty == VMAP_BBMAP_BITS) {
2789 		BUG_ON(vb->free);
2790 		spin_unlock(&vb->lock);
2791 		free_vmap_block(vb);
2792 	} else
2793 		spin_unlock(&vb->lock);
2794 }
2795 
2796 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2797 {
2798 	LIST_HEAD(purge_list);
2799 	int cpu;
2800 
2801 	if (unlikely(!vmap_initialized))
2802 		return;
2803 
2804 	mutex_lock(&vmap_purge_lock);
2805 
2806 	for_each_possible_cpu(cpu) {
2807 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2808 		struct vmap_block *vb;
2809 		unsigned long idx;
2810 
2811 		rcu_read_lock();
2812 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2813 			spin_lock(&vb->lock);
2814 
2815 			/*
2816 			 * Try to purge a fragmented block first. If it's
2817 			 * not purgeable, check whether there is dirty
2818 			 * space to be flushed.
2819 			 */
2820 			if (!purge_fragmented_block(vb, vbq, &purge_list, false) &&
2821 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2822 				unsigned long va_start = vb->va->va_start;
2823 				unsigned long s, e;
2824 
2825 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2826 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2827 
2828 				start = min(s, start);
2829 				end   = max(e, end);
2830 
2831 				/* Prevent that this is flushed again */
2832 				vb->dirty_min = VMAP_BBMAP_BITS;
2833 				vb->dirty_max = 0;
2834 
2835 				flush = 1;
2836 			}
2837 			spin_unlock(&vb->lock);
2838 		}
2839 		rcu_read_unlock();
2840 	}
2841 	free_purged_blocks(&purge_list);
2842 
2843 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2844 		flush_tlb_kernel_range(start, end);
2845 	mutex_unlock(&vmap_purge_lock);
2846 }
2847 
2848 /**
2849  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2850  *
2851  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2852  * to amortize TLB flushing overheads. What this means is that any page you
2853  * have now, may, in a former life, have been mapped into kernel virtual
2854  * address by the vmap layer and so there might be some CPUs with TLB entries
2855  * still referencing that page (additional to the regular 1:1 kernel mapping).
2856  *
2857  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2858  * be sure that none of the pages we have control over will have any aliases
2859  * from the vmap layer.
2860  */
2861 void vm_unmap_aliases(void)
2862 {
2863 	unsigned long start = ULONG_MAX, end = 0;
2864 	int flush = 0;
2865 
2866 	_vm_unmap_aliases(start, end, flush);
2867 }
2868 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2869 
2870 /**
2871  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2872  * @mem: the pointer returned by vm_map_ram
2873  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2874  */
2875 void vm_unmap_ram(const void *mem, unsigned int count)
2876 {
2877 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2878 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2879 	struct vmap_area *va;
2880 
2881 	might_sleep();
2882 	BUG_ON(!addr);
2883 	BUG_ON(addr < VMALLOC_START);
2884 	BUG_ON(addr > VMALLOC_END);
2885 	BUG_ON(!PAGE_ALIGNED(addr));
2886 
2887 	kasan_poison_vmalloc(mem, size);
2888 
2889 	if (likely(count <= VMAP_MAX_ALLOC)) {
2890 		debug_check_no_locks_freed(mem, size);
2891 		vb_free(addr, size);
2892 		return;
2893 	}
2894 
2895 	va = find_unlink_vmap_area(addr);
2896 	if (WARN_ON_ONCE(!va))
2897 		return;
2898 
2899 	debug_check_no_locks_freed((void *)va->va_start,
2900 				    (va->va_end - va->va_start));
2901 	free_unmap_vmap_area(va);
2902 }
2903 EXPORT_SYMBOL(vm_unmap_ram);
2904 
2905 /**
2906  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2907  * @pages: an array of pointers to the pages to be mapped
2908  * @count: number of pages
2909  * @node: prefer to allocate data structures on this node
2910  *
2911  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2912  * faster than vmap so it's good.  But if you mix long-life and short-life
2913  * objects with vm_map_ram(), it could consume lots of address space through
2914  * fragmentation (especially on a 32bit machine).  You could see failures in
2915  * the end.  Please use this function for short-lived objects.
2916  *
2917  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2918  */
2919 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2920 {
2921 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2922 	unsigned long addr;
2923 	void *mem;
2924 
2925 	if (likely(count <= VMAP_MAX_ALLOC)) {
2926 		mem = vb_alloc(size, GFP_KERNEL);
2927 		if (IS_ERR(mem))
2928 			return NULL;
2929 		addr = (unsigned long)mem;
2930 	} else {
2931 		struct vmap_area *va;
2932 		va = alloc_vmap_area(size, PAGE_SIZE,
2933 				VMALLOC_START, VMALLOC_END,
2934 				node, GFP_KERNEL, VMAP_RAM);
2935 		if (IS_ERR(va))
2936 			return NULL;
2937 
2938 		addr = va->va_start;
2939 		mem = (void *)addr;
2940 	}
2941 
2942 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2943 				pages, PAGE_SHIFT) < 0) {
2944 		vm_unmap_ram(mem, count);
2945 		return NULL;
2946 	}
2947 
2948 	/*
2949 	 * Mark the pages as accessible, now that they are mapped.
2950 	 * With hardware tag-based KASAN, marking is skipped for
2951 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2952 	 */
2953 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2954 
2955 	return mem;
2956 }
2957 EXPORT_SYMBOL(vm_map_ram);
2958 
2959 static struct vm_struct *vmlist __initdata;
2960 
2961 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2962 {
2963 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2964 	return vm->page_order;
2965 #else
2966 	return 0;
2967 #endif
2968 }
2969 
2970 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2971 {
2972 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2973 	vm->page_order = order;
2974 #else
2975 	BUG_ON(order != 0);
2976 #endif
2977 }
2978 
2979 /**
2980  * vm_area_add_early - add vmap area early during boot
2981  * @vm: vm_struct to add
2982  *
2983  * This function is used to add fixed kernel vm area to vmlist before
2984  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2985  * should contain proper values and the other fields should be zero.
2986  *
2987  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2988  */
2989 void __init vm_area_add_early(struct vm_struct *vm)
2990 {
2991 	struct vm_struct *tmp, **p;
2992 
2993 	BUG_ON(vmap_initialized);
2994 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2995 		if (tmp->addr >= vm->addr) {
2996 			BUG_ON(tmp->addr < vm->addr + vm->size);
2997 			break;
2998 		} else
2999 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3000 	}
3001 	vm->next = *p;
3002 	*p = vm;
3003 }
3004 
3005 /**
3006  * vm_area_register_early - register vmap area early during boot
3007  * @vm: vm_struct to register
3008  * @align: requested alignment
3009  *
3010  * This function is used to register kernel vm area before
3011  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3012  * proper values on entry and other fields should be zero.  On return,
3013  * vm->addr contains the allocated address.
3014  *
3015  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3016  */
3017 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3018 {
3019 	unsigned long addr = ALIGN(VMALLOC_START, align);
3020 	struct vm_struct *cur, **p;
3021 
3022 	BUG_ON(vmap_initialized);
3023 
3024 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3025 		if ((unsigned long)cur->addr - addr >= vm->size)
3026 			break;
3027 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3028 	}
3029 
3030 	BUG_ON(addr > VMALLOC_END - vm->size);
3031 	vm->addr = (void *)addr;
3032 	vm->next = *p;
3033 	*p = vm;
3034 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3035 }
3036 
3037 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
3038 	struct vmap_area *va, unsigned long flags, const void *caller)
3039 {
3040 	vm->flags = flags;
3041 	vm->addr = (void *)va->va_start;
3042 	vm->size = va->va_end - va->va_start;
3043 	vm->caller = caller;
3044 	va->vm = vm;
3045 }
3046 
3047 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
3048 			      unsigned long flags, const void *caller)
3049 {
3050 	struct vmap_node *vn = addr_to_node(va->va_start);
3051 
3052 	spin_lock(&vn->busy.lock);
3053 	setup_vmalloc_vm_locked(vm, va, flags, caller);
3054 	spin_unlock(&vn->busy.lock);
3055 }
3056 
3057 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3058 {
3059 	/*
3060 	 * Before removing VM_UNINITIALIZED,
3061 	 * we should make sure that vm has proper values.
3062 	 * Pair with smp_rmb() in show_numa_info().
3063 	 */
3064 	smp_wmb();
3065 	vm->flags &= ~VM_UNINITIALIZED;
3066 }
3067 
3068 static struct vm_struct *__get_vm_area_node(unsigned long size,
3069 		unsigned long align, unsigned long shift, unsigned long flags,
3070 		unsigned long start, unsigned long end, int node,
3071 		gfp_t gfp_mask, const void *caller)
3072 {
3073 	struct vmap_area *va;
3074 	struct vm_struct *area;
3075 	unsigned long requested_size = size;
3076 
3077 	BUG_ON(in_interrupt());
3078 	size = ALIGN(size, 1ul << shift);
3079 	if (unlikely(!size))
3080 		return NULL;
3081 
3082 	if (flags & VM_IOREMAP)
3083 		align = 1ul << clamp_t(int, get_count_order_long(size),
3084 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3085 
3086 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3087 	if (unlikely(!area))
3088 		return NULL;
3089 
3090 	if (!(flags & VM_NO_GUARD))
3091 		size += PAGE_SIZE;
3092 
3093 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
3094 	if (IS_ERR(va)) {
3095 		kfree(area);
3096 		return NULL;
3097 	}
3098 
3099 	setup_vmalloc_vm(area, va, flags, caller);
3100 
3101 	/*
3102 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3103 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3104 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3105 	 * getting mapped in __vmalloc_node_range().
3106 	 * With hardware tag-based KASAN, marking is skipped for
3107 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3108 	 */
3109 	if (!(flags & VM_ALLOC))
3110 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3111 						    KASAN_VMALLOC_PROT_NORMAL);
3112 
3113 	return area;
3114 }
3115 
3116 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3117 				       unsigned long start, unsigned long end,
3118 				       const void *caller)
3119 {
3120 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3121 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3122 }
3123 
3124 /**
3125  * get_vm_area - reserve a contiguous kernel virtual area
3126  * @size:	 size of the area
3127  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3128  *
3129  * Search an area of @size in the kernel virtual mapping area,
3130  * and reserved it for out purposes.  Returns the area descriptor
3131  * on success or %NULL on failure.
3132  *
3133  * Return: the area descriptor on success or %NULL on failure.
3134  */
3135 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3136 {
3137 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3138 				  VMALLOC_START, VMALLOC_END,
3139 				  NUMA_NO_NODE, GFP_KERNEL,
3140 				  __builtin_return_address(0));
3141 }
3142 
3143 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3144 				const void *caller)
3145 {
3146 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3147 				  VMALLOC_START, VMALLOC_END,
3148 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3149 }
3150 
3151 /**
3152  * find_vm_area - find a continuous kernel virtual area
3153  * @addr:	  base address
3154  *
3155  * Search for the kernel VM area starting at @addr, and return it.
3156  * It is up to the caller to do all required locking to keep the returned
3157  * pointer valid.
3158  *
3159  * Return: the area descriptor on success or %NULL on failure.
3160  */
3161 struct vm_struct *find_vm_area(const void *addr)
3162 {
3163 	struct vmap_area *va;
3164 
3165 	va = find_vmap_area((unsigned long)addr);
3166 	if (!va)
3167 		return NULL;
3168 
3169 	return va->vm;
3170 }
3171 
3172 /**
3173  * remove_vm_area - find and remove a continuous kernel virtual area
3174  * @addr:	    base address
3175  *
3176  * Search for the kernel VM area starting at @addr, and remove it.
3177  * This function returns the found VM area, but using it is NOT safe
3178  * on SMP machines, except for its size or flags.
3179  *
3180  * Return: the area descriptor on success or %NULL on failure.
3181  */
3182 struct vm_struct *remove_vm_area(const void *addr)
3183 {
3184 	struct vmap_area *va;
3185 	struct vm_struct *vm;
3186 
3187 	might_sleep();
3188 
3189 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3190 			addr))
3191 		return NULL;
3192 
3193 	va = find_unlink_vmap_area((unsigned long)addr);
3194 	if (!va || !va->vm)
3195 		return NULL;
3196 	vm = va->vm;
3197 
3198 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3199 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3200 	kasan_free_module_shadow(vm);
3201 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3202 
3203 	free_unmap_vmap_area(va);
3204 	return vm;
3205 }
3206 
3207 static inline void set_area_direct_map(const struct vm_struct *area,
3208 				       int (*set_direct_map)(struct page *page))
3209 {
3210 	int i;
3211 
3212 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3213 	for (i = 0; i < area->nr_pages; i++)
3214 		if (page_address(area->pages[i]))
3215 			set_direct_map(area->pages[i]);
3216 }
3217 
3218 /*
3219  * Flush the vm mapping and reset the direct map.
3220  */
3221 static void vm_reset_perms(struct vm_struct *area)
3222 {
3223 	unsigned long start = ULONG_MAX, end = 0;
3224 	unsigned int page_order = vm_area_page_order(area);
3225 	int flush_dmap = 0;
3226 	int i;
3227 
3228 	/*
3229 	 * Find the start and end range of the direct mappings to make sure that
3230 	 * the vm_unmap_aliases() flush includes the direct map.
3231 	 */
3232 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3233 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3234 
3235 		if (addr) {
3236 			unsigned long page_size;
3237 
3238 			page_size = PAGE_SIZE << page_order;
3239 			start = min(addr, start);
3240 			end = max(addr + page_size, end);
3241 			flush_dmap = 1;
3242 		}
3243 	}
3244 
3245 	/*
3246 	 * Set direct map to something invalid so that it won't be cached if
3247 	 * there are any accesses after the TLB flush, then flush the TLB and
3248 	 * reset the direct map permissions to the default.
3249 	 */
3250 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3251 	_vm_unmap_aliases(start, end, flush_dmap);
3252 	set_area_direct_map(area, set_direct_map_default_noflush);
3253 }
3254 
3255 static void delayed_vfree_work(struct work_struct *w)
3256 {
3257 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3258 	struct llist_node *t, *llnode;
3259 
3260 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3261 		vfree(llnode);
3262 }
3263 
3264 /**
3265  * vfree_atomic - release memory allocated by vmalloc()
3266  * @addr:	  memory base address
3267  *
3268  * This one is just like vfree() but can be called in any atomic context
3269  * except NMIs.
3270  */
3271 void vfree_atomic(const void *addr)
3272 {
3273 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3274 
3275 	BUG_ON(in_nmi());
3276 	kmemleak_free(addr);
3277 
3278 	/*
3279 	 * Use raw_cpu_ptr() because this can be called from preemptible
3280 	 * context. Preemption is absolutely fine here, because the llist_add()
3281 	 * implementation is lockless, so it works even if we are adding to
3282 	 * another cpu's list. schedule_work() should be fine with this too.
3283 	 */
3284 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3285 		schedule_work(&p->wq);
3286 }
3287 
3288 /**
3289  * vfree - Release memory allocated by vmalloc()
3290  * @addr:  Memory base address
3291  *
3292  * Free the virtually continuous memory area starting at @addr, as obtained
3293  * from one of the vmalloc() family of APIs.  This will usually also free the
3294  * physical memory underlying the virtual allocation, but that memory is
3295  * reference counted, so it will not be freed until the last user goes away.
3296  *
3297  * If @addr is NULL, no operation is performed.
3298  *
3299  * Context:
3300  * May sleep if called *not* from interrupt context.
3301  * Must not be called in NMI context (strictly speaking, it could be
3302  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3303  * conventions for vfree() arch-dependent would be a really bad idea).
3304  */
3305 void vfree(const void *addr)
3306 {
3307 	struct vm_struct *vm;
3308 	int i;
3309 
3310 	if (unlikely(in_interrupt())) {
3311 		vfree_atomic(addr);
3312 		return;
3313 	}
3314 
3315 	BUG_ON(in_nmi());
3316 	kmemleak_free(addr);
3317 	might_sleep();
3318 
3319 	if (!addr)
3320 		return;
3321 
3322 	vm = remove_vm_area(addr);
3323 	if (unlikely(!vm)) {
3324 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3325 				addr);
3326 		return;
3327 	}
3328 
3329 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3330 		vm_reset_perms(vm);
3331 	for (i = 0; i < vm->nr_pages; i++) {
3332 		struct page *page = vm->pages[i];
3333 
3334 		BUG_ON(!page);
3335 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3336 		/*
3337 		 * High-order allocs for huge vmallocs are split, so
3338 		 * can be freed as an array of order-0 allocations
3339 		 */
3340 		__free_page(page);
3341 		cond_resched();
3342 	}
3343 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3344 	kvfree(vm->pages);
3345 	kfree(vm);
3346 }
3347 EXPORT_SYMBOL(vfree);
3348 
3349 /**
3350  * vunmap - release virtual mapping obtained by vmap()
3351  * @addr:   memory base address
3352  *
3353  * Free the virtually contiguous memory area starting at @addr,
3354  * which was created from the page array passed to vmap().
3355  *
3356  * Must not be called in interrupt context.
3357  */
3358 void vunmap(const void *addr)
3359 {
3360 	struct vm_struct *vm;
3361 
3362 	BUG_ON(in_interrupt());
3363 	might_sleep();
3364 
3365 	if (!addr)
3366 		return;
3367 	vm = remove_vm_area(addr);
3368 	if (unlikely(!vm)) {
3369 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3370 				addr);
3371 		return;
3372 	}
3373 	kfree(vm);
3374 }
3375 EXPORT_SYMBOL(vunmap);
3376 
3377 /**
3378  * vmap - map an array of pages into virtually contiguous space
3379  * @pages: array of page pointers
3380  * @count: number of pages to map
3381  * @flags: vm_area->flags
3382  * @prot: page protection for the mapping
3383  *
3384  * Maps @count pages from @pages into contiguous kernel virtual space.
3385  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3386  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3387  * are transferred from the caller to vmap(), and will be freed / dropped when
3388  * vfree() is called on the return value.
3389  *
3390  * Return: the address of the area or %NULL on failure
3391  */
3392 void *vmap(struct page **pages, unsigned int count,
3393 	   unsigned long flags, pgprot_t prot)
3394 {
3395 	struct vm_struct *area;
3396 	unsigned long addr;
3397 	unsigned long size;		/* In bytes */
3398 
3399 	might_sleep();
3400 
3401 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3402 		return NULL;
3403 
3404 	/*
3405 	 * Your top guard is someone else's bottom guard. Not having a top
3406 	 * guard compromises someone else's mappings too.
3407 	 */
3408 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3409 		flags &= ~VM_NO_GUARD;
3410 
3411 	if (count > totalram_pages())
3412 		return NULL;
3413 
3414 	size = (unsigned long)count << PAGE_SHIFT;
3415 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3416 	if (!area)
3417 		return NULL;
3418 
3419 	addr = (unsigned long)area->addr;
3420 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3421 				pages, PAGE_SHIFT) < 0) {
3422 		vunmap(area->addr);
3423 		return NULL;
3424 	}
3425 
3426 	if (flags & VM_MAP_PUT_PAGES) {
3427 		area->pages = pages;
3428 		area->nr_pages = count;
3429 	}
3430 	return area->addr;
3431 }
3432 EXPORT_SYMBOL(vmap);
3433 
3434 #ifdef CONFIG_VMAP_PFN
3435 struct vmap_pfn_data {
3436 	unsigned long	*pfns;
3437 	pgprot_t	prot;
3438 	unsigned int	idx;
3439 };
3440 
3441 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3442 {
3443 	struct vmap_pfn_data *data = private;
3444 	unsigned long pfn = data->pfns[data->idx];
3445 	pte_t ptent;
3446 
3447 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3448 		return -EINVAL;
3449 
3450 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3451 	set_pte_at(&init_mm, addr, pte, ptent);
3452 
3453 	data->idx++;
3454 	return 0;
3455 }
3456 
3457 /**
3458  * vmap_pfn - map an array of PFNs into virtually contiguous space
3459  * @pfns: array of PFNs
3460  * @count: number of pages to map
3461  * @prot: page protection for the mapping
3462  *
3463  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3464  * the start address of the mapping.
3465  */
3466 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3467 {
3468 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3469 	struct vm_struct *area;
3470 
3471 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3472 			__builtin_return_address(0));
3473 	if (!area)
3474 		return NULL;
3475 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3476 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3477 		free_vm_area(area);
3478 		return NULL;
3479 	}
3480 
3481 	flush_cache_vmap((unsigned long)area->addr,
3482 			 (unsigned long)area->addr + count * PAGE_SIZE);
3483 
3484 	return area->addr;
3485 }
3486 EXPORT_SYMBOL_GPL(vmap_pfn);
3487 #endif /* CONFIG_VMAP_PFN */
3488 
3489 static inline unsigned int
3490 vm_area_alloc_pages(gfp_t gfp, int nid,
3491 		unsigned int order, unsigned int nr_pages, struct page **pages)
3492 {
3493 	unsigned int nr_allocated = 0;
3494 	gfp_t alloc_gfp = gfp;
3495 	bool nofail = false;
3496 	struct page *page;
3497 	int i;
3498 
3499 	/*
3500 	 * For order-0 pages we make use of bulk allocator, if
3501 	 * the page array is partly or not at all populated due
3502 	 * to fails, fallback to a single page allocator that is
3503 	 * more permissive.
3504 	 */
3505 	if (!order) {
3506 		/* bulk allocator doesn't support nofail req. officially */
3507 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3508 
3509 		while (nr_allocated < nr_pages) {
3510 			unsigned int nr, nr_pages_request;
3511 
3512 			/*
3513 			 * A maximum allowed request is hard-coded and is 100
3514 			 * pages per call. That is done in order to prevent a
3515 			 * long preemption off scenario in the bulk-allocator
3516 			 * so the range is [1:100].
3517 			 */
3518 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3519 
3520 			/* memory allocation should consider mempolicy, we can't
3521 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3522 			 * otherwise memory may be allocated in only one node,
3523 			 * but mempolicy wants to alloc memory by interleaving.
3524 			 */
3525 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3526 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3527 							nr_pages_request,
3528 							pages + nr_allocated);
3529 
3530 			else
3531 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3532 							nr_pages_request,
3533 							pages + nr_allocated);
3534 
3535 			nr_allocated += nr;
3536 			cond_resched();
3537 
3538 			/*
3539 			 * If zero or pages were obtained partly,
3540 			 * fallback to a single page allocator.
3541 			 */
3542 			if (nr != nr_pages_request)
3543 				break;
3544 		}
3545 	} else if (gfp & __GFP_NOFAIL) {
3546 		/*
3547 		 * Higher order nofail allocations are really expensive and
3548 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3549 		 * and compaction etc.
3550 		 */
3551 		alloc_gfp &= ~__GFP_NOFAIL;
3552 		nofail = true;
3553 	}
3554 
3555 	/* High-order pages or fallback path if "bulk" fails. */
3556 	while (nr_allocated < nr_pages) {
3557 		if (fatal_signal_pending(current))
3558 			break;
3559 
3560 		if (nid == NUMA_NO_NODE)
3561 			page = alloc_pages(alloc_gfp, order);
3562 		else
3563 			page = alloc_pages_node(nid, alloc_gfp, order);
3564 		if (unlikely(!page)) {
3565 			if (!nofail)
3566 				break;
3567 
3568 			/* fall back to the zero order allocations */
3569 			alloc_gfp |= __GFP_NOFAIL;
3570 			order = 0;
3571 			continue;
3572 		}
3573 
3574 		/*
3575 		 * Higher order allocations must be able to be treated as
3576 		 * indepdenent small pages by callers (as they can with
3577 		 * small-page vmallocs). Some drivers do their own refcounting
3578 		 * on vmalloc_to_page() pages, some use page->mapping,
3579 		 * page->lru, etc.
3580 		 */
3581 		if (order)
3582 			split_page(page, order);
3583 
3584 		/*
3585 		 * Careful, we allocate and map page-order pages, but
3586 		 * tracking is done per PAGE_SIZE page so as to keep the
3587 		 * vm_struct APIs independent of the physical/mapped size.
3588 		 */
3589 		for (i = 0; i < (1U << order); i++)
3590 			pages[nr_allocated + i] = page + i;
3591 
3592 		cond_resched();
3593 		nr_allocated += 1U << order;
3594 	}
3595 
3596 	return nr_allocated;
3597 }
3598 
3599 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3600 				 pgprot_t prot, unsigned int page_shift,
3601 				 int node)
3602 {
3603 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3604 	bool nofail = gfp_mask & __GFP_NOFAIL;
3605 	unsigned long addr = (unsigned long)area->addr;
3606 	unsigned long size = get_vm_area_size(area);
3607 	unsigned long array_size;
3608 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3609 	unsigned int page_order;
3610 	unsigned int flags;
3611 	int ret;
3612 
3613 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3614 
3615 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3616 		gfp_mask |= __GFP_HIGHMEM;
3617 
3618 	/* Please note that the recursion is strictly bounded. */
3619 	if (array_size > PAGE_SIZE) {
3620 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3621 					area->caller);
3622 	} else {
3623 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3624 	}
3625 
3626 	if (!area->pages) {
3627 		warn_alloc(gfp_mask, NULL,
3628 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3629 			nr_small_pages * PAGE_SIZE, array_size);
3630 		free_vm_area(area);
3631 		return NULL;
3632 	}
3633 
3634 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3635 	page_order = vm_area_page_order(area);
3636 
3637 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3638 		node, page_order, nr_small_pages, area->pages);
3639 
3640 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3641 	if (gfp_mask & __GFP_ACCOUNT) {
3642 		int i;
3643 
3644 		for (i = 0; i < area->nr_pages; i++)
3645 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3646 	}
3647 
3648 	/*
3649 	 * If not enough pages were obtained to accomplish an
3650 	 * allocation request, free them via vfree() if any.
3651 	 */
3652 	if (area->nr_pages != nr_small_pages) {
3653 		/*
3654 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3655 		 * also:-
3656 		 *
3657 		 * - a pending fatal signal
3658 		 * - insufficient huge page-order pages
3659 		 *
3660 		 * Since we always retry allocations at order-0 in the huge page
3661 		 * case a warning for either is spurious.
3662 		 */
3663 		if (!fatal_signal_pending(current) && page_order == 0)
3664 			warn_alloc(gfp_mask, NULL,
3665 				"vmalloc error: size %lu, failed to allocate pages",
3666 				area->nr_pages * PAGE_SIZE);
3667 		goto fail;
3668 	}
3669 
3670 	/*
3671 	 * page tables allocations ignore external gfp mask, enforce it
3672 	 * by the scope API
3673 	 */
3674 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3675 		flags = memalloc_nofs_save();
3676 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3677 		flags = memalloc_noio_save();
3678 
3679 	do {
3680 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3681 			page_shift);
3682 		if (nofail && (ret < 0))
3683 			schedule_timeout_uninterruptible(1);
3684 	} while (nofail && (ret < 0));
3685 
3686 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3687 		memalloc_nofs_restore(flags);
3688 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3689 		memalloc_noio_restore(flags);
3690 
3691 	if (ret < 0) {
3692 		warn_alloc(gfp_mask, NULL,
3693 			"vmalloc error: size %lu, failed to map pages",
3694 			area->nr_pages * PAGE_SIZE);
3695 		goto fail;
3696 	}
3697 
3698 	return area->addr;
3699 
3700 fail:
3701 	vfree(area->addr);
3702 	return NULL;
3703 }
3704 
3705 /**
3706  * __vmalloc_node_range - allocate virtually contiguous memory
3707  * @size:		  allocation size
3708  * @align:		  desired alignment
3709  * @start:		  vm area range start
3710  * @end:		  vm area range end
3711  * @gfp_mask:		  flags for the page level allocator
3712  * @prot:		  protection mask for the allocated pages
3713  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3714  * @node:		  node to use for allocation or NUMA_NO_NODE
3715  * @caller:		  caller's return address
3716  *
3717  * Allocate enough pages to cover @size from the page level
3718  * allocator with @gfp_mask flags. Please note that the full set of gfp
3719  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3720  * supported.
3721  * Zone modifiers are not supported. From the reclaim modifiers
3722  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3723  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3724  * __GFP_RETRY_MAYFAIL are not supported).
3725  *
3726  * __GFP_NOWARN can be used to suppress failures messages.
3727  *
3728  * Map them into contiguous kernel virtual space, using a pagetable
3729  * protection of @prot.
3730  *
3731  * Return: the address of the area or %NULL on failure
3732  */
3733 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3734 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3735 			pgprot_t prot, unsigned long vm_flags, int node,
3736 			const void *caller)
3737 {
3738 	struct vm_struct *area;
3739 	void *ret;
3740 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3741 	unsigned long real_size = size;
3742 	unsigned long real_align = align;
3743 	unsigned int shift = PAGE_SHIFT;
3744 
3745 	if (WARN_ON_ONCE(!size))
3746 		return NULL;
3747 
3748 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3749 		warn_alloc(gfp_mask, NULL,
3750 			"vmalloc error: size %lu, exceeds total pages",
3751 			real_size);
3752 		return NULL;
3753 	}
3754 
3755 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3756 		unsigned long size_per_node;
3757 
3758 		/*
3759 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3760 		 * others like modules don't yet expect huge pages in
3761 		 * their allocations due to apply_to_page_range not
3762 		 * supporting them.
3763 		 */
3764 
3765 		size_per_node = size;
3766 		if (node == NUMA_NO_NODE)
3767 			size_per_node /= num_online_nodes();
3768 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3769 			shift = PMD_SHIFT;
3770 		else
3771 			shift = arch_vmap_pte_supported_shift(size_per_node);
3772 
3773 		align = max(real_align, 1UL << shift);
3774 		size = ALIGN(real_size, 1UL << shift);
3775 	}
3776 
3777 again:
3778 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3779 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3780 				  gfp_mask, caller);
3781 	if (!area) {
3782 		bool nofail = gfp_mask & __GFP_NOFAIL;
3783 		warn_alloc(gfp_mask, NULL,
3784 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3785 			real_size, (nofail) ? ". Retrying." : "");
3786 		if (nofail) {
3787 			schedule_timeout_uninterruptible(1);
3788 			goto again;
3789 		}
3790 		goto fail;
3791 	}
3792 
3793 	/*
3794 	 * Prepare arguments for __vmalloc_area_node() and
3795 	 * kasan_unpoison_vmalloc().
3796 	 */
3797 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3798 		if (kasan_hw_tags_enabled()) {
3799 			/*
3800 			 * Modify protection bits to allow tagging.
3801 			 * This must be done before mapping.
3802 			 */
3803 			prot = arch_vmap_pgprot_tagged(prot);
3804 
3805 			/*
3806 			 * Skip page_alloc poisoning and zeroing for physical
3807 			 * pages backing VM_ALLOC mapping. Memory is instead
3808 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3809 			 */
3810 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3811 		}
3812 
3813 		/* Take note that the mapping is PAGE_KERNEL. */
3814 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3815 	}
3816 
3817 	/* Allocate physical pages and map them into vmalloc space. */
3818 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3819 	if (!ret)
3820 		goto fail;
3821 
3822 	/*
3823 	 * Mark the pages as accessible, now that they are mapped.
3824 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3825 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3826 	 * to make sure that memory is initialized under the same conditions.
3827 	 * Tag-based KASAN modes only assign tags to normal non-executable
3828 	 * allocations, see __kasan_unpoison_vmalloc().
3829 	 */
3830 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3831 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3832 	    (gfp_mask & __GFP_SKIP_ZERO))
3833 		kasan_flags |= KASAN_VMALLOC_INIT;
3834 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3835 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3836 
3837 	/*
3838 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3839 	 * flag. It means that vm_struct is not fully initialized.
3840 	 * Now, it is fully initialized, so remove this flag here.
3841 	 */
3842 	clear_vm_uninitialized_flag(area);
3843 
3844 	size = PAGE_ALIGN(size);
3845 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3846 		kmemleak_vmalloc(area, size, gfp_mask);
3847 
3848 	return area->addr;
3849 
3850 fail:
3851 	if (shift > PAGE_SHIFT) {
3852 		shift = PAGE_SHIFT;
3853 		align = real_align;
3854 		size = real_size;
3855 		goto again;
3856 	}
3857 
3858 	return NULL;
3859 }
3860 
3861 /**
3862  * __vmalloc_node - allocate virtually contiguous memory
3863  * @size:	    allocation size
3864  * @align:	    desired alignment
3865  * @gfp_mask:	    flags for the page level allocator
3866  * @node:	    node to use for allocation or NUMA_NO_NODE
3867  * @caller:	    caller's return address
3868  *
3869  * Allocate enough pages to cover @size from the page level allocator with
3870  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3871  *
3872  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3873  * and __GFP_NOFAIL are not supported
3874  *
3875  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3876  * with mm people.
3877  *
3878  * Return: pointer to the allocated memory or %NULL on error
3879  */
3880 void *__vmalloc_node(unsigned long size, unsigned long align,
3881 			    gfp_t gfp_mask, int node, const void *caller)
3882 {
3883 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3884 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3885 }
3886 /*
3887  * This is only for performance analysis of vmalloc and stress purpose.
3888  * It is required by vmalloc test module, therefore do not use it other
3889  * than that.
3890  */
3891 #ifdef CONFIG_TEST_VMALLOC_MODULE
3892 EXPORT_SYMBOL_GPL(__vmalloc_node);
3893 #endif
3894 
3895 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3896 {
3897 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3898 				__builtin_return_address(0));
3899 }
3900 EXPORT_SYMBOL(__vmalloc);
3901 
3902 /**
3903  * vmalloc - allocate virtually contiguous memory
3904  * @size:    allocation size
3905  *
3906  * Allocate enough pages to cover @size from the page level
3907  * allocator and map them into contiguous kernel virtual space.
3908  *
3909  * For tight control over page level allocator and protection flags
3910  * use __vmalloc() instead.
3911  *
3912  * Return: pointer to the allocated memory or %NULL on error
3913  */
3914 void *vmalloc(unsigned long size)
3915 {
3916 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3917 				__builtin_return_address(0));
3918 }
3919 EXPORT_SYMBOL(vmalloc);
3920 
3921 /**
3922  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3923  * @size:      allocation size
3924  * @gfp_mask:  flags for the page level allocator
3925  *
3926  * Allocate enough pages to cover @size from the page level
3927  * allocator and map them into contiguous kernel virtual space.
3928  * If @size is greater than or equal to PMD_SIZE, allow using
3929  * huge pages for the memory
3930  *
3931  * Return: pointer to the allocated memory or %NULL on error
3932  */
3933 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3934 {
3935 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3936 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3937 				    NUMA_NO_NODE, __builtin_return_address(0));
3938 }
3939 EXPORT_SYMBOL_GPL(vmalloc_huge);
3940 
3941 /**
3942  * vzalloc - allocate virtually contiguous memory with zero fill
3943  * @size:    allocation size
3944  *
3945  * Allocate enough pages to cover @size from the page level
3946  * allocator and map them into contiguous kernel virtual space.
3947  * The memory allocated is set to zero.
3948  *
3949  * For tight control over page level allocator and protection flags
3950  * use __vmalloc() instead.
3951  *
3952  * Return: pointer to the allocated memory or %NULL on error
3953  */
3954 void *vzalloc(unsigned long size)
3955 {
3956 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3957 				__builtin_return_address(0));
3958 }
3959 EXPORT_SYMBOL(vzalloc);
3960 
3961 /**
3962  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3963  * @size: allocation size
3964  *
3965  * The resulting memory area is zeroed so it can be mapped to userspace
3966  * without leaking data.
3967  *
3968  * Return: pointer to the allocated memory or %NULL on error
3969  */
3970 void *vmalloc_user(unsigned long size)
3971 {
3972 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3973 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3974 				    VM_USERMAP, NUMA_NO_NODE,
3975 				    __builtin_return_address(0));
3976 }
3977 EXPORT_SYMBOL(vmalloc_user);
3978 
3979 /**
3980  * vmalloc_node - allocate memory on a specific node
3981  * @size:	  allocation size
3982  * @node:	  numa node
3983  *
3984  * Allocate enough pages to cover @size from the page level
3985  * allocator and map them into contiguous kernel virtual space.
3986  *
3987  * For tight control over page level allocator and protection flags
3988  * use __vmalloc() instead.
3989  *
3990  * Return: pointer to the allocated memory or %NULL on error
3991  */
3992 void *vmalloc_node(unsigned long size, int node)
3993 {
3994 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3995 			__builtin_return_address(0));
3996 }
3997 EXPORT_SYMBOL(vmalloc_node);
3998 
3999 /**
4000  * vzalloc_node - allocate memory on a specific node with zero fill
4001  * @size:	allocation size
4002  * @node:	numa node
4003  *
4004  * Allocate enough pages to cover @size from the page level
4005  * allocator and map them into contiguous kernel virtual space.
4006  * The memory allocated is set to zero.
4007  *
4008  * Return: pointer to the allocated memory or %NULL on error
4009  */
4010 void *vzalloc_node(unsigned long size, int node)
4011 {
4012 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4013 				__builtin_return_address(0));
4014 }
4015 EXPORT_SYMBOL(vzalloc_node);
4016 
4017 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4018 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4019 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4020 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4021 #else
4022 /*
4023  * 64b systems should always have either DMA or DMA32 zones. For others
4024  * GFP_DMA32 should do the right thing and use the normal zone.
4025  */
4026 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4027 #endif
4028 
4029 /**
4030  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4031  * @size:	allocation size
4032  *
4033  * Allocate enough 32bit PA addressable pages to cover @size from the
4034  * page level allocator and map them into contiguous kernel virtual space.
4035  *
4036  * Return: pointer to the allocated memory or %NULL on error
4037  */
4038 void *vmalloc_32(unsigned long size)
4039 {
4040 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4041 			__builtin_return_address(0));
4042 }
4043 EXPORT_SYMBOL(vmalloc_32);
4044 
4045 /**
4046  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4047  * @size:	     allocation size
4048  *
4049  * The resulting memory area is 32bit addressable and zeroed so it can be
4050  * mapped to userspace without leaking data.
4051  *
4052  * Return: pointer to the allocated memory or %NULL on error
4053  */
4054 void *vmalloc_32_user(unsigned long size)
4055 {
4056 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4057 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4058 				    VM_USERMAP, NUMA_NO_NODE,
4059 				    __builtin_return_address(0));
4060 }
4061 EXPORT_SYMBOL(vmalloc_32_user);
4062 
4063 /*
4064  * Atomically zero bytes in the iterator.
4065  *
4066  * Returns the number of zeroed bytes.
4067  */
4068 static size_t zero_iter(struct iov_iter *iter, size_t count)
4069 {
4070 	size_t remains = count;
4071 
4072 	while (remains > 0) {
4073 		size_t num, copied;
4074 
4075 		num = min_t(size_t, remains, PAGE_SIZE);
4076 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4077 		remains -= copied;
4078 
4079 		if (copied < num)
4080 			break;
4081 	}
4082 
4083 	return count - remains;
4084 }
4085 
4086 /*
4087  * small helper routine, copy contents to iter from addr.
4088  * If the page is not present, fill zero.
4089  *
4090  * Returns the number of copied bytes.
4091  */
4092 static size_t aligned_vread_iter(struct iov_iter *iter,
4093 				 const char *addr, size_t count)
4094 {
4095 	size_t remains = count;
4096 	struct page *page;
4097 
4098 	while (remains > 0) {
4099 		unsigned long offset, length;
4100 		size_t copied = 0;
4101 
4102 		offset = offset_in_page(addr);
4103 		length = PAGE_SIZE - offset;
4104 		if (length > remains)
4105 			length = remains;
4106 		page = vmalloc_to_page(addr);
4107 		/*
4108 		 * To do safe access to this _mapped_ area, we need lock. But
4109 		 * adding lock here means that we need to add overhead of
4110 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4111 		 * used. Instead of that, we'll use an local mapping via
4112 		 * copy_page_to_iter_nofault() and accept a small overhead in
4113 		 * this access function.
4114 		 */
4115 		if (page)
4116 			copied = copy_page_to_iter_nofault(page, offset,
4117 							   length, iter);
4118 		else
4119 			copied = zero_iter(iter, length);
4120 
4121 		addr += copied;
4122 		remains -= copied;
4123 
4124 		if (copied != length)
4125 			break;
4126 	}
4127 
4128 	return count - remains;
4129 }
4130 
4131 /*
4132  * Read from a vm_map_ram region of memory.
4133  *
4134  * Returns the number of copied bytes.
4135  */
4136 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4137 				  size_t count, unsigned long flags)
4138 {
4139 	char *start;
4140 	struct vmap_block *vb;
4141 	struct xarray *xa;
4142 	unsigned long offset;
4143 	unsigned int rs, re;
4144 	size_t remains, n;
4145 
4146 	/*
4147 	 * If it's area created by vm_map_ram() interface directly, but
4148 	 * not further subdividing and delegating management to vmap_block,
4149 	 * handle it here.
4150 	 */
4151 	if (!(flags & VMAP_BLOCK))
4152 		return aligned_vread_iter(iter, addr, count);
4153 
4154 	remains = count;
4155 
4156 	/*
4157 	 * Area is split into regions and tracked with vmap_block, read out
4158 	 * each region and zero fill the hole between regions.
4159 	 */
4160 	xa = addr_to_vb_xa((unsigned long) addr);
4161 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4162 	if (!vb)
4163 		goto finished_zero;
4164 
4165 	spin_lock(&vb->lock);
4166 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4167 		spin_unlock(&vb->lock);
4168 		goto finished_zero;
4169 	}
4170 
4171 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4172 		size_t copied;
4173 
4174 		if (remains == 0)
4175 			goto finished;
4176 
4177 		start = vmap_block_vaddr(vb->va->va_start, rs);
4178 
4179 		if (addr < start) {
4180 			size_t to_zero = min_t(size_t, start - addr, remains);
4181 			size_t zeroed = zero_iter(iter, to_zero);
4182 
4183 			addr += zeroed;
4184 			remains -= zeroed;
4185 
4186 			if (remains == 0 || zeroed != to_zero)
4187 				goto finished;
4188 		}
4189 
4190 		/*it could start reading from the middle of used region*/
4191 		offset = offset_in_page(addr);
4192 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4193 		if (n > remains)
4194 			n = remains;
4195 
4196 		copied = aligned_vread_iter(iter, start + offset, n);
4197 
4198 		addr += copied;
4199 		remains -= copied;
4200 
4201 		if (copied != n)
4202 			goto finished;
4203 	}
4204 
4205 	spin_unlock(&vb->lock);
4206 
4207 finished_zero:
4208 	/* zero-fill the left dirty or free regions */
4209 	return count - remains + zero_iter(iter, remains);
4210 finished:
4211 	/* We couldn't copy/zero everything */
4212 	spin_unlock(&vb->lock);
4213 	return count - remains;
4214 }
4215 
4216 /**
4217  * vread_iter() - read vmalloc area in a safe way to an iterator.
4218  * @iter:         the iterator to which data should be written.
4219  * @addr:         vm address.
4220  * @count:        number of bytes to be read.
4221  *
4222  * This function checks that addr is a valid vmalloc'ed area, and
4223  * copy data from that area to a given buffer. If the given memory range
4224  * of [addr...addr+count) includes some valid address, data is copied to
4225  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4226  * IOREMAP area is treated as memory hole and no copy is done.
4227  *
4228  * If [addr...addr+count) doesn't includes any intersects with alive
4229  * vm_struct area, returns 0. @buf should be kernel's buffer.
4230  *
4231  * Note: In usual ops, vread() is never necessary because the caller
4232  * should know vmalloc() area is valid and can use memcpy().
4233  * This is for routines which have to access vmalloc area without
4234  * any information, as /proc/kcore.
4235  *
4236  * Return: number of bytes for which addr and buf should be increased
4237  * (same number as @count) or %0 if [addr...addr+count) doesn't
4238  * include any intersection with valid vmalloc area
4239  */
4240 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4241 {
4242 	struct vmap_node *vn;
4243 	struct vmap_area *va;
4244 	struct vm_struct *vm;
4245 	char *vaddr;
4246 	size_t n, size, flags, remains;
4247 	unsigned long next;
4248 
4249 	addr = kasan_reset_tag(addr);
4250 
4251 	/* Don't allow overflow */
4252 	if ((unsigned long) addr + count < count)
4253 		count = -(unsigned long) addr;
4254 
4255 	remains = count;
4256 
4257 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4258 	if (!vn)
4259 		goto finished_zero;
4260 
4261 	/* no intersects with alive vmap_area */
4262 	if ((unsigned long)addr + remains <= va->va_start)
4263 		goto finished_zero;
4264 
4265 	do {
4266 		size_t copied;
4267 
4268 		if (remains == 0)
4269 			goto finished;
4270 
4271 		vm = va->vm;
4272 		flags = va->flags & VMAP_FLAGS_MASK;
4273 		/*
4274 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4275 		 * be set together with VMAP_RAM.
4276 		 */
4277 		WARN_ON(flags == VMAP_BLOCK);
4278 
4279 		if (!vm && !flags)
4280 			goto next_va;
4281 
4282 		if (vm && (vm->flags & VM_UNINITIALIZED))
4283 			goto next_va;
4284 
4285 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4286 		smp_rmb();
4287 
4288 		vaddr = (char *) va->va_start;
4289 		size = vm ? get_vm_area_size(vm) : va_size(va);
4290 
4291 		if (addr >= vaddr + size)
4292 			goto next_va;
4293 
4294 		if (addr < vaddr) {
4295 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4296 			size_t zeroed = zero_iter(iter, to_zero);
4297 
4298 			addr += zeroed;
4299 			remains -= zeroed;
4300 
4301 			if (remains == 0 || zeroed != to_zero)
4302 				goto finished;
4303 		}
4304 
4305 		n = vaddr + size - addr;
4306 		if (n > remains)
4307 			n = remains;
4308 
4309 		if (flags & VMAP_RAM)
4310 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4311 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4312 			copied = aligned_vread_iter(iter, addr, n);
4313 		else /* IOREMAP | SPARSE area is treated as memory hole */
4314 			copied = zero_iter(iter, n);
4315 
4316 		addr += copied;
4317 		remains -= copied;
4318 
4319 		if (copied != n)
4320 			goto finished;
4321 
4322 	next_va:
4323 		next = va->va_end;
4324 		spin_unlock(&vn->busy.lock);
4325 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4326 
4327 finished_zero:
4328 	if (vn)
4329 		spin_unlock(&vn->busy.lock);
4330 
4331 	/* zero-fill memory holes */
4332 	return count - remains + zero_iter(iter, remains);
4333 finished:
4334 	/* Nothing remains, or We couldn't copy/zero everything. */
4335 	if (vn)
4336 		spin_unlock(&vn->busy.lock);
4337 
4338 	return count - remains;
4339 }
4340 
4341 /**
4342  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4343  * @vma:		vma to cover
4344  * @uaddr:		target user address to start at
4345  * @kaddr:		virtual address of vmalloc kernel memory
4346  * @pgoff:		offset from @kaddr to start at
4347  * @size:		size of map area
4348  *
4349  * Returns:	0 for success, -Exxx on failure
4350  *
4351  * This function checks that @kaddr is a valid vmalloc'ed area,
4352  * and that it is big enough to cover the range starting at
4353  * @uaddr in @vma. Will return failure if that criteria isn't
4354  * met.
4355  *
4356  * Similar to remap_pfn_range() (see mm/memory.c)
4357  */
4358 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4359 				void *kaddr, unsigned long pgoff,
4360 				unsigned long size)
4361 {
4362 	struct vm_struct *area;
4363 	unsigned long off;
4364 	unsigned long end_index;
4365 
4366 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4367 		return -EINVAL;
4368 
4369 	size = PAGE_ALIGN(size);
4370 
4371 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4372 		return -EINVAL;
4373 
4374 	area = find_vm_area(kaddr);
4375 	if (!area)
4376 		return -EINVAL;
4377 
4378 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4379 		return -EINVAL;
4380 
4381 	if (check_add_overflow(size, off, &end_index) ||
4382 	    end_index > get_vm_area_size(area))
4383 		return -EINVAL;
4384 	kaddr += off;
4385 
4386 	do {
4387 		struct page *page = vmalloc_to_page(kaddr);
4388 		int ret;
4389 
4390 		ret = vm_insert_page(vma, uaddr, page);
4391 		if (ret)
4392 			return ret;
4393 
4394 		uaddr += PAGE_SIZE;
4395 		kaddr += PAGE_SIZE;
4396 		size -= PAGE_SIZE;
4397 	} while (size > 0);
4398 
4399 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4400 
4401 	return 0;
4402 }
4403 
4404 /**
4405  * remap_vmalloc_range - map vmalloc pages to userspace
4406  * @vma:		vma to cover (map full range of vma)
4407  * @addr:		vmalloc memory
4408  * @pgoff:		number of pages into addr before first page to map
4409  *
4410  * Returns:	0 for success, -Exxx on failure
4411  *
4412  * This function checks that addr is a valid vmalloc'ed area, and
4413  * that it is big enough to cover the vma. Will return failure if
4414  * that criteria isn't met.
4415  *
4416  * Similar to remap_pfn_range() (see mm/memory.c)
4417  */
4418 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4419 						unsigned long pgoff)
4420 {
4421 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4422 					   addr, pgoff,
4423 					   vma->vm_end - vma->vm_start);
4424 }
4425 EXPORT_SYMBOL(remap_vmalloc_range);
4426 
4427 void free_vm_area(struct vm_struct *area)
4428 {
4429 	struct vm_struct *ret;
4430 	ret = remove_vm_area(area->addr);
4431 	BUG_ON(ret != area);
4432 	kfree(area);
4433 }
4434 EXPORT_SYMBOL_GPL(free_vm_area);
4435 
4436 #ifdef CONFIG_SMP
4437 static struct vmap_area *node_to_va(struct rb_node *n)
4438 {
4439 	return rb_entry_safe(n, struct vmap_area, rb_node);
4440 }
4441 
4442 /**
4443  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4444  * @addr: target address
4445  *
4446  * Returns: vmap_area if it is found. If there is no such area
4447  *   the first highest(reverse order) vmap_area is returned
4448  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4449  *   if there are no any areas before @addr.
4450  */
4451 static struct vmap_area *
4452 pvm_find_va_enclose_addr(unsigned long addr)
4453 {
4454 	struct vmap_area *va, *tmp;
4455 	struct rb_node *n;
4456 
4457 	n = free_vmap_area_root.rb_node;
4458 	va = NULL;
4459 
4460 	while (n) {
4461 		tmp = rb_entry(n, struct vmap_area, rb_node);
4462 		if (tmp->va_start <= addr) {
4463 			va = tmp;
4464 			if (tmp->va_end >= addr)
4465 				break;
4466 
4467 			n = n->rb_right;
4468 		} else {
4469 			n = n->rb_left;
4470 		}
4471 	}
4472 
4473 	return va;
4474 }
4475 
4476 /**
4477  * pvm_determine_end_from_reverse - find the highest aligned address
4478  * of free block below VMALLOC_END
4479  * @va:
4480  *   in - the VA we start the search(reverse order);
4481  *   out - the VA with the highest aligned end address.
4482  * @align: alignment for required highest address
4483  *
4484  * Returns: determined end address within vmap_area
4485  */
4486 static unsigned long
4487 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4488 {
4489 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4490 	unsigned long addr;
4491 
4492 	if (likely(*va)) {
4493 		list_for_each_entry_from_reverse((*va),
4494 				&free_vmap_area_list, list) {
4495 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4496 			if ((*va)->va_start < addr)
4497 				return addr;
4498 		}
4499 	}
4500 
4501 	return 0;
4502 }
4503 
4504 /**
4505  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4506  * @offsets: array containing offset of each area
4507  * @sizes: array containing size of each area
4508  * @nr_vms: the number of areas to allocate
4509  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4510  *
4511  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4512  *	    vm_structs on success, %NULL on failure
4513  *
4514  * Percpu allocator wants to use congruent vm areas so that it can
4515  * maintain the offsets among percpu areas.  This function allocates
4516  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4517  * be scattered pretty far, distance between two areas easily going up
4518  * to gigabytes.  To avoid interacting with regular vmallocs, these
4519  * areas are allocated from top.
4520  *
4521  * Despite its complicated look, this allocator is rather simple. It
4522  * does everything top-down and scans free blocks from the end looking
4523  * for matching base. While scanning, if any of the areas do not fit the
4524  * base address is pulled down to fit the area. Scanning is repeated till
4525  * all the areas fit and then all necessary data structures are inserted
4526  * and the result is returned.
4527  */
4528 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4529 				     const size_t *sizes, int nr_vms,
4530 				     size_t align)
4531 {
4532 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4533 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4534 	struct vmap_area **vas, *va;
4535 	struct vm_struct **vms;
4536 	int area, area2, last_area, term_area;
4537 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4538 	bool purged = false;
4539 
4540 	/* verify parameters and allocate data structures */
4541 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4542 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4543 		start = offsets[area];
4544 		end = start + sizes[area];
4545 
4546 		/* is everything aligned properly? */
4547 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4548 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4549 
4550 		/* detect the area with the highest address */
4551 		if (start > offsets[last_area])
4552 			last_area = area;
4553 
4554 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4555 			unsigned long start2 = offsets[area2];
4556 			unsigned long end2 = start2 + sizes[area2];
4557 
4558 			BUG_ON(start2 < end && start < end2);
4559 		}
4560 	}
4561 	last_end = offsets[last_area] + sizes[last_area];
4562 
4563 	if (vmalloc_end - vmalloc_start < last_end) {
4564 		WARN_ON(true);
4565 		return NULL;
4566 	}
4567 
4568 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4569 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4570 	if (!vas || !vms)
4571 		goto err_free2;
4572 
4573 	for (area = 0; area < nr_vms; area++) {
4574 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4575 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4576 		if (!vas[area] || !vms[area])
4577 			goto err_free;
4578 	}
4579 retry:
4580 	spin_lock(&free_vmap_area_lock);
4581 
4582 	/* start scanning - we scan from the top, begin with the last area */
4583 	area = term_area = last_area;
4584 	start = offsets[area];
4585 	end = start + sizes[area];
4586 
4587 	va = pvm_find_va_enclose_addr(vmalloc_end);
4588 	base = pvm_determine_end_from_reverse(&va, align) - end;
4589 
4590 	while (true) {
4591 		/*
4592 		 * base might have underflowed, add last_end before
4593 		 * comparing.
4594 		 */
4595 		if (base + last_end < vmalloc_start + last_end)
4596 			goto overflow;
4597 
4598 		/*
4599 		 * Fitting base has not been found.
4600 		 */
4601 		if (va == NULL)
4602 			goto overflow;
4603 
4604 		/*
4605 		 * If required width exceeds current VA block, move
4606 		 * base downwards and then recheck.
4607 		 */
4608 		if (base + end > va->va_end) {
4609 			base = pvm_determine_end_from_reverse(&va, align) - end;
4610 			term_area = area;
4611 			continue;
4612 		}
4613 
4614 		/*
4615 		 * If this VA does not fit, move base downwards and recheck.
4616 		 */
4617 		if (base + start < va->va_start) {
4618 			va = node_to_va(rb_prev(&va->rb_node));
4619 			base = pvm_determine_end_from_reverse(&va, align) - end;
4620 			term_area = area;
4621 			continue;
4622 		}
4623 
4624 		/*
4625 		 * This area fits, move on to the previous one.  If
4626 		 * the previous one is the terminal one, we're done.
4627 		 */
4628 		area = (area + nr_vms - 1) % nr_vms;
4629 		if (area == term_area)
4630 			break;
4631 
4632 		start = offsets[area];
4633 		end = start + sizes[area];
4634 		va = pvm_find_va_enclose_addr(base + end);
4635 	}
4636 
4637 	/* we've found a fitting base, insert all va's */
4638 	for (area = 0; area < nr_vms; area++) {
4639 		int ret;
4640 
4641 		start = base + offsets[area];
4642 		size = sizes[area];
4643 
4644 		va = pvm_find_va_enclose_addr(start);
4645 		if (WARN_ON_ONCE(va == NULL))
4646 			/* It is a BUG(), but trigger recovery instead. */
4647 			goto recovery;
4648 
4649 		ret = va_clip(&free_vmap_area_root,
4650 			&free_vmap_area_list, va, start, size);
4651 		if (WARN_ON_ONCE(unlikely(ret)))
4652 			/* It is a BUG(), but trigger recovery instead. */
4653 			goto recovery;
4654 
4655 		/* Allocated area. */
4656 		va = vas[area];
4657 		va->va_start = start;
4658 		va->va_end = start + size;
4659 	}
4660 
4661 	spin_unlock(&free_vmap_area_lock);
4662 
4663 	/* populate the kasan shadow space */
4664 	for (area = 0; area < nr_vms; area++) {
4665 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4666 			goto err_free_shadow;
4667 	}
4668 
4669 	/* insert all vm's */
4670 	for (area = 0; area < nr_vms; area++) {
4671 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4672 
4673 		spin_lock(&vn->busy.lock);
4674 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4675 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4676 				 pcpu_get_vm_areas);
4677 		spin_unlock(&vn->busy.lock);
4678 	}
4679 
4680 	/*
4681 	 * Mark allocated areas as accessible. Do it now as a best-effort
4682 	 * approach, as they can be mapped outside of vmalloc code.
4683 	 * With hardware tag-based KASAN, marking is skipped for
4684 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4685 	 */
4686 	for (area = 0; area < nr_vms; area++)
4687 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4688 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4689 
4690 	kfree(vas);
4691 	return vms;
4692 
4693 recovery:
4694 	/*
4695 	 * Remove previously allocated areas. There is no
4696 	 * need in removing these areas from the busy tree,
4697 	 * because they are inserted only on the final step
4698 	 * and when pcpu_get_vm_areas() is success.
4699 	 */
4700 	while (area--) {
4701 		orig_start = vas[area]->va_start;
4702 		orig_end = vas[area]->va_end;
4703 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4704 				&free_vmap_area_list);
4705 		if (va)
4706 			kasan_release_vmalloc(orig_start, orig_end,
4707 				va->va_start, va->va_end);
4708 		vas[area] = NULL;
4709 	}
4710 
4711 overflow:
4712 	spin_unlock(&free_vmap_area_lock);
4713 	if (!purged) {
4714 		reclaim_and_purge_vmap_areas();
4715 		purged = true;
4716 
4717 		/* Before "retry", check if we recover. */
4718 		for (area = 0; area < nr_vms; area++) {
4719 			if (vas[area])
4720 				continue;
4721 
4722 			vas[area] = kmem_cache_zalloc(
4723 				vmap_area_cachep, GFP_KERNEL);
4724 			if (!vas[area])
4725 				goto err_free;
4726 		}
4727 
4728 		goto retry;
4729 	}
4730 
4731 err_free:
4732 	for (area = 0; area < nr_vms; area++) {
4733 		if (vas[area])
4734 			kmem_cache_free(vmap_area_cachep, vas[area]);
4735 
4736 		kfree(vms[area]);
4737 	}
4738 err_free2:
4739 	kfree(vas);
4740 	kfree(vms);
4741 	return NULL;
4742 
4743 err_free_shadow:
4744 	spin_lock(&free_vmap_area_lock);
4745 	/*
4746 	 * We release all the vmalloc shadows, even the ones for regions that
4747 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4748 	 * being able to tolerate this case.
4749 	 */
4750 	for (area = 0; area < nr_vms; area++) {
4751 		orig_start = vas[area]->va_start;
4752 		orig_end = vas[area]->va_end;
4753 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4754 				&free_vmap_area_list);
4755 		if (va)
4756 			kasan_release_vmalloc(orig_start, orig_end,
4757 				va->va_start, va->va_end);
4758 		vas[area] = NULL;
4759 		kfree(vms[area]);
4760 	}
4761 	spin_unlock(&free_vmap_area_lock);
4762 	kfree(vas);
4763 	kfree(vms);
4764 	return NULL;
4765 }
4766 
4767 /**
4768  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4769  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4770  * @nr_vms: the number of allocated areas
4771  *
4772  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4773  */
4774 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4775 {
4776 	int i;
4777 
4778 	for (i = 0; i < nr_vms; i++)
4779 		free_vm_area(vms[i]);
4780 	kfree(vms);
4781 }
4782 #endif	/* CONFIG_SMP */
4783 
4784 #ifdef CONFIG_PRINTK
4785 bool vmalloc_dump_obj(void *object)
4786 {
4787 	const void *caller;
4788 	struct vm_struct *vm;
4789 	struct vmap_area *va;
4790 	struct vmap_node *vn;
4791 	unsigned long addr;
4792 	unsigned int nr_pages;
4793 
4794 	addr = PAGE_ALIGN((unsigned long) object);
4795 	vn = addr_to_node(addr);
4796 
4797 	if (!spin_trylock(&vn->busy.lock))
4798 		return false;
4799 
4800 	va = __find_vmap_area(addr, &vn->busy.root);
4801 	if (!va || !va->vm) {
4802 		spin_unlock(&vn->busy.lock);
4803 		return false;
4804 	}
4805 
4806 	vm = va->vm;
4807 	addr = (unsigned long) vm->addr;
4808 	caller = vm->caller;
4809 	nr_pages = vm->nr_pages;
4810 	spin_unlock(&vn->busy.lock);
4811 
4812 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4813 		nr_pages, addr, caller);
4814 
4815 	return true;
4816 }
4817 #endif
4818 
4819 #ifdef CONFIG_PROC_FS
4820 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4821 {
4822 	if (IS_ENABLED(CONFIG_NUMA)) {
4823 		unsigned int nr, *counters = m->private;
4824 		unsigned int step = 1U << vm_area_page_order(v);
4825 
4826 		if (!counters)
4827 			return;
4828 
4829 		if (v->flags & VM_UNINITIALIZED)
4830 			return;
4831 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4832 		smp_rmb();
4833 
4834 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4835 
4836 		for (nr = 0; nr < v->nr_pages; nr += step)
4837 			counters[page_to_nid(v->pages[nr])] += step;
4838 		for_each_node_state(nr, N_HIGH_MEMORY)
4839 			if (counters[nr])
4840 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4841 	}
4842 }
4843 
4844 static void show_purge_info(struct seq_file *m)
4845 {
4846 	struct vmap_node *vn;
4847 	struct vmap_area *va;
4848 	int i;
4849 
4850 	for (i = 0; i < nr_vmap_nodes; i++) {
4851 		vn = &vmap_nodes[i];
4852 
4853 		spin_lock(&vn->lazy.lock);
4854 		list_for_each_entry(va, &vn->lazy.head, list) {
4855 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4856 				(void *)va->va_start, (void *)va->va_end,
4857 				va->va_end - va->va_start);
4858 		}
4859 		spin_unlock(&vn->lazy.lock);
4860 	}
4861 }
4862 
4863 static int vmalloc_info_show(struct seq_file *m, void *p)
4864 {
4865 	struct vmap_node *vn;
4866 	struct vmap_area *va;
4867 	struct vm_struct *v;
4868 	int i;
4869 
4870 	for (i = 0; i < nr_vmap_nodes; i++) {
4871 		vn = &vmap_nodes[i];
4872 
4873 		spin_lock(&vn->busy.lock);
4874 		list_for_each_entry(va, &vn->busy.head, list) {
4875 			if (!va->vm) {
4876 				if (va->flags & VMAP_RAM)
4877 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4878 						(void *)va->va_start, (void *)va->va_end,
4879 						va->va_end - va->va_start);
4880 
4881 				continue;
4882 			}
4883 
4884 			v = va->vm;
4885 
4886 			seq_printf(m, "0x%pK-0x%pK %7ld",
4887 				v->addr, v->addr + v->size, v->size);
4888 
4889 			if (v->caller)
4890 				seq_printf(m, " %pS", v->caller);
4891 
4892 			if (v->nr_pages)
4893 				seq_printf(m, " pages=%d", v->nr_pages);
4894 
4895 			if (v->phys_addr)
4896 				seq_printf(m, " phys=%pa", &v->phys_addr);
4897 
4898 			if (v->flags & VM_IOREMAP)
4899 				seq_puts(m, " ioremap");
4900 
4901 			if (v->flags & VM_SPARSE)
4902 				seq_puts(m, " sparse");
4903 
4904 			if (v->flags & VM_ALLOC)
4905 				seq_puts(m, " vmalloc");
4906 
4907 			if (v->flags & VM_MAP)
4908 				seq_puts(m, " vmap");
4909 
4910 			if (v->flags & VM_USERMAP)
4911 				seq_puts(m, " user");
4912 
4913 			if (v->flags & VM_DMA_COHERENT)
4914 				seq_puts(m, " dma-coherent");
4915 
4916 			if (is_vmalloc_addr(v->pages))
4917 				seq_puts(m, " vpages");
4918 
4919 			show_numa_info(m, v);
4920 			seq_putc(m, '\n');
4921 		}
4922 		spin_unlock(&vn->busy.lock);
4923 	}
4924 
4925 	/*
4926 	 * As a final step, dump "unpurged" areas.
4927 	 */
4928 	show_purge_info(m);
4929 	return 0;
4930 }
4931 
4932 static int __init proc_vmalloc_init(void)
4933 {
4934 	void *priv_data = NULL;
4935 
4936 	if (IS_ENABLED(CONFIG_NUMA))
4937 		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4938 
4939 	proc_create_single_data("vmallocinfo",
4940 		0400, NULL, vmalloc_info_show, priv_data);
4941 
4942 	return 0;
4943 }
4944 module_init(proc_vmalloc_init);
4945 
4946 #endif
4947 
4948 static void __init vmap_init_free_space(void)
4949 {
4950 	unsigned long vmap_start = 1;
4951 	const unsigned long vmap_end = ULONG_MAX;
4952 	struct vmap_area *free;
4953 	struct vm_struct *busy;
4954 
4955 	/*
4956 	 *     B     F     B     B     B     F
4957 	 * -|-----|.....|-----|-----|-----|.....|-
4958 	 *  |           The KVA space           |
4959 	 *  |<--------------------------------->|
4960 	 */
4961 	for (busy = vmlist; busy; busy = busy->next) {
4962 		if ((unsigned long) busy->addr - vmap_start > 0) {
4963 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4964 			if (!WARN_ON_ONCE(!free)) {
4965 				free->va_start = vmap_start;
4966 				free->va_end = (unsigned long) busy->addr;
4967 
4968 				insert_vmap_area_augment(free, NULL,
4969 					&free_vmap_area_root,
4970 						&free_vmap_area_list);
4971 			}
4972 		}
4973 
4974 		vmap_start = (unsigned long) busy->addr + busy->size;
4975 	}
4976 
4977 	if (vmap_end - vmap_start > 0) {
4978 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4979 		if (!WARN_ON_ONCE(!free)) {
4980 			free->va_start = vmap_start;
4981 			free->va_end = vmap_end;
4982 
4983 			insert_vmap_area_augment(free, NULL,
4984 				&free_vmap_area_root,
4985 					&free_vmap_area_list);
4986 		}
4987 	}
4988 }
4989 
4990 static void vmap_init_nodes(void)
4991 {
4992 	struct vmap_node *vn;
4993 	int i, n;
4994 
4995 #if BITS_PER_LONG == 64
4996 	/*
4997 	 * A high threshold of max nodes is fixed and bound to 128,
4998 	 * thus a scale factor is 1 for systems where number of cores
4999 	 * are less or equal to specified threshold.
5000 	 *
5001 	 * As for NUMA-aware notes. For bigger systems, for example
5002 	 * NUMA with multi-sockets, where we can end-up with thousands
5003 	 * of cores in total, a "sub-numa-clustering" should be added.
5004 	 *
5005 	 * In this case a NUMA domain is considered as a single entity
5006 	 * with dedicated sub-nodes in it which describe one group or
5007 	 * set of cores. Therefore a per-domain purging is supposed to
5008 	 * be added as well as a per-domain balancing.
5009 	 */
5010 	n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5011 
5012 	if (n > 1) {
5013 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5014 		if (vn) {
5015 			/* Node partition is 16 pages. */
5016 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5017 			nr_vmap_nodes = n;
5018 			vmap_nodes = vn;
5019 		} else {
5020 			pr_err("Failed to allocate an array. Disable a node layer\n");
5021 		}
5022 	}
5023 #endif
5024 
5025 	for (n = 0; n < nr_vmap_nodes; n++) {
5026 		vn = &vmap_nodes[n];
5027 		vn->busy.root = RB_ROOT;
5028 		INIT_LIST_HEAD(&vn->busy.head);
5029 		spin_lock_init(&vn->busy.lock);
5030 
5031 		vn->lazy.root = RB_ROOT;
5032 		INIT_LIST_HEAD(&vn->lazy.head);
5033 		spin_lock_init(&vn->lazy.lock);
5034 
5035 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5036 			INIT_LIST_HEAD(&vn->pool[i].head);
5037 			WRITE_ONCE(vn->pool[i].len, 0);
5038 		}
5039 
5040 		spin_lock_init(&vn->pool_lock);
5041 	}
5042 }
5043 
5044 static unsigned long
5045 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5046 {
5047 	unsigned long count;
5048 	struct vmap_node *vn;
5049 	int i, j;
5050 
5051 	for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5052 		vn = &vmap_nodes[i];
5053 
5054 		for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5055 			count += READ_ONCE(vn->pool[j].len);
5056 	}
5057 
5058 	return count ? count : SHRINK_EMPTY;
5059 }
5060 
5061 static unsigned long
5062 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5063 {
5064 	int i;
5065 
5066 	for (i = 0; i < nr_vmap_nodes; i++)
5067 		decay_va_pool_node(&vmap_nodes[i], true);
5068 
5069 	return SHRINK_STOP;
5070 }
5071 
5072 void __init vmalloc_init(void)
5073 {
5074 	struct shrinker *vmap_node_shrinker;
5075 	struct vmap_area *va;
5076 	struct vmap_node *vn;
5077 	struct vm_struct *tmp;
5078 	int i;
5079 
5080 	/*
5081 	 * Create the cache for vmap_area objects.
5082 	 */
5083 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5084 
5085 	for_each_possible_cpu(i) {
5086 		struct vmap_block_queue *vbq;
5087 		struct vfree_deferred *p;
5088 
5089 		vbq = &per_cpu(vmap_block_queue, i);
5090 		spin_lock_init(&vbq->lock);
5091 		INIT_LIST_HEAD(&vbq->free);
5092 		p = &per_cpu(vfree_deferred, i);
5093 		init_llist_head(&p->list);
5094 		INIT_WORK(&p->wq, delayed_vfree_work);
5095 		xa_init(&vbq->vmap_blocks);
5096 	}
5097 
5098 	/*
5099 	 * Setup nodes before importing vmlist.
5100 	 */
5101 	vmap_init_nodes();
5102 
5103 	/* Import existing vmlist entries. */
5104 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5105 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5106 		if (WARN_ON_ONCE(!va))
5107 			continue;
5108 
5109 		va->va_start = (unsigned long)tmp->addr;
5110 		va->va_end = va->va_start + tmp->size;
5111 		va->vm = tmp;
5112 
5113 		vn = addr_to_node(va->va_start);
5114 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5115 	}
5116 
5117 	/*
5118 	 * Now we can initialize a free vmap space.
5119 	 */
5120 	vmap_init_free_space();
5121 	vmap_initialized = true;
5122 
5123 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5124 	if (!vmap_node_shrinker) {
5125 		pr_err("Failed to allocate vmap-node shrinker!\n");
5126 		return;
5127 	}
5128 
5129 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5130 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5131 	shrinker_register(vmap_node_shrinker);
5132 }
5133