1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 28 { 29 pte_t *pte; 30 31 pte = pte_offset_kernel(pmd, addr); 32 do { 33 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 34 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 35 } while (pte++, addr += PAGE_SIZE, addr != end); 36 } 37 38 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 39 unsigned long end) 40 { 41 pmd_t *pmd; 42 unsigned long next; 43 44 pmd = pmd_offset(pud, addr); 45 do { 46 next = pmd_addr_end(addr, end); 47 if (pmd_none_or_clear_bad(pmd)) 48 continue; 49 vunmap_pte_range(pmd, addr, next); 50 } while (pmd++, addr = next, addr != end); 51 } 52 53 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 54 unsigned long end) 55 { 56 pud_t *pud; 57 unsigned long next; 58 59 pud = pud_offset(pgd, addr); 60 do { 61 next = pud_addr_end(addr, end); 62 if (pud_none_or_clear_bad(pud)) 63 continue; 64 vunmap_pmd_range(pud, addr, next); 65 } while (pud++, addr = next, addr != end); 66 } 67 68 void unmap_vm_area(struct vm_struct *area) 69 { 70 pgd_t *pgd; 71 unsigned long next; 72 unsigned long addr = (unsigned long) area->addr; 73 unsigned long end = addr + area->size; 74 75 BUG_ON(addr >= end); 76 pgd = pgd_offset_k(addr); 77 flush_cache_vunmap(addr, end); 78 do { 79 next = pgd_addr_end(addr, end); 80 if (pgd_none_or_clear_bad(pgd)) 81 continue; 82 vunmap_pud_range(pgd, addr, next); 83 } while (pgd++, addr = next, addr != end); 84 flush_tlb_kernel_range((unsigned long) area->addr, end); 85 } 86 87 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 88 unsigned long end, pgprot_t prot, struct page ***pages) 89 { 90 pte_t *pte; 91 92 pte = pte_alloc_kernel(pmd, addr); 93 if (!pte) 94 return -ENOMEM; 95 do { 96 struct page *page = **pages; 97 WARN_ON(!pte_none(*pte)); 98 if (!page) 99 return -ENOMEM; 100 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 101 (*pages)++; 102 } while (pte++, addr += PAGE_SIZE, addr != end); 103 return 0; 104 } 105 106 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 107 unsigned long end, pgprot_t prot, struct page ***pages) 108 { 109 pmd_t *pmd; 110 unsigned long next; 111 112 pmd = pmd_alloc(&init_mm, pud, addr); 113 if (!pmd) 114 return -ENOMEM; 115 do { 116 next = pmd_addr_end(addr, end); 117 if (vmap_pte_range(pmd, addr, next, prot, pages)) 118 return -ENOMEM; 119 } while (pmd++, addr = next, addr != end); 120 return 0; 121 } 122 123 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 124 unsigned long end, pgprot_t prot, struct page ***pages) 125 { 126 pud_t *pud; 127 unsigned long next; 128 129 pud = pud_alloc(&init_mm, pgd, addr); 130 if (!pud) 131 return -ENOMEM; 132 do { 133 next = pud_addr_end(addr, end); 134 if (vmap_pmd_range(pud, addr, next, prot, pages)) 135 return -ENOMEM; 136 } while (pud++, addr = next, addr != end); 137 return 0; 138 } 139 140 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 141 { 142 pgd_t *pgd; 143 unsigned long next; 144 unsigned long addr = (unsigned long) area->addr; 145 unsigned long end = addr + area->size - PAGE_SIZE; 146 int err; 147 148 BUG_ON(addr >= end); 149 pgd = pgd_offset_k(addr); 150 do { 151 next = pgd_addr_end(addr, end); 152 err = vmap_pud_range(pgd, addr, next, prot, pages); 153 if (err) 154 break; 155 } while (pgd++, addr = next, addr != end); 156 flush_cache_vmap((unsigned long) area->addr, end); 157 return err; 158 } 159 160 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 161 unsigned long start, unsigned long end, int node) 162 { 163 struct vm_struct **p, *tmp, *area; 164 unsigned long align = 1; 165 unsigned long addr; 166 167 if (flags & VM_IOREMAP) { 168 int bit = fls(size); 169 170 if (bit > IOREMAP_MAX_ORDER) 171 bit = IOREMAP_MAX_ORDER; 172 else if (bit < PAGE_SHIFT) 173 bit = PAGE_SHIFT; 174 175 align = 1ul << bit; 176 } 177 addr = ALIGN(start, align); 178 size = PAGE_ALIGN(size); 179 180 area = kmalloc_node(sizeof(*area), GFP_KERNEL, node); 181 if (unlikely(!area)) 182 return NULL; 183 184 if (unlikely(!size)) { 185 kfree (area); 186 return NULL; 187 } 188 189 /* 190 * We always allocate a guard page. 191 */ 192 size += PAGE_SIZE; 193 194 write_lock(&vmlist_lock); 195 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 196 if ((unsigned long)tmp->addr < addr) { 197 if((unsigned long)tmp->addr + tmp->size >= addr) 198 addr = ALIGN(tmp->size + 199 (unsigned long)tmp->addr, align); 200 continue; 201 } 202 if ((size + addr) < addr) 203 goto out; 204 if (size + addr <= (unsigned long)tmp->addr) 205 goto found; 206 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 207 if (addr > end - size) 208 goto out; 209 } 210 211 found: 212 area->next = *p; 213 *p = area; 214 215 area->flags = flags; 216 area->addr = (void *)addr; 217 area->size = size; 218 area->pages = NULL; 219 area->nr_pages = 0; 220 area->phys_addr = 0; 221 write_unlock(&vmlist_lock); 222 223 return area; 224 225 out: 226 write_unlock(&vmlist_lock); 227 kfree(area); 228 if (printk_ratelimit()) 229 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 230 return NULL; 231 } 232 233 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 234 unsigned long start, unsigned long end) 235 { 236 return __get_vm_area_node(size, flags, start, end, -1); 237 } 238 239 /** 240 * get_vm_area - reserve a contingous kernel virtual area 241 * 242 * @size: size of the area 243 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 244 * 245 * Search an area of @size in the kernel virtual mapping area, 246 * and reserved it for out purposes. Returns the area descriptor 247 * on success or %NULL on failure. 248 */ 249 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 250 { 251 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 252 } 253 254 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node) 255 { 256 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node); 257 } 258 259 /* Caller must hold vmlist_lock */ 260 static struct vm_struct *__find_vm_area(void *addr) 261 { 262 struct vm_struct *tmp; 263 264 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 265 if (tmp->addr == addr) 266 break; 267 } 268 269 return tmp; 270 } 271 272 /* Caller must hold vmlist_lock */ 273 struct vm_struct *__remove_vm_area(void *addr) 274 { 275 struct vm_struct **p, *tmp; 276 277 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 278 if (tmp->addr == addr) 279 goto found; 280 } 281 return NULL; 282 283 found: 284 unmap_vm_area(tmp); 285 *p = tmp->next; 286 287 /* 288 * Remove the guard page. 289 */ 290 tmp->size -= PAGE_SIZE; 291 return tmp; 292 } 293 294 /** 295 * remove_vm_area - find and remove a contingous kernel virtual area 296 * 297 * @addr: base address 298 * 299 * Search for the kernel VM area starting at @addr, and remove it. 300 * This function returns the found VM area, but using it is NOT safe 301 * on SMP machines, except for its size or flags. 302 */ 303 struct vm_struct *remove_vm_area(void *addr) 304 { 305 struct vm_struct *v; 306 write_lock(&vmlist_lock); 307 v = __remove_vm_area(addr); 308 write_unlock(&vmlist_lock); 309 return v; 310 } 311 312 void __vunmap(void *addr, int deallocate_pages) 313 { 314 struct vm_struct *area; 315 316 if (!addr) 317 return; 318 319 if ((PAGE_SIZE-1) & (unsigned long)addr) { 320 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 321 WARN_ON(1); 322 return; 323 } 324 325 area = remove_vm_area(addr); 326 if (unlikely(!area)) { 327 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 328 addr); 329 WARN_ON(1); 330 return; 331 } 332 333 debug_check_no_locks_freed(addr, area->size); 334 335 if (deallocate_pages) { 336 int i; 337 338 for (i = 0; i < area->nr_pages; i++) { 339 BUG_ON(!area->pages[i]); 340 __free_page(area->pages[i]); 341 } 342 343 if (area->nr_pages > PAGE_SIZE/sizeof(struct page *)) 344 vfree(area->pages); 345 else 346 kfree(area->pages); 347 } 348 349 kfree(area); 350 return; 351 } 352 353 /** 354 * vfree - release memory allocated by vmalloc() 355 * 356 * @addr: memory base address 357 * 358 * Free the virtually contiguous memory area starting at @addr, as 359 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 360 * NULL, no operation is performed. 361 * 362 * Must not be called in interrupt context. 363 */ 364 void vfree(void *addr) 365 { 366 BUG_ON(in_interrupt()); 367 __vunmap(addr, 1); 368 } 369 EXPORT_SYMBOL(vfree); 370 371 /** 372 * vunmap - release virtual mapping obtained by vmap() 373 * 374 * @addr: memory base address 375 * 376 * Free the virtually contiguous memory area starting at @addr, 377 * which was created from the page array passed to vmap(). 378 * 379 * Must not be called in interrupt context. 380 */ 381 void vunmap(void *addr) 382 { 383 BUG_ON(in_interrupt()); 384 __vunmap(addr, 0); 385 } 386 EXPORT_SYMBOL(vunmap); 387 388 /** 389 * vmap - map an array of pages into virtually contiguous space 390 * 391 * @pages: array of page pointers 392 * @count: number of pages to map 393 * @flags: vm_area->flags 394 * @prot: page protection for the mapping 395 * 396 * Maps @count pages from @pages into contiguous kernel virtual 397 * space. 398 */ 399 void *vmap(struct page **pages, unsigned int count, 400 unsigned long flags, pgprot_t prot) 401 { 402 struct vm_struct *area; 403 404 if (count > num_physpages) 405 return NULL; 406 407 area = get_vm_area((count << PAGE_SHIFT), flags); 408 if (!area) 409 return NULL; 410 if (map_vm_area(area, prot, &pages)) { 411 vunmap(area->addr); 412 return NULL; 413 } 414 415 return area->addr; 416 } 417 EXPORT_SYMBOL(vmap); 418 419 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 420 pgprot_t prot, int node) 421 { 422 struct page **pages; 423 unsigned int nr_pages, array_size, i; 424 425 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 426 array_size = (nr_pages * sizeof(struct page *)); 427 428 area->nr_pages = nr_pages; 429 /* Please note that the recursion is strictly bounded. */ 430 if (array_size > PAGE_SIZE) 431 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node); 432 else 433 pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node); 434 area->pages = pages; 435 if (!area->pages) { 436 remove_vm_area(area->addr); 437 kfree(area); 438 return NULL; 439 } 440 memset(area->pages, 0, array_size); 441 442 for (i = 0; i < area->nr_pages; i++) { 443 if (node < 0) 444 area->pages[i] = alloc_page(gfp_mask); 445 else 446 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 447 if (unlikely(!area->pages[i])) { 448 /* Successfully allocated i pages, free them in __vunmap() */ 449 area->nr_pages = i; 450 goto fail; 451 } 452 } 453 454 if (map_vm_area(area, prot, &pages)) 455 goto fail; 456 return area->addr; 457 458 fail: 459 vfree(area->addr); 460 return NULL; 461 } 462 463 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 464 { 465 return __vmalloc_area_node(area, gfp_mask, prot, -1); 466 } 467 468 /** 469 * __vmalloc_node - allocate virtually contiguous memory 470 * 471 * @size: allocation size 472 * @gfp_mask: flags for the page level allocator 473 * @prot: protection mask for the allocated pages 474 * @node: node to use for allocation or -1 475 * 476 * Allocate enough pages to cover @size from the page level 477 * allocator with @gfp_mask flags. Map them into contiguous 478 * kernel virtual space, using a pagetable protection of @prot. 479 */ 480 void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 481 int node) 482 { 483 struct vm_struct *area; 484 485 size = PAGE_ALIGN(size); 486 if (!size || (size >> PAGE_SHIFT) > num_physpages) 487 return NULL; 488 489 area = get_vm_area_node(size, VM_ALLOC, node); 490 if (!area) 491 return NULL; 492 493 return __vmalloc_area_node(area, gfp_mask, prot, node); 494 } 495 EXPORT_SYMBOL(__vmalloc_node); 496 497 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 498 { 499 return __vmalloc_node(size, gfp_mask, prot, -1); 500 } 501 EXPORT_SYMBOL(__vmalloc); 502 503 /** 504 * vmalloc - allocate virtually contiguous memory 505 * 506 * @size: allocation size 507 * 508 * Allocate enough pages to cover @size from the page level 509 * allocator and map them into contiguous kernel virtual space. 510 * 511 * For tight cotrol over page level allocator and protection flags 512 * use __vmalloc() instead. 513 */ 514 void *vmalloc(unsigned long size) 515 { 516 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 517 } 518 EXPORT_SYMBOL(vmalloc); 519 520 /** 521 * vmalloc_user - allocate virtually contiguous memory which has 522 * been zeroed so it can be mapped to userspace without 523 * leaking data. 524 * 525 * @size: allocation size 526 */ 527 void *vmalloc_user(unsigned long size) 528 { 529 struct vm_struct *area; 530 void *ret; 531 532 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 533 write_lock(&vmlist_lock); 534 area = __find_vm_area(ret); 535 area->flags |= VM_USERMAP; 536 write_unlock(&vmlist_lock); 537 538 return ret; 539 } 540 EXPORT_SYMBOL(vmalloc_user); 541 542 /** 543 * vmalloc_node - allocate memory on a specific node 544 * 545 * @size: allocation size 546 * @node: numa node 547 * 548 * Allocate enough pages to cover @size from the page level 549 * allocator and map them into contiguous kernel virtual space. 550 * 551 * For tight cotrol over page level allocator and protection flags 552 * use __vmalloc() instead. 553 */ 554 void *vmalloc_node(unsigned long size, int node) 555 { 556 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 557 } 558 EXPORT_SYMBOL(vmalloc_node); 559 560 #ifndef PAGE_KERNEL_EXEC 561 # define PAGE_KERNEL_EXEC PAGE_KERNEL 562 #endif 563 564 /** 565 * vmalloc_exec - allocate virtually contiguous, executable memory 566 * 567 * @size: allocation size 568 * 569 * Kernel-internal function to allocate enough pages to cover @size 570 * the page level allocator and map them into contiguous and 571 * executable kernel virtual space. 572 * 573 * For tight cotrol over page level allocator and protection flags 574 * use __vmalloc() instead. 575 */ 576 577 void *vmalloc_exec(unsigned long size) 578 { 579 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 580 } 581 582 /** 583 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 584 * 585 * @size: allocation size 586 * 587 * Allocate enough 32bit PA addressable pages to cover @size from the 588 * page level allocator and map them into contiguous kernel virtual space. 589 */ 590 void *vmalloc_32(unsigned long size) 591 { 592 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 593 } 594 EXPORT_SYMBOL(vmalloc_32); 595 596 /** 597 * vmalloc_32_user - allocate virtually contiguous memory (32bit 598 * addressable) which is zeroed so it can be 599 * mapped to userspace without leaking data. 600 * 601 * @size: allocation size 602 */ 603 void *vmalloc_32_user(unsigned long size) 604 { 605 struct vm_struct *area; 606 void *ret; 607 608 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 609 write_lock(&vmlist_lock); 610 area = __find_vm_area(ret); 611 area->flags |= VM_USERMAP; 612 write_unlock(&vmlist_lock); 613 614 return ret; 615 } 616 EXPORT_SYMBOL(vmalloc_32_user); 617 618 long vread(char *buf, char *addr, unsigned long count) 619 { 620 struct vm_struct *tmp; 621 char *vaddr, *buf_start = buf; 622 unsigned long n; 623 624 /* Don't allow overflow */ 625 if ((unsigned long) addr + count < count) 626 count = -(unsigned long) addr; 627 628 read_lock(&vmlist_lock); 629 for (tmp = vmlist; tmp; tmp = tmp->next) { 630 vaddr = (char *) tmp->addr; 631 if (addr >= vaddr + tmp->size - PAGE_SIZE) 632 continue; 633 while (addr < vaddr) { 634 if (count == 0) 635 goto finished; 636 *buf = '\0'; 637 buf++; 638 addr++; 639 count--; 640 } 641 n = vaddr + tmp->size - PAGE_SIZE - addr; 642 do { 643 if (count == 0) 644 goto finished; 645 *buf = *addr; 646 buf++; 647 addr++; 648 count--; 649 } while (--n > 0); 650 } 651 finished: 652 read_unlock(&vmlist_lock); 653 return buf - buf_start; 654 } 655 656 long vwrite(char *buf, char *addr, unsigned long count) 657 { 658 struct vm_struct *tmp; 659 char *vaddr, *buf_start = buf; 660 unsigned long n; 661 662 /* Don't allow overflow */ 663 if ((unsigned long) addr + count < count) 664 count = -(unsigned long) addr; 665 666 read_lock(&vmlist_lock); 667 for (tmp = vmlist; tmp; tmp = tmp->next) { 668 vaddr = (char *) tmp->addr; 669 if (addr >= vaddr + tmp->size - PAGE_SIZE) 670 continue; 671 while (addr < vaddr) { 672 if (count == 0) 673 goto finished; 674 buf++; 675 addr++; 676 count--; 677 } 678 n = vaddr + tmp->size - PAGE_SIZE - addr; 679 do { 680 if (count == 0) 681 goto finished; 682 *addr = *buf; 683 buf++; 684 addr++; 685 count--; 686 } while (--n > 0); 687 } 688 finished: 689 read_unlock(&vmlist_lock); 690 return buf - buf_start; 691 } 692 693 /** 694 * remap_vmalloc_range - map vmalloc pages to userspace 695 * 696 * @vma: vma to cover (map full range of vma) 697 * @addr: vmalloc memory 698 * @pgoff: number of pages into addr before first page to map 699 * @returns: 0 for success, -Exxx on failure 700 * 701 * This function checks that addr is a valid vmalloc'ed area, and 702 * that it is big enough to cover the vma. Will return failure if 703 * that criteria isn't met. 704 * 705 * Similar to remap_pfn_range (see mm/memory.c) 706 */ 707 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 708 unsigned long pgoff) 709 { 710 struct vm_struct *area; 711 unsigned long uaddr = vma->vm_start; 712 unsigned long usize = vma->vm_end - vma->vm_start; 713 int ret; 714 715 if ((PAGE_SIZE-1) & (unsigned long)addr) 716 return -EINVAL; 717 718 read_lock(&vmlist_lock); 719 area = __find_vm_area(addr); 720 if (!area) 721 goto out_einval_locked; 722 723 if (!(area->flags & VM_USERMAP)) 724 goto out_einval_locked; 725 726 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 727 goto out_einval_locked; 728 read_unlock(&vmlist_lock); 729 730 addr += pgoff << PAGE_SHIFT; 731 do { 732 struct page *page = vmalloc_to_page(addr); 733 ret = vm_insert_page(vma, uaddr, page); 734 if (ret) 735 return ret; 736 737 uaddr += PAGE_SIZE; 738 addr += PAGE_SIZE; 739 usize -= PAGE_SIZE; 740 } while (usize > 0); 741 742 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 743 vma->vm_flags |= VM_RESERVED; 744 745 return ret; 746 747 out_einval_locked: 748 read_unlock(&vmlist_lock); 749 return -EINVAL; 750 } 751 EXPORT_SYMBOL(remap_vmalloc_range); 752 753