xref: /linux/mm/vmalloc.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 
18 #include <linux/vmalloc.h>
19 
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 
23 
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
26 
27 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
28 {
29 	pte_t *pte;
30 
31 	pte = pte_offset_kernel(pmd, addr);
32 	do {
33 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
34 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
35 	} while (pte++, addr += PAGE_SIZE, addr != end);
36 }
37 
38 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
39 						unsigned long end)
40 {
41 	pmd_t *pmd;
42 	unsigned long next;
43 
44 	pmd = pmd_offset(pud, addr);
45 	do {
46 		next = pmd_addr_end(addr, end);
47 		if (pmd_none_or_clear_bad(pmd))
48 			continue;
49 		vunmap_pte_range(pmd, addr, next);
50 	} while (pmd++, addr = next, addr != end);
51 }
52 
53 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
54 						unsigned long end)
55 {
56 	pud_t *pud;
57 	unsigned long next;
58 
59 	pud = pud_offset(pgd, addr);
60 	do {
61 		next = pud_addr_end(addr, end);
62 		if (pud_none_or_clear_bad(pud))
63 			continue;
64 		vunmap_pmd_range(pud, addr, next);
65 	} while (pud++, addr = next, addr != end);
66 }
67 
68 void unmap_vm_area(struct vm_struct *area)
69 {
70 	pgd_t *pgd;
71 	unsigned long next;
72 	unsigned long addr = (unsigned long) area->addr;
73 	unsigned long end = addr + area->size;
74 
75 	BUG_ON(addr >= end);
76 	pgd = pgd_offset_k(addr);
77 	flush_cache_vunmap(addr, end);
78 	do {
79 		next = pgd_addr_end(addr, end);
80 		if (pgd_none_or_clear_bad(pgd))
81 			continue;
82 		vunmap_pud_range(pgd, addr, next);
83 	} while (pgd++, addr = next, addr != end);
84 	flush_tlb_kernel_range((unsigned long) area->addr, end);
85 }
86 
87 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
88 			unsigned long end, pgprot_t prot, struct page ***pages)
89 {
90 	pte_t *pte;
91 
92 	pte = pte_alloc_kernel(pmd, addr);
93 	if (!pte)
94 		return -ENOMEM;
95 	do {
96 		struct page *page = **pages;
97 		WARN_ON(!pte_none(*pte));
98 		if (!page)
99 			return -ENOMEM;
100 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
101 		(*pages)++;
102 	} while (pte++, addr += PAGE_SIZE, addr != end);
103 	return 0;
104 }
105 
106 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
107 			unsigned long end, pgprot_t prot, struct page ***pages)
108 {
109 	pmd_t *pmd;
110 	unsigned long next;
111 
112 	pmd = pmd_alloc(&init_mm, pud, addr);
113 	if (!pmd)
114 		return -ENOMEM;
115 	do {
116 		next = pmd_addr_end(addr, end);
117 		if (vmap_pte_range(pmd, addr, next, prot, pages))
118 			return -ENOMEM;
119 	} while (pmd++, addr = next, addr != end);
120 	return 0;
121 }
122 
123 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
124 			unsigned long end, pgprot_t prot, struct page ***pages)
125 {
126 	pud_t *pud;
127 	unsigned long next;
128 
129 	pud = pud_alloc(&init_mm, pgd, addr);
130 	if (!pud)
131 		return -ENOMEM;
132 	do {
133 		next = pud_addr_end(addr, end);
134 		if (vmap_pmd_range(pud, addr, next, prot, pages))
135 			return -ENOMEM;
136 	} while (pud++, addr = next, addr != end);
137 	return 0;
138 }
139 
140 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
141 {
142 	pgd_t *pgd;
143 	unsigned long next;
144 	unsigned long addr = (unsigned long) area->addr;
145 	unsigned long end = addr + area->size - PAGE_SIZE;
146 	int err;
147 
148 	BUG_ON(addr >= end);
149 	pgd = pgd_offset_k(addr);
150 	do {
151 		next = pgd_addr_end(addr, end);
152 		err = vmap_pud_range(pgd, addr, next, prot, pages);
153 		if (err)
154 			break;
155 	} while (pgd++, addr = next, addr != end);
156 	flush_cache_vmap((unsigned long) area->addr, end);
157 	return err;
158 }
159 
160 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
161 				unsigned long start, unsigned long end, int node)
162 {
163 	struct vm_struct **p, *tmp, *area;
164 	unsigned long align = 1;
165 	unsigned long addr;
166 
167 	if (flags & VM_IOREMAP) {
168 		int bit = fls(size);
169 
170 		if (bit > IOREMAP_MAX_ORDER)
171 			bit = IOREMAP_MAX_ORDER;
172 		else if (bit < PAGE_SHIFT)
173 			bit = PAGE_SHIFT;
174 
175 		align = 1ul << bit;
176 	}
177 	addr = ALIGN(start, align);
178 	size = PAGE_ALIGN(size);
179 
180 	area = kmalloc_node(sizeof(*area), GFP_KERNEL, node);
181 	if (unlikely(!area))
182 		return NULL;
183 
184 	if (unlikely(!size)) {
185 		kfree (area);
186 		return NULL;
187 	}
188 
189 	/*
190 	 * We always allocate a guard page.
191 	 */
192 	size += PAGE_SIZE;
193 
194 	write_lock(&vmlist_lock);
195 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
196 		if ((unsigned long)tmp->addr < addr) {
197 			if((unsigned long)tmp->addr + tmp->size >= addr)
198 				addr = ALIGN(tmp->size +
199 					     (unsigned long)tmp->addr, align);
200 			continue;
201 		}
202 		if ((size + addr) < addr)
203 			goto out;
204 		if (size + addr <= (unsigned long)tmp->addr)
205 			goto found;
206 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
207 		if (addr > end - size)
208 			goto out;
209 	}
210 
211 found:
212 	area->next = *p;
213 	*p = area;
214 
215 	area->flags = flags;
216 	area->addr = (void *)addr;
217 	area->size = size;
218 	area->pages = NULL;
219 	area->nr_pages = 0;
220 	area->phys_addr = 0;
221 	write_unlock(&vmlist_lock);
222 
223 	return area;
224 
225 out:
226 	write_unlock(&vmlist_lock);
227 	kfree(area);
228 	if (printk_ratelimit())
229 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
230 	return NULL;
231 }
232 
233 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
234 				unsigned long start, unsigned long end)
235 {
236 	return __get_vm_area_node(size, flags, start, end, -1);
237 }
238 
239 /**
240  *	get_vm_area  -  reserve a contingous kernel virtual area
241  *
242  *	@size:		size of the area
243  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
244  *
245  *	Search an area of @size in the kernel virtual mapping area,
246  *	and reserved it for out purposes.  Returns the area descriptor
247  *	on success or %NULL on failure.
248  */
249 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
250 {
251 	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
252 }
253 
254 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node)
255 {
256 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node);
257 }
258 
259 /* Caller must hold vmlist_lock */
260 static struct vm_struct *__find_vm_area(void *addr)
261 {
262 	struct vm_struct *tmp;
263 
264 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
265 		 if (tmp->addr == addr)
266 			break;
267 	}
268 
269 	return tmp;
270 }
271 
272 /* Caller must hold vmlist_lock */
273 struct vm_struct *__remove_vm_area(void *addr)
274 {
275 	struct vm_struct **p, *tmp;
276 
277 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
278 		 if (tmp->addr == addr)
279 			 goto found;
280 	}
281 	return NULL;
282 
283 found:
284 	unmap_vm_area(tmp);
285 	*p = tmp->next;
286 
287 	/*
288 	 * Remove the guard page.
289 	 */
290 	tmp->size -= PAGE_SIZE;
291 	return tmp;
292 }
293 
294 /**
295  *	remove_vm_area  -  find and remove a contingous kernel virtual area
296  *
297  *	@addr:		base address
298  *
299  *	Search for the kernel VM area starting at @addr, and remove it.
300  *	This function returns the found VM area, but using it is NOT safe
301  *	on SMP machines, except for its size or flags.
302  */
303 struct vm_struct *remove_vm_area(void *addr)
304 {
305 	struct vm_struct *v;
306 	write_lock(&vmlist_lock);
307 	v = __remove_vm_area(addr);
308 	write_unlock(&vmlist_lock);
309 	return v;
310 }
311 
312 void __vunmap(void *addr, int deallocate_pages)
313 {
314 	struct vm_struct *area;
315 
316 	if (!addr)
317 		return;
318 
319 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
320 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
321 		WARN_ON(1);
322 		return;
323 	}
324 
325 	area = remove_vm_area(addr);
326 	if (unlikely(!area)) {
327 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
328 				addr);
329 		WARN_ON(1);
330 		return;
331 	}
332 
333 	debug_check_no_locks_freed(addr, area->size);
334 
335 	if (deallocate_pages) {
336 		int i;
337 
338 		for (i = 0; i < area->nr_pages; i++) {
339 			BUG_ON(!area->pages[i]);
340 			__free_page(area->pages[i]);
341 		}
342 
343 		if (area->nr_pages > PAGE_SIZE/sizeof(struct page *))
344 			vfree(area->pages);
345 		else
346 			kfree(area->pages);
347 	}
348 
349 	kfree(area);
350 	return;
351 }
352 
353 /**
354  *	vfree  -  release memory allocated by vmalloc()
355  *
356  *	@addr:		memory base address
357  *
358  *	Free the virtually contiguous memory area starting at @addr, as
359  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
360  *	NULL, no operation is performed.
361  *
362  *	Must not be called in interrupt context.
363  */
364 void vfree(void *addr)
365 {
366 	BUG_ON(in_interrupt());
367 	__vunmap(addr, 1);
368 }
369 EXPORT_SYMBOL(vfree);
370 
371 /**
372  *	vunmap  -  release virtual mapping obtained by vmap()
373  *
374  *	@addr:		memory base address
375  *
376  *	Free the virtually contiguous memory area starting at @addr,
377  *	which was created from the page array passed to vmap().
378  *
379  *	Must not be called in interrupt context.
380  */
381 void vunmap(void *addr)
382 {
383 	BUG_ON(in_interrupt());
384 	__vunmap(addr, 0);
385 }
386 EXPORT_SYMBOL(vunmap);
387 
388 /**
389  *	vmap  -  map an array of pages into virtually contiguous space
390  *
391  *	@pages:		array of page pointers
392  *	@count:		number of pages to map
393  *	@flags:		vm_area->flags
394  *	@prot:		page protection for the mapping
395  *
396  *	Maps @count pages from @pages into contiguous kernel virtual
397  *	space.
398  */
399 void *vmap(struct page **pages, unsigned int count,
400 		unsigned long flags, pgprot_t prot)
401 {
402 	struct vm_struct *area;
403 
404 	if (count > num_physpages)
405 		return NULL;
406 
407 	area = get_vm_area((count << PAGE_SHIFT), flags);
408 	if (!area)
409 		return NULL;
410 	if (map_vm_area(area, prot, &pages)) {
411 		vunmap(area->addr);
412 		return NULL;
413 	}
414 
415 	return area->addr;
416 }
417 EXPORT_SYMBOL(vmap);
418 
419 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
420 				pgprot_t prot, int node)
421 {
422 	struct page **pages;
423 	unsigned int nr_pages, array_size, i;
424 
425 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
426 	array_size = (nr_pages * sizeof(struct page *));
427 
428 	area->nr_pages = nr_pages;
429 	/* Please note that the recursion is strictly bounded. */
430 	if (array_size > PAGE_SIZE)
431 		pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node);
432 	else
433 		pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node);
434 	area->pages = pages;
435 	if (!area->pages) {
436 		remove_vm_area(area->addr);
437 		kfree(area);
438 		return NULL;
439 	}
440 	memset(area->pages, 0, array_size);
441 
442 	for (i = 0; i < area->nr_pages; i++) {
443 		if (node < 0)
444 			area->pages[i] = alloc_page(gfp_mask);
445 		else
446 			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
447 		if (unlikely(!area->pages[i])) {
448 			/* Successfully allocated i pages, free them in __vunmap() */
449 			area->nr_pages = i;
450 			goto fail;
451 		}
452 	}
453 
454 	if (map_vm_area(area, prot, &pages))
455 		goto fail;
456 	return area->addr;
457 
458 fail:
459 	vfree(area->addr);
460 	return NULL;
461 }
462 
463 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
464 {
465 	return __vmalloc_area_node(area, gfp_mask, prot, -1);
466 }
467 
468 /**
469  *	__vmalloc_node  -  allocate virtually contiguous memory
470  *
471  *	@size:		allocation size
472  *	@gfp_mask:	flags for the page level allocator
473  *	@prot:		protection mask for the allocated pages
474  *	@node:		node to use for allocation or -1
475  *
476  *	Allocate enough pages to cover @size from the page level
477  *	allocator with @gfp_mask flags.  Map them into contiguous
478  *	kernel virtual space, using a pagetable protection of @prot.
479  */
480 void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
481 			int node)
482 {
483 	struct vm_struct *area;
484 
485 	size = PAGE_ALIGN(size);
486 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
487 		return NULL;
488 
489 	area = get_vm_area_node(size, VM_ALLOC, node);
490 	if (!area)
491 		return NULL;
492 
493 	return __vmalloc_area_node(area, gfp_mask, prot, node);
494 }
495 EXPORT_SYMBOL(__vmalloc_node);
496 
497 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
498 {
499 	return __vmalloc_node(size, gfp_mask, prot, -1);
500 }
501 EXPORT_SYMBOL(__vmalloc);
502 
503 /**
504  *	vmalloc  -  allocate virtually contiguous memory
505  *
506  *	@size:		allocation size
507  *
508  *	Allocate enough pages to cover @size from the page level
509  *	allocator and map them into contiguous kernel virtual space.
510  *
511  *	For tight cotrol over page level allocator and protection flags
512  *	use __vmalloc() instead.
513  */
514 void *vmalloc(unsigned long size)
515 {
516 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
517 }
518 EXPORT_SYMBOL(vmalloc);
519 
520 /**
521  *	vmalloc_user  -  allocate virtually contiguous memory which has
522  *			   been zeroed so it can be mapped to userspace without
523  *			   leaking data.
524  *
525  *	@size:		allocation size
526  */
527 void *vmalloc_user(unsigned long size)
528 {
529 	struct vm_struct *area;
530 	void *ret;
531 
532 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
533 	write_lock(&vmlist_lock);
534 	area = __find_vm_area(ret);
535 	area->flags |= VM_USERMAP;
536 	write_unlock(&vmlist_lock);
537 
538 	return ret;
539 }
540 EXPORT_SYMBOL(vmalloc_user);
541 
542 /**
543  *	vmalloc_node  -  allocate memory on a specific node
544  *
545  *	@size:		allocation size
546  *	@node:		numa node
547  *
548  *	Allocate enough pages to cover @size from the page level
549  *	allocator and map them into contiguous kernel virtual space.
550  *
551  *	For tight cotrol over page level allocator and protection flags
552  *	use __vmalloc() instead.
553  */
554 void *vmalloc_node(unsigned long size, int node)
555 {
556 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
557 }
558 EXPORT_SYMBOL(vmalloc_node);
559 
560 #ifndef PAGE_KERNEL_EXEC
561 # define PAGE_KERNEL_EXEC PAGE_KERNEL
562 #endif
563 
564 /**
565  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
566  *
567  *	@size:		allocation size
568  *
569  *	Kernel-internal function to allocate enough pages to cover @size
570  *	the page level allocator and map them into contiguous and
571  *	executable kernel virtual space.
572  *
573  *	For tight cotrol over page level allocator and protection flags
574  *	use __vmalloc() instead.
575  */
576 
577 void *vmalloc_exec(unsigned long size)
578 {
579 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
580 }
581 
582 /**
583  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
584  *
585  *	@size:		allocation size
586  *
587  *	Allocate enough 32bit PA addressable pages to cover @size from the
588  *	page level allocator and map them into contiguous kernel virtual space.
589  */
590 void *vmalloc_32(unsigned long size)
591 {
592 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
593 }
594 EXPORT_SYMBOL(vmalloc_32);
595 
596 /**
597  *	vmalloc_32_user  -  allocate virtually contiguous memory (32bit
598  *			      addressable) which is zeroed so it can be
599  *			      mapped to userspace without leaking data.
600  *
601  *	@size:		allocation size
602  */
603 void *vmalloc_32_user(unsigned long size)
604 {
605 	struct vm_struct *area;
606 	void *ret;
607 
608 	ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
609 	write_lock(&vmlist_lock);
610 	area = __find_vm_area(ret);
611 	area->flags |= VM_USERMAP;
612 	write_unlock(&vmlist_lock);
613 
614 	return ret;
615 }
616 EXPORT_SYMBOL(vmalloc_32_user);
617 
618 long vread(char *buf, char *addr, unsigned long count)
619 {
620 	struct vm_struct *tmp;
621 	char *vaddr, *buf_start = buf;
622 	unsigned long n;
623 
624 	/* Don't allow overflow */
625 	if ((unsigned long) addr + count < count)
626 		count = -(unsigned long) addr;
627 
628 	read_lock(&vmlist_lock);
629 	for (tmp = vmlist; tmp; tmp = tmp->next) {
630 		vaddr = (char *) tmp->addr;
631 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
632 			continue;
633 		while (addr < vaddr) {
634 			if (count == 0)
635 				goto finished;
636 			*buf = '\0';
637 			buf++;
638 			addr++;
639 			count--;
640 		}
641 		n = vaddr + tmp->size - PAGE_SIZE - addr;
642 		do {
643 			if (count == 0)
644 				goto finished;
645 			*buf = *addr;
646 			buf++;
647 			addr++;
648 			count--;
649 		} while (--n > 0);
650 	}
651 finished:
652 	read_unlock(&vmlist_lock);
653 	return buf - buf_start;
654 }
655 
656 long vwrite(char *buf, char *addr, unsigned long count)
657 {
658 	struct vm_struct *tmp;
659 	char *vaddr, *buf_start = buf;
660 	unsigned long n;
661 
662 	/* Don't allow overflow */
663 	if ((unsigned long) addr + count < count)
664 		count = -(unsigned long) addr;
665 
666 	read_lock(&vmlist_lock);
667 	for (tmp = vmlist; tmp; tmp = tmp->next) {
668 		vaddr = (char *) tmp->addr;
669 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
670 			continue;
671 		while (addr < vaddr) {
672 			if (count == 0)
673 				goto finished;
674 			buf++;
675 			addr++;
676 			count--;
677 		}
678 		n = vaddr + tmp->size - PAGE_SIZE - addr;
679 		do {
680 			if (count == 0)
681 				goto finished;
682 			*addr = *buf;
683 			buf++;
684 			addr++;
685 			count--;
686 		} while (--n > 0);
687 	}
688 finished:
689 	read_unlock(&vmlist_lock);
690 	return buf - buf_start;
691 }
692 
693 /**
694  *	remap_vmalloc_range  -  map vmalloc pages to userspace
695  *
696  *	@vma:		vma to cover (map full range of vma)
697  *	@addr:		vmalloc memory
698  *	@pgoff:		number of pages into addr before first page to map
699  *	@returns:	0 for success, -Exxx on failure
700  *
701  *	This function checks that addr is a valid vmalloc'ed area, and
702  *	that it is big enough to cover the vma. Will return failure if
703  *	that criteria isn't met.
704  *
705  *	Similar to remap_pfn_range (see mm/memory.c)
706  */
707 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
708 						unsigned long pgoff)
709 {
710 	struct vm_struct *area;
711 	unsigned long uaddr = vma->vm_start;
712 	unsigned long usize = vma->vm_end - vma->vm_start;
713 	int ret;
714 
715 	if ((PAGE_SIZE-1) & (unsigned long)addr)
716 		return -EINVAL;
717 
718 	read_lock(&vmlist_lock);
719 	area = __find_vm_area(addr);
720 	if (!area)
721 		goto out_einval_locked;
722 
723 	if (!(area->flags & VM_USERMAP))
724 		goto out_einval_locked;
725 
726 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
727 		goto out_einval_locked;
728 	read_unlock(&vmlist_lock);
729 
730 	addr += pgoff << PAGE_SHIFT;
731 	do {
732 		struct page *page = vmalloc_to_page(addr);
733 		ret = vm_insert_page(vma, uaddr, page);
734 		if (ret)
735 			return ret;
736 
737 		uaddr += PAGE_SIZE;
738 		addr += PAGE_SIZE;
739 		usize -= PAGE_SIZE;
740 	} while (usize > 0);
741 
742 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
743 	vma->vm_flags |= VM_RESERVED;
744 
745 	return ret;
746 
747 out_einval_locked:
748 	read_unlock(&vmlist_lock);
749 	return -EINVAL;
750 }
751 EXPORT_SYMBOL(remap_vmalloc_range);
752 
753