1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/compiler.h> 31 #include <linux/llist.h> 32 #include <linux/bitops.h> 33 34 #include <asm/uaccess.h> 35 #include <asm/tlbflush.h> 36 #include <asm/shmparam.h> 37 38 #include "internal.h" 39 40 struct vfree_deferred { 41 struct llist_head list; 42 struct work_struct wq; 43 }; 44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 45 46 static void __vunmap(const void *, int); 47 48 static void free_work(struct work_struct *w) 49 { 50 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 51 struct llist_node *llnode = llist_del_all(&p->list); 52 while (llnode) { 53 void *p = llnode; 54 llnode = llist_next(llnode); 55 __vunmap(p, 1); 56 } 57 } 58 59 /*** Page table manipulation functions ***/ 60 61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 62 { 63 pte_t *pte; 64 65 pte = pte_offset_kernel(pmd, addr); 66 do { 67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 68 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 69 } while (pte++, addr += PAGE_SIZE, addr != end); 70 } 71 72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 73 { 74 pmd_t *pmd; 75 unsigned long next; 76 77 pmd = pmd_offset(pud, addr); 78 do { 79 next = pmd_addr_end(addr, end); 80 if (pmd_clear_huge(pmd)) 81 continue; 82 if (pmd_none_or_clear_bad(pmd)) 83 continue; 84 vunmap_pte_range(pmd, addr, next); 85 } while (pmd++, addr = next, addr != end); 86 } 87 88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 89 { 90 pud_t *pud; 91 unsigned long next; 92 93 pud = pud_offset(pgd, addr); 94 do { 95 next = pud_addr_end(addr, end); 96 if (pud_clear_huge(pud)) 97 continue; 98 if (pud_none_or_clear_bad(pud)) 99 continue; 100 vunmap_pmd_range(pud, addr, next); 101 } while (pud++, addr = next, addr != end); 102 } 103 104 static void vunmap_page_range(unsigned long addr, unsigned long end) 105 { 106 pgd_t *pgd; 107 unsigned long next; 108 109 BUG_ON(addr >= end); 110 pgd = pgd_offset_k(addr); 111 do { 112 next = pgd_addr_end(addr, end); 113 if (pgd_none_or_clear_bad(pgd)) 114 continue; 115 vunmap_pud_range(pgd, addr, next); 116 } while (pgd++, addr = next, addr != end); 117 } 118 119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 120 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 121 { 122 pte_t *pte; 123 124 /* 125 * nr is a running index into the array which helps higher level 126 * callers keep track of where we're up to. 127 */ 128 129 pte = pte_alloc_kernel(pmd, addr); 130 if (!pte) 131 return -ENOMEM; 132 do { 133 struct page *page = pages[*nr]; 134 135 if (WARN_ON(!pte_none(*pte))) 136 return -EBUSY; 137 if (WARN_ON(!page)) 138 return -ENOMEM; 139 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 140 (*nr)++; 141 } while (pte++, addr += PAGE_SIZE, addr != end); 142 return 0; 143 } 144 145 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 146 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 147 { 148 pmd_t *pmd; 149 unsigned long next; 150 151 pmd = pmd_alloc(&init_mm, pud, addr); 152 if (!pmd) 153 return -ENOMEM; 154 do { 155 next = pmd_addr_end(addr, end); 156 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 157 return -ENOMEM; 158 } while (pmd++, addr = next, addr != end); 159 return 0; 160 } 161 162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 163 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 164 { 165 pud_t *pud; 166 unsigned long next; 167 168 pud = pud_alloc(&init_mm, pgd, addr); 169 if (!pud) 170 return -ENOMEM; 171 do { 172 next = pud_addr_end(addr, end); 173 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 174 return -ENOMEM; 175 } while (pud++, addr = next, addr != end); 176 return 0; 177 } 178 179 /* 180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 181 * will have pfns corresponding to the "pages" array. 182 * 183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 184 */ 185 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 186 pgprot_t prot, struct page **pages) 187 { 188 pgd_t *pgd; 189 unsigned long next; 190 unsigned long addr = start; 191 int err = 0; 192 int nr = 0; 193 194 BUG_ON(addr >= end); 195 pgd = pgd_offset_k(addr); 196 do { 197 next = pgd_addr_end(addr, end); 198 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 199 if (err) 200 return err; 201 } while (pgd++, addr = next, addr != end); 202 203 return nr; 204 } 205 206 static int vmap_page_range(unsigned long start, unsigned long end, 207 pgprot_t prot, struct page **pages) 208 { 209 int ret; 210 211 ret = vmap_page_range_noflush(start, end, prot, pages); 212 flush_cache_vmap(start, end); 213 return ret; 214 } 215 216 int is_vmalloc_or_module_addr(const void *x) 217 { 218 /* 219 * ARM, x86-64 and sparc64 put modules in a special place, 220 * and fall back on vmalloc() if that fails. Others 221 * just put it in the vmalloc space. 222 */ 223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 224 unsigned long addr = (unsigned long)x; 225 if (addr >= MODULES_VADDR && addr < MODULES_END) 226 return 1; 227 #endif 228 return is_vmalloc_addr(x); 229 } 230 231 /* 232 * Walk a vmap address to the struct page it maps. 233 */ 234 struct page *vmalloc_to_page(const void *vmalloc_addr) 235 { 236 unsigned long addr = (unsigned long) vmalloc_addr; 237 struct page *page = NULL; 238 pgd_t *pgd = pgd_offset_k(addr); 239 240 /* 241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 242 * architectures that do not vmalloc module space 243 */ 244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 245 246 if (!pgd_none(*pgd)) { 247 pud_t *pud = pud_offset(pgd, addr); 248 if (!pud_none(*pud)) { 249 pmd_t *pmd = pmd_offset(pud, addr); 250 if (!pmd_none(*pmd)) { 251 pte_t *ptep, pte; 252 253 ptep = pte_offset_map(pmd, addr); 254 pte = *ptep; 255 if (pte_present(pte)) 256 page = pte_page(pte); 257 pte_unmap(ptep); 258 } 259 } 260 } 261 return page; 262 } 263 EXPORT_SYMBOL(vmalloc_to_page); 264 265 /* 266 * Map a vmalloc()-space virtual address to the physical page frame number. 267 */ 268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 269 { 270 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 271 } 272 EXPORT_SYMBOL(vmalloc_to_pfn); 273 274 275 /*** Global kva allocator ***/ 276 277 #define VM_VM_AREA 0x04 278 279 static DEFINE_SPINLOCK(vmap_area_lock); 280 /* Export for kexec only */ 281 LIST_HEAD(vmap_area_list); 282 static LLIST_HEAD(vmap_purge_list); 283 static struct rb_root vmap_area_root = RB_ROOT; 284 285 /* The vmap cache globals are protected by vmap_area_lock */ 286 static struct rb_node *free_vmap_cache; 287 static unsigned long cached_hole_size; 288 static unsigned long cached_vstart; 289 static unsigned long cached_align; 290 291 static unsigned long vmap_area_pcpu_hole; 292 293 static struct vmap_area *__find_vmap_area(unsigned long addr) 294 { 295 struct rb_node *n = vmap_area_root.rb_node; 296 297 while (n) { 298 struct vmap_area *va; 299 300 va = rb_entry(n, struct vmap_area, rb_node); 301 if (addr < va->va_start) 302 n = n->rb_left; 303 else if (addr >= va->va_end) 304 n = n->rb_right; 305 else 306 return va; 307 } 308 309 return NULL; 310 } 311 312 static void __insert_vmap_area(struct vmap_area *va) 313 { 314 struct rb_node **p = &vmap_area_root.rb_node; 315 struct rb_node *parent = NULL; 316 struct rb_node *tmp; 317 318 while (*p) { 319 struct vmap_area *tmp_va; 320 321 parent = *p; 322 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 323 if (va->va_start < tmp_va->va_end) 324 p = &(*p)->rb_left; 325 else if (va->va_end > tmp_va->va_start) 326 p = &(*p)->rb_right; 327 else 328 BUG(); 329 } 330 331 rb_link_node(&va->rb_node, parent, p); 332 rb_insert_color(&va->rb_node, &vmap_area_root); 333 334 /* address-sort this list */ 335 tmp = rb_prev(&va->rb_node); 336 if (tmp) { 337 struct vmap_area *prev; 338 prev = rb_entry(tmp, struct vmap_area, rb_node); 339 list_add_rcu(&va->list, &prev->list); 340 } else 341 list_add_rcu(&va->list, &vmap_area_list); 342 } 343 344 static void purge_vmap_area_lazy(void); 345 346 /* 347 * Allocate a region of KVA of the specified size and alignment, within the 348 * vstart and vend. 349 */ 350 static struct vmap_area *alloc_vmap_area(unsigned long size, 351 unsigned long align, 352 unsigned long vstart, unsigned long vend, 353 int node, gfp_t gfp_mask) 354 { 355 struct vmap_area *va; 356 struct rb_node *n; 357 unsigned long addr; 358 int purged = 0; 359 struct vmap_area *first; 360 361 BUG_ON(!size); 362 BUG_ON(offset_in_page(size)); 363 BUG_ON(!is_power_of_2(align)); 364 365 va = kmalloc_node(sizeof(struct vmap_area), 366 gfp_mask & GFP_RECLAIM_MASK, node); 367 if (unlikely(!va)) 368 return ERR_PTR(-ENOMEM); 369 370 /* 371 * Only scan the relevant parts containing pointers to other objects 372 * to avoid false negatives. 373 */ 374 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 375 376 retry: 377 spin_lock(&vmap_area_lock); 378 /* 379 * Invalidate cache if we have more permissive parameters. 380 * cached_hole_size notes the largest hole noticed _below_ 381 * the vmap_area cached in free_vmap_cache: if size fits 382 * into that hole, we want to scan from vstart to reuse 383 * the hole instead of allocating above free_vmap_cache. 384 * Note that __free_vmap_area may update free_vmap_cache 385 * without updating cached_hole_size or cached_align. 386 */ 387 if (!free_vmap_cache || 388 size < cached_hole_size || 389 vstart < cached_vstart || 390 align < cached_align) { 391 nocache: 392 cached_hole_size = 0; 393 free_vmap_cache = NULL; 394 } 395 /* record if we encounter less permissive parameters */ 396 cached_vstart = vstart; 397 cached_align = align; 398 399 /* find starting point for our search */ 400 if (free_vmap_cache) { 401 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 402 addr = ALIGN(first->va_end, align); 403 if (addr < vstart) 404 goto nocache; 405 if (addr + size < addr) 406 goto overflow; 407 408 } else { 409 addr = ALIGN(vstart, align); 410 if (addr + size < addr) 411 goto overflow; 412 413 n = vmap_area_root.rb_node; 414 first = NULL; 415 416 while (n) { 417 struct vmap_area *tmp; 418 tmp = rb_entry(n, struct vmap_area, rb_node); 419 if (tmp->va_end >= addr) { 420 first = tmp; 421 if (tmp->va_start <= addr) 422 break; 423 n = n->rb_left; 424 } else 425 n = n->rb_right; 426 } 427 428 if (!first) 429 goto found; 430 } 431 432 /* from the starting point, walk areas until a suitable hole is found */ 433 while (addr + size > first->va_start && addr + size <= vend) { 434 if (addr + cached_hole_size < first->va_start) 435 cached_hole_size = first->va_start - addr; 436 addr = ALIGN(first->va_end, align); 437 if (addr + size < addr) 438 goto overflow; 439 440 if (list_is_last(&first->list, &vmap_area_list)) 441 goto found; 442 443 first = list_next_entry(first, list); 444 } 445 446 found: 447 if (addr + size > vend) 448 goto overflow; 449 450 va->va_start = addr; 451 va->va_end = addr + size; 452 va->flags = 0; 453 __insert_vmap_area(va); 454 free_vmap_cache = &va->rb_node; 455 spin_unlock(&vmap_area_lock); 456 457 BUG_ON(!IS_ALIGNED(va->va_start, align)); 458 BUG_ON(va->va_start < vstart); 459 BUG_ON(va->va_end > vend); 460 461 return va; 462 463 overflow: 464 spin_unlock(&vmap_area_lock); 465 if (!purged) { 466 purge_vmap_area_lazy(); 467 purged = 1; 468 goto retry; 469 } 470 if (printk_ratelimit()) 471 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 472 size); 473 kfree(va); 474 return ERR_PTR(-EBUSY); 475 } 476 477 static void __free_vmap_area(struct vmap_area *va) 478 { 479 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 480 481 if (free_vmap_cache) { 482 if (va->va_end < cached_vstart) { 483 free_vmap_cache = NULL; 484 } else { 485 struct vmap_area *cache; 486 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 487 if (va->va_start <= cache->va_start) { 488 free_vmap_cache = rb_prev(&va->rb_node); 489 /* 490 * We don't try to update cached_hole_size or 491 * cached_align, but it won't go very wrong. 492 */ 493 } 494 } 495 } 496 rb_erase(&va->rb_node, &vmap_area_root); 497 RB_CLEAR_NODE(&va->rb_node); 498 list_del_rcu(&va->list); 499 500 /* 501 * Track the highest possible candidate for pcpu area 502 * allocation. Areas outside of vmalloc area can be returned 503 * here too, consider only end addresses which fall inside 504 * vmalloc area proper. 505 */ 506 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 507 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 508 509 kfree_rcu(va, rcu_head); 510 } 511 512 /* 513 * Free a region of KVA allocated by alloc_vmap_area 514 */ 515 static void free_vmap_area(struct vmap_area *va) 516 { 517 spin_lock(&vmap_area_lock); 518 __free_vmap_area(va); 519 spin_unlock(&vmap_area_lock); 520 } 521 522 /* 523 * Clear the pagetable entries of a given vmap_area 524 */ 525 static void unmap_vmap_area(struct vmap_area *va) 526 { 527 vunmap_page_range(va->va_start, va->va_end); 528 } 529 530 static void vmap_debug_free_range(unsigned long start, unsigned long end) 531 { 532 /* 533 * Unmap page tables and force a TLB flush immediately if pagealloc 534 * debugging is enabled. This catches use after free bugs similarly to 535 * those in linear kernel virtual address space after a page has been 536 * freed. 537 * 538 * All the lazy freeing logic is still retained, in order to minimise 539 * intrusiveness of this debugging feature. 540 * 541 * This is going to be *slow* (linear kernel virtual address debugging 542 * doesn't do a broadcast TLB flush so it is a lot faster). 543 */ 544 if (debug_pagealloc_enabled()) { 545 vunmap_page_range(start, end); 546 flush_tlb_kernel_range(start, end); 547 } 548 } 549 550 /* 551 * lazy_max_pages is the maximum amount of virtual address space we gather up 552 * before attempting to purge with a TLB flush. 553 * 554 * There is a tradeoff here: a larger number will cover more kernel page tables 555 * and take slightly longer to purge, but it will linearly reduce the number of 556 * global TLB flushes that must be performed. It would seem natural to scale 557 * this number up linearly with the number of CPUs (because vmapping activity 558 * could also scale linearly with the number of CPUs), however it is likely 559 * that in practice, workloads might be constrained in other ways that mean 560 * vmap activity will not scale linearly with CPUs. Also, I want to be 561 * conservative and not introduce a big latency on huge systems, so go with 562 * a less aggressive log scale. It will still be an improvement over the old 563 * code, and it will be simple to change the scale factor if we find that it 564 * becomes a problem on bigger systems. 565 */ 566 static unsigned long lazy_max_pages(void) 567 { 568 unsigned int log; 569 570 log = fls(num_online_cpus()); 571 572 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 573 } 574 575 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 576 577 /* for per-CPU blocks */ 578 static void purge_fragmented_blocks_allcpus(void); 579 580 /* 581 * called before a call to iounmap() if the caller wants vm_area_struct's 582 * immediately freed. 583 */ 584 void set_iounmap_nonlazy(void) 585 { 586 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 587 } 588 589 /* 590 * Purges all lazily-freed vmap areas. 591 * 592 * If sync is 0 then don't purge if there is already a purge in progress. 593 * If force_flush is 1, then flush kernel TLBs between *start and *end even 594 * if we found no lazy vmap areas to unmap (callers can use this to optimise 595 * their own TLB flushing). 596 * Returns with *start = min(*start, lowest purged address) 597 * *end = max(*end, highest purged address) 598 */ 599 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 600 int sync, int force_flush) 601 { 602 static DEFINE_SPINLOCK(purge_lock); 603 struct llist_node *valist; 604 struct vmap_area *va; 605 struct vmap_area *n_va; 606 int nr = 0; 607 608 /* 609 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 610 * should not expect such behaviour. This just simplifies locking for 611 * the case that isn't actually used at the moment anyway. 612 */ 613 if (!sync && !force_flush) { 614 if (!spin_trylock(&purge_lock)) 615 return; 616 } else 617 spin_lock(&purge_lock); 618 619 if (sync) 620 purge_fragmented_blocks_allcpus(); 621 622 valist = llist_del_all(&vmap_purge_list); 623 llist_for_each_entry(va, valist, purge_list) { 624 if (va->va_start < *start) 625 *start = va->va_start; 626 if (va->va_end > *end) 627 *end = va->va_end; 628 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 629 } 630 631 if (nr) 632 atomic_sub(nr, &vmap_lazy_nr); 633 634 if (nr || force_flush) 635 flush_tlb_kernel_range(*start, *end); 636 637 if (nr) { 638 spin_lock(&vmap_area_lock); 639 llist_for_each_entry_safe(va, n_va, valist, purge_list) 640 __free_vmap_area(va); 641 spin_unlock(&vmap_area_lock); 642 } 643 spin_unlock(&purge_lock); 644 } 645 646 /* 647 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 648 * is already purging. 649 */ 650 static void try_purge_vmap_area_lazy(void) 651 { 652 unsigned long start = ULONG_MAX, end = 0; 653 654 __purge_vmap_area_lazy(&start, &end, 0, 0); 655 } 656 657 /* 658 * Kick off a purge of the outstanding lazy areas. 659 */ 660 static void purge_vmap_area_lazy(void) 661 { 662 unsigned long start = ULONG_MAX, end = 0; 663 664 __purge_vmap_area_lazy(&start, &end, 1, 0); 665 } 666 667 /* 668 * Free a vmap area, caller ensuring that the area has been unmapped 669 * and flush_cache_vunmap had been called for the correct range 670 * previously. 671 */ 672 static void free_vmap_area_noflush(struct vmap_area *va) 673 { 674 int nr_lazy; 675 676 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 677 &vmap_lazy_nr); 678 679 /* After this point, we may free va at any time */ 680 llist_add(&va->purge_list, &vmap_purge_list); 681 682 if (unlikely(nr_lazy > lazy_max_pages())) 683 try_purge_vmap_area_lazy(); 684 } 685 686 /* 687 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 688 * called for the correct range previously. 689 */ 690 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 691 { 692 unmap_vmap_area(va); 693 free_vmap_area_noflush(va); 694 } 695 696 /* 697 * Free and unmap a vmap area 698 */ 699 static void free_unmap_vmap_area(struct vmap_area *va) 700 { 701 flush_cache_vunmap(va->va_start, va->va_end); 702 free_unmap_vmap_area_noflush(va); 703 } 704 705 static struct vmap_area *find_vmap_area(unsigned long addr) 706 { 707 struct vmap_area *va; 708 709 spin_lock(&vmap_area_lock); 710 va = __find_vmap_area(addr); 711 spin_unlock(&vmap_area_lock); 712 713 return va; 714 } 715 716 static void free_unmap_vmap_area_addr(unsigned long addr) 717 { 718 struct vmap_area *va; 719 720 va = find_vmap_area(addr); 721 BUG_ON(!va); 722 free_unmap_vmap_area(va); 723 } 724 725 726 /*** Per cpu kva allocator ***/ 727 728 /* 729 * vmap space is limited especially on 32 bit architectures. Ensure there is 730 * room for at least 16 percpu vmap blocks per CPU. 731 */ 732 /* 733 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 734 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 735 * instead (we just need a rough idea) 736 */ 737 #if BITS_PER_LONG == 32 738 #define VMALLOC_SPACE (128UL*1024*1024) 739 #else 740 #define VMALLOC_SPACE (128UL*1024*1024*1024) 741 #endif 742 743 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 744 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 745 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 746 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 747 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 748 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 749 #define VMAP_BBMAP_BITS \ 750 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 751 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 752 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 753 754 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 755 756 static bool vmap_initialized __read_mostly = false; 757 758 struct vmap_block_queue { 759 spinlock_t lock; 760 struct list_head free; 761 }; 762 763 struct vmap_block { 764 spinlock_t lock; 765 struct vmap_area *va; 766 unsigned long free, dirty; 767 unsigned long dirty_min, dirty_max; /*< dirty range */ 768 struct list_head free_list; 769 struct rcu_head rcu_head; 770 struct list_head purge; 771 }; 772 773 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 774 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 775 776 /* 777 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 778 * in the free path. Could get rid of this if we change the API to return a 779 * "cookie" from alloc, to be passed to free. But no big deal yet. 780 */ 781 static DEFINE_SPINLOCK(vmap_block_tree_lock); 782 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 783 784 /* 785 * We should probably have a fallback mechanism to allocate virtual memory 786 * out of partially filled vmap blocks. However vmap block sizing should be 787 * fairly reasonable according to the vmalloc size, so it shouldn't be a 788 * big problem. 789 */ 790 791 static unsigned long addr_to_vb_idx(unsigned long addr) 792 { 793 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 794 addr /= VMAP_BLOCK_SIZE; 795 return addr; 796 } 797 798 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 799 { 800 unsigned long addr; 801 802 addr = va_start + (pages_off << PAGE_SHIFT); 803 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 804 return (void *)addr; 805 } 806 807 /** 808 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 809 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 810 * @order: how many 2^order pages should be occupied in newly allocated block 811 * @gfp_mask: flags for the page level allocator 812 * 813 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 814 */ 815 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 816 { 817 struct vmap_block_queue *vbq; 818 struct vmap_block *vb; 819 struct vmap_area *va; 820 unsigned long vb_idx; 821 int node, err; 822 void *vaddr; 823 824 node = numa_node_id(); 825 826 vb = kmalloc_node(sizeof(struct vmap_block), 827 gfp_mask & GFP_RECLAIM_MASK, node); 828 if (unlikely(!vb)) 829 return ERR_PTR(-ENOMEM); 830 831 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 832 VMALLOC_START, VMALLOC_END, 833 node, gfp_mask); 834 if (IS_ERR(va)) { 835 kfree(vb); 836 return ERR_CAST(va); 837 } 838 839 err = radix_tree_preload(gfp_mask); 840 if (unlikely(err)) { 841 kfree(vb); 842 free_vmap_area(va); 843 return ERR_PTR(err); 844 } 845 846 vaddr = vmap_block_vaddr(va->va_start, 0); 847 spin_lock_init(&vb->lock); 848 vb->va = va; 849 /* At least something should be left free */ 850 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 851 vb->free = VMAP_BBMAP_BITS - (1UL << order); 852 vb->dirty = 0; 853 vb->dirty_min = VMAP_BBMAP_BITS; 854 vb->dirty_max = 0; 855 INIT_LIST_HEAD(&vb->free_list); 856 857 vb_idx = addr_to_vb_idx(va->va_start); 858 spin_lock(&vmap_block_tree_lock); 859 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 860 spin_unlock(&vmap_block_tree_lock); 861 BUG_ON(err); 862 radix_tree_preload_end(); 863 864 vbq = &get_cpu_var(vmap_block_queue); 865 spin_lock(&vbq->lock); 866 list_add_tail_rcu(&vb->free_list, &vbq->free); 867 spin_unlock(&vbq->lock); 868 put_cpu_var(vmap_block_queue); 869 870 return vaddr; 871 } 872 873 static void free_vmap_block(struct vmap_block *vb) 874 { 875 struct vmap_block *tmp; 876 unsigned long vb_idx; 877 878 vb_idx = addr_to_vb_idx(vb->va->va_start); 879 spin_lock(&vmap_block_tree_lock); 880 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 881 spin_unlock(&vmap_block_tree_lock); 882 BUG_ON(tmp != vb); 883 884 free_vmap_area_noflush(vb->va); 885 kfree_rcu(vb, rcu_head); 886 } 887 888 static void purge_fragmented_blocks(int cpu) 889 { 890 LIST_HEAD(purge); 891 struct vmap_block *vb; 892 struct vmap_block *n_vb; 893 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 894 895 rcu_read_lock(); 896 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 897 898 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 899 continue; 900 901 spin_lock(&vb->lock); 902 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 903 vb->free = 0; /* prevent further allocs after releasing lock */ 904 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 905 vb->dirty_min = 0; 906 vb->dirty_max = VMAP_BBMAP_BITS; 907 spin_lock(&vbq->lock); 908 list_del_rcu(&vb->free_list); 909 spin_unlock(&vbq->lock); 910 spin_unlock(&vb->lock); 911 list_add_tail(&vb->purge, &purge); 912 } else 913 spin_unlock(&vb->lock); 914 } 915 rcu_read_unlock(); 916 917 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 918 list_del(&vb->purge); 919 free_vmap_block(vb); 920 } 921 } 922 923 static void purge_fragmented_blocks_allcpus(void) 924 { 925 int cpu; 926 927 for_each_possible_cpu(cpu) 928 purge_fragmented_blocks(cpu); 929 } 930 931 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 932 { 933 struct vmap_block_queue *vbq; 934 struct vmap_block *vb; 935 void *vaddr = NULL; 936 unsigned int order; 937 938 BUG_ON(offset_in_page(size)); 939 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 940 if (WARN_ON(size == 0)) { 941 /* 942 * Allocating 0 bytes isn't what caller wants since 943 * get_order(0) returns funny result. Just warn and terminate 944 * early. 945 */ 946 return NULL; 947 } 948 order = get_order(size); 949 950 rcu_read_lock(); 951 vbq = &get_cpu_var(vmap_block_queue); 952 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 953 unsigned long pages_off; 954 955 spin_lock(&vb->lock); 956 if (vb->free < (1UL << order)) { 957 spin_unlock(&vb->lock); 958 continue; 959 } 960 961 pages_off = VMAP_BBMAP_BITS - vb->free; 962 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 963 vb->free -= 1UL << order; 964 if (vb->free == 0) { 965 spin_lock(&vbq->lock); 966 list_del_rcu(&vb->free_list); 967 spin_unlock(&vbq->lock); 968 } 969 970 spin_unlock(&vb->lock); 971 break; 972 } 973 974 put_cpu_var(vmap_block_queue); 975 rcu_read_unlock(); 976 977 /* Allocate new block if nothing was found */ 978 if (!vaddr) 979 vaddr = new_vmap_block(order, gfp_mask); 980 981 return vaddr; 982 } 983 984 static void vb_free(const void *addr, unsigned long size) 985 { 986 unsigned long offset; 987 unsigned long vb_idx; 988 unsigned int order; 989 struct vmap_block *vb; 990 991 BUG_ON(offset_in_page(size)); 992 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 993 994 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 995 996 order = get_order(size); 997 998 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 999 offset >>= PAGE_SHIFT; 1000 1001 vb_idx = addr_to_vb_idx((unsigned long)addr); 1002 rcu_read_lock(); 1003 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1004 rcu_read_unlock(); 1005 BUG_ON(!vb); 1006 1007 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1008 1009 spin_lock(&vb->lock); 1010 1011 /* Expand dirty range */ 1012 vb->dirty_min = min(vb->dirty_min, offset); 1013 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1014 1015 vb->dirty += 1UL << order; 1016 if (vb->dirty == VMAP_BBMAP_BITS) { 1017 BUG_ON(vb->free); 1018 spin_unlock(&vb->lock); 1019 free_vmap_block(vb); 1020 } else 1021 spin_unlock(&vb->lock); 1022 } 1023 1024 /** 1025 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1026 * 1027 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1028 * to amortize TLB flushing overheads. What this means is that any page you 1029 * have now, may, in a former life, have been mapped into kernel virtual 1030 * address by the vmap layer and so there might be some CPUs with TLB entries 1031 * still referencing that page (additional to the regular 1:1 kernel mapping). 1032 * 1033 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1034 * be sure that none of the pages we have control over will have any aliases 1035 * from the vmap layer. 1036 */ 1037 void vm_unmap_aliases(void) 1038 { 1039 unsigned long start = ULONG_MAX, end = 0; 1040 int cpu; 1041 int flush = 0; 1042 1043 if (unlikely(!vmap_initialized)) 1044 return; 1045 1046 for_each_possible_cpu(cpu) { 1047 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1048 struct vmap_block *vb; 1049 1050 rcu_read_lock(); 1051 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1052 spin_lock(&vb->lock); 1053 if (vb->dirty) { 1054 unsigned long va_start = vb->va->va_start; 1055 unsigned long s, e; 1056 1057 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1058 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1059 1060 start = min(s, start); 1061 end = max(e, end); 1062 1063 flush = 1; 1064 } 1065 spin_unlock(&vb->lock); 1066 } 1067 rcu_read_unlock(); 1068 } 1069 1070 __purge_vmap_area_lazy(&start, &end, 1, flush); 1071 } 1072 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1073 1074 /** 1075 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1076 * @mem: the pointer returned by vm_map_ram 1077 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1078 */ 1079 void vm_unmap_ram(const void *mem, unsigned int count) 1080 { 1081 unsigned long size = count << PAGE_SHIFT; 1082 unsigned long addr = (unsigned long)mem; 1083 1084 BUG_ON(!addr); 1085 BUG_ON(addr < VMALLOC_START); 1086 BUG_ON(addr > VMALLOC_END); 1087 BUG_ON(!PAGE_ALIGNED(addr)); 1088 1089 debug_check_no_locks_freed(mem, size); 1090 vmap_debug_free_range(addr, addr+size); 1091 1092 if (likely(count <= VMAP_MAX_ALLOC)) 1093 vb_free(mem, size); 1094 else 1095 free_unmap_vmap_area_addr(addr); 1096 } 1097 EXPORT_SYMBOL(vm_unmap_ram); 1098 1099 /** 1100 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1101 * @pages: an array of pointers to the pages to be mapped 1102 * @count: number of pages 1103 * @node: prefer to allocate data structures on this node 1104 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1105 * 1106 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1107 * faster than vmap so it's good. But if you mix long-life and short-life 1108 * objects with vm_map_ram(), it could consume lots of address space through 1109 * fragmentation (especially on a 32bit machine). You could see failures in 1110 * the end. Please use this function for short-lived objects. 1111 * 1112 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1113 */ 1114 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1115 { 1116 unsigned long size = count << PAGE_SHIFT; 1117 unsigned long addr; 1118 void *mem; 1119 1120 if (likely(count <= VMAP_MAX_ALLOC)) { 1121 mem = vb_alloc(size, GFP_KERNEL); 1122 if (IS_ERR(mem)) 1123 return NULL; 1124 addr = (unsigned long)mem; 1125 } else { 1126 struct vmap_area *va; 1127 va = alloc_vmap_area(size, PAGE_SIZE, 1128 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1129 if (IS_ERR(va)) 1130 return NULL; 1131 1132 addr = va->va_start; 1133 mem = (void *)addr; 1134 } 1135 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1136 vm_unmap_ram(mem, count); 1137 return NULL; 1138 } 1139 return mem; 1140 } 1141 EXPORT_SYMBOL(vm_map_ram); 1142 1143 static struct vm_struct *vmlist __initdata; 1144 /** 1145 * vm_area_add_early - add vmap area early during boot 1146 * @vm: vm_struct to add 1147 * 1148 * This function is used to add fixed kernel vm area to vmlist before 1149 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1150 * should contain proper values and the other fields should be zero. 1151 * 1152 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1153 */ 1154 void __init vm_area_add_early(struct vm_struct *vm) 1155 { 1156 struct vm_struct *tmp, **p; 1157 1158 BUG_ON(vmap_initialized); 1159 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1160 if (tmp->addr >= vm->addr) { 1161 BUG_ON(tmp->addr < vm->addr + vm->size); 1162 break; 1163 } else 1164 BUG_ON(tmp->addr + tmp->size > vm->addr); 1165 } 1166 vm->next = *p; 1167 *p = vm; 1168 } 1169 1170 /** 1171 * vm_area_register_early - register vmap area early during boot 1172 * @vm: vm_struct to register 1173 * @align: requested alignment 1174 * 1175 * This function is used to register kernel vm area before 1176 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1177 * proper values on entry and other fields should be zero. On return, 1178 * vm->addr contains the allocated address. 1179 * 1180 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1181 */ 1182 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1183 { 1184 static size_t vm_init_off __initdata; 1185 unsigned long addr; 1186 1187 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1188 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1189 1190 vm->addr = (void *)addr; 1191 1192 vm_area_add_early(vm); 1193 } 1194 1195 void __init vmalloc_init(void) 1196 { 1197 struct vmap_area *va; 1198 struct vm_struct *tmp; 1199 int i; 1200 1201 for_each_possible_cpu(i) { 1202 struct vmap_block_queue *vbq; 1203 struct vfree_deferred *p; 1204 1205 vbq = &per_cpu(vmap_block_queue, i); 1206 spin_lock_init(&vbq->lock); 1207 INIT_LIST_HEAD(&vbq->free); 1208 p = &per_cpu(vfree_deferred, i); 1209 init_llist_head(&p->list); 1210 INIT_WORK(&p->wq, free_work); 1211 } 1212 1213 /* Import existing vmlist entries. */ 1214 for (tmp = vmlist; tmp; tmp = tmp->next) { 1215 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1216 va->flags = VM_VM_AREA; 1217 va->va_start = (unsigned long)tmp->addr; 1218 va->va_end = va->va_start + tmp->size; 1219 va->vm = tmp; 1220 __insert_vmap_area(va); 1221 } 1222 1223 vmap_area_pcpu_hole = VMALLOC_END; 1224 1225 vmap_initialized = true; 1226 } 1227 1228 /** 1229 * map_kernel_range_noflush - map kernel VM area with the specified pages 1230 * @addr: start of the VM area to map 1231 * @size: size of the VM area to map 1232 * @prot: page protection flags to use 1233 * @pages: pages to map 1234 * 1235 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1236 * specify should have been allocated using get_vm_area() and its 1237 * friends. 1238 * 1239 * NOTE: 1240 * This function does NOT do any cache flushing. The caller is 1241 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1242 * before calling this function. 1243 * 1244 * RETURNS: 1245 * The number of pages mapped on success, -errno on failure. 1246 */ 1247 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1248 pgprot_t prot, struct page **pages) 1249 { 1250 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1251 } 1252 1253 /** 1254 * unmap_kernel_range_noflush - unmap kernel VM area 1255 * @addr: start of the VM area to unmap 1256 * @size: size of the VM area to unmap 1257 * 1258 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1259 * specify should have been allocated using get_vm_area() and its 1260 * friends. 1261 * 1262 * NOTE: 1263 * This function does NOT do any cache flushing. The caller is 1264 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1265 * before calling this function and flush_tlb_kernel_range() after. 1266 */ 1267 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1268 { 1269 vunmap_page_range(addr, addr + size); 1270 } 1271 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1272 1273 /** 1274 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1275 * @addr: start of the VM area to unmap 1276 * @size: size of the VM area to unmap 1277 * 1278 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1279 * the unmapping and tlb after. 1280 */ 1281 void unmap_kernel_range(unsigned long addr, unsigned long size) 1282 { 1283 unsigned long end = addr + size; 1284 1285 flush_cache_vunmap(addr, end); 1286 vunmap_page_range(addr, end); 1287 flush_tlb_kernel_range(addr, end); 1288 } 1289 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1290 1291 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1292 { 1293 unsigned long addr = (unsigned long)area->addr; 1294 unsigned long end = addr + get_vm_area_size(area); 1295 int err; 1296 1297 err = vmap_page_range(addr, end, prot, pages); 1298 1299 return err > 0 ? 0 : err; 1300 } 1301 EXPORT_SYMBOL_GPL(map_vm_area); 1302 1303 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1304 unsigned long flags, const void *caller) 1305 { 1306 spin_lock(&vmap_area_lock); 1307 vm->flags = flags; 1308 vm->addr = (void *)va->va_start; 1309 vm->size = va->va_end - va->va_start; 1310 vm->caller = caller; 1311 va->vm = vm; 1312 va->flags |= VM_VM_AREA; 1313 spin_unlock(&vmap_area_lock); 1314 } 1315 1316 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1317 { 1318 /* 1319 * Before removing VM_UNINITIALIZED, 1320 * we should make sure that vm has proper values. 1321 * Pair with smp_rmb() in show_numa_info(). 1322 */ 1323 smp_wmb(); 1324 vm->flags &= ~VM_UNINITIALIZED; 1325 } 1326 1327 static struct vm_struct *__get_vm_area_node(unsigned long size, 1328 unsigned long align, unsigned long flags, unsigned long start, 1329 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1330 { 1331 struct vmap_area *va; 1332 struct vm_struct *area; 1333 1334 BUG_ON(in_interrupt()); 1335 if (flags & VM_IOREMAP) 1336 align = 1ul << clamp_t(int, fls_long(size), 1337 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1338 1339 size = PAGE_ALIGN(size); 1340 if (unlikely(!size)) 1341 return NULL; 1342 1343 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1344 if (unlikely(!area)) 1345 return NULL; 1346 1347 if (!(flags & VM_NO_GUARD)) 1348 size += PAGE_SIZE; 1349 1350 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1351 if (IS_ERR(va)) { 1352 kfree(area); 1353 return NULL; 1354 } 1355 1356 setup_vmalloc_vm(area, va, flags, caller); 1357 1358 return area; 1359 } 1360 1361 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1362 unsigned long start, unsigned long end) 1363 { 1364 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1365 GFP_KERNEL, __builtin_return_address(0)); 1366 } 1367 EXPORT_SYMBOL_GPL(__get_vm_area); 1368 1369 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1370 unsigned long start, unsigned long end, 1371 const void *caller) 1372 { 1373 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1374 GFP_KERNEL, caller); 1375 } 1376 1377 /** 1378 * get_vm_area - reserve a contiguous kernel virtual area 1379 * @size: size of the area 1380 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1381 * 1382 * Search an area of @size in the kernel virtual mapping area, 1383 * and reserved it for out purposes. Returns the area descriptor 1384 * on success or %NULL on failure. 1385 */ 1386 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1387 { 1388 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1389 NUMA_NO_NODE, GFP_KERNEL, 1390 __builtin_return_address(0)); 1391 } 1392 1393 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1394 const void *caller) 1395 { 1396 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1397 NUMA_NO_NODE, GFP_KERNEL, caller); 1398 } 1399 1400 /** 1401 * find_vm_area - find a continuous kernel virtual area 1402 * @addr: base address 1403 * 1404 * Search for the kernel VM area starting at @addr, and return it. 1405 * It is up to the caller to do all required locking to keep the returned 1406 * pointer valid. 1407 */ 1408 struct vm_struct *find_vm_area(const void *addr) 1409 { 1410 struct vmap_area *va; 1411 1412 va = find_vmap_area((unsigned long)addr); 1413 if (va && va->flags & VM_VM_AREA) 1414 return va->vm; 1415 1416 return NULL; 1417 } 1418 1419 /** 1420 * remove_vm_area - find and remove a continuous kernel virtual area 1421 * @addr: base address 1422 * 1423 * Search for the kernel VM area starting at @addr, and remove it. 1424 * This function returns the found VM area, but using it is NOT safe 1425 * on SMP machines, except for its size or flags. 1426 */ 1427 struct vm_struct *remove_vm_area(const void *addr) 1428 { 1429 struct vmap_area *va; 1430 1431 va = find_vmap_area((unsigned long)addr); 1432 if (va && va->flags & VM_VM_AREA) { 1433 struct vm_struct *vm = va->vm; 1434 1435 spin_lock(&vmap_area_lock); 1436 va->vm = NULL; 1437 va->flags &= ~VM_VM_AREA; 1438 spin_unlock(&vmap_area_lock); 1439 1440 vmap_debug_free_range(va->va_start, va->va_end); 1441 kasan_free_shadow(vm); 1442 free_unmap_vmap_area(va); 1443 1444 return vm; 1445 } 1446 return NULL; 1447 } 1448 1449 static void __vunmap(const void *addr, int deallocate_pages) 1450 { 1451 struct vm_struct *area; 1452 1453 if (!addr) 1454 return; 1455 1456 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1457 addr)) 1458 return; 1459 1460 area = remove_vm_area(addr); 1461 if (unlikely(!area)) { 1462 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1463 addr); 1464 return; 1465 } 1466 1467 debug_check_no_locks_freed(addr, get_vm_area_size(area)); 1468 debug_check_no_obj_freed(addr, get_vm_area_size(area)); 1469 1470 if (deallocate_pages) { 1471 int i; 1472 1473 for (i = 0; i < area->nr_pages; i++) { 1474 struct page *page = area->pages[i]; 1475 1476 BUG_ON(!page); 1477 __free_kmem_pages(page, 0); 1478 } 1479 1480 kvfree(area->pages); 1481 } 1482 1483 kfree(area); 1484 return; 1485 } 1486 1487 /** 1488 * vfree - release memory allocated by vmalloc() 1489 * @addr: memory base address 1490 * 1491 * Free the virtually continuous memory area starting at @addr, as 1492 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1493 * NULL, no operation is performed. 1494 * 1495 * Must not be called in NMI context (strictly speaking, only if we don't 1496 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1497 * conventions for vfree() arch-depenedent would be a really bad idea) 1498 * 1499 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1500 */ 1501 void vfree(const void *addr) 1502 { 1503 BUG_ON(in_nmi()); 1504 1505 kmemleak_free(addr); 1506 1507 if (!addr) 1508 return; 1509 if (unlikely(in_interrupt())) { 1510 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1511 if (llist_add((struct llist_node *)addr, &p->list)) 1512 schedule_work(&p->wq); 1513 } else 1514 __vunmap(addr, 1); 1515 } 1516 EXPORT_SYMBOL(vfree); 1517 1518 /** 1519 * vunmap - release virtual mapping obtained by vmap() 1520 * @addr: memory base address 1521 * 1522 * Free the virtually contiguous memory area starting at @addr, 1523 * which was created from the page array passed to vmap(). 1524 * 1525 * Must not be called in interrupt context. 1526 */ 1527 void vunmap(const void *addr) 1528 { 1529 BUG_ON(in_interrupt()); 1530 might_sleep(); 1531 if (addr) 1532 __vunmap(addr, 0); 1533 } 1534 EXPORT_SYMBOL(vunmap); 1535 1536 /** 1537 * vmap - map an array of pages into virtually contiguous space 1538 * @pages: array of page pointers 1539 * @count: number of pages to map 1540 * @flags: vm_area->flags 1541 * @prot: page protection for the mapping 1542 * 1543 * Maps @count pages from @pages into contiguous kernel virtual 1544 * space. 1545 */ 1546 void *vmap(struct page **pages, unsigned int count, 1547 unsigned long flags, pgprot_t prot) 1548 { 1549 struct vm_struct *area; 1550 1551 might_sleep(); 1552 1553 if (count > totalram_pages) 1554 return NULL; 1555 1556 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1557 __builtin_return_address(0)); 1558 if (!area) 1559 return NULL; 1560 1561 if (map_vm_area(area, prot, pages)) { 1562 vunmap(area->addr); 1563 return NULL; 1564 } 1565 1566 return area->addr; 1567 } 1568 EXPORT_SYMBOL(vmap); 1569 1570 static void *__vmalloc_node(unsigned long size, unsigned long align, 1571 gfp_t gfp_mask, pgprot_t prot, 1572 int node, const void *caller); 1573 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1574 pgprot_t prot, int node) 1575 { 1576 const int order = 0; 1577 struct page **pages; 1578 unsigned int nr_pages, array_size, i; 1579 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1580 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1581 1582 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1583 array_size = (nr_pages * sizeof(struct page *)); 1584 1585 area->nr_pages = nr_pages; 1586 /* Please note that the recursion is strictly bounded. */ 1587 if (array_size > PAGE_SIZE) { 1588 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1589 PAGE_KERNEL, node, area->caller); 1590 } else { 1591 pages = kmalloc_node(array_size, nested_gfp, node); 1592 } 1593 area->pages = pages; 1594 if (!area->pages) { 1595 remove_vm_area(area->addr); 1596 kfree(area); 1597 return NULL; 1598 } 1599 1600 for (i = 0; i < area->nr_pages; i++) { 1601 struct page *page; 1602 1603 if (node == NUMA_NO_NODE) 1604 page = alloc_kmem_pages(alloc_mask, order); 1605 else 1606 page = alloc_kmem_pages_node(node, alloc_mask, order); 1607 1608 if (unlikely(!page)) { 1609 /* Successfully allocated i pages, free them in __vunmap() */ 1610 area->nr_pages = i; 1611 goto fail; 1612 } 1613 area->pages[i] = page; 1614 if (gfpflags_allow_blocking(gfp_mask)) 1615 cond_resched(); 1616 } 1617 1618 if (map_vm_area(area, prot, pages)) 1619 goto fail; 1620 return area->addr; 1621 1622 fail: 1623 warn_alloc_failed(gfp_mask, order, 1624 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1625 (area->nr_pages*PAGE_SIZE), area->size); 1626 vfree(area->addr); 1627 return NULL; 1628 } 1629 1630 /** 1631 * __vmalloc_node_range - allocate virtually contiguous memory 1632 * @size: allocation size 1633 * @align: desired alignment 1634 * @start: vm area range start 1635 * @end: vm area range end 1636 * @gfp_mask: flags for the page level allocator 1637 * @prot: protection mask for the allocated pages 1638 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1639 * @node: node to use for allocation or NUMA_NO_NODE 1640 * @caller: caller's return address 1641 * 1642 * Allocate enough pages to cover @size from the page level 1643 * allocator with @gfp_mask flags. Map them into contiguous 1644 * kernel virtual space, using a pagetable protection of @prot. 1645 */ 1646 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1647 unsigned long start, unsigned long end, gfp_t gfp_mask, 1648 pgprot_t prot, unsigned long vm_flags, int node, 1649 const void *caller) 1650 { 1651 struct vm_struct *area; 1652 void *addr; 1653 unsigned long real_size = size; 1654 1655 size = PAGE_ALIGN(size); 1656 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1657 goto fail; 1658 1659 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1660 vm_flags, start, end, node, gfp_mask, caller); 1661 if (!area) 1662 goto fail; 1663 1664 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1665 if (!addr) 1666 return NULL; 1667 1668 /* 1669 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1670 * flag. It means that vm_struct is not fully initialized. 1671 * Now, it is fully initialized, so remove this flag here. 1672 */ 1673 clear_vm_uninitialized_flag(area); 1674 1675 /* 1676 * A ref_count = 2 is needed because vm_struct allocated in 1677 * __get_vm_area_node() contains a reference to the virtual address of 1678 * the vmalloc'ed block. 1679 */ 1680 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1681 1682 return addr; 1683 1684 fail: 1685 warn_alloc_failed(gfp_mask, 0, 1686 "vmalloc: allocation failure: %lu bytes\n", 1687 real_size); 1688 return NULL; 1689 } 1690 1691 /** 1692 * __vmalloc_node - allocate virtually contiguous memory 1693 * @size: allocation size 1694 * @align: desired alignment 1695 * @gfp_mask: flags for the page level allocator 1696 * @prot: protection mask for the allocated pages 1697 * @node: node to use for allocation or NUMA_NO_NODE 1698 * @caller: caller's return address 1699 * 1700 * Allocate enough pages to cover @size from the page level 1701 * allocator with @gfp_mask flags. Map them into contiguous 1702 * kernel virtual space, using a pagetable protection of @prot. 1703 */ 1704 static void *__vmalloc_node(unsigned long size, unsigned long align, 1705 gfp_t gfp_mask, pgprot_t prot, 1706 int node, const void *caller) 1707 { 1708 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1709 gfp_mask, prot, 0, node, caller); 1710 } 1711 1712 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1713 { 1714 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1715 __builtin_return_address(0)); 1716 } 1717 EXPORT_SYMBOL(__vmalloc); 1718 1719 static inline void *__vmalloc_node_flags(unsigned long size, 1720 int node, gfp_t flags) 1721 { 1722 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1723 node, __builtin_return_address(0)); 1724 } 1725 1726 /** 1727 * vmalloc - allocate virtually contiguous memory 1728 * @size: allocation size 1729 * Allocate enough pages to cover @size from the page level 1730 * allocator and map them into contiguous kernel virtual space. 1731 * 1732 * For tight control over page level allocator and protection flags 1733 * use __vmalloc() instead. 1734 */ 1735 void *vmalloc(unsigned long size) 1736 { 1737 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1738 GFP_KERNEL | __GFP_HIGHMEM); 1739 } 1740 EXPORT_SYMBOL(vmalloc); 1741 1742 /** 1743 * vzalloc - allocate virtually contiguous memory with zero fill 1744 * @size: allocation size 1745 * Allocate enough pages to cover @size from the page level 1746 * allocator and map them into contiguous kernel virtual space. 1747 * The memory allocated is set to zero. 1748 * 1749 * For tight control over page level allocator and protection flags 1750 * use __vmalloc() instead. 1751 */ 1752 void *vzalloc(unsigned long size) 1753 { 1754 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1755 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1756 } 1757 EXPORT_SYMBOL(vzalloc); 1758 1759 /** 1760 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1761 * @size: allocation size 1762 * 1763 * The resulting memory area is zeroed so it can be mapped to userspace 1764 * without leaking data. 1765 */ 1766 void *vmalloc_user(unsigned long size) 1767 { 1768 struct vm_struct *area; 1769 void *ret; 1770 1771 ret = __vmalloc_node(size, SHMLBA, 1772 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1773 PAGE_KERNEL, NUMA_NO_NODE, 1774 __builtin_return_address(0)); 1775 if (ret) { 1776 area = find_vm_area(ret); 1777 area->flags |= VM_USERMAP; 1778 } 1779 return ret; 1780 } 1781 EXPORT_SYMBOL(vmalloc_user); 1782 1783 /** 1784 * vmalloc_node - allocate memory on a specific node 1785 * @size: allocation size 1786 * @node: numa node 1787 * 1788 * Allocate enough pages to cover @size from the page level 1789 * allocator and map them into contiguous kernel virtual space. 1790 * 1791 * For tight control over page level allocator and protection flags 1792 * use __vmalloc() instead. 1793 */ 1794 void *vmalloc_node(unsigned long size, int node) 1795 { 1796 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1797 node, __builtin_return_address(0)); 1798 } 1799 EXPORT_SYMBOL(vmalloc_node); 1800 1801 /** 1802 * vzalloc_node - allocate memory on a specific node with zero fill 1803 * @size: allocation size 1804 * @node: numa node 1805 * 1806 * Allocate enough pages to cover @size from the page level 1807 * allocator and map them into contiguous kernel virtual space. 1808 * The memory allocated is set to zero. 1809 * 1810 * For tight control over page level allocator and protection flags 1811 * use __vmalloc_node() instead. 1812 */ 1813 void *vzalloc_node(unsigned long size, int node) 1814 { 1815 return __vmalloc_node_flags(size, node, 1816 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1817 } 1818 EXPORT_SYMBOL(vzalloc_node); 1819 1820 #ifndef PAGE_KERNEL_EXEC 1821 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1822 #endif 1823 1824 /** 1825 * vmalloc_exec - allocate virtually contiguous, executable memory 1826 * @size: allocation size 1827 * 1828 * Kernel-internal function to allocate enough pages to cover @size 1829 * the page level allocator and map them into contiguous and 1830 * executable kernel virtual space. 1831 * 1832 * For tight control over page level allocator and protection flags 1833 * use __vmalloc() instead. 1834 */ 1835 1836 void *vmalloc_exec(unsigned long size) 1837 { 1838 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1839 NUMA_NO_NODE, __builtin_return_address(0)); 1840 } 1841 1842 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1843 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1844 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1845 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1846 #else 1847 #define GFP_VMALLOC32 GFP_KERNEL 1848 #endif 1849 1850 /** 1851 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1852 * @size: allocation size 1853 * 1854 * Allocate enough 32bit PA addressable pages to cover @size from the 1855 * page level allocator and map them into contiguous kernel virtual space. 1856 */ 1857 void *vmalloc_32(unsigned long size) 1858 { 1859 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1860 NUMA_NO_NODE, __builtin_return_address(0)); 1861 } 1862 EXPORT_SYMBOL(vmalloc_32); 1863 1864 /** 1865 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1866 * @size: allocation size 1867 * 1868 * The resulting memory area is 32bit addressable and zeroed so it can be 1869 * mapped to userspace without leaking data. 1870 */ 1871 void *vmalloc_32_user(unsigned long size) 1872 { 1873 struct vm_struct *area; 1874 void *ret; 1875 1876 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1877 NUMA_NO_NODE, __builtin_return_address(0)); 1878 if (ret) { 1879 area = find_vm_area(ret); 1880 area->flags |= VM_USERMAP; 1881 } 1882 return ret; 1883 } 1884 EXPORT_SYMBOL(vmalloc_32_user); 1885 1886 /* 1887 * small helper routine , copy contents to buf from addr. 1888 * If the page is not present, fill zero. 1889 */ 1890 1891 static int aligned_vread(char *buf, char *addr, unsigned long count) 1892 { 1893 struct page *p; 1894 int copied = 0; 1895 1896 while (count) { 1897 unsigned long offset, length; 1898 1899 offset = offset_in_page(addr); 1900 length = PAGE_SIZE - offset; 1901 if (length > count) 1902 length = count; 1903 p = vmalloc_to_page(addr); 1904 /* 1905 * To do safe access to this _mapped_ area, we need 1906 * lock. But adding lock here means that we need to add 1907 * overhead of vmalloc()/vfree() calles for this _debug_ 1908 * interface, rarely used. Instead of that, we'll use 1909 * kmap() and get small overhead in this access function. 1910 */ 1911 if (p) { 1912 /* 1913 * we can expect USER0 is not used (see vread/vwrite's 1914 * function description) 1915 */ 1916 void *map = kmap_atomic(p); 1917 memcpy(buf, map + offset, length); 1918 kunmap_atomic(map); 1919 } else 1920 memset(buf, 0, length); 1921 1922 addr += length; 1923 buf += length; 1924 copied += length; 1925 count -= length; 1926 } 1927 return copied; 1928 } 1929 1930 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1931 { 1932 struct page *p; 1933 int copied = 0; 1934 1935 while (count) { 1936 unsigned long offset, length; 1937 1938 offset = offset_in_page(addr); 1939 length = PAGE_SIZE - offset; 1940 if (length > count) 1941 length = count; 1942 p = vmalloc_to_page(addr); 1943 /* 1944 * To do safe access to this _mapped_ area, we need 1945 * lock. But adding lock here means that we need to add 1946 * overhead of vmalloc()/vfree() calles for this _debug_ 1947 * interface, rarely used. Instead of that, we'll use 1948 * kmap() and get small overhead in this access function. 1949 */ 1950 if (p) { 1951 /* 1952 * we can expect USER0 is not used (see vread/vwrite's 1953 * function description) 1954 */ 1955 void *map = kmap_atomic(p); 1956 memcpy(map + offset, buf, length); 1957 kunmap_atomic(map); 1958 } 1959 addr += length; 1960 buf += length; 1961 copied += length; 1962 count -= length; 1963 } 1964 return copied; 1965 } 1966 1967 /** 1968 * vread() - read vmalloc area in a safe way. 1969 * @buf: buffer for reading data 1970 * @addr: vm address. 1971 * @count: number of bytes to be read. 1972 * 1973 * Returns # of bytes which addr and buf should be increased. 1974 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1975 * includes any intersect with alive vmalloc area. 1976 * 1977 * This function checks that addr is a valid vmalloc'ed area, and 1978 * copy data from that area to a given buffer. If the given memory range 1979 * of [addr...addr+count) includes some valid address, data is copied to 1980 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1981 * IOREMAP area is treated as memory hole and no copy is done. 1982 * 1983 * If [addr...addr+count) doesn't includes any intersects with alive 1984 * vm_struct area, returns 0. @buf should be kernel's buffer. 1985 * 1986 * Note: In usual ops, vread() is never necessary because the caller 1987 * should know vmalloc() area is valid and can use memcpy(). 1988 * This is for routines which have to access vmalloc area without 1989 * any informaion, as /dev/kmem. 1990 * 1991 */ 1992 1993 long vread(char *buf, char *addr, unsigned long count) 1994 { 1995 struct vmap_area *va; 1996 struct vm_struct *vm; 1997 char *vaddr, *buf_start = buf; 1998 unsigned long buflen = count; 1999 unsigned long n; 2000 2001 /* Don't allow overflow */ 2002 if ((unsigned long) addr + count < count) 2003 count = -(unsigned long) addr; 2004 2005 spin_lock(&vmap_area_lock); 2006 list_for_each_entry(va, &vmap_area_list, list) { 2007 if (!count) 2008 break; 2009 2010 if (!(va->flags & VM_VM_AREA)) 2011 continue; 2012 2013 vm = va->vm; 2014 vaddr = (char *) vm->addr; 2015 if (addr >= vaddr + get_vm_area_size(vm)) 2016 continue; 2017 while (addr < vaddr) { 2018 if (count == 0) 2019 goto finished; 2020 *buf = '\0'; 2021 buf++; 2022 addr++; 2023 count--; 2024 } 2025 n = vaddr + get_vm_area_size(vm) - addr; 2026 if (n > count) 2027 n = count; 2028 if (!(vm->flags & VM_IOREMAP)) 2029 aligned_vread(buf, addr, n); 2030 else /* IOREMAP area is treated as memory hole */ 2031 memset(buf, 0, n); 2032 buf += n; 2033 addr += n; 2034 count -= n; 2035 } 2036 finished: 2037 spin_unlock(&vmap_area_lock); 2038 2039 if (buf == buf_start) 2040 return 0; 2041 /* zero-fill memory holes */ 2042 if (buf != buf_start + buflen) 2043 memset(buf, 0, buflen - (buf - buf_start)); 2044 2045 return buflen; 2046 } 2047 2048 /** 2049 * vwrite() - write vmalloc area in a safe way. 2050 * @buf: buffer for source data 2051 * @addr: vm address. 2052 * @count: number of bytes to be read. 2053 * 2054 * Returns # of bytes which addr and buf should be incresed. 2055 * (same number to @count). 2056 * If [addr...addr+count) doesn't includes any intersect with valid 2057 * vmalloc area, returns 0. 2058 * 2059 * This function checks that addr is a valid vmalloc'ed area, and 2060 * copy data from a buffer to the given addr. If specified range of 2061 * [addr...addr+count) includes some valid address, data is copied from 2062 * proper area of @buf. If there are memory holes, no copy to hole. 2063 * IOREMAP area is treated as memory hole and no copy is done. 2064 * 2065 * If [addr...addr+count) doesn't includes any intersects with alive 2066 * vm_struct area, returns 0. @buf should be kernel's buffer. 2067 * 2068 * Note: In usual ops, vwrite() is never necessary because the caller 2069 * should know vmalloc() area is valid and can use memcpy(). 2070 * This is for routines which have to access vmalloc area without 2071 * any informaion, as /dev/kmem. 2072 */ 2073 2074 long vwrite(char *buf, char *addr, unsigned long count) 2075 { 2076 struct vmap_area *va; 2077 struct vm_struct *vm; 2078 char *vaddr; 2079 unsigned long n, buflen; 2080 int copied = 0; 2081 2082 /* Don't allow overflow */ 2083 if ((unsigned long) addr + count < count) 2084 count = -(unsigned long) addr; 2085 buflen = count; 2086 2087 spin_lock(&vmap_area_lock); 2088 list_for_each_entry(va, &vmap_area_list, list) { 2089 if (!count) 2090 break; 2091 2092 if (!(va->flags & VM_VM_AREA)) 2093 continue; 2094 2095 vm = va->vm; 2096 vaddr = (char *) vm->addr; 2097 if (addr >= vaddr + get_vm_area_size(vm)) 2098 continue; 2099 while (addr < vaddr) { 2100 if (count == 0) 2101 goto finished; 2102 buf++; 2103 addr++; 2104 count--; 2105 } 2106 n = vaddr + get_vm_area_size(vm) - addr; 2107 if (n > count) 2108 n = count; 2109 if (!(vm->flags & VM_IOREMAP)) { 2110 aligned_vwrite(buf, addr, n); 2111 copied++; 2112 } 2113 buf += n; 2114 addr += n; 2115 count -= n; 2116 } 2117 finished: 2118 spin_unlock(&vmap_area_lock); 2119 if (!copied) 2120 return 0; 2121 return buflen; 2122 } 2123 2124 /** 2125 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2126 * @vma: vma to cover 2127 * @uaddr: target user address to start at 2128 * @kaddr: virtual address of vmalloc kernel memory 2129 * @size: size of map area 2130 * 2131 * Returns: 0 for success, -Exxx on failure 2132 * 2133 * This function checks that @kaddr is a valid vmalloc'ed area, 2134 * and that it is big enough to cover the range starting at 2135 * @uaddr in @vma. Will return failure if that criteria isn't 2136 * met. 2137 * 2138 * Similar to remap_pfn_range() (see mm/memory.c) 2139 */ 2140 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2141 void *kaddr, unsigned long size) 2142 { 2143 struct vm_struct *area; 2144 2145 size = PAGE_ALIGN(size); 2146 2147 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2148 return -EINVAL; 2149 2150 area = find_vm_area(kaddr); 2151 if (!area) 2152 return -EINVAL; 2153 2154 if (!(area->flags & VM_USERMAP)) 2155 return -EINVAL; 2156 2157 if (kaddr + size > area->addr + area->size) 2158 return -EINVAL; 2159 2160 do { 2161 struct page *page = vmalloc_to_page(kaddr); 2162 int ret; 2163 2164 ret = vm_insert_page(vma, uaddr, page); 2165 if (ret) 2166 return ret; 2167 2168 uaddr += PAGE_SIZE; 2169 kaddr += PAGE_SIZE; 2170 size -= PAGE_SIZE; 2171 } while (size > 0); 2172 2173 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2174 2175 return 0; 2176 } 2177 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2178 2179 /** 2180 * remap_vmalloc_range - map vmalloc pages to userspace 2181 * @vma: vma to cover (map full range of vma) 2182 * @addr: vmalloc memory 2183 * @pgoff: number of pages into addr before first page to map 2184 * 2185 * Returns: 0 for success, -Exxx on failure 2186 * 2187 * This function checks that addr is a valid vmalloc'ed area, and 2188 * that it is big enough to cover the vma. Will return failure if 2189 * that criteria isn't met. 2190 * 2191 * Similar to remap_pfn_range() (see mm/memory.c) 2192 */ 2193 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2194 unsigned long pgoff) 2195 { 2196 return remap_vmalloc_range_partial(vma, vma->vm_start, 2197 addr + (pgoff << PAGE_SHIFT), 2198 vma->vm_end - vma->vm_start); 2199 } 2200 EXPORT_SYMBOL(remap_vmalloc_range); 2201 2202 /* 2203 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2204 * have one. 2205 */ 2206 void __weak vmalloc_sync_all(void) 2207 { 2208 } 2209 2210 2211 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2212 { 2213 pte_t ***p = data; 2214 2215 if (p) { 2216 *(*p) = pte; 2217 (*p)++; 2218 } 2219 return 0; 2220 } 2221 2222 /** 2223 * alloc_vm_area - allocate a range of kernel address space 2224 * @size: size of the area 2225 * @ptes: returns the PTEs for the address space 2226 * 2227 * Returns: NULL on failure, vm_struct on success 2228 * 2229 * This function reserves a range of kernel address space, and 2230 * allocates pagetables to map that range. No actual mappings 2231 * are created. 2232 * 2233 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2234 * allocated for the VM area are returned. 2235 */ 2236 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2237 { 2238 struct vm_struct *area; 2239 2240 area = get_vm_area_caller(size, VM_IOREMAP, 2241 __builtin_return_address(0)); 2242 if (area == NULL) 2243 return NULL; 2244 2245 /* 2246 * This ensures that page tables are constructed for this region 2247 * of kernel virtual address space and mapped into init_mm. 2248 */ 2249 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2250 size, f, ptes ? &ptes : NULL)) { 2251 free_vm_area(area); 2252 return NULL; 2253 } 2254 2255 return area; 2256 } 2257 EXPORT_SYMBOL_GPL(alloc_vm_area); 2258 2259 void free_vm_area(struct vm_struct *area) 2260 { 2261 struct vm_struct *ret; 2262 ret = remove_vm_area(area->addr); 2263 BUG_ON(ret != area); 2264 kfree(area); 2265 } 2266 EXPORT_SYMBOL_GPL(free_vm_area); 2267 2268 #ifdef CONFIG_SMP 2269 static struct vmap_area *node_to_va(struct rb_node *n) 2270 { 2271 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2272 } 2273 2274 /** 2275 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2276 * @end: target address 2277 * @pnext: out arg for the next vmap_area 2278 * @pprev: out arg for the previous vmap_area 2279 * 2280 * Returns: %true if either or both of next and prev are found, 2281 * %false if no vmap_area exists 2282 * 2283 * Find vmap_areas end addresses of which enclose @end. ie. if not 2284 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2285 */ 2286 static bool pvm_find_next_prev(unsigned long end, 2287 struct vmap_area **pnext, 2288 struct vmap_area **pprev) 2289 { 2290 struct rb_node *n = vmap_area_root.rb_node; 2291 struct vmap_area *va = NULL; 2292 2293 while (n) { 2294 va = rb_entry(n, struct vmap_area, rb_node); 2295 if (end < va->va_end) 2296 n = n->rb_left; 2297 else if (end > va->va_end) 2298 n = n->rb_right; 2299 else 2300 break; 2301 } 2302 2303 if (!va) 2304 return false; 2305 2306 if (va->va_end > end) { 2307 *pnext = va; 2308 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2309 } else { 2310 *pprev = va; 2311 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2312 } 2313 return true; 2314 } 2315 2316 /** 2317 * pvm_determine_end - find the highest aligned address between two vmap_areas 2318 * @pnext: in/out arg for the next vmap_area 2319 * @pprev: in/out arg for the previous vmap_area 2320 * @align: alignment 2321 * 2322 * Returns: determined end address 2323 * 2324 * Find the highest aligned address between *@pnext and *@pprev below 2325 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2326 * down address is between the end addresses of the two vmap_areas. 2327 * 2328 * Please note that the address returned by this function may fall 2329 * inside *@pnext vmap_area. The caller is responsible for checking 2330 * that. 2331 */ 2332 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2333 struct vmap_area **pprev, 2334 unsigned long align) 2335 { 2336 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2337 unsigned long addr; 2338 2339 if (*pnext) 2340 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2341 else 2342 addr = vmalloc_end; 2343 2344 while (*pprev && (*pprev)->va_end > addr) { 2345 *pnext = *pprev; 2346 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2347 } 2348 2349 return addr; 2350 } 2351 2352 /** 2353 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2354 * @offsets: array containing offset of each area 2355 * @sizes: array containing size of each area 2356 * @nr_vms: the number of areas to allocate 2357 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2358 * 2359 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2360 * vm_structs on success, %NULL on failure 2361 * 2362 * Percpu allocator wants to use congruent vm areas so that it can 2363 * maintain the offsets among percpu areas. This function allocates 2364 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2365 * be scattered pretty far, distance between two areas easily going up 2366 * to gigabytes. To avoid interacting with regular vmallocs, these 2367 * areas are allocated from top. 2368 * 2369 * Despite its complicated look, this allocator is rather simple. It 2370 * does everything top-down and scans areas from the end looking for 2371 * matching slot. While scanning, if any of the areas overlaps with 2372 * existing vmap_area, the base address is pulled down to fit the 2373 * area. Scanning is repeated till all the areas fit and then all 2374 * necessary data structres are inserted and the result is returned. 2375 */ 2376 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2377 const size_t *sizes, int nr_vms, 2378 size_t align) 2379 { 2380 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2381 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2382 struct vmap_area **vas, *prev, *next; 2383 struct vm_struct **vms; 2384 int area, area2, last_area, term_area; 2385 unsigned long base, start, end, last_end; 2386 bool purged = false; 2387 2388 /* verify parameters and allocate data structures */ 2389 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2390 for (last_area = 0, area = 0; area < nr_vms; area++) { 2391 start = offsets[area]; 2392 end = start + sizes[area]; 2393 2394 /* is everything aligned properly? */ 2395 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2396 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2397 2398 /* detect the area with the highest address */ 2399 if (start > offsets[last_area]) 2400 last_area = area; 2401 2402 for (area2 = 0; area2 < nr_vms; area2++) { 2403 unsigned long start2 = offsets[area2]; 2404 unsigned long end2 = start2 + sizes[area2]; 2405 2406 if (area2 == area) 2407 continue; 2408 2409 BUG_ON(start2 >= start && start2 < end); 2410 BUG_ON(end2 <= end && end2 > start); 2411 } 2412 } 2413 last_end = offsets[last_area] + sizes[last_area]; 2414 2415 if (vmalloc_end - vmalloc_start < last_end) { 2416 WARN_ON(true); 2417 return NULL; 2418 } 2419 2420 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2421 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2422 if (!vas || !vms) 2423 goto err_free2; 2424 2425 for (area = 0; area < nr_vms; area++) { 2426 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2427 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2428 if (!vas[area] || !vms[area]) 2429 goto err_free; 2430 } 2431 retry: 2432 spin_lock(&vmap_area_lock); 2433 2434 /* start scanning - we scan from the top, begin with the last area */ 2435 area = term_area = last_area; 2436 start = offsets[area]; 2437 end = start + sizes[area]; 2438 2439 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2440 base = vmalloc_end - last_end; 2441 goto found; 2442 } 2443 base = pvm_determine_end(&next, &prev, align) - end; 2444 2445 while (true) { 2446 BUG_ON(next && next->va_end <= base + end); 2447 BUG_ON(prev && prev->va_end > base + end); 2448 2449 /* 2450 * base might have underflowed, add last_end before 2451 * comparing. 2452 */ 2453 if (base + last_end < vmalloc_start + last_end) { 2454 spin_unlock(&vmap_area_lock); 2455 if (!purged) { 2456 purge_vmap_area_lazy(); 2457 purged = true; 2458 goto retry; 2459 } 2460 goto err_free; 2461 } 2462 2463 /* 2464 * If next overlaps, move base downwards so that it's 2465 * right below next and then recheck. 2466 */ 2467 if (next && next->va_start < base + end) { 2468 base = pvm_determine_end(&next, &prev, align) - end; 2469 term_area = area; 2470 continue; 2471 } 2472 2473 /* 2474 * If prev overlaps, shift down next and prev and move 2475 * base so that it's right below new next and then 2476 * recheck. 2477 */ 2478 if (prev && prev->va_end > base + start) { 2479 next = prev; 2480 prev = node_to_va(rb_prev(&next->rb_node)); 2481 base = pvm_determine_end(&next, &prev, align) - end; 2482 term_area = area; 2483 continue; 2484 } 2485 2486 /* 2487 * This area fits, move on to the previous one. If 2488 * the previous one is the terminal one, we're done. 2489 */ 2490 area = (area + nr_vms - 1) % nr_vms; 2491 if (area == term_area) 2492 break; 2493 start = offsets[area]; 2494 end = start + sizes[area]; 2495 pvm_find_next_prev(base + end, &next, &prev); 2496 } 2497 found: 2498 /* we've found a fitting base, insert all va's */ 2499 for (area = 0; area < nr_vms; area++) { 2500 struct vmap_area *va = vas[area]; 2501 2502 va->va_start = base + offsets[area]; 2503 va->va_end = va->va_start + sizes[area]; 2504 __insert_vmap_area(va); 2505 } 2506 2507 vmap_area_pcpu_hole = base + offsets[last_area]; 2508 2509 spin_unlock(&vmap_area_lock); 2510 2511 /* insert all vm's */ 2512 for (area = 0; area < nr_vms; area++) 2513 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2514 pcpu_get_vm_areas); 2515 2516 kfree(vas); 2517 return vms; 2518 2519 err_free: 2520 for (area = 0; area < nr_vms; area++) { 2521 kfree(vas[area]); 2522 kfree(vms[area]); 2523 } 2524 err_free2: 2525 kfree(vas); 2526 kfree(vms); 2527 return NULL; 2528 } 2529 2530 /** 2531 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2532 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2533 * @nr_vms: the number of allocated areas 2534 * 2535 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2536 */ 2537 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2538 { 2539 int i; 2540 2541 for (i = 0; i < nr_vms; i++) 2542 free_vm_area(vms[i]); 2543 kfree(vms); 2544 } 2545 #endif /* CONFIG_SMP */ 2546 2547 #ifdef CONFIG_PROC_FS 2548 static void *s_start(struct seq_file *m, loff_t *pos) 2549 __acquires(&vmap_area_lock) 2550 { 2551 loff_t n = *pos; 2552 struct vmap_area *va; 2553 2554 spin_lock(&vmap_area_lock); 2555 va = list_first_entry(&vmap_area_list, typeof(*va), list); 2556 while (n > 0 && &va->list != &vmap_area_list) { 2557 n--; 2558 va = list_next_entry(va, list); 2559 } 2560 if (!n && &va->list != &vmap_area_list) 2561 return va; 2562 2563 return NULL; 2564 2565 } 2566 2567 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2568 { 2569 struct vmap_area *va = p, *next; 2570 2571 ++*pos; 2572 next = list_next_entry(va, list); 2573 if (&next->list != &vmap_area_list) 2574 return next; 2575 2576 return NULL; 2577 } 2578 2579 static void s_stop(struct seq_file *m, void *p) 2580 __releases(&vmap_area_lock) 2581 { 2582 spin_unlock(&vmap_area_lock); 2583 } 2584 2585 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2586 { 2587 if (IS_ENABLED(CONFIG_NUMA)) { 2588 unsigned int nr, *counters = m->private; 2589 2590 if (!counters) 2591 return; 2592 2593 if (v->flags & VM_UNINITIALIZED) 2594 return; 2595 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2596 smp_rmb(); 2597 2598 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2599 2600 for (nr = 0; nr < v->nr_pages; nr++) 2601 counters[page_to_nid(v->pages[nr])]++; 2602 2603 for_each_node_state(nr, N_HIGH_MEMORY) 2604 if (counters[nr]) 2605 seq_printf(m, " N%u=%u", nr, counters[nr]); 2606 } 2607 } 2608 2609 static int s_show(struct seq_file *m, void *p) 2610 { 2611 struct vmap_area *va = p; 2612 struct vm_struct *v; 2613 2614 /* 2615 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2616 * behalf of vmap area is being tear down or vm_map_ram allocation. 2617 */ 2618 if (!(va->flags & VM_VM_AREA)) 2619 return 0; 2620 2621 v = va->vm; 2622 2623 seq_printf(m, "0x%pK-0x%pK %7ld", 2624 v->addr, v->addr + v->size, v->size); 2625 2626 if (v->caller) 2627 seq_printf(m, " %pS", v->caller); 2628 2629 if (v->nr_pages) 2630 seq_printf(m, " pages=%d", v->nr_pages); 2631 2632 if (v->phys_addr) 2633 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2634 2635 if (v->flags & VM_IOREMAP) 2636 seq_puts(m, " ioremap"); 2637 2638 if (v->flags & VM_ALLOC) 2639 seq_puts(m, " vmalloc"); 2640 2641 if (v->flags & VM_MAP) 2642 seq_puts(m, " vmap"); 2643 2644 if (v->flags & VM_USERMAP) 2645 seq_puts(m, " user"); 2646 2647 if (is_vmalloc_addr(v->pages)) 2648 seq_puts(m, " vpages"); 2649 2650 show_numa_info(m, v); 2651 seq_putc(m, '\n'); 2652 return 0; 2653 } 2654 2655 static const struct seq_operations vmalloc_op = { 2656 .start = s_start, 2657 .next = s_next, 2658 .stop = s_stop, 2659 .show = s_show, 2660 }; 2661 2662 static int vmalloc_open(struct inode *inode, struct file *file) 2663 { 2664 if (IS_ENABLED(CONFIG_NUMA)) 2665 return seq_open_private(file, &vmalloc_op, 2666 nr_node_ids * sizeof(unsigned int)); 2667 else 2668 return seq_open(file, &vmalloc_op); 2669 } 2670 2671 static const struct file_operations proc_vmalloc_operations = { 2672 .open = vmalloc_open, 2673 .read = seq_read, 2674 .llseek = seq_lseek, 2675 .release = seq_release_private, 2676 }; 2677 2678 static int __init proc_vmalloc_init(void) 2679 { 2680 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2681 return 0; 2682 } 2683 module_init(proc_vmalloc_init); 2684 2685 #endif 2686 2687