xref: /linux/mm/vmalloc.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
37 
38 #include "internal.h"
39 
40 struct vfree_deferred {
41 	struct llist_head list;
42 	struct work_struct wq;
43 };
44 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
45 
46 static void __vunmap(const void *, int);
47 
48 static void free_work(struct work_struct *w)
49 {
50 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
51 	struct llist_node *llnode = llist_del_all(&p->list);
52 	while (llnode) {
53 		void *p = llnode;
54 		llnode = llist_next(llnode);
55 		__vunmap(p, 1);
56 	}
57 }
58 
59 /*** Page table manipulation functions ***/
60 
61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
62 {
63 	pte_t *pte;
64 
65 	pte = pte_offset_kernel(pmd, addr);
66 	do {
67 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
68 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
69 	} while (pte++, addr += PAGE_SIZE, addr != end);
70 }
71 
72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
73 {
74 	pmd_t *pmd;
75 	unsigned long next;
76 
77 	pmd = pmd_offset(pud, addr);
78 	do {
79 		next = pmd_addr_end(addr, end);
80 		if (pmd_clear_huge(pmd))
81 			continue;
82 		if (pmd_none_or_clear_bad(pmd))
83 			continue;
84 		vunmap_pte_range(pmd, addr, next);
85 	} while (pmd++, addr = next, addr != end);
86 }
87 
88 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
89 {
90 	pud_t *pud;
91 	unsigned long next;
92 
93 	pud = pud_offset(pgd, addr);
94 	do {
95 		next = pud_addr_end(addr, end);
96 		if (pud_clear_huge(pud))
97 			continue;
98 		if (pud_none_or_clear_bad(pud))
99 			continue;
100 		vunmap_pmd_range(pud, addr, next);
101 	} while (pud++, addr = next, addr != end);
102 }
103 
104 static void vunmap_page_range(unsigned long addr, unsigned long end)
105 {
106 	pgd_t *pgd;
107 	unsigned long next;
108 
109 	BUG_ON(addr >= end);
110 	pgd = pgd_offset_k(addr);
111 	do {
112 		next = pgd_addr_end(addr, end);
113 		if (pgd_none_or_clear_bad(pgd))
114 			continue;
115 		vunmap_pud_range(pgd, addr, next);
116 	} while (pgd++, addr = next, addr != end);
117 }
118 
119 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
120 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
121 {
122 	pte_t *pte;
123 
124 	/*
125 	 * nr is a running index into the array which helps higher level
126 	 * callers keep track of where we're up to.
127 	 */
128 
129 	pte = pte_alloc_kernel(pmd, addr);
130 	if (!pte)
131 		return -ENOMEM;
132 	do {
133 		struct page *page = pages[*nr];
134 
135 		if (WARN_ON(!pte_none(*pte)))
136 			return -EBUSY;
137 		if (WARN_ON(!page))
138 			return -ENOMEM;
139 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
140 		(*nr)++;
141 	} while (pte++, addr += PAGE_SIZE, addr != end);
142 	return 0;
143 }
144 
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
146 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
147 {
148 	pmd_t *pmd;
149 	unsigned long next;
150 
151 	pmd = pmd_alloc(&init_mm, pud, addr);
152 	if (!pmd)
153 		return -ENOMEM;
154 	do {
155 		next = pmd_addr_end(addr, end);
156 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
157 			return -ENOMEM;
158 	} while (pmd++, addr = next, addr != end);
159 	return 0;
160 }
161 
162 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
163 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 	pud_t *pud;
166 	unsigned long next;
167 
168 	pud = pud_alloc(&init_mm, pgd, addr);
169 	if (!pud)
170 		return -ENOMEM;
171 	do {
172 		next = pud_addr_end(addr, end);
173 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
174 			return -ENOMEM;
175 	} while (pud++, addr = next, addr != end);
176 	return 0;
177 }
178 
179 /*
180  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181  * will have pfns corresponding to the "pages" array.
182  *
183  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
184  */
185 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
186 				   pgprot_t prot, struct page **pages)
187 {
188 	pgd_t *pgd;
189 	unsigned long next;
190 	unsigned long addr = start;
191 	int err = 0;
192 	int nr = 0;
193 
194 	BUG_ON(addr >= end);
195 	pgd = pgd_offset_k(addr);
196 	do {
197 		next = pgd_addr_end(addr, end);
198 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
199 		if (err)
200 			return err;
201 	} while (pgd++, addr = next, addr != end);
202 
203 	return nr;
204 }
205 
206 static int vmap_page_range(unsigned long start, unsigned long end,
207 			   pgprot_t prot, struct page **pages)
208 {
209 	int ret;
210 
211 	ret = vmap_page_range_noflush(start, end, prot, pages);
212 	flush_cache_vmap(start, end);
213 	return ret;
214 }
215 
216 int is_vmalloc_or_module_addr(const void *x)
217 {
218 	/*
219 	 * ARM, x86-64 and sparc64 put modules in a special place,
220 	 * and fall back on vmalloc() if that fails. Others
221 	 * just put it in the vmalloc space.
222 	 */
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 	unsigned long addr = (unsigned long)x;
225 	if (addr >= MODULES_VADDR && addr < MODULES_END)
226 		return 1;
227 #endif
228 	return is_vmalloc_addr(x);
229 }
230 
231 /*
232  * Walk a vmap address to the struct page it maps.
233  */
234 struct page *vmalloc_to_page(const void *vmalloc_addr)
235 {
236 	unsigned long addr = (unsigned long) vmalloc_addr;
237 	struct page *page = NULL;
238 	pgd_t *pgd = pgd_offset_k(addr);
239 
240 	/*
241 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 	 * architectures that do not vmalloc module space
243 	 */
244 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
245 
246 	if (!pgd_none(*pgd)) {
247 		pud_t *pud = pud_offset(pgd, addr);
248 		if (!pud_none(*pud)) {
249 			pmd_t *pmd = pmd_offset(pud, addr);
250 			if (!pmd_none(*pmd)) {
251 				pte_t *ptep, pte;
252 
253 				ptep = pte_offset_map(pmd, addr);
254 				pte = *ptep;
255 				if (pte_present(pte))
256 					page = pte_page(pte);
257 				pte_unmap(ptep);
258 			}
259 		}
260 	}
261 	return page;
262 }
263 EXPORT_SYMBOL(vmalloc_to_page);
264 
265 /*
266  * Map a vmalloc()-space virtual address to the physical page frame number.
267  */
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
269 {
270 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
271 }
272 EXPORT_SYMBOL(vmalloc_to_pfn);
273 
274 
275 /*** Global kva allocator ***/
276 
277 #define VM_VM_AREA	0x04
278 
279 static DEFINE_SPINLOCK(vmap_area_lock);
280 /* Export for kexec only */
281 LIST_HEAD(vmap_area_list);
282 static LLIST_HEAD(vmap_purge_list);
283 static struct rb_root vmap_area_root = RB_ROOT;
284 
285 /* The vmap cache globals are protected by vmap_area_lock */
286 static struct rb_node *free_vmap_cache;
287 static unsigned long cached_hole_size;
288 static unsigned long cached_vstart;
289 static unsigned long cached_align;
290 
291 static unsigned long vmap_area_pcpu_hole;
292 
293 static struct vmap_area *__find_vmap_area(unsigned long addr)
294 {
295 	struct rb_node *n = vmap_area_root.rb_node;
296 
297 	while (n) {
298 		struct vmap_area *va;
299 
300 		va = rb_entry(n, struct vmap_area, rb_node);
301 		if (addr < va->va_start)
302 			n = n->rb_left;
303 		else if (addr >= va->va_end)
304 			n = n->rb_right;
305 		else
306 			return va;
307 	}
308 
309 	return NULL;
310 }
311 
312 static void __insert_vmap_area(struct vmap_area *va)
313 {
314 	struct rb_node **p = &vmap_area_root.rb_node;
315 	struct rb_node *parent = NULL;
316 	struct rb_node *tmp;
317 
318 	while (*p) {
319 		struct vmap_area *tmp_va;
320 
321 		parent = *p;
322 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
323 		if (va->va_start < tmp_va->va_end)
324 			p = &(*p)->rb_left;
325 		else if (va->va_end > tmp_va->va_start)
326 			p = &(*p)->rb_right;
327 		else
328 			BUG();
329 	}
330 
331 	rb_link_node(&va->rb_node, parent, p);
332 	rb_insert_color(&va->rb_node, &vmap_area_root);
333 
334 	/* address-sort this list */
335 	tmp = rb_prev(&va->rb_node);
336 	if (tmp) {
337 		struct vmap_area *prev;
338 		prev = rb_entry(tmp, struct vmap_area, rb_node);
339 		list_add_rcu(&va->list, &prev->list);
340 	} else
341 		list_add_rcu(&va->list, &vmap_area_list);
342 }
343 
344 static void purge_vmap_area_lazy(void);
345 
346 /*
347  * Allocate a region of KVA of the specified size and alignment, within the
348  * vstart and vend.
349  */
350 static struct vmap_area *alloc_vmap_area(unsigned long size,
351 				unsigned long align,
352 				unsigned long vstart, unsigned long vend,
353 				int node, gfp_t gfp_mask)
354 {
355 	struct vmap_area *va;
356 	struct rb_node *n;
357 	unsigned long addr;
358 	int purged = 0;
359 	struct vmap_area *first;
360 
361 	BUG_ON(!size);
362 	BUG_ON(offset_in_page(size));
363 	BUG_ON(!is_power_of_2(align));
364 
365 	va = kmalloc_node(sizeof(struct vmap_area),
366 			gfp_mask & GFP_RECLAIM_MASK, node);
367 	if (unlikely(!va))
368 		return ERR_PTR(-ENOMEM);
369 
370 	/*
371 	 * Only scan the relevant parts containing pointers to other objects
372 	 * to avoid false negatives.
373 	 */
374 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
375 
376 retry:
377 	spin_lock(&vmap_area_lock);
378 	/*
379 	 * Invalidate cache if we have more permissive parameters.
380 	 * cached_hole_size notes the largest hole noticed _below_
381 	 * the vmap_area cached in free_vmap_cache: if size fits
382 	 * into that hole, we want to scan from vstart to reuse
383 	 * the hole instead of allocating above free_vmap_cache.
384 	 * Note that __free_vmap_area may update free_vmap_cache
385 	 * without updating cached_hole_size or cached_align.
386 	 */
387 	if (!free_vmap_cache ||
388 			size < cached_hole_size ||
389 			vstart < cached_vstart ||
390 			align < cached_align) {
391 nocache:
392 		cached_hole_size = 0;
393 		free_vmap_cache = NULL;
394 	}
395 	/* record if we encounter less permissive parameters */
396 	cached_vstart = vstart;
397 	cached_align = align;
398 
399 	/* find starting point for our search */
400 	if (free_vmap_cache) {
401 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
402 		addr = ALIGN(first->va_end, align);
403 		if (addr < vstart)
404 			goto nocache;
405 		if (addr + size < addr)
406 			goto overflow;
407 
408 	} else {
409 		addr = ALIGN(vstart, align);
410 		if (addr + size < addr)
411 			goto overflow;
412 
413 		n = vmap_area_root.rb_node;
414 		first = NULL;
415 
416 		while (n) {
417 			struct vmap_area *tmp;
418 			tmp = rb_entry(n, struct vmap_area, rb_node);
419 			if (tmp->va_end >= addr) {
420 				first = tmp;
421 				if (tmp->va_start <= addr)
422 					break;
423 				n = n->rb_left;
424 			} else
425 				n = n->rb_right;
426 		}
427 
428 		if (!first)
429 			goto found;
430 	}
431 
432 	/* from the starting point, walk areas until a suitable hole is found */
433 	while (addr + size > first->va_start && addr + size <= vend) {
434 		if (addr + cached_hole_size < first->va_start)
435 			cached_hole_size = first->va_start - addr;
436 		addr = ALIGN(first->va_end, align);
437 		if (addr + size < addr)
438 			goto overflow;
439 
440 		if (list_is_last(&first->list, &vmap_area_list))
441 			goto found;
442 
443 		first = list_next_entry(first, list);
444 	}
445 
446 found:
447 	if (addr + size > vend)
448 		goto overflow;
449 
450 	va->va_start = addr;
451 	va->va_end = addr + size;
452 	va->flags = 0;
453 	__insert_vmap_area(va);
454 	free_vmap_cache = &va->rb_node;
455 	spin_unlock(&vmap_area_lock);
456 
457 	BUG_ON(!IS_ALIGNED(va->va_start, align));
458 	BUG_ON(va->va_start < vstart);
459 	BUG_ON(va->va_end > vend);
460 
461 	return va;
462 
463 overflow:
464 	spin_unlock(&vmap_area_lock);
465 	if (!purged) {
466 		purge_vmap_area_lazy();
467 		purged = 1;
468 		goto retry;
469 	}
470 	if (printk_ratelimit())
471 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
472 			size);
473 	kfree(va);
474 	return ERR_PTR(-EBUSY);
475 }
476 
477 static void __free_vmap_area(struct vmap_area *va)
478 {
479 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
480 
481 	if (free_vmap_cache) {
482 		if (va->va_end < cached_vstart) {
483 			free_vmap_cache = NULL;
484 		} else {
485 			struct vmap_area *cache;
486 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
487 			if (va->va_start <= cache->va_start) {
488 				free_vmap_cache = rb_prev(&va->rb_node);
489 				/*
490 				 * We don't try to update cached_hole_size or
491 				 * cached_align, but it won't go very wrong.
492 				 */
493 			}
494 		}
495 	}
496 	rb_erase(&va->rb_node, &vmap_area_root);
497 	RB_CLEAR_NODE(&va->rb_node);
498 	list_del_rcu(&va->list);
499 
500 	/*
501 	 * Track the highest possible candidate for pcpu area
502 	 * allocation.  Areas outside of vmalloc area can be returned
503 	 * here too, consider only end addresses which fall inside
504 	 * vmalloc area proper.
505 	 */
506 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
507 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
508 
509 	kfree_rcu(va, rcu_head);
510 }
511 
512 /*
513  * Free a region of KVA allocated by alloc_vmap_area
514  */
515 static void free_vmap_area(struct vmap_area *va)
516 {
517 	spin_lock(&vmap_area_lock);
518 	__free_vmap_area(va);
519 	spin_unlock(&vmap_area_lock);
520 }
521 
522 /*
523  * Clear the pagetable entries of a given vmap_area
524  */
525 static void unmap_vmap_area(struct vmap_area *va)
526 {
527 	vunmap_page_range(va->va_start, va->va_end);
528 }
529 
530 static void vmap_debug_free_range(unsigned long start, unsigned long end)
531 {
532 	/*
533 	 * Unmap page tables and force a TLB flush immediately if pagealloc
534 	 * debugging is enabled.  This catches use after free bugs similarly to
535 	 * those in linear kernel virtual address space after a page has been
536 	 * freed.
537 	 *
538 	 * All the lazy freeing logic is still retained, in order to minimise
539 	 * intrusiveness of this debugging feature.
540 	 *
541 	 * This is going to be *slow* (linear kernel virtual address debugging
542 	 * doesn't do a broadcast TLB flush so it is a lot faster).
543 	 */
544 	if (debug_pagealloc_enabled()) {
545 		vunmap_page_range(start, end);
546 		flush_tlb_kernel_range(start, end);
547 	}
548 }
549 
550 /*
551  * lazy_max_pages is the maximum amount of virtual address space we gather up
552  * before attempting to purge with a TLB flush.
553  *
554  * There is a tradeoff here: a larger number will cover more kernel page tables
555  * and take slightly longer to purge, but it will linearly reduce the number of
556  * global TLB flushes that must be performed. It would seem natural to scale
557  * this number up linearly with the number of CPUs (because vmapping activity
558  * could also scale linearly with the number of CPUs), however it is likely
559  * that in practice, workloads might be constrained in other ways that mean
560  * vmap activity will not scale linearly with CPUs. Also, I want to be
561  * conservative and not introduce a big latency on huge systems, so go with
562  * a less aggressive log scale. It will still be an improvement over the old
563  * code, and it will be simple to change the scale factor if we find that it
564  * becomes a problem on bigger systems.
565  */
566 static unsigned long lazy_max_pages(void)
567 {
568 	unsigned int log;
569 
570 	log = fls(num_online_cpus());
571 
572 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
573 }
574 
575 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
576 
577 /* for per-CPU blocks */
578 static void purge_fragmented_blocks_allcpus(void);
579 
580 /*
581  * called before a call to iounmap() if the caller wants vm_area_struct's
582  * immediately freed.
583  */
584 void set_iounmap_nonlazy(void)
585 {
586 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
587 }
588 
589 /*
590  * Purges all lazily-freed vmap areas.
591  *
592  * If sync is 0 then don't purge if there is already a purge in progress.
593  * If force_flush is 1, then flush kernel TLBs between *start and *end even
594  * if we found no lazy vmap areas to unmap (callers can use this to optimise
595  * their own TLB flushing).
596  * Returns with *start = min(*start, lowest purged address)
597  *              *end = max(*end, highest purged address)
598  */
599 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
600 					int sync, int force_flush)
601 {
602 	static DEFINE_SPINLOCK(purge_lock);
603 	struct llist_node *valist;
604 	struct vmap_area *va;
605 	struct vmap_area *n_va;
606 	int nr = 0;
607 
608 	/*
609 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
610 	 * should not expect such behaviour. This just simplifies locking for
611 	 * the case that isn't actually used at the moment anyway.
612 	 */
613 	if (!sync && !force_flush) {
614 		if (!spin_trylock(&purge_lock))
615 			return;
616 	} else
617 		spin_lock(&purge_lock);
618 
619 	if (sync)
620 		purge_fragmented_blocks_allcpus();
621 
622 	valist = llist_del_all(&vmap_purge_list);
623 	llist_for_each_entry(va, valist, purge_list) {
624 		if (va->va_start < *start)
625 			*start = va->va_start;
626 		if (va->va_end > *end)
627 			*end = va->va_end;
628 		nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
629 	}
630 
631 	if (nr)
632 		atomic_sub(nr, &vmap_lazy_nr);
633 
634 	if (nr || force_flush)
635 		flush_tlb_kernel_range(*start, *end);
636 
637 	if (nr) {
638 		spin_lock(&vmap_area_lock);
639 		llist_for_each_entry_safe(va, n_va, valist, purge_list)
640 			__free_vmap_area(va);
641 		spin_unlock(&vmap_area_lock);
642 	}
643 	spin_unlock(&purge_lock);
644 }
645 
646 /*
647  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
648  * is already purging.
649  */
650 static void try_purge_vmap_area_lazy(void)
651 {
652 	unsigned long start = ULONG_MAX, end = 0;
653 
654 	__purge_vmap_area_lazy(&start, &end, 0, 0);
655 }
656 
657 /*
658  * Kick off a purge of the outstanding lazy areas.
659  */
660 static void purge_vmap_area_lazy(void)
661 {
662 	unsigned long start = ULONG_MAX, end = 0;
663 
664 	__purge_vmap_area_lazy(&start, &end, 1, 0);
665 }
666 
667 /*
668  * Free a vmap area, caller ensuring that the area has been unmapped
669  * and flush_cache_vunmap had been called for the correct range
670  * previously.
671  */
672 static void free_vmap_area_noflush(struct vmap_area *va)
673 {
674 	int nr_lazy;
675 
676 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
677 				    &vmap_lazy_nr);
678 
679 	/* After this point, we may free va at any time */
680 	llist_add(&va->purge_list, &vmap_purge_list);
681 
682 	if (unlikely(nr_lazy > lazy_max_pages()))
683 		try_purge_vmap_area_lazy();
684 }
685 
686 /*
687  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
688  * called for the correct range previously.
689  */
690 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
691 {
692 	unmap_vmap_area(va);
693 	free_vmap_area_noflush(va);
694 }
695 
696 /*
697  * Free and unmap a vmap area
698  */
699 static void free_unmap_vmap_area(struct vmap_area *va)
700 {
701 	flush_cache_vunmap(va->va_start, va->va_end);
702 	free_unmap_vmap_area_noflush(va);
703 }
704 
705 static struct vmap_area *find_vmap_area(unsigned long addr)
706 {
707 	struct vmap_area *va;
708 
709 	spin_lock(&vmap_area_lock);
710 	va = __find_vmap_area(addr);
711 	spin_unlock(&vmap_area_lock);
712 
713 	return va;
714 }
715 
716 static void free_unmap_vmap_area_addr(unsigned long addr)
717 {
718 	struct vmap_area *va;
719 
720 	va = find_vmap_area(addr);
721 	BUG_ON(!va);
722 	free_unmap_vmap_area(va);
723 }
724 
725 
726 /*** Per cpu kva allocator ***/
727 
728 /*
729  * vmap space is limited especially on 32 bit architectures. Ensure there is
730  * room for at least 16 percpu vmap blocks per CPU.
731  */
732 /*
733  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
734  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
735  * instead (we just need a rough idea)
736  */
737 #if BITS_PER_LONG == 32
738 #define VMALLOC_SPACE		(128UL*1024*1024)
739 #else
740 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
741 #endif
742 
743 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
744 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
745 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
746 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
747 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
748 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
749 #define VMAP_BBMAP_BITS		\
750 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
751 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
752 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
753 
754 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
755 
756 static bool vmap_initialized __read_mostly = false;
757 
758 struct vmap_block_queue {
759 	spinlock_t lock;
760 	struct list_head free;
761 };
762 
763 struct vmap_block {
764 	spinlock_t lock;
765 	struct vmap_area *va;
766 	unsigned long free, dirty;
767 	unsigned long dirty_min, dirty_max; /*< dirty range */
768 	struct list_head free_list;
769 	struct rcu_head rcu_head;
770 	struct list_head purge;
771 };
772 
773 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
774 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
775 
776 /*
777  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
778  * in the free path. Could get rid of this if we change the API to return a
779  * "cookie" from alloc, to be passed to free. But no big deal yet.
780  */
781 static DEFINE_SPINLOCK(vmap_block_tree_lock);
782 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
783 
784 /*
785  * We should probably have a fallback mechanism to allocate virtual memory
786  * out of partially filled vmap blocks. However vmap block sizing should be
787  * fairly reasonable according to the vmalloc size, so it shouldn't be a
788  * big problem.
789  */
790 
791 static unsigned long addr_to_vb_idx(unsigned long addr)
792 {
793 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
794 	addr /= VMAP_BLOCK_SIZE;
795 	return addr;
796 }
797 
798 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
799 {
800 	unsigned long addr;
801 
802 	addr = va_start + (pages_off << PAGE_SHIFT);
803 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
804 	return (void *)addr;
805 }
806 
807 /**
808  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
809  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
810  * @order:    how many 2^order pages should be occupied in newly allocated block
811  * @gfp_mask: flags for the page level allocator
812  *
813  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
814  */
815 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
816 {
817 	struct vmap_block_queue *vbq;
818 	struct vmap_block *vb;
819 	struct vmap_area *va;
820 	unsigned long vb_idx;
821 	int node, err;
822 	void *vaddr;
823 
824 	node = numa_node_id();
825 
826 	vb = kmalloc_node(sizeof(struct vmap_block),
827 			gfp_mask & GFP_RECLAIM_MASK, node);
828 	if (unlikely(!vb))
829 		return ERR_PTR(-ENOMEM);
830 
831 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
832 					VMALLOC_START, VMALLOC_END,
833 					node, gfp_mask);
834 	if (IS_ERR(va)) {
835 		kfree(vb);
836 		return ERR_CAST(va);
837 	}
838 
839 	err = radix_tree_preload(gfp_mask);
840 	if (unlikely(err)) {
841 		kfree(vb);
842 		free_vmap_area(va);
843 		return ERR_PTR(err);
844 	}
845 
846 	vaddr = vmap_block_vaddr(va->va_start, 0);
847 	spin_lock_init(&vb->lock);
848 	vb->va = va;
849 	/* At least something should be left free */
850 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
851 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
852 	vb->dirty = 0;
853 	vb->dirty_min = VMAP_BBMAP_BITS;
854 	vb->dirty_max = 0;
855 	INIT_LIST_HEAD(&vb->free_list);
856 
857 	vb_idx = addr_to_vb_idx(va->va_start);
858 	spin_lock(&vmap_block_tree_lock);
859 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
860 	spin_unlock(&vmap_block_tree_lock);
861 	BUG_ON(err);
862 	radix_tree_preload_end();
863 
864 	vbq = &get_cpu_var(vmap_block_queue);
865 	spin_lock(&vbq->lock);
866 	list_add_tail_rcu(&vb->free_list, &vbq->free);
867 	spin_unlock(&vbq->lock);
868 	put_cpu_var(vmap_block_queue);
869 
870 	return vaddr;
871 }
872 
873 static void free_vmap_block(struct vmap_block *vb)
874 {
875 	struct vmap_block *tmp;
876 	unsigned long vb_idx;
877 
878 	vb_idx = addr_to_vb_idx(vb->va->va_start);
879 	spin_lock(&vmap_block_tree_lock);
880 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
881 	spin_unlock(&vmap_block_tree_lock);
882 	BUG_ON(tmp != vb);
883 
884 	free_vmap_area_noflush(vb->va);
885 	kfree_rcu(vb, rcu_head);
886 }
887 
888 static void purge_fragmented_blocks(int cpu)
889 {
890 	LIST_HEAD(purge);
891 	struct vmap_block *vb;
892 	struct vmap_block *n_vb;
893 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
894 
895 	rcu_read_lock();
896 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
897 
898 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
899 			continue;
900 
901 		spin_lock(&vb->lock);
902 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
903 			vb->free = 0; /* prevent further allocs after releasing lock */
904 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
905 			vb->dirty_min = 0;
906 			vb->dirty_max = VMAP_BBMAP_BITS;
907 			spin_lock(&vbq->lock);
908 			list_del_rcu(&vb->free_list);
909 			spin_unlock(&vbq->lock);
910 			spin_unlock(&vb->lock);
911 			list_add_tail(&vb->purge, &purge);
912 		} else
913 			spin_unlock(&vb->lock);
914 	}
915 	rcu_read_unlock();
916 
917 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
918 		list_del(&vb->purge);
919 		free_vmap_block(vb);
920 	}
921 }
922 
923 static void purge_fragmented_blocks_allcpus(void)
924 {
925 	int cpu;
926 
927 	for_each_possible_cpu(cpu)
928 		purge_fragmented_blocks(cpu);
929 }
930 
931 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
932 {
933 	struct vmap_block_queue *vbq;
934 	struct vmap_block *vb;
935 	void *vaddr = NULL;
936 	unsigned int order;
937 
938 	BUG_ON(offset_in_page(size));
939 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
940 	if (WARN_ON(size == 0)) {
941 		/*
942 		 * Allocating 0 bytes isn't what caller wants since
943 		 * get_order(0) returns funny result. Just warn and terminate
944 		 * early.
945 		 */
946 		return NULL;
947 	}
948 	order = get_order(size);
949 
950 	rcu_read_lock();
951 	vbq = &get_cpu_var(vmap_block_queue);
952 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
953 		unsigned long pages_off;
954 
955 		spin_lock(&vb->lock);
956 		if (vb->free < (1UL << order)) {
957 			spin_unlock(&vb->lock);
958 			continue;
959 		}
960 
961 		pages_off = VMAP_BBMAP_BITS - vb->free;
962 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
963 		vb->free -= 1UL << order;
964 		if (vb->free == 0) {
965 			spin_lock(&vbq->lock);
966 			list_del_rcu(&vb->free_list);
967 			spin_unlock(&vbq->lock);
968 		}
969 
970 		spin_unlock(&vb->lock);
971 		break;
972 	}
973 
974 	put_cpu_var(vmap_block_queue);
975 	rcu_read_unlock();
976 
977 	/* Allocate new block if nothing was found */
978 	if (!vaddr)
979 		vaddr = new_vmap_block(order, gfp_mask);
980 
981 	return vaddr;
982 }
983 
984 static void vb_free(const void *addr, unsigned long size)
985 {
986 	unsigned long offset;
987 	unsigned long vb_idx;
988 	unsigned int order;
989 	struct vmap_block *vb;
990 
991 	BUG_ON(offset_in_page(size));
992 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
993 
994 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
995 
996 	order = get_order(size);
997 
998 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
999 	offset >>= PAGE_SHIFT;
1000 
1001 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1002 	rcu_read_lock();
1003 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1004 	rcu_read_unlock();
1005 	BUG_ON(!vb);
1006 
1007 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1008 
1009 	spin_lock(&vb->lock);
1010 
1011 	/* Expand dirty range */
1012 	vb->dirty_min = min(vb->dirty_min, offset);
1013 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1014 
1015 	vb->dirty += 1UL << order;
1016 	if (vb->dirty == VMAP_BBMAP_BITS) {
1017 		BUG_ON(vb->free);
1018 		spin_unlock(&vb->lock);
1019 		free_vmap_block(vb);
1020 	} else
1021 		spin_unlock(&vb->lock);
1022 }
1023 
1024 /**
1025  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1026  *
1027  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1028  * to amortize TLB flushing overheads. What this means is that any page you
1029  * have now, may, in a former life, have been mapped into kernel virtual
1030  * address by the vmap layer and so there might be some CPUs with TLB entries
1031  * still referencing that page (additional to the regular 1:1 kernel mapping).
1032  *
1033  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1034  * be sure that none of the pages we have control over will have any aliases
1035  * from the vmap layer.
1036  */
1037 void vm_unmap_aliases(void)
1038 {
1039 	unsigned long start = ULONG_MAX, end = 0;
1040 	int cpu;
1041 	int flush = 0;
1042 
1043 	if (unlikely(!vmap_initialized))
1044 		return;
1045 
1046 	for_each_possible_cpu(cpu) {
1047 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1048 		struct vmap_block *vb;
1049 
1050 		rcu_read_lock();
1051 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1052 			spin_lock(&vb->lock);
1053 			if (vb->dirty) {
1054 				unsigned long va_start = vb->va->va_start;
1055 				unsigned long s, e;
1056 
1057 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1058 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1059 
1060 				start = min(s, start);
1061 				end   = max(e, end);
1062 
1063 				flush = 1;
1064 			}
1065 			spin_unlock(&vb->lock);
1066 		}
1067 		rcu_read_unlock();
1068 	}
1069 
1070 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1071 }
1072 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1073 
1074 /**
1075  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1076  * @mem: the pointer returned by vm_map_ram
1077  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1078  */
1079 void vm_unmap_ram(const void *mem, unsigned int count)
1080 {
1081 	unsigned long size = count << PAGE_SHIFT;
1082 	unsigned long addr = (unsigned long)mem;
1083 
1084 	BUG_ON(!addr);
1085 	BUG_ON(addr < VMALLOC_START);
1086 	BUG_ON(addr > VMALLOC_END);
1087 	BUG_ON(!PAGE_ALIGNED(addr));
1088 
1089 	debug_check_no_locks_freed(mem, size);
1090 	vmap_debug_free_range(addr, addr+size);
1091 
1092 	if (likely(count <= VMAP_MAX_ALLOC))
1093 		vb_free(mem, size);
1094 	else
1095 		free_unmap_vmap_area_addr(addr);
1096 }
1097 EXPORT_SYMBOL(vm_unmap_ram);
1098 
1099 /**
1100  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1101  * @pages: an array of pointers to the pages to be mapped
1102  * @count: number of pages
1103  * @node: prefer to allocate data structures on this node
1104  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1105  *
1106  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1107  * faster than vmap so it's good.  But if you mix long-life and short-life
1108  * objects with vm_map_ram(), it could consume lots of address space through
1109  * fragmentation (especially on a 32bit machine).  You could see failures in
1110  * the end.  Please use this function for short-lived objects.
1111  *
1112  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1113  */
1114 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1115 {
1116 	unsigned long size = count << PAGE_SHIFT;
1117 	unsigned long addr;
1118 	void *mem;
1119 
1120 	if (likely(count <= VMAP_MAX_ALLOC)) {
1121 		mem = vb_alloc(size, GFP_KERNEL);
1122 		if (IS_ERR(mem))
1123 			return NULL;
1124 		addr = (unsigned long)mem;
1125 	} else {
1126 		struct vmap_area *va;
1127 		va = alloc_vmap_area(size, PAGE_SIZE,
1128 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1129 		if (IS_ERR(va))
1130 			return NULL;
1131 
1132 		addr = va->va_start;
1133 		mem = (void *)addr;
1134 	}
1135 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1136 		vm_unmap_ram(mem, count);
1137 		return NULL;
1138 	}
1139 	return mem;
1140 }
1141 EXPORT_SYMBOL(vm_map_ram);
1142 
1143 static struct vm_struct *vmlist __initdata;
1144 /**
1145  * vm_area_add_early - add vmap area early during boot
1146  * @vm: vm_struct to add
1147  *
1148  * This function is used to add fixed kernel vm area to vmlist before
1149  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1150  * should contain proper values and the other fields should be zero.
1151  *
1152  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1153  */
1154 void __init vm_area_add_early(struct vm_struct *vm)
1155 {
1156 	struct vm_struct *tmp, **p;
1157 
1158 	BUG_ON(vmap_initialized);
1159 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1160 		if (tmp->addr >= vm->addr) {
1161 			BUG_ON(tmp->addr < vm->addr + vm->size);
1162 			break;
1163 		} else
1164 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1165 	}
1166 	vm->next = *p;
1167 	*p = vm;
1168 }
1169 
1170 /**
1171  * vm_area_register_early - register vmap area early during boot
1172  * @vm: vm_struct to register
1173  * @align: requested alignment
1174  *
1175  * This function is used to register kernel vm area before
1176  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1177  * proper values on entry and other fields should be zero.  On return,
1178  * vm->addr contains the allocated address.
1179  *
1180  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1181  */
1182 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1183 {
1184 	static size_t vm_init_off __initdata;
1185 	unsigned long addr;
1186 
1187 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1188 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1189 
1190 	vm->addr = (void *)addr;
1191 
1192 	vm_area_add_early(vm);
1193 }
1194 
1195 void __init vmalloc_init(void)
1196 {
1197 	struct vmap_area *va;
1198 	struct vm_struct *tmp;
1199 	int i;
1200 
1201 	for_each_possible_cpu(i) {
1202 		struct vmap_block_queue *vbq;
1203 		struct vfree_deferred *p;
1204 
1205 		vbq = &per_cpu(vmap_block_queue, i);
1206 		spin_lock_init(&vbq->lock);
1207 		INIT_LIST_HEAD(&vbq->free);
1208 		p = &per_cpu(vfree_deferred, i);
1209 		init_llist_head(&p->list);
1210 		INIT_WORK(&p->wq, free_work);
1211 	}
1212 
1213 	/* Import existing vmlist entries. */
1214 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1215 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1216 		va->flags = VM_VM_AREA;
1217 		va->va_start = (unsigned long)tmp->addr;
1218 		va->va_end = va->va_start + tmp->size;
1219 		va->vm = tmp;
1220 		__insert_vmap_area(va);
1221 	}
1222 
1223 	vmap_area_pcpu_hole = VMALLOC_END;
1224 
1225 	vmap_initialized = true;
1226 }
1227 
1228 /**
1229  * map_kernel_range_noflush - map kernel VM area with the specified pages
1230  * @addr: start of the VM area to map
1231  * @size: size of the VM area to map
1232  * @prot: page protection flags to use
1233  * @pages: pages to map
1234  *
1235  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1236  * specify should have been allocated using get_vm_area() and its
1237  * friends.
1238  *
1239  * NOTE:
1240  * This function does NOT do any cache flushing.  The caller is
1241  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1242  * before calling this function.
1243  *
1244  * RETURNS:
1245  * The number of pages mapped on success, -errno on failure.
1246  */
1247 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1248 			     pgprot_t prot, struct page **pages)
1249 {
1250 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1251 }
1252 
1253 /**
1254  * unmap_kernel_range_noflush - unmap kernel VM area
1255  * @addr: start of the VM area to unmap
1256  * @size: size of the VM area to unmap
1257  *
1258  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1259  * specify should have been allocated using get_vm_area() and its
1260  * friends.
1261  *
1262  * NOTE:
1263  * This function does NOT do any cache flushing.  The caller is
1264  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1265  * before calling this function and flush_tlb_kernel_range() after.
1266  */
1267 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1268 {
1269 	vunmap_page_range(addr, addr + size);
1270 }
1271 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1272 
1273 /**
1274  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1275  * @addr: start of the VM area to unmap
1276  * @size: size of the VM area to unmap
1277  *
1278  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1279  * the unmapping and tlb after.
1280  */
1281 void unmap_kernel_range(unsigned long addr, unsigned long size)
1282 {
1283 	unsigned long end = addr + size;
1284 
1285 	flush_cache_vunmap(addr, end);
1286 	vunmap_page_range(addr, end);
1287 	flush_tlb_kernel_range(addr, end);
1288 }
1289 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1290 
1291 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1292 {
1293 	unsigned long addr = (unsigned long)area->addr;
1294 	unsigned long end = addr + get_vm_area_size(area);
1295 	int err;
1296 
1297 	err = vmap_page_range(addr, end, prot, pages);
1298 
1299 	return err > 0 ? 0 : err;
1300 }
1301 EXPORT_SYMBOL_GPL(map_vm_area);
1302 
1303 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1304 			      unsigned long flags, const void *caller)
1305 {
1306 	spin_lock(&vmap_area_lock);
1307 	vm->flags = flags;
1308 	vm->addr = (void *)va->va_start;
1309 	vm->size = va->va_end - va->va_start;
1310 	vm->caller = caller;
1311 	va->vm = vm;
1312 	va->flags |= VM_VM_AREA;
1313 	spin_unlock(&vmap_area_lock);
1314 }
1315 
1316 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1317 {
1318 	/*
1319 	 * Before removing VM_UNINITIALIZED,
1320 	 * we should make sure that vm has proper values.
1321 	 * Pair with smp_rmb() in show_numa_info().
1322 	 */
1323 	smp_wmb();
1324 	vm->flags &= ~VM_UNINITIALIZED;
1325 }
1326 
1327 static struct vm_struct *__get_vm_area_node(unsigned long size,
1328 		unsigned long align, unsigned long flags, unsigned long start,
1329 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1330 {
1331 	struct vmap_area *va;
1332 	struct vm_struct *area;
1333 
1334 	BUG_ON(in_interrupt());
1335 	if (flags & VM_IOREMAP)
1336 		align = 1ul << clamp_t(int, fls_long(size),
1337 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1338 
1339 	size = PAGE_ALIGN(size);
1340 	if (unlikely(!size))
1341 		return NULL;
1342 
1343 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1344 	if (unlikely(!area))
1345 		return NULL;
1346 
1347 	if (!(flags & VM_NO_GUARD))
1348 		size += PAGE_SIZE;
1349 
1350 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1351 	if (IS_ERR(va)) {
1352 		kfree(area);
1353 		return NULL;
1354 	}
1355 
1356 	setup_vmalloc_vm(area, va, flags, caller);
1357 
1358 	return area;
1359 }
1360 
1361 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1362 				unsigned long start, unsigned long end)
1363 {
1364 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1365 				  GFP_KERNEL, __builtin_return_address(0));
1366 }
1367 EXPORT_SYMBOL_GPL(__get_vm_area);
1368 
1369 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1370 				       unsigned long start, unsigned long end,
1371 				       const void *caller)
1372 {
1373 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1374 				  GFP_KERNEL, caller);
1375 }
1376 
1377 /**
1378  *	get_vm_area  -  reserve a contiguous kernel virtual area
1379  *	@size:		size of the area
1380  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1381  *
1382  *	Search an area of @size in the kernel virtual mapping area,
1383  *	and reserved it for out purposes.  Returns the area descriptor
1384  *	on success or %NULL on failure.
1385  */
1386 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1387 {
1388 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1389 				  NUMA_NO_NODE, GFP_KERNEL,
1390 				  __builtin_return_address(0));
1391 }
1392 
1393 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1394 				const void *caller)
1395 {
1396 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1397 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1398 }
1399 
1400 /**
1401  *	find_vm_area  -  find a continuous kernel virtual area
1402  *	@addr:		base address
1403  *
1404  *	Search for the kernel VM area starting at @addr, and return it.
1405  *	It is up to the caller to do all required locking to keep the returned
1406  *	pointer valid.
1407  */
1408 struct vm_struct *find_vm_area(const void *addr)
1409 {
1410 	struct vmap_area *va;
1411 
1412 	va = find_vmap_area((unsigned long)addr);
1413 	if (va && va->flags & VM_VM_AREA)
1414 		return va->vm;
1415 
1416 	return NULL;
1417 }
1418 
1419 /**
1420  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1421  *	@addr:		base address
1422  *
1423  *	Search for the kernel VM area starting at @addr, and remove it.
1424  *	This function returns the found VM area, but using it is NOT safe
1425  *	on SMP machines, except for its size or flags.
1426  */
1427 struct vm_struct *remove_vm_area(const void *addr)
1428 {
1429 	struct vmap_area *va;
1430 
1431 	va = find_vmap_area((unsigned long)addr);
1432 	if (va && va->flags & VM_VM_AREA) {
1433 		struct vm_struct *vm = va->vm;
1434 
1435 		spin_lock(&vmap_area_lock);
1436 		va->vm = NULL;
1437 		va->flags &= ~VM_VM_AREA;
1438 		spin_unlock(&vmap_area_lock);
1439 
1440 		vmap_debug_free_range(va->va_start, va->va_end);
1441 		kasan_free_shadow(vm);
1442 		free_unmap_vmap_area(va);
1443 
1444 		return vm;
1445 	}
1446 	return NULL;
1447 }
1448 
1449 static void __vunmap(const void *addr, int deallocate_pages)
1450 {
1451 	struct vm_struct *area;
1452 
1453 	if (!addr)
1454 		return;
1455 
1456 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1457 			addr))
1458 		return;
1459 
1460 	area = remove_vm_area(addr);
1461 	if (unlikely(!area)) {
1462 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1463 				addr);
1464 		return;
1465 	}
1466 
1467 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1468 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1469 
1470 	if (deallocate_pages) {
1471 		int i;
1472 
1473 		for (i = 0; i < area->nr_pages; i++) {
1474 			struct page *page = area->pages[i];
1475 
1476 			BUG_ON(!page);
1477 			__free_kmem_pages(page, 0);
1478 		}
1479 
1480 		kvfree(area->pages);
1481 	}
1482 
1483 	kfree(area);
1484 	return;
1485 }
1486 
1487 /**
1488  *	vfree  -  release memory allocated by vmalloc()
1489  *	@addr:		memory base address
1490  *
1491  *	Free the virtually continuous memory area starting at @addr, as
1492  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1493  *	NULL, no operation is performed.
1494  *
1495  *	Must not be called in NMI context (strictly speaking, only if we don't
1496  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1497  *	conventions for vfree() arch-depenedent would be a really bad idea)
1498  *
1499  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1500  */
1501 void vfree(const void *addr)
1502 {
1503 	BUG_ON(in_nmi());
1504 
1505 	kmemleak_free(addr);
1506 
1507 	if (!addr)
1508 		return;
1509 	if (unlikely(in_interrupt())) {
1510 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1511 		if (llist_add((struct llist_node *)addr, &p->list))
1512 			schedule_work(&p->wq);
1513 	} else
1514 		__vunmap(addr, 1);
1515 }
1516 EXPORT_SYMBOL(vfree);
1517 
1518 /**
1519  *	vunmap  -  release virtual mapping obtained by vmap()
1520  *	@addr:		memory base address
1521  *
1522  *	Free the virtually contiguous memory area starting at @addr,
1523  *	which was created from the page array passed to vmap().
1524  *
1525  *	Must not be called in interrupt context.
1526  */
1527 void vunmap(const void *addr)
1528 {
1529 	BUG_ON(in_interrupt());
1530 	might_sleep();
1531 	if (addr)
1532 		__vunmap(addr, 0);
1533 }
1534 EXPORT_SYMBOL(vunmap);
1535 
1536 /**
1537  *	vmap  -  map an array of pages into virtually contiguous space
1538  *	@pages:		array of page pointers
1539  *	@count:		number of pages to map
1540  *	@flags:		vm_area->flags
1541  *	@prot:		page protection for the mapping
1542  *
1543  *	Maps @count pages from @pages into contiguous kernel virtual
1544  *	space.
1545  */
1546 void *vmap(struct page **pages, unsigned int count,
1547 		unsigned long flags, pgprot_t prot)
1548 {
1549 	struct vm_struct *area;
1550 
1551 	might_sleep();
1552 
1553 	if (count > totalram_pages)
1554 		return NULL;
1555 
1556 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1557 					__builtin_return_address(0));
1558 	if (!area)
1559 		return NULL;
1560 
1561 	if (map_vm_area(area, prot, pages)) {
1562 		vunmap(area->addr);
1563 		return NULL;
1564 	}
1565 
1566 	return area->addr;
1567 }
1568 EXPORT_SYMBOL(vmap);
1569 
1570 static void *__vmalloc_node(unsigned long size, unsigned long align,
1571 			    gfp_t gfp_mask, pgprot_t prot,
1572 			    int node, const void *caller);
1573 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1574 				 pgprot_t prot, int node)
1575 {
1576 	const int order = 0;
1577 	struct page **pages;
1578 	unsigned int nr_pages, array_size, i;
1579 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1580 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1581 
1582 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1583 	array_size = (nr_pages * sizeof(struct page *));
1584 
1585 	area->nr_pages = nr_pages;
1586 	/* Please note that the recursion is strictly bounded. */
1587 	if (array_size > PAGE_SIZE) {
1588 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1589 				PAGE_KERNEL, node, area->caller);
1590 	} else {
1591 		pages = kmalloc_node(array_size, nested_gfp, node);
1592 	}
1593 	area->pages = pages;
1594 	if (!area->pages) {
1595 		remove_vm_area(area->addr);
1596 		kfree(area);
1597 		return NULL;
1598 	}
1599 
1600 	for (i = 0; i < area->nr_pages; i++) {
1601 		struct page *page;
1602 
1603 		if (node == NUMA_NO_NODE)
1604 			page = alloc_kmem_pages(alloc_mask, order);
1605 		else
1606 			page = alloc_kmem_pages_node(node, alloc_mask, order);
1607 
1608 		if (unlikely(!page)) {
1609 			/* Successfully allocated i pages, free them in __vunmap() */
1610 			area->nr_pages = i;
1611 			goto fail;
1612 		}
1613 		area->pages[i] = page;
1614 		if (gfpflags_allow_blocking(gfp_mask))
1615 			cond_resched();
1616 	}
1617 
1618 	if (map_vm_area(area, prot, pages))
1619 		goto fail;
1620 	return area->addr;
1621 
1622 fail:
1623 	warn_alloc_failed(gfp_mask, order,
1624 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1625 			  (area->nr_pages*PAGE_SIZE), area->size);
1626 	vfree(area->addr);
1627 	return NULL;
1628 }
1629 
1630 /**
1631  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1632  *	@size:		allocation size
1633  *	@align:		desired alignment
1634  *	@start:		vm area range start
1635  *	@end:		vm area range end
1636  *	@gfp_mask:	flags for the page level allocator
1637  *	@prot:		protection mask for the allocated pages
1638  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1639  *	@node:		node to use for allocation or NUMA_NO_NODE
1640  *	@caller:	caller's return address
1641  *
1642  *	Allocate enough pages to cover @size from the page level
1643  *	allocator with @gfp_mask flags.  Map them into contiguous
1644  *	kernel virtual space, using a pagetable protection of @prot.
1645  */
1646 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1647 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1648 			pgprot_t prot, unsigned long vm_flags, int node,
1649 			const void *caller)
1650 {
1651 	struct vm_struct *area;
1652 	void *addr;
1653 	unsigned long real_size = size;
1654 
1655 	size = PAGE_ALIGN(size);
1656 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1657 		goto fail;
1658 
1659 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1660 				vm_flags, start, end, node, gfp_mask, caller);
1661 	if (!area)
1662 		goto fail;
1663 
1664 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1665 	if (!addr)
1666 		return NULL;
1667 
1668 	/*
1669 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1670 	 * flag. It means that vm_struct is not fully initialized.
1671 	 * Now, it is fully initialized, so remove this flag here.
1672 	 */
1673 	clear_vm_uninitialized_flag(area);
1674 
1675 	/*
1676 	 * A ref_count = 2 is needed because vm_struct allocated in
1677 	 * __get_vm_area_node() contains a reference to the virtual address of
1678 	 * the vmalloc'ed block.
1679 	 */
1680 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1681 
1682 	return addr;
1683 
1684 fail:
1685 	warn_alloc_failed(gfp_mask, 0,
1686 			  "vmalloc: allocation failure: %lu bytes\n",
1687 			  real_size);
1688 	return NULL;
1689 }
1690 
1691 /**
1692  *	__vmalloc_node  -  allocate virtually contiguous memory
1693  *	@size:		allocation size
1694  *	@align:		desired alignment
1695  *	@gfp_mask:	flags for the page level allocator
1696  *	@prot:		protection mask for the allocated pages
1697  *	@node:		node to use for allocation or NUMA_NO_NODE
1698  *	@caller:	caller's return address
1699  *
1700  *	Allocate enough pages to cover @size from the page level
1701  *	allocator with @gfp_mask flags.  Map them into contiguous
1702  *	kernel virtual space, using a pagetable protection of @prot.
1703  */
1704 static void *__vmalloc_node(unsigned long size, unsigned long align,
1705 			    gfp_t gfp_mask, pgprot_t prot,
1706 			    int node, const void *caller)
1707 {
1708 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1709 				gfp_mask, prot, 0, node, caller);
1710 }
1711 
1712 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1713 {
1714 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1715 				__builtin_return_address(0));
1716 }
1717 EXPORT_SYMBOL(__vmalloc);
1718 
1719 static inline void *__vmalloc_node_flags(unsigned long size,
1720 					int node, gfp_t flags)
1721 {
1722 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1723 					node, __builtin_return_address(0));
1724 }
1725 
1726 /**
1727  *	vmalloc  -  allocate virtually contiguous memory
1728  *	@size:		allocation size
1729  *	Allocate enough pages to cover @size from the page level
1730  *	allocator and map them into contiguous kernel virtual space.
1731  *
1732  *	For tight control over page level allocator and protection flags
1733  *	use __vmalloc() instead.
1734  */
1735 void *vmalloc(unsigned long size)
1736 {
1737 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1738 				    GFP_KERNEL | __GFP_HIGHMEM);
1739 }
1740 EXPORT_SYMBOL(vmalloc);
1741 
1742 /**
1743  *	vzalloc - allocate virtually contiguous memory with zero fill
1744  *	@size:	allocation size
1745  *	Allocate enough pages to cover @size from the page level
1746  *	allocator and map them into contiguous kernel virtual space.
1747  *	The memory allocated is set to zero.
1748  *
1749  *	For tight control over page level allocator and protection flags
1750  *	use __vmalloc() instead.
1751  */
1752 void *vzalloc(unsigned long size)
1753 {
1754 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1755 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1756 }
1757 EXPORT_SYMBOL(vzalloc);
1758 
1759 /**
1760  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1761  * @size: allocation size
1762  *
1763  * The resulting memory area is zeroed so it can be mapped to userspace
1764  * without leaking data.
1765  */
1766 void *vmalloc_user(unsigned long size)
1767 {
1768 	struct vm_struct *area;
1769 	void *ret;
1770 
1771 	ret = __vmalloc_node(size, SHMLBA,
1772 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1773 			     PAGE_KERNEL, NUMA_NO_NODE,
1774 			     __builtin_return_address(0));
1775 	if (ret) {
1776 		area = find_vm_area(ret);
1777 		area->flags |= VM_USERMAP;
1778 	}
1779 	return ret;
1780 }
1781 EXPORT_SYMBOL(vmalloc_user);
1782 
1783 /**
1784  *	vmalloc_node  -  allocate memory on a specific node
1785  *	@size:		allocation size
1786  *	@node:		numa node
1787  *
1788  *	Allocate enough pages to cover @size from the page level
1789  *	allocator and map them into contiguous kernel virtual space.
1790  *
1791  *	For tight control over page level allocator and protection flags
1792  *	use __vmalloc() instead.
1793  */
1794 void *vmalloc_node(unsigned long size, int node)
1795 {
1796 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1797 					node, __builtin_return_address(0));
1798 }
1799 EXPORT_SYMBOL(vmalloc_node);
1800 
1801 /**
1802  * vzalloc_node - allocate memory on a specific node with zero fill
1803  * @size:	allocation size
1804  * @node:	numa node
1805  *
1806  * Allocate enough pages to cover @size from the page level
1807  * allocator and map them into contiguous kernel virtual space.
1808  * The memory allocated is set to zero.
1809  *
1810  * For tight control over page level allocator and protection flags
1811  * use __vmalloc_node() instead.
1812  */
1813 void *vzalloc_node(unsigned long size, int node)
1814 {
1815 	return __vmalloc_node_flags(size, node,
1816 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1817 }
1818 EXPORT_SYMBOL(vzalloc_node);
1819 
1820 #ifndef PAGE_KERNEL_EXEC
1821 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1822 #endif
1823 
1824 /**
1825  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1826  *	@size:		allocation size
1827  *
1828  *	Kernel-internal function to allocate enough pages to cover @size
1829  *	the page level allocator and map them into contiguous and
1830  *	executable kernel virtual space.
1831  *
1832  *	For tight control over page level allocator and protection flags
1833  *	use __vmalloc() instead.
1834  */
1835 
1836 void *vmalloc_exec(unsigned long size)
1837 {
1838 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1839 			      NUMA_NO_NODE, __builtin_return_address(0));
1840 }
1841 
1842 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1843 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1844 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1845 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1846 #else
1847 #define GFP_VMALLOC32 GFP_KERNEL
1848 #endif
1849 
1850 /**
1851  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1852  *	@size:		allocation size
1853  *
1854  *	Allocate enough 32bit PA addressable pages to cover @size from the
1855  *	page level allocator and map them into contiguous kernel virtual space.
1856  */
1857 void *vmalloc_32(unsigned long size)
1858 {
1859 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1860 			      NUMA_NO_NODE, __builtin_return_address(0));
1861 }
1862 EXPORT_SYMBOL(vmalloc_32);
1863 
1864 /**
1865  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1866  *	@size:		allocation size
1867  *
1868  * The resulting memory area is 32bit addressable and zeroed so it can be
1869  * mapped to userspace without leaking data.
1870  */
1871 void *vmalloc_32_user(unsigned long size)
1872 {
1873 	struct vm_struct *area;
1874 	void *ret;
1875 
1876 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1877 			     NUMA_NO_NODE, __builtin_return_address(0));
1878 	if (ret) {
1879 		area = find_vm_area(ret);
1880 		area->flags |= VM_USERMAP;
1881 	}
1882 	return ret;
1883 }
1884 EXPORT_SYMBOL(vmalloc_32_user);
1885 
1886 /*
1887  * small helper routine , copy contents to buf from addr.
1888  * If the page is not present, fill zero.
1889  */
1890 
1891 static int aligned_vread(char *buf, char *addr, unsigned long count)
1892 {
1893 	struct page *p;
1894 	int copied = 0;
1895 
1896 	while (count) {
1897 		unsigned long offset, length;
1898 
1899 		offset = offset_in_page(addr);
1900 		length = PAGE_SIZE - offset;
1901 		if (length > count)
1902 			length = count;
1903 		p = vmalloc_to_page(addr);
1904 		/*
1905 		 * To do safe access to this _mapped_ area, we need
1906 		 * lock. But adding lock here means that we need to add
1907 		 * overhead of vmalloc()/vfree() calles for this _debug_
1908 		 * interface, rarely used. Instead of that, we'll use
1909 		 * kmap() and get small overhead in this access function.
1910 		 */
1911 		if (p) {
1912 			/*
1913 			 * we can expect USER0 is not used (see vread/vwrite's
1914 			 * function description)
1915 			 */
1916 			void *map = kmap_atomic(p);
1917 			memcpy(buf, map + offset, length);
1918 			kunmap_atomic(map);
1919 		} else
1920 			memset(buf, 0, length);
1921 
1922 		addr += length;
1923 		buf += length;
1924 		copied += length;
1925 		count -= length;
1926 	}
1927 	return copied;
1928 }
1929 
1930 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1931 {
1932 	struct page *p;
1933 	int copied = 0;
1934 
1935 	while (count) {
1936 		unsigned long offset, length;
1937 
1938 		offset = offset_in_page(addr);
1939 		length = PAGE_SIZE - offset;
1940 		if (length > count)
1941 			length = count;
1942 		p = vmalloc_to_page(addr);
1943 		/*
1944 		 * To do safe access to this _mapped_ area, we need
1945 		 * lock. But adding lock here means that we need to add
1946 		 * overhead of vmalloc()/vfree() calles for this _debug_
1947 		 * interface, rarely used. Instead of that, we'll use
1948 		 * kmap() and get small overhead in this access function.
1949 		 */
1950 		if (p) {
1951 			/*
1952 			 * we can expect USER0 is not used (see vread/vwrite's
1953 			 * function description)
1954 			 */
1955 			void *map = kmap_atomic(p);
1956 			memcpy(map + offset, buf, length);
1957 			kunmap_atomic(map);
1958 		}
1959 		addr += length;
1960 		buf += length;
1961 		copied += length;
1962 		count -= length;
1963 	}
1964 	return copied;
1965 }
1966 
1967 /**
1968  *	vread() -  read vmalloc area in a safe way.
1969  *	@buf:		buffer for reading data
1970  *	@addr:		vm address.
1971  *	@count:		number of bytes to be read.
1972  *
1973  *	Returns # of bytes which addr and buf should be increased.
1974  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1975  *	includes any intersect with alive vmalloc area.
1976  *
1977  *	This function checks that addr is a valid vmalloc'ed area, and
1978  *	copy data from that area to a given buffer. If the given memory range
1979  *	of [addr...addr+count) includes some valid address, data is copied to
1980  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1981  *	IOREMAP area is treated as memory hole and no copy is done.
1982  *
1983  *	If [addr...addr+count) doesn't includes any intersects with alive
1984  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1985  *
1986  *	Note: In usual ops, vread() is never necessary because the caller
1987  *	should know vmalloc() area is valid and can use memcpy().
1988  *	This is for routines which have to access vmalloc area without
1989  *	any informaion, as /dev/kmem.
1990  *
1991  */
1992 
1993 long vread(char *buf, char *addr, unsigned long count)
1994 {
1995 	struct vmap_area *va;
1996 	struct vm_struct *vm;
1997 	char *vaddr, *buf_start = buf;
1998 	unsigned long buflen = count;
1999 	unsigned long n;
2000 
2001 	/* Don't allow overflow */
2002 	if ((unsigned long) addr + count < count)
2003 		count = -(unsigned long) addr;
2004 
2005 	spin_lock(&vmap_area_lock);
2006 	list_for_each_entry(va, &vmap_area_list, list) {
2007 		if (!count)
2008 			break;
2009 
2010 		if (!(va->flags & VM_VM_AREA))
2011 			continue;
2012 
2013 		vm = va->vm;
2014 		vaddr = (char *) vm->addr;
2015 		if (addr >= vaddr + get_vm_area_size(vm))
2016 			continue;
2017 		while (addr < vaddr) {
2018 			if (count == 0)
2019 				goto finished;
2020 			*buf = '\0';
2021 			buf++;
2022 			addr++;
2023 			count--;
2024 		}
2025 		n = vaddr + get_vm_area_size(vm) - addr;
2026 		if (n > count)
2027 			n = count;
2028 		if (!(vm->flags & VM_IOREMAP))
2029 			aligned_vread(buf, addr, n);
2030 		else /* IOREMAP area is treated as memory hole */
2031 			memset(buf, 0, n);
2032 		buf += n;
2033 		addr += n;
2034 		count -= n;
2035 	}
2036 finished:
2037 	spin_unlock(&vmap_area_lock);
2038 
2039 	if (buf == buf_start)
2040 		return 0;
2041 	/* zero-fill memory holes */
2042 	if (buf != buf_start + buflen)
2043 		memset(buf, 0, buflen - (buf - buf_start));
2044 
2045 	return buflen;
2046 }
2047 
2048 /**
2049  *	vwrite() -  write vmalloc area in a safe way.
2050  *	@buf:		buffer for source data
2051  *	@addr:		vm address.
2052  *	@count:		number of bytes to be read.
2053  *
2054  *	Returns # of bytes which addr and buf should be incresed.
2055  *	(same number to @count).
2056  *	If [addr...addr+count) doesn't includes any intersect with valid
2057  *	vmalloc area, returns 0.
2058  *
2059  *	This function checks that addr is a valid vmalloc'ed area, and
2060  *	copy data from a buffer to the given addr. If specified range of
2061  *	[addr...addr+count) includes some valid address, data is copied from
2062  *	proper area of @buf. If there are memory holes, no copy to hole.
2063  *	IOREMAP area is treated as memory hole and no copy is done.
2064  *
2065  *	If [addr...addr+count) doesn't includes any intersects with alive
2066  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2067  *
2068  *	Note: In usual ops, vwrite() is never necessary because the caller
2069  *	should know vmalloc() area is valid and can use memcpy().
2070  *	This is for routines which have to access vmalloc area without
2071  *	any informaion, as /dev/kmem.
2072  */
2073 
2074 long vwrite(char *buf, char *addr, unsigned long count)
2075 {
2076 	struct vmap_area *va;
2077 	struct vm_struct *vm;
2078 	char *vaddr;
2079 	unsigned long n, buflen;
2080 	int copied = 0;
2081 
2082 	/* Don't allow overflow */
2083 	if ((unsigned long) addr + count < count)
2084 		count = -(unsigned long) addr;
2085 	buflen = count;
2086 
2087 	spin_lock(&vmap_area_lock);
2088 	list_for_each_entry(va, &vmap_area_list, list) {
2089 		if (!count)
2090 			break;
2091 
2092 		if (!(va->flags & VM_VM_AREA))
2093 			continue;
2094 
2095 		vm = va->vm;
2096 		vaddr = (char *) vm->addr;
2097 		if (addr >= vaddr + get_vm_area_size(vm))
2098 			continue;
2099 		while (addr < vaddr) {
2100 			if (count == 0)
2101 				goto finished;
2102 			buf++;
2103 			addr++;
2104 			count--;
2105 		}
2106 		n = vaddr + get_vm_area_size(vm) - addr;
2107 		if (n > count)
2108 			n = count;
2109 		if (!(vm->flags & VM_IOREMAP)) {
2110 			aligned_vwrite(buf, addr, n);
2111 			copied++;
2112 		}
2113 		buf += n;
2114 		addr += n;
2115 		count -= n;
2116 	}
2117 finished:
2118 	spin_unlock(&vmap_area_lock);
2119 	if (!copied)
2120 		return 0;
2121 	return buflen;
2122 }
2123 
2124 /**
2125  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2126  *	@vma:		vma to cover
2127  *	@uaddr:		target user address to start at
2128  *	@kaddr:		virtual address of vmalloc kernel memory
2129  *	@size:		size of map area
2130  *
2131  *	Returns:	0 for success, -Exxx on failure
2132  *
2133  *	This function checks that @kaddr is a valid vmalloc'ed area,
2134  *	and that it is big enough to cover the range starting at
2135  *	@uaddr in @vma. Will return failure if that criteria isn't
2136  *	met.
2137  *
2138  *	Similar to remap_pfn_range() (see mm/memory.c)
2139  */
2140 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2141 				void *kaddr, unsigned long size)
2142 {
2143 	struct vm_struct *area;
2144 
2145 	size = PAGE_ALIGN(size);
2146 
2147 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2148 		return -EINVAL;
2149 
2150 	area = find_vm_area(kaddr);
2151 	if (!area)
2152 		return -EINVAL;
2153 
2154 	if (!(area->flags & VM_USERMAP))
2155 		return -EINVAL;
2156 
2157 	if (kaddr + size > area->addr + area->size)
2158 		return -EINVAL;
2159 
2160 	do {
2161 		struct page *page = vmalloc_to_page(kaddr);
2162 		int ret;
2163 
2164 		ret = vm_insert_page(vma, uaddr, page);
2165 		if (ret)
2166 			return ret;
2167 
2168 		uaddr += PAGE_SIZE;
2169 		kaddr += PAGE_SIZE;
2170 		size -= PAGE_SIZE;
2171 	} while (size > 0);
2172 
2173 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2174 
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2178 
2179 /**
2180  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2181  *	@vma:		vma to cover (map full range of vma)
2182  *	@addr:		vmalloc memory
2183  *	@pgoff:		number of pages into addr before first page to map
2184  *
2185  *	Returns:	0 for success, -Exxx on failure
2186  *
2187  *	This function checks that addr is a valid vmalloc'ed area, and
2188  *	that it is big enough to cover the vma. Will return failure if
2189  *	that criteria isn't met.
2190  *
2191  *	Similar to remap_pfn_range() (see mm/memory.c)
2192  */
2193 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2194 						unsigned long pgoff)
2195 {
2196 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2197 					   addr + (pgoff << PAGE_SHIFT),
2198 					   vma->vm_end - vma->vm_start);
2199 }
2200 EXPORT_SYMBOL(remap_vmalloc_range);
2201 
2202 /*
2203  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2204  * have one.
2205  */
2206 void __weak vmalloc_sync_all(void)
2207 {
2208 }
2209 
2210 
2211 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2212 {
2213 	pte_t ***p = data;
2214 
2215 	if (p) {
2216 		*(*p) = pte;
2217 		(*p)++;
2218 	}
2219 	return 0;
2220 }
2221 
2222 /**
2223  *	alloc_vm_area - allocate a range of kernel address space
2224  *	@size:		size of the area
2225  *	@ptes:		returns the PTEs for the address space
2226  *
2227  *	Returns:	NULL on failure, vm_struct on success
2228  *
2229  *	This function reserves a range of kernel address space, and
2230  *	allocates pagetables to map that range.  No actual mappings
2231  *	are created.
2232  *
2233  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2234  *	allocated for the VM area are returned.
2235  */
2236 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2237 {
2238 	struct vm_struct *area;
2239 
2240 	area = get_vm_area_caller(size, VM_IOREMAP,
2241 				__builtin_return_address(0));
2242 	if (area == NULL)
2243 		return NULL;
2244 
2245 	/*
2246 	 * This ensures that page tables are constructed for this region
2247 	 * of kernel virtual address space and mapped into init_mm.
2248 	 */
2249 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2250 				size, f, ptes ? &ptes : NULL)) {
2251 		free_vm_area(area);
2252 		return NULL;
2253 	}
2254 
2255 	return area;
2256 }
2257 EXPORT_SYMBOL_GPL(alloc_vm_area);
2258 
2259 void free_vm_area(struct vm_struct *area)
2260 {
2261 	struct vm_struct *ret;
2262 	ret = remove_vm_area(area->addr);
2263 	BUG_ON(ret != area);
2264 	kfree(area);
2265 }
2266 EXPORT_SYMBOL_GPL(free_vm_area);
2267 
2268 #ifdef CONFIG_SMP
2269 static struct vmap_area *node_to_va(struct rb_node *n)
2270 {
2271 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2272 }
2273 
2274 /**
2275  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2276  * @end: target address
2277  * @pnext: out arg for the next vmap_area
2278  * @pprev: out arg for the previous vmap_area
2279  *
2280  * Returns: %true if either or both of next and prev are found,
2281  *	    %false if no vmap_area exists
2282  *
2283  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2284  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2285  */
2286 static bool pvm_find_next_prev(unsigned long end,
2287 			       struct vmap_area **pnext,
2288 			       struct vmap_area **pprev)
2289 {
2290 	struct rb_node *n = vmap_area_root.rb_node;
2291 	struct vmap_area *va = NULL;
2292 
2293 	while (n) {
2294 		va = rb_entry(n, struct vmap_area, rb_node);
2295 		if (end < va->va_end)
2296 			n = n->rb_left;
2297 		else if (end > va->va_end)
2298 			n = n->rb_right;
2299 		else
2300 			break;
2301 	}
2302 
2303 	if (!va)
2304 		return false;
2305 
2306 	if (va->va_end > end) {
2307 		*pnext = va;
2308 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2309 	} else {
2310 		*pprev = va;
2311 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2312 	}
2313 	return true;
2314 }
2315 
2316 /**
2317  * pvm_determine_end - find the highest aligned address between two vmap_areas
2318  * @pnext: in/out arg for the next vmap_area
2319  * @pprev: in/out arg for the previous vmap_area
2320  * @align: alignment
2321  *
2322  * Returns: determined end address
2323  *
2324  * Find the highest aligned address between *@pnext and *@pprev below
2325  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2326  * down address is between the end addresses of the two vmap_areas.
2327  *
2328  * Please note that the address returned by this function may fall
2329  * inside *@pnext vmap_area.  The caller is responsible for checking
2330  * that.
2331  */
2332 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2333 				       struct vmap_area **pprev,
2334 				       unsigned long align)
2335 {
2336 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2337 	unsigned long addr;
2338 
2339 	if (*pnext)
2340 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2341 	else
2342 		addr = vmalloc_end;
2343 
2344 	while (*pprev && (*pprev)->va_end > addr) {
2345 		*pnext = *pprev;
2346 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2347 	}
2348 
2349 	return addr;
2350 }
2351 
2352 /**
2353  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2354  * @offsets: array containing offset of each area
2355  * @sizes: array containing size of each area
2356  * @nr_vms: the number of areas to allocate
2357  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2358  *
2359  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2360  *	    vm_structs on success, %NULL on failure
2361  *
2362  * Percpu allocator wants to use congruent vm areas so that it can
2363  * maintain the offsets among percpu areas.  This function allocates
2364  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2365  * be scattered pretty far, distance between two areas easily going up
2366  * to gigabytes.  To avoid interacting with regular vmallocs, these
2367  * areas are allocated from top.
2368  *
2369  * Despite its complicated look, this allocator is rather simple.  It
2370  * does everything top-down and scans areas from the end looking for
2371  * matching slot.  While scanning, if any of the areas overlaps with
2372  * existing vmap_area, the base address is pulled down to fit the
2373  * area.  Scanning is repeated till all the areas fit and then all
2374  * necessary data structres are inserted and the result is returned.
2375  */
2376 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2377 				     const size_t *sizes, int nr_vms,
2378 				     size_t align)
2379 {
2380 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2381 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2382 	struct vmap_area **vas, *prev, *next;
2383 	struct vm_struct **vms;
2384 	int area, area2, last_area, term_area;
2385 	unsigned long base, start, end, last_end;
2386 	bool purged = false;
2387 
2388 	/* verify parameters and allocate data structures */
2389 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2390 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2391 		start = offsets[area];
2392 		end = start + sizes[area];
2393 
2394 		/* is everything aligned properly? */
2395 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2396 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2397 
2398 		/* detect the area with the highest address */
2399 		if (start > offsets[last_area])
2400 			last_area = area;
2401 
2402 		for (area2 = 0; area2 < nr_vms; area2++) {
2403 			unsigned long start2 = offsets[area2];
2404 			unsigned long end2 = start2 + sizes[area2];
2405 
2406 			if (area2 == area)
2407 				continue;
2408 
2409 			BUG_ON(start2 >= start && start2 < end);
2410 			BUG_ON(end2 <= end && end2 > start);
2411 		}
2412 	}
2413 	last_end = offsets[last_area] + sizes[last_area];
2414 
2415 	if (vmalloc_end - vmalloc_start < last_end) {
2416 		WARN_ON(true);
2417 		return NULL;
2418 	}
2419 
2420 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2421 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2422 	if (!vas || !vms)
2423 		goto err_free2;
2424 
2425 	for (area = 0; area < nr_vms; area++) {
2426 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2427 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2428 		if (!vas[area] || !vms[area])
2429 			goto err_free;
2430 	}
2431 retry:
2432 	spin_lock(&vmap_area_lock);
2433 
2434 	/* start scanning - we scan from the top, begin with the last area */
2435 	area = term_area = last_area;
2436 	start = offsets[area];
2437 	end = start + sizes[area];
2438 
2439 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2440 		base = vmalloc_end - last_end;
2441 		goto found;
2442 	}
2443 	base = pvm_determine_end(&next, &prev, align) - end;
2444 
2445 	while (true) {
2446 		BUG_ON(next && next->va_end <= base + end);
2447 		BUG_ON(prev && prev->va_end > base + end);
2448 
2449 		/*
2450 		 * base might have underflowed, add last_end before
2451 		 * comparing.
2452 		 */
2453 		if (base + last_end < vmalloc_start + last_end) {
2454 			spin_unlock(&vmap_area_lock);
2455 			if (!purged) {
2456 				purge_vmap_area_lazy();
2457 				purged = true;
2458 				goto retry;
2459 			}
2460 			goto err_free;
2461 		}
2462 
2463 		/*
2464 		 * If next overlaps, move base downwards so that it's
2465 		 * right below next and then recheck.
2466 		 */
2467 		if (next && next->va_start < base + end) {
2468 			base = pvm_determine_end(&next, &prev, align) - end;
2469 			term_area = area;
2470 			continue;
2471 		}
2472 
2473 		/*
2474 		 * If prev overlaps, shift down next and prev and move
2475 		 * base so that it's right below new next and then
2476 		 * recheck.
2477 		 */
2478 		if (prev && prev->va_end > base + start)  {
2479 			next = prev;
2480 			prev = node_to_va(rb_prev(&next->rb_node));
2481 			base = pvm_determine_end(&next, &prev, align) - end;
2482 			term_area = area;
2483 			continue;
2484 		}
2485 
2486 		/*
2487 		 * This area fits, move on to the previous one.  If
2488 		 * the previous one is the terminal one, we're done.
2489 		 */
2490 		area = (area + nr_vms - 1) % nr_vms;
2491 		if (area == term_area)
2492 			break;
2493 		start = offsets[area];
2494 		end = start + sizes[area];
2495 		pvm_find_next_prev(base + end, &next, &prev);
2496 	}
2497 found:
2498 	/* we've found a fitting base, insert all va's */
2499 	for (area = 0; area < nr_vms; area++) {
2500 		struct vmap_area *va = vas[area];
2501 
2502 		va->va_start = base + offsets[area];
2503 		va->va_end = va->va_start + sizes[area];
2504 		__insert_vmap_area(va);
2505 	}
2506 
2507 	vmap_area_pcpu_hole = base + offsets[last_area];
2508 
2509 	spin_unlock(&vmap_area_lock);
2510 
2511 	/* insert all vm's */
2512 	for (area = 0; area < nr_vms; area++)
2513 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2514 				 pcpu_get_vm_areas);
2515 
2516 	kfree(vas);
2517 	return vms;
2518 
2519 err_free:
2520 	for (area = 0; area < nr_vms; area++) {
2521 		kfree(vas[area]);
2522 		kfree(vms[area]);
2523 	}
2524 err_free2:
2525 	kfree(vas);
2526 	kfree(vms);
2527 	return NULL;
2528 }
2529 
2530 /**
2531  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2532  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2533  * @nr_vms: the number of allocated areas
2534  *
2535  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2536  */
2537 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2538 {
2539 	int i;
2540 
2541 	for (i = 0; i < nr_vms; i++)
2542 		free_vm_area(vms[i]);
2543 	kfree(vms);
2544 }
2545 #endif	/* CONFIG_SMP */
2546 
2547 #ifdef CONFIG_PROC_FS
2548 static void *s_start(struct seq_file *m, loff_t *pos)
2549 	__acquires(&vmap_area_lock)
2550 {
2551 	loff_t n = *pos;
2552 	struct vmap_area *va;
2553 
2554 	spin_lock(&vmap_area_lock);
2555 	va = list_first_entry(&vmap_area_list, typeof(*va), list);
2556 	while (n > 0 && &va->list != &vmap_area_list) {
2557 		n--;
2558 		va = list_next_entry(va, list);
2559 	}
2560 	if (!n && &va->list != &vmap_area_list)
2561 		return va;
2562 
2563 	return NULL;
2564 
2565 }
2566 
2567 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2568 {
2569 	struct vmap_area *va = p, *next;
2570 
2571 	++*pos;
2572 	next = list_next_entry(va, list);
2573 	if (&next->list != &vmap_area_list)
2574 		return next;
2575 
2576 	return NULL;
2577 }
2578 
2579 static void s_stop(struct seq_file *m, void *p)
2580 	__releases(&vmap_area_lock)
2581 {
2582 	spin_unlock(&vmap_area_lock);
2583 }
2584 
2585 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2586 {
2587 	if (IS_ENABLED(CONFIG_NUMA)) {
2588 		unsigned int nr, *counters = m->private;
2589 
2590 		if (!counters)
2591 			return;
2592 
2593 		if (v->flags & VM_UNINITIALIZED)
2594 			return;
2595 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2596 		smp_rmb();
2597 
2598 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2599 
2600 		for (nr = 0; nr < v->nr_pages; nr++)
2601 			counters[page_to_nid(v->pages[nr])]++;
2602 
2603 		for_each_node_state(nr, N_HIGH_MEMORY)
2604 			if (counters[nr])
2605 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2606 	}
2607 }
2608 
2609 static int s_show(struct seq_file *m, void *p)
2610 {
2611 	struct vmap_area *va = p;
2612 	struct vm_struct *v;
2613 
2614 	/*
2615 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2616 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2617 	 */
2618 	if (!(va->flags & VM_VM_AREA))
2619 		return 0;
2620 
2621 	v = va->vm;
2622 
2623 	seq_printf(m, "0x%pK-0x%pK %7ld",
2624 		v->addr, v->addr + v->size, v->size);
2625 
2626 	if (v->caller)
2627 		seq_printf(m, " %pS", v->caller);
2628 
2629 	if (v->nr_pages)
2630 		seq_printf(m, " pages=%d", v->nr_pages);
2631 
2632 	if (v->phys_addr)
2633 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2634 
2635 	if (v->flags & VM_IOREMAP)
2636 		seq_puts(m, " ioremap");
2637 
2638 	if (v->flags & VM_ALLOC)
2639 		seq_puts(m, " vmalloc");
2640 
2641 	if (v->flags & VM_MAP)
2642 		seq_puts(m, " vmap");
2643 
2644 	if (v->flags & VM_USERMAP)
2645 		seq_puts(m, " user");
2646 
2647 	if (is_vmalloc_addr(v->pages))
2648 		seq_puts(m, " vpages");
2649 
2650 	show_numa_info(m, v);
2651 	seq_putc(m, '\n');
2652 	return 0;
2653 }
2654 
2655 static const struct seq_operations vmalloc_op = {
2656 	.start = s_start,
2657 	.next = s_next,
2658 	.stop = s_stop,
2659 	.show = s_show,
2660 };
2661 
2662 static int vmalloc_open(struct inode *inode, struct file *file)
2663 {
2664 	if (IS_ENABLED(CONFIG_NUMA))
2665 		return seq_open_private(file, &vmalloc_op,
2666 					nr_node_ids * sizeof(unsigned int));
2667 	else
2668 		return seq_open(file, &vmalloc_op);
2669 }
2670 
2671 static const struct file_operations proc_vmalloc_operations = {
2672 	.open		= vmalloc_open,
2673 	.read		= seq_read,
2674 	.llseek		= seq_lseek,
2675 	.release	= seq_release_private,
2676 };
2677 
2678 static int __init proc_vmalloc_init(void)
2679 {
2680 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2681 	return 0;
2682 }
2683 module_init(proc_vmalloc_init);
2684 
2685 #endif
2686 
2687