1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 #include <linux/bootmem.h> 27 28 #include <asm/atomic.h> 29 #include <asm/uaccess.h> 30 #include <asm/tlbflush.h> 31 32 33 /*** Page table manipulation functions ***/ 34 35 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 36 { 37 pte_t *pte; 38 39 pte = pte_offset_kernel(pmd, addr); 40 do { 41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 42 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 43 } while (pte++, addr += PAGE_SIZE, addr != end); 44 } 45 46 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 47 { 48 pmd_t *pmd; 49 unsigned long next; 50 51 pmd = pmd_offset(pud, addr); 52 do { 53 next = pmd_addr_end(addr, end); 54 if (pmd_none_or_clear_bad(pmd)) 55 continue; 56 vunmap_pte_range(pmd, addr, next); 57 } while (pmd++, addr = next, addr != end); 58 } 59 60 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 61 { 62 pud_t *pud; 63 unsigned long next; 64 65 pud = pud_offset(pgd, addr); 66 do { 67 next = pud_addr_end(addr, end); 68 if (pud_none_or_clear_bad(pud)) 69 continue; 70 vunmap_pmd_range(pud, addr, next); 71 } while (pud++, addr = next, addr != end); 72 } 73 74 static void vunmap_page_range(unsigned long addr, unsigned long end) 75 { 76 pgd_t *pgd; 77 unsigned long next; 78 79 BUG_ON(addr >= end); 80 pgd = pgd_offset_k(addr); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 } 88 89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 91 { 92 pte_t *pte; 93 94 /* 95 * nr is a running index into the array which helps higher level 96 * callers keep track of where we're up to. 97 */ 98 99 pte = pte_alloc_kernel(pmd, addr); 100 if (!pte) 101 return -ENOMEM; 102 do { 103 struct page *page = pages[*nr]; 104 105 if (WARN_ON(!pte_none(*pte))) 106 return -EBUSY; 107 if (WARN_ON(!page)) 108 return -ENOMEM; 109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 110 (*nr)++; 111 } while (pte++, addr += PAGE_SIZE, addr != end); 112 return 0; 113 } 114 115 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 116 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 117 { 118 pmd_t *pmd; 119 unsigned long next; 120 121 pmd = pmd_alloc(&init_mm, pud, addr); 122 if (!pmd) 123 return -ENOMEM; 124 do { 125 next = pmd_addr_end(addr, end); 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 127 return -ENOMEM; 128 } while (pmd++, addr = next, addr != end); 129 return 0; 130 } 131 132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 133 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 134 { 135 pud_t *pud; 136 unsigned long next; 137 138 pud = pud_alloc(&init_mm, pgd, addr); 139 if (!pud) 140 return -ENOMEM; 141 do { 142 next = pud_addr_end(addr, end); 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 144 return -ENOMEM; 145 } while (pud++, addr = next, addr != end); 146 return 0; 147 } 148 149 /* 150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 151 * will have pfns corresponding to the "pages" array. 152 * 153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 154 */ 155 static int vmap_page_range(unsigned long start, unsigned long end, 156 pgprot_t prot, struct page **pages) 157 { 158 pgd_t *pgd; 159 unsigned long next; 160 unsigned long addr = start; 161 int err = 0; 162 int nr = 0; 163 164 BUG_ON(addr >= end); 165 pgd = pgd_offset_k(addr); 166 do { 167 next = pgd_addr_end(addr, end); 168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 169 if (err) 170 break; 171 } while (pgd++, addr = next, addr != end); 172 flush_cache_vmap(start, end); 173 174 if (unlikely(err)) 175 return err; 176 return nr; 177 } 178 179 static inline int is_vmalloc_or_module_addr(const void *x) 180 { 181 /* 182 * ARM, x86-64 and sparc64 put modules in a special place, 183 * and fall back on vmalloc() if that fails. Others 184 * just put it in the vmalloc space. 185 */ 186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 187 unsigned long addr = (unsigned long)x; 188 if (addr >= MODULES_VADDR && addr < MODULES_END) 189 return 1; 190 #endif 191 return is_vmalloc_addr(x); 192 } 193 194 /* 195 * Walk a vmap address to the struct page it maps. 196 */ 197 struct page *vmalloc_to_page(const void *vmalloc_addr) 198 { 199 unsigned long addr = (unsigned long) vmalloc_addr; 200 struct page *page = NULL; 201 pgd_t *pgd = pgd_offset_k(addr); 202 203 /* 204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 205 * architectures that do not vmalloc module space 206 */ 207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 208 209 if (!pgd_none(*pgd)) { 210 pud_t *pud = pud_offset(pgd, addr); 211 if (!pud_none(*pud)) { 212 pmd_t *pmd = pmd_offset(pud, addr); 213 if (!pmd_none(*pmd)) { 214 pte_t *ptep, pte; 215 216 ptep = pte_offset_map(pmd, addr); 217 pte = *ptep; 218 if (pte_present(pte)) 219 page = pte_page(pte); 220 pte_unmap(ptep); 221 } 222 } 223 } 224 return page; 225 } 226 EXPORT_SYMBOL(vmalloc_to_page); 227 228 /* 229 * Map a vmalloc()-space virtual address to the physical page frame number. 230 */ 231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 232 { 233 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 234 } 235 EXPORT_SYMBOL(vmalloc_to_pfn); 236 237 238 /*** Global kva allocator ***/ 239 240 #define VM_LAZY_FREE 0x01 241 #define VM_LAZY_FREEING 0x02 242 #define VM_VM_AREA 0x04 243 244 struct vmap_area { 245 unsigned long va_start; 246 unsigned long va_end; 247 unsigned long flags; 248 struct rb_node rb_node; /* address sorted rbtree */ 249 struct list_head list; /* address sorted list */ 250 struct list_head purge_list; /* "lazy purge" list */ 251 void *private; 252 struct rcu_head rcu_head; 253 }; 254 255 static DEFINE_SPINLOCK(vmap_area_lock); 256 static struct rb_root vmap_area_root = RB_ROOT; 257 static LIST_HEAD(vmap_area_list); 258 259 static struct vmap_area *__find_vmap_area(unsigned long addr) 260 { 261 struct rb_node *n = vmap_area_root.rb_node; 262 263 while (n) { 264 struct vmap_area *va; 265 266 va = rb_entry(n, struct vmap_area, rb_node); 267 if (addr < va->va_start) 268 n = n->rb_left; 269 else if (addr > va->va_start) 270 n = n->rb_right; 271 else 272 return va; 273 } 274 275 return NULL; 276 } 277 278 static void __insert_vmap_area(struct vmap_area *va) 279 { 280 struct rb_node **p = &vmap_area_root.rb_node; 281 struct rb_node *parent = NULL; 282 struct rb_node *tmp; 283 284 while (*p) { 285 struct vmap_area *tmp; 286 287 parent = *p; 288 tmp = rb_entry(parent, struct vmap_area, rb_node); 289 if (va->va_start < tmp->va_end) 290 p = &(*p)->rb_left; 291 else if (va->va_end > tmp->va_start) 292 p = &(*p)->rb_right; 293 else 294 BUG(); 295 } 296 297 rb_link_node(&va->rb_node, parent, p); 298 rb_insert_color(&va->rb_node, &vmap_area_root); 299 300 /* address-sort this list so it is usable like the vmlist */ 301 tmp = rb_prev(&va->rb_node); 302 if (tmp) { 303 struct vmap_area *prev; 304 prev = rb_entry(tmp, struct vmap_area, rb_node); 305 list_add_rcu(&va->list, &prev->list); 306 } else 307 list_add_rcu(&va->list, &vmap_area_list); 308 } 309 310 static void purge_vmap_area_lazy(void); 311 312 /* 313 * Allocate a region of KVA of the specified size and alignment, within the 314 * vstart and vend. 315 */ 316 static struct vmap_area *alloc_vmap_area(unsigned long size, 317 unsigned long align, 318 unsigned long vstart, unsigned long vend, 319 int node, gfp_t gfp_mask) 320 { 321 struct vmap_area *va; 322 struct rb_node *n; 323 unsigned long addr; 324 int purged = 0; 325 326 BUG_ON(!size); 327 BUG_ON(size & ~PAGE_MASK); 328 329 va = kmalloc_node(sizeof(struct vmap_area), 330 gfp_mask & GFP_RECLAIM_MASK, node); 331 if (unlikely(!va)) 332 return ERR_PTR(-ENOMEM); 333 334 retry: 335 addr = ALIGN(vstart, align); 336 337 spin_lock(&vmap_area_lock); 338 if (addr + size - 1 < addr) 339 goto overflow; 340 341 /* XXX: could have a last_hole cache */ 342 n = vmap_area_root.rb_node; 343 if (n) { 344 struct vmap_area *first = NULL; 345 346 do { 347 struct vmap_area *tmp; 348 tmp = rb_entry(n, struct vmap_area, rb_node); 349 if (tmp->va_end >= addr) { 350 if (!first && tmp->va_start < addr + size) 351 first = tmp; 352 n = n->rb_left; 353 } else { 354 first = tmp; 355 n = n->rb_right; 356 } 357 } while (n); 358 359 if (!first) 360 goto found; 361 362 if (first->va_end < addr) { 363 n = rb_next(&first->rb_node); 364 if (n) 365 first = rb_entry(n, struct vmap_area, rb_node); 366 else 367 goto found; 368 } 369 370 while (addr + size > first->va_start && addr + size <= vend) { 371 addr = ALIGN(first->va_end + PAGE_SIZE, align); 372 if (addr + size - 1 < addr) 373 goto overflow; 374 375 n = rb_next(&first->rb_node); 376 if (n) 377 first = rb_entry(n, struct vmap_area, rb_node); 378 else 379 goto found; 380 } 381 } 382 found: 383 if (addr + size > vend) { 384 overflow: 385 spin_unlock(&vmap_area_lock); 386 if (!purged) { 387 purge_vmap_area_lazy(); 388 purged = 1; 389 goto retry; 390 } 391 if (printk_ratelimit()) 392 printk(KERN_WARNING 393 "vmap allocation for size %lu failed: " 394 "use vmalloc=<size> to increase size.\n", size); 395 return ERR_PTR(-EBUSY); 396 } 397 398 BUG_ON(addr & (align-1)); 399 400 va->va_start = addr; 401 va->va_end = addr + size; 402 va->flags = 0; 403 __insert_vmap_area(va); 404 spin_unlock(&vmap_area_lock); 405 406 return va; 407 } 408 409 static void rcu_free_va(struct rcu_head *head) 410 { 411 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 412 413 kfree(va); 414 } 415 416 static void __free_vmap_area(struct vmap_area *va) 417 { 418 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 419 rb_erase(&va->rb_node, &vmap_area_root); 420 RB_CLEAR_NODE(&va->rb_node); 421 list_del_rcu(&va->list); 422 423 call_rcu(&va->rcu_head, rcu_free_va); 424 } 425 426 /* 427 * Free a region of KVA allocated by alloc_vmap_area 428 */ 429 static void free_vmap_area(struct vmap_area *va) 430 { 431 spin_lock(&vmap_area_lock); 432 __free_vmap_area(va); 433 spin_unlock(&vmap_area_lock); 434 } 435 436 /* 437 * Clear the pagetable entries of a given vmap_area 438 */ 439 static void unmap_vmap_area(struct vmap_area *va) 440 { 441 vunmap_page_range(va->va_start, va->va_end); 442 } 443 444 static void vmap_debug_free_range(unsigned long start, unsigned long end) 445 { 446 /* 447 * Unmap page tables and force a TLB flush immediately if 448 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 449 * bugs similarly to those in linear kernel virtual address 450 * space after a page has been freed. 451 * 452 * All the lazy freeing logic is still retained, in order to 453 * minimise intrusiveness of this debugging feature. 454 * 455 * This is going to be *slow* (linear kernel virtual address 456 * debugging doesn't do a broadcast TLB flush so it is a lot 457 * faster). 458 */ 459 #ifdef CONFIG_DEBUG_PAGEALLOC 460 vunmap_page_range(start, end); 461 flush_tlb_kernel_range(start, end); 462 #endif 463 } 464 465 /* 466 * lazy_max_pages is the maximum amount of virtual address space we gather up 467 * before attempting to purge with a TLB flush. 468 * 469 * There is a tradeoff here: a larger number will cover more kernel page tables 470 * and take slightly longer to purge, but it will linearly reduce the number of 471 * global TLB flushes that must be performed. It would seem natural to scale 472 * this number up linearly with the number of CPUs (because vmapping activity 473 * could also scale linearly with the number of CPUs), however it is likely 474 * that in practice, workloads might be constrained in other ways that mean 475 * vmap activity will not scale linearly with CPUs. Also, I want to be 476 * conservative and not introduce a big latency on huge systems, so go with 477 * a less aggressive log scale. It will still be an improvement over the old 478 * code, and it will be simple to change the scale factor if we find that it 479 * becomes a problem on bigger systems. 480 */ 481 static unsigned long lazy_max_pages(void) 482 { 483 unsigned int log; 484 485 log = fls(num_online_cpus()); 486 487 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 488 } 489 490 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 491 492 /* 493 * Purges all lazily-freed vmap areas. 494 * 495 * If sync is 0 then don't purge if there is already a purge in progress. 496 * If force_flush is 1, then flush kernel TLBs between *start and *end even 497 * if we found no lazy vmap areas to unmap (callers can use this to optimise 498 * their own TLB flushing). 499 * Returns with *start = min(*start, lowest purged address) 500 * *end = max(*end, highest purged address) 501 */ 502 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 503 int sync, int force_flush) 504 { 505 static DEFINE_SPINLOCK(purge_lock); 506 LIST_HEAD(valist); 507 struct vmap_area *va; 508 struct vmap_area *n_va; 509 int nr = 0; 510 511 /* 512 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 513 * should not expect such behaviour. This just simplifies locking for 514 * the case that isn't actually used at the moment anyway. 515 */ 516 if (!sync && !force_flush) { 517 if (!spin_trylock(&purge_lock)) 518 return; 519 } else 520 spin_lock(&purge_lock); 521 522 rcu_read_lock(); 523 list_for_each_entry_rcu(va, &vmap_area_list, list) { 524 if (va->flags & VM_LAZY_FREE) { 525 if (va->va_start < *start) 526 *start = va->va_start; 527 if (va->va_end > *end) 528 *end = va->va_end; 529 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 530 unmap_vmap_area(va); 531 list_add_tail(&va->purge_list, &valist); 532 va->flags |= VM_LAZY_FREEING; 533 va->flags &= ~VM_LAZY_FREE; 534 } 535 } 536 rcu_read_unlock(); 537 538 if (nr) { 539 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 540 atomic_sub(nr, &vmap_lazy_nr); 541 } 542 543 if (nr || force_flush) 544 flush_tlb_kernel_range(*start, *end); 545 546 if (nr) { 547 spin_lock(&vmap_area_lock); 548 list_for_each_entry_safe(va, n_va, &valist, purge_list) 549 __free_vmap_area(va); 550 spin_unlock(&vmap_area_lock); 551 } 552 spin_unlock(&purge_lock); 553 } 554 555 /* 556 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 557 * is already purging. 558 */ 559 static void try_purge_vmap_area_lazy(void) 560 { 561 unsigned long start = ULONG_MAX, end = 0; 562 563 __purge_vmap_area_lazy(&start, &end, 0, 0); 564 } 565 566 /* 567 * Kick off a purge of the outstanding lazy areas. 568 */ 569 static void purge_vmap_area_lazy(void) 570 { 571 unsigned long start = ULONG_MAX, end = 0; 572 573 __purge_vmap_area_lazy(&start, &end, 1, 0); 574 } 575 576 /* 577 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 578 * called for the correct range previously. 579 */ 580 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 581 { 582 va->flags |= VM_LAZY_FREE; 583 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 584 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 585 try_purge_vmap_area_lazy(); 586 } 587 588 /* 589 * Free and unmap a vmap area 590 */ 591 static void free_unmap_vmap_area(struct vmap_area *va) 592 { 593 flush_cache_vunmap(va->va_start, va->va_end); 594 free_unmap_vmap_area_noflush(va); 595 } 596 597 static struct vmap_area *find_vmap_area(unsigned long addr) 598 { 599 struct vmap_area *va; 600 601 spin_lock(&vmap_area_lock); 602 va = __find_vmap_area(addr); 603 spin_unlock(&vmap_area_lock); 604 605 return va; 606 } 607 608 static void free_unmap_vmap_area_addr(unsigned long addr) 609 { 610 struct vmap_area *va; 611 612 va = find_vmap_area(addr); 613 BUG_ON(!va); 614 free_unmap_vmap_area(va); 615 } 616 617 618 /*** Per cpu kva allocator ***/ 619 620 /* 621 * vmap space is limited especially on 32 bit architectures. Ensure there is 622 * room for at least 16 percpu vmap blocks per CPU. 623 */ 624 /* 625 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 626 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 627 * instead (we just need a rough idea) 628 */ 629 #if BITS_PER_LONG == 32 630 #define VMALLOC_SPACE (128UL*1024*1024) 631 #else 632 #define VMALLOC_SPACE (128UL*1024*1024*1024) 633 #endif 634 635 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 636 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 637 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 638 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 639 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 640 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 641 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 642 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 643 VMALLOC_PAGES / NR_CPUS / 16)) 644 645 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 646 647 static bool vmap_initialized __read_mostly = false; 648 649 struct vmap_block_queue { 650 spinlock_t lock; 651 struct list_head free; 652 struct list_head dirty; 653 unsigned int nr_dirty; 654 }; 655 656 struct vmap_block { 657 spinlock_t lock; 658 struct vmap_area *va; 659 struct vmap_block_queue *vbq; 660 unsigned long free, dirty; 661 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 662 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 663 union { 664 struct { 665 struct list_head free_list; 666 struct list_head dirty_list; 667 }; 668 struct rcu_head rcu_head; 669 }; 670 }; 671 672 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 673 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 674 675 /* 676 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 677 * in the free path. Could get rid of this if we change the API to return a 678 * "cookie" from alloc, to be passed to free. But no big deal yet. 679 */ 680 static DEFINE_SPINLOCK(vmap_block_tree_lock); 681 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 682 683 /* 684 * We should probably have a fallback mechanism to allocate virtual memory 685 * out of partially filled vmap blocks. However vmap block sizing should be 686 * fairly reasonable according to the vmalloc size, so it shouldn't be a 687 * big problem. 688 */ 689 690 static unsigned long addr_to_vb_idx(unsigned long addr) 691 { 692 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 693 addr /= VMAP_BLOCK_SIZE; 694 return addr; 695 } 696 697 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 698 { 699 struct vmap_block_queue *vbq; 700 struct vmap_block *vb; 701 struct vmap_area *va; 702 unsigned long vb_idx; 703 int node, err; 704 705 node = numa_node_id(); 706 707 vb = kmalloc_node(sizeof(struct vmap_block), 708 gfp_mask & GFP_RECLAIM_MASK, node); 709 if (unlikely(!vb)) 710 return ERR_PTR(-ENOMEM); 711 712 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 713 VMALLOC_START, VMALLOC_END, 714 node, gfp_mask); 715 if (unlikely(IS_ERR(va))) { 716 kfree(vb); 717 return ERR_PTR(PTR_ERR(va)); 718 } 719 720 err = radix_tree_preload(gfp_mask); 721 if (unlikely(err)) { 722 kfree(vb); 723 free_vmap_area(va); 724 return ERR_PTR(err); 725 } 726 727 spin_lock_init(&vb->lock); 728 vb->va = va; 729 vb->free = VMAP_BBMAP_BITS; 730 vb->dirty = 0; 731 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 732 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 733 INIT_LIST_HEAD(&vb->free_list); 734 INIT_LIST_HEAD(&vb->dirty_list); 735 736 vb_idx = addr_to_vb_idx(va->va_start); 737 spin_lock(&vmap_block_tree_lock); 738 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 739 spin_unlock(&vmap_block_tree_lock); 740 BUG_ON(err); 741 radix_tree_preload_end(); 742 743 vbq = &get_cpu_var(vmap_block_queue); 744 vb->vbq = vbq; 745 spin_lock(&vbq->lock); 746 list_add(&vb->free_list, &vbq->free); 747 spin_unlock(&vbq->lock); 748 put_cpu_var(vmap_cpu_blocks); 749 750 return vb; 751 } 752 753 static void rcu_free_vb(struct rcu_head *head) 754 { 755 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 756 757 kfree(vb); 758 } 759 760 static void free_vmap_block(struct vmap_block *vb) 761 { 762 struct vmap_block *tmp; 763 unsigned long vb_idx; 764 765 spin_lock(&vb->vbq->lock); 766 if (!list_empty(&vb->free_list)) 767 list_del(&vb->free_list); 768 if (!list_empty(&vb->dirty_list)) 769 list_del(&vb->dirty_list); 770 spin_unlock(&vb->vbq->lock); 771 772 vb_idx = addr_to_vb_idx(vb->va->va_start); 773 spin_lock(&vmap_block_tree_lock); 774 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 775 spin_unlock(&vmap_block_tree_lock); 776 BUG_ON(tmp != vb); 777 778 free_unmap_vmap_area_noflush(vb->va); 779 call_rcu(&vb->rcu_head, rcu_free_vb); 780 } 781 782 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 783 { 784 struct vmap_block_queue *vbq; 785 struct vmap_block *vb; 786 unsigned long addr = 0; 787 unsigned int order; 788 789 BUG_ON(size & ~PAGE_MASK); 790 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 791 order = get_order(size); 792 793 again: 794 rcu_read_lock(); 795 vbq = &get_cpu_var(vmap_block_queue); 796 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 797 int i; 798 799 spin_lock(&vb->lock); 800 i = bitmap_find_free_region(vb->alloc_map, 801 VMAP_BBMAP_BITS, order); 802 803 if (i >= 0) { 804 addr = vb->va->va_start + (i << PAGE_SHIFT); 805 BUG_ON(addr_to_vb_idx(addr) != 806 addr_to_vb_idx(vb->va->va_start)); 807 vb->free -= 1UL << order; 808 if (vb->free == 0) { 809 spin_lock(&vbq->lock); 810 list_del_init(&vb->free_list); 811 spin_unlock(&vbq->lock); 812 } 813 spin_unlock(&vb->lock); 814 break; 815 } 816 spin_unlock(&vb->lock); 817 } 818 put_cpu_var(vmap_cpu_blocks); 819 rcu_read_unlock(); 820 821 if (!addr) { 822 vb = new_vmap_block(gfp_mask); 823 if (IS_ERR(vb)) 824 return vb; 825 goto again; 826 } 827 828 return (void *)addr; 829 } 830 831 static void vb_free(const void *addr, unsigned long size) 832 { 833 unsigned long offset; 834 unsigned long vb_idx; 835 unsigned int order; 836 struct vmap_block *vb; 837 838 BUG_ON(size & ~PAGE_MASK); 839 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 840 841 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 842 843 order = get_order(size); 844 845 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 846 847 vb_idx = addr_to_vb_idx((unsigned long)addr); 848 rcu_read_lock(); 849 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 850 rcu_read_unlock(); 851 BUG_ON(!vb); 852 853 spin_lock(&vb->lock); 854 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 855 if (!vb->dirty) { 856 spin_lock(&vb->vbq->lock); 857 list_add(&vb->dirty_list, &vb->vbq->dirty); 858 spin_unlock(&vb->vbq->lock); 859 } 860 vb->dirty += 1UL << order; 861 if (vb->dirty == VMAP_BBMAP_BITS) { 862 BUG_ON(vb->free || !list_empty(&vb->free_list)); 863 spin_unlock(&vb->lock); 864 free_vmap_block(vb); 865 } else 866 spin_unlock(&vb->lock); 867 } 868 869 /** 870 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 871 * 872 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 873 * to amortize TLB flushing overheads. What this means is that any page you 874 * have now, may, in a former life, have been mapped into kernel virtual 875 * address by the vmap layer and so there might be some CPUs with TLB entries 876 * still referencing that page (additional to the regular 1:1 kernel mapping). 877 * 878 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 879 * be sure that none of the pages we have control over will have any aliases 880 * from the vmap layer. 881 */ 882 void vm_unmap_aliases(void) 883 { 884 unsigned long start = ULONG_MAX, end = 0; 885 int cpu; 886 int flush = 0; 887 888 if (unlikely(!vmap_initialized)) 889 return; 890 891 for_each_possible_cpu(cpu) { 892 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 893 struct vmap_block *vb; 894 895 rcu_read_lock(); 896 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 897 int i; 898 899 spin_lock(&vb->lock); 900 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 901 while (i < VMAP_BBMAP_BITS) { 902 unsigned long s, e; 903 int j; 904 j = find_next_zero_bit(vb->dirty_map, 905 VMAP_BBMAP_BITS, i); 906 907 s = vb->va->va_start + (i << PAGE_SHIFT); 908 e = vb->va->va_start + (j << PAGE_SHIFT); 909 vunmap_page_range(s, e); 910 flush = 1; 911 912 if (s < start) 913 start = s; 914 if (e > end) 915 end = e; 916 917 i = j; 918 i = find_next_bit(vb->dirty_map, 919 VMAP_BBMAP_BITS, i); 920 } 921 spin_unlock(&vb->lock); 922 } 923 rcu_read_unlock(); 924 } 925 926 __purge_vmap_area_lazy(&start, &end, 1, flush); 927 } 928 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 929 930 /** 931 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 932 * @mem: the pointer returned by vm_map_ram 933 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 934 */ 935 void vm_unmap_ram(const void *mem, unsigned int count) 936 { 937 unsigned long size = count << PAGE_SHIFT; 938 unsigned long addr = (unsigned long)mem; 939 940 BUG_ON(!addr); 941 BUG_ON(addr < VMALLOC_START); 942 BUG_ON(addr > VMALLOC_END); 943 BUG_ON(addr & (PAGE_SIZE-1)); 944 945 debug_check_no_locks_freed(mem, size); 946 vmap_debug_free_range(addr, addr+size); 947 948 if (likely(count <= VMAP_MAX_ALLOC)) 949 vb_free(mem, size); 950 else 951 free_unmap_vmap_area_addr(addr); 952 } 953 EXPORT_SYMBOL(vm_unmap_ram); 954 955 /** 956 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 957 * @pages: an array of pointers to the pages to be mapped 958 * @count: number of pages 959 * @node: prefer to allocate data structures on this node 960 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 961 * 962 * Returns: a pointer to the address that has been mapped, or %NULL on failure 963 */ 964 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 965 { 966 unsigned long size = count << PAGE_SHIFT; 967 unsigned long addr; 968 void *mem; 969 970 if (likely(count <= VMAP_MAX_ALLOC)) { 971 mem = vb_alloc(size, GFP_KERNEL); 972 if (IS_ERR(mem)) 973 return NULL; 974 addr = (unsigned long)mem; 975 } else { 976 struct vmap_area *va; 977 va = alloc_vmap_area(size, PAGE_SIZE, 978 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 979 if (IS_ERR(va)) 980 return NULL; 981 982 addr = va->va_start; 983 mem = (void *)addr; 984 } 985 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 986 vm_unmap_ram(mem, count); 987 return NULL; 988 } 989 return mem; 990 } 991 EXPORT_SYMBOL(vm_map_ram); 992 993 void __init vmalloc_init(void) 994 { 995 struct vmap_area *va; 996 struct vm_struct *tmp; 997 int i; 998 999 for_each_possible_cpu(i) { 1000 struct vmap_block_queue *vbq; 1001 1002 vbq = &per_cpu(vmap_block_queue, i); 1003 spin_lock_init(&vbq->lock); 1004 INIT_LIST_HEAD(&vbq->free); 1005 INIT_LIST_HEAD(&vbq->dirty); 1006 vbq->nr_dirty = 0; 1007 } 1008 1009 /* Import existing vmlist entries. */ 1010 for (tmp = vmlist; tmp; tmp = tmp->next) { 1011 va = alloc_bootmem(sizeof(struct vmap_area)); 1012 va->flags = tmp->flags | VM_VM_AREA; 1013 va->va_start = (unsigned long)tmp->addr; 1014 va->va_end = va->va_start + tmp->size; 1015 __insert_vmap_area(va); 1016 } 1017 vmap_initialized = true; 1018 } 1019 1020 void unmap_kernel_range(unsigned long addr, unsigned long size) 1021 { 1022 unsigned long end = addr + size; 1023 1024 flush_cache_vunmap(addr, end); 1025 vunmap_page_range(addr, end); 1026 flush_tlb_kernel_range(addr, end); 1027 } 1028 1029 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1030 { 1031 unsigned long addr = (unsigned long)area->addr; 1032 unsigned long end = addr + area->size - PAGE_SIZE; 1033 int err; 1034 1035 err = vmap_page_range(addr, end, prot, *pages); 1036 if (err > 0) { 1037 *pages += err; 1038 err = 0; 1039 } 1040 1041 return err; 1042 } 1043 EXPORT_SYMBOL_GPL(map_vm_area); 1044 1045 /*** Old vmalloc interfaces ***/ 1046 DEFINE_RWLOCK(vmlist_lock); 1047 struct vm_struct *vmlist; 1048 1049 static struct vm_struct *__get_vm_area_node(unsigned long size, 1050 unsigned long flags, unsigned long start, unsigned long end, 1051 int node, gfp_t gfp_mask, void *caller) 1052 { 1053 static struct vmap_area *va; 1054 struct vm_struct *area; 1055 struct vm_struct *tmp, **p; 1056 unsigned long align = 1; 1057 1058 BUG_ON(in_interrupt()); 1059 if (flags & VM_IOREMAP) { 1060 int bit = fls(size); 1061 1062 if (bit > IOREMAP_MAX_ORDER) 1063 bit = IOREMAP_MAX_ORDER; 1064 else if (bit < PAGE_SHIFT) 1065 bit = PAGE_SHIFT; 1066 1067 align = 1ul << bit; 1068 } 1069 1070 size = PAGE_ALIGN(size); 1071 if (unlikely(!size)) 1072 return NULL; 1073 1074 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1075 if (unlikely(!area)) 1076 return NULL; 1077 1078 /* 1079 * We always allocate a guard page. 1080 */ 1081 size += PAGE_SIZE; 1082 1083 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1084 if (IS_ERR(va)) { 1085 kfree(area); 1086 return NULL; 1087 } 1088 1089 area->flags = flags; 1090 area->addr = (void *)va->va_start; 1091 area->size = size; 1092 area->pages = NULL; 1093 area->nr_pages = 0; 1094 area->phys_addr = 0; 1095 area->caller = caller; 1096 va->private = area; 1097 va->flags |= VM_VM_AREA; 1098 1099 write_lock(&vmlist_lock); 1100 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1101 if (tmp->addr >= area->addr) 1102 break; 1103 } 1104 area->next = *p; 1105 *p = area; 1106 write_unlock(&vmlist_lock); 1107 1108 return area; 1109 } 1110 1111 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1112 unsigned long start, unsigned long end) 1113 { 1114 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1115 __builtin_return_address(0)); 1116 } 1117 EXPORT_SYMBOL_GPL(__get_vm_area); 1118 1119 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1120 unsigned long start, unsigned long end, 1121 void *caller) 1122 { 1123 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1124 caller); 1125 } 1126 1127 /** 1128 * get_vm_area - reserve a contiguous kernel virtual area 1129 * @size: size of the area 1130 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1131 * 1132 * Search an area of @size in the kernel virtual mapping area, 1133 * and reserved it for out purposes. Returns the area descriptor 1134 * on success or %NULL on failure. 1135 */ 1136 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1137 { 1138 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1139 -1, GFP_KERNEL, __builtin_return_address(0)); 1140 } 1141 1142 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1143 void *caller) 1144 { 1145 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1146 -1, GFP_KERNEL, caller); 1147 } 1148 1149 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1150 int node, gfp_t gfp_mask) 1151 { 1152 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1153 gfp_mask, __builtin_return_address(0)); 1154 } 1155 1156 static struct vm_struct *find_vm_area(const void *addr) 1157 { 1158 struct vmap_area *va; 1159 1160 va = find_vmap_area((unsigned long)addr); 1161 if (va && va->flags & VM_VM_AREA) 1162 return va->private; 1163 1164 return NULL; 1165 } 1166 1167 /** 1168 * remove_vm_area - find and remove a continuous kernel virtual area 1169 * @addr: base address 1170 * 1171 * Search for the kernel VM area starting at @addr, and remove it. 1172 * This function returns the found VM area, but using it is NOT safe 1173 * on SMP machines, except for its size or flags. 1174 */ 1175 struct vm_struct *remove_vm_area(const void *addr) 1176 { 1177 struct vmap_area *va; 1178 1179 va = find_vmap_area((unsigned long)addr); 1180 if (va && va->flags & VM_VM_AREA) { 1181 struct vm_struct *vm = va->private; 1182 struct vm_struct *tmp, **p; 1183 1184 vmap_debug_free_range(va->va_start, va->va_end); 1185 free_unmap_vmap_area(va); 1186 vm->size -= PAGE_SIZE; 1187 1188 write_lock(&vmlist_lock); 1189 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1190 ; 1191 *p = tmp->next; 1192 write_unlock(&vmlist_lock); 1193 1194 return vm; 1195 } 1196 return NULL; 1197 } 1198 1199 static void __vunmap(const void *addr, int deallocate_pages) 1200 { 1201 struct vm_struct *area; 1202 1203 if (!addr) 1204 return; 1205 1206 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1207 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1208 return; 1209 } 1210 1211 area = remove_vm_area(addr); 1212 if (unlikely(!area)) { 1213 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1214 addr); 1215 return; 1216 } 1217 1218 debug_check_no_locks_freed(addr, area->size); 1219 debug_check_no_obj_freed(addr, area->size); 1220 1221 if (deallocate_pages) { 1222 int i; 1223 1224 for (i = 0; i < area->nr_pages; i++) { 1225 struct page *page = area->pages[i]; 1226 1227 BUG_ON(!page); 1228 __free_page(page); 1229 } 1230 1231 if (area->flags & VM_VPAGES) 1232 vfree(area->pages); 1233 else 1234 kfree(area->pages); 1235 } 1236 1237 kfree(area); 1238 return; 1239 } 1240 1241 /** 1242 * vfree - release memory allocated by vmalloc() 1243 * @addr: memory base address 1244 * 1245 * Free the virtually continuous memory area starting at @addr, as 1246 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1247 * NULL, no operation is performed. 1248 * 1249 * Must not be called in interrupt context. 1250 */ 1251 void vfree(const void *addr) 1252 { 1253 BUG_ON(in_interrupt()); 1254 __vunmap(addr, 1); 1255 } 1256 EXPORT_SYMBOL(vfree); 1257 1258 /** 1259 * vunmap - release virtual mapping obtained by vmap() 1260 * @addr: memory base address 1261 * 1262 * Free the virtually contiguous memory area starting at @addr, 1263 * which was created from the page array passed to vmap(). 1264 * 1265 * Must not be called in interrupt context. 1266 */ 1267 void vunmap(const void *addr) 1268 { 1269 BUG_ON(in_interrupt()); 1270 __vunmap(addr, 0); 1271 } 1272 EXPORT_SYMBOL(vunmap); 1273 1274 /** 1275 * vmap - map an array of pages into virtually contiguous space 1276 * @pages: array of page pointers 1277 * @count: number of pages to map 1278 * @flags: vm_area->flags 1279 * @prot: page protection for the mapping 1280 * 1281 * Maps @count pages from @pages into contiguous kernel virtual 1282 * space. 1283 */ 1284 void *vmap(struct page **pages, unsigned int count, 1285 unsigned long flags, pgprot_t prot) 1286 { 1287 struct vm_struct *area; 1288 1289 if (count > num_physpages) 1290 return NULL; 1291 1292 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1293 __builtin_return_address(0)); 1294 if (!area) 1295 return NULL; 1296 1297 if (map_vm_area(area, prot, &pages)) { 1298 vunmap(area->addr); 1299 return NULL; 1300 } 1301 1302 return area->addr; 1303 } 1304 EXPORT_SYMBOL(vmap); 1305 1306 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1307 int node, void *caller); 1308 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1309 pgprot_t prot, int node, void *caller) 1310 { 1311 struct page **pages; 1312 unsigned int nr_pages, array_size, i; 1313 1314 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1315 array_size = (nr_pages * sizeof(struct page *)); 1316 1317 area->nr_pages = nr_pages; 1318 /* Please note that the recursion is strictly bounded. */ 1319 if (array_size > PAGE_SIZE) { 1320 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1321 PAGE_KERNEL, node, caller); 1322 area->flags |= VM_VPAGES; 1323 } else { 1324 pages = kmalloc_node(array_size, 1325 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1326 node); 1327 } 1328 area->pages = pages; 1329 area->caller = caller; 1330 if (!area->pages) { 1331 remove_vm_area(area->addr); 1332 kfree(area); 1333 return NULL; 1334 } 1335 1336 for (i = 0; i < area->nr_pages; i++) { 1337 struct page *page; 1338 1339 if (node < 0) 1340 page = alloc_page(gfp_mask); 1341 else 1342 page = alloc_pages_node(node, gfp_mask, 0); 1343 1344 if (unlikely(!page)) { 1345 /* Successfully allocated i pages, free them in __vunmap() */ 1346 area->nr_pages = i; 1347 goto fail; 1348 } 1349 area->pages[i] = page; 1350 } 1351 1352 if (map_vm_area(area, prot, &pages)) 1353 goto fail; 1354 return area->addr; 1355 1356 fail: 1357 vfree(area->addr); 1358 return NULL; 1359 } 1360 1361 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1362 { 1363 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1364 __builtin_return_address(0)); 1365 } 1366 1367 /** 1368 * __vmalloc_node - allocate virtually contiguous memory 1369 * @size: allocation size 1370 * @gfp_mask: flags for the page level allocator 1371 * @prot: protection mask for the allocated pages 1372 * @node: node to use for allocation or -1 1373 * @caller: caller's return address 1374 * 1375 * Allocate enough pages to cover @size from the page level 1376 * allocator with @gfp_mask flags. Map them into contiguous 1377 * kernel virtual space, using a pagetable protection of @prot. 1378 */ 1379 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1380 int node, void *caller) 1381 { 1382 struct vm_struct *area; 1383 1384 size = PAGE_ALIGN(size); 1385 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1386 return NULL; 1387 1388 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1389 node, gfp_mask, caller); 1390 1391 if (!area) 1392 return NULL; 1393 1394 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1395 } 1396 1397 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1398 { 1399 return __vmalloc_node(size, gfp_mask, prot, -1, 1400 __builtin_return_address(0)); 1401 } 1402 EXPORT_SYMBOL(__vmalloc); 1403 1404 /** 1405 * vmalloc - allocate virtually contiguous memory 1406 * @size: allocation size 1407 * Allocate enough pages to cover @size from the page level 1408 * allocator and map them into contiguous kernel virtual space. 1409 * 1410 * For tight control over page level allocator and protection flags 1411 * use __vmalloc() instead. 1412 */ 1413 void *vmalloc(unsigned long size) 1414 { 1415 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1416 -1, __builtin_return_address(0)); 1417 } 1418 EXPORT_SYMBOL(vmalloc); 1419 1420 /** 1421 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1422 * @size: allocation size 1423 * 1424 * The resulting memory area is zeroed so it can be mapped to userspace 1425 * without leaking data. 1426 */ 1427 void *vmalloc_user(unsigned long size) 1428 { 1429 struct vm_struct *area; 1430 void *ret; 1431 1432 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1433 PAGE_KERNEL, -1, __builtin_return_address(0)); 1434 if (ret) { 1435 area = find_vm_area(ret); 1436 area->flags |= VM_USERMAP; 1437 } 1438 return ret; 1439 } 1440 EXPORT_SYMBOL(vmalloc_user); 1441 1442 /** 1443 * vmalloc_node - allocate memory on a specific node 1444 * @size: allocation size 1445 * @node: numa node 1446 * 1447 * Allocate enough pages to cover @size from the page level 1448 * allocator and map them into contiguous kernel virtual space. 1449 * 1450 * For tight control over page level allocator and protection flags 1451 * use __vmalloc() instead. 1452 */ 1453 void *vmalloc_node(unsigned long size, int node) 1454 { 1455 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1456 node, __builtin_return_address(0)); 1457 } 1458 EXPORT_SYMBOL(vmalloc_node); 1459 1460 #ifndef PAGE_KERNEL_EXEC 1461 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1462 #endif 1463 1464 /** 1465 * vmalloc_exec - allocate virtually contiguous, executable memory 1466 * @size: allocation size 1467 * 1468 * Kernel-internal function to allocate enough pages to cover @size 1469 * the page level allocator and map them into contiguous and 1470 * executable kernel virtual space. 1471 * 1472 * For tight control over page level allocator and protection flags 1473 * use __vmalloc() instead. 1474 */ 1475 1476 void *vmalloc_exec(unsigned long size) 1477 { 1478 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1479 -1, __builtin_return_address(0)); 1480 } 1481 1482 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1483 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1484 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1485 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1486 #else 1487 #define GFP_VMALLOC32 GFP_KERNEL 1488 #endif 1489 1490 /** 1491 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1492 * @size: allocation size 1493 * 1494 * Allocate enough 32bit PA addressable pages to cover @size from the 1495 * page level allocator and map them into contiguous kernel virtual space. 1496 */ 1497 void *vmalloc_32(unsigned long size) 1498 { 1499 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, 1500 -1, __builtin_return_address(0)); 1501 } 1502 EXPORT_SYMBOL(vmalloc_32); 1503 1504 /** 1505 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1506 * @size: allocation size 1507 * 1508 * The resulting memory area is 32bit addressable and zeroed so it can be 1509 * mapped to userspace without leaking data. 1510 */ 1511 void *vmalloc_32_user(unsigned long size) 1512 { 1513 struct vm_struct *area; 1514 void *ret; 1515 1516 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1517 -1, __builtin_return_address(0)); 1518 if (ret) { 1519 area = find_vm_area(ret); 1520 area->flags |= VM_USERMAP; 1521 } 1522 return ret; 1523 } 1524 EXPORT_SYMBOL(vmalloc_32_user); 1525 1526 long vread(char *buf, char *addr, unsigned long count) 1527 { 1528 struct vm_struct *tmp; 1529 char *vaddr, *buf_start = buf; 1530 unsigned long n; 1531 1532 /* Don't allow overflow */ 1533 if ((unsigned long) addr + count < count) 1534 count = -(unsigned long) addr; 1535 1536 read_lock(&vmlist_lock); 1537 for (tmp = vmlist; tmp; tmp = tmp->next) { 1538 vaddr = (char *) tmp->addr; 1539 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1540 continue; 1541 while (addr < vaddr) { 1542 if (count == 0) 1543 goto finished; 1544 *buf = '\0'; 1545 buf++; 1546 addr++; 1547 count--; 1548 } 1549 n = vaddr + tmp->size - PAGE_SIZE - addr; 1550 do { 1551 if (count == 0) 1552 goto finished; 1553 *buf = *addr; 1554 buf++; 1555 addr++; 1556 count--; 1557 } while (--n > 0); 1558 } 1559 finished: 1560 read_unlock(&vmlist_lock); 1561 return buf - buf_start; 1562 } 1563 1564 long vwrite(char *buf, char *addr, unsigned long count) 1565 { 1566 struct vm_struct *tmp; 1567 char *vaddr, *buf_start = buf; 1568 unsigned long n; 1569 1570 /* Don't allow overflow */ 1571 if ((unsigned long) addr + count < count) 1572 count = -(unsigned long) addr; 1573 1574 read_lock(&vmlist_lock); 1575 for (tmp = vmlist; tmp; tmp = tmp->next) { 1576 vaddr = (char *) tmp->addr; 1577 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1578 continue; 1579 while (addr < vaddr) { 1580 if (count == 0) 1581 goto finished; 1582 buf++; 1583 addr++; 1584 count--; 1585 } 1586 n = vaddr + tmp->size - PAGE_SIZE - addr; 1587 do { 1588 if (count == 0) 1589 goto finished; 1590 *addr = *buf; 1591 buf++; 1592 addr++; 1593 count--; 1594 } while (--n > 0); 1595 } 1596 finished: 1597 read_unlock(&vmlist_lock); 1598 return buf - buf_start; 1599 } 1600 1601 /** 1602 * remap_vmalloc_range - map vmalloc pages to userspace 1603 * @vma: vma to cover (map full range of vma) 1604 * @addr: vmalloc memory 1605 * @pgoff: number of pages into addr before first page to map 1606 * 1607 * Returns: 0 for success, -Exxx on failure 1608 * 1609 * This function checks that addr is a valid vmalloc'ed area, and 1610 * that it is big enough to cover the vma. Will return failure if 1611 * that criteria isn't met. 1612 * 1613 * Similar to remap_pfn_range() (see mm/memory.c) 1614 */ 1615 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1616 unsigned long pgoff) 1617 { 1618 struct vm_struct *area; 1619 unsigned long uaddr = vma->vm_start; 1620 unsigned long usize = vma->vm_end - vma->vm_start; 1621 1622 if ((PAGE_SIZE-1) & (unsigned long)addr) 1623 return -EINVAL; 1624 1625 area = find_vm_area(addr); 1626 if (!area) 1627 return -EINVAL; 1628 1629 if (!(area->flags & VM_USERMAP)) 1630 return -EINVAL; 1631 1632 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1633 return -EINVAL; 1634 1635 addr += pgoff << PAGE_SHIFT; 1636 do { 1637 struct page *page = vmalloc_to_page(addr); 1638 int ret; 1639 1640 ret = vm_insert_page(vma, uaddr, page); 1641 if (ret) 1642 return ret; 1643 1644 uaddr += PAGE_SIZE; 1645 addr += PAGE_SIZE; 1646 usize -= PAGE_SIZE; 1647 } while (usize > 0); 1648 1649 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1650 vma->vm_flags |= VM_RESERVED; 1651 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(remap_vmalloc_range); 1655 1656 /* 1657 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1658 * have one. 1659 */ 1660 void __attribute__((weak)) vmalloc_sync_all(void) 1661 { 1662 } 1663 1664 1665 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1666 { 1667 /* apply_to_page_range() does all the hard work. */ 1668 return 0; 1669 } 1670 1671 /** 1672 * alloc_vm_area - allocate a range of kernel address space 1673 * @size: size of the area 1674 * 1675 * Returns: NULL on failure, vm_struct on success 1676 * 1677 * This function reserves a range of kernel address space, and 1678 * allocates pagetables to map that range. No actual mappings 1679 * are created. If the kernel address space is not shared 1680 * between processes, it syncs the pagetable across all 1681 * processes. 1682 */ 1683 struct vm_struct *alloc_vm_area(size_t size) 1684 { 1685 struct vm_struct *area; 1686 1687 area = get_vm_area_caller(size, VM_IOREMAP, 1688 __builtin_return_address(0)); 1689 if (area == NULL) 1690 return NULL; 1691 1692 /* 1693 * This ensures that page tables are constructed for this region 1694 * of kernel virtual address space and mapped into init_mm. 1695 */ 1696 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1697 area->size, f, NULL)) { 1698 free_vm_area(area); 1699 return NULL; 1700 } 1701 1702 /* Make sure the pagetables are constructed in process kernel 1703 mappings */ 1704 vmalloc_sync_all(); 1705 1706 return area; 1707 } 1708 EXPORT_SYMBOL_GPL(alloc_vm_area); 1709 1710 void free_vm_area(struct vm_struct *area) 1711 { 1712 struct vm_struct *ret; 1713 ret = remove_vm_area(area->addr); 1714 BUG_ON(ret != area); 1715 kfree(area); 1716 } 1717 EXPORT_SYMBOL_GPL(free_vm_area); 1718 1719 1720 #ifdef CONFIG_PROC_FS 1721 static void *s_start(struct seq_file *m, loff_t *pos) 1722 { 1723 loff_t n = *pos; 1724 struct vm_struct *v; 1725 1726 read_lock(&vmlist_lock); 1727 v = vmlist; 1728 while (n > 0 && v) { 1729 n--; 1730 v = v->next; 1731 } 1732 if (!n) 1733 return v; 1734 1735 return NULL; 1736 1737 } 1738 1739 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1740 { 1741 struct vm_struct *v = p; 1742 1743 ++*pos; 1744 return v->next; 1745 } 1746 1747 static void s_stop(struct seq_file *m, void *p) 1748 { 1749 read_unlock(&vmlist_lock); 1750 } 1751 1752 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1753 { 1754 if (NUMA_BUILD) { 1755 unsigned int nr, *counters = m->private; 1756 1757 if (!counters) 1758 return; 1759 1760 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1761 1762 for (nr = 0; nr < v->nr_pages; nr++) 1763 counters[page_to_nid(v->pages[nr])]++; 1764 1765 for_each_node_state(nr, N_HIGH_MEMORY) 1766 if (counters[nr]) 1767 seq_printf(m, " N%u=%u", nr, counters[nr]); 1768 } 1769 } 1770 1771 static int s_show(struct seq_file *m, void *p) 1772 { 1773 struct vm_struct *v = p; 1774 1775 seq_printf(m, "0x%p-0x%p %7ld", 1776 v->addr, v->addr + v->size, v->size); 1777 1778 if (v->caller) { 1779 char buff[KSYM_SYMBOL_LEN]; 1780 1781 seq_putc(m, ' '); 1782 sprint_symbol(buff, (unsigned long)v->caller); 1783 seq_puts(m, buff); 1784 } 1785 1786 if (v->nr_pages) 1787 seq_printf(m, " pages=%d", v->nr_pages); 1788 1789 if (v->phys_addr) 1790 seq_printf(m, " phys=%lx", v->phys_addr); 1791 1792 if (v->flags & VM_IOREMAP) 1793 seq_printf(m, " ioremap"); 1794 1795 if (v->flags & VM_ALLOC) 1796 seq_printf(m, " vmalloc"); 1797 1798 if (v->flags & VM_MAP) 1799 seq_printf(m, " vmap"); 1800 1801 if (v->flags & VM_USERMAP) 1802 seq_printf(m, " user"); 1803 1804 if (v->flags & VM_VPAGES) 1805 seq_printf(m, " vpages"); 1806 1807 show_numa_info(m, v); 1808 seq_putc(m, '\n'); 1809 return 0; 1810 } 1811 1812 static const struct seq_operations vmalloc_op = { 1813 .start = s_start, 1814 .next = s_next, 1815 .stop = s_stop, 1816 .show = s_show, 1817 }; 1818 1819 static int vmalloc_open(struct inode *inode, struct file *file) 1820 { 1821 unsigned int *ptr = NULL; 1822 int ret; 1823 1824 if (NUMA_BUILD) 1825 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 1826 ret = seq_open(file, &vmalloc_op); 1827 if (!ret) { 1828 struct seq_file *m = file->private_data; 1829 m->private = ptr; 1830 } else 1831 kfree(ptr); 1832 return ret; 1833 } 1834 1835 static const struct file_operations proc_vmalloc_operations = { 1836 .open = vmalloc_open, 1837 .read = seq_read, 1838 .llseek = seq_lseek, 1839 .release = seq_release_private, 1840 }; 1841 1842 static int __init proc_vmalloc_init(void) 1843 { 1844 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 1845 return 0; 1846 } 1847 module_init(proc_vmalloc_init); 1848 #endif 1849 1850