xref: /linux/mm/vmalloc.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 bool vmap_lazy_unmap __read_mostly = true;
35 
36 /*** Page table manipulation functions ***/
37 
38 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
39 {
40 	pte_t *pte;
41 
42 	pte = pte_offset_kernel(pmd, addr);
43 	do {
44 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
45 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
46 	} while (pte++, addr += PAGE_SIZE, addr != end);
47 }
48 
49 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
50 {
51 	pmd_t *pmd;
52 	unsigned long next;
53 
54 	pmd = pmd_offset(pud, addr);
55 	do {
56 		next = pmd_addr_end(addr, end);
57 		if (pmd_none_or_clear_bad(pmd))
58 			continue;
59 		vunmap_pte_range(pmd, addr, next);
60 	} while (pmd++, addr = next, addr != end);
61 }
62 
63 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
64 {
65 	pud_t *pud;
66 	unsigned long next;
67 
68 	pud = pud_offset(pgd, addr);
69 	do {
70 		next = pud_addr_end(addr, end);
71 		if (pud_none_or_clear_bad(pud))
72 			continue;
73 		vunmap_pmd_range(pud, addr, next);
74 	} while (pud++, addr = next, addr != end);
75 }
76 
77 static void vunmap_page_range(unsigned long addr, unsigned long end)
78 {
79 	pgd_t *pgd;
80 	unsigned long next;
81 
82 	BUG_ON(addr >= end);
83 	pgd = pgd_offset_k(addr);
84 	do {
85 		next = pgd_addr_end(addr, end);
86 		if (pgd_none_or_clear_bad(pgd))
87 			continue;
88 		vunmap_pud_range(pgd, addr, next);
89 	} while (pgd++, addr = next, addr != end);
90 }
91 
92 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
93 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
94 {
95 	pte_t *pte;
96 
97 	/*
98 	 * nr is a running index into the array which helps higher level
99 	 * callers keep track of where we're up to.
100 	 */
101 
102 	pte = pte_alloc_kernel(pmd, addr);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		struct page *page = pages[*nr];
107 
108 		if (WARN_ON(!pte_none(*pte)))
109 			return -EBUSY;
110 		if (WARN_ON(!page))
111 			return -ENOMEM;
112 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
113 		(*nr)++;
114 	} while (pte++, addr += PAGE_SIZE, addr != end);
115 	return 0;
116 }
117 
118 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
119 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
120 {
121 	pmd_t *pmd;
122 	unsigned long next;
123 
124 	pmd = pmd_alloc(&init_mm, pud, addr);
125 	if (!pmd)
126 		return -ENOMEM;
127 	do {
128 		next = pmd_addr_end(addr, end);
129 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
130 			return -ENOMEM;
131 	} while (pmd++, addr = next, addr != end);
132 	return 0;
133 }
134 
135 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
136 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
137 {
138 	pud_t *pud;
139 	unsigned long next;
140 
141 	pud = pud_alloc(&init_mm, pgd, addr);
142 	if (!pud)
143 		return -ENOMEM;
144 	do {
145 		next = pud_addr_end(addr, end);
146 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
147 			return -ENOMEM;
148 	} while (pud++, addr = next, addr != end);
149 	return 0;
150 }
151 
152 /*
153  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
154  * will have pfns corresponding to the "pages" array.
155  *
156  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
157  */
158 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
159 				   pgprot_t prot, struct page **pages)
160 {
161 	pgd_t *pgd;
162 	unsigned long next;
163 	unsigned long addr = start;
164 	int err = 0;
165 	int nr = 0;
166 
167 	BUG_ON(addr >= end);
168 	pgd = pgd_offset_k(addr);
169 	do {
170 		next = pgd_addr_end(addr, end);
171 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
172 		if (err)
173 			return err;
174 	} while (pgd++, addr = next, addr != end);
175 
176 	return nr;
177 }
178 
179 static int vmap_page_range(unsigned long start, unsigned long end,
180 			   pgprot_t prot, struct page **pages)
181 {
182 	int ret;
183 
184 	ret = vmap_page_range_noflush(start, end, prot, pages);
185 	flush_cache_vmap(start, end);
186 	return ret;
187 }
188 
189 int is_vmalloc_or_module_addr(const void *x)
190 {
191 	/*
192 	 * ARM, x86-64 and sparc64 put modules in a special place,
193 	 * and fall back on vmalloc() if that fails. Others
194 	 * just put it in the vmalloc space.
195 	 */
196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
197 	unsigned long addr = (unsigned long)x;
198 	if (addr >= MODULES_VADDR && addr < MODULES_END)
199 		return 1;
200 #endif
201 	return is_vmalloc_addr(x);
202 }
203 
204 /*
205  * Walk a vmap address to the struct page it maps.
206  */
207 struct page *vmalloc_to_page(const void *vmalloc_addr)
208 {
209 	unsigned long addr = (unsigned long) vmalloc_addr;
210 	struct page *page = NULL;
211 	pgd_t *pgd = pgd_offset_k(addr);
212 
213 	/*
214 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
215 	 * architectures that do not vmalloc module space
216 	 */
217 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
218 
219 	if (!pgd_none(*pgd)) {
220 		pud_t *pud = pud_offset(pgd, addr);
221 		if (!pud_none(*pud)) {
222 			pmd_t *pmd = pmd_offset(pud, addr);
223 			if (!pmd_none(*pmd)) {
224 				pte_t *ptep, pte;
225 
226 				ptep = pte_offset_map(pmd, addr);
227 				pte = *ptep;
228 				if (pte_present(pte))
229 					page = pte_page(pte);
230 				pte_unmap(ptep);
231 			}
232 		}
233 	}
234 	return page;
235 }
236 EXPORT_SYMBOL(vmalloc_to_page);
237 
238 /*
239  * Map a vmalloc()-space virtual address to the physical page frame number.
240  */
241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
242 {
243 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
244 }
245 EXPORT_SYMBOL(vmalloc_to_pfn);
246 
247 
248 /*** Global kva allocator ***/
249 
250 #define VM_LAZY_FREE	0x01
251 #define VM_LAZY_FREEING	0x02
252 #define VM_VM_AREA	0x04
253 
254 struct vmap_area {
255 	unsigned long va_start;
256 	unsigned long va_end;
257 	unsigned long flags;
258 	struct rb_node rb_node;		/* address sorted rbtree */
259 	struct list_head list;		/* address sorted list */
260 	struct list_head purge_list;	/* "lazy purge" list */
261 	void *private;
262 	struct rcu_head rcu_head;
263 };
264 
265 static DEFINE_SPINLOCK(vmap_area_lock);
266 static struct rb_root vmap_area_root = RB_ROOT;
267 static LIST_HEAD(vmap_area_list);
268 static unsigned long vmap_area_pcpu_hole;
269 
270 static struct vmap_area *__find_vmap_area(unsigned long addr)
271 {
272 	struct rb_node *n = vmap_area_root.rb_node;
273 
274 	while (n) {
275 		struct vmap_area *va;
276 
277 		va = rb_entry(n, struct vmap_area, rb_node);
278 		if (addr < va->va_start)
279 			n = n->rb_left;
280 		else if (addr > va->va_start)
281 			n = n->rb_right;
282 		else
283 			return va;
284 	}
285 
286 	return NULL;
287 }
288 
289 static void __insert_vmap_area(struct vmap_area *va)
290 {
291 	struct rb_node **p = &vmap_area_root.rb_node;
292 	struct rb_node *parent = NULL;
293 	struct rb_node *tmp;
294 
295 	while (*p) {
296 		struct vmap_area *tmp;
297 
298 		parent = *p;
299 		tmp = rb_entry(parent, struct vmap_area, rb_node);
300 		if (va->va_start < tmp->va_end)
301 			p = &(*p)->rb_left;
302 		else if (va->va_end > tmp->va_start)
303 			p = &(*p)->rb_right;
304 		else
305 			BUG();
306 	}
307 
308 	rb_link_node(&va->rb_node, parent, p);
309 	rb_insert_color(&va->rb_node, &vmap_area_root);
310 
311 	/* address-sort this list so it is usable like the vmlist */
312 	tmp = rb_prev(&va->rb_node);
313 	if (tmp) {
314 		struct vmap_area *prev;
315 		prev = rb_entry(tmp, struct vmap_area, rb_node);
316 		list_add_rcu(&va->list, &prev->list);
317 	} else
318 		list_add_rcu(&va->list, &vmap_area_list);
319 }
320 
321 static void purge_vmap_area_lazy(void);
322 
323 /*
324  * Allocate a region of KVA of the specified size and alignment, within the
325  * vstart and vend.
326  */
327 static struct vmap_area *alloc_vmap_area(unsigned long size,
328 				unsigned long align,
329 				unsigned long vstart, unsigned long vend,
330 				int node, gfp_t gfp_mask)
331 {
332 	struct vmap_area *va;
333 	struct rb_node *n;
334 	unsigned long addr;
335 	int purged = 0;
336 
337 	BUG_ON(!size);
338 	BUG_ON(size & ~PAGE_MASK);
339 
340 	va = kmalloc_node(sizeof(struct vmap_area),
341 			gfp_mask & GFP_RECLAIM_MASK, node);
342 	if (unlikely(!va))
343 		return ERR_PTR(-ENOMEM);
344 
345 retry:
346 	addr = ALIGN(vstart, align);
347 
348 	spin_lock(&vmap_area_lock);
349 	if (addr + size - 1 < addr)
350 		goto overflow;
351 
352 	/* XXX: could have a last_hole cache */
353 	n = vmap_area_root.rb_node;
354 	if (n) {
355 		struct vmap_area *first = NULL;
356 
357 		do {
358 			struct vmap_area *tmp;
359 			tmp = rb_entry(n, struct vmap_area, rb_node);
360 			if (tmp->va_end >= addr) {
361 				if (!first && tmp->va_start < addr + size)
362 					first = tmp;
363 				n = n->rb_left;
364 			} else {
365 				first = tmp;
366 				n = n->rb_right;
367 			}
368 		} while (n);
369 
370 		if (!first)
371 			goto found;
372 
373 		if (first->va_end < addr) {
374 			n = rb_next(&first->rb_node);
375 			if (n)
376 				first = rb_entry(n, struct vmap_area, rb_node);
377 			else
378 				goto found;
379 		}
380 
381 		while (addr + size > first->va_start && addr + size <= vend) {
382 			addr = ALIGN(first->va_end + PAGE_SIZE, align);
383 			if (addr + size - 1 < addr)
384 				goto overflow;
385 
386 			n = rb_next(&first->rb_node);
387 			if (n)
388 				first = rb_entry(n, struct vmap_area, rb_node);
389 			else
390 				goto found;
391 		}
392 	}
393 found:
394 	if (addr + size > vend) {
395 overflow:
396 		spin_unlock(&vmap_area_lock);
397 		if (!purged) {
398 			purge_vmap_area_lazy();
399 			purged = 1;
400 			goto retry;
401 		}
402 		if (printk_ratelimit())
403 			printk(KERN_WARNING
404 				"vmap allocation for size %lu failed: "
405 				"use vmalloc=<size> to increase size.\n", size);
406 		kfree(va);
407 		return ERR_PTR(-EBUSY);
408 	}
409 
410 	BUG_ON(addr & (align-1));
411 
412 	va->va_start = addr;
413 	va->va_end = addr + size;
414 	va->flags = 0;
415 	__insert_vmap_area(va);
416 	spin_unlock(&vmap_area_lock);
417 
418 	return va;
419 }
420 
421 static void rcu_free_va(struct rcu_head *head)
422 {
423 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
424 
425 	kfree(va);
426 }
427 
428 static void __free_vmap_area(struct vmap_area *va)
429 {
430 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
431 	rb_erase(&va->rb_node, &vmap_area_root);
432 	RB_CLEAR_NODE(&va->rb_node);
433 	list_del_rcu(&va->list);
434 
435 	/*
436 	 * Track the highest possible candidate for pcpu area
437 	 * allocation.  Areas outside of vmalloc area can be returned
438 	 * here too, consider only end addresses which fall inside
439 	 * vmalloc area proper.
440 	 */
441 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
442 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
443 
444 	call_rcu(&va->rcu_head, rcu_free_va);
445 }
446 
447 /*
448  * Free a region of KVA allocated by alloc_vmap_area
449  */
450 static void free_vmap_area(struct vmap_area *va)
451 {
452 	spin_lock(&vmap_area_lock);
453 	__free_vmap_area(va);
454 	spin_unlock(&vmap_area_lock);
455 }
456 
457 /*
458  * Clear the pagetable entries of a given vmap_area
459  */
460 static void unmap_vmap_area(struct vmap_area *va)
461 {
462 	vunmap_page_range(va->va_start, va->va_end);
463 }
464 
465 static void vmap_debug_free_range(unsigned long start, unsigned long end)
466 {
467 	/*
468 	 * Unmap page tables and force a TLB flush immediately if
469 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
470 	 * bugs similarly to those in linear kernel virtual address
471 	 * space after a page has been freed.
472 	 *
473 	 * All the lazy freeing logic is still retained, in order to
474 	 * minimise intrusiveness of this debugging feature.
475 	 *
476 	 * This is going to be *slow* (linear kernel virtual address
477 	 * debugging doesn't do a broadcast TLB flush so it is a lot
478 	 * faster).
479 	 */
480 #ifdef CONFIG_DEBUG_PAGEALLOC
481 	vunmap_page_range(start, end);
482 	flush_tlb_kernel_range(start, end);
483 #endif
484 }
485 
486 /*
487  * lazy_max_pages is the maximum amount of virtual address space we gather up
488  * before attempting to purge with a TLB flush.
489  *
490  * There is a tradeoff here: a larger number will cover more kernel page tables
491  * and take slightly longer to purge, but it will linearly reduce the number of
492  * global TLB flushes that must be performed. It would seem natural to scale
493  * this number up linearly with the number of CPUs (because vmapping activity
494  * could also scale linearly with the number of CPUs), however it is likely
495  * that in practice, workloads might be constrained in other ways that mean
496  * vmap activity will not scale linearly with CPUs. Also, I want to be
497  * conservative and not introduce a big latency on huge systems, so go with
498  * a less aggressive log scale. It will still be an improvement over the old
499  * code, and it will be simple to change the scale factor if we find that it
500  * becomes a problem on bigger systems.
501  */
502 static unsigned long lazy_max_pages(void)
503 {
504 	unsigned int log;
505 
506 	if (!vmap_lazy_unmap)
507 		return 0;
508 
509 	log = fls(num_online_cpus());
510 
511 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
512 }
513 
514 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
515 
516 /* for per-CPU blocks */
517 static void purge_fragmented_blocks_allcpus(void);
518 
519 /*
520  * called before a call to iounmap() if the caller wants vm_area_struct's
521  * immediately freed.
522  */
523 void set_iounmap_nonlazy(void)
524 {
525 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
526 }
527 
528 /*
529  * Purges all lazily-freed vmap areas.
530  *
531  * If sync is 0 then don't purge if there is already a purge in progress.
532  * If force_flush is 1, then flush kernel TLBs between *start and *end even
533  * if we found no lazy vmap areas to unmap (callers can use this to optimise
534  * their own TLB flushing).
535  * Returns with *start = min(*start, lowest purged address)
536  *              *end = max(*end, highest purged address)
537  */
538 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
539 					int sync, int force_flush)
540 {
541 	static DEFINE_SPINLOCK(purge_lock);
542 	LIST_HEAD(valist);
543 	struct vmap_area *va;
544 	struct vmap_area *n_va;
545 	int nr = 0;
546 
547 	/*
548 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
549 	 * should not expect such behaviour. This just simplifies locking for
550 	 * the case that isn't actually used at the moment anyway.
551 	 */
552 	if (!sync && !force_flush) {
553 		if (!spin_trylock(&purge_lock))
554 			return;
555 	} else
556 		spin_lock(&purge_lock);
557 
558 	if (sync)
559 		purge_fragmented_blocks_allcpus();
560 
561 	rcu_read_lock();
562 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
563 		if (va->flags & VM_LAZY_FREE) {
564 			if (va->va_start < *start)
565 				*start = va->va_start;
566 			if (va->va_end > *end)
567 				*end = va->va_end;
568 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
569 			unmap_vmap_area(va);
570 			list_add_tail(&va->purge_list, &valist);
571 			va->flags |= VM_LAZY_FREEING;
572 			va->flags &= ~VM_LAZY_FREE;
573 		}
574 	}
575 	rcu_read_unlock();
576 
577 	if (nr)
578 		atomic_sub(nr, &vmap_lazy_nr);
579 
580 	if (nr || force_flush)
581 		flush_tlb_kernel_range(*start, *end);
582 
583 	if (nr) {
584 		spin_lock(&vmap_area_lock);
585 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
586 			__free_vmap_area(va);
587 		spin_unlock(&vmap_area_lock);
588 	}
589 	spin_unlock(&purge_lock);
590 }
591 
592 /*
593  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
594  * is already purging.
595  */
596 static void try_purge_vmap_area_lazy(void)
597 {
598 	unsigned long start = ULONG_MAX, end = 0;
599 
600 	__purge_vmap_area_lazy(&start, &end, 0, 0);
601 }
602 
603 /*
604  * Kick off a purge of the outstanding lazy areas.
605  */
606 static void purge_vmap_area_lazy(void)
607 {
608 	unsigned long start = ULONG_MAX, end = 0;
609 
610 	__purge_vmap_area_lazy(&start, &end, 1, 0);
611 }
612 
613 /*
614  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
615  * called for the correct range previously.
616  */
617 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
618 {
619 	va->flags |= VM_LAZY_FREE;
620 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
621 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
622 		try_purge_vmap_area_lazy();
623 }
624 
625 /*
626  * Free and unmap a vmap area
627  */
628 static void free_unmap_vmap_area(struct vmap_area *va)
629 {
630 	flush_cache_vunmap(va->va_start, va->va_end);
631 	free_unmap_vmap_area_noflush(va);
632 }
633 
634 static struct vmap_area *find_vmap_area(unsigned long addr)
635 {
636 	struct vmap_area *va;
637 
638 	spin_lock(&vmap_area_lock);
639 	va = __find_vmap_area(addr);
640 	spin_unlock(&vmap_area_lock);
641 
642 	return va;
643 }
644 
645 static void free_unmap_vmap_area_addr(unsigned long addr)
646 {
647 	struct vmap_area *va;
648 
649 	va = find_vmap_area(addr);
650 	BUG_ON(!va);
651 	free_unmap_vmap_area(va);
652 }
653 
654 
655 /*** Per cpu kva allocator ***/
656 
657 /*
658  * vmap space is limited especially on 32 bit architectures. Ensure there is
659  * room for at least 16 percpu vmap blocks per CPU.
660  */
661 /*
662  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
663  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
664  * instead (we just need a rough idea)
665  */
666 #if BITS_PER_LONG == 32
667 #define VMALLOC_SPACE		(128UL*1024*1024)
668 #else
669 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
670 #endif
671 
672 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
673 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
674 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
675 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
676 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
677 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
678 #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\
679 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
680 						VMALLOC_PAGES / NR_CPUS / 16))
681 
682 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
683 
684 static bool vmap_initialized __read_mostly = false;
685 
686 struct vmap_block_queue {
687 	spinlock_t lock;
688 	struct list_head free;
689 };
690 
691 struct vmap_block {
692 	spinlock_t lock;
693 	struct vmap_area *va;
694 	struct vmap_block_queue *vbq;
695 	unsigned long free, dirty;
696 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
697 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
698 	struct list_head free_list;
699 	struct rcu_head rcu_head;
700 	struct list_head purge;
701 };
702 
703 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
704 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
705 
706 /*
707  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
708  * in the free path. Could get rid of this if we change the API to return a
709  * "cookie" from alloc, to be passed to free. But no big deal yet.
710  */
711 static DEFINE_SPINLOCK(vmap_block_tree_lock);
712 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
713 
714 /*
715  * We should probably have a fallback mechanism to allocate virtual memory
716  * out of partially filled vmap blocks. However vmap block sizing should be
717  * fairly reasonable according to the vmalloc size, so it shouldn't be a
718  * big problem.
719  */
720 
721 static unsigned long addr_to_vb_idx(unsigned long addr)
722 {
723 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
724 	addr /= VMAP_BLOCK_SIZE;
725 	return addr;
726 }
727 
728 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
729 {
730 	struct vmap_block_queue *vbq;
731 	struct vmap_block *vb;
732 	struct vmap_area *va;
733 	unsigned long vb_idx;
734 	int node, err;
735 
736 	node = numa_node_id();
737 
738 	vb = kmalloc_node(sizeof(struct vmap_block),
739 			gfp_mask & GFP_RECLAIM_MASK, node);
740 	if (unlikely(!vb))
741 		return ERR_PTR(-ENOMEM);
742 
743 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
744 					VMALLOC_START, VMALLOC_END,
745 					node, gfp_mask);
746 	if (unlikely(IS_ERR(va))) {
747 		kfree(vb);
748 		return ERR_CAST(va);
749 	}
750 
751 	err = radix_tree_preload(gfp_mask);
752 	if (unlikely(err)) {
753 		kfree(vb);
754 		free_vmap_area(va);
755 		return ERR_PTR(err);
756 	}
757 
758 	spin_lock_init(&vb->lock);
759 	vb->va = va;
760 	vb->free = VMAP_BBMAP_BITS;
761 	vb->dirty = 0;
762 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
763 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
764 	INIT_LIST_HEAD(&vb->free_list);
765 
766 	vb_idx = addr_to_vb_idx(va->va_start);
767 	spin_lock(&vmap_block_tree_lock);
768 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
769 	spin_unlock(&vmap_block_tree_lock);
770 	BUG_ON(err);
771 	radix_tree_preload_end();
772 
773 	vbq = &get_cpu_var(vmap_block_queue);
774 	vb->vbq = vbq;
775 	spin_lock(&vbq->lock);
776 	list_add_rcu(&vb->free_list, &vbq->free);
777 	spin_unlock(&vbq->lock);
778 	put_cpu_var(vmap_block_queue);
779 
780 	return vb;
781 }
782 
783 static void rcu_free_vb(struct rcu_head *head)
784 {
785 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
786 
787 	kfree(vb);
788 }
789 
790 static void free_vmap_block(struct vmap_block *vb)
791 {
792 	struct vmap_block *tmp;
793 	unsigned long vb_idx;
794 
795 	vb_idx = addr_to_vb_idx(vb->va->va_start);
796 	spin_lock(&vmap_block_tree_lock);
797 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
798 	spin_unlock(&vmap_block_tree_lock);
799 	BUG_ON(tmp != vb);
800 
801 	free_unmap_vmap_area_noflush(vb->va);
802 	call_rcu(&vb->rcu_head, rcu_free_vb);
803 }
804 
805 static void purge_fragmented_blocks(int cpu)
806 {
807 	LIST_HEAD(purge);
808 	struct vmap_block *vb;
809 	struct vmap_block *n_vb;
810 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
811 
812 	rcu_read_lock();
813 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
814 
815 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
816 			continue;
817 
818 		spin_lock(&vb->lock);
819 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
820 			vb->free = 0; /* prevent further allocs after releasing lock */
821 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
822 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
823 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
824 			spin_lock(&vbq->lock);
825 			list_del_rcu(&vb->free_list);
826 			spin_unlock(&vbq->lock);
827 			spin_unlock(&vb->lock);
828 			list_add_tail(&vb->purge, &purge);
829 		} else
830 			spin_unlock(&vb->lock);
831 	}
832 	rcu_read_unlock();
833 
834 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
835 		list_del(&vb->purge);
836 		free_vmap_block(vb);
837 	}
838 }
839 
840 static void purge_fragmented_blocks_thiscpu(void)
841 {
842 	purge_fragmented_blocks(smp_processor_id());
843 }
844 
845 static void purge_fragmented_blocks_allcpus(void)
846 {
847 	int cpu;
848 
849 	for_each_possible_cpu(cpu)
850 		purge_fragmented_blocks(cpu);
851 }
852 
853 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
854 {
855 	struct vmap_block_queue *vbq;
856 	struct vmap_block *vb;
857 	unsigned long addr = 0;
858 	unsigned int order;
859 	int purge = 0;
860 
861 	BUG_ON(size & ~PAGE_MASK);
862 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
863 	order = get_order(size);
864 
865 again:
866 	rcu_read_lock();
867 	vbq = &get_cpu_var(vmap_block_queue);
868 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
869 		int i;
870 
871 		spin_lock(&vb->lock);
872 		if (vb->free < 1UL << order)
873 			goto next;
874 
875 		i = bitmap_find_free_region(vb->alloc_map,
876 						VMAP_BBMAP_BITS, order);
877 
878 		if (i < 0) {
879 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
880 				/* fragmented and no outstanding allocations */
881 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
882 				purge = 1;
883 			}
884 			goto next;
885 		}
886 		addr = vb->va->va_start + (i << PAGE_SHIFT);
887 		BUG_ON(addr_to_vb_idx(addr) !=
888 				addr_to_vb_idx(vb->va->va_start));
889 		vb->free -= 1UL << order;
890 		if (vb->free == 0) {
891 			spin_lock(&vbq->lock);
892 			list_del_rcu(&vb->free_list);
893 			spin_unlock(&vbq->lock);
894 		}
895 		spin_unlock(&vb->lock);
896 		break;
897 next:
898 		spin_unlock(&vb->lock);
899 	}
900 
901 	if (purge)
902 		purge_fragmented_blocks_thiscpu();
903 
904 	put_cpu_var(vmap_block_queue);
905 	rcu_read_unlock();
906 
907 	if (!addr) {
908 		vb = new_vmap_block(gfp_mask);
909 		if (IS_ERR(vb))
910 			return vb;
911 		goto again;
912 	}
913 
914 	return (void *)addr;
915 }
916 
917 static void vb_free(const void *addr, unsigned long size)
918 {
919 	unsigned long offset;
920 	unsigned long vb_idx;
921 	unsigned int order;
922 	struct vmap_block *vb;
923 
924 	BUG_ON(size & ~PAGE_MASK);
925 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
926 
927 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
928 
929 	order = get_order(size);
930 
931 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
932 
933 	vb_idx = addr_to_vb_idx((unsigned long)addr);
934 	rcu_read_lock();
935 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
936 	rcu_read_unlock();
937 	BUG_ON(!vb);
938 
939 	spin_lock(&vb->lock);
940 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
941 
942 	vb->dirty += 1UL << order;
943 	if (vb->dirty == VMAP_BBMAP_BITS) {
944 		BUG_ON(vb->free);
945 		spin_unlock(&vb->lock);
946 		free_vmap_block(vb);
947 	} else
948 		spin_unlock(&vb->lock);
949 }
950 
951 /**
952  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
953  *
954  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
955  * to amortize TLB flushing overheads. What this means is that any page you
956  * have now, may, in a former life, have been mapped into kernel virtual
957  * address by the vmap layer and so there might be some CPUs with TLB entries
958  * still referencing that page (additional to the regular 1:1 kernel mapping).
959  *
960  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
961  * be sure that none of the pages we have control over will have any aliases
962  * from the vmap layer.
963  */
964 void vm_unmap_aliases(void)
965 {
966 	unsigned long start = ULONG_MAX, end = 0;
967 	int cpu;
968 	int flush = 0;
969 
970 	if (unlikely(!vmap_initialized))
971 		return;
972 
973 	for_each_possible_cpu(cpu) {
974 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
975 		struct vmap_block *vb;
976 
977 		rcu_read_lock();
978 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
979 			int i;
980 
981 			spin_lock(&vb->lock);
982 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
983 			while (i < VMAP_BBMAP_BITS) {
984 				unsigned long s, e;
985 				int j;
986 				j = find_next_zero_bit(vb->dirty_map,
987 					VMAP_BBMAP_BITS, i);
988 
989 				s = vb->va->va_start + (i << PAGE_SHIFT);
990 				e = vb->va->va_start + (j << PAGE_SHIFT);
991 				vunmap_page_range(s, e);
992 				flush = 1;
993 
994 				if (s < start)
995 					start = s;
996 				if (e > end)
997 					end = e;
998 
999 				i = j;
1000 				i = find_next_bit(vb->dirty_map,
1001 							VMAP_BBMAP_BITS, i);
1002 			}
1003 			spin_unlock(&vb->lock);
1004 		}
1005 		rcu_read_unlock();
1006 	}
1007 
1008 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1009 }
1010 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1011 
1012 /**
1013  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1014  * @mem: the pointer returned by vm_map_ram
1015  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1016  */
1017 void vm_unmap_ram(const void *mem, unsigned int count)
1018 {
1019 	unsigned long size = count << PAGE_SHIFT;
1020 	unsigned long addr = (unsigned long)mem;
1021 
1022 	BUG_ON(!addr);
1023 	BUG_ON(addr < VMALLOC_START);
1024 	BUG_ON(addr > VMALLOC_END);
1025 	BUG_ON(addr & (PAGE_SIZE-1));
1026 
1027 	debug_check_no_locks_freed(mem, size);
1028 	vmap_debug_free_range(addr, addr+size);
1029 
1030 	if (likely(count <= VMAP_MAX_ALLOC))
1031 		vb_free(mem, size);
1032 	else
1033 		free_unmap_vmap_area_addr(addr);
1034 }
1035 EXPORT_SYMBOL(vm_unmap_ram);
1036 
1037 /**
1038  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1039  * @pages: an array of pointers to the pages to be mapped
1040  * @count: number of pages
1041  * @node: prefer to allocate data structures on this node
1042  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1043  *
1044  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1045  */
1046 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1047 {
1048 	unsigned long size = count << PAGE_SHIFT;
1049 	unsigned long addr;
1050 	void *mem;
1051 
1052 	if (likely(count <= VMAP_MAX_ALLOC)) {
1053 		mem = vb_alloc(size, GFP_KERNEL);
1054 		if (IS_ERR(mem))
1055 			return NULL;
1056 		addr = (unsigned long)mem;
1057 	} else {
1058 		struct vmap_area *va;
1059 		va = alloc_vmap_area(size, PAGE_SIZE,
1060 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1061 		if (IS_ERR(va))
1062 			return NULL;
1063 
1064 		addr = va->va_start;
1065 		mem = (void *)addr;
1066 	}
1067 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1068 		vm_unmap_ram(mem, count);
1069 		return NULL;
1070 	}
1071 	return mem;
1072 }
1073 EXPORT_SYMBOL(vm_map_ram);
1074 
1075 /**
1076  * vm_area_register_early - register vmap area early during boot
1077  * @vm: vm_struct to register
1078  * @align: requested alignment
1079  *
1080  * This function is used to register kernel vm area before
1081  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1082  * proper values on entry and other fields should be zero.  On return,
1083  * vm->addr contains the allocated address.
1084  *
1085  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1086  */
1087 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1088 {
1089 	static size_t vm_init_off __initdata;
1090 	unsigned long addr;
1091 
1092 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1093 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1094 
1095 	vm->addr = (void *)addr;
1096 
1097 	vm->next = vmlist;
1098 	vmlist = vm;
1099 }
1100 
1101 void __init vmalloc_init(void)
1102 {
1103 	struct vmap_area *va;
1104 	struct vm_struct *tmp;
1105 	int i;
1106 
1107 	for_each_possible_cpu(i) {
1108 		struct vmap_block_queue *vbq;
1109 
1110 		vbq = &per_cpu(vmap_block_queue, i);
1111 		spin_lock_init(&vbq->lock);
1112 		INIT_LIST_HEAD(&vbq->free);
1113 	}
1114 
1115 	/* Import existing vmlist entries. */
1116 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1117 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1118 		va->flags = tmp->flags | VM_VM_AREA;
1119 		va->va_start = (unsigned long)tmp->addr;
1120 		va->va_end = va->va_start + tmp->size;
1121 		__insert_vmap_area(va);
1122 	}
1123 
1124 	vmap_area_pcpu_hole = VMALLOC_END;
1125 
1126 	vmap_initialized = true;
1127 }
1128 
1129 /**
1130  * map_kernel_range_noflush - map kernel VM area with the specified pages
1131  * @addr: start of the VM area to map
1132  * @size: size of the VM area to map
1133  * @prot: page protection flags to use
1134  * @pages: pages to map
1135  *
1136  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1137  * specify should have been allocated using get_vm_area() and its
1138  * friends.
1139  *
1140  * NOTE:
1141  * This function does NOT do any cache flushing.  The caller is
1142  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1143  * before calling this function.
1144  *
1145  * RETURNS:
1146  * The number of pages mapped on success, -errno on failure.
1147  */
1148 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1149 			     pgprot_t prot, struct page **pages)
1150 {
1151 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1152 }
1153 
1154 /**
1155  * unmap_kernel_range_noflush - unmap kernel VM area
1156  * @addr: start of the VM area to unmap
1157  * @size: size of the VM area to unmap
1158  *
1159  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1160  * specify should have been allocated using get_vm_area() and its
1161  * friends.
1162  *
1163  * NOTE:
1164  * This function does NOT do any cache flushing.  The caller is
1165  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1166  * before calling this function and flush_tlb_kernel_range() after.
1167  */
1168 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1169 {
1170 	vunmap_page_range(addr, addr + size);
1171 }
1172 
1173 /**
1174  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1175  * @addr: start of the VM area to unmap
1176  * @size: size of the VM area to unmap
1177  *
1178  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1179  * the unmapping and tlb after.
1180  */
1181 void unmap_kernel_range(unsigned long addr, unsigned long size)
1182 {
1183 	unsigned long end = addr + size;
1184 
1185 	flush_cache_vunmap(addr, end);
1186 	vunmap_page_range(addr, end);
1187 	flush_tlb_kernel_range(addr, end);
1188 }
1189 
1190 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1191 {
1192 	unsigned long addr = (unsigned long)area->addr;
1193 	unsigned long end = addr + area->size - PAGE_SIZE;
1194 	int err;
1195 
1196 	err = vmap_page_range(addr, end, prot, *pages);
1197 	if (err > 0) {
1198 		*pages += err;
1199 		err = 0;
1200 	}
1201 
1202 	return err;
1203 }
1204 EXPORT_SYMBOL_GPL(map_vm_area);
1205 
1206 /*** Old vmalloc interfaces ***/
1207 DEFINE_RWLOCK(vmlist_lock);
1208 struct vm_struct *vmlist;
1209 
1210 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1211 			      unsigned long flags, void *caller)
1212 {
1213 	struct vm_struct *tmp, **p;
1214 
1215 	vm->flags = flags;
1216 	vm->addr = (void *)va->va_start;
1217 	vm->size = va->va_end - va->va_start;
1218 	vm->caller = caller;
1219 	va->private = vm;
1220 	va->flags |= VM_VM_AREA;
1221 
1222 	write_lock(&vmlist_lock);
1223 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1224 		if (tmp->addr >= vm->addr)
1225 			break;
1226 	}
1227 	vm->next = *p;
1228 	*p = vm;
1229 	write_unlock(&vmlist_lock);
1230 }
1231 
1232 static struct vm_struct *__get_vm_area_node(unsigned long size,
1233 		unsigned long align, unsigned long flags, unsigned long start,
1234 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
1235 {
1236 	static struct vmap_area *va;
1237 	struct vm_struct *area;
1238 
1239 	BUG_ON(in_interrupt());
1240 	if (flags & VM_IOREMAP) {
1241 		int bit = fls(size);
1242 
1243 		if (bit > IOREMAP_MAX_ORDER)
1244 			bit = IOREMAP_MAX_ORDER;
1245 		else if (bit < PAGE_SHIFT)
1246 			bit = PAGE_SHIFT;
1247 
1248 		align = 1ul << bit;
1249 	}
1250 
1251 	size = PAGE_ALIGN(size);
1252 	if (unlikely(!size))
1253 		return NULL;
1254 
1255 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1256 	if (unlikely(!area))
1257 		return NULL;
1258 
1259 	/*
1260 	 * We always allocate a guard page.
1261 	 */
1262 	size += PAGE_SIZE;
1263 
1264 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1265 	if (IS_ERR(va)) {
1266 		kfree(area);
1267 		return NULL;
1268 	}
1269 
1270 	insert_vmalloc_vm(area, va, flags, caller);
1271 	return area;
1272 }
1273 
1274 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1275 				unsigned long start, unsigned long end)
1276 {
1277 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1278 						__builtin_return_address(0));
1279 }
1280 EXPORT_SYMBOL_GPL(__get_vm_area);
1281 
1282 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1283 				       unsigned long start, unsigned long end,
1284 				       void *caller)
1285 {
1286 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1287 				  caller);
1288 }
1289 
1290 /**
1291  *	get_vm_area  -  reserve a contiguous kernel virtual area
1292  *	@size:		size of the area
1293  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1294  *
1295  *	Search an area of @size in the kernel virtual mapping area,
1296  *	and reserved it for out purposes.  Returns the area descriptor
1297  *	on success or %NULL on failure.
1298  */
1299 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1300 {
1301 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1302 				-1, GFP_KERNEL, __builtin_return_address(0));
1303 }
1304 
1305 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1306 				void *caller)
1307 {
1308 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1309 						-1, GFP_KERNEL, caller);
1310 }
1311 
1312 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1313 				   int node, gfp_t gfp_mask)
1314 {
1315 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1316 				  node, gfp_mask, __builtin_return_address(0));
1317 }
1318 
1319 static struct vm_struct *find_vm_area(const void *addr)
1320 {
1321 	struct vmap_area *va;
1322 
1323 	va = find_vmap_area((unsigned long)addr);
1324 	if (va && va->flags & VM_VM_AREA)
1325 		return va->private;
1326 
1327 	return NULL;
1328 }
1329 
1330 /**
1331  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1332  *	@addr:		base address
1333  *
1334  *	Search for the kernel VM area starting at @addr, and remove it.
1335  *	This function returns the found VM area, but using it is NOT safe
1336  *	on SMP machines, except for its size or flags.
1337  */
1338 struct vm_struct *remove_vm_area(const void *addr)
1339 {
1340 	struct vmap_area *va;
1341 
1342 	va = find_vmap_area((unsigned long)addr);
1343 	if (va && va->flags & VM_VM_AREA) {
1344 		struct vm_struct *vm = va->private;
1345 		struct vm_struct *tmp, **p;
1346 		/*
1347 		 * remove from list and disallow access to this vm_struct
1348 		 * before unmap. (address range confliction is maintained by
1349 		 * vmap.)
1350 		 */
1351 		write_lock(&vmlist_lock);
1352 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1353 			;
1354 		*p = tmp->next;
1355 		write_unlock(&vmlist_lock);
1356 
1357 		vmap_debug_free_range(va->va_start, va->va_end);
1358 		free_unmap_vmap_area(va);
1359 		vm->size -= PAGE_SIZE;
1360 
1361 		return vm;
1362 	}
1363 	return NULL;
1364 }
1365 
1366 static void __vunmap(const void *addr, int deallocate_pages)
1367 {
1368 	struct vm_struct *area;
1369 
1370 	if (!addr)
1371 		return;
1372 
1373 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1374 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1375 		return;
1376 	}
1377 
1378 	area = remove_vm_area(addr);
1379 	if (unlikely(!area)) {
1380 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1381 				addr);
1382 		return;
1383 	}
1384 
1385 	debug_check_no_locks_freed(addr, area->size);
1386 	debug_check_no_obj_freed(addr, area->size);
1387 
1388 	if (deallocate_pages) {
1389 		int i;
1390 
1391 		for (i = 0; i < area->nr_pages; i++) {
1392 			struct page *page = area->pages[i];
1393 
1394 			BUG_ON(!page);
1395 			__free_page(page);
1396 		}
1397 
1398 		if (area->flags & VM_VPAGES)
1399 			vfree(area->pages);
1400 		else
1401 			kfree(area->pages);
1402 	}
1403 
1404 	kfree(area);
1405 	return;
1406 }
1407 
1408 /**
1409  *	vfree  -  release memory allocated by vmalloc()
1410  *	@addr:		memory base address
1411  *
1412  *	Free the virtually continuous memory area starting at @addr, as
1413  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1414  *	NULL, no operation is performed.
1415  *
1416  *	Must not be called in interrupt context.
1417  */
1418 void vfree(const void *addr)
1419 {
1420 	BUG_ON(in_interrupt());
1421 
1422 	kmemleak_free(addr);
1423 
1424 	__vunmap(addr, 1);
1425 }
1426 EXPORT_SYMBOL(vfree);
1427 
1428 /**
1429  *	vunmap  -  release virtual mapping obtained by vmap()
1430  *	@addr:		memory base address
1431  *
1432  *	Free the virtually contiguous memory area starting at @addr,
1433  *	which was created from the page array passed to vmap().
1434  *
1435  *	Must not be called in interrupt context.
1436  */
1437 void vunmap(const void *addr)
1438 {
1439 	BUG_ON(in_interrupt());
1440 	might_sleep();
1441 	__vunmap(addr, 0);
1442 }
1443 EXPORT_SYMBOL(vunmap);
1444 
1445 /**
1446  *	vmap  -  map an array of pages into virtually contiguous space
1447  *	@pages:		array of page pointers
1448  *	@count:		number of pages to map
1449  *	@flags:		vm_area->flags
1450  *	@prot:		page protection for the mapping
1451  *
1452  *	Maps @count pages from @pages into contiguous kernel virtual
1453  *	space.
1454  */
1455 void *vmap(struct page **pages, unsigned int count,
1456 		unsigned long flags, pgprot_t prot)
1457 {
1458 	struct vm_struct *area;
1459 
1460 	might_sleep();
1461 
1462 	if (count > totalram_pages)
1463 		return NULL;
1464 
1465 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1466 					__builtin_return_address(0));
1467 	if (!area)
1468 		return NULL;
1469 
1470 	if (map_vm_area(area, prot, &pages)) {
1471 		vunmap(area->addr);
1472 		return NULL;
1473 	}
1474 
1475 	return area->addr;
1476 }
1477 EXPORT_SYMBOL(vmap);
1478 
1479 static void *__vmalloc_node(unsigned long size, unsigned long align,
1480 			    gfp_t gfp_mask, pgprot_t prot,
1481 			    int node, void *caller);
1482 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1483 				 pgprot_t prot, int node, void *caller)
1484 {
1485 	struct page **pages;
1486 	unsigned int nr_pages, array_size, i;
1487 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1488 
1489 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1490 	array_size = (nr_pages * sizeof(struct page *));
1491 
1492 	area->nr_pages = nr_pages;
1493 	/* Please note that the recursion is strictly bounded. */
1494 	if (array_size > PAGE_SIZE) {
1495 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1496 				PAGE_KERNEL, node, caller);
1497 		area->flags |= VM_VPAGES;
1498 	} else {
1499 		pages = kmalloc_node(array_size, nested_gfp, node);
1500 	}
1501 	area->pages = pages;
1502 	area->caller = caller;
1503 	if (!area->pages) {
1504 		remove_vm_area(area->addr);
1505 		kfree(area);
1506 		return NULL;
1507 	}
1508 
1509 	for (i = 0; i < area->nr_pages; i++) {
1510 		struct page *page;
1511 
1512 		if (node < 0)
1513 			page = alloc_page(gfp_mask);
1514 		else
1515 			page = alloc_pages_node(node, gfp_mask, 0);
1516 
1517 		if (unlikely(!page)) {
1518 			/* Successfully allocated i pages, free them in __vunmap() */
1519 			area->nr_pages = i;
1520 			goto fail;
1521 		}
1522 		area->pages[i] = page;
1523 	}
1524 
1525 	if (map_vm_area(area, prot, &pages))
1526 		goto fail;
1527 	return area->addr;
1528 
1529 fail:
1530 	vfree(area->addr);
1531 	return NULL;
1532 }
1533 
1534 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1535 {
1536 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
1537 					 __builtin_return_address(0));
1538 
1539 	/*
1540 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1541 	 * structures allocated in the __get_vm_area_node() function contain
1542 	 * references to the virtual address of the vmalloc'ed block.
1543 	 */
1544 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
1545 
1546 	return addr;
1547 }
1548 
1549 /**
1550  *	__vmalloc_node  -  allocate virtually contiguous memory
1551  *	@size:		allocation size
1552  *	@align:		desired alignment
1553  *	@gfp_mask:	flags for the page level allocator
1554  *	@prot:		protection mask for the allocated pages
1555  *	@node:		node to use for allocation or -1
1556  *	@caller:	caller's return address
1557  *
1558  *	Allocate enough pages to cover @size from the page level
1559  *	allocator with @gfp_mask flags.  Map them into contiguous
1560  *	kernel virtual space, using a pagetable protection of @prot.
1561  */
1562 static void *__vmalloc_node(unsigned long size, unsigned long align,
1563 			    gfp_t gfp_mask, pgprot_t prot,
1564 			    int node, void *caller)
1565 {
1566 	struct vm_struct *area;
1567 	void *addr;
1568 	unsigned long real_size = size;
1569 
1570 	size = PAGE_ALIGN(size);
1571 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1572 		return NULL;
1573 
1574 	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
1575 				  VMALLOC_END, node, gfp_mask, caller);
1576 
1577 	if (!area)
1578 		return NULL;
1579 
1580 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1581 
1582 	/*
1583 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1584 	 * structures allocated in the __get_vm_area_node() function contain
1585 	 * references to the virtual address of the vmalloc'ed block.
1586 	 */
1587 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1588 
1589 	return addr;
1590 }
1591 
1592 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1593 {
1594 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1595 				__builtin_return_address(0));
1596 }
1597 EXPORT_SYMBOL(__vmalloc);
1598 
1599 /**
1600  *	vmalloc  -  allocate virtually contiguous memory
1601  *	@size:		allocation size
1602  *	Allocate enough pages to cover @size from the page level
1603  *	allocator and map them into contiguous kernel virtual space.
1604  *
1605  *	For tight control over page level allocator and protection flags
1606  *	use __vmalloc() instead.
1607  */
1608 void *vmalloc(unsigned long size)
1609 {
1610 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1611 					-1, __builtin_return_address(0));
1612 }
1613 EXPORT_SYMBOL(vmalloc);
1614 
1615 /**
1616  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1617  * @size: allocation size
1618  *
1619  * The resulting memory area is zeroed so it can be mapped to userspace
1620  * without leaking data.
1621  */
1622 void *vmalloc_user(unsigned long size)
1623 {
1624 	struct vm_struct *area;
1625 	void *ret;
1626 
1627 	ret = __vmalloc_node(size, SHMLBA,
1628 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1629 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1630 	if (ret) {
1631 		area = find_vm_area(ret);
1632 		area->flags |= VM_USERMAP;
1633 	}
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL(vmalloc_user);
1637 
1638 /**
1639  *	vmalloc_node  -  allocate memory on a specific node
1640  *	@size:		allocation size
1641  *	@node:		numa node
1642  *
1643  *	Allocate enough pages to cover @size from the page level
1644  *	allocator and map them into contiguous kernel virtual space.
1645  *
1646  *	For tight control over page level allocator and protection flags
1647  *	use __vmalloc() instead.
1648  */
1649 void *vmalloc_node(unsigned long size, int node)
1650 {
1651 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1652 					node, __builtin_return_address(0));
1653 }
1654 EXPORT_SYMBOL(vmalloc_node);
1655 
1656 #ifndef PAGE_KERNEL_EXEC
1657 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1658 #endif
1659 
1660 /**
1661  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1662  *	@size:		allocation size
1663  *
1664  *	Kernel-internal function to allocate enough pages to cover @size
1665  *	the page level allocator and map them into contiguous and
1666  *	executable kernel virtual space.
1667  *
1668  *	For tight control over page level allocator and protection flags
1669  *	use __vmalloc() instead.
1670  */
1671 
1672 void *vmalloc_exec(unsigned long size)
1673 {
1674 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1675 			      -1, __builtin_return_address(0));
1676 }
1677 
1678 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1679 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1680 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1681 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1682 #else
1683 #define GFP_VMALLOC32 GFP_KERNEL
1684 #endif
1685 
1686 /**
1687  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1688  *	@size:		allocation size
1689  *
1690  *	Allocate enough 32bit PA addressable pages to cover @size from the
1691  *	page level allocator and map them into contiguous kernel virtual space.
1692  */
1693 void *vmalloc_32(unsigned long size)
1694 {
1695 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1696 			      -1, __builtin_return_address(0));
1697 }
1698 EXPORT_SYMBOL(vmalloc_32);
1699 
1700 /**
1701  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1702  *	@size:		allocation size
1703  *
1704  * The resulting memory area is 32bit addressable and zeroed so it can be
1705  * mapped to userspace without leaking data.
1706  */
1707 void *vmalloc_32_user(unsigned long size)
1708 {
1709 	struct vm_struct *area;
1710 	void *ret;
1711 
1712 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1713 			     -1, __builtin_return_address(0));
1714 	if (ret) {
1715 		area = find_vm_area(ret);
1716 		area->flags |= VM_USERMAP;
1717 	}
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL(vmalloc_32_user);
1721 
1722 /*
1723  * small helper routine , copy contents to buf from addr.
1724  * If the page is not present, fill zero.
1725  */
1726 
1727 static int aligned_vread(char *buf, char *addr, unsigned long count)
1728 {
1729 	struct page *p;
1730 	int copied = 0;
1731 
1732 	while (count) {
1733 		unsigned long offset, length;
1734 
1735 		offset = (unsigned long)addr & ~PAGE_MASK;
1736 		length = PAGE_SIZE - offset;
1737 		if (length > count)
1738 			length = count;
1739 		p = vmalloc_to_page(addr);
1740 		/*
1741 		 * To do safe access to this _mapped_ area, we need
1742 		 * lock. But adding lock here means that we need to add
1743 		 * overhead of vmalloc()/vfree() calles for this _debug_
1744 		 * interface, rarely used. Instead of that, we'll use
1745 		 * kmap() and get small overhead in this access function.
1746 		 */
1747 		if (p) {
1748 			/*
1749 			 * we can expect USER0 is not used (see vread/vwrite's
1750 			 * function description)
1751 			 */
1752 			void *map = kmap_atomic(p, KM_USER0);
1753 			memcpy(buf, map + offset, length);
1754 			kunmap_atomic(map, KM_USER0);
1755 		} else
1756 			memset(buf, 0, length);
1757 
1758 		addr += length;
1759 		buf += length;
1760 		copied += length;
1761 		count -= length;
1762 	}
1763 	return copied;
1764 }
1765 
1766 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1767 {
1768 	struct page *p;
1769 	int copied = 0;
1770 
1771 	while (count) {
1772 		unsigned long offset, length;
1773 
1774 		offset = (unsigned long)addr & ~PAGE_MASK;
1775 		length = PAGE_SIZE - offset;
1776 		if (length > count)
1777 			length = count;
1778 		p = vmalloc_to_page(addr);
1779 		/*
1780 		 * To do safe access to this _mapped_ area, we need
1781 		 * lock. But adding lock here means that we need to add
1782 		 * overhead of vmalloc()/vfree() calles for this _debug_
1783 		 * interface, rarely used. Instead of that, we'll use
1784 		 * kmap() and get small overhead in this access function.
1785 		 */
1786 		if (p) {
1787 			/*
1788 			 * we can expect USER0 is not used (see vread/vwrite's
1789 			 * function description)
1790 			 */
1791 			void *map = kmap_atomic(p, KM_USER0);
1792 			memcpy(map + offset, buf, length);
1793 			kunmap_atomic(map, KM_USER0);
1794 		}
1795 		addr += length;
1796 		buf += length;
1797 		copied += length;
1798 		count -= length;
1799 	}
1800 	return copied;
1801 }
1802 
1803 /**
1804  *	vread() -  read vmalloc area in a safe way.
1805  *	@buf:		buffer for reading data
1806  *	@addr:		vm address.
1807  *	@count:		number of bytes to be read.
1808  *
1809  *	Returns # of bytes which addr and buf should be increased.
1810  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1811  *	includes any intersect with alive vmalloc area.
1812  *
1813  *	This function checks that addr is a valid vmalloc'ed area, and
1814  *	copy data from that area to a given buffer. If the given memory range
1815  *	of [addr...addr+count) includes some valid address, data is copied to
1816  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1817  *	IOREMAP area is treated as memory hole and no copy is done.
1818  *
1819  *	If [addr...addr+count) doesn't includes any intersects with alive
1820  *	vm_struct area, returns 0.
1821  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1822  *	the caller should guarantee KM_USER0 is not used.
1823  *
1824  *	Note: In usual ops, vread() is never necessary because the caller
1825  *	should know vmalloc() area is valid and can use memcpy().
1826  *	This is for routines which have to access vmalloc area without
1827  *	any informaion, as /dev/kmem.
1828  *
1829  */
1830 
1831 long vread(char *buf, char *addr, unsigned long count)
1832 {
1833 	struct vm_struct *tmp;
1834 	char *vaddr, *buf_start = buf;
1835 	unsigned long buflen = count;
1836 	unsigned long n;
1837 
1838 	/* Don't allow overflow */
1839 	if ((unsigned long) addr + count < count)
1840 		count = -(unsigned long) addr;
1841 
1842 	read_lock(&vmlist_lock);
1843 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1844 		vaddr = (char *) tmp->addr;
1845 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1846 			continue;
1847 		while (addr < vaddr) {
1848 			if (count == 0)
1849 				goto finished;
1850 			*buf = '\0';
1851 			buf++;
1852 			addr++;
1853 			count--;
1854 		}
1855 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1856 		if (n > count)
1857 			n = count;
1858 		if (!(tmp->flags & VM_IOREMAP))
1859 			aligned_vread(buf, addr, n);
1860 		else /* IOREMAP area is treated as memory hole */
1861 			memset(buf, 0, n);
1862 		buf += n;
1863 		addr += n;
1864 		count -= n;
1865 	}
1866 finished:
1867 	read_unlock(&vmlist_lock);
1868 
1869 	if (buf == buf_start)
1870 		return 0;
1871 	/* zero-fill memory holes */
1872 	if (buf != buf_start + buflen)
1873 		memset(buf, 0, buflen - (buf - buf_start));
1874 
1875 	return buflen;
1876 }
1877 
1878 /**
1879  *	vwrite() -  write vmalloc area in a safe way.
1880  *	@buf:		buffer for source data
1881  *	@addr:		vm address.
1882  *	@count:		number of bytes to be read.
1883  *
1884  *	Returns # of bytes which addr and buf should be incresed.
1885  *	(same number to @count).
1886  *	If [addr...addr+count) doesn't includes any intersect with valid
1887  *	vmalloc area, returns 0.
1888  *
1889  *	This function checks that addr is a valid vmalloc'ed area, and
1890  *	copy data from a buffer to the given addr. If specified range of
1891  *	[addr...addr+count) includes some valid address, data is copied from
1892  *	proper area of @buf. If there are memory holes, no copy to hole.
1893  *	IOREMAP area is treated as memory hole and no copy is done.
1894  *
1895  *	If [addr...addr+count) doesn't includes any intersects with alive
1896  *	vm_struct area, returns 0.
1897  *	@buf should be kernel's buffer. Because	this function uses KM_USER0,
1898  *	the caller should guarantee KM_USER0 is not used.
1899  *
1900  *	Note: In usual ops, vwrite() is never necessary because the caller
1901  *	should know vmalloc() area is valid and can use memcpy().
1902  *	This is for routines which have to access vmalloc area without
1903  *	any informaion, as /dev/kmem.
1904  *
1905  *	The caller should guarantee KM_USER1 is not used.
1906  */
1907 
1908 long vwrite(char *buf, char *addr, unsigned long count)
1909 {
1910 	struct vm_struct *tmp;
1911 	char *vaddr;
1912 	unsigned long n, buflen;
1913 	int copied = 0;
1914 
1915 	/* Don't allow overflow */
1916 	if ((unsigned long) addr + count < count)
1917 		count = -(unsigned long) addr;
1918 	buflen = count;
1919 
1920 	read_lock(&vmlist_lock);
1921 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1922 		vaddr = (char *) tmp->addr;
1923 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
1924 			continue;
1925 		while (addr < vaddr) {
1926 			if (count == 0)
1927 				goto finished;
1928 			buf++;
1929 			addr++;
1930 			count--;
1931 		}
1932 		n = vaddr + tmp->size - PAGE_SIZE - addr;
1933 		if (n > count)
1934 			n = count;
1935 		if (!(tmp->flags & VM_IOREMAP)) {
1936 			aligned_vwrite(buf, addr, n);
1937 			copied++;
1938 		}
1939 		buf += n;
1940 		addr += n;
1941 		count -= n;
1942 	}
1943 finished:
1944 	read_unlock(&vmlist_lock);
1945 	if (!copied)
1946 		return 0;
1947 	return buflen;
1948 }
1949 
1950 /**
1951  *	remap_vmalloc_range  -  map vmalloc pages to userspace
1952  *	@vma:		vma to cover (map full range of vma)
1953  *	@addr:		vmalloc memory
1954  *	@pgoff:		number of pages into addr before first page to map
1955  *
1956  *	Returns:	0 for success, -Exxx on failure
1957  *
1958  *	This function checks that addr is a valid vmalloc'ed area, and
1959  *	that it is big enough to cover the vma. Will return failure if
1960  *	that criteria isn't met.
1961  *
1962  *	Similar to remap_pfn_range() (see mm/memory.c)
1963  */
1964 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1965 						unsigned long pgoff)
1966 {
1967 	struct vm_struct *area;
1968 	unsigned long uaddr = vma->vm_start;
1969 	unsigned long usize = vma->vm_end - vma->vm_start;
1970 
1971 	if ((PAGE_SIZE-1) & (unsigned long)addr)
1972 		return -EINVAL;
1973 
1974 	area = find_vm_area(addr);
1975 	if (!area)
1976 		return -EINVAL;
1977 
1978 	if (!(area->flags & VM_USERMAP))
1979 		return -EINVAL;
1980 
1981 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1982 		return -EINVAL;
1983 
1984 	addr += pgoff << PAGE_SHIFT;
1985 	do {
1986 		struct page *page = vmalloc_to_page(addr);
1987 		int ret;
1988 
1989 		ret = vm_insert_page(vma, uaddr, page);
1990 		if (ret)
1991 			return ret;
1992 
1993 		uaddr += PAGE_SIZE;
1994 		addr += PAGE_SIZE;
1995 		usize -= PAGE_SIZE;
1996 	} while (usize > 0);
1997 
1998 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
1999 	vma->vm_flags |= VM_RESERVED;
2000 
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL(remap_vmalloc_range);
2004 
2005 /*
2006  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2007  * have one.
2008  */
2009 void  __attribute__((weak)) vmalloc_sync_all(void)
2010 {
2011 }
2012 
2013 
2014 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2015 {
2016 	/* apply_to_page_range() does all the hard work. */
2017 	return 0;
2018 }
2019 
2020 /**
2021  *	alloc_vm_area - allocate a range of kernel address space
2022  *	@size:		size of the area
2023  *
2024  *	Returns:	NULL on failure, vm_struct on success
2025  *
2026  *	This function reserves a range of kernel address space, and
2027  *	allocates pagetables to map that range.  No actual mappings
2028  *	are created.  If the kernel address space is not shared
2029  *	between processes, it syncs the pagetable across all
2030  *	processes.
2031  */
2032 struct vm_struct *alloc_vm_area(size_t size)
2033 {
2034 	struct vm_struct *area;
2035 
2036 	area = get_vm_area_caller(size, VM_IOREMAP,
2037 				__builtin_return_address(0));
2038 	if (area == NULL)
2039 		return NULL;
2040 
2041 	/*
2042 	 * This ensures that page tables are constructed for this region
2043 	 * of kernel virtual address space and mapped into init_mm.
2044 	 */
2045 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2046 				area->size, f, NULL)) {
2047 		free_vm_area(area);
2048 		return NULL;
2049 	}
2050 
2051 	/* Make sure the pagetables are constructed in process kernel
2052 	   mappings */
2053 	vmalloc_sync_all();
2054 
2055 	return area;
2056 }
2057 EXPORT_SYMBOL_GPL(alloc_vm_area);
2058 
2059 void free_vm_area(struct vm_struct *area)
2060 {
2061 	struct vm_struct *ret;
2062 	ret = remove_vm_area(area->addr);
2063 	BUG_ON(ret != area);
2064 	kfree(area);
2065 }
2066 EXPORT_SYMBOL_GPL(free_vm_area);
2067 
2068 static struct vmap_area *node_to_va(struct rb_node *n)
2069 {
2070 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2071 }
2072 
2073 /**
2074  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2075  * @end: target address
2076  * @pnext: out arg for the next vmap_area
2077  * @pprev: out arg for the previous vmap_area
2078  *
2079  * Returns: %true if either or both of next and prev are found,
2080  *	    %false if no vmap_area exists
2081  *
2082  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2083  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2084  */
2085 static bool pvm_find_next_prev(unsigned long end,
2086 			       struct vmap_area **pnext,
2087 			       struct vmap_area **pprev)
2088 {
2089 	struct rb_node *n = vmap_area_root.rb_node;
2090 	struct vmap_area *va = NULL;
2091 
2092 	while (n) {
2093 		va = rb_entry(n, struct vmap_area, rb_node);
2094 		if (end < va->va_end)
2095 			n = n->rb_left;
2096 		else if (end > va->va_end)
2097 			n = n->rb_right;
2098 		else
2099 			break;
2100 	}
2101 
2102 	if (!va)
2103 		return false;
2104 
2105 	if (va->va_end > end) {
2106 		*pnext = va;
2107 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2108 	} else {
2109 		*pprev = va;
2110 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2111 	}
2112 	return true;
2113 }
2114 
2115 /**
2116  * pvm_determine_end - find the highest aligned address between two vmap_areas
2117  * @pnext: in/out arg for the next vmap_area
2118  * @pprev: in/out arg for the previous vmap_area
2119  * @align: alignment
2120  *
2121  * Returns: determined end address
2122  *
2123  * Find the highest aligned address between *@pnext and *@pprev below
2124  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2125  * down address is between the end addresses of the two vmap_areas.
2126  *
2127  * Please note that the address returned by this function may fall
2128  * inside *@pnext vmap_area.  The caller is responsible for checking
2129  * that.
2130  */
2131 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2132 				       struct vmap_area **pprev,
2133 				       unsigned long align)
2134 {
2135 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2136 	unsigned long addr;
2137 
2138 	if (*pnext)
2139 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2140 	else
2141 		addr = vmalloc_end;
2142 
2143 	while (*pprev && (*pprev)->va_end > addr) {
2144 		*pnext = *pprev;
2145 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2146 	}
2147 
2148 	return addr;
2149 }
2150 
2151 /**
2152  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2153  * @offsets: array containing offset of each area
2154  * @sizes: array containing size of each area
2155  * @nr_vms: the number of areas to allocate
2156  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2157  * @gfp_mask: allocation mask
2158  *
2159  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2160  *	    vm_structs on success, %NULL on failure
2161  *
2162  * Percpu allocator wants to use congruent vm areas so that it can
2163  * maintain the offsets among percpu areas.  This function allocates
2164  * congruent vmalloc areas for it.  These areas tend to be scattered
2165  * pretty far, distance between two areas easily going up to
2166  * gigabytes.  To avoid interacting with regular vmallocs, these areas
2167  * are allocated from top.
2168  *
2169  * Despite its complicated look, this allocator is rather simple.  It
2170  * does everything top-down and scans areas from the end looking for
2171  * matching slot.  While scanning, if any of the areas overlaps with
2172  * existing vmap_area, the base address is pulled down to fit the
2173  * area.  Scanning is repeated till all the areas fit and then all
2174  * necessary data structres are inserted and the result is returned.
2175  */
2176 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2177 				     const size_t *sizes, int nr_vms,
2178 				     size_t align, gfp_t gfp_mask)
2179 {
2180 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2181 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2182 	struct vmap_area **vas, *prev, *next;
2183 	struct vm_struct **vms;
2184 	int area, area2, last_area, term_area;
2185 	unsigned long base, start, end, last_end;
2186 	bool purged = false;
2187 
2188 	gfp_mask &= GFP_RECLAIM_MASK;
2189 
2190 	/* verify parameters and allocate data structures */
2191 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2192 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2193 		start = offsets[area];
2194 		end = start + sizes[area];
2195 
2196 		/* is everything aligned properly? */
2197 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2198 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2199 
2200 		/* detect the area with the highest address */
2201 		if (start > offsets[last_area])
2202 			last_area = area;
2203 
2204 		for (area2 = 0; area2 < nr_vms; area2++) {
2205 			unsigned long start2 = offsets[area2];
2206 			unsigned long end2 = start2 + sizes[area2];
2207 
2208 			if (area2 == area)
2209 				continue;
2210 
2211 			BUG_ON(start2 >= start && start2 < end);
2212 			BUG_ON(end2 <= end && end2 > start);
2213 		}
2214 	}
2215 	last_end = offsets[last_area] + sizes[last_area];
2216 
2217 	if (vmalloc_end - vmalloc_start < last_end) {
2218 		WARN_ON(true);
2219 		return NULL;
2220 	}
2221 
2222 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
2223 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
2224 	if (!vas || !vms)
2225 		goto err_free;
2226 
2227 	for (area = 0; area < nr_vms; area++) {
2228 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
2229 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
2230 		if (!vas[area] || !vms[area])
2231 			goto err_free;
2232 	}
2233 retry:
2234 	spin_lock(&vmap_area_lock);
2235 
2236 	/* start scanning - we scan from the top, begin with the last area */
2237 	area = term_area = last_area;
2238 	start = offsets[area];
2239 	end = start + sizes[area];
2240 
2241 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2242 		base = vmalloc_end - last_end;
2243 		goto found;
2244 	}
2245 	base = pvm_determine_end(&next, &prev, align) - end;
2246 
2247 	while (true) {
2248 		BUG_ON(next && next->va_end <= base + end);
2249 		BUG_ON(prev && prev->va_end > base + end);
2250 
2251 		/*
2252 		 * base might have underflowed, add last_end before
2253 		 * comparing.
2254 		 */
2255 		if (base + last_end < vmalloc_start + last_end) {
2256 			spin_unlock(&vmap_area_lock);
2257 			if (!purged) {
2258 				purge_vmap_area_lazy();
2259 				purged = true;
2260 				goto retry;
2261 			}
2262 			goto err_free;
2263 		}
2264 
2265 		/*
2266 		 * If next overlaps, move base downwards so that it's
2267 		 * right below next and then recheck.
2268 		 */
2269 		if (next && next->va_start < base + end) {
2270 			base = pvm_determine_end(&next, &prev, align) - end;
2271 			term_area = area;
2272 			continue;
2273 		}
2274 
2275 		/*
2276 		 * If prev overlaps, shift down next and prev and move
2277 		 * base so that it's right below new next and then
2278 		 * recheck.
2279 		 */
2280 		if (prev && prev->va_end > base + start)  {
2281 			next = prev;
2282 			prev = node_to_va(rb_prev(&next->rb_node));
2283 			base = pvm_determine_end(&next, &prev, align) - end;
2284 			term_area = area;
2285 			continue;
2286 		}
2287 
2288 		/*
2289 		 * This area fits, move on to the previous one.  If
2290 		 * the previous one is the terminal one, we're done.
2291 		 */
2292 		area = (area + nr_vms - 1) % nr_vms;
2293 		if (area == term_area)
2294 			break;
2295 		start = offsets[area];
2296 		end = start + sizes[area];
2297 		pvm_find_next_prev(base + end, &next, &prev);
2298 	}
2299 found:
2300 	/* we've found a fitting base, insert all va's */
2301 	for (area = 0; area < nr_vms; area++) {
2302 		struct vmap_area *va = vas[area];
2303 
2304 		va->va_start = base + offsets[area];
2305 		va->va_end = va->va_start + sizes[area];
2306 		__insert_vmap_area(va);
2307 	}
2308 
2309 	vmap_area_pcpu_hole = base + offsets[last_area];
2310 
2311 	spin_unlock(&vmap_area_lock);
2312 
2313 	/* insert all vm's */
2314 	for (area = 0; area < nr_vms; area++)
2315 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2316 				  pcpu_get_vm_areas);
2317 
2318 	kfree(vas);
2319 	return vms;
2320 
2321 err_free:
2322 	for (area = 0; area < nr_vms; area++) {
2323 		if (vas)
2324 			kfree(vas[area]);
2325 		if (vms)
2326 			kfree(vms[area]);
2327 	}
2328 	kfree(vas);
2329 	kfree(vms);
2330 	return NULL;
2331 }
2332 
2333 /**
2334  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2335  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2336  * @nr_vms: the number of allocated areas
2337  *
2338  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2339  */
2340 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2341 {
2342 	int i;
2343 
2344 	for (i = 0; i < nr_vms; i++)
2345 		free_vm_area(vms[i]);
2346 	kfree(vms);
2347 }
2348 
2349 #ifdef CONFIG_PROC_FS
2350 static void *s_start(struct seq_file *m, loff_t *pos)
2351 {
2352 	loff_t n = *pos;
2353 	struct vm_struct *v;
2354 
2355 	read_lock(&vmlist_lock);
2356 	v = vmlist;
2357 	while (n > 0 && v) {
2358 		n--;
2359 		v = v->next;
2360 	}
2361 	if (!n)
2362 		return v;
2363 
2364 	return NULL;
2365 
2366 }
2367 
2368 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2369 {
2370 	struct vm_struct *v = p;
2371 
2372 	++*pos;
2373 	return v->next;
2374 }
2375 
2376 static void s_stop(struct seq_file *m, void *p)
2377 {
2378 	read_unlock(&vmlist_lock);
2379 }
2380 
2381 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2382 {
2383 	if (NUMA_BUILD) {
2384 		unsigned int nr, *counters = m->private;
2385 
2386 		if (!counters)
2387 			return;
2388 
2389 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2390 
2391 		for (nr = 0; nr < v->nr_pages; nr++)
2392 			counters[page_to_nid(v->pages[nr])]++;
2393 
2394 		for_each_node_state(nr, N_HIGH_MEMORY)
2395 			if (counters[nr])
2396 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2397 	}
2398 }
2399 
2400 static int s_show(struct seq_file *m, void *p)
2401 {
2402 	struct vm_struct *v = p;
2403 
2404 	seq_printf(m, "0x%p-0x%p %7ld",
2405 		v->addr, v->addr + v->size, v->size);
2406 
2407 	if (v->caller) {
2408 		char buff[KSYM_SYMBOL_LEN];
2409 
2410 		seq_putc(m, ' ');
2411 		sprint_symbol(buff, (unsigned long)v->caller);
2412 		seq_puts(m, buff);
2413 	}
2414 
2415 	if (v->nr_pages)
2416 		seq_printf(m, " pages=%d", v->nr_pages);
2417 
2418 	if (v->phys_addr)
2419 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2420 
2421 	if (v->flags & VM_IOREMAP)
2422 		seq_printf(m, " ioremap");
2423 
2424 	if (v->flags & VM_ALLOC)
2425 		seq_printf(m, " vmalloc");
2426 
2427 	if (v->flags & VM_MAP)
2428 		seq_printf(m, " vmap");
2429 
2430 	if (v->flags & VM_USERMAP)
2431 		seq_printf(m, " user");
2432 
2433 	if (v->flags & VM_VPAGES)
2434 		seq_printf(m, " vpages");
2435 
2436 	show_numa_info(m, v);
2437 	seq_putc(m, '\n');
2438 	return 0;
2439 }
2440 
2441 static const struct seq_operations vmalloc_op = {
2442 	.start = s_start,
2443 	.next = s_next,
2444 	.stop = s_stop,
2445 	.show = s_show,
2446 };
2447 
2448 static int vmalloc_open(struct inode *inode, struct file *file)
2449 {
2450 	unsigned int *ptr = NULL;
2451 	int ret;
2452 
2453 	if (NUMA_BUILD) {
2454 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2455 		if (ptr == NULL)
2456 			return -ENOMEM;
2457 	}
2458 	ret = seq_open(file, &vmalloc_op);
2459 	if (!ret) {
2460 		struct seq_file *m = file->private_data;
2461 		m->private = ptr;
2462 	} else
2463 		kfree(ptr);
2464 	return ret;
2465 }
2466 
2467 static const struct file_operations proc_vmalloc_operations = {
2468 	.open		= vmalloc_open,
2469 	.read		= seq_read,
2470 	.llseek		= seq_lseek,
2471 	.release	= seq_release_private,
2472 };
2473 
2474 static int __init proc_vmalloc_init(void)
2475 {
2476 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2477 	return 0;
2478 }
2479 module_init(proc_vmalloc_init);
2480 #endif
2481 
2482