1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 struct vm_struct *vm; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static LIST_HEAD(vmap_area_list); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 267 /* The vmap cache globals are protected by vmap_area_lock */ 268 static struct rb_node *free_vmap_cache; 269 static unsigned long cached_hole_size; 270 static unsigned long cached_vstart; 271 static unsigned long cached_align; 272 273 static unsigned long vmap_area_pcpu_hole; 274 275 static struct vmap_area *__find_vmap_area(unsigned long addr) 276 { 277 struct rb_node *n = vmap_area_root.rb_node; 278 279 while (n) { 280 struct vmap_area *va; 281 282 va = rb_entry(n, struct vmap_area, rb_node); 283 if (addr < va->va_start) 284 n = n->rb_left; 285 else if (addr > va->va_start) 286 n = n->rb_right; 287 else 288 return va; 289 } 290 291 return NULL; 292 } 293 294 static void __insert_vmap_area(struct vmap_area *va) 295 { 296 struct rb_node **p = &vmap_area_root.rb_node; 297 struct rb_node *parent = NULL; 298 struct rb_node *tmp; 299 300 while (*p) { 301 struct vmap_area *tmp_va; 302 303 parent = *p; 304 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 305 if (va->va_start < tmp_va->va_end) 306 p = &(*p)->rb_left; 307 else if (va->va_end > tmp_va->va_start) 308 p = &(*p)->rb_right; 309 else 310 BUG(); 311 } 312 313 rb_link_node(&va->rb_node, parent, p); 314 rb_insert_color(&va->rb_node, &vmap_area_root); 315 316 /* address-sort this list so it is usable like the vmlist */ 317 tmp = rb_prev(&va->rb_node); 318 if (tmp) { 319 struct vmap_area *prev; 320 prev = rb_entry(tmp, struct vmap_area, rb_node); 321 list_add_rcu(&va->list, &prev->list); 322 } else 323 list_add_rcu(&va->list, &vmap_area_list); 324 } 325 326 static void purge_vmap_area_lazy(void); 327 328 /* 329 * Allocate a region of KVA of the specified size and alignment, within the 330 * vstart and vend. 331 */ 332 static struct vmap_area *alloc_vmap_area(unsigned long size, 333 unsigned long align, 334 unsigned long vstart, unsigned long vend, 335 int node, gfp_t gfp_mask) 336 { 337 struct vmap_area *va; 338 struct rb_node *n; 339 unsigned long addr; 340 int purged = 0; 341 struct vmap_area *first; 342 343 BUG_ON(!size); 344 BUG_ON(size & ~PAGE_MASK); 345 BUG_ON(!is_power_of_2(align)); 346 347 va = kmalloc_node(sizeof(struct vmap_area), 348 gfp_mask & GFP_RECLAIM_MASK, node); 349 if (unlikely(!va)) 350 return ERR_PTR(-ENOMEM); 351 352 retry: 353 spin_lock(&vmap_area_lock); 354 /* 355 * Invalidate cache if we have more permissive parameters. 356 * cached_hole_size notes the largest hole noticed _below_ 357 * the vmap_area cached in free_vmap_cache: if size fits 358 * into that hole, we want to scan from vstart to reuse 359 * the hole instead of allocating above free_vmap_cache. 360 * Note that __free_vmap_area may update free_vmap_cache 361 * without updating cached_hole_size or cached_align. 362 */ 363 if (!free_vmap_cache || 364 size < cached_hole_size || 365 vstart < cached_vstart || 366 align < cached_align) { 367 nocache: 368 cached_hole_size = 0; 369 free_vmap_cache = NULL; 370 } 371 /* record if we encounter less permissive parameters */ 372 cached_vstart = vstart; 373 cached_align = align; 374 375 /* find starting point for our search */ 376 if (free_vmap_cache) { 377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 378 addr = ALIGN(first->va_end, align); 379 if (addr < vstart) 380 goto nocache; 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 } else { 385 addr = ALIGN(vstart, align); 386 if (addr + size - 1 < addr) 387 goto overflow; 388 389 n = vmap_area_root.rb_node; 390 first = NULL; 391 392 while (n) { 393 struct vmap_area *tmp; 394 tmp = rb_entry(n, struct vmap_area, rb_node); 395 if (tmp->va_end >= addr) { 396 first = tmp; 397 if (tmp->va_start <= addr) 398 break; 399 n = n->rb_left; 400 } else 401 n = n->rb_right; 402 } 403 404 if (!first) 405 goto found; 406 } 407 408 /* from the starting point, walk areas until a suitable hole is found */ 409 while (addr + size > first->va_start && addr + size <= vend) { 410 if (addr + cached_hole_size < first->va_start) 411 cached_hole_size = first->va_start - addr; 412 addr = ALIGN(first->va_end, align); 413 if (addr + size - 1 < addr) 414 goto overflow; 415 416 if (list_is_last(&first->list, &vmap_area_list)) 417 goto found; 418 419 first = list_entry(first->list.next, 420 struct vmap_area, list); 421 } 422 423 found: 424 if (addr + size > vend) 425 goto overflow; 426 427 va->va_start = addr; 428 va->va_end = addr + size; 429 va->flags = 0; 430 __insert_vmap_area(va); 431 free_vmap_cache = &va->rb_node; 432 spin_unlock(&vmap_area_lock); 433 434 BUG_ON(va->va_start & (align-1)); 435 BUG_ON(va->va_start < vstart); 436 BUG_ON(va->va_end > vend); 437 438 return va; 439 440 overflow: 441 spin_unlock(&vmap_area_lock); 442 if (!purged) { 443 purge_vmap_area_lazy(); 444 purged = 1; 445 goto retry; 446 } 447 if (printk_ratelimit()) 448 printk(KERN_WARNING 449 "vmap allocation for size %lu failed: " 450 "use vmalloc=<size> to increase size.\n", size); 451 kfree(va); 452 return ERR_PTR(-EBUSY); 453 } 454 455 static void __free_vmap_area(struct vmap_area *va) 456 { 457 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 458 459 if (free_vmap_cache) { 460 if (va->va_end < cached_vstart) { 461 free_vmap_cache = NULL; 462 } else { 463 struct vmap_area *cache; 464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 465 if (va->va_start <= cache->va_start) { 466 free_vmap_cache = rb_prev(&va->rb_node); 467 /* 468 * We don't try to update cached_hole_size or 469 * cached_align, but it won't go very wrong. 470 */ 471 } 472 } 473 } 474 rb_erase(&va->rb_node, &vmap_area_root); 475 RB_CLEAR_NODE(&va->rb_node); 476 list_del_rcu(&va->list); 477 478 /* 479 * Track the highest possible candidate for pcpu area 480 * allocation. Areas outside of vmalloc area can be returned 481 * here too, consider only end addresses which fall inside 482 * vmalloc area proper. 483 */ 484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 486 487 kfree_rcu(va, rcu_head); 488 } 489 490 /* 491 * Free a region of KVA allocated by alloc_vmap_area 492 */ 493 static void free_vmap_area(struct vmap_area *va) 494 { 495 spin_lock(&vmap_area_lock); 496 __free_vmap_area(va); 497 spin_unlock(&vmap_area_lock); 498 } 499 500 /* 501 * Clear the pagetable entries of a given vmap_area 502 */ 503 static void unmap_vmap_area(struct vmap_area *va) 504 { 505 vunmap_page_range(va->va_start, va->va_end); 506 } 507 508 static void vmap_debug_free_range(unsigned long start, unsigned long end) 509 { 510 /* 511 * Unmap page tables and force a TLB flush immediately if 512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 513 * bugs similarly to those in linear kernel virtual address 514 * space after a page has been freed. 515 * 516 * All the lazy freeing logic is still retained, in order to 517 * minimise intrusiveness of this debugging feature. 518 * 519 * This is going to be *slow* (linear kernel virtual address 520 * debugging doesn't do a broadcast TLB flush so it is a lot 521 * faster). 522 */ 523 #ifdef CONFIG_DEBUG_PAGEALLOC 524 vunmap_page_range(start, end); 525 flush_tlb_kernel_range(start, end); 526 #endif 527 } 528 529 /* 530 * lazy_max_pages is the maximum amount of virtual address space we gather up 531 * before attempting to purge with a TLB flush. 532 * 533 * There is a tradeoff here: a larger number will cover more kernel page tables 534 * and take slightly longer to purge, but it will linearly reduce the number of 535 * global TLB flushes that must be performed. It would seem natural to scale 536 * this number up linearly with the number of CPUs (because vmapping activity 537 * could also scale linearly with the number of CPUs), however it is likely 538 * that in practice, workloads might be constrained in other ways that mean 539 * vmap activity will not scale linearly with CPUs. Also, I want to be 540 * conservative and not introduce a big latency on huge systems, so go with 541 * a less aggressive log scale. It will still be an improvement over the old 542 * code, and it will be simple to change the scale factor if we find that it 543 * becomes a problem on bigger systems. 544 */ 545 static unsigned long lazy_max_pages(void) 546 { 547 unsigned int log; 548 549 log = fls(num_online_cpus()); 550 551 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 552 } 553 554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 555 556 /* for per-CPU blocks */ 557 static void purge_fragmented_blocks_allcpus(void); 558 559 /* 560 * called before a call to iounmap() if the caller wants vm_area_struct's 561 * immediately freed. 562 */ 563 void set_iounmap_nonlazy(void) 564 { 565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 566 } 567 568 /* 569 * Purges all lazily-freed vmap areas. 570 * 571 * If sync is 0 then don't purge if there is already a purge in progress. 572 * If force_flush is 1, then flush kernel TLBs between *start and *end even 573 * if we found no lazy vmap areas to unmap (callers can use this to optimise 574 * their own TLB flushing). 575 * Returns with *start = min(*start, lowest purged address) 576 * *end = max(*end, highest purged address) 577 */ 578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 579 int sync, int force_flush) 580 { 581 static DEFINE_SPINLOCK(purge_lock); 582 LIST_HEAD(valist); 583 struct vmap_area *va; 584 struct vmap_area *n_va; 585 int nr = 0; 586 587 /* 588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 589 * should not expect such behaviour. This just simplifies locking for 590 * the case that isn't actually used at the moment anyway. 591 */ 592 if (!sync && !force_flush) { 593 if (!spin_trylock(&purge_lock)) 594 return; 595 } else 596 spin_lock(&purge_lock); 597 598 if (sync) 599 purge_fragmented_blocks_allcpus(); 600 601 rcu_read_lock(); 602 list_for_each_entry_rcu(va, &vmap_area_list, list) { 603 if (va->flags & VM_LAZY_FREE) { 604 if (va->va_start < *start) 605 *start = va->va_start; 606 if (va->va_end > *end) 607 *end = va->va_end; 608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 609 list_add_tail(&va->purge_list, &valist); 610 va->flags |= VM_LAZY_FREEING; 611 va->flags &= ~VM_LAZY_FREE; 612 } 613 } 614 rcu_read_unlock(); 615 616 if (nr) 617 atomic_sub(nr, &vmap_lazy_nr); 618 619 if (nr || force_flush) 620 flush_tlb_kernel_range(*start, *end); 621 622 if (nr) { 623 spin_lock(&vmap_area_lock); 624 list_for_each_entry_safe(va, n_va, &valist, purge_list) 625 __free_vmap_area(va); 626 spin_unlock(&vmap_area_lock); 627 } 628 spin_unlock(&purge_lock); 629 } 630 631 /* 632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 633 * is already purging. 634 */ 635 static void try_purge_vmap_area_lazy(void) 636 { 637 unsigned long start = ULONG_MAX, end = 0; 638 639 __purge_vmap_area_lazy(&start, &end, 0, 0); 640 } 641 642 /* 643 * Kick off a purge of the outstanding lazy areas. 644 */ 645 static void purge_vmap_area_lazy(void) 646 { 647 unsigned long start = ULONG_MAX, end = 0; 648 649 __purge_vmap_area_lazy(&start, &end, 1, 0); 650 } 651 652 /* 653 * Free a vmap area, caller ensuring that the area has been unmapped 654 * and flush_cache_vunmap had been called for the correct range 655 * previously. 656 */ 657 static void free_vmap_area_noflush(struct vmap_area *va) 658 { 659 va->flags |= VM_LAZY_FREE; 660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 662 try_purge_vmap_area_lazy(); 663 } 664 665 /* 666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 667 * called for the correct range previously. 668 */ 669 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 670 { 671 unmap_vmap_area(va); 672 free_vmap_area_noflush(va); 673 } 674 675 /* 676 * Free and unmap a vmap area 677 */ 678 static void free_unmap_vmap_area(struct vmap_area *va) 679 { 680 flush_cache_vunmap(va->va_start, va->va_end); 681 free_unmap_vmap_area_noflush(va); 682 } 683 684 static struct vmap_area *find_vmap_area(unsigned long addr) 685 { 686 struct vmap_area *va; 687 688 spin_lock(&vmap_area_lock); 689 va = __find_vmap_area(addr); 690 spin_unlock(&vmap_area_lock); 691 692 return va; 693 } 694 695 static void free_unmap_vmap_area_addr(unsigned long addr) 696 { 697 struct vmap_area *va; 698 699 va = find_vmap_area(addr); 700 BUG_ON(!va); 701 free_unmap_vmap_area(va); 702 } 703 704 705 /*** Per cpu kva allocator ***/ 706 707 /* 708 * vmap space is limited especially on 32 bit architectures. Ensure there is 709 * room for at least 16 percpu vmap blocks per CPU. 710 */ 711 /* 712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 714 * instead (we just need a rough idea) 715 */ 716 #if BITS_PER_LONG == 32 717 #define VMALLOC_SPACE (128UL*1024*1024) 718 #else 719 #define VMALLOC_SPACE (128UL*1024*1024*1024) 720 #endif 721 722 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 723 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 724 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 725 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 726 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 727 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 728 #define VMAP_BBMAP_BITS \ 729 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 730 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 731 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 732 733 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 734 735 static bool vmap_initialized __read_mostly = false; 736 737 struct vmap_block_queue { 738 spinlock_t lock; 739 struct list_head free; 740 }; 741 742 struct vmap_block { 743 spinlock_t lock; 744 struct vmap_area *va; 745 struct vmap_block_queue *vbq; 746 unsigned long free, dirty; 747 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 748 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 749 struct list_head free_list; 750 struct rcu_head rcu_head; 751 struct list_head purge; 752 }; 753 754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 755 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 756 757 /* 758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 759 * in the free path. Could get rid of this if we change the API to return a 760 * "cookie" from alloc, to be passed to free. But no big deal yet. 761 */ 762 static DEFINE_SPINLOCK(vmap_block_tree_lock); 763 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 764 765 /* 766 * We should probably have a fallback mechanism to allocate virtual memory 767 * out of partially filled vmap blocks. However vmap block sizing should be 768 * fairly reasonable according to the vmalloc size, so it shouldn't be a 769 * big problem. 770 */ 771 772 static unsigned long addr_to_vb_idx(unsigned long addr) 773 { 774 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 775 addr /= VMAP_BLOCK_SIZE; 776 return addr; 777 } 778 779 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 780 { 781 struct vmap_block_queue *vbq; 782 struct vmap_block *vb; 783 struct vmap_area *va; 784 unsigned long vb_idx; 785 int node, err; 786 787 node = numa_node_id(); 788 789 vb = kmalloc_node(sizeof(struct vmap_block), 790 gfp_mask & GFP_RECLAIM_MASK, node); 791 if (unlikely(!vb)) 792 return ERR_PTR(-ENOMEM); 793 794 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 795 VMALLOC_START, VMALLOC_END, 796 node, gfp_mask); 797 if (IS_ERR(va)) { 798 kfree(vb); 799 return ERR_CAST(va); 800 } 801 802 err = radix_tree_preload(gfp_mask); 803 if (unlikely(err)) { 804 kfree(vb); 805 free_vmap_area(va); 806 return ERR_PTR(err); 807 } 808 809 spin_lock_init(&vb->lock); 810 vb->va = va; 811 vb->free = VMAP_BBMAP_BITS; 812 vb->dirty = 0; 813 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 814 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 815 INIT_LIST_HEAD(&vb->free_list); 816 817 vb_idx = addr_to_vb_idx(va->va_start); 818 spin_lock(&vmap_block_tree_lock); 819 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 820 spin_unlock(&vmap_block_tree_lock); 821 BUG_ON(err); 822 radix_tree_preload_end(); 823 824 vbq = &get_cpu_var(vmap_block_queue); 825 vb->vbq = vbq; 826 spin_lock(&vbq->lock); 827 list_add_rcu(&vb->free_list, &vbq->free); 828 spin_unlock(&vbq->lock); 829 put_cpu_var(vmap_block_queue); 830 831 return vb; 832 } 833 834 static void free_vmap_block(struct vmap_block *vb) 835 { 836 struct vmap_block *tmp; 837 unsigned long vb_idx; 838 839 vb_idx = addr_to_vb_idx(vb->va->va_start); 840 spin_lock(&vmap_block_tree_lock); 841 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 842 spin_unlock(&vmap_block_tree_lock); 843 BUG_ON(tmp != vb); 844 845 free_vmap_area_noflush(vb->va); 846 kfree_rcu(vb, rcu_head); 847 } 848 849 static void purge_fragmented_blocks(int cpu) 850 { 851 LIST_HEAD(purge); 852 struct vmap_block *vb; 853 struct vmap_block *n_vb; 854 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 855 856 rcu_read_lock(); 857 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 858 859 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 860 continue; 861 862 spin_lock(&vb->lock); 863 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 864 vb->free = 0; /* prevent further allocs after releasing lock */ 865 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 866 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 867 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 868 spin_lock(&vbq->lock); 869 list_del_rcu(&vb->free_list); 870 spin_unlock(&vbq->lock); 871 spin_unlock(&vb->lock); 872 list_add_tail(&vb->purge, &purge); 873 } else 874 spin_unlock(&vb->lock); 875 } 876 rcu_read_unlock(); 877 878 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 879 list_del(&vb->purge); 880 free_vmap_block(vb); 881 } 882 } 883 884 static void purge_fragmented_blocks_thiscpu(void) 885 { 886 purge_fragmented_blocks(smp_processor_id()); 887 } 888 889 static void purge_fragmented_blocks_allcpus(void) 890 { 891 int cpu; 892 893 for_each_possible_cpu(cpu) 894 purge_fragmented_blocks(cpu); 895 } 896 897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 898 { 899 struct vmap_block_queue *vbq; 900 struct vmap_block *vb; 901 unsigned long addr = 0; 902 unsigned int order; 903 int purge = 0; 904 905 BUG_ON(size & ~PAGE_MASK); 906 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 907 if (WARN_ON(size == 0)) { 908 /* 909 * Allocating 0 bytes isn't what caller wants since 910 * get_order(0) returns funny result. Just warn and terminate 911 * early. 912 */ 913 return NULL; 914 } 915 order = get_order(size); 916 917 again: 918 rcu_read_lock(); 919 vbq = &get_cpu_var(vmap_block_queue); 920 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 921 int i; 922 923 spin_lock(&vb->lock); 924 if (vb->free < 1UL << order) 925 goto next; 926 927 i = bitmap_find_free_region(vb->alloc_map, 928 VMAP_BBMAP_BITS, order); 929 930 if (i < 0) { 931 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 932 /* fragmented and no outstanding allocations */ 933 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 934 purge = 1; 935 } 936 goto next; 937 } 938 addr = vb->va->va_start + (i << PAGE_SHIFT); 939 BUG_ON(addr_to_vb_idx(addr) != 940 addr_to_vb_idx(vb->va->va_start)); 941 vb->free -= 1UL << order; 942 if (vb->free == 0) { 943 spin_lock(&vbq->lock); 944 list_del_rcu(&vb->free_list); 945 spin_unlock(&vbq->lock); 946 } 947 spin_unlock(&vb->lock); 948 break; 949 next: 950 spin_unlock(&vb->lock); 951 } 952 953 if (purge) 954 purge_fragmented_blocks_thiscpu(); 955 956 put_cpu_var(vmap_block_queue); 957 rcu_read_unlock(); 958 959 if (!addr) { 960 vb = new_vmap_block(gfp_mask); 961 if (IS_ERR(vb)) 962 return vb; 963 goto again; 964 } 965 966 return (void *)addr; 967 } 968 969 static void vb_free(const void *addr, unsigned long size) 970 { 971 unsigned long offset; 972 unsigned long vb_idx; 973 unsigned int order; 974 struct vmap_block *vb; 975 976 BUG_ON(size & ~PAGE_MASK); 977 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 978 979 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 980 981 order = get_order(size); 982 983 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 984 985 vb_idx = addr_to_vb_idx((unsigned long)addr); 986 rcu_read_lock(); 987 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 988 rcu_read_unlock(); 989 BUG_ON(!vb); 990 991 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 992 993 spin_lock(&vb->lock); 994 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 995 996 vb->dirty += 1UL << order; 997 if (vb->dirty == VMAP_BBMAP_BITS) { 998 BUG_ON(vb->free); 999 spin_unlock(&vb->lock); 1000 free_vmap_block(vb); 1001 } else 1002 spin_unlock(&vb->lock); 1003 } 1004 1005 /** 1006 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1007 * 1008 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1009 * to amortize TLB flushing overheads. What this means is that any page you 1010 * have now, may, in a former life, have been mapped into kernel virtual 1011 * address by the vmap layer and so there might be some CPUs with TLB entries 1012 * still referencing that page (additional to the regular 1:1 kernel mapping). 1013 * 1014 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1015 * be sure that none of the pages we have control over will have any aliases 1016 * from the vmap layer. 1017 */ 1018 void vm_unmap_aliases(void) 1019 { 1020 unsigned long start = ULONG_MAX, end = 0; 1021 int cpu; 1022 int flush = 0; 1023 1024 if (unlikely(!vmap_initialized)) 1025 return; 1026 1027 for_each_possible_cpu(cpu) { 1028 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1029 struct vmap_block *vb; 1030 1031 rcu_read_lock(); 1032 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1033 int i; 1034 1035 spin_lock(&vb->lock); 1036 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1037 while (i < VMAP_BBMAP_BITS) { 1038 unsigned long s, e; 1039 int j; 1040 j = find_next_zero_bit(vb->dirty_map, 1041 VMAP_BBMAP_BITS, i); 1042 1043 s = vb->va->va_start + (i << PAGE_SHIFT); 1044 e = vb->va->va_start + (j << PAGE_SHIFT); 1045 flush = 1; 1046 1047 if (s < start) 1048 start = s; 1049 if (e > end) 1050 end = e; 1051 1052 i = j; 1053 i = find_next_bit(vb->dirty_map, 1054 VMAP_BBMAP_BITS, i); 1055 } 1056 spin_unlock(&vb->lock); 1057 } 1058 rcu_read_unlock(); 1059 } 1060 1061 __purge_vmap_area_lazy(&start, &end, 1, flush); 1062 } 1063 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1064 1065 /** 1066 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1067 * @mem: the pointer returned by vm_map_ram 1068 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1069 */ 1070 void vm_unmap_ram(const void *mem, unsigned int count) 1071 { 1072 unsigned long size = count << PAGE_SHIFT; 1073 unsigned long addr = (unsigned long)mem; 1074 1075 BUG_ON(!addr); 1076 BUG_ON(addr < VMALLOC_START); 1077 BUG_ON(addr > VMALLOC_END); 1078 BUG_ON(addr & (PAGE_SIZE-1)); 1079 1080 debug_check_no_locks_freed(mem, size); 1081 vmap_debug_free_range(addr, addr+size); 1082 1083 if (likely(count <= VMAP_MAX_ALLOC)) 1084 vb_free(mem, size); 1085 else 1086 free_unmap_vmap_area_addr(addr); 1087 } 1088 EXPORT_SYMBOL(vm_unmap_ram); 1089 1090 /** 1091 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1092 * @pages: an array of pointers to the pages to be mapped 1093 * @count: number of pages 1094 * @node: prefer to allocate data structures on this node 1095 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1096 * 1097 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1098 */ 1099 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1100 { 1101 unsigned long size = count << PAGE_SHIFT; 1102 unsigned long addr; 1103 void *mem; 1104 1105 if (likely(count <= VMAP_MAX_ALLOC)) { 1106 mem = vb_alloc(size, GFP_KERNEL); 1107 if (IS_ERR(mem)) 1108 return NULL; 1109 addr = (unsigned long)mem; 1110 } else { 1111 struct vmap_area *va; 1112 va = alloc_vmap_area(size, PAGE_SIZE, 1113 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1114 if (IS_ERR(va)) 1115 return NULL; 1116 1117 addr = va->va_start; 1118 mem = (void *)addr; 1119 } 1120 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1121 vm_unmap_ram(mem, count); 1122 return NULL; 1123 } 1124 return mem; 1125 } 1126 EXPORT_SYMBOL(vm_map_ram); 1127 1128 /** 1129 * vm_area_add_early - add vmap area early during boot 1130 * @vm: vm_struct to add 1131 * 1132 * This function is used to add fixed kernel vm area to vmlist before 1133 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1134 * should contain proper values and the other fields should be zero. 1135 * 1136 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1137 */ 1138 void __init vm_area_add_early(struct vm_struct *vm) 1139 { 1140 struct vm_struct *tmp, **p; 1141 1142 BUG_ON(vmap_initialized); 1143 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1144 if (tmp->addr >= vm->addr) { 1145 BUG_ON(tmp->addr < vm->addr + vm->size); 1146 break; 1147 } else 1148 BUG_ON(tmp->addr + tmp->size > vm->addr); 1149 } 1150 vm->next = *p; 1151 *p = vm; 1152 } 1153 1154 /** 1155 * vm_area_register_early - register vmap area early during boot 1156 * @vm: vm_struct to register 1157 * @align: requested alignment 1158 * 1159 * This function is used to register kernel vm area before 1160 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1161 * proper values on entry and other fields should be zero. On return, 1162 * vm->addr contains the allocated address. 1163 * 1164 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1165 */ 1166 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1167 { 1168 static size_t vm_init_off __initdata; 1169 unsigned long addr; 1170 1171 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1172 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1173 1174 vm->addr = (void *)addr; 1175 1176 vm_area_add_early(vm); 1177 } 1178 1179 void __init vmalloc_init(void) 1180 { 1181 struct vmap_area *va; 1182 struct vm_struct *tmp; 1183 int i; 1184 1185 for_each_possible_cpu(i) { 1186 struct vmap_block_queue *vbq; 1187 1188 vbq = &per_cpu(vmap_block_queue, i); 1189 spin_lock_init(&vbq->lock); 1190 INIT_LIST_HEAD(&vbq->free); 1191 } 1192 1193 /* Import existing vmlist entries. */ 1194 for (tmp = vmlist; tmp; tmp = tmp->next) { 1195 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1196 va->flags = VM_VM_AREA; 1197 va->va_start = (unsigned long)tmp->addr; 1198 va->va_end = va->va_start + tmp->size; 1199 va->vm = tmp; 1200 __insert_vmap_area(va); 1201 } 1202 1203 vmap_area_pcpu_hole = VMALLOC_END; 1204 1205 vmap_initialized = true; 1206 } 1207 1208 /** 1209 * map_kernel_range_noflush - map kernel VM area with the specified pages 1210 * @addr: start of the VM area to map 1211 * @size: size of the VM area to map 1212 * @prot: page protection flags to use 1213 * @pages: pages to map 1214 * 1215 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1216 * specify should have been allocated using get_vm_area() and its 1217 * friends. 1218 * 1219 * NOTE: 1220 * This function does NOT do any cache flushing. The caller is 1221 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1222 * before calling this function. 1223 * 1224 * RETURNS: 1225 * The number of pages mapped on success, -errno on failure. 1226 */ 1227 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1228 pgprot_t prot, struct page **pages) 1229 { 1230 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1231 } 1232 1233 /** 1234 * unmap_kernel_range_noflush - unmap kernel VM area 1235 * @addr: start of the VM area to unmap 1236 * @size: size of the VM area to unmap 1237 * 1238 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1239 * specify should have been allocated using get_vm_area() and its 1240 * friends. 1241 * 1242 * NOTE: 1243 * This function does NOT do any cache flushing. The caller is 1244 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1245 * before calling this function and flush_tlb_kernel_range() after. 1246 */ 1247 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1248 { 1249 vunmap_page_range(addr, addr + size); 1250 } 1251 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1252 1253 /** 1254 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1255 * @addr: start of the VM area to unmap 1256 * @size: size of the VM area to unmap 1257 * 1258 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1259 * the unmapping and tlb after. 1260 */ 1261 void unmap_kernel_range(unsigned long addr, unsigned long size) 1262 { 1263 unsigned long end = addr + size; 1264 1265 flush_cache_vunmap(addr, end); 1266 vunmap_page_range(addr, end); 1267 flush_tlb_kernel_range(addr, end); 1268 } 1269 1270 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1271 { 1272 unsigned long addr = (unsigned long)area->addr; 1273 unsigned long end = addr + area->size - PAGE_SIZE; 1274 int err; 1275 1276 err = vmap_page_range(addr, end, prot, *pages); 1277 if (err > 0) { 1278 *pages += err; 1279 err = 0; 1280 } 1281 1282 return err; 1283 } 1284 EXPORT_SYMBOL_GPL(map_vm_area); 1285 1286 /*** Old vmalloc interfaces ***/ 1287 DEFINE_RWLOCK(vmlist_lock); 1288 struct vm_struct *vmlist; 1289 1290 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1291 unsigned long flags, const void *caller) 1292 { 1293 vm->flags = flags; 1294 vm->addr = (void *)va->va_start; 1295 vm->size = va->va_end - va->va_start; 1296 vm->caller = caller; 1297 va->vm = vm; 1298 va->flags |= VM_VM_AREA; 1299 } 1300 1301 static void insert_vmalloc_vmlist(struct vm_struct *vm) 1302 { 1303 struct vm_struct *tmp, **p; 1304 1305 vm->flags &= ~VM_UNLIST; 1306 write_lock(&vmlist_lock); 1307 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1308 if (tmp->addr >= vm->addr) 1309 break; 1310 } 1311 vm->next = *p; 1312 *p = vm; 1313 write_unlock(&vmlist_lock); 1314 } 1315 1316 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1317 unsigned long flags, const void *caller) 1318 { 1319 setup_vmalloc_vm(vm, va, flags, caller); 1320 insert_vmalloc_vmlist(vm); 1321 } 1322 1323 static struct vm_struct *__get_vm_area_node(unsigned long size, 1324 unsigned long align, unsigned long flags, unsigned long start, 1325 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1326 { 1327 struct vmap_area *va; 1328 struct vm_struct *area; 1329 1330 BUG_ON(in_interrupt()); 1331 if (flags & VM_IOREMAP) { 1332 int bit = fls(size); 1333 1334 if (bit > IOREMAP_MAX_ORDER) 1335 bit = IOREMAP_MAX_ORDER; 1336 else if (bit < PAGE_SHIFT) 1337 bit = PAGE_SHIFT; 1338 1339 align = 1ul << bit; 1340 } 1341 1342 size = PAGE_ALIGN(size); 1343 if (unlikely(!size)) 1344 return NULL; 1345 1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1347 if (unlikely(!area)) 1348 return NULL; 1349 1350 /* 1351 * We always allocate a guard page. 1352 */ 1353 size += PAGE_SIZE; 1354 1355 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1356 if (IS_ERR(va)) { 1357 kfree(area); 1358 return NULL; 1359 } 1360 1361 /* 1362 * When this function is called from __vmalloc_node_range, 1363 * we do not add vm_struct to vmlist here to avoid 1364 * accessing uninitialized members of vm_struct such as 1365 * pages and nr_pages fields. They will be set later. 1366 * To distinguish it from others, we use a VM_UNLIST flag. 1367 */ 1368 if (flags & VM_UNLIST) 1369 setup_vmalloc_vm(area, va, flags, caller); 1370 else 1371 insert_vmalloc_vm(area, va, flags, caller); 1372 1373 return area; 1374 } 1375 1376 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1377 unsigned long start, unsigned long end) 1378 { 1379 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1380 __builtin_return_address(0)); 1381 } 1382 EXPORT_SYMBOL_GPL(__get_vm_area); 1383 1384 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1385 unsigned long start, unsigned long end, 1386 const void *caller) 1387 { 1388 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1389 caller); 1390 } 1391 1392 /** 1393 * get_vm_area - reserve a contiguous kernel virtual area 1394 * @size: size of the area 1395 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1396 * 1397 * Search an area of @size in the kernel virtual mapping area, 1398 * and reserved it for out purposes. Returns the area descriptor 1399 * on success or %NULL on failure. 1400 */ 1401 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1402 { 1403 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1404 -1, GFP_KERNEL, __builtin_return_address(0)); 1405 } 1406 1407 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1408 const void *caller) 1409 { 1410 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1411 -1, GFP_KERNEL, caller); 1412 } 1413 1414 /** 1415 * find_vm_area - find a continuous kernel virtual area 1416 * @addr: base address 1417 * 1418 * Search for the kernel VM area starting at @addr, and return it. 1419 * It is up to the caller to do all required locking to keep the returned 1420 * pointer valid. 1421 */ 1422 struct vm_struct *find_vm_area(const void *addr) 1423 { 1424 struct vmap_area *va; 1425 1426 va = find_vmap_area((unsigned long)addr); 1427 if (va && va->flags & VM_VM_AREA) 1428 return va->vm; 1429 1430 return NULL; 1431 } 1432 1433 /** 1434 * remove_vm_area - find and remove a continuous kernel virtual area 1435 * @addr: base address 1436 * 1437 * Search for the kernel VM area starting at @addr, and remove it. 1438 * This function returns the found VM area, but using it is NOT safe 1439 * on SMP machines, except for its size or flags. 1440 */ 1441 struct vm_struct *remove_vm_area(const void *addr) 1442 { 1443 struct vmap_area *va; 1444 1445 va = find_vmap_area((unsigned long)addr); 1446 if (va && va->flags & VM_VM_AREA) { 1447 struct vm_struct *vm = va->vm; 1448 1449 if (!(vm->flags & VM_UNLIST)) { 1450 struct vm_struct *tmp, **p; 1451 /* 1452 * remove from list and disallow access to 1453 * this vm_struct before unmap. (address range 1454 * confliction is maintained by vmap.) 1455 */ 1456 write_lock(&vmlist_lock); 1457 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1458 ; 1459 *p = tmp->next; 1460 write_unlock(&vmlist_lock); 1461 } 1462 1463 vmap_debug_free_range(va->va_start, va->va_end); 1464 free_unmap_vmap_area(va); 1465 vm->size -= PAGE_SIZE; 1466 1467 return vm; 1468 } 1469 return NULL; 1470 } 1471 1472 static void __vunmap(const void *addr, int deallocate_pages) 1473 { 1474 struct vm_struct *area; 1475 1476 if (!addr) 1477 return; 1478 1479 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1480 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1481 return; 1482 } 1483 1484 area = remove_vm_area(addr); 1485 if (unlikely(!area)) { 1486 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1487 addr); 1488 return; 1489 } 1490 1491 debug_check_no_locks_freed(addr, area->size); 1492 debug_check_no_obj_freed(addr, area->size); 1493 1494 if (deallocate_pages) { 1495 int i; 1496 1497 for (i = 0; i < area->nr_pages; i++) { 1498 struct page *page = area->pages[i]; 1499 1500 BUG_ON(!page); 1501 __free_page(page); 1502 } 1503 1504 if (area->flags & VM_VPAGES) 1505 vfree(area->pages); 1506 else 1507 kfree(area->pages); 1508 } 1509 1510 kfree(area); 1511 return; 1512 } 1513 1514 /** 1515 * vfree - release memory allocated by vmalloc() 1516 * @addr: memory base address 1517 * 1518 * Free the virtually continuous memory area starting at @addr, as 1519 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1520 * NULL, no operation is performed. 1521 * 1522 * Must not be called in interrupt context. 1523 */ 1524 void vfree(const void *addr) 1525 { 1526 BUG_ON(in_interrupt()); 1527 1528 kmemleak_free(addr); 1529 1530 __vunmap(addr, 1); 1531 } 1532 EXPORT_SYMBOL(vfree); 1533 1534 /** 1535 * vunmap - release virtual mapping obtained by vmap() 1536 * @addr: memory base address 1537 * 1538 * Free the virtually contiguous memory area starting at @addr, 1539 * which was created from the page array passed to vmap(). 1540 * 1541 * Must not be called in interrupt context. 1542 */ 1543 void vunmap(const void *addr) 1544 { 1545 BUG_ON(in_interrupt()); 1546 might_sleep(); 1547 __vunmap(addr, 0); 1548 } 1549 EXPORT_SYMBOL(vunmap); 1550 1551 /** 1552 * vmap - map an array of pages into virtually contiguous space 1553 * @pages: array of page pointers 1554 * @count: number of pages to map 1555 * @flags: vm_area->flags 1556 * @prot: page protection for the mapping 1557 * 1558 * Maps @count pages from @pages into contiguous kernel virtual 1559 * space. 1560 */ 1561 void *vmap(struct page **pages, unsigned int count, 1562 unsigned long flags, pgprot_t prot) 1563 { 1564 struct vm_struct *area; 1565 1566 might_sleep(); 1567 1568 if (count > totalram_pages) 1569 return NULL; 1570 1571 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1572 __builtin_return_address(0)); 1573 if (!area) 1574 return NULL; 1575 1576 if (map_vm_area(area, prot, &pages)) { 1577 vunmap(area->addr); 1578 return NULL; 1579 } 1580 1581 return area->addr; 1582 } 1583 EXPORT_SYMBOL(vmap); 1584 1585 static void *__vmalloc_node(unsigned long size, unsigned long align, 1586 gfp_t gfp_mask, pgprot_t prot, 1587 int node, const void *caller); 1588 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1589 pgprot_t prot, int node, const void *caller) 1590 { 1591 const int order = 0; 1592 struct page **pages; 1593 unsigned int nr_pages, array_size, i; 1594 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1595 1596 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1597 array_size = (nr_pages * sizeof(struct page *)); 1598 1599 area->nr_pages = nr_pages; 1600 /* Please note that the recursion is strictly bounded. */ 1601 if (array_size > PAGE_SIZE) { 1602 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1603 PAGE_KERNEL, node, caller); 1604 area->flags |= VM_VPAGES; 1605 } else { 1606 pages = kmalloc_node(array_size, nested_gfp, node); 1607 } 1608 area->pages = pages; 1609 area->caller = caller; 1610 if (!area->pages) { 1611 remove_vm_area(area->addr); 1612 kfree(area); 1613 return NULL; 1614 } 1615 1616 for (i = 0; i < area->nr_pages; i++) { 1617 struct page *page; 1618 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; 1619 1620 if (node < 0) 1621 page = alloc_page(tmp_mask); 1622 else 1623 page = alloc_pages_node(node, tmp_mask, order); 1624 1625 if (unlikely(!page)) { 1626 /* Successfully allocated i pages, free them in __vunmap() */ 1627 area->nr_pages = i; 1628 goto fail; 1629 } 1630 area->pages[i] = page; 1631 } 1632 1633 if (map_vm_area(area, prot, &pages)) 1634 goto fail; 1635 return area->addr; 1636 1637 fail: 1638 warn_alloc_failed(gfp_mask, order, 1639 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1640 (area->nr_pages*PAGE_SIZE), area->size); 1641 vfree(area->addr); 1642 return NULL; 1643 } 1644 1645 /** 1646 * __vmalloc_node_range - allocate virtually contiguous memory 1647 * @size: allocation size 1648 * @align: desired alignment 1649 * @start: vm area range start 1650 * @end: vm area range end 1651 * @gfp_mask: flags for the page level allocator 1652 * @prot: protection mask for the allocated pages 1653 * @node: node to use for allocation or -1 1654 * @caller: caller's return address 1655 * 1656 * Allocate enough pages to cover @size from the page level 1657 * allocator with @gfp_mask flags. Map them into contiguous 1658 * kernel virtual space, using a pagetable protection of @prot. 1659 */ 1660 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1661 unsigned long start, unsigned long end, gfp_t gfp_mask, 1662 pgprot_t prot, int node, const void *caller) 1663 { 1664 struct vm_struct *area; 1665 void *addr; 1666 unsigned long real_size = size; 1667 1668 size = PAGE_ALIGN(size); 1669 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1670 goto fail; 1671 1672 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, 1673 start, end, node, gfp_mask, caller); 1674 if (!area) 1675 goto fail; 1676 1677 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1678 if (!addr) 1679 return NULL; 1680 1681 /* 1682 * In this function, newly allocated vm_struct is not added 1683 * to vmlist at __get_vm_area_node(). so, it is added here. 1684 */ 1685 insert_vmalloc_vmlist(area); 1686 1687 /* 1688 * A ref_count = 3 is needed because the vm_struct and vmap_area 1689 * structures allocated in the __get_vm_area_node() function contain 1690 * references to the virtual address of the vmalloc'ed block. 1691 */ 1692 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1693 1694 return addr; 1695 1696 fail: 1697 warn_alloc_failed(gfp_mask, 0, 1698 "vmalloc: allocation failure: %lu bytes\n", 1699 real_size); 1700 return NULL; 1701 } 1702 1703 /** 1704 * __vmalloc_node - allocate virtually contiguous memory 1705 * @size: allocation size 1706 * @align: desired alignment 1707 * @gfp_mask: flags for the page level allocator 1708 * @prot: protection mask for the allocated pages 1709 * @node: node to use for allocation or -1 1710 * @caller: caller's return address 1711 * 1712 * Allocate enough pages to cover @size from the page level 1713 * allocator with @gfp_mask flags. Map them into contiguous 1714 * kernel virtual space, using a pagetable protection of @prot. 1715 */ 1716 static void *__vmalloc_node(unsigned long size, unsigned long align, 1717 gfp_t gfp_mask, pgprot_t prot, 1718 int node, const void *caller) 1719 { 1720 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1721 gfp_mask, prot, node, caller); 1722 } 1723 1724 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1725 { 1726 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1727 __builtin_return_address(0)); 1728 } 1729 EXPORT_SYMBOL(__vmalloc); 1730 1731 static inline void *__vmalloc_node_flags(unsigned long size, 1732 int node, gfp_t flags) 1733 { 1734 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1735 node, __builtin_return_address(0)); 1736 } 1737 1738 /** 1739 * vmalloc - allocate virtually contiguous memory 1740 * @size: allocation size 1741 * Allocate enough pages to cover @size from the page level 1742 * allocator and map them into contiguous kernel virtual space. 1743 * 1744 * For tight control over page level allocator and protection flags 1745 * use __vmalloc() instead. 1746 */ 1747 void *vmalloc(unsigned long size) 1748 { 1749 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1750 } 1751 EXPORT_SYMBOL(vmalloc); 1752 1753 /** 1754 * vzalloc - allocate virtually contiguous memory with zero fill 1755 * @size: allocation size 1756 * Allocate enough pages to cover @size from the page level 1757 * allocator and map them into contiguous kernel virtual space. 1758 * The memory allocated is set to zero. 1759 * 1760 * For tight control over page level allocator and protection flags 1761 * use __vmalloc() instead. 1762 */ 1763 void *vzalloc(unsigned long size) 1764 { 1765 return __vmalloc_node_flags(size, -1, 1766 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1767 } 1768 EXPORT_SYMBOL(vzalloc); 1769 1770 /** 1771 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1772 * @size: allocation size 1773 * 1774 * The resulting memory area is zeroed so it can be mapped to userspace 1775 * without leaking data. 1776 */ 1777 void *vmalloc_user(unsigned long size) 1778 { 1779 struct vm_struct *area; 1780 void *ret; 1781 1782 ret = __vmalloc_node(size, SHMLBA, 1783 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1784 PAGE_KERNEL, -1, __builtin_return_address(0)); 1785 if (ret) { 1786 area = find_vm_area(ret); 1787 area->flags |= VM_USERMAP; 1788 } 1789 return ret; 1790 } 1791 EXPORT_SYMBOL(vmalloc_user); 1792 1793 /** 1794 * vmalloc_node - allocate memory on a specific node 1795 * @size: allocation size 1796 * @node: numa node 1797 * 1798 * Allocate enough pages to cover @size from the page level 1799 * allocator and map them into contiguous kernel virtual space. 1800 * 1801 * For tight control over page level allocator and protection flags 1802 * use __vmalloc() instead. 1803 */ 1804 void *vmalloc_node(unsigned long size, int node) 1805 { 1806 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1807 node, __builtin_return_address(0)); 1808 } 1809 EXPORT_SYMBOL(vmalloc_node); 1810 1811 /** 1812 * vzalloc_node - allocate memory on a specific node with zero fill 1813 * @size: allocation size 1814 * @node: numa node 1815 * 1816 * Allocate enough pages to cover @size from the page level 1817 * allocator and map them into contiguous kernel virtual space. 1818 * The memory allocated is set to zero. 1819 * 1820 * For tight control over page level allocator and protection flags 1821 * use __vmalloc_node() instead. 1822 */ 1823 void *vzalloc_node(unsigned long size, int node) 1824 { 1825 return __vmalloc_node_flags(size, node, 1826 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1827 } 1828 EXPORT_SYMBOL(vzalloc_node); 1829 1830 #ifndef PAGE_KERNEL_EXEC 1831 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1832 #endif 1833 1834 /** 1835 * vmalloc_exec - allocate virtually contiguous, executable memory 1836 * @size: allocation size 1837 * 1838 * Kernel-internal function to allocate enough pages to cover @size 1839 * the page level allocator and map them into contiguous and 1840 * executable kernel virtual space. 1841 * 1842 * For tight control over page level allocator and protection flags 1843 * use __vmalloc() instead. 1844 */ 1845 1846 void *vmalloc_exec(unsigned long size) 1847 { 1848 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1849 -1, __builtin_return_address(0)); 1850 } 1851 1852 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1853 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1854 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1855 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1856 #else 1857 #define GFP_VMALLOC32 GFP_KERNEL 1858 #endif 1859 1860 /** 1861 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1862 * @size: allocation size 1863 * 1864 * Allocate enough 32bit PA addressable pages to cover @size from the 1865 * page level allocator and map them into contiguous kernel virtual space. 1866 */ 1867 void *vmalloc_32(unsigned long size) 1868 { 1869 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1870 -1, __builtin_return_address(0)); 1871 } 1872 EXPORT_SYMBOL(vmalloc_32); 1873 1874 /** 1875 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1876 * @size: allocation size 1877 * 1878 * The resulting memory area is 32bit addressable and zeroed so it can be 1879 * mapped to userspace without leaking data. 1880 */ 1881 void *vmalloc_32_user(unsigned long size) 1882 { 1883 struct vm_struct *area; 1884 void *ret; 1885 1886 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1887 -1, __builtin_return_address(0)); 1888 if (ret) { 1889 area = find_vm_area(ret); 1890 area->flags |= VM_USERMAP; 1891 } 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(vmalloc_32_user); 1895 1896 /* 1897 * small helper routine , copy contents to buf from addr. 1898 * If the page is not present, fill zero. 1899 */ 1900 1901 static int aligned_vread(char *buf, char *addr, unsigned long count) 1902 { 1903 struct page *p; 1904 int copied = 0; 1905 1906 while (count) { 1907 unsigned long offset, length; 1908 1909 offset = (unsigned long)addr & ~PAGE_MASK; 1910 length = PAGE_SIZE - offset; 1911 if (length > count) 1912 length = count; 1913 p = vmalloc_to_page(addr); 1914 /* 1915 * To do safe access to this _mapped_ area, we need 1916 * lock. But adding lock here means that we need to add 1917 * overhead of vmalloc()/vfree() calles for this _debug_ 1918 * interface, rarely used. Instead of that, we'll use 1919 * kmap() and get small overhead in this access function. 1920 */ 1921 if (p) { 1922 /* 1923 * we can expect USER0 is not used (see vread/vwrite's 1924 * function description) 1925 */ 1926 void *map = kmap_atomic(p); 1927 memcpy(buf, map + offset, length); 1928 kunmap_atomic(map); 1929 } else 1930 memset(buf, 0, length); 1931 1932 addr += length; 1933 buf += length; 1934 copied += length; 1935 count -= length; 1936 } 1937 return copied; 1938 } 1939 1940 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1941 { 1942 struct page *p; 1943 int copied = 0; 1944 1945 while (count) { 1946 unsigned long offset, length; 1947 1948 offset = (unsigned long)addr & ~PAGE_MASK; 1949 length = PAGE_SIZE - offset; 1950 if (length > count) 1951 length = count; 1952 p = vmalloc_to_page(addr); 1953 /* 1954 * To do safe access to this _mapped_ area, we need 1955 * lock. But adding lock here means that we need to add 1956 * overhead of vmalloc()/vfree() calles for this _debug_ 1957 * interface, rarely used. Instead of that, we'll use 1958 * kmap() and get small overhead in this access function. 1959 */ 1960 if (p) { 1961 /* 1962 * we can expect USER0 is not used (see vread/vwrite's 1963 * function description) 1964 */ 1965 void *map = kmap_atomic(p); 1966 memcpy(map + offset, buf, length); 1967 kunmap_atomic(map); 1968 } 1969 addr += length; 1970 buf += length; 1971 copied += length; 1972 count -= length; 1973 } 1974 return copied; 1975 } 1976 1977 /** 1978 * vread() - read vmalloc area in a safe way. 1979 * @buf: buffer for reading data 1980 * @addr: vm address. 1981 * @count: number of bytes to be read. 1982 * 1983 * Returns # of bytes which addr and buf should be increased. 1984 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1985 * includes any intersect with alive vmalloc area. 1986 * 1987 * This function checks that addr is a valid vmalloc'ed area, and 1988 * copy data from that area to a given buffer. If the given memory range 1989 * of [addr...addr+count) includes some valid address, data is copied to 1990 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1991 * IOREMAP area is treated as memory hole and no copy is done. 1992 * 1993 * If [addr...addr+count) doesn't includes any intersects with alive 1994 * vm_struct area, returns 0. @buf should be kernel's buffer. 1995 * 1996 * Note: In usual ops, vread() is never necessary because the caller 1997 * should know vmalloc() area is valid and can use memcpy(). 1998 * This is for routines which have to access vmalloc area without 1999 * any informaion, as /dev/kmem. 2000 * 2001 */ 2002 2003 long vread(char *buf, char *addr, unsigned long count) 2004 { 2005 struct vm_struct *tmp; 2006 char *vaddr, *buf_start = buf; 2007 unsigned long buflen = count; 2008 unsigned long n; 2009 2010 /* Don't allow overflow */ 2011 if ((unsigned long) addr + count < count) 2012 count = -(unsigned long) addr; 2013 2014 read_lock(&vmlist_lock); 2015 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2016 vaddr = (char *) tmp->addr; 2017 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2018 continue; 2019 while (addr < vaddr) { 2020 if (count == 0) 2021 goto finished; 2022 *buf = '\0'; 2023 buf++; 2024 addr++; 2025 count--; 2026 } 2027 n = vaddr + tmp->size - PAGE_SIZE - addr; 2028 if (n > count) 2029 n = count; 2030 if (!(tmp->flags & VM_IOREMAP)) 2031 aligned_vread(buf, addr, n); 2032 else /* IOREMAP area is treated as memory hole */ 2033 memset(buf, 0, n); 2034 buf += n; 2035 addr += n; 2036 count -= n; 2037 } 2038 finished: 2039 read_unlock(&vmlist_lock); 2040 2041 if (buf == buf_start) 2042 return 0; 2043 /* zero-fill memory holes */ 2044 if (buf != buf_start + buflen) 2045 memset(buf, 0, buflen - (buf - buf_start)); 2046 2047 return buflen; 2048 } 2049 2050 /** 2051 * vwrite() - write vmalloc area in a safe way. 2052 * @buf: buffer for source data 2053 * @addr: vm address. 2054 * @count: number of bytes to be read. 2055 * 2056 * Returns # of bytes which addr and buf should be incresed. 2057 * (same number to @count). 2058 * If [addr...addr+count) doesn't includes any intersect with valid 2059 * vmalloc area, returns 0. 2060 * 2061 * This function checks that addr is a valid vmalloc'ed area, and 2062 * copy data from a buffer to the given addr. If specified range of 2063 * [addr...addr+count) includes some valid address, data is copied from 2064 * proper area of @buf. If there are memory holes, no copy to hole. 2065 * IOREMAP area is treated as memory hole and no copy is done. 2066 * 2067 * If [addr...addr+count) doesn't includes any intersects with alive 2068 * vm_struct area, returns 0. @buf should be kernel's buffer. 2069 * 2070 * Note: In usual ops, vwrite() is never necessary because the caller 2071 * should know vmalloc() area is valid and can use memcpy(). 2072 * This is for routines which have to access vmalloc area without 2073 * any informaion, as /dev/kmem. 2074 */ 2075 2076 long vwrite(char *buf, char *addr, unsigned long count) 2077 { 2078 struct vm_struct *tmp; 2079 char *vaddr; 2080 unsigned long n, buflen; 2081 int copied = 0; 2082 2083 /* Don't allow overflow */ 2084 if ((unsigned long) addr + count < count) 2085 count = -(unsigned long) addr; 2086 buflen = count; 2087 2088 read_lock(&vmlist_lock); 2089 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2090 vaddr = (char *) tmp->addr; 2091 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2092 continue; 2093 while (addr < vaddr) { 2094 if (count == 0) 2095 goto finished; 2096 buf++; 2097 addr++; 2098 count--; 2099 } 2100 n = vaddr + tmp->size - PAGE_SIZE - addr; 2101 if (n > count) 2102 n = count; 2103 if (!(tmp->flags & VM_IOREMAP)) { 2104 aligned_vwrite(buf, addr, n); 2105 copied++; 2106 } 2107 buf += n; 2108 addr += n; 2109 count -= n; 2110 } 2111 finished: 2112 read_unlock(&vmlist_lock); 2113 if (!copied) 2114 return 0; 2115 return buflen; 2116 } 2117 2118 /** 2119 * remap_vmalloc_range - map vmalloc pages to userspace 2120 * @vma: vma to cover (map full range of vma) 2121 * @addr: vmalloc memory 2122 * @pgoff: number of pages into addr before first page to map 2123 * 2124 * Returns: 0 for success, -Exxx on failure 2125 * 2126 * This function checks that addr is a valid vmalloc'ed area, and 2127 * that it is big enough to cover the vma. Will return failure if 2128 * that criteria isn't met. 2129 * 2130 * Similar to remap_pfn_range() (see mm/memory.c) 2131 */ 2132 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2133 unsigned long pgoff) 2134 { 2135 struct vm_struct *area; 2136 unsigned long uaddr = vma->vm_start; 2137 unsigned long usize = vma->vm_end - vma->vm_start; 2138 2139 if ((PAGE_SIZE-1) & (unsigned long)addr) 2140 return -EINVAL; 2141 2142 area = find_vm_area(addr); 2143 if (!area) 2144 return -EINVAL; 2145 2146 if (!(area->flags & VM_USERMAP)) 2147 return -EINVAL; 2148 2149 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2150 return -EINVAL; 2151 2152 addr += pgoff << PAGE_SHIFT; 2153 do { 2154 struct page *page = vmalloc_to_page(addr); 2155 int ret; 2156 2157 ret = vm_insert_page(vma, uaddr, page); 2158 if (ret) 2159 return ret; 2160 2161 uaddr += PAGE_SIZE; 2162 addr += PAGE_SIZE; 2163 usize -= PAGE_SIZE; 2164 } while (usize > 0); 2165 2166 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2167 2168 return 0; 2169 } 2170 EXPORT_SYMBOL(remap_vmalloc_range); 2171 2172 /* 2173 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2174 * have one. 2175 */ 2176 void __attribute__((weak)) vmalloc_sync_all(void) 2177 { 2178 } 2179 2180 2181 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2182 { 2183 pte_t ***p = data; 2184 2185 if (p) { 2186 *(*p) = pte; 2187 (*p)++; 2188 } 2189 return 0; 2190 } 2191 2192 /** 2193 * alloc_vm_area - allocate a range of kernel address space 2194 * @size: size of the area 2195 * @ptes: returns the PTEs for the address space 2196 * 2197 * Returns: NULL on failure, vm_struct on success 2198 * 2199 * This function reserves a range of kernel address space, and 2200 * allocates pagetables to map that range. No actual mappings 2201 * are created. 2202 * 2203 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2204 * allocated for the VM area are returned. 2205 */ 2206 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2207 { 2208 struct vm_struct *area; 2209 2210 area = get_vm_area_caller(size, VM_IOREMAP, 2211 __builtin_return_address(0)); 2212 if (area == NULL) 2213 return NULL; 2214 2215 /* 2216 * This ensures that page tables are constructed for this region 2217 * of kernel virtual address space and mapped into init_mm. 2218 */ 2219 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2220 size, f, ptes ? &ptes : NULL)) { 2221 free_vm_area(area); 2222 return NULL; 2223 } 2224 2225 return area; 2226 } 2227 EXPORT_SYMBOL_GPL(alloc_vm_area); 2228 2229 void free_vm_area(struct vm_struct *area) 2230 { 2231 struct vm_struct *ret; 2232 ret = remove_vm_area(area->addr); 2233 BUG_ON(ret != area); 2234 kfree(area); 2235 } 2236 EXPORT_SYMBOL_GPL(free_vm_area); 2237 2238 #ifdef CONFIG_SMP 2239 static struct vmap_area *node_to_va(struct rb_node *n) 2240 { 2241 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2242 } 2243 2244 /** 2245 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2246 * @end: target address 2247 * @pnext: out arg for the next vmap_area 2248 * @pprev: out arg for the previous vmap_area 2249 * 2250 * Returns: %true if either or both of next and prev are found, 2251 * %false if no vmap_area exists 2252 * 2253 * Find vmap_areas end addresses of which enclose @end. ie. if not 2254 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2255 */ 2256 static bool pvm_find_next_prev(unsigned long end, 2257 struct vmap_area **pnext, 2258 struct vmap_area **pprev) 2259 { 2260 struct rb_node *n = vmap_area_root.rb_node; 2261 struct vmap_area *va = NULL; 2262 2263 while (n) { 2264 va = rb_entry(n, struct vmap_area, rb_node); 2265 if (end < va->va_end) 2266 n = n->rb_left; 2267 else if (end > va->va_end) 2268 n = n->rb_right; 2269 else 2270 break; 2271 } 2272 2273 if (!va) 2274 return false; 2275 2276 if (va->va_end > end) { 2277 *pnext = va; 2278 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2279 } else { 2280 *pprev = va; 2281 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2282 } 2283 return true; 2284 } 2285 2286 /** 2287 * pvm_determine_end - find the highest aligned address between two vmap_areas 2288 * @pnext: in/out arg for the next vmap_area 2289 * @pprev: in/out arg for the previous vmap_area 2290 * @align: alignment 2291 * 2292 * Returns: determined end address 2293 * 2294 * Find the highest aligned address between *@pnext and *@pprev below 2295 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2296 * down address is between the end addresses of the two vmap_areas. 2297 * 2298 * Please note that the address returned by this function may fall 2299 * inside *@pnext vmap_area. The caller is responsible for checking 2300 * that. 2301 */ 2302 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2303 struct vmap_area **pprev, 2304 unsigned long align) 2305 { 2306 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2307 unsigned long addr; 2308 2309 if (*pnext) 2310 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2311 else 2312 addr = vmalloc_end; 2313 2314 while (*pprev && (*pprev)->va_end > addr) { 2315 *pnext = *pprev; 2316 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2317 } 2318 2319 return addr; 2320 } 2321 2322 /** 2323 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2324 * @offsets: array containing offset of each area 2325 * @sizes: array containing size of each area 2326 * @nr_vms: the number of areas to allocate 2327 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2328 * 2329 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2330 * vm_structs on success, %NULL on failure 2331 * 2332 * Percpu allocator wants to use congruent vm areas so that it can 2333 * maintain the offsets among percpu areas. This function allocates 2334 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2335 * be scattered pretty far, distance between two areas easily going up 2336 * to gigabytes. To avoid interacting with regular vmallocs, these 2337 * areas are allocated from top. 2338 * 2339 * Despite its complicated look, this allocator is rather simple. It 2340 * does everything top-down and scans areas from the end looking for 2341 * matching slot. While scanning, if any of the areas overlaps with 2342 * existing vmap_area, the base address is pulled down to fit the 2343 * area. Scanning is repeated till all the areas fit and then all 2344 * necessary data structres are inserted and the result is returned. 2345 */ 2346 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2347 const size_t *sizes, int nr_vms, 2348 size_t align) 2349 { 2350 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2351 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2352 struct vmap_area **vas, *prev, *next; 2353 struct vm_struct **vms; 2354 int area, area2, last_area, term_area; 2355 unsigned long base, start, end, last_end; 2356 bool purged = false; 2357 2358 /* verify parameters and allocate data structures */ 2359 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2360 for (last_area = 0, area = 0; area < nr_vms; area++) { 2361 start = offsets[area]; 2362 end = start + sizes[area]; 2363 2364 /* is everything aligned properly? */ 2365 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2366 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2367 2368 /* detect the area with the highest address */ 2369 if (start > offsets[last_area]) 2370 last_area = area; 2371 2372 for (area2 = 0; area2 < nr_vms; area2++) { 2373 unsigned long start2 = offsets[area2]; 2374 unsigned long end2 = start2 + sizes[area2]; 2375 2376 if (area2 == area) 2377 continue; 2378 2379 BUG_ON(start2 >= start && start2 < end); 2380 BUG_ON(end2 <= end && end2 > start); 2381 } 2382 } 2383 last_end = offsets[last_area] + sizes[last_area]; 2384 2385 if (vmalloc_end - vmalloc_start < last_end) { 2386 WARN_ON(true); 2387 return NULL; 2388 } 2389 2390 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2391 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2392 if (!vas || !vms) 2393 goto err_free2; 2394 2395 for (area = 0; area < nr_vms; area++) { 2396 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2397 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2398 if (!vas[area] || !vms[area]) 2399 goto err_free; 2400 } 2401 retry: 2402 spin_lock(&vmap_area_lock); 2403 2404 /* start scanning - we scan from the top, begin with the last area */ 2405 area = term_area = last_area; 2406 start = offsets[area]; 2407 end = start + sizes[area]; 2408 2409 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2410 base = vmalloc_end - last_end; 2411 goto found; 2412 } 2413 base = pvm_determine_end(&next, &prev, align) - end; 2414 2415 while (true) { 2416 BUG_ON(next && next->va_end <= base + end); 2417 BUG_ON(prev && prev->va_end > base + end); 2418 2419 /* 2420 * base might have underflowed, add last_end before 2421 * comparing. 2422 */ 2423 if (base + last_end < vmalloc_start + last_end) { 2424 spin_unlock(&vmap_area_lock); 2425 if (!purged) { 2426 purge_vmap_area_lazy(); 2427 purged = true; 2428 goto retry; 2429 } 2430 goto err_free; 2431 } 2432 2433 /* 2434 * If next overlaps, move base downwards so that it's 2435 * right below next and then recheck. 2436 */ 2437 if (next && next->va_start < base + end) { 2438 base = pvm_determine_end(&next, &prev, align) - end; 2439 term_area = area; 2440 continue; 2441 } 2442 2443 /* 2444 * If prev overlaps, shift down next and prev and move 2445 * base so that it's right below new next and then 2446 * recheck. 2447 */ 2448 if (prev && prev->va_end > base + start) { 2449 next = prev; 2450 prev = node_to_va(rb_prev(&next->rb_node)); 2451 base = pvm_determine_end(&next, &prev, align) - end; 2452 term_area = area; 2453 continue; 2454 } 2455 2456 /* 2457 * This area fits, move on to the previous one. If 2458 * the previous one is the terminal one, we're done. 2459 */ 2460 area = (area + nr_vms - 1) % nr_vms; 2461 if (area == term_area) 2462 break; 2463 start = offsets[area]; 2464 end = start + sizes[area]; 2465 pvm_find_next_prev(base + end, &next, &prev); 2466 } 2467 found: 2468 /* we've found a fitting base, insert all va's */ 2469 for (area = 0; area < nr_vms; area++) { 2470 struct vmap_area *va = vas[area]; 2471 2472 va->va_start = base + offsets[area]; 2473 va->va_end = va->va_start + sizes[area]; 2474 __insert_vmap_area(va); 2475 } 2476 2477 vmap_area_pcpu_hole = base + offsets[last_area]; 2478 2479 spin_unlock(&vmap_area_lock); 2480 2481 /* insert all vm's */ 2482 for (area = 0; area < nr_vms; area++) 2483 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2484 pcpu_get_vm_areas); 2485 2486 kfree(vas); 2487 return vms; 2488 2489 err_free: 2490 for (area = 0; area < nr_vms; area++) { 2491 kfree(vas[area]); 2492 kfree(vms[area]); 2493 } 2494 err_free2: 2495 kfree(vas); 2496 kfree(vms); 2497 return NULL; 2498 } 2499 2500 /** 2501 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2502 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2503 * @nr_vms: the number of allocated areas 2504 * 2505 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2506 */ 2507 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2508 { 2509 int i; 2510 2511 for (i = 0; i < nr_vms; i++) 2512 free_vm_area(vms[i]); 2513 kfree(vms); 2514 } 2515 #endif /* CONFIG_SMP */ 2516 2517 #ifdef CONFIG_PROC_FS 2518 static void *s_start(struct seq_file *m, loff_t *pos) 2519 __acquires(&vmlist_lock) 2520 { 2521 loff_t n = *pos; 2522 struct vm_struct *v; 2523 2524 read_lock(&vmlist_lock); 2525 v = vmlist; 2526 while (n > 0 && v) { 2527 n--; 2528 v = v->next; 2529 } 2530 if (!n) 2531 return v; 2532 2533 return NULL; 2534 2535 } 2536 2537 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2538 { 2539 struct vm_struct *v = p; 2540 2541 ++*pos; 2542 return v->next; 2543 } 2544 2545 static void s_stop(struct seq_file *m, void *p) 2546 __releases(&vmlist_lock) 2547 { 2548 read_unlock(&vmlist_lock); 2549 } 2550 2551 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2552 { 2553 if (NUMA_BUILD) { 2554 unsigned int nr, *counters = m->private; 2555 2556 if (!counters) 2557 return; 2558 2559 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2560 2561 for (nr = 0; nr < v->nr_pages; nr++) 2562 counters[page_to_nid(v->pages[nr])]++; 2563 2564 for_each_node_state(nr, N_HIGH_MEMORY) 2565 if (counters[nr]) 2566 seq_printf(m, " N%u=%u", nr, counters[nr]); 2567 } 2568 } 2569 2570 static int s_show(struct seq_file *m, void *p) 2571 { 2572 struct vm_struct *v = p; 2573 2574 seq_printf(m, "0x%pK-0x%pK %7ld", 2575 v->addr, v->addr + v->size, v->size); 2576 2577 if (v->caller) 2578 seq_printf(m, " %pS", v->caller); 2579 2580 if (v->nr_pages) 2581 seq_printf(m, " pages=%d", v->nr_pages); 2582 2583 if (v->phys_addr) 2584 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2585 2586 if (v->flags & VM_IOREMAP) 2587 seq_printf(m, " ioremap"); 2588 2589 if (v->flags & VM_ALLOC) 2590 seq_printf(m, " vmalloc"); 2591 2592 if (v->flags & VM_MAP) 2593 seq_printf(m, " vmap"); 2594 2595 if (v->flags & VM_USERMAP) 2596 seq_printf(m, " user"); 2597 2598 if (v->flags & VM_VPAGES) 2599 seq_printf(m, " vpages"); 2600 2601 show_numa_info(m, v); 2602 seq_putc(m, '\n'); 2603 return 0; 2604 } 2605 2606 static const struct seq_operations vmalloc_op = { 2607 .start = s_start, 2608 .next = s_next, 2609 .stop = s_stop, 2610 .show = s_show, 2611 }; 2612 2613 static int vmalloc_open(struct inode *inode, struct file *file) 2614 { 2615 unsigned int *ptr = NULL; 2616 int ret; 2617 2618 if (NUMA_BUILD) { 2619 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2620 if (ptr == NULL) 2621 return -ENOMEM; 2622 } 2623 ret = seq_open(file, &vmalloc_op); 2624 if (!ret) { 2625 struct seq_file *m = file->private_data; 2626 m->private = ptr; 2627 } else 2628 kfree(ptr); 2629 return ret; 2630 } 2631 2632 static const struct file_operations proc_vmalloc_operations = { 2633 .open = vmalloc_open, 2634 .read = seq_read, 2635 .llseek = seq_lseek, 2636 .release = seq_release_private, 2637 }; 2638 2639 static int __init proc_vmalloc_init(void) 2640 { 2641 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2642 return 0; 2643 } 2644 module_init(proc_vmalloc_init); 2645 #endif 2646 2647