xref: /linux/mm/vmalloc.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
33 
34 /*** Page table manipulation functions ***/
35 
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 {
38 	pte_t *pte;
39 
40 	pte = pte_offset_kernel(pmd, addr);
41 	do {
42 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 	} while (pte++, addr += PAGE_SIZE, addr != end);
45 }
46 
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 {
49 	pmd_t *pmd;
50 	unsigned long next;
51 
52 	pmd = pmd_offset(pud, addr);
53 	do {
54 		next = pmd_addr_end(addr, end);
55 		if (pmd_none_or_clear_bad(pmd))
56 			continue;
57 		vunmap_pte_range(pmd, addr, next);
58 	} while (pmd++, addr = next, addr != end);
59 }
60 
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 {
63 	pud_t *pud;
64 	unsigned long next;
65 
66 	pud = pud_offset(pgd, addr);
67 	do {
68 		next = pud_addr_end(addr, end);
69 		if (pud_none_or_clear_bad(pud))
70 			continue;
71 		vunmap_pmd_range(pud, addr, next);
72 	} while (pud++, addr = next, addr != end);
73 }
74 
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 {
77 	pgd_t *pgd;
78 	unsigned long next;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	do {
83 		next = pgd_addr_end(addr, end);
84 		if (pgd_none_or_clear_bad(pgd))
85 			continue;
86 		vunmap_pud_range(pgd, addr, next);
87 	} while (pgd++, addr = next, addr != end);
88 }
89 
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 {
93 	pte_t *pte;
94 
95 	/*
96 	 * nr is a running index into the array which helps higher level
97 	 * callers keep track of where we're up to.
98 	 */
99 
100 	pte = pte_alloc_kernel(pmd, addr);
101 	if (!pte)
102 		return -ENOMEM;
103 	do {
104 		struct page *page = pages[*nr];
105 
106 		if (WARN_ON(!pte_none(*pte)))
107 			return -EBUSY;
108 		if (WARN_ON(!page))
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*nr)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 /*
151  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152  * will have pfns corresponding to the "pages" array.
153  *
154  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155  */
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 				   pgprot_t prot, struct page **pages)
158 {
159 	pgd_t *pgd;
160 	unsigned long next;
161 	unsigned long addr = start;
162 	int err = 0;
163 	int nr = 0;
164 
165 	BUG_ON(addr >= end);
166 	pgd = pgd_offset_k(addr);
167 	do {
168 		next = pgd_addr_end(addr, end);
169 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 		if (err)
171 			return err;
172 	} while (pgd++, addr = next, addr != end);
173 
174 	return nr;
175 }
176 
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 			   pgprot_t prot, struct page **pages)
179 {
180 	int ret;
181 
182 	ret = vmap_page_range_noflush(start, end, prot, pages);
183 	flush_cache_vmap(start, end);
184 	return ret;
185 }
186 
187 int is_vmalloc_or_module_addr(const void *x)
188 {
189 	/*
190 	 * ARM, x86-64 and sparc64 put modules in a special place,
191 	 * and fall back on vmalloc() if that fails. Others
192 	 * just put it in the vmalloc space.
193 	 */
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 	unsigned long addr = (unsigned long)x;
196 	if (addr >= MODULES_VADDR && addr < MODULES_END)
197 		return 1;
198 #endif
199 	return is_vmalloc_addr(x);
200 }
201 
202 /*
203  * Walk a vmap address to the struct page it maps.
204  */
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
206 {
207 	unsigned long addr = (unsigned long) vmalloc_addr;
208 	struct page *page = NULL;
209 	pgd_t *pgd = pgd_offset_k(addr);
210 
211 	/*
212 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 	 * architectures that do not vmalloc module space
214 	 */
215 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216 
217 	if (!pgd_none(*pgd)) {
218 		pud_t *pud = pud_offset(pgd, addr);
219 		if (!pud_none(*pud)) {
220 			pmd_t *pmd = pmd_offset(pud, addr);
221 			if (!pmd_none(*pmd)) {
222 				pte_t *ptep, pte;
223 
224 				ptep = pte_offset_map(pmd, addr);
225 				pte = *ptep;
226 				if (pte_present(pte))
227 					page = pte_page(pte);
228 				pte_unmap(ptep);
229 			}
230 		}
231 	}
232 	return page;
233 }
234 EXPORT_SYMBOL(vmalloc_to_page);
235 
236 /*
237  * Map a vmalloc()-space virtual address to the physical page frame number.
238  */
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240 {
241 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242 }
243 EXPORT_SYMBOL(vmalloc_to_pfn);
244 
245 
246 /*** Global kva allocator ***/
247 
248 #define VM_LAZY_FREE	0x01
249 #define VM_LAZY_FREEING	0x02
250 #define VM_VM_AREA	0x04
251 
252 struct vmap_area {
253 	unsigned long va_start;
254 	unsigned long va_end;
255 	unsigned long flags;
256 	struct rb_node rb_node;		/* address sorted rbtree */
257 	struct list_head list;		/* address sorted list */
258 	struct list_head purge_list;	/* "lazy purge" list */
259 	struct vm_struct *vm;
260 	struct rcu_head rcu_head;
261 };
262 
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static LIST_HEAD(vmap_area_list);
265 static struct rb_root vmap_area_root = RB_ROOT;
266 
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node *free_vmap_cache;
269 static unsigned long cached_hole_size;
270 static unsigned long cached_vstart;
271 static unsigned long cached_align;
272 
273 static unsigned long vmap_area_pcpu_hole;
274 
275 static struct vmap_area *__find_vmap_area(unsigned long addr)
276 {
277 	struct rb_node *n = vmap_area_root.rb_node;
278 
279 	while (n) {
280 		struct vmap_area *va;
281 
282 		va = rb_entry(n, struct vmap_area, rb_node);
283 		if (addr < va->va_start)
284 			n = n->rb_left;
285 		else if (addr > va->va_start)
286 			n = n->rb_right;
287 		else
288 			return va;
289 	}
290 
291 	return NULL;
292 }
293 
294 static void __insert_vmap_area(struct vmap_area *va)
295 {
296 	struct rb_node **p = &vmap_area_root.rb_node;
297 	struct rb_node *parent = NULL;
298 	struct rb_node *tmp;
299 
300 	while (*p) {
301 		struct vmap_area *tmp_va;
302 
303 		parent = *p;
304 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 		if (va->va_start < tmp_va->va_end)
306 			p = &(*p)->rb_left;
307 		else if (va->va_end > tmp_va->va_start)
308 			p = &(*p)->rb_right;
309 		else
310 			BUG();
311 	}
312 
313 	rb_link_node(&va->rb_node, parent, p);
314 	rb_insert_color(&va->rb_node, &vmap_area_root);
315 
316 	/* address-sort this list so it is usable like the vmlist */
317 	tmp = rb_prev(&va->rb_node);
318 	if (tmp) {
319 		struct vmap_area *prev;
320 		prev = rb_entry(tmp, struct vmap_area, rb_node);
321 		list_add_rcu(&va->list, &prev->list);
322 	} else
323 		list_add_rcu(&va->list, &vmap_area_list);
324 }
325 
326 static void purge_vmap_area_lazy(void);
327 
328 /*
329  * Allocate a region of KVA of the specified size and alignment, within the
330  * vstart and vend.
331  */
332 static struct vmap_area *alloc_vmap_area(unsigned long size,
333 				unsigned long align,
334 				unsigned long vstart, unsigned long vend,
335 				int node, gfp_t gfp_mask)
336 {
337 	struct vmap_area *va;
338 	struct rb_node *n;
339 	unsigned long addr;
340 	int purged = 0;
341 	struct vmap_area *first;
342 
343 	BUG_ON(!size);
344 	BUG_ON(size & ~PAGE_MASK);
345 	BUG_ON(!is_power_of_2(align));
346 
347 	va = kmalloc_node(sizeof(struct vmap_area),
348 			gfp_mask & GFP_RECLAIM_MASK, node);
349 	if (unlikely(!va))
350 		return ERR_PTR(-ENOMEM);
351 
352 retry:
353 	spin_lock(&vmap_area_lock);
354 	/*
355 	 * Invalidate cache if we have more permissive parameters.
356 	 * cached_hole_size notes the largest hole noticed _below_
357 	 * the vmap_area cached in free_vmap_cache: if size fits
358 	 * into that hole, we want to scan from vstart to reuse
359 	 * the hole instead of allocating above free_vmap_cache.
360 	 * Note that __free_vmap_area may update free_vmap_cache
361 	 * without updating cached_hole_size or cached_align.
362 	 */
363 	if (!free_vmap_cache ||
364 			size < cached_hole_size ||
365 			vstart < cached_vstart ||
366 			align < cached_align) {
367 nocache:
368 		cached_hole_size = 0;
369 		free_vmap_cache = NULL;
370 	}
371 	/* record if we encounter less permissive parameters */
372 	cached_vstart = vstart;
373 	cached_align = align;
374 
375 	/* find starting point for our search */
376 	if (free_vmap_cache) {
377 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
378 		addr = ALIGN(first->va_end, align);
379 		if (addr < vstart)
380 			goto nocache;
381 		if (addr + size - 1 < addr)
382 			goto overflow;
383 
384 	} else {
385 		addr = ALIGN(vstart, align);
386 		if (addr + size - 1 < addr)
387 			goto overflow;
388 
389 		n = vmap_area_root.rb_node;
390 		first = NULL;
391 
392 		while (n) {
393 			struct vmap_area *tmp;
394 			tmp = rb_entry(n, struct vmap_area, rb_node);
395 			if (tmp->va_end >= addr) {
396 				first = tmp;
397 				if (tmp->va_start <= addr)
398 					break;
399 				n = n->rb_left;
400 			} else
401 				n = n->rb_right;
402 		}
403 
404 		if (!first)
405 			goto found;
406 	}
407 
408 	/* from the starting point, walk areas until a suitable hole is found */
409 	while (addr + size > first->va_start && addr + size <= vend) {
410 		if (addr + cached_hole_size < first->va_start)
411 			cached_hole_size = first->va_start - addr;
412 		addr = ALIGN(first->va_end, align);
413 		if (addr + size - 1 < addr)
414 			goto overflow;
415 
416 		if (list_is_last(&first->list, &vmap_area_list))
417 			goto found;
418 
419 		first = list_entry(first->list.next,
420 				struct vmap_area, list);
421 	}
422 
423 found:
424 	if (addr + size > vend)
425 		goto overflow;
426 
427 	va->va_start = addr;
428 	va->va_end = addr + size;
429 	va->flags = 0;
430 	__insert_vmap_area(va);
431 	free_vmap_cache = &va->rb_node;
432 	spin_unlock(&vmap_area_lock);
433 
434 	BUG_ON(va->va_start & (align-1));
435 	BUG_ON(va->va_start < vstart);
436 	BUG_ON(va->va_end > vend);
437 
438 	return va;
439 
440 overflow:
441 	spin_unlock(&vmap_area_lock);
442 	if (!purged) {
443 		purge_vmap_area_lazy();
444 		purged = 1;
445 		goto retry;
446 	}
447 	if (printk_ratelimit())
448 		printk(KERN_WARNING
449 			"vmap allocation for size %lu failed: "
450 			"use vmalloc=<size> to increase size.\n", size);
451 	kfree(va);
452 	return ERR_PTR(-EBUSY);
453 }
454 
455 static void __free_vmap_area(struct vmap_area *va)
456 {
457 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
458 
459 	if (free_vmap_cache) {
460 		if (va->va_end < cached_vstart) {
461 			free_vmap_cache = NULL;
462 		} else {
463 			struct vmap_area *cache;
464 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
465 			if (va->va_start <= cache->va_start) {
466 				free_vmap_cache = rb_prev(&va->rb_node);
467 				/*
468 				 * We don't try to update cached_hole_size or
469 				 * cached_align, but it won't go very wrong.
470 				 */
471 			}
472 		}
473 	}
474 	rb_erase(&va->rb_node, &vmap_area_root);
475 	RB_CLEAR_NODE(&va->rb_node);
476 	list_del_rcu(&va->list);
477 
478 	/*
479 	 * Track the highest possible candidate for pcpu area
480 	 * allocation.  Areas outside of vmalloc area can be returned
481 	 * here too, consider only end addresses which fall inside
482 	 * vmalloc area proper.
483 	 */
484 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
485 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
486 
487 	kfree_rcu(va, rcu_head);
488 }
489 
490 /*
491  * Free a region of KVA allocated by alloc_vmap_area
492  */
493 static void free_vmap_area(struct vmap_area *va)
494 {
495 	spin_lock(&vmap_area_lock);
496 	__free_vmap_area(va);
497 	spin_unlock(&vmap_area_lock);
498 }
499 
500 /*
501  * Clear the pagetable entries of a given vmap_area
502  */
503 static void unmap_vmap_area(struct vmap_area *va)
504 {
505 	vunmap_page_range(va->va_start, va->va_end);
506 }
507 
508 static void vmap_debug_free_range(unsigned long start, unsigned long end)
509 {
510 	/*
511 	 * Unmap page tables and force a TLB flush immediately if
512 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
513 	 * bugs similarly to those in linear kernel virtual address
514 	 * space after a page has been freed.
515 	 *
516 	 * All the lazy freeing logic is still retained, in order to
517 	 * minimise intrusiveness of this debugging feature.
518 	 *
519 	 * This is going to be *slow* (linear kernel virtual address
520 	 * debugging doesn't do a broadcast TLB flush so it is a lot
521 	 * faster).
522 	 */
523 #ifdef CONFIG_DEBUG_PAGEALLOC
524 	vunmap_page_range(start, end);
525 	flush_tlb_kernel_range(start, end);
526 #endif
527 }
528 
529 /*
530  * lazy_max_pages is the maximum amount of virtual address space we gather up
531  * before attempting to purge with a TLB flush.
532  *
533  * There is a tradeoff here: a larger number will cover more kernel page tables
534  * and take slightly longer to purge, but it will linearly reduce the number of
535  * global TLB flushes that must be performed. It would seem natural to scale
536  * this number up linearly with the number of CPUs (because vmapping activity
537  * could also scale linearly with the number of CPUs), however it is likely
538  * that in practice, workloads might be constrained in other ways that mean
539  * vmap activity will not scale linearly with CPUs. Also, I want to be
540  * conservative and not introduce a big latency on huge systems, so go with
541  * a less aggressive log scale. It will still be an improvement over the old
542  * code, and it will be simple to change the scale factor if we find that it
543  * becomes a problem on bigger systems.
544  */
545 static unsigned long lazy_max_pages(void)
546 {
547 	unsigned int log;
548 
549 	log = fls(num_online_cpus());
550 
551 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
552 }
553 
554 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
555 
556 /* for per-CPU blocks */
557 static void purge_fragmented_blocks_allcpus(void);
558 
559 /*
560  * called before a call to iounmap() if the caller wants vm_area_struct's
561  * immediately freed.
562  */
563 void set_iounmap_nonlazy(void)
564 {
565 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
566 }
567 
568 /*
569  * Purges all lazily-freed vmap areas.
570  *
571  * If sync is 0 then don't purge if there is already a purge in progress.
572  * If force_flush is 1, then flush kernel TLBs between *start and *end even
573  * if we found no lazy vmap areas to unmap (callers can use this to optimise
574  * their own TLB flushing).
575  * Returns with *start = min(*start, lowest purged address)
576  *              *end = max(*end, highest purged address)
577  */
578 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
579 					int sync, int force_flush)
580 {
581 	static DEFINE_SPINLOCK(purge_lock);
582 	LIST_HEAD(valist);
583 	struct vmap_area *va;
584 	struct vmap_area *n_va;
585 	int nr = 0;
586 
587 	/*
588 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
589 	 * should not expect such behaviour. This just simplifies locking for
590 	 * the case that isn't actually used at the moment anyway.
591 	 */
592 	if (!sync && !force_flush) {
593 		if (!spin_trylock(&purge_lock))
594 			return;
595 	} else
596 		spin_lock(&purge_lock);
597 
598 	if (sync)
599 		purge_fragmented_blocks_allcpus();
600 
601 	rcu_read_lock();
602 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
603 		if (va->flags & VM_LAZY_FREE) {
604 			if (va->va_start < *start)
605 				*start = va->va_start;
606 			if (va->va_end > *end)
607 				*end = va->va_end;
608 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
609 			list_add_tail(&va->purge_list, &valist);
610 			va->flags |= VM_LAZY_FREEING;
611 			va->flags &= ~VM_LAZY_FREE;
612 		}
613 	}
614 	rcu_read_unlock();
615 
616 	if (nr)
617 		atomic_sub(nr, &vmap_lazy_nr);
618 
619 	if (nr || force_flush)
620 		flush_tlb_kernel_range(*start, *end);
621 
622 	if (nr) {
623 		spin_lock(&vmap_area_lock);
624 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
625 			__free_vmap_area(va);
626 		spin_unlock(&vmap_area_lock);
627 	}
628 	spin_unlock(&purge_lock);
629 }
630 
631 /*
632  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
633  * is already purging.
634  */
635 static void try_purge_vmap_area_lazy(void)
636 {
637 	unsigned long start = ULONG_MAX, end = 0;
638 
639 	__purge_vmap_area_lazy(&start, &end, 0, 0);
640 }
641 
642 /*
643  * Kick off a purge of the outstanding lazy areas.
644  */
645 static void purge_vmap_area_lazy(void)
646 {
647 	unsigned long start = ULONG_MAX, end = 0;
648 
649 	__purge_vmap_area_lazy(&start, &end, 1, 0);
650 }
651 
652 /*
653  * Free a vmap area, caller ensuring that the area has been unmapped
654  * and flush_cache_vunmap had been called for the correct range
655  * previously.
656  */
657 static void free_vmap_area_noflush(struct vmap_area *va)
658 {
659 	va->flags |= VM_LAZY_FREE;
660 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
661 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
662 		try_purge_vmap_area_lazy();
663 }
664 
665 /*
666  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
667  * called for the correct range previously.
668  */
669 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
670 {
671 	unmap_vmap_area(va);
672 	free_vmap_area_noflush(va);
673 }
674 
675 /*
676  * Free and unmap a vmap area
677  */
678 static void free_unmap_vmap_area(struct vmap_area *va)
679 {
680 	flush_cache_vunmap(va->va_start, va->va_end);
681 	free_unmap_vmap_area_noflush(va);
682 }
683 
684 static struct vmap_area *find_vmap_area(unsigned long addr)
685 {
686 	struct vmap_area *va;
687 
688 	spin_lock(&vmap_area_lock);
689 	va = __find_vmap_area(addr);
690 	spin_unlock(&vmap_area_lock);
691 
692 	return va;
693 }
694 
695 static void free_unmap_vmap_area_addr(unsigned long addr)
696 {
697 	struct vmap_area *va;
698 
699 	va = find_vmap_area(addr);
700 	BUG_ON(!va);
701 	free_unmap_vmap_area(va);
702 }
703 
704 
705 /*** Per cpu kva allocator ***/
706 
707 /*
708  * vmap space is limited especially on 32 bit architectures. Ensure there is
709  * room for at least 16 percpu vmap blocks per CPU.
710  */
711 /*
712  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
713  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
714  * instead (we just need a rough idea)
715  */
716 #if BITS_PER_LONG == 32
717 #define VMALLOC_SPACE		(128UL*1024*1024)
718 #else
719 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
720 #endif
721 
722 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
723 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
724 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
725 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
726 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
727 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
728 #define VMAP_BBMAP_BITS		\
729 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
730 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
731 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
732 
733 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
734 
735 static bool vmap_initialized __read_mostly = false;
736 
737 struct vmap_block_queue {
738 	spinlock_t lock;
739 	struct list_head free;
740 };
741 
742 struct vmap_block {
743 	spinlock_t lock;
744 	struct vmap_area *va;
745 	struct vmap_block_queue *vbq;
746 	unsigned long free, dirty;
747 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
748 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
749 	struct list_head free_list;
750 	struct rcu_head rcu_head;
751 	struct list_head purge;
752 };
753 
754 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
755 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
756 
757 /*
758  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
759  * in the free path. Could get rid of this if we change the API to return a
760  * "cookie" from alloc, to be passed to free. But no big deal yet.
761  */
762 static DEFINE_SPINLOCK(vmap_block_tree_lock);
763 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
764 
765 /*
766  * We should probably have a fallback mechanism to allocate virtual memory
767  * out of partially filled vmap blocks. However vmap block sizing should be
768  * fairly reasonable according to the vmalloc size, so it shouldn't be a
769  * big problem.
770  */
771 
772 static unsigned long addr_to_vb_idx(unsigned long addr)
773 {
774 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
775 	addr /= VMAP_BLOCK_SIZE;
776 	return addr;
777 }
778 
779 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
780 {
781 	struct vmap_block_queue *vbq;
782 	struct vmap_block *vb;
783 	struct vmap_area *va;
784 	unsigned long vb_idx;
785 	int node, err;
786 
787 	node = numa_node_id();
788 
789 	vb = kmalloc_node(sizeof(struct vmap_block),
790 			gfp_mask & GFP_RECLAIM_MASK, node);
791 	if (unlikely(!vb))
792 		return ERR_PTR(-ENOMEM);
793 
794 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
795 					VMALLOC_START, VMALLOC_END,
796 					node, gfp_mask);
797 	if (IS_ERR(va)) {
798 		kfree(vb);
799 		return ERR_CAST(va);
800 	}
801 
802 	err = radix_tree_preload(gfp_mask);
803 	if (unlikely(err)) {
804 		kfree(vb);
805 		free_vmap_area(va);
806 		return ERR_PTR(err);
807 	}
808 
809 	spin_lock_init(&vb->lock);
810 	vb->va = va;
811 	vb->free = VMAP_BBMAP_BITS;
812 	vb->dirty = 0;
813 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
814 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
815 	INIT_LIST_HEAD(&vb->free_list);
816 
817 	vb_idx = addr_to_vb_idx(va->va_start);
818 	spin_lock(&vmap_block_tree_lock);
819 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
820 	spin_unlock(&vmap_block_tree_lock);
821 	BUG_ON(err);
822 	radix_tree_preload_end();
823 
824 	vbq = &get_cpu_var(vmap_block_queue);
825 	vb->vbq = vbq;
826 	spin_lock(&vbq->lock);
827 	list_add_rcu(&vb->free_list, &vbq->free);
828 	spin_unlock(&vbq->lock);
829 	put_cpu_var(vmap_block_queue);
830 
831 	return vb;
832 }
833 
834 static void free_vmap_block(struct vmap_block *vb)
835 {
836 	struct vmap_block *tmp;
837 	unsigned long vb_idx;
838 
839 	vb_idx = addr_to_vb_idx(vb->va->va_start);
840 	spin_lock(&vmap_block_tree_lock);
841 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
842 	spin_unlock(&vmap_block_tree_lock);
843 	BUG_ON(tmp != vb);
844 
845 	free_vmap_area_noflush(vb->va);
846 	kfree_rcu(vb, rcu_head);
847 }
848 
849 static void purge_fragmented_blocks(int cpu)
850 {
851 	LIST_HEAD(purge);
852 	struct vmap_block *vb;
853 	struct vmap_block *n_vb;
854 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
855 
856 	rcu_read_lock();
857 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
858 
859 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
860 			continue;
861 
862 		spin_lock(&vb->lock);
863 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
864 			vb->free = 0; /* prevent further allocs after releasing lock */
865 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
866 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
867 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
868 			spin_lock(&vbq->lock);
869 			list_del_rcu(&vb->free_list);
870 			spin_unlock(&vbq->lock);
871 			spin_unlock(&vb->lock);
872 			list_add_tail(&vb->purge, &purge);
873 		} else
874 			spin_unlock(&vb->lock);
875 	}
876 	rcu_read_unlock();
877 
878 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
879 		list_del(&vb->purge);
880 		free_vmap_block(vb);
881 	}
882 }
883 
884 static void purge_fragmented_blocks_thiscpu(void)
885 {
886 	purge_fragmented_blocks(smp_processor_id());
887 }
888 
889 static void purge_fragmented_blocks_allcpus(void)
890 {
891 	int cpu;
892 
893 	for_each_possible_cpu(cpu)
894 		purge_fragmented_blocks(cpu);
895 }
896 
897 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898 {
899 	struct vmap_block_queue *vbq;
900 	struct vmap_block *vb;
901 	unsigned long addr = 0;
902 	unsigned int order;
903 	int purge = 0;
904 
905 	BUG_ON(size & ~PAGE_MASK);
906 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
907 	if (WARN_ON(size == 0)) {
908 		/*
909 		 * Allocating 0 bytes isn't what caller wants since
910 		 * get_order(0) returns funny result. Just warn and terminate
911 		 * early.
912 		 */
913 		return NULL;
914 	}
915 	order = get_order(size);
916 
917 again:
918 	rcu_read_lock();
919 	vbq = &get_cpu_var(vmap_block_queue);
920 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
921 		int i;
922 
923 		spin_lock(&vb->lock);
924 		if (vb->free < 1UL << order)
925 			goto next;
926 
927 		i = bitmap_find_free_region(vb->alloc_map,
928 						VMAP_BBMAP_BITS, order);
929 
930 		if (i < 0) {
931 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
932 				/* fragmented and no outstanding allocations */
933 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
934 				purge = 1;
935 			}
936 			goto next;
937 		}
938 		addr = vb->va->va_start + (i << PAGE_SHIFT);
939 		BUG_ON(addr_to_vb_idx(addr) !=
940 				addr_to_vb_idx(vb->va->va_start));
941 		vb->free -= 1UL << order;
942 		if (vb->free == 0) {
943 			spin_lock(&vbq->lock);
944 			list_del_rcu(&vb->free_list);
945 			spin_unlock(&vbq->lock);
946 		}
947 		spin_unlock(&vb->lock);
948 		break;
949 next:
950 		spin_unlock(&vb->lock);
951 	}
952 
953 	if (purge)
954 		purge_fragmented_blocks_thiscpu();
955 
956 	put_cpu_var(vmap_block_queue);
957 	rcu_read_unlock();
958 
959 	if (!addr) {
960 		vb = new_vmap_block(gfp_mask);
961 		if (IS_ERR(vb))
962 			return vb;
963 		goto again;
964 	}
965 
966 	return (void *)addr;
967 }
968 
969 static void vb_free(const void *addr, unsigned long size)
970 {
971 	unsigned long offset;
972 	unsigned long vb_idx;
973 	unsigned int order;
974 	struct vmap_block *vb;
975 
976 	BUG_ON(size & ~PAGE_MASK);
977 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
978 
979 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
980 
981 	order = get_order(size);
982 
983 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
984 
985 	vb_idx = addr_to_vb_idx((unsigned long)addr);
986 	rcu_read_lock();
987 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
988 	rcu_read_unlock();
989 	BUG_ON(!vb);
990 
991 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
992 
993 	spin_lock(&vb->lock);
994 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
995 
996 	vb->dirty += 1UL << order;
997 	if (vb->dirty == VMAP_BBMAP_BITS) {
998 		BUG_ON(vb->free);
999 		spin_unlock(&vb->lock);
1000 		free_vmap_block(vb);
1001 	} else
1002 		spin_unlock(&vb->lock);
1003 }
1004 
1005 /**
1006  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1007  *
1008  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1009  * to amortize TLB flushing overheads. What this means is that any page you
1010  * have now, may, in a former life, have been mapped into kernel virtual
1011  * address by the vmap layer and so there might be some CPUs with TLB entries
1012  * still referencing that page (additional to the regular 1:1 kernel mapping).
1013  *
1014  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1015  * be sure that none of the pages we have control over will have any aliases
1016  * from the vmap layer.
1017  */
1018 void vm_unmap_aliases(void)
1019 {
1020 	unsigned long start = ULONG_MAX, end = 0;
1021 	int cpu;
1022 	int flush = 0;
1023 
1024 	if (unlikely(!vmap_initialized))
1025 		return;
1026 
1027 	for_each_possible_cpu(cpu) {
1028 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1029 		struct vmap_block *vb;
1030 
1031 		rcu_read_lock();
1032 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1033 			int i;
1034 
1035 			spin_lock(&vb->lock);
1036 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1037 			while (i < VMAP_BBMAP_BITS) {
1038 				unsigned long s, e;
1039 				int j;
1040 				j = find_next_zero_bit(vb->dirty_map,
1041 					VMAP_BBMAP_BITS, i);
1042 
1043 				s = vb->va->va_start + (i << PAGE_SHIFT);
1044 				e = vb->va->va_start + (j << PAGE_SHIFT);
1045 				flush = 1;
1046 
1047 				if (s < start)
1048 					start = s;
1049 				if (e > end)
1050 					end = e;
1051 
1052 				i = j;
1053 				i = find_next_bit(vb->dirty_map,
1054 							VMAP_BBMAP_BITS, i);
1055 			}
1056 			spin_unlock(&vb->lock);
1057 		}
1058 		rcu_read_unlock();
1059 	}
1060 
1061 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1062 }
1063 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1064 
1065 /**
1066  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1067  * @mem: the pointer returned by vm_map_ram
1068  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1069  */
1070 void vm_unmap_ram(const void *mem, unsigned int count)
1071 {
1072 	unsigned long size = count << PAGE_SHIFT;
1073 	unsigned long addr = (unsigned long)mem;
1074 
1075 	BUG_ON(!addr);
1076 	BUG_ON(addr < VMALLOC_START);
1077 	BUG_ON(addr > VMALLOC_END);
1078 	BUG_ON(addr & (PAGE_SIZE-1));
1079 
1080 	debug_check_no_locks_freed(mem, size);
1081 	vmap_debug_free_range(addr, addr+size);
1082 
1083 	if (likely(count <= VMAP_MAX_ALLOC))
1084 		vb_free(mem, size);
1085 	else
1086 		free_unmap_vmap_area_addr(addr);
1087 }
1088 EXPORT_SYMBOL(vm_unmap_ram);
1089 
1090 /**
1091  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1092  * @pages: an array of pointers to the pages to be mapped
1093  * @count: number of pages
1094  * @node: prefer to allocate data structures on this node
1095  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1096  *
1097  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1098  */
1099 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1100 {
1101 	unsigned long size = count << PAGE_SHIFT;
1102 	unsigned long addr;
1103 	void *mem;
1104 
1105 	if (likely(count <= VMAP_MAX_ALLOC)) {
1106 		mem = vb_alloc(size, GFP_KERNEL);
1107 		if (IS_ERR(mem))
1108 			return NULL;
1109 		addr = (unsigned long)mem;
1110 	} else {
1111 		struct vmap_area *va;
1112 		va = alloc_vmap_area(size, PAGE_SIZE,
1113 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1114 		if (IS_ERR(va))
1115 			return NULL;
1116 
1117 		addr = va->va_start;
1118 		mem = (void *)addr;
1119 	}
1120 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1121 		vm_unmap_ram(mem, count);
1122 		return NULL;
1123 	}
1124 	return mem;
1125 }
1126 EXPORT_SYMBOL(vm_map_ram);
1127 
1128 /**
1129  * vm_area_add_early - add vmap area early during boot
1130  * @vm: vm_struct to add
1131  *
1132  * This function is used to add fixed kernel vm area to vmlist before
1133  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1134  * should contain proper values and the other fields should be zero.
1135  *
1136  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1137  */
1138 void __init vm_area_add_early(struct vm_struct *vm)
1139 {
1140 	struct vm_struct *tmp, **p;
1141 
1142 	BUG_ON(vmap_initialized);
1143 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1144 		if (tmp->addr >= vm->addr) {
1145 			BUG_ON(tmp->addr < vm->addr + vm->size);
1146 			break;
1147 		} else
1148 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1149 	}
1150 	vm->next = *p;
1151 	*p = vm;
1152 }
1153 
1154 /**
1155  * vm_area_register_early - register vmap area early during boot
1156  * @vm: vm_struct to register
1157  * @align: requested alignment
1158  *
1159  * This function is used to register kernel vm area before
1160  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1161  * proper values on entry and other fields should be zero.  On return,
1162  * vm->addr contains the allocated address.
1163  *
1164  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1165  */
1166 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1167 {
1168 	static size_t vm_init_off __initdata;
1169 	unsigned long addr;
1170 
1171 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1172 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1173 
1174 	vm->addr = (void *)addr;
1175 
1176 	vm_area_add_early(vm);
1177 }
1178 
1179 void __init vmalloc_init(void)
1180 {
1181 	struct vmap_area *va;
1182 	struct vm_struct *tmp;
1183 	int i;
1184 
1185 	for_each_possible_cpu(i) {
1186 		struct vmap_block_queue *vbq;
1187 
1188 		vbq = &per_cpu(vmap_block_queue, i);
1189 		spin_lock_init(&vbq->lock);
1190 		INIT_LIST_HEAD(&vbq->free);
1191 	}
1192 
1193 	/* Import existing vmlist entries. */
1194 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1195 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1196 		va->flags = VM_VM_AREA;
1197 		va->va_start = (unsigned long)tmp->addr;
1198 		va->va_end = va->va_start + tmp->size;
1199 		va->vm = tmp;
1200 		__insert_vmap_area(va);
1201 	}
1202 
1203 	vmap_area_pcpu_hole = VMALLOC_END;
1204 
1205 	vmap_initialized = true;
1206 }
1207 
1208 /**
1209  * map_kernel_range_noflush - map kernel VM area with the specified pages
1210  * @addr: start of the VM area to map
1211  * @size: size of the VM area to map
1212  * @prot: page protection flags to use
1213  * @pages: pages to map
1214  *
1215  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1216  * specify should have been allocated using get_vm_area() and its
1217  * friends.
1218  *
1219  * NOTE:
1220  * This function does NOT do any cache flushing.  The caller is
1221  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1222  * before calling this function.
1223  *
1224  * RETURNS:
1225  * The number of pages mapped on success, -errno on failure.
1226  */
1227 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1228 			     pgprot_t prot, struct page **pages)
1229 {
1230 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1231 }
1232 
1233 /**
1234  * unmap_kernel_range_noflush - unmap kernel VM area
1235  * @addr: start of the VM area to unmap
1236  * @size: size of the VM area to unmap
1237  *
1238  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1239  * specify should have been allocated using get_vm_area() and its
1240  * friends.
1241  *
1242  * NOTE:
1243  * This function does NOT do any cache flushing.  The caller is
1244  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1245  * before calling this function and flush_tlb_kernel_range() after.
1246  */
1247 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1248 {
1249 	vunmap_page_range(addr, addr + size);
1250 }
1251 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1252 
1253 /**
1254  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1255  * @addr: start of the VM area to unmap
1256  * @size: size of the VM area to unmap
1257  *
1258  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1259  * the unmapping and tlb after.
1260  */
1261 void unmap_kernel_range(unsigned long addr, unsigned long size)
1262 {
1263 	unsigned long end = addr + size;
1264 
1265 	flush_cache_vunmap(addr, end);
1266 	vunmap_page_range(addr, end);
1267 	flush_tlb_kernel_range(addr, end);
1268 }
1269 
1270 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1271 {
1272 	unsigned long addr = (unsigned long)area->addr;
1273 	unsigned long end = addr + area->size - PAGE_SIZE;
1274 	int err;
1275 
1276 	err = vmap_page_range(addr, end, prot, *pages);
1277 	if (err > 0) {
1278 		*pages += err;
1279 		err = 0;
1280 	}
1281 
1282 	return err;
1283 }
1284 EXPORT_SYMBOL_GPL(map_vm_area);
1285 
1286 /*** Old vmalloc interfaces ***/
1287 DEFINE_RWLOCK(vmlist_lock);
1288 struct vm_struct *vmlist;
1289 
1290 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1291 			      unsigned long flags, const void *caller)
1292 {
1293 	vm->flags = flags;
1294 	vm->addr = (void *)va->va_start;
1295 	vm->size = va->va_end - va->va_start;
1296 	vm->caller = caller;
1297 	va->vm = vm;
1298 	va->flags |= VM_VM_AREA;
1299 }
1300 
1301 static void insert_vmalloc_vmlist(struct vm_struct *vm)
1302 {
1303 	struct vm_struct *tmp, **p;
1304 
1305 	vm->flags &= ~VM_UNLIST;
1306 	write_lock(&vmlist_lock);
1307 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1308 		if (tmp->addr >= vm->addr)
1309 			break;
1310 	}
1311 	vm->next = *p;
1312 	*p = vm;
1313 	write_unlock(&vmlist_lock);
1314 }
1315 
1316 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1317 			      unsigned long flags, const void *caller)
1318 {
1319 	setup_vmalloc_vm(vm, va, flags, caller);
1320 	insert_vmalloc_vmlist(vm);
1321 }
1322 
1323 static struct vm_struct *__get_vm_area_node(unsigned long size,
1324 		unsigned long align, unsigned long flags, unsigned long start,
1325 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1326 {
1327 	struct vmap_area *va;
1328 	struct vm_struct *area;
1329 
1330 	BUG_ON(in_interrupt());
1331 	if (flags & VM_IOREMAP) {
1332 		int bit = fls(size);
1333 
1334 		if (bit > IOREMAP_MAX_ORDER)
1335 			bit = IOREMAP_MAX_ORDER;
1336 		else if (bit < PAGE_SHIFT)
1337 			bit = PAGE_SHIFT;
1338 
1339 		align = 1ul << bit;
1340 	}
1341 
1342 	size = PAGE_ALIGN(size);
1343 	if (unlikely(!size))
1344 		return NULL;
1345 
1346 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1347 	if (unlikely(!area))
1348 		return NULL;
1349 
1350 	/*
1351 	 * We always allocate a guard page.
1352 	 */
1353 	size += PAGE_SIZE;
1354 
1355 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1356 	if (IS_ERR(va)) {
1357 		kfree(area);
1358 		return NULL;
1359 	}
1360 
1361 	/*
1362 	 * When this function is called from __vmalloc_node_range,
1363 	 * we do not add vm_struct to vmlist here to avoid
1364 	 * accessing uninitialized members of vm_struct such as
1365 	 * pages and nr_pages fields. They will be set later.
1366 	 * To distinguish it from others, we use a VM_UNLIST flag.
1367 	 */
1368 	if (flags & VM_UNLIST)
1369 		setup_vmalloc_vm(area, va, flags, caller);
1370 	else
1371 		insert_vmalloc_vm(area, va, flags, caller);
1372 
1373 	return area;
1374 }
1375 
1376 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1377 				unsigned long start, unsigned long end)
1378 {
1379 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1380 						__builtin_return_address(0));
1381 }
1382 EXPORT_SYMBOL_GPL(__get_vm_area);
1383 
1384 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1385 				       unsigned long start, unsigned long end,
1386 				       const void *caller)
1387 {
1388 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1389 				  caller);
1390 }
1391 
1392 /**
1393  *	get_vm_area  -  reserve a contiguous kernel virtual area
1394  *	@size:		size of the area
1395  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1396  *
1397  *	Search an area of @size in the kernel virtual mapping area,
1398  *	and reserved it for out purposes.  Returns the area descriptor
1399  *	on success or %NULL on failure.
1400  */
1401 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1402 {
1403 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1404 				-1, GFP_KERNEL, __builtin_return_address(0));
1405 }
1406 
1407 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1408 				const void *caller)
1409 {
1410 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1411 						-1, GFP_KERNEL, caller);
1412 }
1413 
1414 /**
1415  *	find_vm_area  -  find a continuous kernel virtual area
1416  *	@addr:		base address
1417  *
1418  *	Search for the kernel VM area starting at @addr, and return it.
1419  *	It is up to the caller to do all required locking to keep the returned
1420  *	pointer valid.
1421  */
1422 struct vm_struct *find_vm_area(const void *addr)
1423 {
1424 	struct vmap_area *va;
1425 
1426 	va = find_vmap_area((unsigned long)addr);
1427 	if (va && va->flags & VM_VM_AREA)
1428 		return va->vm;
1429 
1430 	return NULL;
1431 }
1432 
1433 /**
1434  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1435  *	@addr:		base address
1436  *
1437  *	Search for the kernel VM area starting at @addr, and remove it.
1438  *	This function returns the found VM area, but using it is NOT safe
1439  *	on SMP machines, except for its size or flags.
1440  */
1441 struct vm_struct *remove_vm_area(const void *addr)
1442 {
1443 	struct vmap_area *va;
1444 
1445 	va = find_vmap_area((unsigned long)addr);
1446 	if (va && va->flags & VM_VM_AREA) {
1447 		struct vm_struct *vm = va->vm;
1448 
1449 		if (!(vm->flags & VM_UNLIST)) {
1450 			struct vm_struct *tmp, **p;
1451 			/*
1452 			 * remove from list and disallow access to
1453 			 * this vm_struct before unmap. (address range
1454 			 * confliction is maintained by vmap.)
1455 			 */
1456 			write_lock(&vmlist_lock);
1457 			for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1458 				;
1459 			*p = tmp->next;
1460 			write_unlock(&vmlist_lock);
1461 		}
1462 
1463 		vmap_debug_free_range(va->va_start, va->va_end);
1464 		free_unmap_vmap_area(va);
1465 		vm->size -= PAGE_SIZE;
1466 
1467 		return vm;
1468 	}
1469 	return NULL;
1470 }
1471 
1472 static void __vunmap(const void *addr, int deallocate_pages)
1473 {
1474 	struct vm_struct *area;
1475 
1476 	if (!addr)
1477 		return;
1478 
1479 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
1480 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1481 		return;
1482 	}
1483 
1484 	area = remove_vm_area(addr);
1485 	if (unlikely(!area)) {
1486 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1487 				addr);
1488 		return;
1489 	}
1490 
1491 	debug_check_no_locks_freed(addr, area->size);
1492 	debug_check_no_obj_freed(addr, area->size);
1493 
1494 	if (deallocate_pages) {
1495 		int i;
1496 
1497 		for (i = 0; i < area->nr_pages; i++) {
1498 			struct page *page = area->pages[i];
1499 
1500 			BUG_ON(!page);
1501 			__free_page(page);
1502 		}
1503 
1504 		if (area->flags & VM_VPAGES)
1505 			vfree(area->pages);
1506 		else
1507 			kfree(area->pages);
1508 	}
1509 
1510 	kfree(area);
1511 	return;
1512 }
1513 
1514 /**
1515  *	vfree  -  release memory allocated by vmalloc()
1516  *	@addr:		memory base address
1517  *
1518  *	Free the virtually continuous memory area starting at @addr, as
1519  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1520  *	NULL, no operation is performed.
1521  *
1522  *	Must not be called in interrupt context.
1523  */
1524 void vfree(const void *addr)
1525 {
1526 	BUG_ON(in_interrupt());
1527 
1528 	kmemleak_free(addr);
1529 
1530 	__vunmap(addr, 1);
1531 }
1532 EXPORT_SYMBOL(vfree);
1533 
1534 /**
1535  *	vunmap  -  release virtual mapping obtained by vmap()
1536  *	@addr:		memory base address
1537  *
1538  *	Free the virtually contiguous memory area starting at @addr,
1539  *	which was created from the page array passed to vmap().
1540  *
1541  *	Must not be called in interrupt context.
1542  */
1543 void vunmap(const void *addr)
1544 {
1545 	BUG_ON(in_interrupt());
1546 	might_sleep();
1547 	__vunmap(addr, 0);
1548 }
1549 EXPORT_SYMBOL(vunmap);
1550 
1551 /**
1552  *	vmap  -  map an array of pages into virtually contiguous space
1553  *	@pages:		array of page pointers
1554  *	@count:		number of pages to map
1555  *	@flags:		vm_area->flags
1556  *	@prot:		page protection for the mapping
1557  *
1558  *	Maps @count pages from @pages into contiguous kernel virtual
1559  *	space.
1560  */
1561 void *vmap(struct page **pages, unsigned int count,
1562 		unsigned long flags, pgprot_t prot)
1563 {
1564 	struct vm_struct *area;
1565 
1566 	might_sleep();
1567 
1568 	if (count > totalram_pages)
1569 		return NULL;
1570 
1571 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1572 					__builtin_return_address(0));
1573 	if (!area)
1574 		return NULL;
1575 
1576 	if (map_vm_area(area, prot, &pages)) {
1577 		vunmap(area->addr);
1578 		return NULL;
1579 	}
1580 
1581 	return area->addr;
1582 }
1583 EXPORT_SYMBOL(vmap);
1584 
1585 static void *__vmalloc_node(unsigned long size, unsigned long align,
1586 			    gfp_t gfp_mask, pgprot_t prot,
1587 			    int node, const void *caller);
1588 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1589 				 pgprot_t prot, int node, const void *caller)
1590 {
1591 	const int order = 0;
1592 	struct page **pages;
1593 	unsigned int nr_pages, array_size, i;
1594 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1595 
1596 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1597 	array_size = (nr_pages * sizeof(struct page *));
1598 
1599 	area->nr_pages = nr_pages;
1600 	/* Please note that the recursion is strictly bounded. */
1601 	if (array_size > PAGE_SIZE) {
1602 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1603 				PAGE_KERNEL, node, caller);
1604 		area->flags |= VM_VPAGES;
1605 	} else {
1606 		pages = kmalloc_node(array_size, nested_gfp, node);
1607 	}
1608 	area->pages = pages;
1609 	area->caller = caller;
1610 	if (!area->pages) {
1611 		remove_vm_area(area->addr);
1612 		kfree(area);
1613 		return NULL;
1614 	}
1615 
1616 	for (i = 0; i < area->nr_pages; i++) {
1617 		struct page *page;
1618 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1619 
1620 		if (node < 0)
1621 			page = alloc_page(tmp_mask);
1622 		else
1623 			page = alloc_pages_node(node, tmp_mask, order);
1624 
1625 		if (unlikely(!page)) {
1626 			/* Successfully allocated i pages, free them in __vunmap() */
1627 			area->nr_pages = i;
1628 			goto fail;
1629 		}
1630 		area->pages[i] = page;
1631 	}
1632 
1633 	if (map_vm_area(area, prot, &pages))
1634 		goto fail;
1635 	return area->addr;
1636 
1637 fail:
1638 	warn_alloc_failed(gfp_mask, order,
1639 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1640 			  (area->nr_pages*PAGE_SIZE), area->size);
1641 	vfree(area->addr);
1642 	return NULL;
1643 }
1644 
1645 /**
1646  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1647  *	@size:		allocation size
1648  *	@align:		desired alignment
1649  *	@start:		vm area range start
1650  *	@end:		vm area range end
1651  *	@gfp_mask:	flags for the page level allocator
1652  *	@prot:		protection mask for the allocated pages
1653  *	@node:		node to use for allocation or -1
1654  *	@caller:	caller's return address
1655  *
1656  *	Allocate enough pages to cover @size from the page level
1657  *	allocator with @gfp_mask flags.  Map them into contiguous
1658  *	kernel virtual space, using a pagetable protection of @prot.
1659  */
1660 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1661 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1662 			pgprot_t prot, int node, const void *caller)
1663 {
1664 	struct vm_struct *area;
1665 	void *addr;
1666 	unsigned long real_size = size;
1667 
1668 	size = PAGE_ALIGN(size);
1669 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1670 		goto fail;
1671 
1672 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1673 				  start, end, node, gfp_mask, caller);
1674 	if (!area)
1675 		goto fail;
1676 
1677 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1678 	if (!addr)
1679 		return NULL;
1680 
1681 	/*
1682 	 * In this function, newly allocated vm_struct is not added
1683 	 * to vmlist at __get_vm_area_node(). so, it is added here.
1684 	 */
1685 	insert_vmalloc_vmlist(area);
1686 
1687 	/*
1688 	 * A ref_count = 3 is needed because the vm_struct and vmap_area
1689 	 * structures allocated in the __get_vm_area_node() function contain
1690 	 * references to the virtual address of the vmalloc'ed block.
1691 	 */
1692 	kmemleak_alloc(addr, real_size, 3, gfp_mask);
1693 
1694 	return addr;
1695 
1696 fail:
1697 	warn_alloc_failed(gfp_mask, 0,
1698 			  "vmalloc: allocation failure: %lu bytes\n",
1699 			  real_size);
1700 	return NULL;
1701 }
1702 
1703 /**
1704  *	__vmalloc_node  -  allocate virtually contiguous memory
1705  *	@size:		allocation size
1706  *	@align:		desired alignment
1707  *	@gfp_mask:	flags for the page level allocator
1708  *	@prot:		protection mask for the allocated pages
1709  *	@node:		node to use for allocation or -1
1710  *	@caller:	caller's return address
1711  *
1712  *	Allocate enough pages to cover @size from the page level
1713  *	allocator with @gfp_mask flags.  Map them into contiguous
1714  *	kernel virtual space, using a pagetable protection of @prot.
1715  */
1716 static void *__vmalloc_node(unsigned long size, unsigned long align,
1717 			    gfp_t gfp_mask, pgprot_t prot,
1718 			    int node, const void *caller)
1719 {
1720 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1721 				gfp_mask, prot, node, caller);
1722 }
1723 
1724 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1725 {
1726 	return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1727 				__builtin_return_address(0));
1728 }
1729 EXPORT_SYMBOL(__vmalloc);
1730 
1731 static inline void *__vmalloc_node_flags(unsigned long size,
1732 					int node, gfp_t flags)
1733 {
1734 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1735 					node, __builtin_return_address(0));
1736 }
1737 
1738 /**
1739  *	vmalloc  -  allocate virtually contiguous memory
1740  *	@size:		allocation size
1741  *	Allocate enough pages to cover @size from the page level
1742  *	allocator and map them into contiguous kernel virtual space.
1743  *
1744  *	For tight control over page level allocator and protection flags
1745  *	use __vmalloc() instead.
1746  */
1747 void *vmalloc(unsigned long size)
1748 {
1749 	return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1750 }
1751 EXPORT_SYMBOL(vmalloc);
1752 
1753 /**
1754  *	vzalloc - allocate virtually contiguous memory with zero fill
1755  *	@size:	allocation size
1756  *	Allocate enough pages to cover @size from the page level
1757  *	allocator and map them into contiguous kernel virtual space.
1758  *	The memory allocated is set to zero.
1759  *
1760  *	For tight control over page level allocator and protection flags
1761  *	use __vmalloc() instead.
1762  */
1763 void *vzalloc(unsigned long size)
1764 {
1765 	return __vmalloc_node_flags(size, -1,
1766 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1767 }
1768 EXPORT_SYMBOL(vzalloc);
1769 
1770 /**
1771  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1772  * @size: allocation size
1773  *
1774  * The resulting memory area is zeroed so it can be mapped to userspace
1775  * without leaking data.
1776  */
1777 void *vmalloc_user(unsigned long size)
1778 {
1779 	struct vm_struct *area;
1780 	void *ret;
1781 
1782 	ret = __vmalloc_node(size, SHMLBA,
1783 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1784 			     PAGE_KERNEL, -1, __builtin_return_address(0));
1785 	if (ret) {
1786 		area = find_vm_area(ret);
1787 		area->flags |= VM_USERMAP;
1788 	}
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL(vmalloc_user);
1792 
1793 /**
1794  *	vmalloc_node  -  allocate memory on a specific node
1795  *	@size:		allocation size
1796  *	@node:		numa node
1797  *
1798  *	Allocate enough pages to cover @size from the page level
1799  *	allocator and map them into contiguous kernel virtual space.
1800  *
1801  *	For tight control over page level allocator and protection flags
1802  *	use __vmalloc() instead.
1803  */
1804 void *vmalloc_node(unsigned long size, int node)
1805 {
1806 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1807 					node, __builtin_return_address(0));
1808 }
1809 EXPORT_SYMBOL(vmalloc_node);
1810 
1811 /**
1812  * vzalloc_node - allocate memory on a specific node with zero fill
1813  * @size:	allocation size
1814  * @node:	numa node
1815  *
1816  * Allocate enough pages to cover @size from the page level
1817  * allocator and map them into contiguous kernel virtual space.
1818  * The memory allocated is set to zero.
1819  *
1820  * For tight control over page level allocator and protection flags
1821  * use __vmalloc_node() instead.
1822  */
1823 void *vzalloc_node(unsigned long size, int node)
1824 {
1825 	return __vmalloc_node_flags(size, node,
1826 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1827 }
1828 EXPORT_SYMBOL(vzalloc_node);
1829 
1830 #ifndef PAGE_KERNEL_EXEC
1831 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1832 #endif
1833 
1834 /**
1835  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1836  *	@size:		allocation size
1837  *
1838  *	Kernel-internal function to allocate enough pages to cover @size
1839  *	the page level allocator and map them into contiguous and
1840  *	executable kernel virtual space.
1841  *
1842  *	For tight control over page level allocator and protection flags
1843  *	use __vmalloc() instead.
1844  */
1845 
1846 void *vmalloc_exec(unsigned long size)
1847 {
1848 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1849 			      -1, __builtin_return_address(0));
1850 }
1851 
1852 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1853 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1854 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1855 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1856 #else
1857 #define GFP_VMALLOC32 GFP_KERNEL
1858 #endif
1859 
1860 /**
1861  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1862  *	@size:		allocation size
1863  *
1864  *	Allocate enough 32bit PA addressable pages to cover @size from the
1865  *	page level allocator and map them into contiguous kernel virtual space.
1866  */
1867 void *vmalloc_32(unsigned long size)
1868 {
1869 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1870 			      -1, __builtin_return_address(0));
1871 }
1872 EXPORT_SYMBOL(vmalloc_32);
1873 
1874 /**
1875  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1876  *	@size:		allocation size
1877  *
1878  * The resulting memory area is 32bit addressable and zeroed so it can be
1879  * mapped to userspace without leaking data.
1880  */
1881 void *vmalloc_32_user(unsigned long size)
1882 {
1883 	struct vm_struct *area;
1884 	void *ret;
1885 
1886 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1887 			     -1, __builtin_return_address(0));
1888 	if (ret) {
1889 		area = find_vm_area(ret);
1890 		area->flags |= VM_USERMAP;
1891 	}
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL(vmalloc_32_user);
1895 
1896 /*
1897  * small helper routine , copy contents to buf from addr.
1898  * If the page is not present, fill zero.
1899  */
1900 
1901 static int aligned_vread(char *buf, char *addr, unsigned long count)
1902 {
1903 	struct page *p;
1904 	int copied = 0;
1905 
1906 	while (count) {
1907 		unsigned long offset, length;
1908 
1909 		offset = (unsigned long)addr & ~PAGE_MASK;
1910 		length = PAGE_SIZE - offset;
1911 		if (length > count)
1912 			length = count;
1913 		p = vmalloc_to_page(addr);
1914 		/*
1915 		 * To do safe access to this _mapped_ area, we need
1916 		 * lock. But adding lock here means that we need to add
1917 		 * overhead of vmalloc()/vfree() calles for this _debug_
1918 		 * interface, rarely used. Instead of that, we'll use
1919 		 * kmap() and get small overhead in this access function.
1920 		 */
1921 		if (p) {
1922 			/*
1923 			 * we can expect USER0 is not used (see vread/vwrite's
1924 			 * function description)
1925 			 */
1926 			void *map = kmap_atomic(p);
1927 			memcpy(buf, map + offset, length);
1928 			kunmap_atomic(map);
1929 		} else
1930 			memset(buf, 0, length);
1931 
1932 		addr += length;
1933 		buf += length;
1934 		copied += length;
1935 		count -= length;
1936 	}
1937 	return copied;
1938 }
1939 
1940 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1941 {
1942 	struct page *p;
1943 	int copied = 0;
1944 
1945 	while (count) {
1946 		unsigned long offset, length;
1947 
1948 		offset = (unsigned long)addr & ~PAGE_MASK;
1949 		length = PAGE_SIZE - offset;
1950 		if (length > count)
1951 			length = count;
1952 		p = vmalloc_to_page(addr);
1953 		/*
1954 		 * To do safe access to this _mapped_ area, we need
1955 		 * lock. But adding lock here means that we need to add
1956 		 * overhead of vmalloc()/vfree() calles for this _debug_
1957 		 * interface, rarely used. Instead of that, we'll use
1958 		 * kmap() and get small overhead in this access function.
1959 		 */
1960 		if (p) {
1961 			/*
1962 			 * we can expect USER0 is not used (see vread/vwrite's
1963 			 * function description)
1964 			 */
1965 			void *map = kmap_atomic(p);
1966 			memcpy(map + offset, buf, length);
1967 			kunmap_atomic(map);
1968 		}
1969 		addr += length;
1970 		buf += length;
1971 		copied += length;
1972 		count -= length;
1973 	}
1974 	return copied;
1975 }
1976 
1977 /**
1978  *	vread() -  read vmalloc area in a safe way.
1979  *	@buf:		buffer for reading data
1980  *	@addr:		vm address.
1981  *	@count:		number of bytes to be read.
1982  *
1983  *	Returns # of bytes which addr and buf should be increased.
1984  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1985  *	includes any intersect with alive vmalloc area.
1986  *
1987  *	This function checks that addr is a valid vmalloc'ed area, and
1988  *	copy data from that area to a given buffer. If the given memory range
1989  *	of [addr...addr+count) includes some valid address, data is copied to
1990  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1991  *	IOREMAP area is treated as memory hole and no copy is done.
1992  *
1993  *	If [addr...addr+count) doesn't includes any intersects with alive
1994  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1995  *
1996  *	Note: In usual ops, vread() is never necessary because the caller
1997  *	should know vmalloc() area is valid and can use memcpy().
1998  *	This is for routines which have to access vmalloc area without
1999  *	any informaion, as /dev/kmem.
2000  *
2001  */
2002 
2003 long vread(char *buf, char *addr, unsigned long count)
2004 {
2005 	struct vm_struct *tmp;
2006 	char *vaddr, *buf_start = buf;
2007 	unsigned long buflen = count;
2008 	unsigned long n;
2009 
2010 	/* Don't allow overflow */
2011 	if ((unsigned long) addr + count < count)
2012 		count = -(unsigned long) addr;
2013 
2014 	read_lock(&vmlist_lock);
2015 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2016 		vaddr = (char *) tmp->addr;
2017 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2018 			continue;
2019 		while (addr < vaddr) {
2020 			if (count == 0)
2021 				goto finished;
2022 			*buf = '\0';
2023 			buf++;
2024 			addr++;
2025 			count--;
2026 		}
2027 		n = vaddr + tmp->size - PAGE_SIZE - addr;
2028 		if (n > count)
2029 			n = count;
2030 		if (!(tmp->flags & VM_IOREMAP))
2031 			aligned_vread(buf, addr, n);
2032 		else /* IOREMAP area is treated as memory hole */
2033 			memset(buf, 0, n);
2034 		buf += n;
2035 		addr += n;
2036 		count -= n;
2037 	}
2038 finished:
2039 	read_unlock(&vmlist_lock);
2040 
2041 	if (buf == buf_start)
2042 		return 0;
2043 	/* zero-fill memory holes */
2044 	if (buf != buf_start + buflen)
2045 		memset(buf, 0, buflen - (buf - buf_start));
2046 
2047 	return buflen;
2048 }
2049 
2050 /**
2051  *	vwrite() -  write vmalloc area in a safe way.
2052  *	@buf:		buffer for source data
2053  *	@addr:		vm address.
2054  *	@count:		number of bytes to be read.
2055  *
2056  *	Returns # of bytes which addr and buf should be incresed.
2057  *	(same number to @count).
2058  *	If [addr...addr+count) doesn't includes any intersect with valid
2059  *	vmalloc area, returns 0.
2060  *
2061  *	This function checks that addr is a valid vmalloc'ed area, and
2062  *	copy data from a buffer to the given addr. If specified range of
2063  *	[addr...addr+count) includes some valid address, data is copied from
2064  *	proper area of @buf. If there are memory holes, no copy to hole.
2065  *	IOREMAP area is treated as memory hole and no copy is done.
2066  *
2067  *	If [addr...addr+count) doesn't includes any intersects with alive
2068  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2069  *
2070  *	Note: In usual ops, vwrite() is never necessary because the caller
2071  *	should know vmalloc() area is valid and can use memcpy().
2072  *	This is for routines which have to access vmalloc area without
2073  *	any informaion, as /dev/kmem.
2074  */
2075 
2076 long vwrite(char *buf, char *addr, unsigned long count)
2077 {
2078 	struct vm_struct *tmp;
2079 	char *vaddr;
2080 	unsigned long n, buflen;
2081 	int copied = 0;
2082 
2083 	/* Don't allow overflow */
2084 	if ((unsigned long) addr + count < count)
2085 		count = -(unsigned long) addr;
2086 	buflen = count;
2087 
2088 	read_lock(&vmlist_lock);
2089 	for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2090 		vaddr = (char *) tmp->addr;
2091 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
2092 			continue;
2093 		while (addr < vaddr) {
2094 			if (count == 0)
2095 				goto finished;
2096 			buf++;
2097 			addr++;
2098 			count--;
2099 		}
2100 		n = vaddr + tmp->size - PAGE_SIZE - addr;
2101 		if (n > count)
2102 			n = count;
2103 		if (!(tmp->flags & VM_IOREMAP)) {
2104 			aligned_vwrite(buf, addr, n);
2105 			copied++;
2106 		}
2107 		buf += n;
2108 		addr += n;
2109 		count -= n;
2110 	}
2111 finished:
2112 	read_unlock(&vmlist_lock);
2113 	if (!copied)
2114 		return 0;
2115 	return buflen;
2116 }
2117 
2118 /**
2119  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2120  *	@vma:		vma to cover (map full range of vma)
2121  *	@addr:		vmalloc memory
2122  *	@pgoff:		number of pages into addr before first page to map
2123  *
2124  *	Returns:	0 for success, -Exxx on failure
2125  *
2126  *	This function checks that addr is a valid vmalloc'ed area, and
2127  *	that it is big enough to cover the vma. Will return failure if
2128  *	that criteria isn't met.
2129  *
2130  *	Similar to remap_pfn_range() (see mm/memory.c)
2131  */
2132 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2133 						unsigned long pgoff)
2134 {
2135 	struct vm_struct *area;
2136 	unsigned long uaddr = vma->vm_start;
2137 	unsigned long usize = vma->vm_end - vma->vm_start;
2138 
2139 	if ((PAGE_SIZE-1) & (unsigned long)addr)
2140 		return -EINVAL;
2141 
2142 	area = find_vm_area(addr);
2143 	if (!area)
2144 		return -EINVAL;
2145 
2146 	if (!(area->flags & VM_USERMAP))
2147 		return -EINVAL;
2148 
2149 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2150 		return -EINVAL;
2151 
2152 	addr += pgoff << PAGE_SHIFT;
2153 	do {
2154 		struct page *page = vmalloc_to_page(addr);
2155 		int ret;
2156 
2157 		ret = vm_insert_page(vma, uaddr, page);
2158 		if (ret)
2159 			return ret;
2160 
2161 		uaddr += PAGE_SIZE;
2162 		addr += PAGE_SIZE;
2163 		usize -= PAGE_SIZE;
2164 	} while (usize > 0);
2165 
2166 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2167 
2168 	return 0;
2169 }
2170 EXPORT_SYMBOL(remap_vmalloc_range);
2171 
2172 /*
2173  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2174  * have one.
2175  */
2176 void  __attribute__((weak)) vmalloc_sync_all(void)
2177 {
2178 }
2179 
2180 
2181 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2182 {
2183 	pte_t ***p = data;
2184 
2185 	if (p) {
2186 		*(*p) = pte;
2187 		(*p)++;
2188 	}
2189 	return 0;
2190 }
2191 
2192 /**
2193  *	alloc_vm_area - allocate a range of kernel address space
2194  *	@size:		size of the area
2195  *	@ptes:		returns the PTEs for the address space
2196  *
2197  *	Returns:	NULL on failure, vm_struct on success
2198  *
2199  *	This function reserves a range of kernel address space, and
2200  *	allocates pagetables to map that range.  No actual mappings
2201  *	are created.
2202  *
2203  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2204  *	allocated for the VM area are returned.
2205  */
2206 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2207 {
2208 	struct vm_struct *area;
2209 
2210 	area = get_vm_area_caller(size, VM_IOREMAP,
2211 				__builtin_return_address(0));
2212 	if (area == NULL)
2213 		return NULL;
2214 
2215 	/*
2216 	 * This ensures that page tables are constructed for this region
2217 	 * of kernel virtual address space and mapped into init_mm.
2218 	 */
2219 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2220 				size, f, ptes ? &ptes : NULL)) {
2221 		free_vm_area(area);
2222 		return NULL;
2223 	}
2224 
2225 	return area;
2226 }
2227 EXPORT_SYMBOL_GPL(alloc_vm_area);
2228 
2229 void free_vm_area(struct vm_struct *area)
2230 {
2231 	struct vm_struct *ret;
2232 	ret = remove_vm_area(area->addr);
2233 	BUG_ON(ret != area);
2234 	kfree(area);
2235 }
2236 EXPORT_SYMBOL_GPL(free_vm_area);
2237 
2238 #ifdef CONFIG_SMP
2239 static struct vmap_area *node_to_va(struct rb_node *n)
2240 {
2241 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2242 }
2243 
2244 /**
2245  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2246  * @end: target address
2247  * @pnext: out arg for the next vmap_area
2248  * @pprev: out arg for the previous vmap_area
2249  *
2250  * Returns: %true if either or both of next and prev are found,
2251  *	    %false if no vmap_area exists
2252  *
2253  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2254  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2255  */
2256 static bool pvm_find_next_prev(unsigned long end,
2257 			       struct vmap_area **pnext,
2258 			       struct vmap_area **pprev)
2259 {
2260 	struct rb_node *n = vmap_area_root.rb_node;
2261 	struct vmap_area *va = NULL;
2262 
2263 	while (n) {
2264 		va = rb_entry(n, struct vmap_area, rb_node);
2265 		if (end < va->va_end)
2266 			n = n->rb_left;
2267 		else if (end > va->va_end)
2268 			n = n->rb_right;
2269 		else
2270 			break;
2271 	}
2272 
2273 	if (!va)
2274 		return false;
2275 
2276 	if (va->va_end > end) {
2277 		*pnext = va;
2278 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2279 	} else {
2280 		*pprev = va;
2281 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2282 	}
2283 	return true;
2284 }
2285 
2286 /**
2287  * pvm_determine_end - find the highest aligned address between two vmap_areas
2288  * @pnext: in/out arg for the next vmap_area
2289  * @pprev: in/out arg for the previous vmap_area
2290  * @align: alignment
2291  *
2292  * Returns: determined end address
2293  *
2294  * Find the highest aligned address between *@pnext and *@pprev below
2295  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2296  * down address is between the end addresses of the two vmap_areas.
2297  *
2298  * Please note that the address returned by this function may fall
2299  * inside *@pnext vmap_area.  The caller is responsible for checking
2300  * that.
2301  */
2302 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2303 				       struct vmap_area **pprev,
2304 				       unsigned long align)
2305 {
2306 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2307 	unsigned long addr;
2308 
2309 	if (*pnext)
2310 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2311 	else
2312 		addr = vmalloc_end;
2313 
2314 	while (*pprev && (*pprev)->va_end > addr) {
2315 		*pnext = *pprev;
2316 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2317 	}
2318 
2319 	return addr;
2320 }
2321 
2322 /**
2323  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2324  * @offsets: array containing offset of each area
2325  * @sizes: array containing size of each area
2326  * @nr_vms: the number of areas to allocate
2327  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2328  *
2329  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2330  *	    vm_structs on success, %NULL on failure
2331  *
2332  * Percpu allocator wants to use congruent vm areas so that it can
2333  * maintain the offsets among percpu areas.  This function allocates
2334  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2335  * be scattered pretty far, distance between two areas easily going up
2336  * to gigabytes.  To avoid interacting with regular vmallocs, these
2337  * areas are allocated from top.
2338  *
2339  * Despite its complicated look, this allocator is rather simple.  It
2340  * does everything top-down and scans areas from the end looking for
2341  * matching slot.  While scanning, if any of the areas overlaps with
2342  * existing vmap_area, the base address is pulled down to fit the
2343  * area.  Scanning is repeated till all the areas fit and then all
2344  * necessary data structres are inserted and the result is returned.
2345  */
2346 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2347 				     const size_t *sizes, int nr_vms,
2348 				     size_t align)
2349 {
2350 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2351 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2352 	struct vmap_area **vas, *prev, *next;
2353 	struct vm_struct **vms;
2354 	int area, area2, last_area, term_area;
2355 	unsigned long base, start, end, last_end;
2356 	bool purged = false;
2357 
2358 	/* verify parameters and allocate data structures */
2359 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2360 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2361 		start = offsets[area];
2362 		end = start + sizes[area];
2363 
2364 		/* is everything aligned properly? */
2365 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2366 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2367 
2368 		/* detect the area with the highest address */
2369 		if (start > offsets[last_area])
2370 			last_area = area;
2371 
2372 		for (area2 = 0; area2 < nr_vms; area2++) {
2373 			unsigned long start2 = offsets[area2];
2374 			unsigned long end2 = start2 + sizes[area2];
2375 
2376 			if (area2 == area)
2377 				continue;
2378 
2379 			BUG_ON(start2 >= start && start2 < end);
2380 			BUG_ON(end2 <= end && end2 > start);
2381 		}
2382 	}
2383 	last_end = offsets[last_area] + sizes[last_area];
2384 
2385 	if (vmalloc_end - vmalloc_start < last_end) {
2386 		WARN_ON(true);
2387 		return NULL;
2388 	}
2389 
2390 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2391 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2392 	if (!vas || !vms)
2393 		goto err_free2;
2394 
2395 	for (area = 0; area < nr_vms; area++) {
2396 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2397 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2398 		if (!vas[area] || !vms[area])
2399 			goto err_free;
2400 	}
2401 retry:
2402 	spin_lock(&vmap_area_lock);
2403 
2404 	/* start scanning - we scan from the top, begin with the last area */
2405 	area = term_area = last_area;
2406 	start = offsets[area];
2407 	end = start + sizes[area];
2408 
2409 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2410 		base = vmalloc_end - last_end;
2411 		goto found;
2412 	}
2413 	base = pvm_determine_end(&next, &prev, align) - end;
2414 
2415 	while (true) {
2416 		BUG_ON(next && next->va_end <= base + end);
2417 		BUG_ON(prev && prev->va_end > base + end);
2418 
2419 		/*
2420 		 * base might have underflowed, add last_end before
2421 		 * comparing.
2422 		 */
2423 		if (base + last_end < vmalloc_start + last_end) {
2424 			spin_unlock(&vmap_area_lock);
2425 			if (!purged) {
2426 				purge_vmap_area_lazy();
2427 				purged = true;
2428 				goto retry;
2429 			}
2430 			goto err_free;
2431 		}
2432 
2433 		/*
2434 		 * If next overlaps, move base downwards so that it's
2435 		 * right below next and then recheck.
2436 		 */
2437 		if (next && next->va_start < base + end) {
2438 			base = pvm_determine_end(&next, &prev, align) - end;
2439 			term_area = area;
2440 			continue;
2441 		}
2442 
2443 		/*
2444 		 * If prev overlaps, shift down next and prev and move
2445 		 * base so that it's right below new next and then
2446 		 * recheck.
2447 		 */
2448 		if (prev && prev->va_end > base + start)  {
2449 			next = prev;
2450 			prev = node_to_va(rb_prev(&next->rb_node));
2451 			base = pvm_determine_end(&next, &prev, align) - end;
2452 			term_area = area;
2453 			continue;
2454 		}
2455 
2456 		/*
2457 		 * This area fits, move on to the previous one.  If
2458 		 * the previous one is the terminal one, we're done.
2459 		 */
2460 		area = (area + nr_vms - 1) % nr_vms;
2461 		if (area == term_area)
2462 			break;
2463 		start = offsets[area];
2464 		end = start + sizes[area];
2465 		pvm_find_next_prev(base + end, &next, &prev);
2466 	}
2467 found:
2468 	/* we've found a fitting base, insert all va's */
2469 	for (area = 0; area < nr_vms; area++) {
2470 		struct vmap_area *va = vas[area];
2471 
2472 		va->va_start = base + offsets[area];
2473 		va->va_end = va->va_start + sizes[area];
2474 		__insert_vmap_area(va);
2475 	}
2476 
2477 	vmap_area_pcpu_hole = base + offsets[last_area];
2478 
2479 	spin_unlock(&vmap_area_lock);
2480 
2481 	/* insert all vm's */
2482 	for (area = 0; area < nr_vms; area++)
2483 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2484 				  pcpu_get_vm_areas);
2485 
2486 	kfree(vas);
2487 	return vms;
2488 
2489 err_free:
2490 	for (area = 0; area < nr_vms; area++) {
2491 		kfree(vas[area]);
2492 		kfree(vms[area]);
2493 	}
2494 err_free2:
2495 	kfree(vas);
2496 	kfree(vms);
2497 	return NULL;
2498 }
2499 
2500 /**
2501  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2502  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2503  * @nr_vms: the number of allocated areas
2504  *
2505  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2506  */
2507 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2508 {
2509 	int i;
2510 
2511 	for (i = 0; i < nr_vms; i++)
2512 		free_vm_area(vms[i]);
2513 	kfree(vms);
2514 }
2515 #endif	/* CONFIG_SMP */
2516 
2517 #ifdef CONFIG_PROC_FS
2518 static void *s_start(struct seq_file *m, loff_t *pos)
2519 	__acquires(&vmlist_lock)
2520 {
2521 	loff_t n = *pos;
2522 	struct vm_struct *v;
2523 
2524 	read_lock(&vmlist_lock);
2525 	v = vmlist;
2526 	while (n > 0 && v) {
2527 		n--;
2528 		v = v->next;
2529 	}
2530 	if (!n)
2531 		return v;
2532 
2533 	return NULL;
2534 
2535 }
2536 
2537 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2538 {
2539 	struct vm_struct *v = p;
2540 
2541 	++*pos;
2542 	return v->next;
2543 }
2544 
2545 static void s_stop(struct seq_file *m, void *p)
2546 	__releases(&vmlist_lock)
2547 {
2548 	read_unlock(&vmlist_lock);
2549 }
2550 
2551 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2552 {
2553 	if (NUMA_BUILD) {
2554 		unsigned int nr, *counters = m->private;
2555 
2556 		if (!counters)
2557 			return;
2558 
2559 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2560 
2561 		for (nr = 0; nr < v->nr_pages; nr++)
2562 			counters[page_to_nid(v->pages[nr])]++;
2563 
2564 		for_each_node_state(nr, N_HIGH_MEMORY)
2565 			if (counters[nr])
2566 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2567 	}
2568 }
2569 
2570 static int s_show(struct seq_file *m, void *p)
2571 {
2572 	struct vm_struct *v = p;
2573 
2574 	seq_printf(m, "0x%pK-0x%pK %7ld",
2575 		v->addr, v->addr + v->size, v->size);
2576 
2577 	if (v->caller)
2578 		seq_printf(m, " %pS", v->caller);
2579 
2580 	if (v->nr_pages)
2581 		seq_printf(m, " pages=%d", v->nr_pages);
2582 
2583 	if (v->phys_addr)
2584 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2585 
2586 	if (v->flags & VM_IOREMAP)
2587 		seq_printf(m, " ioremap");
2588 
2589 	if (v->flags & VM_ALLOC)
2590 		seq_printf(m, " vmalloc");
2591 
2592 	if (v->flags & VM_MAP)
2593 		seq_printf(m, " vmap");
2594 
2595 	if (v->flags & VM_USERMAP)
2596 		seq_printf(m, " user");
2597 
2598 	if (v->flags & VM_VPAGES)
2599 		seq_printf(m, " vpages");
2600 
2601 	show_numa_info(m, v);
2602 	seq_putc(m, '\n');
2603 	return 0;
2604 }
2605 
2606 static const struct seq_operations vmalloc_op = {
2607 	.start = s_start,
2608 	.next = s_next,
2609 	.stop = s_stop,
2610 	.show = s_show,
2611 };
2612 
2613 static int vmalloc_open(struct inode *inode, struct file *file)
2614 {
2615 	unsigned int *ptr = NULL;
2616 	int ret;
2617 
2618 	if (NUMA_BUILD) {
2619 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2620 		if (ptr == NULL)
2621 			return -ENOMEM;
2622 	}
2623 	ret = seq_open(file, &vmalloc_op);
2624 	if (!ret) {
2625 		struct seq_file *m = file->private_data;
2626 		m->private = ptr;
2627 	} else
2628 		kfree(ptr);
2629 	return ret;
2630 }
2631 
2632 static const struct file_operations proc_vmalloc_operations = {
2633 	.open		= vmalloc_open,
2634 	.read		= seq_read,
2635 	.llseek		= seq_lseek,
2636 	.release	= seq_release_private,
2637 };
2638 
2639 static int __init proc_vmalloc_init(void)
2640 {
2641 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2642 	return 0;
2643 }
2644 module_init(proc_vmalloc_init);
2645 #endif
2646 
2647