1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/uio.h> 37 #include <linux/bitops.h> 38 #include <linux/rbtree_augmented.h> 39 #include <linux/overflow.h> 40 #include <linux/pgtable.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 #include <linux/page_owner.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/vmalloc.h> 49 50 #include "internal.h" 51 #include "pgalloc-track.h" 52 53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 55 56 static int __init set_nohugeiomap(char *str) 57 { 58 ioremap_max_page_shift = PAGE_SHIFT; 59 return 0; 60 } 61 early_param("nohugeiomap", set_nohugeiomap); 62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 65 66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 67 static bool __ro_after_init vmap_allow_huge = true; 68 69 static int __init set_nohugevmalloc(char *str) 70 { 71 vmap_allow_huge = false; 72 return 0; 73 } 74 early_param("nohugevmalloc", set_nohugevmalloc); 75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 76 static const bool vmap_allow_huge = false; 77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 78 79 bool is_vmalloc_addr(const void *x) 80 { 81 unsigned long addr = (unsigned long)kasan_reset_tag(x); 82 83 return addr >= VMALLOC_START && addr < VMALLOC_END; 84 } 85 EXPORT_SYMBOL(is_vmalloc_addr); 86 87 struct vfree_deferred { 88 struct llist_head list; 89 struct work_struct wq; 90 }; 91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 92 93 /*** Page table manipulation functions ***/ 94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 95 phys_addr_t phys_addr, pgprot_t prot, 96 unsigned int max_page_shift, pgtbl_mod_mask *mask) 97 { 98 pte_t *pte; 99 u64 pfn; 100 struct page *page; 101 unsigned long size = PAGE_SIZE; 102 103 pfn = phys_addr >> PAGE_SHIFT; 104 pte = pte_alloc_kernel_track(pmd, addr, mask); 105 if (!pte) 106 return -ENOMEM; 107 do { 108 if (unlikely(!pte_none(ptep_get(pte)))) { 109 if (pfn_valid(pfn)) { 110 page = pfn_to_page(pfn); 111 dump_page(page, "remapping already mapped page"); 112 } 113 BUG(); 114 } 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry, size); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int vmap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 if (!err) 324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, 325 ioremap_max_page_shift); 326 return err; 327 } 328 329 int ioremap_page_range(unsigned long addr, unsigned long end, 330 phys_addr_t phys_addr, pgprot_t prot) 331 { 332 struct vm_struct *area; 333 334 area = find_vm_area((void *)addr); 335 if (!area || !(area->flags & VM_IOREMAP)) { 336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); 337 return -EINVAL; 338 } 339 if (addr != (unsigned long)area->addr || 340 (void *)end != area->addr + get_vm_area_size(area)) { 341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", 342 addr, end, (long)area->addr, 343 (long)area->addr + get_vm_area_size(area)); 344 return -ERANGE; 345 } 346 return vmap_page_range(addr, end, phys_addr, prot); 347 } 348 349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 350 pgtbl_mod_mask *mask) 351 { 352 pte_t *pte; 353 354 pte = pte_offset_kernel(pmd, addr); 355 do { 356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 357 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 358 } while (pte++, addr += PAGE_SIZE, addr != end); 359 *mask |= PGTBL_PTE_MODIFIED; 360 } 361 362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 363 pgtbl_mod_mask *mask) 364 { 365 pmd_t *pmd; 366 unsigned long next; 367 int cleared; 368 369 pmd = pmd_offset(pud, addr); 370 do { 371 next = pmd_addr_end(addr, end); 372 373 cleared = pmd_clear_huge(pmd); 374 if (cleared || pmd_bad(*pmd)) 375 *mask |= PGTBL_PMD_MODIFIED; 376 377 if (cleared) 378 continue; 379 if (pmd_none_or_clear_bad(pmd)) 380 continue; 381 vunmap_pte_range(pmd, addr, next, mask); 382 383 cond_resched(); 384 } while (pmd++, addr = next, addr != end); 385 } 386 387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 pud_t *pud; 391 unsigned long next; 392 int cleared; 393 394 pud = pud_offset(p4d, addr); 395 do { 396 next = pud_addr_end(addr, end); 397 398 cleared = pud_clear_huge(pud); 399 if (cleared || pud_bad(*pud)) 400 *mask |= PGTBL_PUD_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (pud_none_or_clear_bad(pud)) 405 continue; 406 vunmap_pmd_range(pud, addr, next, mask); 407 } while (pud++, addr = next, addr != end); 408 } 409 410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 411 pgtbl_mod_mask *mask) 412 { 413 p4d_t *p4d; 414 unsigned long next; 415 416 p4d = p4d_offset(pgd, addr); 417 do { 418 next = p4d_addr_end(addr, end); 419 420 p4d_clear_huge(p4d); 421 if (p4d_bad(*p4d)) 422 *mask |= PGTBL_P4D_MODIFIED; 423 424 if (p4d_none_or_clear_bad(p4d)) 425 continue; 426 vunmap_pud_range(p4d, addr, next, mask); 427 } while (p4d++, addr = next, addr != end); 428 } 429 430 /* 431 * vunmap_range_noflush is similar to vunmap_range, but does not 432 * flush caches or TLBs. 433 * 434 * The caller is responsible for calling flush_cache_vmap() before calling 435 * this function, and flush_tlb_kernel_range after it has returned 436 * successfully (and before the addresses are expected to cause a page fault 437 * or be re-mapped for something else, if TLB flushes are being delayed or 438 * coalesced). 439 * 440 * This is an internal function only. Do not use outside mm/. 441 */ 442 void __vunmap_range_noflush(unsigned long start, unsigned long end) 443 { 444 unsigned long next; 445 pgd_t *pgd; 446 unsigned long addr = start; 447 pgtbl_mod_mask mask = 0; 448 449 BUG_ON(addr >= end); 450 pgd = pgd_offset_k(addr); 451 do { 452 next = pgd_addr_end(addr, end); 453 if (pgd_bad(*pgd)) 454 mask |= PGTBL_PGD_MODIFIED; 455 if (pgd_none_or_clear_bad(pgd)) 456 continue; 457 vunmap_p4d_range(pgd, addr, next, &mask); 458 } while (pgd++, addr = next, addr != end); 459 460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 461 arch_sync_kernel_mappings(start, end); 462 } 463 464 void vunmap_range_noflush(unsigned long start, unsigned long end) 465 { 466 kmsan_vunmap_range_noflush(start, end); 467 __vunmap_range_noflush(start, end); 468 } 469 470 /** 471 * vunmap_range - unmap kernel virtual addresses 472 * @addr: start of the VM area to unmap 473 * @end: end of the VM area to unmap (non-inclusive) 474 * 475 * Clears any present PTEs in the virtual address range, flushes TLBs and 476 * caches. Any subsequent access to the address before it has been re-mapped 477 * is a kernel bug. 478 */ 479 void vunmap_range(unsigned long addr, unsigned long end) 480 { 481 flush_cache_vunmap(addr, end); 482 vunmap_range_noflush(addr, end); 483 flush_tlb_kernel_range(addr, end); 484 } 485 486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 487 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 488 pgtbl_mod_mask *mask) 489 { 490 pte_t *pte; 491 492 /* 493 * nr is a running index into the array which helps higher level 494 * callers keep track of where we're up to. 495 */ 496 497 pte = pte_alloc_kernel_track(pmd, addr, mask); 498 if (!pte) 499 return -ENOMEM; 500 do { 501 struct page *page = pages[*nr]; 502 503 if (WARN_ON(!pte_none(ptep_get(pte)))) 504 return -EBUSY; 505 if (WARN_ON(!page)) 506 return -ENOMEM; 507 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 508 return -EINVAL; 509 510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 511 (*nr)++; 512 } while (pte++, addr += PAGE_SIZE, addr != end); 513 *mask |= PGTBL_PTE_MODIFIED; 514 return 0; 515 } 516 517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 518 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 519 pgtbl_mod_mask *mask) 520 { 521 pmd_t *pmd; 522 unsigned long next; 523 524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 525 if (!pmd) 526 return -ENOMEM; 527 do { 528 next = pmd_addr_end(addr, end); 529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 530 return -ENOMEM; 531 } while (pmd++, addr = next, addr != end); 532 return 0; 533 } 534 535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 536 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 537 pgtbl_mod_mask *mask) 538 { 539 pud_t *pud; 540 unsigned long next; 541 542 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 543 if (!pud) 544 return -ENOMEM; 545 do { 546 next = pud_addr_end(addr, end); 547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 548 return -ENOMEM; 549 } while (pud++, addr = next, addr != end); 550 return 0; 551 } 552 553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 554 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 555 pgtbl_mod_mask *mask) 556 { 557 p4d_t *p4d; 558 unsigned long next; 559 560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 561 if (!p4d) 562 return -ENOMEM; 563 do { 564 next = p4d_addr_end(addr, end); 565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 566 return -ENOMEM; 567 } while (p4d++, addr = next, addr != end); 568 return 0; 569 } 570 571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 572 pgprot_t prot, struct page **pages) 573 { 574 unsigned long start = addr; 575 pgd_t *pgd; 576 unsigned long next; 577 int err = 0; 578 int nr = 0; 579 pgtbl_mod_mask mask = 0; 580 581 BUG_ON(addr >= end); 582 pgd = pgd_offset_k(addr); 583 do { 584 next = pgd_addr_end(addr, end); 585 if (pgd_bad(*pgd)) 586 mask |= PGTBL_PGD_MODIFIED; 587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 588 if (err) 589 break; 590 } while (pgd++, addr = next, addr != end); 591 592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 593 arch_sync_kernel_mappings(start, end); 594 595 return err; 596 } 597 598 /* 599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 600 * flush caches. 601 * 602 * The caller is responsible for calling flush_cache_vmap() after this 603 * function returns successfully and before the addresses are accessed. 604 * 605 * This is an internal function only. Do not use outside mm/. 606 */ 607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, 608 pgprot_t prot, struct page **pages, unsigned int page_shift) 609 { 610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 611 612 WARN_ON(page_shift < PAGE_SHIFT); 613 614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 615 page_shift == PAGE_SHIFT) 616 return vmap_small_pages_range_noflush(addr, end, prot, pages); 617 618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 619 int err; 620 621 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 622 page_to_phys(pages[i]), prot, 623 page_shift); 624 if (err) 625 return err; 626 627 addr += 1UL << page_shift; 628 } 629 630 return 0; 631 } 632 633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 634 pgprot_t prot, struct page **pages, unsigned int page_shift) 635 { 636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, 637 page_shift); 638 639 if (ret) 640 return ret; 641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 642 } 643 644 /** 645 * vmap_pages_range - map pages to a kernel virtual address 646 * @addr: start of the VM area to map 647 * @end: end of the VM area to map (non-inclusive) 648 * @prot: page protection flags to use 649 * @pages: pages to map (always PAGE_SIZE pages) 650 * @page_shift: maximum shift that the pages may be mapped with, @pages must 651 * be aligned and contiguous up to at least this shift. 652 * 653 * RETURNS: 654 * 0 on success, -errno on failure. 655 */ 656 int vmap_pages_range(unsigned long addr, unsigned long end, 657 pgprot_t prot, struct page **pages, unsigned int page_shift) 658 { 659 int err; 660 661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 662 flush_cache_vmap(addr, end); 663 return err; 664 } 665 666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, 667 unsigned long end) 668 { 669 might_sleep(); 670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) 671 return -EINVAL; 672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) 673 return -EINVAL; 674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) 675 return -EINVAL; 676 if ((end - start) >> PAGE_SHIFT > totalram_pages()) 677 return -E2BIG; 678 if (start < (unsigned long)area->addr || 679 (void *)end > area->addr + get_vm_area_size(area)) 680 return -ERANGE; 681 return 0; 682 } 683 684 /** 685 * vm_area_map_pages - map pages inside given sparse vm_area 686 * @area: vm_area 687 * @start: start address inside vm_area 688 * @end: end address inside vm_area 689 * @pages: pages to map (always PAGE_SIZE pages) 690 */ 691 int vm_area_map_pages(struct vm_struct *area, unsigned long start, 692 unsigned long end, struct page **pages) 693 { 694 int err; 695 696 err = check_sparse_vm_area(area, start, end); 697 if (err) 698 return err; 699 700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); 701 } 702 703 /** 704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area 705 * @area: vm_area 706 * @start: start address inside vm_area 707 * @end: end address inside vm_area 708 */ 709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, 710 unsigned long end) 711 { 712 if (check_sparse_vm_area(area, start, end)) 713 return; 714 715 vunmap_range(start, end); 716 } 717 718 int is_vmalloc_or_module_addr(const void *x) 719 { 720 /* 721 * ARM, x86-64 and sparc64 put modules in a special place, 722 * and fall back on vmalloc() if that fails. Others 723 * just put it in the vmalloc space. 724 */ 725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) 726 unsigned long addr = (unsigned long)kasan_reset_tag(x); 727 if (addr >= MODULES_VADDR && addr < MODULES_END) 728 return 1; 729 #endif 730 return is_vmalloc_addr(x); 731 } 732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); 733 734 /* 735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 736 * return the tail page that corresponds to the base page address, which 737 * matches small vmap mappings. 738 */ 739 struct page *vmalloc_to_page(const void *vmalloc_addr) 740 { 741 unsigned long addr = (unsigned long) vmalloc_addr; 742 struct page *page = NULL; 743 pgd_t *pgd = pgd_offset_k(addr); 744 p4d_t *p4d; 745 pud_t *pud; 746 pmd_t *pmd; 747 pte_t *ptep, pte; 748 749 /* 750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 751 * architectures that do not vmalloc module space 752 */ 753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 754 755 if (pgd_none(*pgd)) 756 return NULL; 757 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 758 return NULL; /* XXX: no allowance for huge pgd */ 759 if (WARN_ON_ONCE(pgd_bad(*pgd))) 760 return NULL; 761 762 p4d = p4d_offset(pgd, addr); 763 if (p4d_none(*p4d)) 764 return NULL; 765 if (p4d_leaf(*p4d)) 766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 767 if (WARN_ON_ONCE(p4d_bad(*p4d))) 768 return NULL; 769 770 pud = pud_offset(p4d, addr); 771 if (pud_none(*pud)) 772 return NULL; 773 if (pud_leaf(*pud)) 774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 775 if (WARN_ON_ONCE(pud_bad(*pud))) 776 return NULL; 777 778 pmd = pmd_offset(pud, addr); 779 if (pmd_none(*pmd)) 780 return NULL; 781 if (pmd_leaf(*pmd)) 782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 783 if (WARN_ON_ONCE(pmd_bad(*pmd))) 784 return NULL; 785 786 ptep = pte_offset_kernel(pmd, addr); 787 pte = ptep_get(ptep); 788 if (pte_present(pte)) 789 page = pte_page(pte); 790 791 return page; 792 } 793 EXPORT_SYMBOL(vmalloc_to_page); 794 795 /* 796 * Map a vmalloc()-space virtual address to the physical page frame number. 797 */ 798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 799 { 800 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 801 } 802 EXPORT_SYMBOL(vmalloc_to_pfn); 803 804 805 /*** Global kva allocator ***/ 806 807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 809 810 811 static DEFINE_SPINLOCK(free_vmap_area_lock); 812 static bool vmap_initialized __read_mostly; 813 814 /* 815 * This kmem_cache is used for vmap_area objects. Instead of 816 * allocating from slab we reuse an object from this cache to 817 * make things faster. Especially in "no edge" splitting of 818 * free block. 819 */ 820 static struct kmem_cache *vmap_area_cachep; 821 822 /* 823 * This linked list is used in pair with free_vmap_area_root. 824 * It gives O(1) access to prev/next to perform fast coalescing. 825 */ 826 static LIST_HEAD(free_vmap_area_list); 827 828 /* 829 * This augment red-black tree represents the free vmap space. 830 * All vmap_area objects in this tree are sorted by va->va_start 831 * address. It is used for allocation and merging when a vmap 832 * object is released. 833 * 834 * Each vmap_area node contains a maximum available free block 835 * of its sub-tree, right or left. Therefore it is possible to 836 * find a lowest match of free area. 837 */ 838 static struct rb_root free_vmap_area_root = RB_ROOT; 839 840 /* 841 * Preload a CPU with one object for "no edge" split case. The 842 * aim is to get rid of allocations from the atomic context, thus 843 * to use more permissive allocation masks. 844 */ 845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 846 847 /* 848 * This structure defines a single, solid model where a list and 849 * rb-tree are part of one entity protected by the lock. Nodes are 850 * sorted in ascending order, thus for O(1) access to left/right 851 * neighbors a list is used as well as for sequential traversal. 852 */ 853 struct rb_list { 854 struct rb_root root; 855 struct list_head head; 856 spinlock_t lock; 857 }; 858 859 /* 860 * A fast size storage contains VAs up to 1M size. A pool consists 861 * of linked between each other ready to go VAs of certain sizes. 862 * An index in the pool-array corresponds to number of pages + 1. 863 */ 864 #define MAX_VA_SIZE_PAGES 256 865 866 struct vmap_pool { 867 struct list_head head; 868 unsigned long len; 869 }; 870 871 /* 872 * An effective vmap-node logic. Users make use of nodes instead 873 * of a global heap. It allows to balance an access and mitigate 874 * contention. 875 */ 876 static struct vmap_node { 877 /* Simple size segregated storage. */ 878 struct vmap_pool pool[MAX_VA_SIZE_PAGES]; 879 spinlock_t pool_lock; 880 bool skip_populate; 881 882 /* Bookkeeping data of this node. */ 883 struct rb_list busy; 884 struct rb_list lazy; 885 886 /* 887 * Ready-to-free areas. 888 */ 889 struct list_head purge_list; 890 struct work_struct purge_work; 891 unsigned long nr_purged; 892 } single; 893 894 /* 895 * Initial setup consists of one single node, i.e. a balancing 896 * is fully disabled. Later on, after vmap is initialized these 897 * parameters are updated based on a system capacity. 898 */ 899 static struct vmap_node *vmap_nodes = &single; 900 static __read_mostly unsigned int nr_vmap_nodes = 1; 901 static __read_mostly unsigned int vmap_zone_size = 1; 902 903 /* A simple iterator over all vmap-nodes. */ 904 #define for_each_vmap_node(vn) \ 905 for ((vn) = &vmap_nodes[0]; \ 906 (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) 907 908 static inline unsigned int 909 addr_to_node_id(unsigned long addr) 910 { 911 return (addr / vmap_zone_size) % nr_vmap_nodes; 912 } 913 914 static inline struct vmap_node * 915 addr_to_node(unsigned long addr) 916 { 917 return &vmap_nodes[addr_to_node_id(addr)]; 918 } 919 920 static inline struct vmap_node * 921 id_to_node(unsigned int id) 922 { 923 return &vmap_nodes[id % nr_vmap_nodes]; 924 } 925 926 static inline unsigned int 927 node_to_id(struct vmap_node *node) 928 { 929 /* Pointer arithmetic. */ 930 unsigned int id = node - vmap_nodes; 931 932 if (likely(id < nr_vmap_nodes)) 933 return id; 934 935 WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); 936 return 0; 937 } 938 939 /* 940 * We use the value 0 to represent "no node", that is why 941 * an encoded value will be the node-id incremented by 1. 942 * It is always greater then 0. A valid node_id which can 943 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id 944 * is not valid 0 is returned. 945 */ 946 static unsigned int 947 encode_vn_id(unsigned int node_id) 948 { 949 /* Can store U8_MAX [0:254] nodes. */ 950 if (node_id < nr_vmap_nodes) 951 return (node_id + 1) << BITS_PER_BYTE; 952 953 /* Warn and no node encoded. */ 954 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); 955 return 0; 956 } 957 958 /* 959 * Returns an encoded node-id, the valid range is within 960 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is 961 * returned if extracted data is wrong. 962 */ 963 static unsigned int 964 decode_vn_id(unsigned int val) 965 { 966 unsigned int node_id = (val >> BITS_PER_BYTE) - 1; 967 968 /* Can store U8_MAX [0:254] nodes. */ 969 if (node_id < nr_vmap_nodes) 970 return node_id; 971 972 /* If it was _not_ zero, warn. */ 973 WARN_ONCE(node_id != UINT_MAX, 974 "Decode wrong node id (%d)\n", node_id); 975 976 return nr_vmap_nodes; 977 } 978 979 static bool 980 is_vn_id_valid(unsigned int node_id) 981 { 982 if (node_id < nr_vmap_nodes) 983 return true; 984 985 return false; 986 } 987 988 static __always_inline unsigned long 989 va_size(struct vmap_area *va) 990 { 991 return (va->va_end - va->va_start); 992 } 993 994 static __always_inline unsigned long 995 get_subtree_max_size(struct rb_node *node) 996 { 997 struct vmap_area *va; 998 999 va = rb_entry_safe(node, struct vmap_area, rb_node); 1000 return va ? va->subtree_max_size : 0; 1001 } 1002 1003 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 1004 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 1005 1006 static void reclaim_and_purge_vmap_areas(void); 1007 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 1008 static void drain_vmap_area_work(struct work_struct *work); 1009 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 1010 1011 static atomic_long_t nr_vmalloc_pages; 1012 1013 unsigned long vmalloc_nr_pages(void) 1014 { 1015 return atomic_long_read(&nr_vmalloc_pages); 1016 } 1017 1018 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) 1019 { 1020 struct rb_node *n = root->rb_node; 1021 1022 addr = (unsigned long)kasan_reset_tag((void *)addr); 1023 1024 while (n) { 1025 struct vmap_area *va; 1026 1027 va = rb_entry(n, struct vmap_area, rb_node); 1028 if (addr < va->va_start) 1029 n = n->rb_left; 1030 else if (addr >= va->va_end) 1031 n = n->rb_right; 1032 else 1033 return va; 1034 } 1035 1036 return NULL; 1037 } 1038 1039 /* Look up the first VA which satisfies addr < va_end, NULL if none. */ 1040 static struct vmap_area * 1041 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) 1042 { 1043 struct vmap_area *va = NULL; 1044 struct rb_node *n = root->rb_node; 1045 1046 addr = (unsigned long)kasan_reset_tag((void *)addr); 1047 1048 while (n) { 1049 struct vmap_area *tmp; 1050 1051 tmp = rb_entry(n, struct vmap_area, rb_node); 1052 if (tmp->va_end > addr) { 1053 va = tmp; 1054 if (tmp->va_start <= addr) 1055 break; 1056 1057 n = n->rb_left; 1058 } else 1059 n = n->rb_right; 1060 } 1061 1062 return va; 1063 } 1064 1065 /* 1066 * Returns a node where a first VA, that satisfies addr < va_end, resides. 1067 * If success, a node is locked. A user is responsible to unlock it when a 1068 * VA is no longer needed to be accessed. 1069 * 1070 * Returns NULL if nothing found. 1071 */ 1072 static struct vmap_node * 1073 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) 1074 { 1075 unsigned long va_start_lowest; 1076 struct vmap_node *vn; 1077 1078 repeat: 1079 va_start_lowest = 0; 1080 1081 for_each_vmap_node(vn) { 1082 spin_lock(&vn->busy.lock); 1083 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); 1084 1085 if (*va) 1086 if (!va_start_lowest || (*va)->va_start < va_start_lowest) 1087 va_start_lowest = (*va)->va_start; 1088 spin_unlock(&vn->busy.lock); 1089 } 1090 1091 /* 1092 * Check if found VA exists, it might have gone away. In this case we 1093 * repeat the search because a VA has been removed concurrently and we 1094 * need to proceed to the next one, which is a rare case. 1095 */ 1096 if (va_start_lowest) { 1097 vn = addr_to_node(va_start_lowest); 1098 1099 spin_lock(&vn->busy.lock); 1100 *va = __find_vmap_area(va_start_lowest, &vn->busy.root); 1101 1102 if (*va) 1103 return vn; 1104 1105 spin_unlock(&vn->busy.lock); 1106 goto repeat; 1107 } 1108 1109 return NULL; 1110 } 1111 1112 /* 1113 * This function returns back addresses of parent node 1114 * and its left or right link for further processing. 1115 * 1116 * Otherwise NULL is returned. In that case all further 1117 * steps regarding inserting of conflicting overlap range 1118 * have to be declined and actually considered as a bug. 1119 */ 1120 static __always_inline struct rb_node ** 1121 find_va_links(struct vmap_area *va, 1122 struct rb_root *root, struct rb_node *from, 1123 struct rb_node **parent) 1124 { 1125 struct vmap_area *tmp_va; 1126 struct rb_node **link; 1127 1128 if (root) { 1129 link = &root->rb_node; 1130 if (unlikely(!*link)) { 1131 *parent = NULL; 1132 return link; 1133 } 1134 } else { 1135 link = &from; 1136 } 1137 1138 /* 1139 * Go to the bottom of the tree. When we hit the last point 1140 * we end up with parent rb_node and correct direction, i name 1141 * it link, where the new va->rb_node will be attached to. 1142 */ 1143 do { 1144 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 1145 1146 /* 1147 * During the traversal we also do some sanity check. 1148 * Trigger the BUG() if there are sides(left/right) 1149 * or full overlaps. 1150 */ 1151 if (va->va_end <= tmp_va->va_start) 1152 link = &(*link)->rb_left; 1153 else if (va->va_start >= tmp_va->va_end) 1154 link = &(*link)->rb_right; 1155 else { 1156 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 1157 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 1158 1159 return NULL; 1160 } 1161 } while (*link); 1162 1163 *parent = &tmp_va->rb_node; 1164 return link; 1165 } 1166 1167 static __always_inline struct list_head * 1168 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 1169 { 1170 struct list_head *list; 1171 1172 if (unlikely(!parent)) 1173 /* 1174 * The red-black tree where we try to find VA neighbors 1175 * before merging or inserting is empty, i.e. it means 1176 * there is no free vmap space. Normally it does not 1177 * happen but we handle this case anyway. 1178 */ 1179 return NULL; 1180 1181 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 1182 return (&parent->rb_right == link ? list->next : list); 1183 } 1184 1185 static __always_inline void 1186 __link_va(struct vmap_area *va, struct rb_root *root, 1187 struct rb_node *parent, struct rb_node **link, 1188 struct list_head *head, bool augment) 1189 { 1190 /* 1191 * VA is still not in the list, but we can 1192 * identify its future previous list_head node. 1193 */ 1194 if (likely(parent)) { 1195 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 1196 if (&parent->rb_right != link) 1197 head = head->prev; 1198 } 1199 1200 /* Insert to the rb-tree */ 1201 rb_link_node(&va->rb_node, parent, link); 1202 if (augment) { 1203 /* 1204 * Some explanation here. Just perform simple insertion 1205 * to the tree. We do not set va->subtree_max_size to 1206 * its current size before calling rb_insert_augmented(). 1207 * It is because we populate the tree from the bottom 1208 * to parent levels when the node _is_ in the tree. 1209 * 1210 * Therefore we set subtree_max_size to zero after insertion, 1211 * to let __augment_tree_propagate_from() puts everything to 1212 * the correct order later on. 1213 */ 1214 rb_insert_augmented(&va->rb_node, 1215 root, &free_vmap_area_rb_augment_cb); 1216 va->subtree_max_size = 0; 1217 } else { 1218 rb_insert_color(&va->rb_node, root); 1219 } 1220 1221 /* Address-sort this list */ 1222 list_add(&va->list, head); 1223 } 1224 1225 static __always_inline void 1226 link_va(struct vmap_area *va, struct rb_root *root, 1227 struct rb_node *parent, struct rb_node **link, 1228 struct list_head *head) 1229 { 1230 __link_va(va, root, parent, link, head, false); 1231 } 1232 1233 static __always_inline void 1234 link_va_augment(struct vmap_area *va, struct rb_root *root, 1235 struct rb_node *parent, struct rb_node **link, 1236 struct list_head *head) 1237 { 1238 __link_va(va, root, parent, link, head, true); 1239 } 1240 1241 static __always_inline void 1242 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) 1243 { 1244 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 1245 return; 1246 1247 if (augment) 1248 rb_erase_augmented(&va->rb_node, 1249 root, &free_vmap_area_rb_augment_cb); 1250 else 1251 rb_erase(&va->rb_node, root); 1252 1253 list_del_init(&va->list); 1254 RB_CLEAR_NODE(&va->rb_node); 1255 } 1256 1257 static __always_inline void 1258 unlink_va(struct vmap_area *va, struct rb_root *root) 1259 { 1260 __unlink_va(va, root, false); 1261 } 1262 1263 static __always_inline void 1264 unlink_va_augment(struct vmap_area *va, struct rb_root *root) 1265 { 1266 __unlink_va(va, root, true); 1267 } 1268 1269 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1270 /* 1271 * Gets called when remove the node and rotate. 1272 */ 1273 static __always_inline unsigned long 1274 compute_subtree_max_size(struct vmap_area *va) 1275 { 1276 return max3(va_size(va), 1277 get_subtree_max_size(va->rb_node.rb_left), 1278 get_subtree_max_size(va->rb_node.rb_right)); 1279 } 1280 1281 static void 1282 augment_tree_propagate_check(void) 1283 { 1284 struct vmap_area *va; 1285 unsigned long computed_size; 1286 1287 list_for_each_entry(va, &free_vmap_area_list, list) { 1288 computed_size = compute_subtree_max_size(va); 1289 if (computed_size != va->subtree_max_size) 1290 pr_emerg("tree is corrupted: %lu, %lu\n", 1291 va_size(va), va->subtree_max_size); 1292 } 1293 } 1294 #endif 1295 1296 /* 1297 * This function populates subtree_max_size from bottom to upper 1298 * levels starting from VA point. The propagation must be done 1299 * when VA size is modified by changing its va_start/va_end. Or 1300 * in case of newly inserting of VA to the tree. 1301 * 1302 * It means that __augment_tree_propagate_from() must be called: 1303 * - After VA has been inserted to the tree(free path); 1304 * - After VA has been shrunk(allocation path); 1305 * - After VA has been increased(merging path). 1306 * 1307 * Please note that, it does not mean that upper parent nodes 1308 * and their subtree_max_size are recalculated all the time up 1309 * to the root node. 1310 * 1311 * 4--8 1312 * /\ 1313 * / \ 1314 * / \ 1315 * 2--2 8--8 1316 * 1317 * For example if we modify the node 4, shrinking it to 2, then 1318 * no any modification is required. If we shrink the node 2 to 1 1319 * its subtree_max_size is updated only, and set to 1. If we shrink 1320 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1321 * node becomes 4--6. 1322 */ 1323 static __always_inline void 1324 augment_tree_propagate_from(struct vmap_area *va) 1325 { 1326 /* 1327 * Populate the tree from bottom towards the root until 1328 * the calculated maximum available size of checked node 1329 * is equal to its current one. 1330 */ 1331 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1332 1333 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1334 augment_tree_propagate_check(); 1335 #endif 1336 } 1337 1338 static void 1339 insert_vmap_area(struct vmap_area *va, 1340 struct rb_root *root, struct list_head *head) 1341 { 1342 struct rb_node **link; 1343 struct rb_node *parent; 1344 1345 link = find_va_links(va, root, NULL, &parent); 1346 if (link) 1347 link_va(va, root, parent, link, head); 1348 } 1349 1350 static void 1351 insert_vmap_area_augment(struct vmap_area *va, 1352 struct rb_node *from, struct rb_root *root, 1353 struct list_head *head) 1354 { 1355 struct rb_node **link; 1356 struct rb_node *parent; 1357 1358 if (from) 1359 link = find_va_links(va, NULL, from, &parent); 1360 else 1361 link = find_va_links(va, root, NULL, &parent); 1362 1363 if (link) { 1364 link_va_augment(va, root, parent, link, head); 1365 augment_tree_propagate_from(va); 1366 } 1367 } 1368 1369 /* 1370 * Merge de-allocated chunk of VA memory with previous 1371 * and next free blocks. If coalesce is not done a new 1372 * free area is inserted. If VA has been merged, it is 1373 * freed. 1374 * 1375 * Please note, it can return NULL in case of overlap 1376 * ranges, followed by WARN() report. Despite it is a 1377 * buggy behaviour, a system can be alive and keep 1378 * ongoing. 1379 */ 1380 static __always_inline struct vmap_area * 1381 __merge_or_add_vmap_area(struct vmap_area *va, 1382 struct rb_root *root, struct list_head *head, bool augment) 1383 { 1384 struct vmap_area *sibling; 1385 struct list_head *next; 1386 struct rb_node **link; 1387 struct rb_node *parent; 1388 bool merged = false; 1389 1390 /* 1391 * Find a place in the tree where VA potentially will be 1392 * inserted, unless it is merged with its sibling/siblings. 1393 */ 1394 link = find_va_links(va, root, NULL, &parent); 1395 if (!link) 1396 return NULL; 1397 1398 /* 1399 * Get next node of VA to check if merging can be done. 1400 */ 1401 next = get_va_next_sibling(parent, link); 1402 if (unlikely(next == NULL)) 1403 goto insert; 1404 1405 /* 1406 * start end 1407 * | | 1408 * |<------VA------>|<-----Next----->| 1409 * | | 1410 * start end 1411 */ 1412 if (next != head) { 1413 sibling = list_entry(next, struct vmap_area, list); 1414 if (sibling->va_start == va->va_end) { 1415 sibling->va_start = va->va_start; 1416 1417 /* Free vmap_area object. */ 1418 kmem_cache_free(vmap_area_cachep, va); 1419 1420 /* Point to the new merged area. */ 1421 va = sibling; 1422 merged = true; 1423 } 1424 } 1425 1426 /* 1427 * start end 1428 * | | 1429 * |<-----Prev----->|<------VA------>| 1430 * | | 1431 * start end 1432 */ 1433 if (next->prev != head) { 1434 sibling = list_entry(next->prev, struct vmap_area, list); 1435 if (sibling->va_end == va->va_start) { 1436 /* 1437 * If both neighbors are coalesced, it is important 1438 * to unlink the "next" node first, followed by merging 1439 * with "previous" one. Otherwise the tree might not be 1440 * fully populated if a sibling's augmented value is 1441 * "normalized" because of rotation operations. 1442 */ 1443 if (merged) 1444 __unlink_va(va, root, augment); 1445 1446 sibling->va_end = va->va_end; 1447 1448 /* Free vmap_area object. */ 1449 kmem_cache_free(vmap_area_cachep, va); 1450 1451 /* Point to the new merged area. */ 1452 va = sibling; 1453 merged = true; 1454 } 1455 } 1456 1457 insert: 1458 if (!merged) 1459 __link_va(va, root, parent, link, head, augment); 1460 1461 return va; 1462 } 1463 1464 static __always_inline struct vmap_area * 1465 merge_or_add_vmap_area(struct vmap_area *va, 1466 struct rb_root *root, struct list_head *head) 1467 { 1468 return __merge_or_add_vmap_area(va, root, head, false); 1469 } 1470 1471 static __always_inline struct vmap_area * 1472 merge_or_add_vmap_area_augment(struct vmap_area *va, 1473 struct rb_root *root, struct list_head *head) 1474 { 1475 va = __merge_or_add_vmap_area(va, root, head, true); 1476 if (va) 1477 augment_tree_propagate_from(va); 1478 1479 return va; 1480 } 1481 1482 static __always_inline bool 1483 is_within_this_va(struct vmap_area *va, unsigned long size, 1484 unsigned long align, unsigned long vstart) 1485 { 1486 unsigned long nva_start_addr; 1487 1488 if (va->va_start > vstart) 1489 nva_start_addr = ALIGN(va->va_start, align); 1490 else 1491 nva_start_addr = ALIGN(vstart, align); 1492 1493 /* Can be overflowed due to big size or alignment. */ 1494 if (nva_start_addr + size < nva_start_addr || 1495 nva_start_addr < vstart) 1496 return false; 1497 1498 return (nva_start_addr + size <= va->va_end); 1499 } 1500 1501 /* 1502 * Find the first free block(lowest start address) in the tree, 1503 * that will accomplish the request corresponding to passing 1504 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1505 * a search length is adjusted to account for worst case alignment 1506 * overhead. 1507 */ 1508 static __always_inline struct vmap_area * 1509 find_vmap_lowest_match(struct rb_root *root, unsigned long size, 1510 unsigned long align, unsigned long vstart, bool adjust_search_size) 1511 { 1512 struct vmap_area *va; 1513 struct rb_node *node; 1514 unsigned long length; 1515 1516 /* Start from the root. */ 1517 node = root->rb_node; 1518 1519 /* Adjust the search size for alignment overhead. */ 1520 length = adjust_search_size ? size + align - 1 : size; 1521 1522 while (node) { 1523 va = rb_entry(node, struct vmap_area, rb_node); 1524 1525 if (get_subtree_max_size(node->rb_left) >= length && 1526 vstart < va->va_start) { 1527 node = node->rb_left; 1528 } else { 1529 if (is_within_this_va(va, size, align, vstart)) 1530 return va; 1531 1532 /* 1533 * Does not make sense to go deeper towards the right 1534 * sub-tree if it does not have a free block that is 1535 * equal or bigger to the requested search length. 1536 */ 1537 if (get_subtree_max_size(node->rb_right) >= length) { 1538 node = node->rb_right; 1539 continue; 1540 } 1541 1542 /* 1543 * OK. We roll back and find the first right sub-tree, 1544 * that will satisfy the search criteria. It can happen 1545 * due to "vstart" restriction or an alignment overhead 1546 * that is bigger then PAGE_SIZE. 1547 */ 1548 while ((node = rb_parent(node))) { 1549 va = rb_entry(node, struct vmap_area, rb_node); 1550 if (is_within_this_va(va, size, align, vstart)) 1551 return va; 1552 1553 if (get_subtree_max_size(node->rb_right) >= length && 1554 vstart <= va->va_start) { 1555 /* 1556 * Shift the vstart forward. Please note, we update it with 1557 * parent's start address adding "1" because we do not want 1558 * to enter same sub-tree after it has already been checked 1559 * and no suitable free block found there. 1560 */ 1561 vstart = va->va_start + 1; 1562 node = node->rb_right; 1563 break; 1564 } 1565 } 1566 } 1567 } 1568 1569 return NULL; 1570 } 1571 1572 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1573 #include <linux/random.h> 1574 1575 static struct vmap_area * 1576 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, 1577 unsigned long align, unsigned long vstart) 1578 { 1579 struct vmap_area *va; 1580 1581 list_for_each_entry(va, head, list) { 1582 if (!is_within_this_va(va, size, align, vstart)) 1583 continue; 1584 1585 return va; 1586 } 1587 1588 return NULL; 1589 } 1590 1591 static void 1592 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, 1593 unsigned long size, unsigned long align) 1594 { 1595 struct vmap_area *va_1, *va_2; 1596 unsigned long vstart; 1597 unsigned int rnd; 1598 1599 get_random_bytes(&rnd, sizeof(rnd)); 1600 vstart = VMALLOC_START + rnd; 1601 1602 va_1 = find_vmap_lowest_match(root, size, align, vstart, false); 1603 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); 1604 1605 if (va_1 != va_2) 1606 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1607 va_1, va_2, vstart); 1608 } 1609 #endif 1610 1611 enum fit_type { 1612 NOTHING_FIT = 0, 1613 FL_FIT_TYPE = 1, /* full fit */ 1614 LE_FIT_TYPE = 2, /* left edge fit */ 1615 RE_FIT_TYPE = 3, /* right edge fit */ 1616 NE_FIT_TYPE = 4 /* no edge fit */ 1617 }; 1618 1619 static __always_inline enum fit_type 1620 classify_va_fit_type(struct vmap_area *va, 1621 unsigned long nva_start_addr, unsigned long size) 1622 { 1623 enum fit_type type; 1624 1625 /* Check if it is within VA. */ 1626 if (nva_start_addr < va->va_start || 1627 nva_start_addr + size > va->va_end) 1628 return NOTHING_FIT; 1629 1630 /* Now classify. */ 1631 if (va->va_start == nva_start_addr) { 1632 if (va->va_end == nva_start_addr + size) 1633 type = FL_FIT_TYPE; 1634 else 1635 type = LE_FIT_TYPE; 1636 } else if (va->va_end == nva_start_addr + size) { 1637 type = RE_FIT_TYPE; 1638 } else { 1639 type = NE_FIT_TYPE; 1640 } 1641 1642 return type; 1643 } 1644 1645 static __always_inline int 1646 va_clip(struct rb_root *root, struct list_head *head, 1647 struct vmap_area *va, unsigned long nva_start_addr, 1648 unsigned long size) 1649 { 1650 struct vmap_area *lva = NULL; 1651 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); 1652 1653 if (type == FL_FIT_TYPE) { 1654 /* 1655 * No need to split VA, it fully fits. 1656 * 1657 * | | 1658 * V NVA V 1659 * |---------------| 1660 */ 1661 unlink_va_augment(va, root); 1662 kmem_cache_free(vmap_area_cachep, va); 1663 } else if (type == LE_FIT_TYPE) { 1664 /* 1665 * Split left edge of fit VA. 1666 * 1667 * | | 1668 * V NVA V R 1669 * |-------|-------| 1670 */ 1671 va->va_start += size; 1672 } else if (type == RE_FIT_TYPE) { 1673 /* 1674 * Split right edge of fit VA. 1675 * 1676 * | | 1677 * L V NVA V 1678 * |-------|-------| 1679 */ 1680 va->va_end = nva_start_addr; 1681 } else if (type == NE_FIT_TYPE) { 1682 /* 1683 * Split no edge of fit VA. 1684 * 1685 * | | 1686 * L V NVA V R 1687 * |---|-------|---| 1688 */ 1689 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1690 if (unlikely(!lva)) { 1691 /* 1692 * For percpu allocator we do not do any pre-allocation 1693 * and leave it as it is. The reason is it most likely 1694 * never ends up with NE_FIT_TYPE splitting. In case of 1695 * percpu allocations offsets and sizes are aligned to 1696 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1697 * are its main fitting cases. 1698 * 1699 * There are a few exceptions though, as an example it is 1700 * a first allocation (early boot up) when we have "one" 1701 * big free space that has to be split. 1702 * 1703 * Also we can hit this path in case of regular "vmap" 1704 * allocations, if "this" current CPU was not preloaded. 1705 * See the comment in alloc_vmap_area() why. If so, then 1706 * GFP_NOWAIT is used instead to get an extra object for 1707 * split purpose. That is rare and most time does not 1708 * occur. 1709 * 1710 * What happens if an allocation gets failed. Basically, 1711 * an "overflow" path is triggered to purge lazily freed 1712 * areas to free some memory, then, the "retry" path is 1713 * triggered to repeat one more time. See more details 1714 * in alloc_vmap_area() function. 1715 */ 1716 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1717 if (!lva) 1718 return -1; 1719 } 1720 1721 /* 1722 * Build the remainder. 1723 */ 1724 lva->va_start = va->va_start; 1725 lva->va_end = nva_start_addr; 1726 1727 /* 1728 * Shrink this VA to remaining size. 1729 */ 1730 va->va_start = nva_start_addr + size; 1731 } else { 1732 return -1; 1733 } 1734 1735 if (type != FL_FIT_TYPE) { 1736 augment_tree_propagate_from(va); 1737 1738 if (lva) /* type == NE_FIT_TYPE */ 1739 insert_vmap_area_augment(lva, &va->rb_node, root, head); 1740 } 1741 1742 return 0; 1743 } 1744 1745 static unsigned long 1746 va_alloc(struct vmap_area *va, 1747 struct rb_root *root, struct list_head *head, 1748 unsigned long size, unsigned long align, 1749 unsigned long vstart, unsigned long vend) 1750 { 1751 unsigned long nva_start_addr; 1752 int ret; 1753 1754 if (va->va_start > vstart) 1755 nva_start_addr = ALIGN(va->va_start, align); 1756 else 1757 nva_start_addr = ALIGN(vstart, align); 1758 1759 /* Check the "vend" restriction. */ 1760 if (nva_start_addr + size > vend) 1761 return vend; 1762 1763 /* Update the free vmap_area. */ 1764 ret = va_clip(root, head, va, nva_start_addr, size); 1765 if (WARN_ON_ONCE(ret)) 1766 return vend; 1767 1768 return nva_start_addr; 1769 } 1770 1771 /* 1772 * Returns a start address of the newly allocated area, if success. 1773 * Otherwise a vend is returned that indicates failure. 1774 */ 1775 static __always_inline unsigned long 1776 __alloc_vmap_area(struct rb_root *root, struct list_head *head, 1777 unsigned long size, unsigned long align, 1778 unsigned long vstart, unsigned long vend) 1779 { 1780 bool adjust_search_size = true; 1781 unsigned long nva_start_addr; 1782 struct vmap_area *va; 1783 1784 /* 1785 * Do not adjust when: 1786 * a) align <= PAGE_SIZE, because it does not make any sense. 1787 * All blocks(their start addresses) are at least PAGE_SIZE 1788 * aligned anyway; 1789 * b) a short range where a requested size corresponds to exactly 1790 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1791 * With adjusted search length an allocation would not succeed. 1792 */ 1793 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1794 adjust_search_size = false; 1795 1796 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); 1797 if (unlikely(!va)) 1798 return vend; 1799 1800 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); 1801 if (nva_start_addr == vend) 1802 return vend; 1803 1804 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1805 find_vmap_lowest_match_check(root, head, size, align); 1806 #endif 1807 1808 return nva_start_addr; 1809 } 1810 1811 /* 1812 * Free a region of KVA allocated by alloc_vmap_area 1813 */ 1814 static void free_vmap_area(struct vmap_area *va) 1815 { 1816 struct vmap_node *vn = addr_to_node(va->va_start); 1817 1818 /* 1819 * Remove from the busy tree/list. 1820 */ 1821 spin_lock(&vn->busy.lock); 1822 unlink_va(va, &vn->busy.root); 1823 spin_unlock(&vn->busy.lock); 1824 1825 /* 1826 * Insert/Merge it back to the free tree/list. 1827 */ 1828 spin_lock(&free_vmap_area_lock); 1829 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1830 spin_unlock(&free_vmap_area_lock); 1831 } 1832 1833 static inline void 1834 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1835 { 1836 struct vmap_area *va = NULL, *tmp; 1837 1838 /* 1839 * Preload this CPU with one extra vmap_area object. It is used 1840 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1841 * a CPU that does an allocation is preloaded. 1842 * 1843 * We do it in non-atomic context, thus it allows us to use more 1844 * permissive allocation masks to be more stable under low memory 1845 * condition and high memory pressure. 1846 */ 1847 if (!this_cpu_read(ne_fit_preload_node)) 1848 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1849 1850 spin_lock(lock); 1851 1852 tmp = NULL; 1853 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) 1854 kmem_cache_free(vmap_area_cachep, va); 1855 } 1856 1857 static struct vmap_pool * 1858 size_to_va_pool(struct vmap_node *vn, unsigned long size) 1859 { 1860 unsigned int idx = (size - 1) / PAGE_SIZE; 1861 1862 if (idx < MAX_VA_SIZE_PAGES) 1863 return &vn->pool[idx]; 1864 1865 return NULL; 1866 } 1867 1868 static bool 1869 node_pool_add_va(struct vmap_node *n, struct vmap_area *va) 1870 { 1871 struct vmap_pool *vp; 1872 1873 vp = size_to_va_pool(n, va_size(va)); 1874 if (!vp) 1875 return false; 1876 1877 spin_lock(&n->pool_lock); 1878 list_add(&va->list, &vp->head); 1879 WRITE_ONCE(vp->len, vp->len + 1); 1880 spin_unlock(&n->pool_lock); 1881 1882 return true; 1883 } 1884 1885 static struct vmap_area * 1886 node_pool_del_va(struct vmap_node *vn, unsigned long size, 1887 unsigned long align, unsigned long vstart, 1888 unsigned long vend) 1889 { 1890 struct vmap_area *va = NULL; 1891 struct vmap_pool *vp; 1892 int err = 0; 1893 1894 vp = size_to_va_pool(vn, size); 1895 if (!vp || list_empty(&vp->head)) 1896 return NULL; 1897 1898 spin_lock(&vn->pool_lock); 1899 if (!list_empty(&vp->head)) { 1900 va = list_first_entry(&vp->head, struct vmap_area, list); 1901 1902 if (IS_ALIGNED(va->va_start, align)) { 1903 /* 1904 * Do some sanity check and emit a warning 1905 * if one of below checks detects an error. 1906 */ 1907 err |= (va_size(va) != size); 1908 err |= (va->va_start < vstart); 1909 err |= (va->va_end > vend); 1910 1911 if (!WARN_ON_ONCE(err)) { 1912 list_del_init(&va->list); 1913 WRITE_ONCE(vp->len, vp->len - 1); 1914 } else { 1915 va = NULL; 1916 } 1917 } else { 1918 list_move_tail(&va->list, &vp->head); 1919 va = NULL; 1920 } 1921 } 1922 spin_unlock(&vn->pool_lock); 1923 1924 return va; 1925 } 1926 1927 static struct vmap_area * 1928 node_alloc(unsigned long size, unsigned long align, 1929 unsigned long vstart, unsigned long vend, 1930 unsigned long *addr, unsigned int *vn_id) 1931 { 1932 struct vmap_area *va; 1933 1934 *vn_id = 0; 1935 *addr = vend; 1936 1937 /* 1938 * Fallback to a global heap if not vmalloc or there 1939 * is only one node. 1940 */ 1941 if (vstart != VMALLOC_START || vend != VMALLOC_END || 1942 nr_vmap_nodes == 1) 1943 return NULL; 1944 1945 *vn_id = raw_smp_processor_id() % nr_vmap_nodes; 1946 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); 1947 *vn_id = encode_vn_id(*vn_id); 1948 1949 if (va) 1950 *addr = va->va_start; 1951 1952 return va; 1953 } 1954 1955 static inline void setup_vmalloc_vm(struct vm_struct *vm, 1956 struct vmap_area *va, unsigned long flags, const void *caller) 1957 { 1958 vm->flags = flags; 1959 vm->addr = (void *)va->va_start; 1960 vm->size = vm->requested_size = va_size(va); 1961 vm->caller = caller; 1962 va->vm = vm; 1963 } 1964 1965 /* 1966 * Allocate a region of KVA of the specified size and alignment, within the 1967 * vstart and vend. If vm is passed in, the two will also be bound. 1968 */ 1969 static struct vmap_area *alloc_vmap_area(unsigned long size, 1970 unsigned long align, 1971 unsigned long vstart, unsigned long vend, 1972 int node, gfp_t gfp_mask, 1973 unsigned long va_flags, struct vm_struct *vm) 1974 { 1975 struct vmap_node *vn; 1976 struct vmap_area *va; 1977 unsigned long freed; 1978 unsigned long addr; 1979 unsigned int vn_id; 1980 int purged = 0; 1981 int ret; 1982 1983 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) 1984 return ERR_PTR(-EINVAL); 1985 1986 if (unlikely(!vmap_initialized)) 1987 return ERR_PTR(-EBUSY); 1988 1989 might_sleep(); 1990 1991 /* 1992 * If a VA is obtained from a global heap(if it fails here) 1993 * it is anyway marked with this "vn_id" so it is returned 1994 * to this pool's node later. Such way gives a possibility 1995 * to populate pools based on users demand. 1996 * 1997 * On success a ready to go VA is returned. 1998 */ 1999 va = node_alloc(size, align, vstart, vend, &addr, &vn_id); 2000 if (!va) { 2001 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 2002 2003 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 2004 if (unlikely(!va)) 2005 return ERR_PTR(-ENOMEM); 2006 2007 /* 2008 * Only scan the relevant parts containing pointers to other objects 2009 * to avoid false negatives. 2010 */ 2011 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 2012 } 2013 2014 retry: 2015 if (addr == vend) { 2016 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 2017 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, 2018 size, align, vstart, vend); 2019 spin_unlock(&free_vmap_area_lock); 2020 } 2021 2022 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend); 2023 2024 /* 2025 * If an allocation fails, the "vend" address is 2026 * returned. Therefore trigger the overflow path. 2027 */ 2028 if (unlikely(addr == vend)) 2029 goto overflow; 2030 2031 va->va_start = addr; 2032 va->va_end = addr + size; 2033 va->vm = NULL; 2034 va->flags = (va_flags | vn_id); 2035 2036 if (vm) { 2037 vm->addr = (void *)va->va_start; 2038 vm->size = va_size(va); 2039 va->vm = vm; 2040 } 2041 2042 vn = addr_to_node(va->va_start); 2043 2044 spin_lock(&vn->busy.lock); 2045 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 2046 spin_unlock(&vn->busy.lock); 2047 2048 BUG_ON(!IS_ALIGNED(va->va_start, align)); 2049 BUG_ON(va->va_start < vstart); 2050 BUG_ON(va->va_end > vend); 2051 2052 ret = kasan_populate_vmalloc(addr, size); 2053 if (ret) { 2054 free_vmap_area(va); 2055 return ERR_PTR(ret); 2056 } 2057 2058 return va; 2059 2060 overflow: 2061 if (!purged) { 2062 reclaim_and_purge_vmap_areas(); 2063 purged = 1; 2064 goto retry; 2065 } 2066 2067 freed = 0; 2068 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 2069 2070 if (freed > 0) { 2071 purged = 0; 2072 goto retry; 2073 } 2074 2075 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 2076 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", 2077 size, vstart, vend); 2078 2079 kmem_cache_free(vmap_area_cachep, va); 2080 return ERR_PTR(-EBUSY); 2081 } 2082 2083 int register_vmap_purge_notifier(struct notifier_block *nb) 2084 { 2085 return blocking_notifier_chain_register(&vmap_notify_list, nb); 2086 } 2087 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 2088 2089 int unregister_vmap_purge_notifier(struct notifier_block *nb) 2090 { 2091 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 2092 } 2093 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 2094 2095 /* 2096 * lazy_max_pages is the maximum amount of virtual address space we gather up 2097 * before attempting to purge with a TLB flush. 2098 * 2099 * There is a tradeoff here: a larger number will cover more kernel page tables 2100 * and take slightly longer to purge, but it will linearly reduce the number of 2101 * global TLB flushes that must be performed. It would seem natural to scale 2102 * this number up linearly with the number of CPUs (because vmapping activity 2103 * could also scale linearly with the number of CPUs), however it is likely 2104 * that in practice, workloads might be constrained in other ways that mean 2105 * vmap activity will not scale linearly with CPUs. Also, I want to be 2106 * conservative and not introduce a big latency on huge systems, so go with 2107 * a less aggressive log scale. It will still be an improvement over the old 2108 * code, and it will be simple to change the scale factor if we find that it 2109 * becomes a problem on bigger systems. 2110 */ 2111 static unsigned long lazy_max_pages(void) 2112 { 2113 unsigned int log; 2114 2115 log = fls(num_online_cpus()); 2116 2117 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 2118 } 2119 2120 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 2121 2122 /* 2123 * Serialize vmap purging. There is no actual critical section protected 2124 * by this lock, but we want to avoid concurrent calls for performance 2125 * reasons and to make the pcpu_get_vm_areas more deterministic. 2126 */ 2127 static DEFINE_MUTEX(vmap_purge_lock); 2128 2129 /* for per-CPU blocks */ 2130 static void purge_fragmented_blocks_allcpus(void); 2131 static cpumask_t purge_nodes; 2132 2133 static void 2134 reclaim_list_global(struct list_head *head) 2135 { 2136 struct vmap_area *va, *n; 2137 2138 if (list_empty(head)) 2139 return; 2140 2141 spin_lock(&free_vmap_area_lock); 2142 list_for_each_entry_safe(va, n, head, list) 2143 merge_or_add_vmap_area_augment(va, 2144 &free_vmap_area_root, &free_vmap_area_list); 2145 spin_unlock(&free_vmap_area_lock); 2146 } 2147 2148 static void 2149 decay_va_pool_node(struct vmap_node *vn, bool full_decay) 2150 { 2151 LIST_HEAD(decay_list); 2152 struct rb_root decay_root = RB_ROOT; 2153 struct vmap_area *va, *nva; 2154 unsigned long n_decay; 2155 int i; 2156 2157 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 2158 LIST_HEAD(tmp_list); 2159 2160 if (list_empty(&vn->pool[i].head)) 2161 continue; 2162 2163 /* Detach the pool, so no-one can access it. */ 2164 spin_lock(&vn->pool_lock); 2165 list_replace_init(&vn->pool[i].head, &tmp_list); 2166 spin_unlock(&vn->pool_lock); 2167 2168 if (full_decay) 2169 WRITE_ONCE(vn->pool[i].len, 0); 2170 2171 /* Decay a pool by ~25% out of left objects. */ 2172 n_decay = vn->pool[i].len >> 2; 2173 2174 list_for_each_entry_safe(va, nva, &tmp_list, list) { 2175 list_del_init(&va->list); 2176 merge_or_add_vmap_area(va, &decay_root, &decay_list); 2177 2178 if (!full_decay) { 2179 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1); 2180 2181 if (!--n_decay) 2182 break; 2183 } 2184 } 2185 2186 /* 2187 * Attach the pool back if it has been partly decayed. 2188 * Please note, it is supposed that nobody(other contexts) 2189 * can populate the pool therefore a simple list replace 2190 * operation takes place here. 2191 */ 2192 if (!full_decay && !list_empty(&tmp_list)) { 2193 spin_lock(&vn->pool_lock); 2194 list_replace_init(&tmp_list, &vn->pool[i].head); 2195 spin_unlock(&vn->pool_lock); 2196 } 2197 } 2198 2199 reclaim_list_global(&decay_list); 2200 } 2201 2202 static void 2203 kasan_release_vmalloc_node(struct vmap_node *vn) 2204 { 2205 struct vmap_area *va; 2206 unsigned long start, end; 2207 2208 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; 2209 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; 2210 2211 list_for_each_entry(va, &vn->purge_list, list) { 2212 if (is_vmalloc_or_module_addr((void *) va->va_start)) 2213 kasan_release_vmalloc(va->va_start, va->va_end, 2214 va->va_start, va->va_end, 2215 KASAN_VMALLOC_PAGE_RANGE); 2216 } 2217 2218 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); 2219 } 2220 2221 static void purge_vmap_node(struct work_struct *work) 2222 { 2223 struct vmap_node *vn = container_of(work, 2224 struct vmap_node, purge_work); 2225 unsigned long nr_purged_pages = 0; 2226 struct vmap_area *va, *n_va; 2227 LIST_HEAD(local_list); 2228 2229 if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) 2230 kasan_release_vmalloc_node(vn); 2231 2232 vn->nr_purged = 0; 2233 2234 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { 2235 unsigned long nr = va_size(va) >> PAGE_SHIFT; 2236 unsigned int vn_id = decode_vn_id(va->flags); 2237 2238 list_del_init(&va->list); 2239 2240 nr_purged_pages += nr; 2241 vn->nr_purged++; 2242 2243 if (is_vn_id_valid(vn_id) && !vn->skip_populate) 2244 if (node_pool_add_va(vn, va)) 2245 continue; 2246 2247 /* Go back to global. */ 2248 list_add(&va->list, &local_list); 2249 } 2250 2251 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); 2252 2253 reclaim_list_global(&local_list); 2254 } 2255 2256 /* 2257 * Purges all lazily-freed vmap areas. 2258 */ 2259 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, 2260 bool full_pool_decay) 2261 { 2262 unsigned long nr_purged_areas = 0; 2263 unsigned int nr_purge_helpers; 2264 unsigned int nr_purge_nodes; 2265 struct vmap_node *vn; 2266 int i; 2267 2268 lockdep_assert_held(&vmap_purge_lock); 2269 2270 /* 2271 * Use cpumask to mark which node has to be processed. 2272 */ 2273 purge_nodes = CPU_MASK_NONE; 2274 2275 for_each_vmap_node(vn) { 2276 INIT_LIST_HEAD(&vn->purge_list); 2277 vn->skip_populate = full_pool_decay; 2278 decay_va_pool_node(vn, full_pool_decay); 2279 2280 if (RB_EMPTY_ROOT(&vn->lazy.root)) 2281 continue; 2282 2283 spin_lock(&vn->lazy.lock); 2284 WRITE_ONCE(vn->lazy.root.rb_node, NULL); 2285 list_replace_init(&vn->lazy.head, &vn->purge_list); 2286 spin_unlock(&vn->lazy.lock); 2287 2288 start = min(start, list_first_entry(&vn->purge_list, 2289 struct vmap_area, list)->va_start); 2290 2291 end = max(end, list_last_entry(&vn->purge_list, 2292 struct vmap_area, list)->va_end); 2293 2294 cpumask_set_cpu(node_to_id(vn), &purge_nodes); 2295 } 2296 2297 nr_purge_nodes = cpumask_weight(&purge_nodes); 2298 if (nr_purge_nodes > 0) { 2299 flush_tlb_kernel_range(start, end); 2300 2301 /* One extra worker is per a lazy_max_pages() full set minus one. */ 2302 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); 2303 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; 2304 2305 for_each_cpu(i, &purge_nodes) { 2306 vn = &vmap_nodes[i]; 2307 2308 if (nr_purge_helpers > 0) { 2309 INIT_WORK(&vn->purge_work, purge_vmap_node); 2310 2311 if (cpumask_test_cpu(i, cpu_online_mask)) 2312 schedule_work_on(i, &vn->purge_work); 2313 else 2314 schedule_work(&vn->purge_work); 2315 2316 nr_purge_helpers--; 2317 } else { 2318 vn->purge_work.func = NULL; 2319 purge_vmap_node(&vn->purge_work); 2320 nr_purged_areas += vn->nr_purged; 2321 } 2322 } 2323 2324 for_each_cpu(i, &purge_nodes) { 2325 vn = &vmap_nodes[i]; 2326 2327 if (vn->purge_work.func) { 2328 flush_work(&vn->purge_work); 2329 nr_purged_areas += vn->nr_purged; 2330 } 2331 } 2332 } 2333 2334 trace_purge_vmap_area_lazy(start, end, nr_purged_areas); 2335 return nr_purged_areas > 0; 2336 } 2337 2338 /* 2339 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. 2340 */ 2341 static void reclaim_and_purge_vmap_areas(void) 2342 2343 { 2344 mutex_lock(&vmap_purge_lock); 2345 purge_fragmented_blocks_allcpus(); 2346 __purge_vmap_area_lazy(ULONG_MAX, 0, true); 2347 mutex_unlock(&vmap_purge_lock); 2348 } 2349 2350 static void drain_vmap_area_work(struct work_struct *work) 2351 { 2352 mutex_lock(&vmap_purge_lock); 2353 __purge_vmap_area_lazy(ULONG_MAX, 0, false); 2354 mutex_unlock(&vmap_purge_lock); 2355 } 2356 2357 /* 2358 * Free a vmap area, caller ensuring that the area has been unmapped, 2359 * unlinked and flush_cache_vunmap had been called for the correct 2360 * range previously. 2361 */ 2362 static void free_vmap_area_noflush(struct vmap_area *va) 2363 { 2364 unsigned long nr_lazy_max = lazy_max_pages(); 2365 unsigned long va_start = va->va_start; 2366 unsigned int vn_id = decode_vn_id(va->flags); 2367 struct vmap_node *vn; 2368 unsigned long nr_lazy; 2369 2370 if (WARN_ON_ONCE(!list_empty(&va->list))) 2371 return; 2372 2373 nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT, 2374 &vmap_lazy_nr); 2375 2376 /* 2377 * If it was request by a certain node we would like to 2378 * return it to that node, i.e. its pool for later reuse. 2379 */ 2380 vn = is_vn_id_valid(vn_id) ? 2381 id_to_node(vn_id):addr_to_node(va->va_start); 2382 2383 spin_lock(&vn->lazy.lock); 2384 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); 2385 spin_unlock(&vn->lazy.lock); 2386 2387 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); 2388 2389 /* After this point, we may free va at any time */ 2390 if (unlikely(nr_lazy > nr_lazy_max)) 2391 schedule_work(&drain_vmap_work); 2392 } 2393 2394 /* 2395 * Free and unmap a vmap area 2396 */ 2397 static void free_unmap_vmap_area(struct vmap_area *va) 2398 { 2399 flush_cache_vunmap(va->va_start, va->va_end); 2400 vunmap_range_noflush(va->va_start, va->va_end); 2401 if (debug_pagealloc_enabled_static()) 2402 flush_tlb_kernel_range(va->va_start, va->va_end); 2403 2404 free_vmap_area_noflush(va); 2405 } 2406 2407 struct vmap_area *find_vmap_area(unsigned long addr) 2408 { 2409 struct vmap_node *vn; 2410 struct vmap_area *va; 2411 int i, j; 2412 2413 if (unlikely(!vmap_initialized)) 2414 return NULL; 2415 2416 /* 2417 * An addr_to_node_id(addr) converts an address to a node index 2418 * where a VA is located. If VA spans several zones and passed 2419 * addr is not the same as va->va_start, what is not common, we 2420 * may need to scan extra nodes. See an example: 2421 * 2422 * <----va----> 2423 * -|-----|-----|-----|-----|- 2424 * 1 2 0 1 2425 * 2426 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed 2427 * addr is within 2 or 0 nodes we should do extra work. 2428 */ 2429 i = j = addr_to_node_id(addr); 2430 do { 2431 vn = &vmap_nodes[i]; 2432 2433 spin_lock(&vn->busy.lock); 2434 va = __find_vmap_area(addr, &vn->busy.root); 2435 spin_unlock(&vn->busy.lock); 2436 2437 if (va) 2438 return va; 2439 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2440 2441 return NULL; 2442 } 2443 2444 static struct vmap_area *find_unlink_vmap_area(unsigned long addr) 2445 { 2446 struct vmap_node *vn; 2447 struct vmap_area *va; 2448 int i, j; 2449 2450 /* 2451 * Check the comment in the find_vmap_area() about the loop. 2452 */ 2453 i = j = addr_to_node_id(addr); 2454 do { 2455 vn = &vmap_nodes[i]; 2456 2457 spin_lock(&vn->busy.lock); 2458 va = __find_vmap_area(addr, &vn->busy.root); 2459 if (va) 2460 unlink_va(va, &vn->busy.root); 2461 spin_unlock(&vn->busy.lock); 2462 2463 if (va) 2464 return va; 2465 } while ((i = (i + 1) % nr_vmap_nodes) != j); 2466 2467 return NULL; 2468 } 2469 2470 /*** Per cpu kva allocator ***/ 2471 2472 /* 2473 * vmap space is limited especially on 32 bit architectures. Ensure there is 2474 * room for at least 16 percpu vmap blocks per CPU. 2475 */ 2476 /* 2477 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 2478 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 2479 * instead (we just need a rough idea) 2480 */ 2481 #if BITS_PER_LONG == 32 2482 #define VMALLOC_SPACE (128UL*1024*1024) 2483 #else 2484 #define VMALLOC_SPACE (128UL*1024*1024*1024) 2485 #endif 2486 2487 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 2488 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 2489 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 2490 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 2491 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 2492 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 2493 #define VMAP_BBMAP_BITS \ 2494 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 2495 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 2496 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 2497 2498 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 2499 2500 /* 2501 * Purge threshold to prevent overeager purging of fragmented blocks for 2502 * regular operations: Purge if vb->free is less than 1/4 of the capacity. 2503 */ 2504 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) 2505 2506 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ 2507 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ 2508 #define VMAP_FLAGS_MASK 0x3 2509 2510 struct vmap_block_queue { 2511 spinlock_t lock; 2512 struct list_head free; 2513 2514 /* 2515 * An xarray requires an extra memory dynamically to 2516 * be allocated. If it is an issue, we can use rb-tree 2517 * instead. 2518 */ 2519 struct xarray vmap_blocks; 2520 }; 2521 2522 struct vmap_block { 2523 spinlock_t lock; 2524 struct vmap_area *va; 2525 unsigned long free, dirty; 2526 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); 2527 unsigned long dirty_min, dirty_max; /*< dirty range */ 2528 struct list_head free_list; 2529 struct rcu_head rcu_head; 2530 struct list_head purge; 2531 unsigned int cpu; 2532 }; 2533 2534 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 2535 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 2536 2537 /* 2538 * In order to fast access to any "vmap_block" associated with a 2539 * specific address, we use a hash. 2540 * 2541 * A per-cpu vmap_block_queue is used in both ways, to serialize 2542 * an access to free block chains among CPUs(alloc path) and it 2543 * also acts as a vmap_block hash(alloc/free paths). It means we 2544 * overload it, since we already have the per-cpu array which is 2545 * used as a hash table. When used as a hash a 'cpu' passed to 2546 * per_cpu() is not actually a CPU but rather a hash index. 2547 * 2548 * A hash function is addr_to_vb_xa() which hashes any address 2549 * to a specific index(in a hash) it belongs to. This then uses a 2550 * per_cpu() macro to access an array with generated index. 2551 * 2552 * An example: 2553 * 2554 * CPU_1 CPU_2 CPU_0 2555 * | | | 2556 * V V V 2557 * 0 10 20 30 40 50 60 2558 * |------|------|------|------|------|------|...<vmap address space> 2559 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 2560 * 2561 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus 2562 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; 2563 * 2564 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus 2565 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; 2566 * 2567 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus 2568 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. 2569 * 2570 * This technique almost always avoids lock contention on insert/remove, 2571 * however xarray spinlocks protect against any contention that remains. 2572 */ 2573 static struct xarray * 2574 addr_to_vb_xa(unsigned long addr) 2575 { 2576 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; 2577 2578 /* 2579 * Please note, nr_cpu_ids points on a highest set 2580 * possible bit, i.e. we never invoke cpumask_next() 2581 * if an index points on it which is nr_cpu_ids - 1. 2582 */ 2583 if (!cpu_possible(index)) 2584 index = cpumask_next(index, cpu_possible_mask); 2585 2586 return &per_cpu(vmap_block_queue, index).vmap_blocks; 2587 } 2588 2589 /* 2590 * We should probably have a fallback mechanism to allocate virtual memory 2591 * out of partially filled vmap blocks. However vmap block sizing should be 2592 * fairly reasonable according to the vmalloc size, so it shouldn't be a 2593 * big problem. 2594 */ 2595 2596 static unsigned long addr_to_vb_idx(unsigned long addr) 2597 { 2598 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 2599 addr /= VMAP_BLOCK_SIZE; 2600 return addr; 2601 } 2602 2603 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 2604 { 2605 unsigned long addr; 2606 2607 addr = va_start + (pages_off << PAGE_SHIFT); 2608 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 2609 return (void *)addr; 2610 } 2611 2612 /** 2613 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 2614 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 2615 * @order: how many 2^order pages should be occupied in newly allocated block 2616 * @gfp_mask: flags for the page level allocator 2617 * 2618 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 2619 */ 2620 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 2621 { 2622 struct vmap_block_queue *vbq; 2623 struct vmap_block *vb; 2624 struct vmap_area *va; 2625 struct xarray *xa; 2626 unsigned long vb_idx; 2627 int node, err; 2628 void *vaddr; 2629 2630 node = numa_node_id(); 2631 2632 vb = kmalloc_node(sizeof(struct vmap_block), 2633 gfp_mask & GFP_RECLAIM_MASK, node); 2634 if (unlikely(!vb)) 2635 return ERR_PTR(-ENOMEM); 2636 2637 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 2638 VMALLOC_START, VMALLOC_END, 2639 node, gfp_mask, 2640 VMAP_RAM|VMAP_BLOCK, NULL); 2641 if (IS_ERR(va)) { 2642 kfree(vb); 2643 return ERR_CAST(va); 2644 } 2645 2646 vaddr = vmap_block_vaddr(va->va_start, 0); 2647 spin_lock_init(&vb->lock); 2648 vb->va = va; 2649 /* At least something should be left free */ 2650 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 2651 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); 2652 vb->free = VMAP_BBMAP_BITS - (1UL << order); 2653 vb->dirty = 0; 2654 vb->dirty_min = VMAP_BBMAP_BITS; 2655 vb->dirty_max = 0; 2656 bitmap_set(vb->used_map, 0, (1UL << order)); 2657 INIT_LIST_HEAD(&vb->free_list); 2658 vb->cpu = raw_smp_processor_id(); 2659 2660 xa = addr_to_vb_xa(va->va_start); 2661 vb_idx = addr_to_vb_idx(va->va_start); 2662 err = xa_insert(xa, vb_idx, vb, gfp_mask); 2663 if (err) { 2664 kfree(vb); 2665 free_vmap_area(va); 2666 return ERR_PTR(err); 2667 } 2668 /* 2669 * list_add_tail_rcu could happened in another core 2670 * rather than vb->cpu due to task migration, which 2671 * is safe as list_add_tail_rcu will ensure the list's 2672 * integrity together with list_for_each_rcu from read 2673 * side. 2674 */ 2675 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); 2676 spin_lock(&vbq->lock); 2677 list_add_tail_rcu(&vb->free_list, &vbq->free); 2678 spin_unlock(&vbq->lock); 2679 2680 return vaddr; 2681 } 2682 2683 static void free_vmap_block(struct vmap_block *vb) 2684 { 2685 struct vmap_node *vn; 2686 struct vmap_block *tmp; 2687 struct xarray *xa; 2688 2689 xa = addr_to_vb_xa(vb->va->va_start); 2690 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); 2691 BUG_ON(tmp != vb); 2692 2693 vn = addr_to_node(vb->va->va_start); 2694 spin_lock(&vn->busy.lock); 2695 unlink_va(vb->va, &vn->busy.root); 2696 spin_unlock(&vn->busy.lock); 2697 2698 free_vmap_area_noflush(vb->va); 2699 kfree_rcu(vb, rcu_head); 2700 } 2701 2702 static bool purge_fragmented_block(struct vmap_block *vb, 2703 struct list_head *purge_list, bool force_purge) 2704 { 2705 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); 2706 2707 if (vb->free + vb->dirty != VMAP_BBMAP_BITS || 2708 vb->dirty == VMAP_BBMAP_BITS) 2709 return false; 2710 2711 /* Don't overeagerly purge usable blocks unless requested */ 2712 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) 2713 return false; 2714 2715 /* prevent further allocs after releasing lock */ 2716 WRITE_ONCE(vb->free, 0); 2717 /* prevent purging it again */ 2718 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); 2719 vb->dirty_min = 0; 2720 vb->dirty_max = VMAP_BBMAP_BITS; 2721 spin_lock(&vbq->lock); 2722 list_del_rcu(&vb->free_list); 2723 spin_unlock(&vbq->lock); 2724 list_add_tail(&vb->purge, purge_list); 2725 return true; 2726 } 2727 2728 static void free_purged_blocks(struct list_head *purge_list) 2729 { 2730 struct vmap_block *vb, *n_vb; 2731 2732 list_for_each_entry_safe(vb, n_vb, purge_list, purge) { 2733 list_del(&vb->purge); 2734 free_vmap_block(vb); 2735 } 2736 } 2737 2738 static void purge_fragmented_blocks(int cpu) 2739 { 2740 LIST_HEAD(purge); 2741 struct vmap_block *vb; 2742 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2743 2744 rcu_read_lock(); 2745 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2746 unsigned long free = READ_ONCE(vb->free); 2747 unsigned long dirty = READ_ONCE(vb->dirty); 2748 2749 if (free + dirty != VMAP_BBMAP_BITS || 2750 dirty == VMAP_BBMAP_BITS) 2751 continue; 2752 2753 spin_lock(&vb->lock); 2754 purge_fragmented_block(vb, &purge, true); 2755 spin_unlock(&vb->lock); 2756 } 2757 rcu_read_unlock(); 2758 free_purged_blocks(&purge); 2759 } 2760 2761 static void purge_fragmented_blocks_allcpus(void) 2762 { 2763 int cpu; 2764 2765 for_each_possible_cpu(cpu) 2766 purge_fragmented_blocks(cpu); 2767 } 2768 2769 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2770 { 2771 struct vmap_block_queue *vbq; 2772 struct vmap_block *vb; 2773 void *vaddr = NULL; 2774 unsigned int order; 2775 2776 BUG_ON(offset_in_page(size)); 2777 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2778 if (WARN_ON(size == 0)) { 2779 /* 2780 * Allocating 0 bytes isn't what caller wants since 2781 * get_order(0) returns funny result. Just warn and terminate 2782 * early. 2783 */ 2784 return ERR_PTR(-EINVAL); 2785 } 2786 order = get_order(size); 2787 2788 rcu_read_lock(); 2789 vbq = raw_cpu_ptr(&vmap_block_queue); 2790 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2791 unsigned long pages_off; 2792 2793 if (READ_ONCE(vb->free) < (1UL << order)) 2794 continue; 2795 2796 spin_lock(&vb->lock); 2797 if (vb->free < (1UL << order)) { 2798 spin_unlock(&vb->lock); 2799 continue; 2800 } 2801 2802 pages_off = VMAP_BBMAP_BITS - vb->free; 2803 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2804 WRITE_ONCE(vb->free, vb->free - (1UL << order)); 2805 bitmap_set(vb->used_map, pages_off, (1UL << order)); 2806 if (vb->free == 0) { 2807 spin_lock(&vbq->lock); 2808 list_del_rcu(&vb->free_list); 2809 spin_unlock(&vbq->lock); 2810 } 2811 2812 spin_unlock(&vb->lock); 2813 break; 2814 } 2815 2816 rcu_read_unlock(); 2817 2818 /* Allocate new block if nothing was found */ 2819 if (!vaddr) 2820 vaddr = new_vmap_block(order, gfp_mask); 2821 2822 return vaddr; 2823 } 2824 2825 static void vb_free(unsigned long addr, unsigned long size) 2826 { 2827 unsigned long offset; 2828 unsigned int order; 2829 struct vmap_block *vb; 2830 struct xarray *xa; 2831 2832 BUG_ON(offset_in_page(size)); 2833 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2834 2835 flush_cache_vunmap(addr, addr + size); 2836 2837 order = get_order(size); 2838 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2839 2840 xa = addr_to_vb_xa(addr); 2841 vb = xa_load(xa, addr_to_vb_idx(addr)); 2842 2843 spin_lock(&vb->lock); 2844 bitmap_clear(vb->used_map, offset, (1UL << order)); 2845 spin_unlock(&vb->lock); 2846 2847 vunmap_range_noflush(addr, addr + size); 2848 2849 if (debug_pagealloc_enabled_static()) 2850 flush_tlb_kernel_range(addr, addr + size); 2851 2852 spin_lock(&vb->lock); 2853 2854 /* Expand the not yet TLB flushed dirty range */ 2855 vb->dirty_min = min(vb->dirty_min, offset); 2856 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2857 2858 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); 2859 if (vb->dirty == VMAP_BBMAP_BITS) { 2860 BUG_ON(vb->free); 2861 spin_unlock(&vb->lock); 2862 free_vmap_block(vb); 2863 } else 2864 spin_unlock(&vb->lock); 2865 } 2866 2867 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2868 { 2869 LIST_HEAD(purge_list); 2870 int cpu; 2871 2872 if (unlikely(!vmap_initialized)) 2873 return; 2874 2875 mutex_lock(&vmap_purge_lock); 2876 2877 for_each_possible_cpu(cpu) { 2878 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2879 struct vmap_block *vb; 2880 unsigned long idx; 2881 2882 rcu_read_lock(); 2883 xa_for_each(&vbq->vmap_blocks, idx, vb) { 2884 spin_lock(&vb->lock); 2885 2886 /* 2887 * Try to purge a fragmented block first. If it's 2888 * not purgeable, check whether there is dirty 2889 * space to be flushed. 2890 */ 2891 if (!purge_fragmented_block(vb, &purge_list, false) && 2892 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { 2893 unsigned long va_start = vb->va->va_start; 2894 unsigned long s, e; 2895 2896 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2897 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2898 2899 start = min(s, start); 2900 end = max(e, end); 2901 2902 /* Prevent that this is flushed again */ 2903 vb->dirty_min = VMAP_BBMAP_BITS; 2904 vb->dirty_max = 0; 2905 2906 flush = 1; 2907 } 2908 spin_unlock(&vb->lock); 2909 } 2910 rcu_read_unlock(); 2911 } 2912 free_purged_blocks(&purge_list); 2913 2914 if (!__purge_vmap_area_lazy(start, end, false) && flush) 2915 flush_tlb_kernel_range(start, end); 2916 mutex_unlock(&vmap_purge_lock); 2917 } 2918 2919 /** 2920 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2921 * 2922 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2923 * to amortize TLB flushing overheads. What this means is that any page you 2924 * have now, may, in a former life, have been mapped into kernel virtual 2925 * address by the vmap layer and so there might be some CPUs with TLB entries 2926 * still referencing that page (additional to the regular 1:1 kernel mapping). 2927 * 2928 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2929 * be sure that none of the pages we have control over will have any aliases 2930 * from the vmap layer. 2931 */ 2932 void vm_unmap_aliases(void) 2933 { 2934 unsigned long start = ULONG_MAX, end = 0; 2935 int flush = 0; 2936 2937 _vm_unmap_aliases(start, end, flush); 2938 } 2939 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2940 2941 /** 2942 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2943 * @mem: the pointer returned by vm_map_ram 2944 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2945 */ 2946 void vm_unmap_ram(const void *mem, unsigned int count) 2947 { 2948 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2949 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2950 struct vmap_area *va; 2951 2952 might_sleep(); 2953 BUG_ON(!addr); 2954 BUG_ON(addr < VMALLOC_START); 2955 BUG_ON(addr > VMALLOC_END); 2956 BUG_ON(!PAGE_ALIGNED(addr)); 2957 2958 kasan_poison_vmalloc(mem, size); 2959 2960 if (likely(count <= VMAP_MAX_ALLOC)) { 2961 debug_check_no_locks_freed(mem, size); 2962 vb_free(addr, size); 2963 return; 2964 } 2965 2966 va = find_unlink_vmap_area(addr); 2967 if (WARN_ON_ONCE(!va)) 2968 return; 2969 2970 debug_check_no_locks_freed((void *)va->va_start, va_size(va)); 2971 free_unmap_vmap_area(va); 2972 } 2973 EXPORT_SYMBOL(vm_unmap_ram); 2974 2975 /** 2976 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2977 * @pages: an array of pointers to the pages to be mapped 2978 * @count: number of pages 2979 * @node: prefer to allocate data structures on this node 2980 * 2981 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2982 * faster than vmap so it's good. But if you mix long-life and short-life 2983 * objects with vm_map_ram(), it could consume lots of address space through 2984 * fragmentation (especially on a 32bit machine). You could see failures in 2985 * the end. Please use this function for short-lived objects. 2986 * 2987 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2988 */ 2989 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2990 { 2991 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2992 unsigned long addr; 2993 void *mem; 2994 2995 if (likely(count <= VMAP_MAX_ALLOC)) { 2996 mem = vb_alloc(size, GFP_KERNEL); 2997 if (IS_ERR(mem)) 2998 return NULL; 2999 addr = (unsigned long)mem; 3000 } else { 3001 struct vmap_area *va; 3002 va = alloc_vmap_area(size, PAGE_SIZE, 3003 VMALLOC_START, VMALLOC_END, 3004 node, GFP_KERNEL, VMAP_RAM, 3005 NULL); 3006 if (IS_ERR(va)) 3007 return NULL; 3008 3009 addr = va->va_start; 3010 mem = (void *)addr; 3011 } 3012 3013 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 3014 pages, PAGE_SHIFT) < 0) { 3015 vm_unmap_ram(mem, count); 3016 return NULL; 3017 } 3018 3019 /* 3020 * Mark the pages as accessible, now that they are mapped. 3021 * With hardware tag-based KASAN, marking is skipped for 3022 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3023 */ 3024 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 3025 3026 return mem; 3027 } 3028 EXPORT_SYMBOL(vm_map_ram); 3029 3030 static struct vm_struct *vmlist __initdata; 3031 3032 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 3033 { 3034 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3035 return vm->page_order; 3036 #else 3037 return 0; 3038 #endif 3039 } 3040 3041 unsigned int get_vm_area_page_order(struct vm_struct *vm) 3042 { 3043 return vm_area_page_order(vm); 3044 } 3045 3046 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 3047 { 3048 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 3049 vm->page_order = order; 3050 #else 3051 BUG_ON(order != 0); 3052 #endif 3053 } 3054 3055 /** 3056 * vm_area_add_early - add vmap area early during boot 3057 * @vm: vm_struct to add 3058 * 3059 * This function is used to add fixed kernel vm area to vmlist before 3060 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 3061 * should contain proper values and the other fields should be zero. 3062 * 3063 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3064 */ 3065 void __init vm_area_add_early(struct vm_struct *vm) 3066 { 3067 struct vm_struct *tmp, **p; 3068 3069 BUG_ON(vmap_initialized); 3070 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 3071 if (tmp->addr >= vm->addr) { 3072 BUG_ON(tmp->addr < vm->addr + vm->size); 3073 break; 3074 } else 3075 BUG_ON(tmp->addr + tmp->size > vm->addr); 3076 } 3077 vm->next = *p; 3078 *p = vm; 3079 } 3080 3081 /** 3082 * vm_area_register_early - register vmap area early during boot 3083 * @vm: vm_struct to register 3084 * @align: requested alignment 3085 * 3086 * This function is used to register kernel vm area before 3087 * vmalloc_init() is called. @vm->size and @vm->flags should contain 3088 * proper values on entry and other fields should be zero. On return, 3089 * vm->addr contains the allocated address. 3090 * 3091 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 3092 */ 3093 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 3094 { 3095 unsigned long addr = ALIGN(VMALLOC_START, align); 3096 struct vm_struct *cur, **p; 3097 3098 BUG_ON(vmap_initialized); 3099 3100 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 3101 if ((unsigned long)cur->addr - addr >= vm->size) 3102 break; 3103 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 3104 } 3105 3106 BUG_ON(addr > VMALLOC_END - vm->size); 3107 vm->addr = (void *)addr; 3108 vm->next = *p; 3109 *p = vm; 3110 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 3111 } 3112 3113 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 3114 { 3115 /* 3116 * Before removing VM_UNINITIALIZED, 3117 * we should make sure that vm has proper values. 3118 * Pair with smp_rmb() in show_numa_info(). 3119 */ 3120 smp_wmb(); 3121 vm->flags &= ~VM_UNINITIALIZED; 3122 } 3123 3124 struct vm_struct *__get_vm_area_node(unsigned long size, 3125 unsigned long align, unsigned long shift, unsigned long flags, 3126 unsigned long start, unsigned long end, int node, 3127 gfp_t gfp_mask, const void *caller) 3128 { 3129 struct vmap_area *va; 3130 struct vm_struct *area; 3131 unsigned long requested_size = size; 3132 3133 BUG_ON(in_interrupt()); 3134 size = ALIGN(size, 1ul << shift); 3135 if (unlikely(!size)) 3136 return NULL; 3137 3138 if (flags & VM_IOREMAP) 3139 align = 1ul << clamp_t(int, get_count_order_long(size), 3140 PAGE_SHIFT, IOREMAP_MAX_ORDER); 3141 3142 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 3143 if (unlikely(!area)) 3144 return NULL; 3145 3146 if (!(flags & VM_NO_GUARD)) 3147 size += PAGE_SIZE; 3148 3149 area->flags = flags; 3150 area->caller = caller; 3151 area->requested_size = requested_size; 3152 3153 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); 3154 if (IS_ERR(va)) { 3155 kfree(area); 3156 return NULL; 3157 } 3158 3159 /* 3160 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 3161 * best-effort approach, as they can be mapped outside of vmalloc code. 3162 * For VM_ALLOC mappings, the pages are marked as accessible after 3163 * getting mapped in __vmalloc_node_range(). 3164 * With hardware tag-based KASAN, marking is skipped for 3165 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3166 */ 3167 if (!(flags & VM_ALLOC)) 3168 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 3169 KASAN_VMALLOC_PROT_NORMAL); 3170 3171 return area; 3172 } 3173 3174 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 3175 unsigned long start, unsigned long end, 3176 const void *caller) 3177 { 3178 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 3179 NUMA_NO_NODE, GFP_KERNEL, caller); 3180 } 3181 3182 /** 3183 * get_vm_area - reserve a contiguous kernel virtual area 3184 * @size: size of the area 3185 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 3186 * 3187 * Search an area of @size in the kernel virtual mapping area, 3188 * and reserved it for out purposes. Returns the area descriptor 3189 * on success or %NULL on failure. 3190 * 3191 * Return: the area descriptor on success or %NULL on failure. 3192 */ 3193 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 3194 { 3195 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3196 VMALLOC_START, VMALLOC_END, 3197 NUMA_NO_NODE, GFP_KERNEL, 3198 __builtin_return_address(0)); 3199 } 3200 3201 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 3202 const void *caller) 3203 { 3204 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 3205 VMALLOC_START, VMALLOC_END, 3206 NUMA_NO_NODE, GFP_KERNEL, caller); 3207 } 3208 3209 /** 3210 * find_vm_area - find a continuous kernel virtual area 3211 * @addr: base address 3212 * 3213 * Search for the kernel VM area starting at @addr, and return it. 3214 * It is up to the caller to do all required locking to keep the returned 3215 * pointer valid. 3216 * 3217 * Return: the area descriptor on success or %NULL on failure. 3218 */ 3219 struct vm_struct *find_vm_area(const void *addr) 3220 { 3221 struct vmap_area *va; 3222 3223 va = find_vmap_area((unsigned long)addr); 3224 if (!va) 3225 return NULL; 3226 3227 return va->vm; 3228 } 3229 3230 /** 3231 * remove_vm_area - find and remove a continuous kernel virtual area 3232 * @addr: base address 3233 * 3234 * Search for the kernel VM area starting at @addr, and remove it. 3235 * This function returns the found VM area, but using it is NOT safe 3236 * on SMP machines, except for its size or flags. 3237 * 3238 * Return: the area descriptor on success or %NULL on failure. 3239 */ 3240 struct vm_struct *remove_vm_area(const void *addr) 3241 { 3242 struct vmap_area *va; 3243 struct vm_struct *vm; 3244 3245 might_sleep(); 3246 3247 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 3248 addr)) 3249 return NULL; 3250 3251 va = find_unlink_vmap_area((unsigned long)addr); 3252 if (!va || !va->vm) 3253 return NULL; 3254 vm = va->vm; 3255 3256 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); 3257 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); 3258 kasan_free_module_shadow(vm); 3259 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); 3260 3261 free_unmap_vmap_area(va); 3262 return vm; 3263 } 3264 3265 static inline void set_area_direct_map(const struct vm_struct *area, 3266 int (*set_direct_map)(struct page *page)) 3267 { 3268 int i; 3269 3270 /* HUGE_VMALLOC passes small pages to set_direct_map */ 3271 for (i = 0; i < area->nr_pages; i++) 3272 if (page_address(area->pages[i])) 3273 set_direct_map(area->pages[i]); 3274 } 3275 3276 /* 3277 * Flush the vm mapping and reset the direct map. 3278 */ 3279 static void vm_reset_perms(struct vm_struct *area) 3280 { 3281 unsigned long start = ULONG_MAX, end = 0; 3282 unsigned int page_order = vm_area_page_order(area); 3283 int flush_dmap = 0; 3284 int i; 3285 3286 /* 3287 * Find the start and end range of the direct mappings to make sure that 3288 * the vm_unmap_aliases() flush includes the direct map. 3289 */ 3290 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 3291 unsigned long addr = (unsigned long)page_address(area->pages[i]); 3292 3293 if (addr) { 3294 unsigned long page_size; 3295 3296 page_size = PAGE_SIZE << page_order; 3297 start = min(addr, start); 3298 end = max(addr + page_size, end); 3299 flush_dmap = 1; 3300 } 3301 } 3302 3303 /* 3304 * Set direct map to something invalid so that it won't be cached if 3305 * there are any accesses after the TLB flush, then flush the TLB and 3306 * reset the direct map permissions to the default. 3307 */ 3308 set_area_direct_map(area, set_direct_map_invalid_noflush); 3309 _vm_unmap_aliases(start, end, flush_dmap); 3310 set_area_direct_map(area, set_direct_map_default_noflush); 3311 } 3312 3313 static void delayed_vfree_work(struct work_struct *w) 3314 { 3315 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 3316 struct llist_node *t, *llnode; 3317 3318 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 3319 vfree(llnode); 3320 } 3321 3322 /** 3323 * vfree_atomic - release memory allocated by vmalloc() 3324 * @addr: memory base address 3325 * 3326 * This one is just like vfree() but can be called in any atomic context 3327 * except NMIs. 3328 */ 3329 void vfree_atomic(const void *addr) 3330 { 3331 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 3332 3333 BUG_ON(in_nmi()); 3334 kmemleak_free(addr); 3335 3336 /* 3337 * Use raw_cpu_ptr() because this can be called from preemptible 3338 * context. Preemption is absolutely fine here, because the llist_add() 3339 * implementation is lockless, so it works even if we are adding to 3340 * another cpu's list. schedule_work() should be fine with this too. 3341 */ 3342 if (addr && llist_add((struct llist_node *)addr, &p->list)) 3343 schedule_work(&p->wq); 3344 } 3345 3346 /** 3347 * vfree - Release memory allocated by vmalloc() 3348 * @addr: Memory base address 3349 * 3350 * Free the virtually continuous memory area starting at @addr, as obtained 3351 * from one of the vmalloc() family of APIs. This will usually also free the 3352 * physical memory underlying the virtual allocation, but that memory is 3353 * reference counted, so it will not be freed until the last user goes away. 3354 * 3355 * If @addr is NULL, no operation is performed. 3356 * 3357 * Context: 3358 * May sleep if called *not* from interrupt context. 3359 * Must not be called in NMI context (strictly speaking, it could be 3360 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 3361 * conventions for vfree() arch-dependent would be a really bad idea). 3362 */ 3363 void vfree(const void *addr) 3364 { 3365 struct vm_struct *vm; 3366 int i; 3367 3368 if (unlikely(in_interrupt())) { 3369 vfree_atomic(addr); 3370 return; 3371 } 3372 3373 BUG_ON(in_nmi()); 3374 kmemleak_free(addr); 3375 might_sleep(); 3376 3377 if (!addr) 3378 return; 3379 3380 vm = remove_vm_area(addr); 3381 if (unlikely(!vm)) { 3382 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 3383 addr); 3384 return; 3385 } 3386 3387 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) 3388 vm_reset_perms(vm); 3389 /* All pages of vm should be charged to same memcg, so use first one. */ 3390 if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) 3391 mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); 3392 for (i = 0; i < vm->nr_pages; i++) { 3393 struct page *page = vm->pages[i]; 3394 3395 BUG_ON(!page); 3396 /* 3397 * High-order allocs for huge vmallocs are split, so 3398 * can be freed as an array of order-0 allocations 3399 */ 3400 __free_page(page); 3401 cond_resched(); 3402 } 3403 if (!(vm->flags & VM_MAP_PUT_PAGES)) 3404 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); 3405 kvfree(vm->pages); 3406 kfree(vm); 3407 } 3408 EXPORT_SYMBOL(vfree); 3409 3410 /** 3411 * vunmap - release virtual mapping obtained by vmap() 3412 * @addr: memory base address 3413 * 3414 * Free the virtually contiguous memory area starting at @addr, 3415 * which was created from the page array passed to vmap(). 3416 * 3417 * Must not be called in interrupt context. 3418 */ 3419 void vunmap(const void *addr) 3420 { 3421 struct vm_struct *vm; 3422 3423 BUG_ON(in_interrupt()); 3424 might_sleep(); 3425 3426 if (!addr) 3427 return; 3428 vm = remove_vm_area(addr); 3429 if (unlikely(!vm)) { 3430 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", 3431 addr); 3432 return; 3433 } 3434 kfree(vm); 3435 } 3436 EXPORT_SYMBOL(vunmap); 3437 3438 /** 3439 * vmap - map an array of pages into virtually contiguous space 3440 * @pages: array of page pointers 3441 * @count: number of pages to map 3442 * @flags: vm_area->flags 3443 * @prot: page protection for the mapping 3444 * 3445 * Maps @count pages from @pages into contiguous kernel virtual space. 3446 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 3447 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 3448 * are transferred from the caller to vmap(), and will be freed / dropped when 3449 * vfree() is called on the return value. 3450 * 3451 * Return: the address of the area or %NULL on failure 3452 */ 3453 void *vmap(struct page **pages, unsigned int count, 3454 unsigned long flags, pgprot_t prot) 3455 { 3456 struct vm_struct *area; 3457 unsigned long addr; 3458 unsigned long size; /* In bytes */ 3459 3460 might_sleep(); 3461 3462 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) 3463 return NULL; 3464 3465 /* 3466 * Your top guard is someone else's bottom guard. Not having a top 3467 * guard compromises someone else's mappings too. 3468 */ 3469 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 3470 flags &= ~VM_NO_GUARD; 3471 3472 if (count > totalram_pages()) 3473 return NULL; 3474 3475 size = (unsigned long)count << PAGE_SHIFT; 3476 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 3477 if (!area) 3478 return NULL; 3479 3480 addr = (unsigned long)area->addr; 3481 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 3482 pages, PAGE_SHIFT) < 0) { 3483 vunmap(area->addr); 3484 return NULL; 3485 } 3486 3487 if (flags & VM_MAP_PUT_PAGES) { 3488 area->pages = pages; 3489 area->nr_pages = count; 3490 } 3491 return area->addr; 3492 } 3493 EXPORT_SYMBOL(vmap); 3494 3495 #ifdef CONFIG_VMAP_PFN 3496 struct vmap_pfn_data { 3497 unsigned long *pfns; 3498 pgprot_t prot; 3499 unsigned int idx; 3500 }; 3501 3502 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 3503 { 3504 struct vmap_pfn_data *data = private; 3505 unsigned long pfn = data->pfns[data->idx]; 3506 pte_t ptent; 3507 3508 if (WARN_ON_ONCE(pfn_valid(pfn))) 3509 return -EINVAL; 3510 3511 ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); 3512 set_pte_at(&init_mm, addr, pte, ptent); 3513 3514 data->idx++; 3515 return 0; 3516 } 3517 3518 /** 3519 * vmap_pfn - map an array of PFNs into virtually contiguous space 3520 * @pfns: array of PFNs 3521 * @count: number of pages to map 3522 * @prot: page protection for the mapping 3523 * 3524 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 3525 * the start address of the mapping. 3526 */ 3527 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 3528 { 3529 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 3530 struct vm_struct *area; 3531 3532 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 3533 __builtin_return_address(0)); 3534 if (!area) 3535 return NULL; 3536 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 3537 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 3538 free_vm_area(area); 3539 return NULL; 3540 } 3541 3542 flush_cache_vmap((unsigned long)area->addr, 3543 (unsigned long)area->addr + count * PAGE_SIZE); 3544 3545 return area->addr; 3546 } 3547 EXPORT_SYMBOL_GPL(vmap_pfn); 3548 #endif /* CONFIG_VMAP_PFN */ 3549 3550 static inline unsigned int 3551 vm_area_alloc_pages(gfp_t gfp, int nid, 3552 unsigned int order, unsigned int nr_pages, struct page **pages) 3553 { 3554 unsigned int nr_allocated = 0; 3555 struct page *page; 3556 int i; 3557 3558 /* 3559 * For order-0 pages we make use of bulk allocator, if 3560 * the page array is partly or not at all populated due 3561 * to fails, fallback to a single page allocator that is 3562 * more permissive. 3563 */ 3564 if (!order) { 3565 while (nr_allocated < nr_pages) { 3566 unsigned int nr, nr_pages_request; 3567 3568 /* 3569 * A maximum allowed request is hard-coded and is 100 3570 * pages per call. That is done in order to prevent a 3571 * long preemption off scenario in the bulk-allocator 3572 * so the range is [1:100]. 3573 */ 3574 nr_pages_request = min(100U, nr_pages - nr_allocated); 3575 3576 /* memory allocation should consider mempolicy, we can't 3577 * wrongly use nearest node when nid == NUMA_NO_NODE, 3578 * otherwise memory may be allocated in only one node, 3579 * but mempolicy wants to alloc memory by interleaving. 3580 */ 3581 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 3582 nr = alloc_pages_bulk_mempolicy_noprof(gfp, 3583 nr_pages_request, 3584 pages + nr_allocated); 3585 else 3586 nr = alloc_pages_bulk_node_noprof(gfp, nid, 3587 nr_pages_request, 3588 pages + nr_allocated); 3589 3590 nr_allocated += nr; 3591 cond_resched(); 3592 3593 /* 3594 * If zero or pages were obtained partly, 3595 * fallback to a single page allocator. 3596 */ 3597 if (nr != nr_pages_request) 3598 break; 3599 } 3600 } 3601 3602 /* High-order pages or fallback path if "bulk" fails. */ 3603 while (nr_allocated < nr_pages) { 3604 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) 3605 break; 3606 3607 if (nid == NUMA_NO_NODE) 3608 page = alloc_pages_noprof(gfp, order); 3609 else 3610 page = alloc_pages_node_noprof(nid, gfp, order); 3611 3612 if (unlikely(!page)) 3613 break; 3614 3615 /* 3616 * High-order allocations must be able to be treated as 3617 * independent small pages by callers (as they can with 3618 * small-page vmallocs). Some drivers do their own refcounting 3619 * on vmalloc_to_page() pages, some use page->mapping, 3620 * page->lru, etc. 3621 */ 3622 if (order) 3623 split_page(page, order); 3624 3625 /* 3626 * Careful, we allocate and map page-order pages, but 3627 * tracking is done per PAGE_SIZE page so as to keep the 3628 * vm_struct APIs independent of the physical/mapped size. 3629 */ 3630 for (i = 0; i < (1U << order); i++) 3631 pages[nr_allocated + i] = page + i; 3632 3633 cond_resched(); 3634 nr_allocated += 1U << order; 3635 } 3636 3637 return nr_allocated; 3638 } 3639 3640 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 3641 pgprot_t prot, unsigned int page_shift, 3642 int node) 3643 { 3644 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 3645 bool nofail = gfp_mask & __GFP_NOFAIL; 3646 unsigned long addr = (unsigned long)area->addr; 3647 unsigned long size = get_vm_area_size(area); 3648 unsigned long array_size; 3649 unsigned int nr_small_pages = size >> PAGE_SHIFT; 3650 unsigned int page_order; 3651 unsigned int flags; 3652 int ret; 3653 3654 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 3655 3656 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 3657 gfp_mask |= __GFP_HIGHMEM; 3658 3659 /* Please note that the recursion is strictly bounded. */ 3660 if (array_size > PAGE_SIZE) { 3661 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, 3662 area->caller); 3663 } else { 3664 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); 3665 } 3666 3667 if (!area->pages) { 3668 warn_alloc(gfp_mask, NULL, 3669 "vmalloc error: size %lu, failed to allocated page array size %lu", 3670 nr_small_pages * PAGE_SIZE, array_size); 3671 free_vm_area(area); 3672 return NULL; 3673 } 3674 3675 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 3676 page_order = vm_area_page_order(area); 3677 3678 /* 3679 * High-order nofail allocations are really expensive and 3680 * potentially dangerous (pre-mature OOM, disruptive reclaim 3681 * and compaction etc. 3682 * 3683 * Please note, the __vmalloc_node_range_noprof() falls-back 3684 * to order-0 pages if high-order attempt is unsuccessful. 3685 */ 3686 area->nr_pages = vm_area_alloc_pages((page_order ? 3687 gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, 3688 node, page_order, nr_small_pages, area->pages); 3689 3690 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3691 /* All pages of vm should be charged to same memcg, so use first one. */ 3692 if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) 3693 mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, 3694 area->nr_pages); 3695 3696 /* 3697 * If not enough pages were obtained to accomplish an 3698 * allocation request, free them via vfree() if any. 3699 */ 3700 if (area->nr_pages != nr_small_pages) { 3701 /* 3702 * vm_area_alloc_pages() can fail due to insufficient memory but 3703 * also:- 3704 * 3705 * - a pending fatal signal 3706 * - insufficient huge page-order pages 3707 * 3708 * Since we always retry allocations at order-0 in the huge page 3709 * case a warning for either is spurious. 3710 */ 3711 if (!fatal_signal_pending(current) && page_order == 0) 3712 warn_alloc(gfp_mask, NULL, 3713 "vmalloc error: size %lu, failed to allocate pages", 3714 area->nr_pages * PAGE_SIZE); 3715 goto fail; 3716 } 3717 3718 /* 3719 * page tables allocations ignore external gfp mask, enforce it 3720 * by the scope API 3721 */ 3722 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3723 flags = memalloc_nofs_save(); 3724 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3725 flags = memalloc_noio_save(); 3726 3727 do { 3728 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3729 page_shift); 3730 if (nofail && (ret < 0)) 3731 schedule_timeout_uninterruptible(1); 3732 } while (nofail && (ret < 0)); 3733 3734 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3735 memalloc_nofs_restore(flags); 3736 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3737 memalloc_noio_restore(flags); 3738 3739 if (ret < 0) { 3740 warn_alloc(gfp_mask, NULL, 3741 "vmalloc error: size %lu, failed to map pages", 3742 area->nr_pages * PAGE_SIZE); 3743 goto fail; 3744 } 3745 3746 return area->addr; 3747 3748 fail: 3749 vfree(area->addr); 3750 return NULL; 3751 } 3752 3753 /** 3754 * __vmalloc_node_range - allocate virtually contiguous memory 3755 * @size: allocation size 3756 * @align: desired alignment 3757 * @start: vm area range start 3758 * @end: vm area range end 3759 * @gfp_mask: flags for the page level allocator 3760 * @prot: protection mask for the allocated pages 3761 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3762 * @node: node to use for allocation or NUMA_NO_NODE 3763 * @caller: caller's return address 3764 * 3765 * Allocate enough pages to cover @size from the page level 3766 * allocator with @gfp_mask flags. Please note that the full set of gfp 3767 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3768 * supported. 3769 * Zone modifiers are not supported. From the reclaim modifiers 3770 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3771 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3772 * __GFP_RETRY_MAYFAIL are not supported). 3773 * 3774 * __GFP_NOWARN can be used to suppress failures messages. 3775 * 3776 * Map them into contiguous kernel virtual space, using a pagetable 3777 * protection of @prot. 3778 * 3779 * Return: the address of the area or %NULL on failure 3780 */ 3781 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, 3782 unsigned long start, unsigned long end, gfp_t gfp_mask, 3783 pgprot_t prot, unsigned long vm_flags, int node, 3784 const void *caller) 3785 { 3786 struct vm_struct *area; 3787 void *ret; 3788 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3789 unsigned long original_align = align; 3790 unsigned int shift = PAGE_SHIFT; 3791 3792 if (WARN_ON_ONCE(!size)) 3793 return NULL; 3794 3795 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3796 warn_alloc(gfp_mask, NULL, 3797 "vmalloc error: size %lu, exceeds total pages", 3798 size); 3799 return NULL; 3800 } 3801 3802 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3803 /* 3804 * Try huge pages. Only try for PAGE_KERNEL allocations, 3805 * others like modules don't yet expect huge pages in 3806 * their allocations due to apply_to_page_range not 3807 * supporting them. 3808 */ 3809 3810 if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) 3811 shift = PMD_SHIFT; 3812 else 3813 shift = arch_vmap_pte_supported_shift(size); 3814 3815 align = max(original_align, 1UL << shift); 3816 } 3817 3818 again: 3819 area = __get_vm_area_node(size, align, shift, VM_ALLOC | 3820 VM_UNINITIALIZED | vm_flags, start, end, node, 3821 gfp_mask, caller); 3822 if (!area) { 3823 bool nofail = gfp_mask & __GFP_NOFAIL; 3824 warn_alloc(gfp_mask, NULL, 3825 "vmalloc error: size %lu, vm_struct allocation failed%s", 3826 size, (nofail) ? ". Retrying." : ""); 3827 if (nofail) { 3828 schedule_timeout_uninterruptible(1); 3829 goto again; 3830 } 3831 goto fail; 3832 } 3833 3834 /* 3835 * Prepare arguments for __vmalloc_area_node() and 3836 * kasan_unpoison_vmalloc(). 3837 */ 3838 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3839 if (kasan_hw_tags_enabled()) { 3840 /* 3841 * Modify protection bits to allow tagging. 3842 * This must be done before mapping. 3843 */ 3844 prot = arch_vmap_pgprot_tagged(prot); 3845 3846 /* 3847 * Skip page_alloc poisoning and zeroing for physical 3848 * pages backing VM_ALLOC mapping. Memory is instead 3849 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3850 */ 3851 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; 3852 } 3853 3854 /* Take note that the mapping is PAGE_KERNEL. */ 3855 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3856 } 3857 3858 /* Allocate physical pages and map them into vmalloc space. */ 3859 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3860 if (!ret) 3861 goto fail; 3862 3863 /* 3864 * Mark the pages as accessible, now that they are mapped. 3865 * The condition for setting KASAN_VMALLOC_INIT should complement the 3866 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check 3867 * to make sure that memory is initialized under the same conditions. 3868 * Tag-based KASAN modes only assign tags to normal non-executable 3869 * allocations, see __kasan_unpoison_vmalloc(). 3870 */ 3871 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3872 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && 3873 (gfp_mask & __GFP_SKIP_ZERO)) 3874 kasan_flags |= KASAN_VMALLOC_INIT; 3875 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3876 area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); 3877 3878 /* 3879 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3880 * flag. It means that vm_struct is not fully initialized. 3881 * Now, it is fully initialized, so remove this flag here. 3882 */ 3883 clear_vm_uninitialized_flag(area); 3884 3885 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3886 kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); 3887 3888 return area->addr; 3889 3890 fail: 3891 if (shift > PAGE_SHIFT) { 3892 shift = PAGE_SHIFT; 3893 align = original_align; 3894 goto again; 3895 } 3896 3897 return NULL; 3898 } 3899 3900 /** 3901 * __vmalloc_node - allocate virtually contiguous memory 3902 * @size: allocation size 3903 * @align: desired alignment 3904 * @gfp_mask: flags for the page level allocator 3905 * @node: node to use for allocation or NUMA_NO_NODE 3906 * @caller: caller's return address 3907 * 3908 * Allocate enough pages to cover @size from the page level allocator with 3909 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3910 * 3911 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3912 * and __GFP_NOFAIL are not supported 3913 * 3914 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3915 * with mm people. 3916 * 3917 * Return: pointer to the allocated memory or %NULL on error 3918 */ 3919 void *__vmalloc_node_noprof(unsigned long size, unsigned long align, 3920 gfp_t gfp_mask, int node, const void *caller) 3921 { 3922 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, 3923 gfp_mask, PAGE_KERNEL, 0, node, caller); 3924 } 3925 /* 3926 * This is only for performance analysis of vmalloc and stress purpose. 3927 * It is required by vmalloc test module, therefore do not use it other 3928 * than that. 3929 */ 3930 #ifdef CONFIG_TEST_VMALLOC_MODULE 3931 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); 3932 #endif 3933 3934 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) 3935 { 3936 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, 3937 __builtin_return_address(0)); 3938 } 3939 EXPORT_SYMBOL(__vmalloc_noprof); 3940 3941 /** 3942 * vmalloc - allocate virtually contiguous memory 3943 * @size: allocation size 3944 * 3945 * Allocate enough pages to cover @size from the page level 3946 * allocator and map them into contiguous kernel virtual space. 3947 * 3948 * For tight control over page level allocator and protection flags 3949 * use __vmalloc() instead. 3950 * 3951 * Return: pointer to the allocated memory or %NULL on error 3952 */ 3953 void *vmalloc_noprof(unsigned long size) 3954 { 3955 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3956 __builtin_return_address(0)); 3957 } 3958 EXPORT_SYMBOL(vmalloc_noprof); 3959 3960 /** 3961 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3962 * @size: allocation size 3963 * @gfp_mask: flags for the page level allocator 3964 * 3965 * Allocate enough pages to cover @size from the page level 3966 * allocator and map them into contiguous kernel virtual space. 3967 * If @size is greater than or equal to PMD_SIZE, allow using 3968 * huge pages for the memory 3969 * 3970 * Return: pointer to the allocated memory or %NULL on error 3971 */ 3972 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask) 3973 { 3974 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 3975 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3976 NUMA_NO_NODE, __builtin_return_address(0)); 3977 } 3978 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof); 3979 3980 /** 3981 * vzalloc - allocate virtually contiguous memory with zero fill 3982 * @size: allocation size 3983 * 3984 * Allocate enough pages to cover @size from the page level 3985 * allocator and map them into contiguous kernel virtual space. 3986 * The memory allocated is set to zero. 3987 * 3988 * For tight control over page level allocator and protection flags 3989 * use __vmalloc() instead. 3990 * 3991 * Return: pointer to the allocated memory or %NULL on error 3992 */ 3993 void *vzalloc_noprof(unsigned long size) 3994 { 3995 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3996 __builtin_return_address(0)); 3997 } 3998 EXPORT_SYMBOL(vzalloc_noprof); 3999 4000 /** 4001 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 4002 * @size: allocation size 4003 * 4004 * The resulting memory area is zeroed so it can be mapped to userspace 4005 * without leaking data. 4006 * 4007 * Return: pointer to the allocated memory or %NULL on error 4008 */ 4009 void *vmalloc_user_noprof(unsigned long size) 4010 { 4011 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4012 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 4013 VM_USERMAP, NUMA_NO_NODE, 4014 __builtin_return_address(0)); 4015 } 4016 EXPORT_SYMBOL(vmalloc_user_noprof); 4017 4018 /** 4019 * vmalloc_node - allocate memory on a specific node 4020 * @size: allocation size 4021 * @node: numa node 4022 * 4023 * Allocate enough pages to cover @size from the page level 4024 * allocator and map them into contiguous kernel virtual space. 4025 * 4026 * For tight control over page level allocator and protection flags 4027 * use __vmalloc() instead. 4028 * 4029 * Return: pointer to the allocated memory or %NULL on error 4030 */ 4031 void *vmalloc_node_noprof(unsigned long size, int node) 4032 { 4033 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, 4034 __builtin_return_address(0)); 4035 } 4036 EXPORT_SYMBOL(vmalloc_node_noprof); 4037 4038 /** 4039 * vzalloc_node - allocate memory on a specific node with zero fill 4040 * @size: allocation size 4041 * @node: numa node 4042 * 4043 * Allocate enough pages to cover @size from the page level 4044 * allocator and map them into contiguous kernel virtual space. 4045 * The memory allocated is set to zero. 4046 * 4047 * Return: pointer to the allocated memory or %NULL on error 4048 */ 4049 void *vzalloc_node_noprof(unsigned long size, int node) 4050 { 4051 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, 4052 __builtin_return_address(0)); 4053 } 4054 EXPORT_SYMBOL(vzalloc_node_noprof); 4055 4056 /** 4057 * vrealloc - reallocate virtually contiguous memory; contents remain unchanged 4058 * @p: object to reallocate memory for 4059 * @size: the size to reallocate 4060 * @flags: the flags for the page level allocator 4061 * 4062 * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and 4063 * @p is not a %NULL pointer, the object pointed to is freed. 4064 * 4065 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4066 * initial memory allocation, every subsequent call to this API for the same 4067 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4068 * __GFP_ZERO is not fully honored by this API. 4069 * 4070 * In any case, the contents of the object pointed to are preserved up to the 4071 * lesser of the new and old sizes. 4072 * 4073 * This function must not be called concurrently with itself or vfree() for the 4074 * same memory allocation. 4075 * 4076 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of 4077 * failure 4078 */ 4079 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) 4080 { 4081 struct vm_struct *vm = NULL; 4082 size_t alloced_size = 0; 4083 size_t old_size = 0; 4084 void *n; 4085 4086 if (!size) { 4087 vfree(p); 4088 return NULL; 4089 } 4090 4091 if (p) { 4092 vm = find_vm_area(p); 4093 if (unlikely(!vm)) { 4094 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); 4095 return NULL; 4096 } 4097 4098 alloced_size = get_vm_area_size(vm); 4099 old_size = vm->requested_size; 4100 if (WARN(alloced_size < old_size, 4101 "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) 4102 return NULL; 4103 } 4104 4105 /* 4106 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What 4107 * would be a good heuristic for when to shrink the vm_area? 4108 */ 4109 if (size <= old_size) { 4110 /* Zero out "freed" memory. */ 4111 if (want_init_on_free()) 4112 memset((void *)p + size, 0, old_size - size); 4113 vm->requested_size = size; 4114 kasan_poison_vmalloc(p + size, old_size - size); 4115 return (void *)p; 4116 } 4117 4118 /* 4119 * We already have the bytes available in the allocation; use them. 4120 */ 4121 if (size <= alloced_size) { 4122 kasan_unpoison_vmalloc(p + old_size, size - old_size, 4123 KASAN_VMALLOC_PROT_NORMAL); 4124 /* Zero out "alloced" memory. */ 4125 if (want_init_on_alloc(flags)) 4126 memset((void *)p + old_size, 0, size - old_size); 4127 vm->requested_size = size; 4128 } 4129 4130 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ 4131 n = __vmalloc_noprof(size, flags); 4132 if (!n) 4133 return NULL; 4134 4135 if (p) { 4136 memcpy(n, p, old_size); 4137 vfree(p); 4138 } 4139 4140 return n; 4141 } 4142 4143 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 4144 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4145 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 4146 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 4147 #else 4148 /* 4149 * 64b systems should always have either DMA or DMA32 zones. For others 4150 * GFP_DMA32 should do the right thing and use the normal zone. 4151 */ 4152 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 4153 #endif 4154 4155 /** 4156 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 4157 * @size: allocation size 4158 * 4159 * Allocate enough 32bit PA addressable pages to cover @size from the 4160 * page level allocator and map them into contiguous kernel virtual space. 4161 * 4162 * Return: pointer to the allocated memory or %NULL on error 4163 */ 4164 void *vmalloc_32_noprof(unsigned long size) 4165 { 4166 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 4167 __builtin_return_address(0)); 4168 } 4169 EXPORT_SYMBOL(vmalloc_32_noprof); 4170 4171 /** 4172 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 4173 * @size: allocation size 4174 * 4175 * The resulting memory area is 32bit addressable and zeroed so it can be 4176 * mapped to userspace without leaking data. 4177 * 4178 * Return: pointer to the allocated memory or %NULL on error 4179 */ 4180 void *vmalloc_32_user_noprof(unsigned long size) 4181 { 4182 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, 4183 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 4184 VM_USERMAP, NUMA_NO_NODE, 4185 __builtin_return_address(0)); 4186 } 4187 EXPORT_SYMBOL(vmalloc_32_user_noprof); 4188 4189 /* 4190 * Atomically zero bytes in the iterator. 4191 * 4192 * Returns the number of zeroed bytes. 4193 */ 4194 static size_t zero_iter(struct iov_iter *iter, size_t count) 4195 { 4196 size_t remains = count; 4197 4198 while (remains > 0) { 4199 size_t num, copied; 4200 4201 num = min_t(size_t, remains, PAGE_SIZE); 4202 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); 4203 remains -= copied; 4204 4205 if (copied < num) 4206 break; 4207 } 4208 4209 return count - remains; 4210 } 4211 4212 /* 4213 * small helper routine, copy contents to iter from addr. 4214 * If the page is not present, fill zero. 4215 * 4216 * Returns the number of copied bytes. 4217 */ 4218 static size_t aligned_vread_iter(struct iov_iter *iter, 4219 const char *addr, size_t count) 4220 { 4221 size_t remains = count; 4222 struct page *page; 4223 4224 while (remains > 0) { 4225 unsigned long offset, length; 4226 size_t copied = 0; 4227 4228 offset = offset_in_page(addr); 4229 length = PAGE_SIZE - offset; 4230 if (length > remains) 4231 length = remains; 4232 page = vmalloc_to_page(addr); 4233 /* 4234 * To do safe access to this _mapped_ area, we need lock. But 4235 * adding lock here means that we need to add overhead of 4236 * vmalloc()/vfree() calls for this _debug_ interface, rarely 4237 * used. Instead of that, we'll use an local mapping via 4238 * copy_page_to_iter_nofault() and accept a small overhead in 4239 * this access function. 4240 */ 4241 if (page) 4242 copied = copy_page_to_iter_nofault(page, offset, 4243 length, iter); 4244 else 4245 copied = zero_iter(iter, length); 4246 4247 addr += copied; 4248 remains -= copied; 4249 4250 if (copied != length) 4251 break; 4252 } 4253 4254 return count - remains; 4255 } 4256 4257 /* 4258 * Read from a vm_map_ram region of memory. 4259 * 4260 * Returns the number of copied bytes. 4261 */ 4262 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, 4263 size_t count, unsigned long flags) 4264 { 4265 char *start; 4266 struct vmap_block *vb; 4267 struct xarray *xa; 4268 unsigned long offset; 4269 unsigned int rs, re; 4270 size_t remains, n; 4271 4272 /* 4273 * If it's area created by vm_map_ram() interface directly, but 4274 * not further subdividing and delegating management to vmap_block, 4275 * handle it here. 4276 */ 4277 if (!(flags & VMAP_BLOCK)) 4278 return aligned_vread_iter(iter, addr, count); 4279 4280 remains = count; 4281 4282 /* 4283 * Area is split into regions and tracked with vmap_block, read out 4284 * each region and zero fill the hole between regions. 4285 */ 4286 xa = addr_to_vb_xa((unsigned long) addr); 4287 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); 4288 if (!vb) 4289 goto finished_zero; 4290 4291 spin_lock(&vb->lock); 4292 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { 4293 spin_unlock(&vb->lock); 4294 goto finished_zero; 4295 } 4296 4297 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { 4298 size_t copied; 4299 4300 if (remains == 0) 4301 goto finished; 4302 4303 start = vmap_block_vaddr(vb->va->va_start, rs); 4304 4305 if (addr < start) { 4306 size_t to_zero = min_t(size_t, start - addr, remains); 4307 size_t zeroed = zero_iter(iter, to_zero); 4308 4309 addr += zeroed; 4310 remains -= zeroed; 4311 4312 if (remains == 0 || zeroed != to_zero) 4313 goto finished; 4314 } 4315 4316 /*it could start reading from the middle of used region*/ 4317 offset = offset_in_page(addr); 4318 n = ((re - rs + 1) << PAGE_SHIFT) - offset; 4319 if (n > remains) 4320 n = remains; 4321 4322 copied = aligned_vread_iter(iter, start + offset, n); 4323 4324 addr += copied; 4325 remains -= copied; 4326 4327 if (copied != n) 4328 goto finished; 4329 } 4330 4331 spin_unlock(&vb->lock); 4332 4333 finished_zero: 4334 /* zero-fill the left dirty or free regions */ 4335 return count - remains + zero_iter(iter, remains); 4336 finished: 4337 /* We couldn't copy/zero everything */ 4338 spin_unlock(&vb->lock); 4339 return count - remains; 4340 } 4341 4342 /** 4343 * vread_iter() - read vmalloc area in a safe way to an iterator. 4344 * @iter: the iterator to which data should be written. 4345 * @addr: vm address. 4346 * @count: number of bytes to be read. 4347 * 4348 * This function checks that addr is a valid vmalloc'ed area, and 4349 * copy data from that area to a given buffer. If the given memory range 4350 * of [addr...addr+count) includes some valid address, data is copied to 4351 * proper area of @buf. If there are memory holes, they'll be zero-filled. 4352 * IOREMAP area is treated as memory hole and no copy is done. 4353 * 4354 * If [addr...addr+count) doesn't includes any intersects with alive 4355 * vm_struct area, returns 0. @buf should be kernel's buffer. 4356 * 4357 * Note: In usual ops, vread() is never necessary because the caller 4358 * should know vmalloc() area is valid and can use memcpy(). 4359 * This is for routines which have to access vmalloc area without 4360 * any information, as /proc/kcore. 4361 * 4362 * Return: number of bytes for which addr and buf should be increased 4363 * (same number as @count) or %0 if [addr...addr+count) doesn't 4364 * include any intersection with valid vmalloc area 4365 */ 4366 long vread_iter(struct iov_iter *iter, const char *addr, size_t count) 4367 { 4368 struct vmap_node *vn; 4369 struct vmap_area *va; 4370 struct vm_struct *vm; 4371 char *vaddr; 4372 size_t n, size, flags, remains; 4373 unsigned long next; 4374 4375 addr = kasan_reset_tag(addr); 4376 4377 /* Don't allow overflow */ 4378 if ((unsigned long) addr + count < count) 4379 count = -(unsigned long) addr; 4380 4381 remains = count; 4382 4383 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); 4384 if (!vn) 4385 goto finished_zero; 4386 4387 /* no intersects with alive vmap_area */ 4388 if ((unsigned long)addr + remains <= va->va_start) 4389 goto finished_zero; 4390 4391 do { 4392 size_t copied; 4393 4394 if (remains == 0) 4395 goto finished; 4396 4397 vm = va->vm; 4398 flags = va->flags & VMAP_FLAGS_MASK; 4399 /* 4400 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need 4401 * be set together with VMAP_RAM. 4402 */ 4403 WARN_ON(flags == VMAP_BLOCK); 4404 4405 if (!vm && !flags) 4406 goto next_va; 4407 4408 if (vm && (vm->flags & VM_UNINITIALIZED)) 4409 goto next_va; 4410 4411 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4412 smp_rmb(); 4413 4414 vaddr = (char *) va->va_start; 4415 size = vm ? get_vm_area_size(vm) : va_size(va); 4416 4417 if (addr >= vaddr + size) 4418 goto next_va; 4419 4420 if (addr < vaddr) { 4421 size_t to_zero = min_t(size_t, vaddr - addr, remains); 4422 size_t zeroed = zero_iter(iter, to_zero); 4423 4424 addr += zeroed; 4425 remains -= zeroed; 4426 4427 if (remains == 0 || zeroed != to_zero) 4428 goto finished; 4429 } 4430 4431 n = vaddr + size - addr; 4432 if (n > remains) 4433 n = remains; 4434 4435 if (flags & VMAP_RAM) 4436 copied = vmap_ram_vread_iter(iter, addr, n, flags); 4437 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) 4438 copied = aligned_vread_iter(iter, addr, n); 4439 else /* IOREMAP | SPARSE area is treated as memory hole */ 4440 copied = zero_iter(iter, n); 4441 4442 addr += copied; 4443 remains -= copied; 4444 4445 if (copied != n) 4446 goto finished; 4447 4448 next_va: 4449 next = va->va_end; 4450 spin_unlock(&vn->busy.lock); 4451 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); 4452 4453 finished_zero: 4454 if (vn) 4455 spin_unlock(&vn->busy.lock); 4456 4457 /* zero-fill memory holes */ 4458 return count - remains + zero_iter(iter, remains); 4459 finished: 4460 /* Nothing remains, or We couldn't copy/zero everything. */ 4461 if (vn) 4462 spin_unlock(&vn->busy.lock); 4463 4464 return count - remains; 4465 } 4466 4467 /** 4468 * remap_vmalloc_range_partial - map vmalloc pages to userspace 4469 * @vma: vma to cover 4470 * @uaddr: target user address to start at 4471 * @kaddr: virtual address of vmalloc kernel memory 4472 * @pgoff: offset from @kaddr to start at 4473 * @size: size of map area 4474 * 4475 * Returns: 0 for success, -Exxx on failure 4476 * 4477 * This function checks that @kaddr is a valid vmalloc'ed area, 4478 * and that it is big enough to cover the range starting at 4479 * @uaddr in @vma. Will return failure if that criteria isn't 4480 * met. 4481 * 4482 * Similar to remap_pfn_range() (see mm/memory.c) 4483 */ 4484 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 4485 void *kaddr, unsigned long pgoff, 4486 unsigned long size) 4487 { 4488 struct vm_struct *area; 4489 unsigned long off; 4490 unsigned long end_index; 4491 4492 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 4493 return -EINVAL; 4494 4495 size = PAGE_ALIGN(size); 4496 4497 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 4498 return -EINVAL; 4499 4500 area = find_vm_area(kaddr); 4501 if (!area) 4502 return -EINVAL; 4503 4504 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 4505 return -EINVAL; 4506 4507 if (check_add_overflow(size, off, &end_index) || 4508 end_index > get_vm_area_size(area)) 4509 return -EINVAL; 4510 kaddr += off; 4511 4512 do { 4513 struct page *page = vmalloc_to_page(kaddr); 4514 int ret; 4515 4516 ret = vm_insert_page(vma, uaddr, page); 4517 if (ret) 4518 return ret; 4519 4520 uaddr += PAGE_SIZE; 4521 kaddr += PAGE_SIZE; 4522 size -= PAGE_SIZE; 4523 } while (size > 0); 4524 4525 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); 4526 4527 return 0; 4528 } 4529 4530 /** 4531 * remap_vmalloc_range - map vmalloc pages to userspace 4532 * @vma: vma to cover (map full range of vma) 4533 * @addr: vmalloc memory 4534 * @pgoff: number of pages into addr before first page to map 4535 * 4536 * Returns: 0 for success, -Exxx on failure 4537 * 4538 * This function checks that addr is a valid vmalloc'ed area, and 4539 * that it is big enough to cover the vma. Will return failure if 4540 * that criteria isn't met. 4541 * 4542 * Similar to remap_pfn_range() (see mm/memory.c) 4543 */ 4544 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 4545 unsigned long pgoff) 4546 { 4547 return remap_vmalloc_range_partial(vma, vma->vm_start, 4548 addr, pgoff, 4549 vma->vm_end - vma->vm_start); 4550 } 4551 EXPORT_SYMBOL(remap_vmalloc_range); 4552 4553 void free_vm_area(struct vm_struct *area) 4554 { 4555 struct vm_struct *ret; 4556 ret = remove_vm_area(area->addr); 4557 BUG_ON(ret != area); 4558 kfree(area); 4559 } 4560 EXPORT_SYMBOL_GPL(free_vm_area); 4561 4562 #ifdef CONFIG_SMP 4563 static struct vmap_area *node_to_va(struct rb_node *n) 4564 { 4565 return rb_entry_safe(n, struct vmap_area, rb_node); 4566 } 4567 4568 /** 4569 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 4570 * @addr: target address 4571 * 4572 * Returns: vmap_area if it is found. If there is no such area 4573 * the first highest(reverse order) vmap_area is returned 4574 * i.e. va->va_start < addr && va->va_end < addr or NULL 4575 * if there are no any areas before @addr. 4576 */ 4577 static struct vmap_area * 4578 pvm_find_va_enclose_addr(unsigned long addr) 4579 { 4580 struct vmap_area *va, *tmp; 4581 struct rb_node *n; 4582 4583 n = free_vmap_area_root.rb_node; 4584 va = NULL; 4585 4586 while (n) { 4587 tmp = rb_entry(n, struct vmap_area, rb_node); 4588 if (tmp->va_start <= addr) { 4589 va = tmp; 4590 if (tmp->va_end >= addr) 4591 break; 4592 4593 n = n->rb_right; 4594 } else { 4595 n = n->rb_left; 4596 } 4597 } 4598 4599 return va; 4600 } 4601 4602 /** 4603 * pvm_determine_end_from_reverse - find the highest aligned address 4604 * of free block below VMALLOC_END 4605 * @va: 4606 * in - the VA we start the search(reverse order); 4607 * out - the VA with the highest aligned end address. 4608 * @align: alignment for required highest address 4609 * 4610 * Returns: determined end address within vmap_area 4611 */ 4612 static unsigned long 4613 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 4614 { 4615 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4616 unsigned long addr; 4617 4618 if (likely(*va)) { 4619 list_for_each_entry_from_reverse((*va), 4620 &free_vmap_area_list, list) { 4621 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 4622 if ((*va)->va_start < addr) 4623 return addr; 4624 } 4625 } 4626 4627 return 0; 4628 } 4629 4630 /** 4631 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 4632 * @offsets: array containing offset of each area 4633 * @sizes: array containing size of each area 4634 * @nr_vms: the number of areas to allocate 4635 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 4636 * 4637 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 4638 * vm_structs on success, %NULL on failure 4639 * 4640 * Percpu allocator wants to use congruent vm areas so that it can 4641 * maintain the offsets among percpu areas. This function allocates 4642 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 4643 * be scattered pretty far, distance between two areas easily going up 4644 * to gigabytes. To avoid interacting with regular vmallocs, these 4645 * areas are allocated from top. 4646 * 4647 * Despite its complicated look, this allocator is rather simple. It 4648 * does everything top-down and scans free blocks from the end looking 4649 * for matching base. While scanning, if any of the areas do not fit the 4650 * base address is pulled down to fit the area. Scanning is repeated till 4651 * all the areas fit and then all necessary data structures are inserted 4652 * and the result is returned. 4653 */ 4654 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 4655 const size_t *sizes, int nr_vms, 4656 size_t align) 4657 { 4658 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 4659 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 4660 struct vmap_area **vas, *va; 4661 struct vm_struct **vms; 4662 int area, area2, last_area, term_area; 4663 unsigned long base, start, size, end, last_end, orig_start, orig_end; 4664 bool purged = false; 4665 4666 /* verify parameters and allocate data structures */ 4667 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 4668 for (last_area = 0, area = 0; area < nr_vms; area++) { 4669 start = offsets[area]; 4670 end = start + sizes[area]; 4671 4672 /* is everything aligned properly? */ 4673 BUG_ON(!IS_ALIGNED(offsets[area], align)); 4674 BUG_ON(!IS_ALIGNED(sizes[area], align)); 4675 4676 /* detect the area with the highest address */ 4677 if (start > offsets[last_area]) 4678 last_area = area; 4679 4680 for (area2 = area + 1; area2 < nr_vms; area2++) { 4681 unsigned long start2 = offsets[area2]; 4682 unsigned long end2 = start2 + sizes[area2]; 4683 4684 BUG_ON(start2 < end && start < end2); 4685 } 4686 } 4687 last_end = offsets[last_area] + sizes[last_area]; 4688 4689 if (vmalloc_end - vmalloc_start < last_end) { 4690 WARN_ON(true); 4691 return NULL; 4692 } 4693 4694 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 4695 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 4696 if (!vas || !vms) 4697 goto err_free2; 4698 4699 for (area = 0; area < nr_vms; area++) { 4700 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 4701 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 4702 if (!vas[area] || !vms[area]) 4703 goto err_free; 4704 } 4705 retry: 4706 spin_lock(&free_vmap_area_lock); 4707 4708 /* start scanning - we scan from the top, begin with the last area */ 4709 area = term_area = last_area; 4710 start = offsets[area]; 4711 end = start + sizes[area]; 4712 4713 va = pvm_find_va_enclose_addr(vmalloc_end); 4714 base = pvm_determine_end_from_reverse(&va, align) - end; 4715 4716 while (true) { 4717 /* 4718 * base might have underflowed, add last_end before 4719 * comparing. 4720 */ 4721 if (base + last_end < vmalloc_start + last_end) 4722 goto overflow; 4723 4724 /* 4725 * Fitting base has not been found. 4726 */ 4727 if (va == NULL) 4728 goto overflow; 4729 4730 /* 4731 * If required width exceeds current VA block, move 4732 * base downwards and then recheck. 4733 */ 4734 if (base + end > va->va_end) { 4735 base = pvm_determine_end_from_reverse(&va, align) - end; 4736 term_area = area; 4737 continue; 4738 } 4739 4740 /* 4741 * If this VA does not fit, move base downwards and recheck. 4742 */ 4743 if (base + start < va->va_start) { 4744 va = node_to_va(rb_prev(&va->rb_node)); 4745 base = pvm_determine_end_from_reverse(&va, align) - end; 4746 term_area = area; 4747 continue; 4748 } 4749 4750 /* 4751 * This area fits, move on to the previous one. If 4752 * the previous one is the terminal one, we're done. 4753 */ 4754 area = (area + nr_vms - 1) % nr_vms; 4755 if (area == term_area) 4756 break; 4757 4758 start = offsets[area]; 4759 end = start + sizes[area]; 4760 va = pvm_find_va_enclose_addr(base + end); 4761 } 4762 4763 /* we've found a fitting base, insert all va's */ 4764 for (area = 0; area < nr_vms; area++) { 4765 int ret; 4766 4767 start = base + offsets[area]; 4768 size = sizes[area]; 4769 4770 va = pvm_find_va_enclose_addr(start); 4771 if (WARN_ON_ONCE(va == NULL)) 4772 /* It is a BUG(), but trigger recovery instead. */ 4773 goto recovery; 4774 4775 ret = va_clip(&free_vmap_area_root, 4776 &free_vmap_area_list, va, start, size); 4777 if (WARN_ON_ONCE(unlikely(ret))) 4778 /* It is a BUG(), but trigger recovery instead. */ 4779 goto recovery; 4780 4781 /* Allocated area. */ 4782 va = vas[area]; 4783 va->va_start = start; 4784 va->va_end = start + size; 4785 } 4786 4787 spin_unlock(&free_vmap_area_lock); 4788 4789 /* populate the kasan shadow space */ 4790 for (area = 0; area < nr_vms; area++) { 4791 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 4792 goto err_free_shadow; 4793 } 4794 4795 /* insert all vm's */ 4796 for (area = 0; area < nr_vms; area++) { 4797 struct vmap_node *vn = addr_to_node(vas[area]->va_start); 4798 4799 spin_lock(&vn->busy.lock); 4800 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); 4801 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 4802 pcpu_get_vm_areas); 4803 spin_unlock(&vn->busy.lock); 4804 } 4805 4806 /* 4807 * Mark allocated areas as accessible. Do it now as a best-effort 4808 * approach, as they can be mapped outside of vmalloc code. 4809 * With hardware tag-based KASAN, marking is skipped for 4810 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 4811 */ 4812 for (area = 0; area < nr_vms; area++) 4813 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 4814 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 4815 4816 kfree(vas); 4817 return vms; 4818 4819 recovery: 4820 /* 4821 * Remove previously allocated areas. There is no 4822 * need in removing these areas from the busy tree, 4823 * because they are inserted only on the final step 4824 * and when pcpu_get_vm_areas() is success. 4825 */ 4826 while (area--) { 4827 orig_start = vas[area]->va_start; 4828 orig_end = vas[area]->va_end; 4829 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4830 &free_vmap_area_list); 4831 if (va) 4832 kasan_release_vmalloc(orig_start, orig_end, 4833 va->va_start, va->va_end, 4834 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4835 vas[area] = NULL; 4836 } 4837 4838 overflow: 4839 spin_unlock(&free_vmap_area_lock); 4840 if (!purged) { 4841 reclaim_and_purge_vmap_areas(); 4842 purged = true; 4843 4844 /* Before "retry", check if we recover. */ 4845 for (area = 0; area < nr_vms; area++) { 4846 if (vas[area]) 4847 continue; 4848 4849 vas[area] = kmem_cache_zalloc( 4850 vmap_area_cachep, GFP_KERNEL); 4851 if (!vas[area]) 4852 goto err_free; 4853 } 4854 4855 goto retry; 4856 } 4857 4858 err_free: 4859 for (area = 0; area < nr_vms; area++) { 4860 if (vas[area]) 4861 kmem_cache_free(vmap_area_cachep, vas[area]); 4862 4863 kfree(vms[area]); 4864 } 4865 err_free2: 4866 kfree(vas); 4867 kfree(vms); 4868 return NULL; 4869 4870 err_free_shadow: 4871 spin_lock(&free_vmap_area_lock); 4872 /* 4873 * We release all the vmalloc shadows, even the ones for regions that 4874 * hadn't been successfully added. This relies on kasan_release_vmalloc 4875 * being able to tolerate this case. 4876 */ 4877 for (area = 0; area < nr_vms; area++) { 4878 orig_start = vas[area]->va_start; 4879 orig_end = vas[area]->va_end; 4880 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 4881 &free_vmap_area_list); 4882 if (va) 4883 kasan_release_vmalloc(orig_start, orig_end, 4884 va->va_start, va->va_end, 4885 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); 4886 vas[area] = NULL; 4887 kfree(vms[area]); 4888 } 4889 spin_unlock(&free_vmap_area_lock); 4890 kfree(vas); 4891 kfree(vms); 4892 return NULL; 4893 } 4894 4895 /** 4896 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 4897 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 4898 * @nr_vms: the number of allocated areas 4899 * 4900 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 4901 */ 4902 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 4903 { 4904 int i; 4905 4906 for (i = 0; i < nr_vms; i++) 4907 free_vm_area(vms[i]); 4908 kfree(vms); 4909 } 4910 #endif /* CONFIG_SMP */ 4911 4912 #ifdef CONFIG_PRINTK 4913 bool vmalloc_dump_obj(void *object) 4914 { 4915 const void *caller; 4916 struct vm_struct *vm; 4917 struct vmap_area *va; 4918 struct vmap_node *vn; 4919 unsigned long addr; 4920 unsigned int nr_pages; 4921 4922 addr = PAGE_ALIGN((unsigned long) object); 4923 vn = addr_to_node(addr); 4924 4925 if (!spin_trylock(&vn->busy.lock)) 4926 return false; 4927 4928 va = __find_vmap_area(addr, &vn->busy.root); 4929 if (!va || !va->vm) { 4930 spin_unlock(&vn->busy.lock); 4931 return false; 4932 } 4933 4934 vm = va->vm; 4935 addr = (unsigned long) vm->addr; 4936 caller = vm->caller; 4937 nr_pages = vm->nr_pages; 4938 spin_unlock(&vn->busy.lock); 4939 4940 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4941 nr_pages, addr, caller); 4942 4943 return true; 4944 } 4945 #endif 4946 4947 #ifdef CONFIG_PROC_FS 4948 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4949 { 4950 if (IS_ENABLED(CONFIG_NUMA)) { 4951 unsigned int nr, *counters = m->private; 4952 unsigned int step = 1U << vm_area_page_order(v); 4953 4954 if (!counters) 4955 return; 4956 4957 if (v->flags & VM_UNINITIALIZED) 4958 return; 4959 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4960 smp_rmb(); 4961 4962 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4963 4964 for (nr = 0; nr < v->nr_pages; nr += step) 4965 counters[page_to_nid(v->pages[nr])] += step; 4966 for_each_node_state(nr, N_HIGH_MEMORY) 4967 if (counters[nr]) 4968 seq_printf(m, " N%u=%u", nr, counters[nr]); 4969 } 4970 } 4971 4972 static void show_purge_info(struct seq_file *m) 4973 { 4974 struct vmap_node *vn; 4975 struct vmap_area *va; 4976 4977 for_each_vmap_node(vn) { 4978 spin_lock(&vn->lazy.lock); 4979 list_for_each_entry(va, &vn->lazy.head, list) { 4980 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4981 (void *)va->va_start, (void *)va->va_end, 4982 va_size(va)); 4983 } 4984 spin_unlock(&vn->lazy.lock); 4985 } 4986 } 4987 4988 static int vmalloc_info_show(struct seq_file *m, void *p) 4989 { 4990 struct vmap_node *vn; 4991 struct vmap_area *va; 4992 struct vm_struct *v; 4993 4994 for_each_vmap_node(vn) { 4995 spin_lock(&vn->busy.lock); 4996 list_for_each_entry(va, &vn->busy.head, list) { 4997 if (!va->vm) { 4998 if (va->flags & VMAP_RAM) 4999 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 5000 (void *)va->va_start, (void *)va->va_end, 5001 va_size(va)); 5002 5003 continue; 5004 } 5005 5006 v = va->vm; 5007 5008 seq_printf(m, "0x%pK-0x%pK %7ld", 5009 v->addr, v->addr + v->size, v->size); 5010 5011 if (v->caller) 5012 seq_printf(m, " %pS", v->caller); 5013 5014 if (v->nr_pages) 5015 seq_printf(m, " pages=%d", v->nr_pages); 5016 5017 if (v->phys_addr) 5018 seq_printf(m, " phys=%pa", &v->phys_addr); 5019 5020 if (v->flags & VM_IOREMAP) 5021 seq_puts(m, " ioremap"); 5022 5023 if (v->flags & VM_SPARSE) 5024 seq_puts(m, " sparse"); 5025 5026 if (v->flags & VM_ALLOC) 5027 seq_puts(m, " vmalloc"); 5028 5029 if (v->flags & VM_MAP) 5030 seq_puts(m, " vmap"); 5031 5032 if (v->flags & VM_USERMAP) 5033 seq_puts(m, " user"); 5034 5035 if (v->flags & VM_DMA_COHERENT) 5036 seq_puts(m, " dma-coherent"); 5037 5038 if (is_vmalloc_addr(v->pages)) 5039 seq_puts(m, " vpages"); 5040 5041 show_numa_info(m, v); 5042 seq_putc(m, '\n'); 5043 } 5044 spin_unlock(&vn->busy.lock); 5045 } 5046 5047 /* 5048 * As a final step, dump "unpurged" areas. 5049 */ 5050 show_purge_info(m); 5051 return 0; 5052 } 5053 5054 static int __init proc_vmalloc_init(void) 5055 { 5056 void *priv_data = NULL; 5057 5058 if (IS_ENABLED(CONFIG_NUMA)) 5059 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 5060 5061 proc_create_single_data("vmallocinfo", 5062 0400, NULL, vmalloc_info_show, priv_data); 5063 5064 return 0; 5065 } 5066 module_init(proc_vmalloc_init); 5067 5068 #endif 5069 5070 static void __init vmap_init_free_space(void) 5071 { 5072 unsigned long vmap_start = 1; 5073 const unsigned long vmap_end = ULONG_MAX; 5074 struct vmap_area *free; 5075 struct vm_struct *busy; 5076 5077 /* 5078 * B F B B B F 5079 * -|-----|.....|-----|-----|-----|.....|- 5080 * | The KVA space | 5081 * |<--------------------------------->| 5082 */ 5083 for (busy = vmlist; busy; busy = busy->next) { 5084 if ((unsigned long) busy->addr - vmap_start > 0) { 5085 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5086 if (!WARN_ON_ONCE(!free)) { 5087 free->va_start = vmap_start; 5088 free->va_end = (unsigned long) busy->addr; 5089 5090 insert_vmap_area_augment(free, NULL, 5091 &free_vmap_area_root, 5092 &free_vmap_area_list); 5093 } 5094 } 5095 5096 vmap_start = (unsigned long) busy->addr + busy->size; 5097 } 5098 5099 if (vmap_end - vmap_start > 0) { 5100 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5101 if (!WARN_ON_ONCE(!free)) { 5102 free->va_start = vmap_start; 5103 free->va_end = vmap_end; 5104 5105 insert_vmap_area_augment(free, NULL, 5106 &free_vmap_area_root, 5107 &free_vmap_area_list); 5108 } 5109 } 5110 } 5111 5112 static void vmap_init_nodes(void) 5113 { 5114 struct vmap_node *vn; 5115 int i; 5116 5117 #if BITS_PER_LONG == 64 5118 /* 5119 * A high threshold of max nodes is fixed and bound to 128, 5120 * thus a scale factor is 1 for systems where number of cores 5121 * are less or equal to specified threshold. 5122 * 5123 * As for NUMA-aware notes. For bigger systems, for example 5124 * NUMA with multi-sockets, where we can end-up with thousands 5125 * of cores in total, a "sub-numa-clustering" should be added. 5126 * 5127 * In this case a NUMA domain is considered as a single entity 5128 * with dedicated sub-nodes in it which describe one group or 5129 * set of cores. Therefore a per-domain purging is supposed to 5130 * be added as well as a per-domain balancing. 5131 */ 5132 int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); 5133 5134 if (n > 1) { 5135 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); 5136 if (vn) { 5137 /* Node partition is 16 pages. */ 5138 vmap_zone_size = (1 << 4) * PAGE_SIZE; 5139 nr_vmap_nodes = n; 5140 vmap_nodes = vn; 5141 } else { 5142 pr_err("Failed to allocate an array. Disable a node layer\n"); 5143 } 5144 } 5145 #endif 5146 5147 for_each_vmap_node(vn) { 5148 vn->busy.root = RB_ROOT; 5149 INIT_LIST_HEAD(&vn->busy.head); 5150 spin_lock_init(&vn->busy.lock); 5151 5152 vn->lazy.root = RB_ROOT; 5153 INIT_LIST_HEAD(&vn->lazy.head); 5154 spin_lock_init(&vn->lazy.lock); 5155 5156 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { 5157 INIT_LIST_HEAD(&vn->pool[i].head); 5158 WRITE_ONCE(vn->pool[i].len, 0); 5159 } 5160 5161 spin_lock_init(&vn->pool_lock); 5162 } 5163 } 5164 5165 static unsigned long 5166 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 5167 { 5168 unsigned long count = 0; 5169 struct vmap_node *vn; 5170 int i; 5171 5172 for_each_vmap_node(vn) { 5173 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) 5174 count += READ_ONCE(vn->pool[i].len); 5175 } 5176 5177 return count ? count : SHRINK_EMPTY; 5178 } 5179 5180 static unsigned long 5181 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 5182 { 5183 struct vmap_node *vn; 5184 5185 for_each_vmap_node(vn) 5186 decay_va_pool_node(vn, true); 5187 5188 return SHRINK_STOP; 5189 } 5190 5191 void __init vmalloc_init(void) 5192 { 5193 struct shrinker *vmap_node_shrinker; 5194 struct vmap_area *va; 5195 struct vmap_node *vn; 5196 struct vm_struct *tmp; 5197 int i; 5198 5199 /* 5200 * Create the cache for vmap_area objects. 5201 */ 5202 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 5203 5204 for_each_possible_cpu(i) { 5205 struct vmap_block_queue *vbq; 5206 struct vfree_deferred *p; 5207 5208 vbq = &per_cpu(vmap_block_queue, i); 5209 spin_lock_init(&vbq->lock); 5210 INIT_LIST_HEAD(&vbq->free); 5211 p = &per_cpu(vfree_deferred, i); 5212 init_llist_head(&p->list); 5213 INIT_WORK(&p->wq, delayed_vfree_work); 5214 xa_init(&vbq->vmap_blocks); 5215 } 5216 5217 /* 5218 * Setup nodes before importing vmlist. 5219 */ 5220 vmap_init_nodes(); 5221 5222 /* Import existing vmlist entries. */ 5223 for (tmp = vmlist; tmp; tmp = tmp->next) { 5224 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 5225 if (WARN_ON_ONCE(!va)) 5226 continue; 5227 5228 va->va_start = (unsigned long)tmp->addr; 5229 va->va_end = va->va_start + tmp->size; 5230 va->vm = tmp; 5231 5232 vn = addr_to_node(va->va_start); 5233 insert_vmap_area(va, &vn->busy.root, &vn->busy.head); 5234 } 5235 5236 /* 5237 * Now we can initialize a free vmap space. 5238 */ 5239 vmap_init_free_space(); 5240 vmap_initialized = true; 5241 5242 vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); 5243 if (!vmap_node_shrinker) { 5244 pr_err("Failed to allocate vmap-node shrinker!\n"); 5245 return; 5246 } 5247 5248 vmap_node_shrinker->count_objects = vmap_node_shrink_count; 5249 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; 5250 shrinker_register(vmap_node_shrinker); 5251 } 5252