xref: /linux/mm/vmalloc.c (revision 040f404b731207935ed644b14bcc2bb8b8488d00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49 
50 #include "internal.h"
51 #include "pgalloc-track.h"
52 
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55 
56 static int __init set_nohugeiomap(char *str)
57 {
58 	ioremap_max_page_shift = PAGE_SHIFT;
59 	return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
65 
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68 
69 static int __init set_nohugevmalloc(char *str)
70 {
71 	vmap_allow_huge = false;
72 	return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78 
79 bool is_vmalloc_addr(const void *x)
80 {
81 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
82 
83 	return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86 
87 struct vfree_deferred {
88 	struct llist_head list;
89 	struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92 
93 /*** Page table manipulation functions ***/
94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 			phys_addr_t phys_addr, pgprot_t prot,
96 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 	pte_t *pte;
99 	u64 pfn;
100 	struct page *page;
101 	unsigned long size = PAGE_SIZE;
102 
103 	pfn = phys_addr >> PAGE_SHIFT;
104 	pte = pte_alloc_kernel_track(pmd, addr, mask);
105 	if (!pte)
106 		return -ENOMEM;
107 	do {
108 		if (unlikely(!pte_none(ptep_get(pte)))) {
109 			if (pfn_valid(pfn)) {
110 				page = pfn_to_page(pfn);
111 				dump_page(page, "remapping already mapped page");
112 			}
113 			BUG();
114 		}
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int vmap_page_range(unsigned long addr, unsigned long end,
316 		    phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	if (!err)
324 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 					       ioremap_max_page_shift);
326 	return err;
327 }
328 
329 int ioremap_page_range(unsigned long addr, unsigned long end,
330 		phys_addr_t phys_addr, pgprot_t prot)
331 {
332 	struct vm_struct *area;
333 
334 	area = find_vm_area((void *)addr);
335 	if (!area || !(area->flags & VM_IOREMAP)) {
336 		WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 		return -EINVAL;
338 	}
339 	if (addr != (unsigned long)area->addr ||
340 	    (void *)end != area->addr + get_vm_area_size(area)) {
341 		WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 			  addr, end, (long)area->addr,
343 			  (long)area->addr + get_vm_area_size(area));
344 		return -ERANGE;
345 	}
346 	return vmap_page_range(addr, end, phys_addr, prot);
347 }
348 
349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 			     pgtbl_mod_mask *mask)
351 {
352 	pte_t *pte;
353 
354 	pte = pte_offset_kernel(pmd, addr);
355 	do {
356 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 	} while (pte++, addr += PAGE_SIZE, addr != end);
359 	*mask |= PGTBL_PTE_MODIFIED;
360 }
361 
362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 			     pgtbl_mod_mask *mask)
364 {
365 	pmd_t *pmd;
366 	unsigned long next;
367 	int cleared;
368 
369 	pmd = pmd_offset(pud, addr);
370 	do {
371 		next = pmd_addr_end(addr, end);
372 
373 		cleared = pmd_clear_huge(pmd);
374 		if (cleared || pmd_bad(*pmd))
375 			*mask |= PGTBL_PMD_MODIFIED;
376 
377 		if (cleared)
378 			continue;
379 		if (pmd_none_or_clear_bad(pmd))
380 			continue;
381 		vunmap_pte_range(pmd, addr, next, mask);
382 
383 		cond_resched();
384 	} while (pmd++, addr = next, addr != end);
385 }
386 
387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	pud_t *pud;
391 	unsigned long next;
392 	int cleared;
393 
394 	pud = pud_offset(p4d, addr);
395 	do {
396 		next = pud_addr_end(addr, end);
397 
398 		cleared = pud_clear_huge(pud);
399 		if (cleared || pud_bad(*pud))
400 			*mask |= PGTBL_PUD_MODIFIED;
401 
402 		if (cleared)
403 			continue;
404 		if (pud_none_or_clear_bad(pud))
405 			continue;
406 		vunmap_pmd_range(pud, addr, next, mask);
407 	} while (pud++, addr = next, addr != end);
408 }
409 
410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 			     pgtbl_mod_mask *mask)
412 {
413 	p4d_t *p4d;
414 	unsigned long next;
415 
416 	p4d = p4d_offset(pgd, addr);
417 	do {
418 		next = p4d_addr_end(addr, end);
419 
420 		p4d_clear_huge(p4d);
421 		if (p4d_bad(*p4d))
422 			*mask |= PGTBL_P4D_MODIFIED;
423 
424 		if (p4d_none_or_clear_bad(p4d))
425 			continue;
426 		vunmap_pud_range(p4d, addr, next, mask);
427 	} while (p4d++, addr = next, addr != end);
428 }
429 
430 /*
431  * vunmap_range_noflush is similar to vunmap_range, but does not
432  * flush caches or TLBs.
433  *
434  * The caller is responsible for calling flush_cache_vmap() before calling
435  * this function, and flush_tlb_kernel_range after it has returned
436  * successfully (and before the addresses are expected to cause a page fault
437  * or be re-mapped for something else, if TLB flushes are being delayed or
438  * coalesced).
439  *
440  * This is an internal function only. Do not use outside mm/.
441  */
442 void __vunmap_range_noflush(unsigned long start, unsigned long end)
443 {
444 	unsigned long next;
445 	pgd_t *pgd;
446 	unsigned long addr = start;
447 	pgtbl_mod_mask mask = 0;
448 
449 	BUG_ON(addr >= end);
450 	pgd = pgd_offset_k(addr);
451 	do {
452 		next = pgd_addr_end(addr, end);
453 		if (pgd_bad(*pgd))
454 			mask |= PGTBL_PGD_MODIFIED;
455 		if (pgd_none_or_clear_bad(pgd))
456 			continue;
457 		vunmap_p4d_range(pgd, addr, next, &mask);
458 	} while (pgd++, addr = next, addr != end);
459 
460 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 		arch_sync_kernel_mappings(start, end);
462 }
463 
464 void vunmap_range_noflush(unsigned long start, unsigned long end)
465 {
466 	kmsan_vunmap_range_noflush(start, end);
467 	__vunmap_range_noflush(start, end);
468 }
469 
470 /**
471  * vunmap_range - unmap kernel virtual addresses
472  * @addr: start of the VM area to unmap
473  * @end: end of the VM area to unmap (non-inclusive)
474  *
475  * Clears any present PTEs in the virtual address range, flushes TLBs and
476  * caches. Any subsequent access to the address before it has been re-mapped
477  * is a kernel bug.
478  */
479 void vunmap_range(unsigned long addr, unsigned long end)
480 {
481 	flush_cache_vunmap(addr, end);
482 	vunmap_range_noflush(addr, end);
483 	flush_tlb_kernel_range(addr, end);
484 }
485 
486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 		pgtbl_mod_mask *mask)
489 {
490 	pte_t *pte;
491 
492 	/*
493 	 * nr is a running index into the array which helps higher level
494 	 * callers keep track of where we're up to.
495 	 */
496 
497 	pte = pte_alloc_kernel_track(pmd, addr, mask);
498 	if (!pte)
499 		return -ENOMEM;
500 	do {
501 		struct page *page = pages[*nr];
502 
503 		if (WARN_ON(!pte_none(ptep_get(pte))))
504 			return -EBUSY;
505 		if (WARN_ON(!page))
506 			return -ENOMEM;
507 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 			return -EINVAL;
509 
510 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 		(*nr)++;
512 	} while (pte++, addr += PAGE_SIZE, addr != end);
513 	*mask |= PGTBL_PTE_MODIFIED;
514 	return 0;
515 }
516 
517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 		pgtbl_mod_mask *mask)
520 {
521 	pmd_t *pmd;
522 	unsigned long next;
523 
524 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 	if (!pmd)
526 		return -ENOMEM;
527 	do {
528 		next = pmd_addr_end(addr, end);
529 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 			return -ENOMEM;
531 	} while (pmd++, addr = next, addr != end);
532 	return 0;
533 }
534 
535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 		pgtbl_mod_mask *mask)
538 {
539 	pud_t *pud;
540 	unsigned long next;
541 
542 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 	if (!pud)
544 		return -ENOMEM;
545 	do {
546 		next = pud_addr_end(addr, end);
547 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 			return -ENOMEM;
549 	} while (pud++, addr = next, addr != end);
550 	return 0;
551 }
552 
553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 		pgtbl_mod_mask *mask)
556 {
557 	p4d_t *p4d;
558 	unsigned long next;
559 
560 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 	if (!p4d)
562 		return -ENOMEM;
563 	do {
564 		next = p4d_addr_end(addr, end);
565 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 			return -ENOMEM;
567 	} while (p4d++, addr = next, addr != end);
568 	return 0;
569 }
570 
571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 		pgprot_t prot, struct page **pages)
573 {
574 	unsigned long start = addr;
575 	pgd_t *pgd;
576 	unsigned long next;
577 	int err = 0;
578 	int nr = 0;
579 	pgtbl_mod_mask mask = 0;
580 
581 	BUG_ON(addr >= end);
582 	pgd = pgd_offset_k(addr);
583 	do {
584 		next = pgd_addr_end(addr, end);
585 		if (pgd_bad(*pgd))
586 			mask |= PGTBL_PGD_MODIFIED;
587 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 		if (err)
589 			break;
590 	} while (pgd++, addr = next, addr != end);
591 
592 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 		arch_sync_kernel_mappings(start, end);
594 
595 	return err;
596 }
597 
598 /*
599  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600  * flush caches.
601  *
602  * The caller is responsible for calling flush_cache_vmap() after this
603  * function returns successfully and before the addresses are accessed.
604  *
605  * This is an internal function only. Do not use outside mm/.
606  */
607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 		pgprot_t prot, struct page **pages, unsigned int page_shift)
609 {
610 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611 
612 	WARN_ON(page_shift < PAGE_SHIFT);
613 
614 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 			page_shift == PAGE_SHIFT)
616 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
617 
618 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 		int err;
620 
621 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 					page_to_phys(pages[i]), prot,
623 					page_shift);
624 		if (err)
625 			return err;
626 
627 		addr += 1UL << page_shift;
628 	}
629 
630 	return 0;
631 }
632 
633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 		pgprot_t prot, struct page **pages, unsigned int page_shift)
635 {
636 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 						 page_shift);
638 
639 	if (ret)
640 		return ret;
641 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 }
643 
644 /**
645  * vmap_pages_range - map pages to a kernel virtual address
646  * @addr: start of the VM area to map
647  * @end: end of the VM area to map (non-inclusive)
648  * @prot: page protection flags to use
649  * @pages: pages to map (always PAGE_SIZE pages)
650  * @page_shift: maximum shift that the pages may be mapped with, @pages must
651  * be aligned and contiguous up to at least this shift.
652  *
653  * RETURNS:
654  * 0 on success, -errno on failure.
655  */
656 int vmap_pages_range(unsigned long addr, unsigned long end,
657 		pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659 	int err;
660 
661 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 	flush_cache_vmap(addr, end);
663 	return err;
664 }
665 
666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 				unsigned long end)
668 {
669 	might_sleep();
670 	if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 		return -EINVAL;
672 	if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 		return -EINVAL;
674 	if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 		return -EINVAL;
676 	if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 		return -E2BIG;
678 	if (start < (unsigned long)area->addr ||
679 	    (void *)end > area->addr + get_vm_area_size(area))
680 		return -ERANGE;
681 	return 0;
682 }
683 
684 /**
685  * vm_area_map_pages - map pages inside given sparse vm_area
686  * @area: vm_area
687  * @start: start address inside vm_area
688  * @end: end address inside vm_area
689  * @pages: pages to map (always PAGE_SIZE pages)
690  */
691 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 		      unsigned long end, struct page **pages)
693 {
694 	int err;
695 
696 	err = check_sparse_vm_area(area, start, end);
697 	if (err)
698 		return err;
699 
700 	return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701 }
702 
703 /**
704  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705  * @area: vm_area
706  * @start: start address inside vm_area
707  * @end: end address inside vm_area
708  */
709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 			 unsigned long end)
711 {
712 	if (check_sparse_vm_area(area, start, end))
713 		return;
714 
715 	vunmap_range(start, end);
716 }
717 
718 int is_vmalloc_or_module_addr(const void *x)
719 {
720 	/*
721 	 * ARM, x86-64 and sparc64 put modules in a special place,
722 	 * and fall back on vmalloc() if that fails. Others
723 	 * just put it in the vmalloc space.
724 	 */
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 	if (addr >= MODULES_VADDR && addr < MODULES_END)
728 		return 1;
729 #endif
730 	return is_vmalloc_addr(x);
731 }
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733 
734 /*
735  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736  * return the tail page that corresponds to the base page address, which
737  * matches small vmap mappings.
738  */
739 struct page *vmalloc_to_page(const void *vmalloc_addr)
740 {
741 	unsigned long addr = (unsigned long) vmalloc_addr;
742 	struct page *page = NULL;
743 	pgd_t *pgd = pgd_offset_k(addr);
744 	p4d_t *p4d;
745 	pud_t *pud;
746 	pmd_t *pmd;
747 	pte_t *ptep, pte;
748 
749 	/*
750 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 	 * architectures that do not vmalloc module space
752 	 */
753 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754 
755 	if (pgd_none(*pgd))
756 		return NULL;
757 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 		return NULL; /* XXX: no allowance for huge pgd */
759 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 		return NULL;
761 
762 	p4d = p4d_offset(pgd, addr);
763 	if (p4d_none(*p4d))
764 		return NULL;
765 	if (p4d_leaf(*p4d))
766 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 		return NULL;
769 
770 	pud = pud_offset(p4d, addr);
771 	if (pud_none(*pud))
772 		return NULL;
773 	if (pud_leaf(*pud))
774 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 	if (WARN_ON_ONCE(pud_bad(*pud)))
776 		return NULL;
777 
778 	pmd = pmd_offset(pud, addr);
779 	if (pmd_none(*pmd))
780 		return NULL;
781 	if (pmd_leaf(*pmd))
782 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 		return NULL;
785 
786 	ptep = pte_offset_kernel(pmd, addr);
787 	pte = ptep_get(ptep);
788 	if (pte_present(pte))
789 		page = pte_page(pte);
790 
791 	return page;
792 }
793 EXPORT_SYMBOL(vmalloc_to_page);
794 
795 /*
796  * Map a vmalloc()-space virtual address to the physical page frame number.
797  */
798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799 {
800 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801 }
802 EXPORT_SYMBOL(vmalloc_to_pfn);
803 
804 
805 /*** Global kva allocator ***/
806 
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809 
810 
811 static DEFINE_SPINLOCK(free_vmap_area_lock);
812 static bool vmap_initialized __read_mostly;
813 
814 /*
815  * This kmem_cache is used for vmap_area objects. Instead of
816  * allocating from slab we reuse an object from this cache to
817  * make things faster. Especially in "no edge" splitting of
818  * free block.
819  */
820 static struct kmem_cache *vmap_area_cachep;
821 
822 /*
823  * This linked list is used in pair with free_vmap_area_root.
824  * It gives O(1) access to prev/next to perform fast coalescing.
825  */
826 static LIST_HEAD(free_vmap_area_list);
827 
828 /*
829  * This augment red-black tree represents the free vmap space.
830  * All vmap_area objects in this tree are sorted by va->va_start
831  * address. It is used for allocation and merging when a vmap
832  * object is released.
833  *
834  * Each vmap_area node contains a maximum available free block
835  * of its sub-tree, right or left. Therefore it is possible to
836  * find a lowest match of free area.
837  */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839 
840 /*
841  * Preload a CPU with one object for "no edge" split case. The
842  * aim is to get rid of allocations from the atomic context, thus
843  * to use more permissive allocation masks.
844  */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846 
847 /*
848  * This structure defines a single, solid model where a list and
849  * rb-tree are part of one entity protected by the lock. Nodes are
850  * sorted in ascending order, thus for O(1) access to left/right
851  * neighbors a list is used as well as for sequential traversal.
852  */
853 struct rb_list {
854 	struct rb_root root;
855 	struct list_head head;
856 	spinlock_t lock;
857 };
858 
859 /*
860  * A fast size storage contains VAs up to 1M size. A pool consists
861  * of linked between each other ready to go VAs of certain sizes.
862  * An index in the pool-array corresponds to number of pages + 1.
863  */
864 #define MAX_VA_SIZE_PAGES 256
865 
866 struct vmap_pool {
867 	struct list_head head;
868 	unsigned long len;
869 };
870 
871 /*
872  * An effective vmap-node logic. Users make use of nodes instead
873  * of a global heap. It allows to balance an access and mitigate
874  * contention.
875  */
876 static struct vmap_node {
877 	/* Simple size segregated storage. */
878 	struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 	spinlock_t pool_lock;
880 	bool skip_populate;
881 
882 	/* Bookkeeping data of this node. */
883 	struct rb_list busy;
884 	struct rb_list lazy;
885 
886 	/*
887 	 * Ready-to-free areas.
888 	 */
889 	struct list_head purge_list;
890 	struct work_struct purge_work;
891 	unsigned long nr_purged;
892 } single;
893 
894 /*
895  * Initial setup consists of one single node, i.e. a balancing
896  * is fully disabled. Later on, after vmap is initialized these
897  * parameters are updated based on a system capacity.
898  */
899 static struct vmap_node *vmap_nodes = &single;
900 static __read_mostly unsigned int nr_vmap_nodes = 1;
901 static __read_mostly unsigned int vmap_zone_size = 1;
902 
903 /* A simple iterator over all vmap-nodes. */
904 #define for_each_vmap_node(vn)	\
905 	for ((vn) = &vmap_nodes[0];	\
906 		(vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
907 
908 static inline unsigned int
909 addr_to_node_id(unsigned long addr)
910 {
911 	return (addr / vmap_zone_size) % nr_vmap_nodes;
912 }
913 
914 static inline struct vmap_node *
915 addr_to_node(unsigned long addr)
916 {
917 	return &vmap_nodes[addr_to_node_id(addr)];
918 }
919 
920 static inline struct vmap_node *
921 id_to_node(unsigned int id)
922 {
923 	return &vmap_nodes[id % nr_vmap_nodes];
924 }
925 
926 static inline unsigned int
927 node_to_id(struct vmap_node *node)
928 {
929 	/* Pointer arithmetic. */
930 	unsigned int id = node - vmap_nodes;
931 
932 	if (likely(id < nr_vmap_nodes))
933 		return id;
934 
935 	WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
936 	return 0;
937 }
938 
939 /*
940  * We use the value 0 to represent "no node", that is why
941  * an encoded value will be the node-id incremented by 1.
942  * It is always greater then 0. A valid node_id which can
943  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
944  * is not valid 0 is returned.
945  */
946 static unsigned int
947 encode_vn_id(unsigned int node_id)
948 {
949 	/* Can store U8_MAX [0:254] nodes. */
950 	if (node_id < nr_vmap_nodes)
951 		return (node_id + 1) << BITS_PER_BYTE;
952 
953 	/* Warn and no node encoded. */
954 	WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
955 	return 0;
956 }
957 
958 /*
959  * Returns an encoded node-id, the valid range is within
960  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
961  * returned if extracted data is wrong.
962  */
963 static unsigned int
964 decode_vn_id(unsigned int val)
965 {
966 	unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
967 
968 	/* Can store U8_MAX [0:254] nodes. */
969 	if (node_id < nr_vmap_nodes)
970 		return node_id;
971 
972 	/* If it was _not_ zero, warn. */
973 	WARN_ONCE(node_id != UINT_MAX,
974 		"Decode wrong node id (%d)\n", node_id);
975 
976 	return nr_vmap_nodes;
977 }
978 
979 static bool
980 is_vn_id_valid(unsigned int node_id)
981 {
982 	if (node_id < nr_vmap_nodes)
983 		return true;
984 
985 	return false;
986 }
987 
988 static __always_inline unsigned long
989 va_size(struct vmap_area *va)
990 {
991 	return (va->va_end - va->va_start);
992 }
993 
994 static __always_inline unsigned long
995 get_subtree_max_size(struct rb_node *node)
996 {
997 	struct vmap_area *va;
998 
999 	va = rb_entry_safe(node, struct vmap_area, rb_node);
1000 	return va ? va->subtree_max_size : 0;
1001 }
1002 
1003 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1004 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1005 
1006 static void reclaim_and_purge_vmap_areas(void);
1007 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1008 static void drain_vmap_area_work(struct work_struct *work);
1009 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1010 
1011 static atomic_long_t nr_vmalloc_pages;
1012 
1013 unsigned long vmalloc_nr_pages(void)
1014 {
1015 	return atomic_long_read(&nr_vmalloc_pages);
1016 }
1017 
1018 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1019 {
1020 	struct rb_node *n = root->rb_node;
1021 
1022 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1023 
1024 	while (n) {
1025 		struct vmap_area *va;
1026 
1027 		va = rb_entry(n, struct vmap_area, rb_node);
1028 		if (addr < va->va_start)
1029 			n = n->rb_left;
1030 		else if (addr >= va->va_end)
1031 			n = n->rb_right;
1032 		else
1033 			return va;
1034 	}
1035 
1036 	return NULL;
1037 }
1038 
1039 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1040 static struct vmap_area *
1041 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1042 {
1043 	struct vmap_area *va = NULL;
1044 	struct rb_node *n = root->rb_node;
1045 
1046 	addr = (unsigned long)kasan_reset_tag((void *)addr);
1047 
1048 	while (n) {
1049 		struct vmap_area *tmp;
1050 
1051 		tmp = rb_entry(n, struct vmap_area, rb_node);
1052 		if (tmp->va_end > addr) {
1053 			va = tmp;
1054 			if (tmp->va_start <= addr)
1055 				break;
1056 
1057 			n = n->rb_left;
1058 		} else
1059 			n = n->rb_right;
1060 	}
1061 
1062 	return va;
1063 }
1064 
1065 /*
1066  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1067  * If success, a node is locked. A user is responsible to unlock it when a
1068  * VA is no longer needed to be accessed.
1069  *
1070  * Returns NULL if nothing found.
1071  */
1072 static struct vmap_node *
1073 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1074 {
1075 	unsigned long va_start_lowest;
1076 	struct vmap_node *vn;
1077 
1078 repeat:
1079 	va_start_lowest = 0;
1080 
1081 	for_each_vmap_node(vn) {
1082 		spin_lock(&vn->busy.lock);
1083 		*va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1084 
1085 		if (*va)
1086 			if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1087 				va_start_lowest = (*va)->va_start;
1088 		spin_unlock(&vn->busy.lock);
1089 	}
1090 
1091 	/*
1092 	 * Check if found VA exists, it might have gone away.  In this case we
1093 	 * repeat the search because a VA has been removed concurrently and we
1094 	 * need to proceed to the next one, which is a rare case.
1095 	 */
1096 	if (va_start_lowest) {
1097 		vn = addr_to_node(va_start_lowest);
1098 
1099 		spin_lock(&vn->busy.lock);
1100 		*va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1101 
1102 		if (*va)
1103 			return vn;
1104 
1105 		spin_unlock(&vn->busy.lock);
1106 		goto repeat;
1107 	}
1108 
1109 	return NULL;
1110 }
1111 
1112 /*
1113  * This function returns back addresses of parent node
1114  * and its left or right link for further processing.
1115  *
1116  * Otherwise NULL is returned. In that case all further
1117  * steps regarding inserting of conflicting overlap range
1118  * have to be declined and actually considered as a bug.
1119  */
1120 static __always_inline struct rb_node **
1121 find_va_links(struct vmap_area *va,
1122 	struct rb_root *root, struct rb_node *from,
1123 	struct rb_node **parent)
1124 {
1125 	struct vmap_area *tmp_va;
1126 	struct rb_node **link;
1127 
1128 	if (root) {
1129 		link = &root->rb_node;
1130 		if (unlikely(!*link)) {
1131 			*parent = NULL;
1132 			return link;
1133 		}
1134 	} else {
1135 		link = &from;
1136 	}
1137 
1138 	/*
1139 	 * Go to the bottom of the tree. When we hit the last point
1140 	 * we end up with parent rb_node and correct direction, i name
1141 	 * it link, where the new va->rb_node will be attached to.
1142 	 */
1143 	do {
1144 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1145 
1146 		/*
1147 		 * During the traversal we also do some sanity check.
1148 		 * Trigger the BUG() if there are sides(left/right)
1149 		 * or full overlaps.
1150 		 */
1151 		if (va->va_end <= tmp_va->va_start)
1152 			link = &(*link)->rb_left;
1153 		else if (va->va_start >= tmp_va->va_end)
1154 			link = &(*link)->rb_right;
1155 		else {
1156 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1157 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1158 
1159 			return NULL;
1160 		}
1161 	} while (*link);
1162 
1163 	*parent = &tmp_va->rb_node;
1164 	return link;
1165 }
1166 
1167 static __always_inline struct list_head *
1168 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1169 {
1170 	struct list_head *list;
1171 
1172 	if (unlikely(!parent))
1173 		/*
1174 		 * The red-black tree where we try to find VA neighbors
1175 		 * before merging or inserting is empty, i.e. it means
1176 		 * there is no free vmap space. Normally it does not
1177 		 * happen but we handle this case anyway.
1178 		 */
1179 		return NULL;
1180 
1181 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1182 	return (&parent->rb_right == link ? list->next : list);
1183 }
1184 
1185 static __always_inline void
1186 __link_va(struct vmap_area *va, struct rb_root *root,
1187 	struct rb_node *parent, struct rb_node **link,
1188 	struct list_head *head, bool augment)
1189 {
1190 	/*
1191 	 * VA is still not in the list, but we can
1192 	 * identify its future previous list_head node.
1193 	 */
1194 	if (likely(parent)) {
1195 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1196 		if (&parent->rb_right != link)
1197 			head = head->prev;
1198 	}
1199 
1200 	/* Insert to the rb-tree */
1201 	rb_link_node(&va->rb_node, parent, link);
1202 	if (augment) {
1203 		/*
1204 		 * Some explanation here. Just perform simple insertion
1205 		 * to the tree. We do not set va->subtree_max_size to
1206 		 * its current size before calling rb_insert_augmented().
1207 		 * It is because we populate the tree from the bottom
1208 		 * to parent levels when the node _is_ in the tree.
1209 		 *
1210 		 * Therefore we set subtree_max_size to zero after insertion,
1211 		 * to let __augment_tree_propagate_from() puts everything to
1212 		 * the correct order later on.
1213 		 */
1214 		rb_insert_augmented(&va->rb_node,
1215 			root, &free_vmap_area_rb_augment_cb);
1216 		va->subtree_max_size = 0;
1217 	} else {
1218 		rb_insert_color(&va->rb_node, root);
1219 	}
1220 
1221 	/* Address-sort this list */
1222 	list_add(&va->list, head);
1223 }
1224 
1225 static __always_inline void
1226 link_va(struct vmap_area *va, struct rb_root *root,
1227 	struct rb_node *parent, struct rb_node **link,
1228 	struct list_head *head)
1229 {
1230 	__link_va(va, root, parent, link, head, false);
1231 }
1232 
1233 static __always_inline void
1234 link_va_augment(struct vmap_area *va, struct rb_root *root,
1235 	struct rb_node *parent, struct rb_node **link,
1236 	struct list_head *head)
1237 {
1238 	__link_va(va, root, parent, link, head, true);
1239 }
1240 
1241 static __always_inline void
1242 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1243 {
1244 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1245 		return;
1246 
1247 	if (augment)
1248 		rb_erase_augmented(&va->rb_node,
1249 			root, &free_vmap_area_rb_augment_cb);
1250 	else
1251 		rb_erase(&va->rb_node, root);
1252 
1253 	list_del_init(&va->list);
1254 	RB_CLEAR_NODE(&va->rb_node);
1255 }
1256 
1257 static __always_inline void
1258 unlink_va(struct vmap_area *va, struct rb_root *root)
1259 {
1260 	__unlink_va(va, root, false);
1261 }
1262 
1263 static __always_inline void
1264 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1265 {
1266 	__unlink_va(va, root, true);
1267 }
1268 
1269 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1270 /*
1271  * Gets called when remove the node and rotate.
1272  */
1273 static __always_inline unsigned long
1274 compute_subtree_max_size(struct vmap_area *va)
1275 {
1276 	return max3(va_size(va),
1277 		get_subtree_max_size(va->rb_node.rb_left),
1278 		get_subtree_max_size(va->rb_node.rb_right));
1279 }
1280 
1281 static void
1282 augment_tree_propagate_check(void)
1283 {
1284 	struct vmap_area *va;
1285 	unsigned long computed_size;
1286 
1287 	list_for_each_entry(va, &free_vmap_area_list, list) {
1288 		computed_size = compute_subtree_max_size(va);
1289 		if (computed_size != va->subtree_max_size)
1290 			pr_emerg("tree is corrupted: %lu, %lu\n",
1291 				va_size(va), va->subtree_max_size);
1292 	}
1293 }
1294 #endif
1295 
1296 /*
1297  * This function populates subtree_max_size from bottom to upper
1298  * levels starting from VA point. The propagation must be done
1299  * when VA size is modified by changing its va_start/va_end. Or
1300  * in case of newly inserting of VA to the tree.
1301  *
1302  * It means that __augment_tree_propagate_from() must be called:
1303  * - After VA has been inserted to the tree(free path);
1304  * - After VA has been shrunk(allocation path);
1305  * - After VA has been increased(merging path).
1306  *
1307  * Please note that, it does not mean that upper parent nodes
1308  * and their subtree_max_size are recalculated all the time up
1309  * to the root node.
1310  *
1311  *       4--8
1312  *        /\
1313  *       /  \
1314  *      /    \
1315  *    2--2  8--8
1316  *
1317  * For example if we modify the node 4, shrinking it to 2, then
1318  * no any modification is required. If we shrink the node 2 to 1
1319  * its subtree_max_size is updated only, and set to 1. If we shrink
1320  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1321  * node becomes 4--6.
1322  */
1323 static __always_inline void
1324 augment_tree_propagate_from(struct vmap_area *va)
1325 {
1326 	/*
1327 	 * Populate the tree from bottom towards the root until
1328 	 * the calculated maximum available size of checked node
1329 	 * is equal to its current one.
1330 	 */
1331 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1332 
1333 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1334 	augment_tree_propagate_check();
1335 #endif
1336 }
1337 
1338 static void
1339 insert_vmap_area(struct vmap_area *va,
1340 	struct rb_root *root, struct list_head *head)
1341 {
1342 	struct rb_node **link;
1343 	struct rb_node *parent;
1344 
1345 	link = find_va_links(va, root, NULL, &parent);
1346 	if (link)
1347 		link_va(va, root, parent, link, head);
1348 }
1349 
1350 static void
1351 insert_vmap_area_augment(struct vmap_area *va,
1352 	struct rb_node *from, struct rb_root *root,
1353 	struct list_head *head)
1354 {
1355 	struct rb_node **link;
1356 	struct rb_node *parent;
1357 
1358 	if (from)
1359 		link = find_va_links(va, NULL, from, &parent);
1360 	else
1361 		link = find_va_links(va, root, NULL, &parent);
1362 
1363 	if (link) {
1364 		link_va_augment(va, root, parent, link, head);
1365 		augment_tree_propagate_from(va);
1366 	}
1367 }
1368 
1369 /*
1370  * Merge de-allocated chunk of VA memory with previous
1371  * and next free blocks. If coalesce is not done a new
1372  * free area is inserted. If VA has been merged, it is
1373  * freed.
1374  *
1375  * Please note, it can return NULL in case of overlap
1376  * ranges, followed by WARN() report. Despite it is a
1377  * buggy behaviour, a system can be alive and keep
1378  * ongoing.
1379  */
1380 static __always_inline struct vmap_area *
1381 __merge_or_add_vmap_area(struct vmap_area *va,
1382 	struct rb_root *root, struct list_head *head, bool augment)
1383 {
1384 	struct vmap_area *sibling;
1385 	struct list_head *next;
1386 	struct rb_node **link;
1387 	struct rb_node *parent;
1388 	bool merged = false;
1389 
1390 	/*
1391 	 * Find a place in the tree where VA potentially will be
1392 	 * inserted, unless it is merged with its sibling/siblings.
1393 	 */
1394 	link = find_va_links(va, root, NULL, &parent);
1395 	if (!link)
1396 		return NULL;
1397 
1398 	/*
1399 	 * Get next node of VA to check if merging can be done.
1400 	 */
1401 	next = get_va_next_sibling(parent, link);
1402 	if (unlikely(next == NULL))
1403 		goto insert;
1404 
1405 	/*
1406 	 * start            end
1407 	 * |                |
1408 	 * |<------VA------>|<-----Next----->|
1409 	 *                  |                |
1410 	 *                  start            end
1411 	 */
1412 	if (next != head) {
1413 		sibling = list_entry(next, struct vmap_area, list);
1414 		if (sibling->va_start == va->va_end) {
1415 			sibling->va_start = va->va_start;
1416 
1417 			/* Free vmap_area object. */
1418 			kmem_cache_free(vmap_area_cachep, va);
1419 
1420 			/* Point to the new merged area. */
1421 			va = sibling;
1422 			merged = true;
1423 		}
1424 	}
1425 
1426 	/*
1427 	 * start            end
1428 	 * |                |
1429 	 * |<-----Prev----->|<------VA------>|
1430 	 *                  |                |
1431 	 *                  start            end
1432 	 */
1433 	if (next->prev != head) {
1434 		sibling = list_entry(next->prev, struct vmap_area, list);
1435 		if (sibling->va_end == va->va_start) {
1436 			/*
1437 			 * If both neighbors are coalesced, it is important
1438 			 * to unlink the "next" node first, followed by merging
1439 			 * with "previous" one. Otherwise the tree might not be
1440 			 * fully populated if a sibling's augmented value is
1441 			 * "normalized" because of rotation operations.
1442 			 */
1443 			if (merged)
1444 				__unlink_va(va, root, augment);
1445 
1446 			sibling->va_end = va->va_end;
1447 
1448 			/* Free vmap_area object. */
1449 			kmem_cache_free(vmap_area_cachep, va);
1450 
1451 			/* Point to the new merged area. */
1452 			va = sibling;
1453 			merged = true;
1454 		}
1455 	}
1456 
1457 insert:
1458 	if (!merged)
1459 		__link_va(va, root, parent, link, head, augment);
1460 
1461 	return va;
1462 }
1463 
1464 static __always_inline struct vmap_area *
1465 merge_or_add_vmap_area(struct vmap_area *va,
1466 	struct rb_root *root, struct list_head *head)
1467 {
1468 	return __merge_or_add_vmap_area(va, root, head, false);
1469 }
1470 
1471 static __always_inline struct vmap_area *
1472 merge_or_add_vmap_area_augment(struct vmap_area *va,
1473 	struct rb_root *root, struct list_head *head)
1474 {
1475 	va = __merge_or_add_vmap_area(va, root, head, true);
1476 	if (va)
1477 		augment_tree_propagate_from(va);
1478 
1479 	return va;
1480 }
1481 
1482 static __always_inline bool
1483 is_within_this_va(struct vmap_area *va, unsigned long size,
1484 	unsigned long align, unsigned long vstart)
1485 {
1486 	unsigned long nva_start_addr;
1487 
1488 	if (va->va_start > vstart)
1489 		nva_start_addr = ALIGN(va->va_start, align);
1490 	else
1491 		nva_start_addr = ALIGN(vstart, align);
1492 
1493 	/* Can be overflowed due to big size or alignment. */
1494 	if (nva_start_addr + size < nva_start_addr ||
1495 			nva_start_addr < vstart)
1496 		return false;
1497 
1498 	return (nva_start_addr + size <= va->va_end);
1499 }
1500 
1501 /*
1502  * Find the first free block(lowest start address) in the tree,
1503  * that will accomplish the request corresponding to passing
1504  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1505  * a search length is adjusted to account for worst case alignment
1506  * overhead.
1507  */
1508 static __always_inline struct vmap_area *
1509 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1510 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1511 {
1512 	struct vmap_area *va;
1513 	struct rb_node *node;
1514 	unsigned long length;
1515 
1516 	/* Start from the root. */
1517 	node = root->rb_node;
1518 
1519 	/* Adjust the search size for alignment overhead. */
1520 	length = adjust_search_size ? size + align - 1 : size;
1521 
1522 	while (node) {
1523 		va = rb_entry(node, struct vmap_area, rb_node);
1524 
1525 		if (get_subtree_max_size(node->rb_left) >= length &&
1526 				vstart < va->va_start) {
1527 			node = node->rb_left;
1528 		} else {
1529 			if (is_within_this_va(va, size, align, vstart))
1530 				return va;
1531 
1532 			/*
1533 			 * Does not make sense to go deeper towards the right
1534 			 * sub-tree if it does not have a free block that is
1535 			 * equal or bigger to the requested search length.
1536 			 */
1537 			if (get_subtree_max_size(node->rb_right) >= length) {
1538 				node = node->rb_right;
1539 				continue;
1540 			}
1541 
1542 			/*
1543 			 * OK. We roll back and find the first right sub-tree,
1544 			 * that will satisfy the search criteria. It can happen
1545 			 * due to "vstart" restriction or an alignment overhead
1546 			 * that is bigger then PAGE_SIZE.
1547 			 */
1548 			while ((node = rb_parent(node))) {
1549 				va = rb_entry(node, struct vmap_area, rb_node);
1550 				if (is_within_this_va(va, size, align, vstart))
1551 					return va;
1552 
1553 				if (get_subtree_max_size(node->rb_right) >= length &&
1554 						vstart <= va->va_start) {
1555 					/*
1556 					 * Shift the vstart forward. Please note, we update it with
1557 					 * parent's start address adding "1" because we do not want
1558 					 * to enter same sub-tree after it has already been checked
1559 					 * and no suitable free block found there.
1560 					 */
1561 					vstart = va->va_start + 1;
1562 					node = node->rb_right;
1563 					break;
1564 				}
1565 			}
1566 		}
1567 	}
1568 
1569 	return NULL;
1570 }
1571 
1572 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1573 #include <linux/random.h>
1574 
1575 static struct vmap_area *
1576 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1577 	unsigned long align, unsigned long vstart)
1578 {
1579 	struct vmap_area *va;
1580 
1581 	list_for_each_entry(va, head, list) {
1582 		if (!is_within_this_va(va, size, align, vstart))
1583 			continue;
1584 
1585 		return va;
1586 	}
1587 
1588 	return NULL;
1589 }
1590 
1591 static void
1592 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1593 			     unsigned long size, unsigned long align)
1594 {
1595 	struct vmap_area *va_1, *va_2;
1596 	unsigned long vstart;
1597 	unsigned int rnd;
1598 
1599 	get_random_bytes(&rnd, sizeof(rnd));
1600 	vstart = VMALLOC_START + rnd;
1601 
1602 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1603 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1604 
1605 	if (va_1 != va_2)
1606 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1607 			va_1, va_2, vstart);
1608 }
1609 #endif
1610 
1611 enum fit_type {
1612 	NOTHING_FIT = 0,
1613 	FL_FIT_TYPE = 1,	/* full fit */
1614 	LE_FIT_TYPE = 2,	/* left edge fit */
1615 	RE_FIT_TYPE = 3,	/* right edge fit */
1616 	NE_FIT_TYPE = 4		/* no edge fit */
1617 };
1618 
1619 static __always_inline enum fit_type
1620 classify_va_fit_type(struct vmap_area *va,
1621 	unsigned long nva_start_addr, unsigned long size)
1622 {
1623 	enum fit_type type;
1624 
1625 	/* Check if it is within VA. */
1626 	if (nva_start_addr < va->va_start ||
1627 			nva_start_addr + size > va->va_end)
1628 		return NOTHING_FIT;
1629 
1630 	/* Now classify. */
1631 	if (va->va_start == nva_start_addr) {
1632 		if (va->va_end == nva_start_addr + size)
1633 			type = FL_FIT_TYPE;
1634 		else
1635 			type = LE_FIT_TYPE;
1636 	} else if (va->va_end == nva_start_addr + size) {
1637 		type = RE_FIT_TYPE;
1638 	} else {
1639 		type = NE_FIT_TYPE;
1640 	}
1641 
1642 	return type;
1643 }
1644 
1645 static __always_inline int
1646 va_clip(struct rb_root *root, struct list_head *head,
1647 		struct vmap_area *va, unsigned long nva_start_addr,
1648 		unsigned long size)
1649 {
1650 	struct vmap_area *lva = NULL;
1651 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1652 
1653 	if (type == FL_FIT_TYPE) {
1654 		/*
1655 		 * No need to split VA, it fully fits.
1656 		 *
1657 		 * |               |
1658 		 * V      NVA      V
1659 		 * |---------------|
1660 		 */
1661 		unlink_va_augment(va, root);
1662 		kmem_cache_free(vmap_area_cachep, va);
1663 	} else if (type == LE_FIT_TYPE) {
1664 		/*
1665 		 * Split left edge of fit VA.
1666 		 *
1667 		 * |       |
1668 		 * V  NVA  V   R
1669 		 * |-------|-------|
1670 		 */
1671 		va->va_start += size;
1672 	} else if (type == RE_FIT_TYPE) {
1673 		/*
1674 		 * Split right edge of fit VA.
1675 		 *
1676 		 *         |       |
1677 		 *     L   V  NVA  V
1678 		 * |-------|-------|
1679 		 */
1680 		va->va_end = nva_start_addr;
1681 	} else if (type == NE_FIT_TYPE) {
1682 		/*
1683 		 * Split no edge of fit VA.
1684 		 *
1685 		 *     |       |
1686 		 *   L V  NVA  V R
1687 		 * |---|-------|---|
1688 		 */
1689 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1690 		if (unlikely(!lva)) {
1691 			/*
1692 			 * For percpu allocator we do not do any pre-allocation
1693 			 * and leave it as it is. The reason is it most likely
1694 			 * never ends up with NE_FIT_TYPE splitting. In case of
1695 			 * percpu allocations offsets and sizes are aligned to
1696 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1697 			 * are its main fitting cases.
1698 			 *
1699 			 * There are a few exceptions though, as an example it is
1700 			 * a first allocation (early boot up) when we have "one"
1701 			 * big free space that has to be split.
1702 			 *
1703 			 * Also we can hit this path in case of regular "vmap"
1704 			 * allocations, if "this" current CPU was not preloaded.
1705 			 * See the comment in alloc_vmap_area() why. If so, then
1706 			 * GFP_NOWAIT is used instead to get an extra object for
1707 			 * split purpose. That is rare and most time does not
1708 			 * occur.
1709 			 *
1710 			 * What happens if an allocation gets failed. Basically,
1711 			 * an "overflow" path is triggered to purge lazily freed
1712 			 * areas to free some memory, then, the "retry" path is
1713 			 * triggered to repeat one more time. See more details
1714 			 * in alloc_vmap_area() function.
1715 			 */
1716 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1717 			if (!lva)
1718 				return -1;
1719 		}
1720 
1721 		/*
1722 		 * Build the remainder.
1723 		 */
1724 		lva->va_start = va->va_start;
1725 		lva->va_end = nva_start_addr;
1726 
1727 		/*
1728 		 * Shrink this VA to remaining size.
1729 		 */
1730 		va->va_start = nva_start_addr + size;
1731 	} else {
1732 		return -1;
1733 	}
1734 
1735 	if (type != FL_FIT_TYPE) {
1736 		augment_tree_propagate_from(va);
1737 
1738 		if (lva)	/* type == NE_FIT_TYPE */
1739 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 static unsigned long
1746 va_alloc(struct vmap_area *va,
1747 		struct rb_root *root, struct list_head *head,
1748 		unsigned long size, unsigned long align,
1749 		unsigned long vstart, unsigned long vend)
1750 {
1751 	unsigned long nva_start_addr;
1752 	int ret;
1753 
1754 	if (va->va_start > vstart)
1755 		nva_start_addr = ALIGN(va->va_start, align);
1756 	else
1757 		nva_start_addr = ALIGN(vstart, align);
1758 
1759 	/* Check the "vend" restriction. */
1760 	if (nva_start_addr + size > vend)
1761 		return vend;
1762 
1763 	/* Update the free vmap_area. */
1764 	ret = va_clip(root, head, va, nva_start_addr, size);
1765 	if (WARN_ON_ONCE(ret))
1766 		return vend;
1767 
1768 	return nva_start_addr;
1769 }
1770 
1771 /*
1772  * Returns a start address of the newly allocated area, if success.
1773  * Otherwise a vend is returned that indicates failure.
1774  */
1775 static __always_inline unsigned long
1776 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1777 	unsigned long size, unsigned long align,
1778 	unsigned long vstart, unsigned long vend)
1779 {
1780 	bool adjust_search_size = true;
1781 	unsigned long nva_start_addr;
1782 	struct vmap_area *va;
1783 
1784 	/*
1785 	 * Do not adjust when:
1786 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1787 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1788 	 *      aligned anyway;
1789 	 *   b) a short range where a requested size corresponds to exactly
1790 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1791 	 *      With adjusted search length an allocation would not succeed.
1792 	 */
1793 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1794 		adjust_search_size = false;
1795 
1796 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1797 	if (unlikely(!va))
1798 		return vend;
1799 
1800 	nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1801 	if (nva_start_addr == vend)
1802 		return vend;
1803 
1804 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1805 	find_vmap_lowest_match_check(root, head, size, align);
1806 #endif
1807 
1808 	return nva_start_addr;
1809 }
1810 
1811 /*
1812  * Free a region of KVA allocated by alloc_vmap_area
1813  */
1814 static void free_vmap_area(struct vmap_area *va)
1815 {
1816 	struct vmap_node *vn = addr_to_node(va->va_start);
1817 
1818 	/*
1819 	 * Remove from the busy tree/list.
1820 	 */
1821 	spin_lock(&vn->busy.lock);
1822 	unlink_va(va, &vn->busy.root);
1823 	spin_unlock(&vn->busy.lock);
1824 
1825 	/*
1826 	 * Insert/Merge it back to the free tree/list.
1827 	 */
1828 	spin_lock(&free_vmap_area_lock);
1829 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1830 	spin_unlock(&free_vmap_area_lock);
1831 }
1832 
1833 static inline void
1834 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1835 {
1836 	struct vmap_area *va = NULL, *tmp;
1837 
1838 	/*
1839 	 * Preload this CPU with one extra vmap_area object. It is used
1840 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1841 	 * a CPU that does an allocation is preloaded.
1842 	 *
1843 	 * We do it in non-atomic context, thus it allows us to use more
1844 	 * permissive allocation masks to be more stable under low memory
1845 	 * condition and high memory pressure.
1846 	 */
1847 	if (!this_cpu_read(ne_fit_preload_node))
1848 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1849 
1850 	spin_lock(lock);
1851 
1852 	tmp = NULL;
1853 	if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1854 		kmem_cache_free(vmap_area_cachep, va);
1855 }
1856 
1857 static struct vmap_pool *
1858 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1859 {
1860 	unsigned int idx = (size - 1) / PAGE_SIZE;
1861 
1862 	if (idx < MAX_VA_SIZE_PAGES)
1863 		return &vn->pool[idx];
1864 
1865 	return NULL;
1866 }
1867 
1868 static bool
1869 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1870 {
1871 	struct vmap_pool *vp;
1872 
1873 	vp = size_to_va_pool(n, va_size(va));
1874 	if (!vp)
1875 		return false;
1876 
1877 	spin_lock(&n->pool_lock);
1878 	list_add(&va->list, &vp->head);
1879 	WRITE_ONCE(vp->len, vp->len + 1);
1880 	spin_unlock(&n->pool_lock);
1881 
1882 	return true;
1883 }
1884 
1885 static struct vmap_area *
1886 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1887 		unsigned long align, unsigned long vstart,
1888 		unsigned long vend)
1889 {
1890 	struct vmap_area *va = NULL;
1891 	struct vmap_pool *vp;
1892 	int err = 0;
1893 
1894 	vp = size_to_va_pool(vn, size);
1895 	if (!vp || list_empty(&vp->head))
1896 		return NULL;
1897 
1898 	spin_lock(&vn->pool_lock);
1899 	if (!list_empty(&vp->head)) {
1900 		va = list_first_entry(&vp->head, struct vmap_area, list);
1901 
1902 		if (IS_ALIGNED(va->va_start, align)) {
1903 			/*
1904 			 * Do some sanity check and emit a warning
1905 			 * if one of below checks detects an error.
1906 			 */
1907 			err |= (va_size(va) != size);
1908 			err |= (va->va_start < vstart);
1909 			err |= (va->va_end > vend);
1910 
1911 			if (!WARN_ON_ONCE(err)) {
1912 				list_del_init(&va->list);
1913 				WRITE_ONCE(vp->len, vp->len - 1);
1914 			} else {
1915 				va = NULL;
1916 			}
1917 		} else {
1918 			list_move_tail(&va->list, &vp->head);
1919 			va = NULL;
1920 		}
1921 	}
1922 	spin_unlock(&vn->pool_lock);
1923 
1924 	return va;
1925 }
1926 
1927 static struct vmap_area *
1928 node_alloc(unsigned long size, unsigned long align,
1929 		unsigned long vstart, unsigned long vend,
1930 		unsigned long *addr, unsigned int *vn_id)
1931 {
1932 	struct vmap_area *va;
1933 
1934 	*vn_id = 0;
1935 	*addr = vend;
1936 
1937 	/*
1938 	 * Fallback to a global heap if not vmalloc or there
1939 	 * is only one node.
1940 	 */
1941 	if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1942 			nr_vmap_nodes == 1)
1943 		return NULL;
1944 
1945 	*vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1946 	va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1947 	*vn_id = encode_vn_id(*vn_id);
1948 
1949 	if (va)
1950 		*addr = va->va_start;
1951 
1952 	return va;
1953 }
1954 
1955 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1956 	struct vmap_area *va, unsigned long flags, const void *caller)
1957 {
1958 	vm->flags = flags;
1959 	vm->addr = (void *)va->va_start;
1960 	vm->size = vm->requested_size = va_size(va);
1961 	vm->caller = caller;
1962 	va->vm = vm;
1963 }
1964 
1965 /*
1966  * Allocate a region of KVA of the specified size and alignment, within the
1967  * vstart and vend. If vm is passed in, the two will also be bound.
1968  */
1969 static struct vmap_area *alloc_vmap_area(unsigned long size,
1970 				unsigned long align,
1971 				unsigned long vstart, unsigned long vend,
1972 				int node, gfp_t gfp_mask,
1973 				unsigned long va_flags, struct vm_struct *vm)
1974 {
1975 	struct vmap_node *vn;
1976 	struct vmap_area *va;
1977 	unsigned long freed;
1978 	unsigned long addr;
1979 	unsigned int vn_id;
1980 	int purged = 0;
1981 	int ret;
1982 
1983 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1984 		return ERR_PTR(-EINVAL);
1985 
1986 	if (unlikely(!vmap_initialized))
1987 		return ERR_PTR(-EBUSY);
1988 
1989 	might_sleep();
1990 
1991 	/*
1992 	 * If a VA is obtained from a global heap(if it fails here)
1993 	 * it is anyway marked with this "vn_id" so it is returned
1994 	 * to this pool's node later. Such way gives a possibility
1995 	 * to populate pools based on users demand.
1996 	 *
1997 	 * On success a ready to go VA is returned.
1998 	 */
1999 	va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2000 	if (!va) {
2001 		gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2002 
2003 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2004 		if (unlikely(!va))
2005 			return ERR_PTR(-ENOMEM);
2006 
2007 		/*
2008 		 * Only scan the relevant parts containing pointers to other objects
2009 		 * to avoid false negatives.
2010 		 */
2011 		kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2012 	}
2013 
2014 retry:
2015 	if (addr == vend) {
2016 		preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2017 		addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2018 			size, align, vstart, vend);
2019 		spin_unlock(&free_vmap_area_lock);
2020 	}
2021 
2022 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2023 
2024 	/*
2025 	 * If an allocation fails, the "vend" address is
2026 	 * returned. Therefore trigger the overflow path.
2027 	 */
2028 	if (unlikely(addr == vend))
2029 		goto overflow;
2030 
2031 	va->va_start = addr;
2032 	va->va_end = addr + size;
2033 	va->vm = NULL;
2034 	va->flags = (va_flags | vn_id);
2035 
2036 	if (vm) {
2037 		vm->addr = (void *)va->va_start;
2038 		vm->size = va_size(va);
2039 		va->vm = vm;
2040 	}
2041 
2042 	vn = addr_to_node(va->va_start);
2043 
2044 	spin_lock(&vn->busy.lock);
2045 	insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2046 	spin_unlock(&vn->busy.lock);
2047 
2048 	BUG_ON(!IS_ALIGNED(va->va_start, align));
2049 	BUG_ON(va->va_start < vstart);
2050 	BUG_ON(va->va_end > vend);
2051 
2052 	ret = kasan_populate_vmalloc(addr, size);
2053 	if (ret) {
2054 		free_vmap_area(va);
2055 		return ERR_PTR(ret);
2056 	}
2057 
2058 	return va;
2059 
2060 overflow:
2061 	if (!purged) {
2062 		reclaim_and_purge_vmap_areas();
2063 		purged = 1;
2064 		goto retry;
2065 	}
2066 
2067 	freed = 0;
2068 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2069 
2070 	if (freed > 0) {
2071 		purged = 0;
2072 		goto retry;
2073 	}
2074 
2075 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2076 		pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2077 				size, vstart, vend);
2078 
2079 	kmem_cache_free(vmap_area_cachep, va);
2080 	return ERR_PTR(-EBUSY);
2081 }
2082 
2083 int register_vmap_purge_notifier(struct notifier_block *nb)
2084 {
2085 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
2086 }
2087 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2088 
2089 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2090 {
2091 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2092 }
2093 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2094 
2095 /*
2096  * lazy_max_pages is the maximum amount of virtual address space we gather up
2097  * before attempting to purge with a TLB flush.
2098  *
2099  * There is a tradeoff here: a larger number will cover more kernel page tables
2100  * and take slightly longer to purge, but it will linearly reduce the number of
2101  * global TLB flushes that must be performed. It would seem natural to scale
2102  * this number up linearly with the number of CPUs (because vmapping activity
2103  * could also scale linearly with the number of CPUs), however it is likely
2104  * that in practice, workloads might be constrained in other ways that mean
2105  * vmap activity will not scale linearly with CPUs. Also, I want to be
2106  * conservative and not introduce a big latency on huge systems, so go with
2107  * a less aggressive log scale. It will still be an improvement over the old
2108  * code, and it will be simple to change the scale factor if we find that it
2109  * becomes a problem on bigger systems.
2110  */
2111 static unsigned long lazy_max_pages(void)
2112 {
2113 	unsigned int log;
2114 
2115 	log = fls(num_online_cpus());
2116 
2117 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2118 }
2119 
2120 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2121 
2122 /*
2123  * Serialize vmap purging.  There is no actual critical section protected
2124  * by this lock, but we want to avoid concurrent calls for performance
2125  * reasons and to make the pcpu_get_vm_areas more deterministic.
2126  */
2127 static DEFINE_MUTEX(vmap_purge_lock);
2128 
2129 /* for per-CPU blocks */
2130 static void purge_fragmented_blocks_allcpus(void);
2131 static cpumask_t purge_nodes;
2132 
2133 static void
2134 reclaim_list_global(struct list_head *head)
2135 {
2136 	struct vmap_area *va, *n;
2137 
2138 	if (list_empty(head))
2139 		return;
2140 
2141 	spin_lock(&free_vmap_area_lock);
2142 	list_for_each_entry_safe(va, n, head, list)
2143 		merge_or_add_vmap_area_augment(va,
2144 			&free_vmap_area_root, &free_vmap_area_list);
2145 	spin_unlock(&free_vmap_area_lock);
2146 }
2147 
2148 static void
2149 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2150 {
2151 	LIST_HEAD(decay_list);
2152 	struct rb_root decay_root = RB_ROOT;
2153 	struct vmap_area *va, *nva;
2154 	unsigned long n_decay;
2155 	int i;
2156 
2157 	for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2158 		LIST_HEAD(tmp_list);
2159 
2160 		if (list_empty(&vn->pool[i].head))
2161 			continue;
2162 
2163 		/* Detach the pool, so no-one can access it. */
2164 		spin_lock(&vn->pool_lock);
2165 		list_replace_init(&vn->pool[i].head, &tmp_list);
2166 		spin_unlock(&vn->pool_lock);
2167 
2168 		if (full_decay)
2169 			WRITE_ONCE(vn->pool[i].len, 0);
2170 
2171 		/* Decay a pool by ~25% out of left objects. */
2172 		n_decay = vn->pool[i].len >> 2;
2173 
2174 		list_for_each_entry_safe(va, nva, &tmp_list, list) {
2175 			list_del_init(&va->list);
2176 			merge_or_add_vmap_area(va, &decay_root, &decay_list);
2177 
2178 			if (!full_decay) {
2179 				WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2180 
2181 				if (!--n_decay)
2182 					break;
2183 			}
2184 		}
2185 
2186 		/*
2187 		 * Attach the pool back if it has been partly decayed.
2188 		 * Please note, it is supposed that nobody(other contexts)
2189 		 * can populate the pool therefore a simple list replace
2190 		 * operation takes place here.
2191 		 */
2192 		if (!full_decay && !list_empty(&tmp_list)) {
2193 			spin_lock(&vn->pool_lock);
2194 			list_replace_init(&tmp_list, &vn->pool[i].head);
2195 			spin_unlock(&vn->pool_lock);
2196 		}
2197 	}
2198 
2199 	reclaim_list_global(&decay_list);
2200 }
2201 
2202 static void
2203 kasan_release_vmalloc_node(struct vmap_node *vn)
2204 {
2205 	struct vmap_area *va;
2206 	unsigned long start, end;
2207 
2208 	start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2209 	end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2210 
2211 	list_for_each_entry(va, &vn->purge_list, list) {
2212 		if (is_vmalloc_or_module_addr((void *) va->va_start))
2213 			kasan_release_vmalloc(va->va_start, va->va_end,
2214 				va->va_start, va->va_end,
2215 				KASAN_VMALLOC_PAGE_RANGE);
2216 	}
2217 
2218 	kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2219 }
2220 
2221 static void purge_vmap_node(struct work_struct *work)
2222 {
2223 	struct vmap_node *vn = container_of(work,
2224 		struct vmap_node, purge_work);
2225 	unsigned long nr_purged_pages = 0;
2226 	struct vmap_area *va, *n_va;
2227 	LIST_HEAD(local_list);
2228 
2229 	if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2230 		kasan_release_vmalloc_node(vn);
2231 
2232 	vn->nr_purged = 0;
2233 
2234 	list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2235 		unsigned long nr = va_size(va) >> PAGE_SHIFT;
2236 		unsigned int vn_id = decode_vn_id(va->flags);
2237 
2238 		list_del_init(&va->list);
2239 
2240 		nr_purged_pages += nr;
2241 		vn->nr_purged++;
2242 
2243 		if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2244 			if (node_pool_add_va(vn, va))
2245 				continue;
2246 
2247 		/* Go back to global. */
2248 		list_add(&va->list, &local_list);
2249 	}
2250 
2251 	atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2252 
2253 	reclaim_list_global(&local_list);
2254 }
2255 
2256 /*
2257  * Purges all lazily-freed vmap areas.
2258  */
2259 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2260 		bool full_pool_decay)
2261 {
2262 	unsigned long nr_purged_areas = 0;
2263 	unsigned int nr_purge_helpers;
2264 	unsigned int nr_purge_nodes;
2265 	struct vmap_node *vn;
2266 	int i;
2267 
2268 	lockdep_assert_held(&vmap_purge_lock);
2269 
2270 	/*
2271 	 * Use cpumask to mark which node has to be processed.
2272 	 */
2273 	purge_nodes = CPU_MASK_NONE;
2274 
2275 	for_each_vmap_node(vn) {
2276 		INIT_LIST_HEAD(&vn->purge_list);
2277 		vn->skip_populate = full_pool_decay;
2278 		decay_va_pool_node(vn, full_pool_decay);
2279 
2280 		if (RB_EMPTY_ROOT(&vn->lazy.root))
2281 			continue;
2282 
2283 		spin_lock(&vn->lazy.lock);
2284 		WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2285 		list_replace_init(&vn->lazy.head, &vn->purge_list);
2286 		spin_unlock(&vn->lazy.lock);
2287 
2288 		start = min(start, list_first_entry(&vn->purge_list,
2289 			struct vmap_area, list)->va_start);
2290 
2291 		end = max(end, list_last_entry(&vn->purge_list,
2292 			struct vmap_area, list)->va_end);
2293 
2294 		cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2295 	}
2296 
2297 	nr_purge_nodes = cpumask_weight(&purge_nodes);
2298 	if (nr_purge_nodes > 0) {
2299 		flush_tlb_kernel_range(start, end);
2300 
2301 		/* One extra worker is per a lazy_max_pages() full set minus one. */
2302 		nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2303 		nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2304 
2305 		for_each_cpu(i, &purge_nodes) {
2306 			vn = &vmap_nodes[i];
2307 
2308 			if (nr_purge_helpers > 0) {
2309 				INIT_WORK(&vn->purge_work, purge_vmap_node);
2310 
2311 				if (cpumask_test_cpu(i, cpu_online_mask))
2312 					schedule_work_on(i, &vn->purge_work);
2313 				else
2314 					schedule_work(&vn->purge_work);
2315 
2316 				nr_purge_helpers--;
2317 			} else {
2318 				vn->purge_work.func = NULL;
2319 				purge_vmap_node(&vn->purge_work);
2320 				nr_purged_areas += vn->nr_purged;
2321 			}
2322 		}
2323 
2324 		for_each_cpu(i, &purge_nodes) {
2325 			vn = &vmap_nodes[i];
2326 
2327 			if (vn->purge_work.func) {
2328 				flush_work(&vn->purge_work);
2329 				nr_purged_areas += vn->nr_purged;
2330 			}
2331 		}
2332 	}
2333 
2334 	trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2335 	return nr_purged_areas > 0;
2336 }
2337 
2338 /*
2339  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2340  */
2341 static void reclaim_and_purge_vmap_areas(void)
2342 
2343 {
2344 	mutex_lock(&vmap_purge_lock);
2345 	purge_fragmented_blocks_allcpus();
2346 	__purge_vmap_area_lazy(ULONG_MAX, 0, true);
2347 	mutex_unlock(&vmap_purge_lock);
2348 }
2349 
2350 static void drain_vmap_area_work(struct work_struct *work)
2351 {
2352 	mutex_lock(&vmap_purge_lock);
2353 	__purge_vmap_area_lazy(ULONG_MAX, 0, false);
2354 	mutex_unlock(&vmap_purge_lock);
2355 }
2356 
2357 /*
2358  * Free a vmap area, caller ensuring that the area has been unmapped,
2359  * unlinked and flush_cache_vunmap had been called for the correct
2360  * range previously.
2361  */
2362 static void free_vmap_area_noflush(struct vmap_area *va)
2363 {
2364 	unsigned long nr_lazy_max = lazy_max_pages();
2365 	unsigned long va_start = va->va_start;
2366 	unsigned int vn_id = decode_vn_id(va->flags);
2367 	struct vmap_node *vn;
2368 	unsigned long nr_lazy;
2369 
2370 	if (WARN_ON_ONCE(!list_empty(&va->list)))
2371 		return;
2372 
2373 	nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT,
2374 					 &vmap_lazy_nr);
2375 
2376 	/*
2377 	 * If it was request by a certain node we would like to
2378 	 * return it to that node, i.e. its pool for later reuse.
2379 	 */
2380 	vn = is_vn_id_valid(vn_id) ?
2381 		id_to_node(vn_id):addr_to_node(va->va_start);
2382 
2383 	spin_lock(&vn->lazy.lock);
2384 	insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2385 	spin_unlock(&vn->lazy.lock);
2386 
2387 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2388 
2389 	/* After this point, we may free va at any time */
2390 	if (unlikely(nr_lazy > nr_lazy_max))
2391 		schedule_work(&drain_vmap_work);
2392 }
2393 
2394 /*
2395  * Free and unmap a vmap area
2396  */
2397 static void free_unmap_vmap_area(struct vmap_area *va)
2398 {
2399 	flush_cache_vunmap(va->va_start, va->va_end);
2400 	vunmap_range_noflush(va->va_start, va->va_end);
2401 	if (debug_pagealloc_enabled_static())
2402 		flush_tlb_kernel_range(va->va_start, va->va_end);
2403 
2404 	free_vmap_area_noflush(va);
2405 }
2406 
2407 struct vmap_area *find_vmap_area(unsigned long addr)
2408 {
2409 	struct vmap_node *vn;
2410 	struct vmap_area *va;
2411 	int i, j;
2412 
2413 	if (unlikely(!vmap_initialized))
2414 		return NULL;
2415 
2416 	/*
2417 	 * An addr_to_node_id(addr) converts an address to a node index
2418 	 * where a VA is located. If VA spans several zones and passed
2419 	 * addr is not the same as va->va_start, what is not common, we
2420 	 * may need to scan extra nodes. See an example:
2421 	 *
2422 	 *      <----va---->
2423 	 * -|-----|-----|-----|-----|-
2424 	 *     1     2     0     1
2425 	 *
2426 	 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2427 	 * addr is within 2 or 0 nodes we should do extra work.
2428 	 */
2429 	i = j = addr_to_node_id(addr);
2430 	do {
2431 		vn = &vmap_nodes[i];
2432 
2433 		spin_lock(&vn->busy.lock);
2434 		va = __find_vmap_area(addr, &vn->busy.root);
2435 		spin_unlock(&vn->busy.lock);
2436 
2437 		if (va)
2438 			return va;
2439 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2440 
2441 	return NULL;
2442 }
2443 
2444 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2445 {
2446 	struct vmap_node *vn;
2447 	struct vmap_area *va;
2448 	int i, j;
2449 
2450 	/*
2451 	 * Check the comment in the find_vmap_area() about the loop.
2452 	 */
2453 	i = j = addr_to_node_id(addr);
2454 	do {
2455 		vn = &vmap_nodes[i];
2456 
2457 		spin_lock(&vn->busy.lock);
2458 		va = __find_vmap_area(addr, &vn->busy.root);
2459 		if (va)
2460 			unlink_va(va, &vn->busy.root);
2461 		spin_unlock(&vn->busy.lock);
2462 
2463 		if (va)
2464 			return va;
2465 	} while ((i = (i + 1) % nr_vmap_nodes) != j);
2466 
2467 	return NULL;
2468 }
2469 
2470 /*** Per cpu kva allocator ***/
2471 
2472 /*
2473  * vmap space is limited especially on 32 bit architectures. Ensure there is
2474  * room for at least 16 percpu vmap blocks per CPU.
2475  */
2476 /*
2477  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2478  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
2479  * instead (we just need a rough idea)
2480  */
2481 #if BITS_PER_LONG == 32
2482 #define VMALLOC_SPACE		(128UL*1024*1024)
2483 #else
2484 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
2485 #endif
2486 
2487 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
2488 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
2489 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
2490 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
2491 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
2492 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
2493 #define VMAP_BBMAP_BITS		\
2494 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
2495 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
2496 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2497 
2498 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
2499 
2500 /*
2501  * Purge threshold to prevent overeager purging of fragmented blocks for
2502  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2503  */
2504 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
2505 
2506 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
2507 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
2508 #define VMAP_FLAGS_MASK		0x3
2509 
2510 struct vmap_block_queue {
2511 	spinlock_t lock;
2512 	struct list_head free;
2513 
2514 	/*
2515 	 * An xarray requires an extra memory dynamically to
2516 	 * be allocated. If it is an issue, we can use rb-tree
2517 	 * instead.
2518 	 */
2519 	struct xarray vmap_blocks;
2520 };
2521 
2522 struct vmap_block {
2523 	spinlock_t lock;
2524 	struct vmap_area *va;
2525 	unsigned long free, dirty;
2526 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2527 	unsigned long dirty_min, dirty_max; /*< dirty range */
2528 	struct list_head free_list;
2529 	struct rcu_head rcu_head;
2530 	struct list_head purge;
2531 	unsigned int cpu;
2532 };
2533 
2534 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2535 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2536 
2537 /*
2538  * In order to fast access to any "vmap_block" associated with a
2539  * specific address, we use a hash.
2540  *
2541  * A per-cpu vmap_block_queue is used in both ways, to serialize
2542  * an access to free block chains among CPUs(alloc path) and it
2543  * also acts as a vmap_block hash(alloc/free paths). It means we
2544  * overload it, since we already have the per-cpu array which is
2545  * used as a hash table. When used as a hash a 'cpu' passed to
2546  * per_cpu() is not actually a CPU but rather a hash index.
2547  *
2548  * A hash function is addr_to_vb_xa() which hashes any address
2549  * to a specific index(in a hash) it belongs to. This then uses a
2550  * per_cpu() macro to access an array with generated index.
2551  *
2552  * An example:
2553  *
2554  *  CPU_1  CPU_2  CPU_0
2555  *    |      |      |
2556  *    V      V      V
2557  * 0     10     20     30     40     50     60
2558  * |------|------|------|------|------|------|...<vmap address space>
2559  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2560  *
2561  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2562  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2563  *
2564  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2565  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2566  *
2567  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2568  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2569  *
2570  * This technique almost always avoids lock contention on insert/remove,
2571  * however xarray spinlocks protect against any contention that remains.
2572  */
2573 static struct xarray *
2574 addr_to_vb_xa(unsigned long addr)
2575 {
2576 	int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2577 
2578 	/*
2579 	 * Please note, nr_cpu_ids points on a highest set
2580 	 * possible bit, i.e. we never invoke cpumask_next()
2581 	 * if an index points on it which is nr_cpu_ids - 1.
2582 	 */
2583 	if (!cpu_possible(index))
2584 		index = cpumask_next(index, cpu_possible_mask);
2585 
2586 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
2587 }
2588 
2589 /*
2590  * We should probably have a fallback mechanism to allocate virtual memory
2591  * out of partially filled vmap blocks. However vmap block sizing should be
2592  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2593  * big problem.
2594  */
2595 
2596 static unsigned long addr_to_vb_idx(unsigned long addr)
2597 {
2598 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2599 	addr /= VMAP_BLOCK_SIZE;
2600 	return addr;
2601 }
2602 
2603 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2604 {
2605 	unsigned long addr;
2606 
2607 	addr = va_start + (pages_off << PAGE_SHIFT);
2608 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2609 	return (void *)addr;
2610 }
2611 
2612 /**
2613  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2614  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2615  * @order:    how many 2^order pages should be occupied in newly allocated block
2616  * @gfp_mask: flags for the page level allocator
2617  *
2618  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2619  */
2620 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2621 {
2622 	struct vmap_block_queue *vbq;
2623 	struct vmap_block *vb;
2624 	struct vmap_area *va;
2625 	struct xarray *xa;
2626 	unsigned long vb_idx;
2627 	int node, err;
2628 	void *vaddr;
2629 
2630 	node = numa_node_id();
2631 
2632 	vb = kmalloc_node(sizeof(struct vmap_block),
2633 			gfp_mask & GFP_RECLAIM_MASK, node);
2634 	if (unlikely(!vb))
2635 		return ERR_PTR(-ENOMEM);
2636 
2637 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2638 					VMALLOC_START, VMALLOC_END,
2639 					node, gfp_mask,
2640 					VMAP_RAM|VMAP_BLOCK, NULL);
2641 	if (IS_ERR(va)) {
2642 		kfree(vb);
2643 		return ERR_CAST(va);
2644 	}
2645 
2646 	vaddr = vmap_block_vaddr(va->va_start, 0);
2647 	spin_lock_init(&vb->lock);
2648 	vb->va = va;
2649 	/* At least something should be left free */
2650 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2651 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2652 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2653 	vb->dirty = 0;
2654 	vb->dirty_min = VMAP_BBMAP_BITS;
2655 	vb->dirty_max = 0;
2656 	bitmap_set(vb->used_map, 0, (1UL << order));
2657 	INIT_LIST_HEAD(&vb->free_list);
2658 	vb->cpu = raw_smp_processor_id();
2659 
2660 	xa = addr_to_vb_xa(va->va_start);
2661 	vb_idx = addr_to_vb_idx(va->va_start);
2662 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2663 	if (err) {
2664 		kfree(vb);
2665 		free_vmap_area(va);
2666 		return ERR_PTR(err);
2667 	}
2668 	/*
2669 	 * list_add_tail_rcu could happened in another core
2670 	 * rather than vb->cpu due to task migration, which
2671 	 * is safe as list_add_tail_rcu will ensure the list's
2672 	 * integrity together with list_for_each_rcu from read
2673 	 * side.
2674 	 */
2675 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2676 	spin_lock(&vbq->lock);
2677 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2678 	spin_unlock(&vbq->lock);
2679 
2680 	return vaddr;
2681 }
2682 
2683 static void free_vmap_block(struct vmap_block *vb)
2684 {
2685 	struct vmap_node *vn;
2686 	struct vmap_block *tmp;
2687 	struct xarray *xa;
2688 
2689 	xa = addr_to_vb_xa(vb->va->va_start);
2690 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2691 	BUG_ON(tmp != vb);
2692 
2693 	vn = addr_to_node(vb->va->va_start);
2694 	spin_lock(&vn->busy.lock);
2695 	unlink_va(vb->va, &vn->busy.root);
2696 	spin_unlock(&vn->busy.lock);
2697 
2698 	free_vmap_area_noflush(vb->va);
2699 	kfree_rcu(vb, rcu_head);
2700 }
2701 
2702 static bool purge_fragmented_block(struct vmap_block *vb,
2703 		struct list_head *purge_list, bool force_purge)
2704 {
2705 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2706 
2707 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2708 	    vb->dirty == VMAP_BBMAP_BITS)
2709 		return false;
2710 
2711 	/* Don't overeagerly purge usable blocks unless requested */
2712 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2713 		return false;
2714 
2715 	/* prevent further allocs after releasing lock */
2716 	WRITE_ONCE(vb->free, 0);
2717 	/* prevent purging it again */
2718 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2719 	vb->dirty_min = 0;
2720 	vb->dirty_max = VMAP_BBMAP_BITS;
2721 	spin_lock(&vbq->lock);
2722 	list_del_rcu(&vb->free_list);
2723 	spin_unlock(&vbq->lock);
2724 	list_add_tail(&vb->purge, purge_list);
2725 	return true;
2726 }
2727 
2728 static void free_purged_blocks(struct list_head *purge_list)
2729 {
2730 	struct vmap_block *vb, *n_vb;
2731 
2732 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2733 		list_del(&vb->purge);
2734 		free_vmap_block(vb);
2735 	}
2736 }
2737 
2738 static void purge_fragmented_blocks(int cpu)
2739 {
2740 	LIST_HEAD(purge);
2741 	struct vmap_block *vb;
2742 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2743 
2744 	rcu_read_lock();
2745 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2746 		unsigned long free = READ_ONCE(vb->free);
2747 		unsigned long dirty = READ_ONCE(vb->dirty);
2748 
2749 		if (free + dirty != VMAP_BBMAP_BITS ||
2750 		    dirty == VMAP_BBMAP_BITS)
2751 			continue;
2752 
2753 		spin_lock(&vb->lock);
2754 		purge_fragmented_block(vb, &purge, true);
2755 		spin_unlock(&vb->lock);
2756 	}
2757 	rcu_read_unlock();
2758 	free_purged_blocks(&purge);
2759 }
2760 
2761 static void purge_fragmented_blocks_allcpus(void)
2762 {
2763 	int cpu;
2764 
2765 	for_each_possible_cpu(cpu)
2766 		purge_fragmented_blocks(cpu);
2767 }
2768 
2769 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2770 {
2771 	struct vmap_block_queue *vbq;
2772 	struct vmap_block *vb;
2773 	void *vaddr = NULL;
2774 	unsigned int order;
2775 
2776 	BUG_ON(offset_in_page(size));
2777 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2778 	if (WARN_ON(size == 0)) {
2779 		/*
2780 		 * Allocating 0 bytes isn't what caller wants since
2781 		 * get_order(0) returns funny result. Just warn and terminate
2782 		 * early.
2783 		 */
2784 		return ERR_PTR(-EINVAL);
2785 	}
2786 	order = get_order(size);
2787 
2788 	rcu_read_lock();
2789 	vbq = raw_cpu_ptr(&vmap_block_queue);
2790 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2791 		unsigned long pages_off;
2792 
2793 		if (READ_ONCE(vb->free) < (1UL << order))
2794 			continue;
2795 
2796 		spin_lock(&vb->lock);
2797 		if (vb->free < (1UL << order)) {
2798 			spin_unlock(&vb->lock);
2799 			continue;
2800 		}
2801 
2802 		pages_off = VMAP_BBMAP_BITS - vb->free;
2803 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2804 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2805 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2806 		if (vb->free == 0) {
2807 			spin_lock(&vbq->lock);
2808 			list_del_rcu(&vb->free_list);
2809 			spin_unlock(&vbq->lock);
2810 		}
2811 
2812 		spin_unlock(&vb->lock);
2813 		break;
2814 	}
2815 
2816 	rcu_read_unlock();
2817 
2818 	/* Allocate new block if nothing was found */
2819 	if (!vaddr)
2820 		vaddr = new_vmap_block(order, gfp_mask);
2821 
2822 	return vaddr;
2823 }
2824 
2825 static void vb_free(unsigned long addr, unsigned long size)
2826 {
2827 	unsigned long offset;
2828 	unsigned int order;
2829 	struct vmap_block *vb;
2830 	struct xarray *xa;
2831 
2832 	BUG_ON(offset_in_page(size));
2833 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2834 
2835 	flush_cache_vunmap(addr, addr + size);
2836 
2837 	order = get_order(size);
2838 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2839 
2840 	xa = addr_to_vb_xa(addr);
2841 	vb = xa_load(xa, addr_to_vb_idx(addr));
2842 
2843 	spin_lock(&vb->lock);
2844 	bitmap_clear(vb->used_map, offset, (1UL << order));
2845 	spin_unlock(&vb->lock);
2846 
2847 	vunmap_range_noflush(addr, addr + size);
2848 
2849 	if (debug_pagealloc_enabled_static())
2850 		flush_tlb_kernel_range(addr, addr + size);
2851 
2852 	spin_lock(&vb->lock);
2853 
2854 	/* Expand the not yet TLB flushed dirty range */
2855 	vb->dirty_min = min(vb->dirty_min, offset);
2856 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2857 
2858 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2859 	if (vb->dirty == VMAP_BBMAP_BITS) {
2860 		BUG_ON(vb->free);
2861 		spin_unlock(&vb->lock);
2862 		free_vmap_block(vb);
2863 	} else
2864 		spin_unlock(&vb->lock);
2865 }
2866 
2867 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2868 {
2869 	LIST_HEAD(purge_list);
2870 	int cpu;
2871 
2872 	if (unlikely(!vmap_initialized))
2873 		return;
2874 
2875 	mutex_lock(&vmap_purge_lock);
2876 
2877 	for_each_possible_cpu(cpu) {
2878 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2879 		struct vmap_block *vb;
2880 		unsigned long idx;
2881 
2882 		rcu_read_lock();
2883 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2884 			spin_lock(&vb->lock);
2885 
2886 			/*
2887 			 * Try to purge a fragmented block first. If it's
2888 			 * not purgeable, check whether there is dirty
2889 			 * space to be flushed.
2890 			 */
2891 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2892 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2893 				unsigned long va_start = vb->va->va_start;
2894 				unsigned long s, e;
2895 
2896 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2897 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2898 
2899 				start = min(s, start);
2900 				end   = max(e, end);
2901 
2902 				/* Prevent that this is flushed again */
2903 				vb->dirty_min = VMAP_BBMAP_BITS;
2904 				vb->dirty_max = 0;
2905 
2906 				flush = 1;
2907 			}
2908 			spin_unlock(&vb->lock);
2909 		}
2910 		rcu_read_unlock();
2911 	}
2912 	free_purged_blocks(&purge_list);
2913 
2914 	if (!__purge_vmap_area_lazy(start, end, false) && flush)
2915 		flush_tlb_kernel_range(start, end);
2916 	mutex_unlock(&vmap_purge_lock);
2917 }
2918 
2919 /**
2920  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2921  *
2922  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2923  * to amortize TLB flushing overheads. What this means is that any page you
2924  * have now, may, in a former life, have been mapped into kernel virtual
2925  * address by the vmap layer and so there might be some CPUs with TLB entries
2926  * still referencing that page (additional to the regular 1:1 kernel mapping).
2927  *
2928  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2929  * be sure that none of the pages we have control over will have any aliases
2930  * from the vmap layer.
2931  */
2932 void vm_unmap_aliases(void)
2933 {
2934 	unsigned long start = ULONG_MAX, end = 0;
2935 	int flush = 0;
2936 
2937 	_vm_unmap_aliases(start, end, flush);
2938 }
2939 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2940 
2941 /**
2942  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2943  * @mem: the pointer returned by vm_map_ram
2944  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2945  */
2946 void vm_unmap_ram(const void *mem, unsigned int count)
2947 {
2948 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2949 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2950 	struct vmap_area *va;
2951 
2952 	might_sleep();
2953 	BUG_ON(!addr);
2954 	BUG_ON(addr < VMALLOC_START);
2955 	BUG_ON(addr > VMALLOC_END);
2956 	BUG_ON(!PAGE_ALIGNED(addr));
2957 
2958 	kasan_poison_vmalloc(mem, size);
2959 
2960 	if (likely(count <= VMAP_MAX_ALLOC)) {
2961 		debug_check_no_locks_freed(mem, size);
2962 		vb_free(addr, size);
2963 		return;
2964 	}
2965 
2966 	va = find_unlink_vmap_area(addr);
2967 	if (WARN_ON_ONCE(!va))
2968 		return;
2969 
2970 	debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2971 	free_unmap_vmap_area(va);
2972 }
2973 EXPORT_SYMBOL(vm_unmap_ram);
2974 
2975 /**
2976  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2977  * @pages: an array of pointers to the pages to be mapped
2978  * @count: number of pages
2979  * @node: prefer to allocate data structures on this node
2980  *
2981  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2982  * faster than vmap so it's good.  But if you mix long-life and short-life
2983  * objects with vm_map_ram(), it could consume lots of address space through
2984  * fragmentation (especially on a 32bit machine).  You could see failures in
2985  * the end.  Please use this function for short-lived objects.
2986  *
2987  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2988  */
2989 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2990 {
2991 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2992 	unsigned long addr;
2993 	void *mem;
2994 
2995 	if (likely(count <= VMAP_MAX_ALLOC)) {
2996 		mem = vb_alloc(size, GFP_KERNEL);
2997 		if (IS_ERR(mem))
2998 			return NULL;
2999 		addr = (unsigned long)mem;
3000 	} else {
3001 		struct vmap_area *va;
3002 		va = alloc_vmap_area(size, PAGE_SIZE,
3003 				VMALLOC_START, VMALLOC_END,
3004 				node, GFP_KERNEL, VMAP_RAM,
3005 				NULL);
3006 		if (IS_ERR(va))
3007 			return NULL;
3008 
3009 		addr = va->va_start;
3010 		mem = (void *)addr;
3011 	}
3012 
3013 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3014 				pages, PAGE_SHIFT) < 0) {
3015 		vm_unmap_ram(mem, count);
3016 		return NULL;
3017 	}
3018 
3019 	/*
3020 	 * Mark the pages as accessible, now that they are mapped.
3021 	 * With hardware tag-based KASAN, marking is skipped for
3022 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3023 	 */
3024 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3025 
3026 	return mem;
3027 }
3028 EXPORT_SYMBOL(vm_map_ram);
3029 
3030 static struct vm_struct *vmlist __initdata;
3031 
3032 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3033 {
3034 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3035 	return vm->page_order;
3036 #else
3037 	return 0;
3038 #endif
3039 }
3040 
3041 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3042 {
3043 	return vm_area_page_order(vm);
3044 }
3045 
3046 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3047 {
3048 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3049 	vm->page_order = order;
3050 #else
3051 	BUG_ON(order != 0);
3052 #endif
3053 }
3054 
3055 /**
3056  * vm_area_add_early - add vmap area early during boot
3057  * @vm: vm_struct to add
3058  *
3059  * This function is used to add fixed kernel vm area to vmlist before
3060  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3061  * should contain proper values and the other fields should be zero.
3062  *
3063  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3064  */
3065 void __init vm_area_add_early(struct vm_struct *vm)
3066 {
3067 	struct vm_struct *tmp, **p;
3068 
3069 	BUG_ON(vmap_initialized);
3070 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3071 		if (tmp->addr >= vm->addr) {
3072 			BUG_ON(tmp->addr < vm->addr + vm->size);
3073 			break;
3074 		} else
3075 			BUG_ON(tmp->addr + tmp->size > vm->addr);
3076 	}
3077 	vm->next = *p;
3078 	*p = vm;
3079 }
3080 
3081 /**
3082  * vm_area_register_early - register vmap area early during boot
3083  * @vm: vm_struct to register
3084  * @align: requested alignment
3085  *
3086  * This function is used to register kernel vm area before
3087  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3088  * proper values on entry and other fields should be zero.  On return,
3089  * vm->addr contains the allocated address.
3090  *
3091  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3092  */
3093 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3094 {
3095 	unsigned long addr = ALIGN(VMALLOC_START, align);
3096 	struct vm_struct *cur, **p;
3097 
3098 	BUG_ON(vmap_initialized);
3099 
3100 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3101 		if ((unsigned long)cur->addr - addr >= vm->size)
3102 			break;
3103 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3104 	}
3105 
3106 	BUG_ON(addr > VMALLOC_END - vm->size);
3107 	vm->addr = (void *)addr;
3108 	vm->next = *p;
3109 	*p = vm;
3110 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3111 }
3112 
3113 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3114 {
3115 	/*
3116 	 * Before removing VM_UNINITIALIZED,
3117 	 * we should make sure that vm has proper values.
3118 	 * Pair with smp_rmb() in show_numa_info().
3119 	 */
3120 	smp_wmb();
3121 	vm->flags &= ~VM_UNINITIALIZED;
3122 }
3123 
3124 struct vm_struct *__get_vm_area_node(unsigned long size,
3125 		unsigned long align, unsigned long shift, unsigned long flags,
3126 		unsigned long start, unsigned long end, int node,
3127 		gfp_t gfp_mask, const void *caller)
3128 {
3129 	struct vmap_area *va;
3130 	struct vm_struct *area;
3131 	unsigned long requested_size = size;
3132 
3133 	BUG_ON(in_interrupt());
3134 	size = ALIGN(size, 1ul << shift);
3135 	if (unlikely(!size))
3136 		return NULL;
3137 
3138 	if (flags & VM_IOREMAP)
3139 		align = 1ul << clamp_t(int, get_count_order_long(size),
3140 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
3141 
3142 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3143 	if (unlikely(!area))
3144 		return NULL;
3145 
3146 	if (!(flags & VM_NO_GUARD))
3147 		size += PAGE_SIZE;
3148 
3149 	area->flags = flags;
3150 	area->caller = caller;
3151 	area->requested_size = requested_size;
3152 
3153 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3154 	if (IS_ERR(va)) {
3155 		kfree(area);
3156 		return NULL;
3157 	}
3158 
3159 	/*
3160 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3161 	 * best-effort approach, as they can be mapped outside of vmalloc code.
3162 	 * For VM_ALLOC mappings, the pages are marked as accessible after
3163 	 * getting mapped in __vmalloc_node_range().
3164 	 * With hardware tag-based KASAN, marking is skipped for
3165 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3166 	 */
3167 	if (!(flags & VM_ALLOC))
3168 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3169 						    KASAN_VMALLOC_PROT_NORMAL);
3170 
3171 	return area;
3172 }
3173 
3174 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3175 				       unsigned long start, unsigned long end,
3176 				       const void *caller)
3177 {
3178 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3179 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3180 }
3181 
3182 /**
3183  * get_vm_area - reserve a contiguous kernel virtual area
3184  * @size:	 size of the area
3185  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
3186  *
3187  * Search an area of @size in the kernel virtual mapping area,
3188  * and reserved it for out purposes.  Returns the area descriptor
3189  * on success or %NULL on failure.
3190  *
3191  * Return: the area descriptor on success or %NULL on failure.
3192  */
3193 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3194 {
3195 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3196 				  VMALLOC_START, VMALLOC_END,
3197 				  NUMA_NO_NODE, GFP_KERNEL,
3198 				  __builtin_return_address(0));
3199 }
3200 
3201 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3202 				const void *caller)
3203 {
3204 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3205 				  VMALLOC_START, VMALLOC_END,
3206 				  NUMA_NO_NODE, GFP_KERNEL, caller);
3207 }
3208 
3209 /**
3210  * find_vm_area - find a continuous kernel virtual area
3211  * @addr:	  base address
3212  *
3213  * Search for the kernel VM area starting at @addr, and return it.
3214  * It is up to the caller to do all required locking to keep the returned
3215  * pointer valid.
3216  *
3217  * Return: the area descriptor on success or %NULL on failure.
3218  */
3219 struct vm_struct *find_vm_area(const void *addr)
3220 {
3221 	struct vmap_area *va;
3222 
3223 	va = find_vmap_area((unsigned long)addr);
3224 	if (!va)
3225 		return NULL;
3226 
3227 	return va->vm;
3228 }
3229 
3230 /**
3231  * remove_vm_area - find and remove a continuous kernel virtual area
3232  * @addr:	    base address
3233  *
3234  * Search for the kernel VM area starting at @addr, and remove it.
3235  * This function returns the found VM area, but using it is NOT safe
3236  * on SMP machines, except for its size or flags.
3237  *
3238  * Return: the area descriptor on success or %NULL on failure.
3239  */
3240 struct vm_struct *remove_vm_area(const void *addr)
3241 {
3242 	struct vmap_area *va;
3243 	struct vm_struct *vm;
3244 
3245 	might_sleep();
3246 
3247 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3248 			addr))
3249 		return NULL;
3250 
3251 	va = find_unlink_vmap_area((unsigned long)addr);
3252 	if (!va || !va->vm)
3253 		return NULL;
3254 	vm = va->vm;
3255 
3256 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3257 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3258 	kasan_free_module_shadow(vm);
3259 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3260 
3261 	free_unmap_vmap_area(va);
3262 	return vm;
3263 }
3264 
3265 static inline void set_area_direct_map(const struct vm_struct *area,
3266 				       int (*set_direct_map)(struct page *page))
3267 {
3268 	int i;
3269 
3270 	/* HUGE_VMALLOC passes small pages to set_direct_map */
3271 	for (i = 0; i < area->nr_pages; i++)
3272 		if (page_address(area->pages[i]))
3273 			set_direct_map(area->pages[i]);
3274 }
3275 
3276 /*
3277  * Flush the vm mapping and reset the direct map.
3278  */
3279 static void vm_reset_perms(struct vm_struct *area)
3280 {
3281 	unsigned long start = ULONG_MAX, end = 0;
3282 	unsigned int page_order = vm_area_page_order(area);
3283 	int flush_dmap = 0;
3284 	int i;
3285 
3286 	/*
3287 	 * Find the start and end range of the direct mappings to make sure that
3288 	 * the vm_unmap_aliases() flush includes the direct map.
3289 	 */
3290 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3291 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
3292 
3293 		if (addr) {
3294 			unsigned long page_size;
3295 
3296 			page_size = PAGE_SIZE << page_order;
3297 			start = min(addr, start);
3298 			end = max(addr + page_size, end);
3299 			flush_dmap = 1;
3300 		}
3301 	}
3302 
3303 	/*
3304 	 * Set direct map to something invalid so that it won't be cached if
3305 	 * there are any accesses after the TLB flush, then flush the TLB and
3306 	 * reset the direct map permissions to the default.
3307 	 */
3308 	set_area_direct_map(area, set_direct_map_invalid_noflush);
3309 	_vm_unmap_aliases(start, end, flush_dmap);
3310 	set_area_direct_map(area, set_direct_map_default_noflush);
3311 }
3312 
3313 static void delayed_vfree_work(struct work_struct *w)
3314 {
3315 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3316 	struct llist_node *t, *llnode;
3317 
3318 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3319 		vfree(llnode);
3320 }
3321 
3322 /**
3323  * vfree_atomic - release memory allocated by vmalloc()
3324  * @addr:	  memory base address
3325  *
3326  * This one is just like vfree() but can be called in any atomic context
3327  * except NMIs.
3328  */
3329 void vfree_atomic(const void *addr)
3330 {
3331 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3332 
3333 	BUG_ON(in_nmi());
3334 	kmemleak_free(addr);
3335 
3336 	/*
3337 	 * Use raw_cpu_ptr() because this can be called from preemptible
3338 	 * context. Preemption is absolutely fine here, because the llist_add()
3339 	 * implementation is lockless, so it works even if we are adding to
3340 	 * another cpu's list. schedule_work() should be fine with this too.
3341 	 */
3342 	if (addr && llist_add((struct llist_node *)addr, &p->list))
3343 		schedule_work(&p->wq);
3344 }
3345 
3346 /**
3347  * vfree - Release memory allocated by vmalloc()
3348  * @addr:  Memory base address
3349  *
3350  * Free the virtually continuous memory area starting at @addr, as obtained
3351  * from one of the vmalloc() family of APIs.  This will usually also free the
3352  * physical memory underlying the virtual allocation, but that memory is
3353  * reference counted, so it will not be freed until the last user goes away.
3354  *
3355  * If @addr is NULL, no operation is performed.
3356  *
3357  * Context:
3358  * May sleep if called *not* from interrupt context.
3359  * Must not be called in NMI context (strictly speaking, it could be
3360  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3361  * conventions for vfree() arch-dependent would be a really bad idea).
3362  */
3363 void vfree(const void *addr)
3364 {
3365 	struct vm_struct *vm;
3366 	int i;
3367 
3368 	if (unlikely(in_interrupt())) {
3369 		vfree_atomic(addr);
3370 		return;
3371 	}
3372 
3373 	BUG_ON(in_nmi());
3374 	kmemleak_free(addr);
3375 	might_sleep();
3376 
3377 	if (!addr)
3378 		return;
3379 
3380 	vm = remove_vm_area(addr);
3381 	if (unlikely(!vm)) {
3382 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3383 				addr);
3384 		return;
3385 	}
3386 
3387 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3388 		vm_reset_perms(vm);
3389 	/* All pages of vm should be charged to same memcg, so use first one. */
3390 	if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3391 		mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3392 	for (i = 0; i < vm->nr_pages; i++) {
3393 		struct page *page = vm->pages[i];
3394 
3395 		BUG_ON(!page);
3396 		/*
3397 		 * High-order allocs for huge vmallocs are split, so
3398 		 * can be freed as an array of order-0 allocations
3399 		 */
3400 		__free_page(page);
3401 		cond_resched();
3402 	}
3403 	if (!(vm->flags & VM_MAP_PUT_PAGES))
3404 		atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3405 	kvfree(vm->pages);
3406 	kfree(vm);
3407 }
3408 EXPORT_SYMBOL(vfree);
3409 
3410 /**
3411  * vunmap - release virtual mapping obtained by vmap()
3412  * @addr:   memory base address
3413  *
3414  * Free the virtually contiguous memory area starting at @addr,
3415  * which was created from the page array passed to vmap().
3416  *
3417  * Must not be called in interrupt context.
3418  */
3419 void vunmap(const void *addr)
3420 {
3421 	struct vm_struct *vm;
3422 
3423 	BUG_ON(in_interrupt());
3424 	might_sleep();
3425 
3426 	if (!addr)
3427 		return;
3428 	vm = remove_vm_area(addr);
3429 	if (unlikely(!vm)) {
3430 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3431 				addr);
3432 		return;
3433 	}
3434 	kfree(vm);
3435 }
3436 EXPORT_SYMBOL(vunmap);
3437 
3438 /**
3439  * vmap - map an array of pages into virtually contiguous space
3440  * @pages: array of page pointers
3441  * @count: number of pages to map
3442  * @flags: vm_area->flags
3443  * @prot: page protection for the mapping
3444  *
3445  * Maps @count pages from @pages into contiguous kernel virtual space.
3446  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3447  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3448  * are transferred from the caller to vmap(), and will be freed / dropped when
3449  * vfree() is called on the return value.
3450  *
3451  * Return: the address of the area or %NULL on failure
3452  */
3453 void *vmap(struct page **pages, unsigned int count,
3454 	   unsigned long flags, pgprot_t prot)
3455 {
3456 	struct vm_struct *area;
3457 	unsigned long addr;
3458 	unsigned long size;		/* In bytes */
3459 
3460 	might_sleep();
3461 
3462 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3463 		return NULL;
3464 
3465 	/*
3466 	 * Your top guard is someone else's bottom guard. Not having a top
3467 	 * guard compromises someone else's mappings too.
3468 	 */
3469 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3470 		flags &= ~VM_NO_GUARD;
3471 
3472 	if (count > totalram_pages())
3473 		return NULL;
3474 
3475 	size = (unsigned long)count << PAGE_SHIFT;
3476 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3477 	if (!area)
3478 		return NULL;
3479 
3480 	addr = (unsigned long)area->addr;
3481 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3482 				pages, PAGE_SHIFT) < 0) {
3483 		vunmap(area->addr);
3484 		return NULL;
3485 	}
3486 
3487 	if (flags & VM_MAP_PUT_PAGES) {
3488 		area->pages = pages;
3489 		area->nr_pages = count;
3490 	}
3491 	return area->addr;
3492 }
3493 EXPORT_SYMBOL(vmap);
3494 
3495 #ifdef CONFIG_VMAP_PFN
3496 struct vmap_pfn_data {
3497 	unsigned long	*pfns;
3498 	pgprot_t	prot;
3499 	unsigned int	idx;
3500 };
3501 
3502 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3503 {
3504 	struct vmap_pfn_data *data = private;
3505 	unsigned long pfn = data->pfns[data->idx];
3506 	pte_t ptent;
3507 
3508 	if (WARN_ON_ONCE(pfn_valid(pfn)))
3509 		return -EINVAL;
3510 
3511 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3512 	set_pte_at(&init_mm, addr, pte, ptent);
3513 
3514 	data->idx++;
3515 	return 0;
3516 }
3517 
3518 /**
3519  * vmap_pfn - map an array of PFNs into virtually contiguous space
3520  * @pfns: array of PFNs
3521  * @count: number of pages to map
3522  * @prot: page protection for the mapping
3523  *
3524  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3525  * the start address of the mapping.
3526  */
3527 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3528 {
3529 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3530 	struct vm_struct *area;
3531 
3532 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3533 			__builtin_return_address(0));
3534 	if (!area)
3535 		return NULL;
3536 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3537 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3538 		free_vm_area(area);
3539 		return NULL;
3540 	}
3541 
3542 	flush_cache_vmap((unsigned long)area->addr,
3543 			 (unsigned long)area->addr + count * PAGE_SIZE);
3544 
3545 	return area->addr;
3546 }
3547 EXPORT_SYMBOL_GPL(vmap_pfn);
3548 #endif /* CONFIG_VMAP_PFN */
3549 
3550 static inline unsigned int
3551 vm_area_alloc_pages(gfp_t gfp, int nid,
3552 		unsigned int order, unsigned int nr_pages, struct page **pages)
3553 {
3554 	unsigned int nr_allocated = 0;
3555 	struct page *page;
3556 	int i;
3557 
3558 	/*
3559 	 * For order-0 pages we make use of bulk allocator, if
3560 	 * the page array is partly or not at all populated due
3561 	 * to fails, fallback to a single page allocator that is
3562 	 * more permissive.
3563 	 */
3564 	if (!order) {
3565 		while (nr_allocated < nr_pages) {
3566 			unsigned int nr, nr_pages_request;
3567 
3568 			/*
3569 			 * A maximum allowed request is hard-coded and is 100
3570 			 * pages per call. That is done in order to prevent a
3571 			 * long preemption off scenario in the bulk-allocator
3572 			 * so the range is [1:100].
3573 			 */
3574 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3575 
3576 			/* memory allocation should consider mempolicy, we can't
3577 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3578 			 * otherwise memory may be allocated in only one node,
3579 			 * but mempolicy wants to alloc memory by interleaving.
3580 			 */
3581 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3582 				nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3583 							nr_pages_request,
3584 							pages + nr_allocated);
3585 			else
3586 				nr = alloc_pages_bulk_node_noprof(gfp, nid,
3587 							nr_pages_request,
3588 							pages + nr_allocated);
3589 
3590 			nr_allocated += nr;
3591 			cond_resched();
3592 
3593 			/*
3594 			 * If zero or pages were obtained partly,
3595 			 * fallback to a single page allocator.
3596 			 */
3597 			if (nr != nr_pages_request)
3598 				break;
3599 		}
3600 	}
3601 
3602 	/* High-order pages or fallback path if "bulk" fails. */
3603 	while (nr_allocated < nr_pages) {
3604 		if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3605 			break;
3606 
3607 		if (nid == NUMA_NO_NODE)
3608 			page = alloc_pages_noprof(gfp, order);
3609 		else
3610 			page = alloc_pages_node_noprof(nid, gfp, order);
3611 
3612 		if (unlikely(!page))
3613 			break;
3614 
3615 		/*
3616 		 * High-order allocations must be able to be treated as
3617 		 * independent small pages by callers (as they can with
3618 		 * small-page vmallocs). Some drivers do their own refcounting
3619 		 * on vmalloc_to_page() pages, some use page->mapping,
3620 		 * page->lru, etc.
3621 		 */
3622 		if (order)
3623 			split_page(page, order);
3624 
3625 		/*
3626 		 * Careful, we allocate and map page-order pages, but
3627 		 * tracking is done per PAGE_SIZE page so as to keep the
3628 		 * vm_struct APIs independent of the physical/mapped size.
3629 		 */
3630 		for (i = 0; i < (1U << order); i++)
3631 			pages[nr_allocated + i] = page + i;
3632 
3633 		cond_resched();
3634 		nr_allocated += 1U << order;
3635 	}
3636 
3637 	return nr_allocated;
3638 }
3639 
3640 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3641 				 pgprot_t prot, unsigned int page_shift,
3642 				 int node)
3643 {
3644 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3645 	bool nofail = gfp_mask & __GFP_NOFAIL;
3646 	unsigned long addr = (unsigned long)area->addr;
3647 	unsigned long size = get_vm_area_size(area);
3648 	unsigned long array_size;
3649 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3650 	unsigned int page_order;
3651 	unsigned int flags;
3652 	int ret;
3653 
3654 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3655 
3656 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3657 		gfp_mask |= __GFP_HIGHMEM;
3658 
3659 	/* Please note that the recursion is strictly bounded. */
3660 	if (array_size > PAGE_SIZE) {
3661 		area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3662 					area->caller);
3663 	} else {
3664 		area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3665 	}
3666 
3667 	if (!area->pages) {
3668 		warn_alloc(gfp_mask, NULL,
3669 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3670 			nr_small_pages * PAGE_SIZE, array_size);
3671 		free_vm_area(area);
3672 		return NULL;
3673 	}
3674 
3675 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3676 	page_order = vm_area_page_order(area);
3677 
3678 	/*
3679 	 * High-order nofail allocations are really expensive and
3680 	 * potentially dangerous (pre-mature OOM, disruptive reclaim
3681 	 * and compaction etc.
3682 	 *
3683 	 * Please note, the __vmalloc_node_range_noprof() falls-back
3684 	 * to order-0 pages if high-order attempt is unsuccessful.
3685 	 */
3686 	area->nr_pages = vm_area_alloc_pages((page_order ?
3687 		gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3688 		node, page_order, nr_small_pages, area->pages);
3689 
3690 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3691 	/* All pages of vm should be charged to same memcg, so use first one. */
3692 	if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3693 		mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3694 				     area->nr_pages);
3695 
3696 	/*
3697 	 * If not enough pages were obtained to accomplish an
3698 	 * allocation request, free them via vfree() if any.
3699 	 */
3700 	if (area->nr_pages != nr_small_pages) {
3701 		/*
3702 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3703 		 * also:-
3704 		 *
3705 		 * - a pending fatal signal
3706 		 * - insufficient huge page-order pages
3707 		 *
3708 		 * Since we always retry allocations at order-0 in the huge page
3709 		 * case a warning for either is spurious.
3710 		 */
3711 		if (!fatal_signal_pending(current) && page_order == 0)
3712 			warn_alloc(gfp_mask, NULL,
3713 				"vmalloc error: size %lu, failed to allocate pages",
3714 				area->nr_pages * PAGE_SIZE);
3715 		goto fail;
3716 	}
3717 
3718 	/*
3719 	 * page tables allocations ignore external gfp mask, enforce it
3720 	 * by the scope API
3721 	 */
3722 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3723 		flags = memalloc_nofs_save();
3724 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3725 		flags = memalloc_noio_save();
3726 
3727 	do {
3728 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3729 			page_shift);
3730 		if (nofail && (ret < 0))
3731 			schedule_timeout_uninterruptible(1);
3732 	} while (nofail && (ret < 0));
3733 
3734 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3735 		memalloc_nofs_restore(flags);
3736 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3737 		memalloc_noio_restore(flags);
3738 
3739 	if (ret < 0) {
3740 		warn_alloc(gfp_mask, NULL,
3741 			"vmalloc error: size %lu, failed to map pages",
3742 			area->nr_pages * PAGE_SIZE);
3743 		goto fail;
3744 	}
3745 
3746 	return area->addr;
3747 
3748 fail:
3749 	vfree(area->addr);
3750 	return NULL;
3751 }
3752 
3753 /**
3754  * __vmalloc_node_range - allocate virtually contiguous memory
3755  * @size:		  allocation size
3756  * @align:		  desired alignment
3757  * @start:		  vm area range start
3758  * @end:		  vm area range end
3759  * @gfp_mask:		  flags for the page level allocator
3760  * @prot:		  protection mask for the allocated pages
3761  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3762  * @node:		  node to use for allocation or NUMA_NO_NODE
3763  * @caller:		  caller's return address
3764  *
3765  * Allocate enough pages to cover @size from the page level
3766  * allocator with @gfp_mask flags. Please note that the full set of gfp
3767  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3768  * supported.
3769  * Zone modifiers are not supported. From the reclaim modifiers
3770  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3771  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3772  * __GFP_RETRY_MAYFAIL are not supported).
3773  *
3774  * __GFP_NOWARN can be used to suppress failures messages.
3775  *
3776  * Map them into contiguous kernel virtual space, using a pagetable
3777  * protection of @prot.
3778  *
3779  * Return: the address of the area or %NULL on failure
3780  */
3781 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3782 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3783 			pgprot_t prot, unsigned long vm_flags, int node,
3784 			const void *caller)
3785 {
3786 	struct vm_struct *area;
3787 	void *ret;
3788 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3789 	unsigned long original_align = align;
3790 	unsigned int shift = PAGE_SHIFT;
3791 
3792 	if (WARN_ON_ONCE(!size))
3793 		return NULL;
3794 
3795 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3796 		warn_alloc(gfp_mask, NULL,
3797 			"vmalloc error: size %lu, exceeds total pages",
3798 			size);
3799 		return NULL;
3800 	}
3801 
3802 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3803 		/*
3804 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3805 		 * others like modules don't yet expect huge pages in
3806 		 * their allocations due to apply_to_page_range not
3807 		 * supporting them.
3808 		 */
3809 
3810 		if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
3811 			shift = PMD_SHIFT;
3812 		else
3813 			shift = arch_vmap_pte_supported_shift(size);
3814 
3815 		align = max(original_align, 1UL << shift);
3816 	}
3817 
3818 again:
3819 	area = __get_vm_area_node(size, align, shift, VM_ALLOC |
3820 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3821 				  gfp_mask, caller);
3822 	if (!area) {
3823 		bool nofail = gfp_mask & __GFP_NOFAIL;
3824 		warn_alloc(gfp_mask, NULL,
3825 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3826 			size, (nofail) ? ". Retrying." : "");
3827 		if (nofail) {
3828 			schedule_timeout_uninterruptible(1);
3829 			goto again;
3830 		}
3831 		goto fail;
3832 	}
3833 
3834 	/*
3835 	 * Prepare arguments for __vmalloc_area_node() and
3836 	 * kasan_unpoison_vmalloc().
3837 	 */
3838 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3839 		if (kasan_hw_tags_enabled()) {
3840 			/*
3841 			 * Modify protection bits to allow tagging.
3842 			 * This must be done before mapping.
3843 			 */
3844 			prot = arch_vmap_pgprot_tagged(prot);
3845 
3846 			/*
3847 			 * Skip page_alloc poisoning and zeroing for physical
3848 			 * pages backing VM_ALLOC mapping. Memory is instead
3849 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3850 			 */
3851 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3852 		}
3853 
3854 		/* Take note that the mapping is PAGE_KERNEL. */
3855 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3856 	}
3857 
3858 	/* Allocate physical pages and map them into vmalloc space. */
3859 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3860 	if (!ret)
3861 		goto fail;
3862 
3863 	/*
3864 	 * Mark the pages as accessible, now that they are mapped.
3865 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3866 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3867 	 * to make sure that memory is initialized under the same conditions.
3868 	 * Tag-based KASAN modes only assign tags to normal non-executable
3869 	 * allocations, see __kasan_unpoison_vmalloc().
3870 	 */
3871 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3872 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3873 	    (gfp_mask & __GFP_SKIP_ZERO))
3874 		kasan_flags |= KASAN_VMALLOC_INIT;
3875 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3876 	area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
3877 
3878 	/*
3879 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3880 	 * flag. It means that vm_struct is not fully initialized.
3881 	 * Now, it is fully initialized, so remove this flag here.
3882 	 */
3883 	clear_vm_uninitialized_flag(area);
3884 
3885 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3886 		kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
3887 
3888 	return area->addr;
3889 
3890 fail:
3891 	if (shift > PAGE_SHIFT) {
3892 		shift = PAGE_SHIFT;
3893 		align = original_align;
3894 		goto again;
3895 	}
3896 
3897 	return NULL;
3898 }
3899 
3900 /**
3901  * __vmalloc_node - allocate virtually contiguous memory
3902  * @size:	    allocation size
3903  * @align:	    desired alignment
3904  * @gfp_mask:	    flags for the page level allocator
3905  * @node:	    node to use for allocation or NUMA_NO_NODE
3906  * @caller:	    caller's return address
3907  *
3908  * Allocate enough pages to cover @size from the page level allocator with
3909  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3910  *
3911  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3912  * and __GFP_NOFAIL are not supported
3913  *
3914  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3915  * with mm people.
3916  *
3917  * Return: pointer to the allocated memory or %NULL on error
3918  */
3919 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3920 			    gfp_t gfp_mask, int node, const void *caller)
3921 {
3922 	return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3923 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3924 }
3925 /*
3926  * This is only for performance analysis of vmalloc and stress purpose.
3927  * It is required by vmalloc test module, therefore do not use it other
3928  * than that.
3929  */
3930 #ifdef CONFIG_TEST_VMALLOC_MODULE
3931 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3932 #endif
3933 
3934 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3935 {
3936 	return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3937 				__builtin_return_address(0));
3938 }
3939 EXPORT_SYMBOL(__vmalloc_noprof);
3940 
3941 /**
3942  * vmalloc - allocate virtually contiguous memory
3943  * @size:    allocation size
3944  *
3945  * Allocate enough pages to cover @size from the page level
3946  * allocator and map them into contiguous kernel virtual space.
3947  *
3948  * For tight control over page level allocator and protection flags
3949  * use __vmalloc() instead.
3950  *
3951  * Return: pointer to the allocated memory or %NULL on error
3952  */
3953 void *vmalloc_noprof(unsigned long size)
3954 {
3955 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3956 				__builtin_return_address(0));
3957 }
3958 EXPORT_SYMBOL(vmalloc_noprof);
3959 
3960 /**
3961  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3962  * @size:      allocation size
3963  * @gfp_mask:  flags for the page level allocator
3964  *
3965  * Allocate enough pages to cover @size from the page level
3966  * allocator and map them into contiguous kernel virtual space.
3967  * If @size is greater than or equal to PMD_SIZE, allow using
3968  * huge pages for the memory
3969  *
3970  * Return: pointer to the allocated memory or %NULL on error
3971  */
3972 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3973 {
3974 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3975 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3976 				    NUMA_NO_NODE, __builtin_return_address(0));
3977 }
3978 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3979 
3980 /**
3981  * vzalloc - allocate virtually contiguous memory with zero fill
3982  * @size:    allocation size
3983  *
3984  * Allocate enough pages to cover @size from the page level
3985  * allocator and map them into contiguous kernel virtual space.
3986  * The memory allocated is set to zero.
3987  *
3988  * For tight control over page level allocator and protection flags
3989  * use __vmalloc() instead.
3990  *
3991  * Return: pointer to the allocated memory or %NULL on error
3992  */
3993 void *vzalloc_noprof(unsigned long size)
3994 {
3995 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3996 				__builtin_return_address(0));
3997 }
3998 EXPORT_SYMBOL(vzalloc_noprof);
3999 
4000 /**
4001  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4002  * @size: allocation size
4003  *
4004  * The resulting memory area is zeroed so it can be mapped to userspace
4005  * without leaking data.
4006  *
4007  * Return: pointer to the allocated memory or %NULL on error
4008  */
4009 void *vmalloc_user_noprof(unsigned long size)
4010 {
4011 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4012 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4013 				    VM_USERMAP, NUMA_NO_NODE,
4014 				    __builtin_return_address(0));
4015 }
4016 EXPORT_SYMBOL(vmalloc_user_noprof);
4017 
4018 /**
4019  * vmalloc_node - allocate memory on a specific node
4020  * @size:	  allocation size
4021  * @node:	  numa node
4022  *
4023  * Allocate enough pages to cover @size from the page level
4024  * allocator and map them into contiguous kernel virtual space.
4025  *
4026  * For tight control over page level allocator and protection flags
4027  * use __vmalloc() instead.
4028  *
4029  * Return: pointer to the allocated memory or %NULL on error
4030  */
4031 void *vmalloc_node_noprof(unsigned long size, int node)
4032 {
4033 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4034 			__builtin_return_address(0));
4035 }
4036 EXPORT_SYMBOL(vmalloc_node_noprof);
4037 
4038 /**
4039  * vzalloc_node - allocate memory on a specific node with zero fill
4040  * @size:	allocation size
4041  * @node:	numa node
4042  *
4043  * Allocate enough pages to cover @size from the page level
4044  * allocator and map them into contiguous kernel virtual space.
4045  * The memory allocated is set to zero.
4046  *
4047  * Return: pointer to the allocated memory or %NULL on error
4048  */
4049 void *vzalloc_node_noprof(unsigned long size, int node)
4050 {
4051 	return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4052 				__builtin_return_address(0));
4053 }
4054 EXPORT_SYMBOL(vzalloc_node_noprof);
4055 
4056 /**
4057  * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4058  * @p: object to reallocate memory for
4059  * @size: the size to reallocate
4060  * @flags: the flags for the page level allocator
4061  *
4062  * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4063  * @p is not a %NULL pointer, the object pointed to is freed.
4064  *
4065  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4066  * initial memory allocation, every subsequent call to this API for the same
4067  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4068  * __GFP_ZERO is not fully honored by this API.
4069  *
4070  * In any case, the contents of the object pointed to are preserved up to the
4071  * lesser of the new and old sizes.
4072  *
4073  * This function must not be called concurrently with itself or vfree() for the
4074  * same memory allocation.
4075  *
4076  * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4077  *         failure
4078  */
4079 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4080 {
4081 	struct vm_struct *vm = NULL;
4082 	size_t alloced_size = 0;
4083 	size_t old_size = 0;
4084 	void *n;
4085 
4086 	if (!size) {
4087 		vfree(p);
4088 		return NULL;
4089 	}
4090 
4091 	if (p) {
4092 		vm = find_vm_area(p);
4093 		if (unlikely(!vm)) {
4094 			WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4095 			return NULL;
4096 		}
4097 
4098 		alloced_size = get_vm_area_size(vm);
4099 		old_size = vm->requested_size;
4100 		if (WARN(alloced_size < old_size,
4101 			 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4102 			return NULL;
4103 	}
4104 
4105 	/*
4106 	 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4107 	 * would be a good heuristic for when to shrink the vm_area?
4108 	 */
4109 	if (size <= old_size) {
4110 		/* Zero out "freed" memory. */
4111 		if (want_init_on_free())
4112 			memset((void *)p + size, 0, old_size - size);
4113 		vm->requested_size = size;
4114 		kasan_poison_vmalloc(p + size, old_size - size);
4115 		return (void *)p;
4116 	}
4117 
4118 	/*
4119 	 * We already have the bytes available in the allocation; use them.
4120 	 */
4121 	if (size <= alloced_size) {
4122 		kasan_unpoison_vmalloc(p + old_size, size - old_size,
4123 				       KASAN_VMALLOC_PROT_NORMAL);
4124 		/* Zero out "alloced" memory. */
4125 		if (want_init_on_alloc(flags))
4126 			memset((void *)p + old_size, 0, size - old_size);
4127 		vm->requested_size = size;
4128 	}
4129 
4130 	/* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4131 	n = __vmalloc_noprof(size, flags);
4132 	if (!n)
4133 		return NULL;
4134 
4135 	if (p) {
4136 		memcpy(n, p, old_size);
4137 		vfree(p);
4138 	}
4139 
4140 	return n;
4141 }
4142 
4143 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4144 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4145 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4146 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4147 #else
4148 /*
4149  * 64b systems should always have either DMA or DMA32 zones. For others
4150  * GFP_DMA32 should do the right thing and use the normal zone.
4151  */
4152 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4153 #endif
4154 
4155 /**
4156  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4157  * @size:	allocation size
4158  *
4159  * Allocate enough 32bit PA addressable pages to cover @size from the
4160  * page level allocator and map them into contiguous kernel virtual space.
4161  *
4162  * Return: pointer to the allocated memory or %NULL on error
4163  */
4164 void *vmalloc_32_noprof(unsigned long size)
4165 {
4166 	return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4167 			__builtin_return_address(0));
4168 }
4169 EXPORT_SYMBOL(vmalloc_32_noprof);
4170 
4171 /**
4172  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4173  * @size:	     allocation size
4174  *
4175  * The resulting memory area is 32bit addressable and zeroed so it can be
4176  * mapped to userspace without leaking data.
4177  *
4178  * Return: pointer to the allocated memory or %NULL on error
4179  */
4180 void *vmalloc_32_user_noprof(unsigned long size)
4181 {
4182 	return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4183 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4184 				    VM_USERMAP, NUMA_NO_NODE,
4185 				    __builtin_return_address(0));
4186 }
4187 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4188 
4189 /*
4190  * Atomically zero bytes in the iterator.
4191  *
4192  * Returns the number of zeroed bytes.
4193  */
4194 static size_t zero_iter(struct iov_iter *iter, size_t count)
4195 {
4196 	size_t remains = count;
4197 
4198 	while (remains > 0) {
4199 		size_t num, copied;
4200 
4201 		num = min_t(size_t, remains, PAGE_SIZE);
4202 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4203 		remains -= copied;
4204 
4205 		if (copied < num)
4206 			break;
4207 	}
4208 
4209 	return count - remains;
4210 }
4211 
4212 /*
4213  * small helper routine, copy contents to iter from addr.
4214  * If the page is not present, fill zero.
4215  *
4216  * Returns the number of copied bytes.
4217  */
4218 static size_t aligned_vread_iter(struct iov_iter *iter,
4219 				 const char *addr, size_t count)
4220 {
4221 	size_t remains = count;
4222 	struct page *page;
4223 
4224 	while (remains > 0) {
4225 		unsigned long offset, length;
4226 		size_t copied = 0;
4227 
4228 		offset = offset_in_page(addr);
4229 		length = PAGE_SIZE - offset;
4230 		if (length > remains)
4231 			length = remains;
4232 		page = vmalloc_to_page(addr);
4233 		/*
4234 		 * To do safe access to this _mapped_ area, we need lock. But
4235 		 * adding lock here means that we need to add overhead of
4236 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4237 		 * used. Instead of that, we'll use an local mapping via
4238 		 * copy_page_to_iter_nofault() and accept a small overhead in
4239 		 * this access function.
4240 		 */
4241 		if (page)
4242 			copied = copy_page_to_iter_nofault(page, offset,
4243 							   length, iter);
4244 		else
4245 			copied = zero_iter(iter, length);
4246 
4247 		addr += copied;
4248 		remains -= copied;
4249 
4250 		if (copied != length)
4251 			break;
4252 	}
4253 
4254 	return count - remains;
4255 }
4256 
4257 /*
4258  * Read from a vm_map_ram region of memory.
4259  *
4260  * Returns the number of copied bytes.
4261  */
4262 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4263 				  size_t count, unsigned long flags)
4264 {
4265 	char *start;
4266 	struct vmap_block *vb;
4267 	struct xarray *xa;
4268 	unsigned long offset;
4269 	unsigned int rs, re;
4270 	size_t remains, n;
4271 
4272 	/*
4273 	 * If it's area created by vm_map_ram() interface directly, but
4274 	 * not further subdividing and delegating management to vmap_block,
4275 	 * handle it here.
4276 	 */
4277 	if (!(flags & VMAP_BLOCK))
4278 		return aligned_vread_iter(iter, addr, count);
4279 
4280 	remains = count;
4281 
4282 	/*
4283 	 * Area is split into regions and tracked with vmap_block, read out
4284 	 * each region and zero fill the hole between regions.
4285 	 */
4286 	xa = addr_to_vb_xa((unsigned long) addr);
4287 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4288 	if (!vb)
4289 		goto finished_zero;
4290 
4291 	spin_lock(&vb->lock);
4292 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4293 		spin_unlock(&vb->lock);
4294 		goto finished_zero;
4295 	}
4296 
4297 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4298 		size_t copied;
4299 
4300 		if (remains == 0)
4301 			goto finished;
4302 
4303 		start = vmap_block_vaddr(vb->va->va_start, rs);
4304 
4305 		if (addr < start) {
4306 			size_t to_zero = min_t(size_t, start - addr, remains);
4307 			size_t zeroed = zero_iter(iter, to_zero);
4308 
4309 			addr += zeroed;
4310 			remains -= zeroed;
4311 
4312 			if (remains == 0 || zeroed != to_zero)
4313 				goto finished;
4314 		}
4315 
4316 		/*it could start reading from the middle of used region*/
4317 		offset = offset_in_page(addr);
4318 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4319 		if (n > remains)
4320 			n = remains;
4321 
4322 		copied = aligned_vread_iter(iter, start + offset, n);
4323 
4324 		addr += copied;
4325 		remains -= copied;
4326 
4327 		if (copied != n)
4328 			goto finished;
4329 	}
4330 
4331 	spin_unlock(&vb->lock);
4332 
4333 finished_zero:
4334 	/* zero-fill the left dirty or free regions */
4335 	return count - remains + zero_iter(iter, remains);
4336 finished:
4337 	/* We couldn't copy/zero everything */
4338 	spin_unlock(&vb->lock);
4339 	return count - remains;
4340 }
4341 
4342 /**
4343  * vread_iter() - read vmalloc area in a safe way to an iterator.
4344  * @iter:         the iterator to which data should be written.
4345  * @addr:         vm address.
4346  * @count:        number of bytes to be read.
4347  *
4348  * This function checks that addr is a valid vmalloc'ed area, and
4349  * copy data from that area to a given buffer. If the given memory range
4350  * of [addr...addr+count) includes some valid address, data is copied to
4351  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4352  * IOREMAP area is treated as memory hole and no copy is done.
4353  *
4354  * If [addr...addr+count) doesn't includes any intersects with alive
4355  * vm_struct area, returns 0. @buf should be kernel's buffer.
4356  *
4357  * Note: In usual ops, vread() is never necessary because the caller
4358  * should know vmalloc() area is valid and can use memcpy().
4359  * This is for routines which have to access vmalloc area without
4360  * any information, as /proc/kcore.
4361  *
4362  * Return: number of bytes for which addr and buf should be increased
4363  * (same number as @count) or %0 if [addr...addr+count) doesn't
4364  * include any intersection with valid vmalloc area
4365  */
4366 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4367 {
4368 	struct vmap_node *vn;
4369 	struct vmap_area *va;
4370 	struct vm_struct *vm;
4371 	char *vaddr;
4372 	size_t n, size, flags, remains;
4373 	unsigned long next;
4374 
4375 	addr = kasan_reset_tag(addr);
4376 
4377 	/* Don't allow overflow */
4378 	if ((unsigned long) addr + count < count)
4379 		count = -(unsigned long) addr;
4380 
4381 	remains = count;
4382 
4383 	vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4384 	if (!vn)
4385 		goto finished_zero;
4386 
4387 	/* no intersects with alive vmap_area */
4388 	if ((unsigned long)addr + remains <= va->va_start)
4389 		goto finished_zero;
4390 
4391 	do {
4392 		size_t copied;
4393 
4394 		if (remains == 0)
4395 			goto finished;
4396 
4397 		vm = va->vm;
4398 		flags = va->flags & VMAP_FLAGS_MASK;
4399 		/*
4400 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4401 		 * be set together with VMAP_RAM.
4402 		 */
4403 		WARN_ON(flags == VMAP_BLOCK);
4404 
4405 		if (!vm && !flags)
4406 			goto next_va;
4407 
4408 		if (vm && (vm->flags & VM_UNINITIALIZED))
4409 			goto next_va;
4410 
4411 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4412 		smp_rmb();
4413 
4414 		vaddr = (char *) va->va_start;
4415 		size = vm ? get_vm_area_size(vm) : va_size(va);
4416 
4417 		if (addr >= vaddr + size)
4418 			goto next_va;
4419 
4420 		if (addr < vaddr) {
4421 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
4422 			size_t zeroed = zero_iter(iter, to_zero);
4423 
4424 			addr += zeroed;
4425 			remains -= zeroed;
4426 
4427 			if (remains == 0 || zeroed != to_zero)
4428 				goto finished;
4429 		}
4430 
4431 		n = vaddr + size - addr;
4432 		if (n > remains)
4433 			n = remains;
4434 
4435 		if (flags & VMAP_RAM)
4436 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
4437 		else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4438 			copied = aligned_vread_iter(iter, addr, n);
4439 		else /* IOREMAP | SPARSE area is treated as memory hole */
4440 			copied = zero_iter(iter, n);
4441 
4442 		addr += copied;
4443 		remains -= copied;
4444 
4445 		if (copied != n)
4446 			goto finished;
4447 
4448 	next_va:
4449 		next = va->va_end;
4450 		spin_unlock(&vn->busy.lock);
4451 	} while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4452 
4453 finished_zero:
4454 	if (vn)
4455 		spin_unlock(&vn->busy.lock);
4456 
4457 	/* zero-fill memory holes */
4458 	return count - remains + zero_iter(iter, remains);
4459 finished:
4460 	/* Nothing remains, or We couldn't copy/zero everything. */
4461 	if (vn)
4462 		spin_unlock(&vn->busy.lock);
4463 
4464 	return count - remains;
4465 }
4466 
4467 /**
4468  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4469  * @vma:		vma to cover
4470  * @uaddr:		target user address to start at
4471  * @kaddr:		virtual address of vmalloc kernel memory
4472  * @pgoff:		offset from @kaddr to start at
4473  * @size:		size of map area
4474  *
4475  * Returns:	0 for success, -Exxx on failure
4476  *
4477  * This function checks that @kaddr is a valid vmalloc'ed area,
4478  * and that it is big enough to cover the range starting at
4479  * @uaddr in @vma. Will return failure if that criteria isn't
4480  * met.
4481  *
4482  * Similar to remap_pfn_range() (see mm/memory.c)
4483  */
4484 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4485 				void *kaddr, unsigned long pgoff,
4486 				unsigned long size)
4487 {
4488 	struct vm_struct *area;
4489 	unsigned long off;
4490 	unsigned long end_index;
4491 
4492 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4493 		return -EINVAL;
4494 
4495 	size = PAGE_ALIGN(size);
4496 
4497 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4498 		return -EINVAL;
4499 
4500 	area = find_vm_area(kaddr);
4501 	if (!area)
4502 		return -EINVAL;
4503 
4504 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4505 		return -EINVAL;
4506 
4507 	if (check_add_overflow(size, off, &end_index) ||
4508 	    end_index > get_vm_area_size(area))
4509 		return -EINVAL;
4510 	kaddr += off;
4511 
4512 	do {
4513 		struct page *page = vmalloc_to_page(kaddr);
4514 		int ret;
4515 
4516 		ret = vm_insert_page(vma, uaddr, page);
4517 		if (ret)
4518 			return ret;
4519 
4520 		uaddr += PAGE_SIZE;
4521 		kaddr += PAGE_SIZE;
4522 		size -= PAGE_SIZE;
4523 	} while (size > 0);
4524 
4525 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4526 
4527 	return 0;
4528 }
4529 
4530 /**
4531  * remap_vmalloc_range - map vmalloc pages to userspace
4532  * @vma:		vma to cover (map full range of vma)
4533  * @addr:		vmalloc memory
4534  * @pgoff:		number of pages into addr before first page to map
4535  *
4536  * Returns:	0 for success, -Exxx on failure
4537  *
4538  * This function checks that addr is a valid vmalloc'ed area, and
4539  * that it is big enough to cover the vma. Will return failure if
4540  * that criteria isn't met.
4541  *
4542  * Similar to remap_pfn_range() (see mm/memory.c)
4543  */
4544 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4545 						unsigned long pgoff)
4546 {
4547 	return remap_vmalloc_range_partial(vma, vma->vm_start,
4548 					   addr, pgoff,
4549 					   vma->vm_end - vma->vm_start);
4550 }
4551 EXPORT_SYMBOL(remap_vmalloc_range);
4552 
4553 void free_vm_area(struct vm_struct *area)
4554 {
4555 	struct vm_struct *ret;
4556 	ret = remove_vm_area(area->addr);
4557 	BUG_ON(ret != area);
4558 	kfree(area);
4559 }
4560 EXPORT_SYMBOL_GPL(free_vm_area);
4561 
4562 #ifdef CONFIG_SMP
4563 static struct vmap_area *node_to_va(struct rb_node *n)
4564 {
4565 	return rb_entry_safe(n, struct vmap_area, rb_node);
4566 }
4567 
4568 /**
4569  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4570  * @addr: target address
4571  *
4572  * Returns: vmap_area if it is found. If there is no such area
4573  *   the first highest(reverse order) vmap_area is returned
4574  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4575  *   if there are no any areas before @addr.
4576  */
4577 static struct vmap_area *
4578 pvm_find_va_enclose_addr(unsigned long addr)
4579 {
4580 	struct vmap_area *va, *tmp;
4581 	struct rb_node *n;
4582 
4583 	n = free_vmap_area_root.rb_node;
4584 	va = NULL;
4585 
4586 	while (n) {
4587 		tmp = rb_entry(n, struct vmap_area, rb_node);
4588 		if (tmp->va_start <= addr) {
4589 			va = tmp;
4590 			if (tmp->va_end >= addr)
4591 				break;
4592 
4593 			n = n->rb_right;
4594 		} else {
4595 			n = n->rb_left;
4596 		}
4597 	}
4598 
4599 	return va;
4600 }
4601 
4602 /**
4603  * pvm_determine_end_from_reverse - find the highest aligned address
4604  * of free block below VMALLOC_END
4605  * @va:
4606  *   in - the VA we start the search(reverse order);
4607  *   out - the VA with the highest aligned end address.
4608  * @align: alignment for required highest address
4609  *
4610  * Returns: determined end address within vmap_area
4611  */
4612 static unsigned long
4613 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4614 {
4615 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4616 	unsigned long addr;
4617 
4618 	if (likely(*va)) {
4619 		list_for_each_entry_from_reverse((*va),
4620 				&free_vmap_area_list, list) {
4621 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4622 			if ((*va)->va_start < addr)
4623 				return addr;
4624 		}
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 /**
4631  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4632  * @offsets: array containing offset of each area
4633  * @sizes: array containing size of each area
4634  * @nr_vms: the number of areas to allocate
4635  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4636  *
4637  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4638  *	    vm_structs on success, %NULL on failure
4639  *
4640  * Percpu allocator wants to use congruent vm areas so that it can
4641  * maintain the offsets among percpu areas.  This function allocates
4642  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4643  * be scattered pretty far, distance between two areas easily going up
4644  * to gigabytes.  To avoid interacting with regular vmallocs, these
4645  * areas are allocated from top.
4646  *
4647  * Despite its complicated look, this allocator is rather simple. It
4648  * does everything top-down and scans free blocks from the end looking
4649  * for matching base. While scanning, if any of the areas do not fit the
4650  * base address is pulled down to fit the area. Scanning is repeated till
4651  * all the areas fit and then all necessary data structures are inserted
4652  * and the result is returned.
4653  */
4654 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4655 				     const size_t *sizes, int nr_vms,
4656 				     size_t align)
4657 {
4658 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4659 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4660 	struct vmap_area **vas, *va;
4661 	struct vm_struct **vms;
4662 	int area, area2, last_area, term_area;
4663 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4664 	bool purged = false;
4665 
4666 	/* verify parameters and allocate data structures */
4667 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4668 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4669 		start = offsets[area];
4670 		end = start + sizes[area];
4671 
4672 		/* is everything aligned properly? */
4673 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4674 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4675 
4676 		/* detect the area with the highest address */
4677 		if (start > offsets[last_area])
4678 			last_area = area;
4679 
4680 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4681 			unsigned long start2 = offsets[area2];
4682 			unsigned long end2 = start2 + sizes[area2];
4683 
4684 			BUG_ON(start2 < end && start < end2);
4685 		}
4686 	}
4687 	last_end = offsets[last_area] + sizes[last_area];
4688 
4689 	if (vmalloc_end - vmalloc_start < last_end) {
4690 		WARN_ON(true);
4691 		return NULL;
4692 	}
4693 
4694 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4695 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4696 	if (!vas || !vms)
4697 		goto err_free2;
4698 
4699 	for (area = 0; area < nr_vms; area++) {
4700 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4701 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4702 		if (!vas[area] || !vms[area])
4703 			goto err_free;
4704 	}
4705 retry:
4706 	spin_lock(&free_vmap_area_lock);
4707 
4708 	/* start scanning - we scan from the top, begin with the last area */
4709 	area = term_area = last_area;
4710 	start = offsets[area];
4711 	end = start + sizes[area];
4712 
4713 	va = pvm_find_va_enclose_addr(vmalloc_end);
4714 	base = pvm_determine_end_from_reverse(&va, align) - end;
4715 
4716 	while (true) {
4717 		/*
4718 		 * base might have underflowed, add last_end before
4719 		 * comparing.
4720 		 */
4721 		if (base + last_end < vmalloc_start + last_end)
4722 			goto overflow;
4723 
4724 		/*
4725 		 * Fitting base has not been found.
4726 		 */
4727 		if (va == NULL)
4728 			goto overflow;
4729 
4730 		/*
4731 		 * If required width exceeds current VA block, move
4732 		 * base downwards and then recheck.
4733 		 */
4734 		if (base + end > va->va_end) {
4735 			base = pvm_determine_end_from_reverse(&va, align) - end;
4736 			term_area = area;
4737 			continue;
4738 		}
4739 
4740 		/*
4741 		 * If this VA does not fit, move base downwards and recheck.
4742 		 */
4743 		if (base + start < va->va_start) {
4744 			va = node_to_va(rb_prev(&va->rb_node));
4745 			base = pvm_determine_end_from_reverse(&va, align) - end;
4746 			term_area = area;
4747 			continue;
4748 		}
4749 
4750 		/*
4751 		 * This area fits, move on to the previous one.  If
4752 		 * the previous one is the terminal one, we're done.
4753 		 */
4754 		area = (area + nr_vms - 1) % nr_vms;
4755 		if (area == term_area)
4756 			break;
4757 
4758 		start = offsets[area];
4759 		end = start + sizes[area];
4760 		va = pvm_find_va_enclose_addr(base + end);
4761 	}
4762 
4763 	/* we've found a fitting base, insert all va's */
4764 	for (area = 0; area < nr_vms; area++) {
4765 		int ret;
4766 
4767 		start = base + offsets[area];
4768 		size = sizes[area];
4769 
4770 		va = pvm_find_va_enclose_addr(start);
4771 		if (WARN_ON_ONCE(va == NULL))
4772 			/* It is a BUG(), but trigger recovery instead. */
4773 			goto recovery;
4774 
4775 		ret = va_clip(&free_vmap_area_root,
4776 			&free_vmap_area_list, va, start, size);
4777 		if (WARN_ON_ONCE(unlikely(ret)))
4778 			/* It is a BUG(), but trigger recovery instead. */
4779 			goto recovery;
4780 
4781 		/* Allocated area. */
4782 		va = vas[area];
4783 		va->va_start = start;
4784 		va->va_end = start + size;
4785 	}
4786 
4787 	spin_unlock(&free_vmap_area_lock);
4788 
4789 	/* populate the kasan shadow space */
4790 	for (area = 0; area < nr_vms; area++) {
4791 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4792 			goto err_free_shadow;
4793 	}
4794 
4795 	/* insert all vm's */
4796 	for (area = 0; area < nr_vms; area++) {
4797 		struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4798 
4799 		spin_lock(&vn->busy.lock);
4800 		insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4801 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4802 				 pcpu_get_vm_areas);
4803 		spin_unlock(&vn->busy.lock);
4804 	}
4805 
4806 	/*
4807 	 * Mark allocated areas as accessible. Do it now as a best-effort
4808 	 * approach, as they can be mapped outside of vmalloc code.
4809 	 * With hardware tag-based KASAN, marking is skipped for
4810 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4811 	 */
4812 	for (area = 0; area < nr_vms; area++)
4813 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4814 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4815 
4816 	kfree(vas);
4817 	return vms;
4818 
4819 recovery:
4820 	/*
4821 	 * Remove previously allocated areas. There is no
4822 	 * need in removing these areas from the busy tree,
4823 	 * because they are inserted only on the final step
4824 	 * and when pcpu_get_vm_areas() is success.
4825 	 */
4826 	while (area--) {
4827 		orig_start = vas[area]->va_start;
4828 		orig_end = vas[area]->va_end;
4829 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4830 				&free_vmap_area_list);
4831 		if (va)
4832 			kasan_release_vmalloc(orig_start, orig_end,
4833 				va->va_start, va->va_end,
4834 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4835 		vas[area] = NULL;
4836 	}
4837 
4838 overflow:
4839 	spin_unlock(&free_vmap_area_lock);
4840 	if (!purged) {
4841 		reclaim_and_purge_vmap_areas();
4842 		purged = true;
4843 
4844 		/* Before "retry", check if we recover. */
4845 		for (area = 0; area < nr_vms; area++) {
4846 			if (vas[area])
4847 				continue;
4848 
4849 			vas[area] = kmem_cache_zalloc(
4850 				vmap_area_cachep, GFP_KERNEL);
4851 			if (!vas[area])
4852 				goto err_free;
4853 		}
4854 
4855 		goto retry;
4856 	}
4857 
4858 err_free:
4859 	for (area = 0; area < nr_vms; area++) {
4860 		if (vas[area])
4861 			kmem_cache_free(vmap_area_cachep, vas[area]);
4862 
4863 		kfree(vms[area]);
4864 	}
4865 err_free2:
4866 	kfree(vas);
4867 	kfree(vms);
4868 	return NULL;
4869 
4870 err_free_shadow:
4871 	spin_lock(&free_vmap_area_lock);
4872 	/*
4873 	 * We release all the vmalloc shadows, even the ones for regions that
4874 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4875 	 * being able to tolerate this case.
4876 	 */
4877 	for (area = 0; area < nr_vms; area++) {
4878 		orig_start = vas[area]->va_start;
4879 		orig_end = vas[area]->va_end;
4880 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4881 				&free_vmap_area_list);
4882 		if (va)
4883 			kasan_release_vmalloc(orig_start, orig_end,
4884 				va->va_start, va->va_end,
4885 				KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4886 		vas[area] = NULL;
4887 		kfree(vms[area]);
4888 	}
4889 	spin_unlock(&free_vmap_area_lock);
4890 	kfree(vas);
4891 	kfree(vms);
4892 	return NULL;
4893 }
4894 
4895 /**
4896  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4897  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4898  * @nr_vms: the number of allocated areas
4899  *
4900  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4901  */
4902 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4903 {
4904 	int i;
4905 
4906 	for (i = 0; i < nr_vms; i++)
4907 		free_vm_area(vms[i]);
4908 	kfree(vms);
4909 }
4910 #endif	/* CONFIG_SMP */
4911 
4912 #ifdef CONFIG_PRINTK
4913 bool vmalloc_dump_obj(void *object)
4914 {
4915 	const void *caller;
4916 	struct vm_struct *vm;
4917 	struct vmap_area *va;
4918 	struct vmap_node *vn;
4919 	unsigned long addr;
4920 	unsigned int nr_pages;
4921 
4922 	addr = PAGE_ALIGN((unsigned long) object);
4923 	vn = addr_to_node(addr);
4924 
4925 	if (!spin_trylock(&vn->busy.lock))
4926 		return false;
4927 
4928 	va = __find_vmap_area(addr, &vn->busy.root);
4929 	if (!va || !va->vm) {
4930 		spin_unlock(&vn->busy.lock);
4931 		return false;
4932 	}
4933 
4934 	vm = va->vm;
4935 	addr = (unsigned long) vm->addr;
4936 	caller = vm->caller;
4937 	nr_pages = vm->nr_pages;
4938 	spin_unlock(&vn->busy.lock);
4939 
4940 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4941 		nr_pages, addr, caller);
4942 
4943 	return true;
4944 }
4945 #endif
4946 
4947 #ifdef CONFIG_PROC_FS
4948 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4949 {
4950 	if (IS_ENABLED(CONFIG_NUMA)) {
4951 		unsigned int nr, *counters = m->private;
4952 		unsigned int step = 1U << vm_area_page_order(v);
4953 
4954 		if (!counters)
4955 			return;
4956 
4957 		if (v->flags & VM_UNINITIALIZED)
4958 			return;
4959 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4960 		smp_rmb();
4961 
4962 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4963 
4964 		for (nr = 0; nr < v->nr_pages; nr += step)
4965 			counters[page_to_nid(v->pages[nr])] += step;
4966 		for_each_node_state(nr, N_HIGH_MEMORY)
4967 			if (counters[nr])
4968 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4969 	}
4970 }
4971 
4972 static void show_purge_info(struct seq_file *m)
4973 {
4974 	struct vmap_node *vn;
4975 	struct vmap_area *va;
4976 
4977 	for_each_vmap_node(vn) {
4978 		spin_lock(&vn->lazy.lock);
4979 		list_for_each_entry(va, &vn->lazy.head, list) {
4980 			seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4981 				(void *)va->va_start, (void *)va->va_end,
4982 				va_size(va));
4983 		}
4984 		spin_unlock(&vn->lazy.lock);
4985 	}
4986 }
4987 
4988 static int vmalloc_info_show(struct seq_file *m, void *p)
4989 {
4990 	struct vmap_node *vn;
4991 	struct vmap_area *va;
4992 	struct vm_struct *v;
4993 
4994 	for_each_vmap_node(vn) {
4995 		spin_lock(&vn->busy.lock);
4996 		list_for_each_entry(va, &vn->busy.head, list) {
4997 			if (!va->vm) {
4998 				if (va->flags & VMAP_RAM)
4999 					seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
5000 						(void *)va->va_start, (void *)va->va_end,
5001 						va_size(va));
5002 
5003 				continue;
5004 			}
5005 
5006 			v = va->vm;
5007 
5008 			seq_printf(m, "0x%pK-0x%pK %7ld",
5009 				v->addr, v->addr + v->size, v->size);
5010 
5011 			if (v->caller)
5012 				seq_printf(m, " %pS", v->caller);
5013 
5014 			if (v->nr_pages)
5015 				seq_printf(m, " pages=%d", v->nr_pages);
5016 
5017 			if (v->phys_addr)
5018 				seq_printf(m, " phys=%pa", &v->phys_addr);
5019 
5020 			if (v->flags & VM_IOREMAP)
5021 				seq_puts(m, " ioremap");
5022 
5023 			if (v->flags & VM_SPARSE)
5024 				seq_puts(m, " sparse");
5025 
5026 			if (v->flags & VM_ALLOC)
5027 				seq_puts(m, " vmalloc");
5028 
5029 			if (v->flags & VM_MAP)
5030 				seq_puts(m, " vmap");
5031 
5032 			if (v->flags & VM_USERMAP)
5033 				seq_puts(m, " user");
5034 
5035 			if (v->flags & VM_DMA_COHERENT)
5036 				seq_puts(m, " dma-coherent");
5037 
5038 			if (is_vmalloc_addr(v->pages))
5039 				seq_puts(m, " vpages");
5040 
5041 			show_numa_info(m, v);
5042 			seq_putc(m, '\n');
5043 		}
5044 		spin_unlock(&vn->busy.lock);
5045 	}
5046 
5047 	/*
5048 	 * As a final step, dump "unpurged" areas.
5049 	 */
5050 	show_purge_info(m);
5051 	return 0;
5052 }
5053 
5054 static int __init proc_vmalloc_init(void)
5055 {
5056 	void *priv_data = NULL;
5057 
5058 	if (IS_ENABLED(CONFIG_NUMA))
5059 		priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
5060 
5061 	proc_create_single_data("vmallocinfo",
5062 		0400, NULL, vmalloc_info_show, priv_data);
5063 
5064 	return 0;
5065 }
5066 module_init(proc_vmalloc_init);
5067 
5068 #endif
5069 
5070 static void __init vmap_init_free_space(void)
5071 {
5072 	unsigned long vmap_start = 1;
5073 	const unsigned long vmap_end = ULONG_MAX;
5074 	struct vmap_area *free;
5075 	struct vm_struct *busy;
5076 
5077 	/*
5078 	 *     B     F     B     B     B     F
5079 	 * -|-----|.....|-----|-----|-----|.....|-
5080 	 *  |           The KVA space           |
5081 	 *  |<--------------------------------->|
5082 	 */
5083 	for (busy = vmlist; busy; busy = busy->next) {
5084 		if ((unsigned long) busy->addr - vmap_start > 0) {
5085 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5086 			if (!WARN_ON_ONCE(!free)) {
5087 				free->va_start = vmap_start;
5088 				free->va_end = (unsigned long) busy->addr;
5089 
5090 				insert_vmap_area_augment(free, NULL,
5091 					&free_vmap_area_root,
5092 						&free_vmap_area_list);
5093 			}
5094 		}
5095 
5096 		vmap_start = (unsigned long) busy->addr + busy->size;
5097 	}
5098 
5099 	if (vmap_end - vmap_start > 0) {
5100 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5101 		if (!WARN_ON_ONCE(!free)) {
5102 			free->va_start = vmap_start;
5103 			free->va_end = vmap_end;
5104 
5105 			insert_vmap_area_augment(free, NULL,
5106 				&free_vmap_area_root,
5107 					&free_vmap_area_list);
5108 		}
5109 	}
5110 }
5111 
5112 static void vmap_init_nodes(void)
5113 {
5114 	struct vmap_node *vn;
5115 	int i;
5116 
5117 #if BITS_PER_LONG == 64
5118 	/*
5119 	 * A high threshold of max nodes is fixed and bound to 128,
5120 	 * thus a scale factor is 1 for systems where number of cores
5121 	 * are less or equal to specified threshold.
5122 	 *
5123 	 * As for NUMA-aware notes. For bigger systems, for example
5124 	 * NUMA with multi-sockets, where we can end-up with thousands
5125 	 * of cores in total, a "sub-numa-clustering" should be added.
5126 	 *
5127 	 * In this case a NUMA domain is considered as a single entity
5128 	 * with dedicated sub-nodes in it which describe one group or
5129 	 * set of cores. Therefore a per-domain purging is supposed to
5130 	 * be added as well as a per-domain balancing.
5131 	 */
5132 	int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5133 
5134 	if (n > 1) {
5135 		vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5136 		if (vn) {
5137 			/* Node partition is 16 pages. */
5138 			vmap_zone_size = (1 << 4) * PAGE_SIZE;
5139 			nr_vmap_nodes = n;
5140 			vmap_nodes = vn;
5141 		} else {
5142 			pr_err("Failed to allocate an array. Disable a node layer\n");
5143 		}
5144 	}
5145 #endif
5146 
5147 	for_each_vmap_node(vn) {
5148 		vn->busy.root = RB_ROOT;
5149 		INIT_LIST_HEAD(&vn->busy.head);
5150 		spin_lock_init(&vn->busy.lock);
5151 
5152 		vn->lazy.root = RB_ROOT;
5153 		INIT_LIST_HEAD(&vn->lazy.head);
5154 		spin_lock_init(&vn->lazy.lock);
5155 
5156 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5157 			INIT_LIST_HEAD(&vn->pool[i].head);
5158 			WRITE_ONCE(vn->pool[i].len, 0);
5159 		}
5160 
5161 		spin_lock_init(&vn->pool_lock);
5162 	}
5163 }
5164 
5165 static unsigned long
5166 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5167 {
5168 	unsigned long count = 0;
5169 	struct vmap_node *vn;
5170 	int i;
5171 
5172 	for_each_vmap_node(vn) {
5173 		for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5174 			count += READ_ONCE(vn->pool[i].len);
5175 	}
5176 
5177 	return count ? count : SHRINK_EMPTY;
5178 }
5179 
5180 static unsigned long
5181 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5182 {
5183 	struct vmap_node *vn;
5184 
5185 	for_each_vmap_node(vn)
5186 		decay_va_pool_node(vn, true);
5187 
5188 	return SHRINK_STOP;
5189 }
5190 
5191 void __init vmalloc_init(void)
5192 {
5193 	struct shrinker *vmap_node_shrinker;
5194 	struct vmap_area *va;
5195 	struct vmap_node *vn;
5196 	struct vm_struct *tmp;
5197 	int i;
5198 
5199 	/*
5200 	 * Create the cache for vmap_area objects.
5201 	 */
5202 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5203 
5204 	for_each_possible_cpu(i) {
5205 		struct vmap_block_queue *vbq;
5206 		struct vfree_deferred *p;
5207 
5208 		vbq = &per_cpu(vmap_block_queue, i);
5209 		spin_lock_init(&vbq->lock);
5210 		INIT_LIST_HEAD(&vbq->free);
5211 		p = &per_cpu(vfree_deferred, i);
5212 		init_llist_head(&p->list);
5213 		INIT_WORK(&p->wq, delayed_vfree_work);
5214 		xa_init(&vbq->vmap_blocks);
5215 	}
5216 
5217 	/*
5218 	 * Setup nodes before importing vmlist.
5219 	 */
5220 	vmap_init_nodes();
5221 
5222 	/* Import existing vmlist entries. */
5223 	for (tmp = vmlist; tmp; tmp = tmp->next) {
5224 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5225 		if (WARN_ON_ONCE(!va))
5226 			continue;
5227 
5228 		va->va_start = (unsigned long)tmp->addr;
5229 		va->va_end = va->va_start + tmp->size;
5230 		va->vm = tmp;
5231 
5232 		vn = addr_to_node(va->va_start);
5233 		insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5234 	}
5235 
5236 	/*
5237 	 * Now we can initialize a free vmap space.
5238 	 */
5239 	vmap_init_free_space();
5240 	vmap_initialized = true;
5241 
5242 	vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5243 	if (!vmap_node_shrinker) {
5244 		pr_err("Failed to allocate vmap-node shrinker!\n");
5245 		return;
5246 	}
5247 
5248 	vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5249 	vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5250 	shrinker_register(vmap_node_shrinker);
5251 }
5252