1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 #include <linux/pfn.h> 27 #include <linux/kmemleak.h> 28 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 break; 172 } while (pgd++, addr = next, addr != end); 173 174 if (unlikely(err)) 175 return err; 176 return nr; 177 } 178 179 static int vmap_page_range(unsigned long start, unsigned long end, 180 pgprot_t prot, struct page **pages) 181 { 182 int ret; 183 184 ret = vmap_page_range_noflush(start, end, prot, pages); 185 flush_cache_vmap(start, end); 186 return ret; 187 } 188 189 static inline int is_vmalloc_or_module_addr(const void *x) 190 { 191 /* 192 * ARM, x86-64 and sparc64 put modules in a special place, 193 * and fall back on vmalloc() if that fails. Others 194 * just put it in the vmalloc space. 195 */ 196 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 197 unsigned long addr = (unsigned long)x; 198 if (addr >= MODULES_VADDR && addr < MODULES_END) 199 return 1; 200 #endif 201 return is_vmalloc_addr(x); 202 } 203 204 /* 205 * Walk a vmap address to the struct page it maps. 206 */ 207 struct page *vmalloc_to_page(const void *vmalloc_addr) 208 { 209 unsigned long addr = (unsigned long) vmalloc_addr; 210 struct page *page = NULL; 211 pgd_t *pgd = pgd_offset_k(addr); 212 213 /* 214 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 215 * architectures that do not vmalloc module space 216 */ 217 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 218 219 if (!pgd_none(*pgd)) { 220 pud_t *pud = pud_offset(pgd, addr); 221 if (!pud_none(*pud)) { 222 pmd_t *pmd = pmd_offset(pud, addr); 223 if (!pmd_none(*pmd)) { 224 pte_t *ptep, pte; 225 226 ptep = pte_offset_map(pmd, addr); 227 pte = *ptep; 228 if (pte_present(pte)) 229 page = pte_page(pte); 230 pte_unmap(ptep); 231 } 232 } 233 } 234 return page; 235 } 236 EXPORT_SYMBOL(vmalloc_to_page); 237 238 /* 239 * Map a vmalloc()-space virtual address to the physical page frame number. 240 */ 241 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 242 { 243 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 244 } 245 EXPORT_SYMBOL(vmalloc_to_pfn); 246 247 248 /*** Global kva allocator ***/ 249 250 #define VM_LAZY_FREE 0x01 251 #define VM_LAZY_FREEING 0x02 252 #define VM_VM_AREA 0x04 253 254 struct vmap_area { 255 unsigned long va_start; 256 unsigned long va_end; 257 unsigned long flags; 258 struct rb_node rb_node; /* address sorted rbtree */ 259 struct list_head list; /* address sorted list */ 260 struct list_head purge_list; /* "lazy purge" list */ 261 void *private; 262 struct rcu_head rcu_head; 263 }; 264 265 static DEFINE_SPINLOCK(vmap_area_lock); 266 static struct rb_root vmap_area_root = RB_ROOT; 267 static LIST_HEAD(vmap_area_list); 268 static unsigned long vmap_area_pcpu_hole; 269 270 static struct vmap_area *__find_vmap_area(unsigned long addr) 271 { 272 struct rb_node *n = vmap_area_root.rb_node; 273 274 while (n) { 275 struct vmap_area *va; 276 277 va = rb_entry(n, struct vmap_area, rb_node); 278 if (addr < va->va_start) 279 n = n->rb_left; 280 else if (addr > va->va_start) 281 n = n->rb_right; 282 else 283 return va; 284 } 285 286 return NULL; 287 } 288 289 static void __insert_vmap_area(struct vmap_area *va) 290 { 291 struct rb_node **p = &vmap_area_root.rb_node; 292 struct rb_node *parent = NULL; 293 struct rb_node *tmp; 294 295 while (*p) { 296 struct vmap_area *tmp; 297 298 parent = *p; 299 tmp = rb_entry(parent, struct vmap_area, rb_node); 300 if (va->va_start < tmp->va_end) 301 p = &(*p)->rb_left; 302 else if (va->va_end > tmp->va_start) 303 p = &(*p)->rb_right; 304 else 305 BUG(); 306 } 307 308 rb_link_node(&va->rb_node, parent, p); 309 rb_insert_color(&va->rb_node, &vmap_area_root); 310 311 /* address-sort this list so it is usable like the vmlist */ 312 tmp = rb_prev(&va->rb_node); 313 if (tmp) { 314 struct vmap_area *prev; 315 prev = rb_entry(tmp, struct vmap_area, rb_node); 316 list_add_rcu(&va->list, &prev->list); 317 } else 318 list_add_rcu(&va->list, &vmap_area_list); 319 } 320 321 static void purge_vmap_area_lazy(void); 322 323 /* 324 * Allocate a region of KVA of the specified size and alignment, within the 325 * vstart and vend. 326 */ 327 static struct vmap_area *alloc_vmap_area(unsigned long size, 328 unsigned long align, 329 unsigned long vstart, unsigned long vend, 330 int node, gfp_t gfp_mask) 331 { 332 struct vmap_area *va; 333 struct rb_node *n; 334 unsigned long addr; 335 int purged = 0; 336 337 BUG_ON(!size); 338 BUG_ON(size & ~PAGE_MASK); 339 340 va = kmalloc_node(sizeof(struct vmap_area), 341 gfp_mask & GFP_RECLAIM_MASK, node); 342 if (unlikely(!va)) 343 return ERR_PTR(-ENOMEM); 344 345 retry: 346 addr = ALIGN(vstart, align); 347 348 spin_lock(&vmap_area_lock); 349 if (addr + size - 1 < addr) 350 goto overflow; 351 352 /* XXX: could have a last_hole cache */ 353 n = vmap_area_root.rb_node; 354 if (n) { 355 struct vmap_area *first = NULL; 356 357 do { 358 struct vmap_area *tmp; 359 tmp = rb_entry(n, struct vmap_area, rb_node); 360 if (tmp->va_end >= addr) { 361 if (!first && tmp->va_start < addr + size) 362 first = tmp; 363 n = n->rb_left; 364 } else { 365 first = tmp; 366 n = n->rb_right; 367 } 368 } while (n); 369 370 if (!first) 371 goto found; 372 373 if (first->va_end < addr) { 374 n = rb_next(&first->rb_node); 375 if (n) 376 first = rb_entry(n, struct vmap_area, rb_node); 377 else 378 goto found; 379 } 380 381 while (addr + size > first->va_start && addr + size <= vend) { 382 addr = ALIGN(first->va_end + PAGE_SIZE, align); 383 if (addr + size - 1 < addr) 384 goto overflow; 385 386 n = rb_next(&first->rb_node); 387 if (n) 388 first = rb_entry(n, struct vmap_area, rb_node); 389 else 390 goto found; 391 } 392 } 393 found: 394 if (addr + size > vend) { 395 overflow: 396 spin_unlock(&vmap_area_lock); 397 if (!purged) { 398 purge_vmap_area_lazy(); 399 purged = 1; 400 goto retry; 401 } 402 if (printk_ratelimit()) 403 printk(KERN_WARNING 404 "vmap allocation for size %lu failed: " 405 "use vmalloc=<size> to increase size.\n", size); 406 kfree(va); 407 return ERR_PTR(-EBUSY); 408 } 409 410 BUG_ON(addr & (align-1)); 411 412 va->va_start = addr; 413 va->va_end = addr + size; 414 va->flags = 0; 415 __insert_vmap_area(va); 416 spin_unlock(&vmap_area_lock); 417 418 return va; 419 } 420 421 static void rcu_free_va(struct rcu_head *head) 422 { 423 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 424 425 kfree(va); 426 } 427 428 static void __free_vmap_area(struct vmap_area *va) 429 { 430 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 431 rb_erase(&va->rb_node, &vmap_area_root); 432 RB_CLEAR_NODE(&va->rb_node); 433 list_del_rcu(&va->list); 434 435 /* 436 * Track the highest possible candidate for pcpu area 437 * allocation. Areas outside of vmalloc area can be returned 438 * here too, consider only end addresses which fall inside 439 * vmalloc area proper. 440 */ 441 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 442 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 443 444 call_rcu(&va->rcu_head, rcu_free_va); 445 } 446 447 /* 448 * Free a region of KVA allocated by alloc_vmap_area 449 */ 450 static void free_vmap_area(struct vmap_area *va) 451 { 452 spin_lock(&vmap_area_lock); 453 __free_vmap_area(va); 454 spin_unlock(&vmap_area_lock); 455 } 456 457 /* 458 * Clear the pagetable entries of a given vmap_area 459 */ 460 static void unmap_vmap_area(struct vmap_area *va) 461 { 462 vunmap_page_range(va->va_start, va->va_end); 463 } 464 465 static void vmap_debug_free_range(unsigned long start, unsigned long end) 466 { 467 /* 468 * Unmap page tables and force a TLB flush immediately if 469 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 470 * bugs similarly to those in linear kernel virtual address 471 * space after a page has been freed. 472 * 473 * All the lazy freeing logic is still retained, in order to 474 * minimise intrusiveness of this debugging feature. 475 * 476 * This is going to be *slow* (linear kernel virtual address 477 * debugging doesn't do a broadcast TLB flush so it is a lot 478 * faster). 479 */ 480 #ifdef CONFIG_DEBUG_PAGEALLOC 481 vunmap_page_range(start, end); 482 flush_tlb_kernel_range(start, end); 483 #endif 484 } 485 486 /* 487 * lazy_max_pages is the maximum amount of virtual address space we gather up 488 * before attempting to purge with a TLB flush. 489 * 490 * There is a tradeoff here: a larger number will cover more kernel page tables 491 * and take slightly longer to purge, but it will linearly reduce the number of 492 * global TLB flushes that must be performed. It would seem natural to scale 493 * this number up linearly with the number of CPUs (because vmapping activity 494 * could also scale linearly with the number of CPUs), however it is likely 495 * that in practice, workloads might be constrained in other ways that mean 496 * vmap activity will not scale linearly with CPUs. Also, I want to be 497 * conservative and not introduce a big latency on huge systems, so go with 498 * a less aggressive log scale. It will still be an improvement over the old 499 * code, and it will be simple to change the scale factor if we find that it 500 * becomes a problem on bigger systems. 501 */ 502 static unsigned long lazy_max_pages(void) 503 { 504 unsigned int log; 505 506 log = fls(num_online_cpus()); 507 508 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 509 } 510 511 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 512 513 /* 514 * Purges all lazily-freed vmap areas. 515 * 516 * If sync is 0 then don't purge if there is already a purge in progress. 517 * If force_flush is 1, then flush kernel TLBs between *start and *end even 518 * if we found no lazy vmap areas to unmap (callers can use this to optimise 519 * their own TLB flushing). 520 * Returns with *start = min(*start, lowest purged address) 521 * *end = max(*end, highest purged address) 522 */ 523 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 524 int sync, int force_flush) 525 { 526 static DEFINE_SPINLOCK(purge_lock); 527 LIST_HEAD(valist); 528 struct vmap_area *va; 529 struct vmap_area *n_va; 530 int nr = 0; 531 532 /* 533 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 534 * should not expect such behaviour. This just simplifies locking for 535 * the case that isn't actually used at the moment anyway. 536 */ 537 if (!sync && !force_flush) { 538 if (!spin_trylock(&purge_lock)) 539 return; 540 } else 541 spin_lock(&purge_lock); 542 543 rcu_read_lock(); 544 list_for_each_entry_rcu(va, &vmap_area_list, list) { 545 if (va->flags & VM_LAZY_FREE) { 546 if (va->va_start < *start) 547 *start = va->va_start; 548 if (va->va_end > *end) 549 *end = va->va_end; 550 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 551 unmap_vmap_area(va); 552 list_add_tail(&va->purge_list, &valist); 553 va->flags |= VM_LAZY_FREEING; 554 va->flags &= ~VM_LAZY_FREE; 555 } 556 } 557 rcu_read_unlock(); 558 559 if (nr) { 560 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 561 atomic_sub(nr, &vmap_lazy_nr); 562 } 563 564 if (nr || force_flush) 565 flush_tlb_kernel_range(*start, *end); 566 567 if (nr) { 568 spin_lock(&vmap_area_lock); 569 list_for_each_entry_safe(va, n_va, &valist, purge_list) 570 __free_vmap_area(va); 571 spin_unlock(&vmap_area_lock); 572 } 573 spin_unlock(&purge_lock); 574 } 575 576 /* 577 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 578 * is already purging. 579 */ 580 static void try_purge_vmap_area_lazy(void) 581 { 582 unsigned long start = ULONG_MAX, end = 0; 583 584 __purge_vmap_area_lazy(&start, &end, 0, 0); 585 } 586 587 /* 588 * Kick off a purge of the outstanding lazy areas. 589 */ 590 static void purge_vmap_area_lazy(void) 591 { 592 unsigned long start = ULONG_MAX, end = 0; 593 594 __purge_vmap_area_lazy(&start, &end, 1, 0); 595 } 596 597 /* 598 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 599 * called for the correct range previously. 600 */ 601 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 602 { 603 va->flags |= VM_LAZY_FREE; 604 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 605 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 606 try_purge_vmap_area_lazy(); 607 } 608 609 /* 610 * Free and unmap a vmap area 611 */ 612 static void free_unmap_vmap_area(struct vmap_area *va) 613 { 614 flush_cache_vunmap(va->va_start, va->va_end); 615 free_unmap_vmap_area_noflush(va); 616 } 617 618 static struct vmap_area *find_vmap_area(unsigned long addr) 619 { 620 struct vmap_area *va; 621 622 spin_lock(&vmap_area_lock); 623 va = __find_vmap_area(addr); 624 spin_unlock(&vmap_area_lock); 625 626 return va; 627 } 628 629 static void free_unmap_vmap_area_addr(unsigned long addr) 630 { 631 struct vmap_area *va; 632 633 va = find_vmap_area(addr); 634 BUG_ON(!va); 635 free_unmap_vmap_area(va); 636 } 637 638 639 /*** Per cpu kva allocator ***/ 640 641 /* 642 * vmap space is limited especially on 32 bit architectures. Ensure there is 643 * room for at least 16 percpu vmap blocks per CPU. 644 */ 645 /* 646 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 647 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 648 * instead (we just need a rough idea) 649 */ 650 #if BITS_PER_LONG == 32 651 #define VMALLOC_SPACE (128UL*1024*1024) 652 #else 653 #define VMALLOC_SPACE (128UL*1024*1024*1024) 654 #endif 655 656 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 657 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 658 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 659 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 660 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 661 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 662 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 663 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 664 VMALLOC_PAGES / NR_CPUS / 16)) 665 666 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 667 668 static bool vmap_initialized __read_mostly = false; 669 670 struct vmap_block_queue { 671 spinlock_t lock; 672 struct list_head free; 673 struct list_head dirty; 674 unsigned int nr_dirty; 675 }; 676 677 struct vmap_block { 678 spinlock_t lock; 679 struct vmap_area *va; 680 struct vmap_block_queue *vbq; 681 unsigned long free, dirty; 682 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 683 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 684 union { 685 struct list_head free_list; 686 struct rcu_head rcu_head; 687 }; 688 }; 689 690 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 691 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 692 693 /* 694 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 695 * in the free path. Could get rid of this if we change the API to return a 696 * "cookie" from alloc, to be passed to free. But no big deal yet. 697 */ 698 static DEFINE_SPINLOCK(vmap_block_tree_lock); 699 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 700 701 /* 702 * We should probably have a fallback mechanism to allocate virtual memory 703 * out of partially filled vmap blocks. However vmap block sizing should be 704 * fairly reasonable according to the vmalloc size, so it shouldn't be a 705 * big problem. 706 */ 707 708 static unsigned long addr_to_vb_idx(unsigned long addr) 709 { 710 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 711 addr /= VMAP_BLOCK_SIZE; 712 return addr; 713 } 714 715 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 716 { 717 struct vmap_block_queue *vbq; 718 struct vmap_block *vb; 719 struct vmap_area *va; 720 unsigned long vb_idx; 721 int node, err; 722 723 node = numa_node_id(); 724 725 vb = kmalloc_node(sizeof(struct vmap_block), 726 gfp_mask & GFP_RECLAIM_MASK, node); 727 if (unlikely(!vb)) 728 return ERR_PTR(-ENOMEM); 729 730 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 731 VMALLOC_START, VMALLOC_END, 732 node, gfp_mask); 733 if (unlikely(IS_ERR(va))) { 734 kfree(vb); 735 return ERR_PTR(PTR_ERR(va)); 736 } 737 738 err = radix_tree_preload(gfp_mask); 739 if (unlikely(err)) { 740 kfree(vb); 741 free_vmap_area(va); 742 return ERR_PTR(err); 743 } 744 745 spin_lock_init(&vb->lock); 746 vb->va = va; 747 vb->free = VMAP_BBMAP_BITS; 748 vb->dirty = 0; 749 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 750 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 751 INIT_LIST_HEAD(&vb->free_list); 752 753 vb_idx = addr_to_vb_idx(va->va_start); 754 spin_lock(&vmap_block_tree_lock); 755 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 756 spin_unlock(&vmap_block_tree_lock); 757 BUG_ON(err); 758 radix_tree_preload_end(); 759 760 vbq = &get_cpu_var(vmap_block_queue); 761 vb->vbq = vbq; 762 spin_lock(&vbq->lock); 763 list_add(&vb->free_list, &vbq->free); 764 spin_unlock(&vbq->lock); 765 put_cpu_var(vmap_cpu_blocks); 766 767 return vb; 768 } 769 770 static void rcu_free_vb(struct rcu_head *head) 771 { 772 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 773 774 kfree(vb); 775 } 776 777 static void free_vmap_block(struct vmap_block *vb) 778 { 779 struct vmap_block *tmp; 780 unsigned long vb_idx; 781 782 BUG_ON(!list_empty(&vb->free_list)); 783 784 vb_idx = addr_to_vb_idx(vb->va->va_start); 785 spin_lock(&vmap_block_tree_lock); 786 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 787 spin_unlock(&vmap_block_tree_lock); 788 BUG_ON(tmp != vb); 789 790 free_unmap_vmap_area_noflush(vb->va); 791 call_rcu(&vb->rcu_head, rcu_free_vb); 792 } 793 794 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 795 { 796 struct vmap_block_queue *vbq; 797 struct vmap_block *vb; 798 unsigned long addr = 0; 799 unsigned int order; 800 801 BUG_ON(size & ~PAGE_MASK); 802 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 803 order = get_order(size); 804 805 again: 806 rcu_read_lock(); 807 vbq = &get_cpu_var(vmap_block_queue); 808 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 809 int i; 810 811 spin_lock(&vb->lock); 812 i = bitmap_find_free_region(vb->alloc_map, 813 VMAP_BBMAP_BITS, order); 814 815 if (i >= 0) { 816 addr = vb->va->va_start + (i << PAGE_SHIFT); 817 BUG_ON(addr_to_vb_idx(addr) != 818 addr_to_vb_idx(vb->va->va_start)); 819 vb->free -= 1UL << order; 820 if (vb->free == 0) { 821 spin_lock(&vbq->lock); 822 list_del_init(&vb->free_list); 823 spin_unlock(&vbq->lock); 824 } 825 spin_unlock(&vb->lock); 826 break; 827 } 828 spin_unlock(&vb->lock); 829 } 830 put_cpu_var(vmap_cpu_blocks); 831 rcu_read_unlock(); 832 833 if (!addr) { 834 vb = new_vmap_block(gfp_mask); 835 if (IS_ERR(vb)) 836 return vb; 837 goto again; 838 } 839 840 return (void *)addr; 841 } 842 843 static void vb_free(const void *addr, unsigned long size) 844 { 845 unsigned long offset; 846 unsigned long vb_idx; 847 unsigned int order; 848 struct vmap_block *vb; 849 850 BUG_ON(size & ~PAGE_MASK); 851 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 852 853 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 854 855 order = get_order(size); 856 857 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 858 859 vb_idx = addr_to_vb_idx((unsigned long)addr); 860 rcu_read_lock(); 861 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 862 rcu_read_unlock(); 863 BUG_ON(!vb); 864 865 spin_lock(&vb->lock); 866 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 867 868 vb->dirty += 1UL << order; 869 if (vb->dirty == VMAP_BBMAP_BITS) { 870 BUG_ON(vb->free || !list_empty(&vb->free_list)); 871 spin_unlock(&vb->lock); 872 free_vmap_block(vb); 873 } else 874 spin_unlock(&vb->lock); 875 } 876 877 /** 878 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 879 * 880 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 881 * to amortize TLB flushing overheads. What this means is that any page you 882 * have now, may, in a former life, have been mapped into kernel virtual 883 * address by the vmap layer and so there might be some CPUs with TLB entries 884 * still referencing that page (additional to the regular 1:1 kernel mapping). 885 * 886 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 887 * be sure that none of the pages we have control over will have any aliases 888 * from the vmap layer. 889 */ 890 void vm_unmap_aliases(void) 891 { 892 unsigned long start = ULONG_MAX, end = 0; 893 int cpu; 894 int flush = 0; 895 896 if (unlikely(!vmap_initialized)) 897 return; 898 899 for_each_possible_cpu(cpu) { 900 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 901 struct vmap_block *vb; 902 903 rcu_read_lock(); 904 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 905 int i; 906 907 spin_lock(&vb->lock); 908 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 909 while (i < VMAP_BBMAP_BITS) { 910 unsigned long s, e; 911 int j; 912 j = find_next_zero_bit(vb->dirty_map, 913 VMAP_BBMAP_BITS, i); 914 915 s = vb->va->va_start + (i << PAGE_SHIFT); 916 e = vb->va->va_start + (j << PAGE_SHIFT); 917 vunmap_page_range(s, e); 918 flush = 1; 919 920 if (s < start) 921 start = s; 922 if (e > end) 923 end = e; 924 925 i = j; 926 i = find_next_bit(vb->dirty_map, 927 VMAP_BBMAP_BITS, i); 928 } 929 spin_unlock(&vb->lock); 930 } 931 rcu_read_unlock(); 932 } 933 934 __purge_vmap_area_lazy(&start, &end, 1, flush); 935 } 936 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 937 938 /** 939 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 940 * @mem: the pointer returned by vm_map_ram 941 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 942 */ 943 void vm_unmap_ram(const void *mem, unsigned int count) 944 { 945 unsigned long size = count << PAGE_SHIFT; 946 unsigned long addr = (unsigned long)mem; 947 948 BUG_ON(!addr); 949 BUG_ON(addr < VMALLOC_START); 950 BUG_ON(addr > VMALLOC_END); 951 BUG_ON(addr & (PAGE_SIZE-1)); 952 953 debug_check_no_locks_freed(mem, size); 954 vmap_debug_free_range(addr, addr+size); 955 956 if (likely(count <= VMAP_MAX_ALLOC)) 957 vb_free(mem, size); 958 else 959 free_unmap_vmap_area_addr(addr); 960 } 961 EXPORT_SYMBOL(vm_unmap_ram); 962 963 /** 964 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 965 * @pages: an array of pointers to the pages to be mapped 966 * @count: number of pages 967 * @node: prefer to allocate data structures on this node 968 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 969 * 970 * Returns: a pointer to the address that has been mapped, or %NULL on failure 971 */ 972 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 973 { 974 unsigned long size = count << PAGE_SHIFT; 975 unsigned long addr; 976 void *mem; 977 978 if (likely(count <= VMAP_MAX_ALLOC)) { 979 mem = vb_alloc(size, GFP_KERNEL); 980 if (IS_ERR(mem)) 981 return NULL; 982 addr = (unsigned long)mem; 983 } else { 984 struct vmap_area *va; 985 va = alloc_vmap_area(size, PAGE_SIZE, 986 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 987 if (IS_ERR(va)) 988 return NULL; 989 990 addr = va->va_start; 991 mem = (void *)addr; 992 } 993 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 994 vm_unmap_ram(mem, count); 995 return NULL; 996 } 997 return mem; 998 } 999 EXPORT_SYMBOL(vm_map_ram); 1000 1001 /** 1002 * vm_area_register_early - register vmap area early during boot 1003 * @vm: vm_struct to register 1004 * @align: requested alignment 1005 * 1006 * This function is used to register kernel vm area before 1007 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1008 * proper values on entry and other fields should be zero. On return, 1009 * vm->addr contains the allocated address. 1010 * 1011 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1012 */ 1013 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1014 { 1015 static size_t vm_init_off __initdata; 1016 unsigned long addr; 1017 1018 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1019 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1020 1021 vm->addr = (void *)addr; 1022 1023 vm->next = vmlist; 1024 vmlist = vm; 1025 } 1026 1027 void __init vmalloc_init(void) 1028 { 1029 struct vmap_area *va; 1030 struct vm_struct *tmp; 1031 int i; 1032 1033 for_each_possible_cpu(i) { 1034 struct vmap_block_queue *vbq; 1035 1036 vbq = &per_cpu(vmap_block_queue, i); 1037 spin_lock_init(&vbq->lock); 1038 INIT_LIST_HEAD(&vbq->free); 1039 INIT_LIST_HEAD(&vbq->dirty); 1040 vbq->nr_dirty = 0; 1041 } 1042 1043 /* Import existing vmlist entries. */ 1044 for (tmp = vmlist; tmp; tmp = tmp->next) { 1045 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1046 va->flags = tmp->flags | VM_VM_AREA; 1047 va->va_start = (unsigned long)tmp->addr; 1048 va->va_end = va->va_start + tmp->size; 1049 __insert_vmap_area(va); 1050 } 1051 1052 vmap_area_pcpu_hole = VMALLOC_END; 1053 1054 vmap_initialized = true; 1055 } 1056 1057 /** 1058 * map_kernel_range_noflush - map kernel VM area with the specified pages 1059 * @addr: start of the VM area to map 1060 * @size: size of the VM area to map 1061 * @prot: page protection flags to use 1062 * @pages: pages to map 1063 * 1064 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1065 * specify should have been allocated using get_vm_area() and its 1066 * friends. 1067 * 1068 * NOTE: 1069 * This function does NOT do any cache flushing. The caller is 1070 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1071 * before calling this function. 1072 * 1073 * RETURNS: 1074 * The number of pages mapped on success, -errno on failure. 1075 */ 1076 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1077 pgprot_t prot, struct page **pages) 1078 { 1079 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1080 } 1081 1082 /** 1083 * unmap_kernel_range_noflush - unmap kernel VM area 1084 * @addr: start of the VM area to unmap 1085 * @size: size of the VM area to unmap 1086 * 1087 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1088 * specify should have been allocated using get_vm_area() and its 1089 * friends. 1090 * 1091 * NOTE: 1092 * This function does NOT do any cache flushing. The caller is 1093 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1094 * before calling this function and flush_tlb_kernel_range() after. 1095 */ 1096 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1097 { 1098 vunmap_page_range(addr, addr + size); 1099 } 1100 1101 /** 1102 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1103 * @addr: start of the VM area to unmap 1104 * @size: size of the VM area to unmap 1105 * 1106 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1107 * the unmapping and tlb after. 1108 */ 1109 void unmap_kernel_range(unsigned long addr, unsigned long size) 1110 { 1111 unsigned long end = addr + size; 1112 1113 flush_cache_vunmap(addr, end); 1114 vunmap_page_range(addr, end); 1115 flush_tlb_kernel_range(addr, end); 1116 } 1117 1118 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1119 { 1120 unsigned long addr = (unsigned long)area->addr; 1121 unsigned long end = addr + area->size - PAGE_SIZE; 1122 int err; 1123 1124 err = vmap_page_range(addr, end, prot, *pages); 1125 if (err > 0) { 1126 *pages += err; 1127 err = 0; 1128 } 1129 1130 return err; 1131 } 1132 EXPORT_SYMBOL_GPL(map_vm_area); 1133 1134 /*** Old vmalloc interfaces ***/ 1135 DEFINE_RWLOCK(vmlist_lock); 1136 struct vm_struct *vmlist; 1137 1138 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1139 unsigned long flags, void *caller) 1140 { 1141 struct vm_struct *tmp, **p; 1142 1143 vm->flags = flags; 1144 vm->addr = (void *)va->va_start; 1145 vm->size = va->va_end - va->va_start; 1146 vm->caller = caller; 1147 va->private = vm; 1148 va->flags |= VM_VM_AREA; 1149 1150 write_lock(&vmlist_lock); 1151 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1152 if (tmp->addr >= vm->addr) 1153 break; 1154 } 1155 vm->next = *p; 1156 *p = vm; 1157 write_unlock(&vmlist_lock); 1158 } 1159 1160 static struct vm_struct *__get_vm_area_node(unsigned long size, 1161 unsigned long flags, unsigned long start, unsigned long end, 1162 int node, gfp_t gfp_mask, void *caller) 1163 { 1164 static struct vmap_area *va; 1165 struct vm_struct *area; 1166 unsigned long align = 1; 1167 1168 BUG_ON(in_interrupt()); 1169 if (flags & VM_IOREMAP) { 1170 int bit = fls(size); 1171 1172 if (bit > IOREMAP_MAX_ORDER) 1173 bit = IOREMAP_MAX_ORDER; 1174 else if (bit < PAGE_SHIFT) 1175 bit = PAGE_SHIFT; 1176 1177 align = 1ul << bit; 1178 } 1179 1180 size = PAGE_ALIGN(size); 1181 if (unlikely(!size)) 1182 return NULL; 1183 1184 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1185 if (unlikely(!area)) 1186 return NULL; 1187 1188 /* 1189 * We always allocate a guard page. 1190 */ 1191 size += PAGE_SIZE; 1192 1193 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1194 if (IS_ERR(va)) { 1195 kfree(area); 1196 return NULL; 1197 } 1198 1199 insert_vmalloc_vm(area, va, flags, caller); 1200 return area; 1201 } 1202 1203 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1204 unsigned long start, unsigned long end) 1205 { 1206 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1207 __builtin_return_address(0)); 1208 } 1209 EXPORT_SYMBOL_GPL(__get_vm_area); 1210 1211 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1212 unsigned long start, unsigned long end, 1213 void *caller) 1214 { 1215 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1216 caller); 1217 } 1218 1219 /** 1220 * get_vm_area - reserve a contiguous kernel virtual area 1221 * @size: size of the area 1222 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1223 * 1224 * Search an area of @size in the kernel virtual mapping area, 1225 * and reserved it for out purposes. Returns the area descriptor 1226 * on success or %NULL on failure. 1227 */ 1228 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1229 { 1230 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1231 -1, GFP_KERNEL, __builtin_return_address(0)); 1232 } 1233 1234 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1235 void *caller) 1236 { 1237 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1238 -1, GFP_KERNEL, caller); 1239 } 1240 1241 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1242 int node, gfp_t gfp_mask) 1243 { 1244 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1245 gfp_mask, __builtin_return_address(0)); 1246 } 1247 1248 static struct vm_struct *find_vm_area(const void *addr) 1249 { 1250 struct vmap_area *va; 1251 1252 va = find_vmap_area((unsigned long)addr); 1253 if (va && va->flags & VM_VM_AREA) 1254 return va->private; 1255 1256 return NULL; 1257 } 1258 1259 /** 1260 * remove_vm_area - find and remove a continuous kernel virtual area 1261 * @addr: base address 1262 * 1263 * Search for the kernel VM area starting at @addr, and remove it. 1264 * This function returns the found VM area, but using it is NOT safe 1265 * on SMP machines, except for its size or flags. 1266 */ 1267 struct vm_struct *remove_vm_area(const void *addr) 1268 { 1269 struct vmap_area *va; 1270 1271 va = find_vmap_area((unsigned long)addr); 1272 if (va && va->flags & VM_VM_AREA) { 1273 struct vm_struct *vm = va->private; 1274 struct vm_struct *tmp, **p; 1275 1276 vmap_debug_free_range(va->va_start, va->va_end); 1277 free_unmap_vmap_area(va); 1278 vm->size -= PAGE_SIZE; 1279 1280 write_lock(&vmlist_lock); 1281 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1282 ; 1283 *p = tmp->next; 1284 write_unlock(&vmlist_lock); 1285 1286 return vm; 1287 } 1288 return NULL; 1289 } 1290 1291 static void __vunmap(const void *addr, int deallocate_pages) 1292 { 1293 struct vm_struct *area; 1294 1295 if (!addr) 1296 return; 1297 1298 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1299 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1300 return; 1301 } 1302 1303 area = remove_vm_area(addr); 1304 if (unlikely(!area)) { 1305 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1306 addr); 1307 return; 1308 } 1309 1310 debug_check_no_locks_freed(addr, area->size); 1311 debug_check_no_obj_freed(addr, area->size); 1312 1313 if (deallocate_pages) { 1314 int i; 1315 1316 for (i = 0; i < area->nr_pages; i++) { 1317 struct page *page = area->pages[i]; 1318 1319 BUG_ON(!page); 1320 __free_page(page); 1321 } 1322 1323 if (area->flags & VM_VPAGES) 1324 vfree(area->pages); 1325 else 1326 kfree(area->pages); 1327 } 1328 1329 kfree(area); 1330 return; 1331 } 1332 1333 /** 1334 * vfree - release memory allocated by vmalloc() 1335 * @addr: memory base address 1336 * 1337 * Free the virtually continuous memory area starting at @addr, as 1338 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1339 * NULL, no operation is performed. 1340 * 1341 * Must not be called in interrupt context. 1342 */ 1343 void vfree(const void *addr) 1344 { 1345 BUG_ON(in_interrupt()); 1346 1347 kmemleak_free(addr); 1348 1349 __vunmap(addr, 1); 1350 } 1351 EXPORT_SYMBOL(vfree); 1352 1353 /** 1354 * vunmap - release virtual mapping obtained by vmap() 1355 * @addr: memory base address 1356 * 1357 * Free the virtually contiguous memory area starting at @addr, 1358 * which was created from the page array passed to vmap(). 1359 * 1360 * Must not be called in interrupt context. 1361 */ 1362 void vunmap(const void *addr) 1363 { 1364 BUG_ON(in_interrupt()); 1365 might_sleep(); 1366 __vunmap(addr, 0); 1367 } 1368 EXPORT_SYMBOL(vunmap); 1369 1370 /** 1371 * vmap - map an array of pages into virtually contiguous space 1372 * @pages: array of page pointers 1373 * @count: number of pages to map 1374 * @flags: vm_area->flags 1375 * @prot: page protection for the mapping 1376 * 1377 * Maps @count pages from @pages into contiguous kernel virtual 1378 * space. 1379 */ 1380 void *vmap(struct page **pages, unsigned int count, 1381 unsigned long flags, pgprot_t prot) 1382 { 1383 struct vm_struct *area; 1384 1385 might_sleep(); 1386 1387 if (count > num_physpages) 1388 return NULL; 1389 1390 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1391 __builtin_return_address(0)); 1392 if (!area) 1393 return NULL; 1394 1395 if (map_vm_area(area, prot, &pages)) { 1396 vunmap(area->addr); 1397 return NULL; 1398 } 1399 1400 return area->addr; 1401 } 1402 EXPORT_SYMBOL(vmap); 1403 1404 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1405 int node, void *caller); 1406 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1407 pgprot_t prot, int node, void *caller) 1408 { 1409 struct page **pages; 1410 unsigned int nr_pages, array_size, i; 1411 1412 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1413 array_size = (nr_pages * sizeof(struct page *)); 1414 1415 area->nr_pages = nr_pages; 1416 /* Please note that the recursion is strictly bounded. */ 1417 if (array_size > PAGE_SIZE) { 1418 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1419 PAGE_KERNEL, node, caller); 1420 area->flags |= VM_VPAGES; 1421 } else { 1422 pages = kmalloc_node(array_size, 1423 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1424 node); 1425 } 1426 area->pages = pages; 1427 area->caller = caller; 1428 if (!area->pages) { 1429 remove_vm_area(area->addr); 1430 kfree(area); 1431 return NULL; 1432 } 1433 1434 for (i = 0; i < area->nr_pages; i++) { 1435 struct page *page; 1436 1437 if (node < 0) 1438 page = alloc_page(gfp_mask); 1439 else 1440 page = alloc_pages_node(node, gfp_mask, 0); 1441 1442 if (unlikely(!page)) { 1443 /* Successfully allocated i pages, free them in __vunmap() */ 1444 area->nr_pages = i; 1445 goto fail; 1446 } 1447 area->pages[i] = page; 1448 } 1449 1450 if (map_vm_area(area, prot, &pages)) 1451 goto fail; 1452 return area->addr; 1453 1454 fail: 1455 vfree(area->addr); 1456 return NULL; 1457 } 1458 1459 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1460 { 1461 void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, 1462 __builtin_return_address(0)); 1463 1464 /* 1465 * A ref_count = 3 is needed because the vm_struct and vmap_area 1466 * structures allocated in the __get_vm_area_node() function contain 1467 * references to the virtual address of the vmalloc'ed block. 1468 */ 1469 kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); 1470 1471 return addr; 1472 } 1473 1474 /** 1475 * __vmalloc_node - allocate virtually contiguous memory 1476 * @size: allocation size 1477 * @gfp_mask: flags for the page level allocator 1478 * @prot: protection mask for the allocated pages 1479 * @node: node to use for allocation or -1 1480 * @caller: caller's return address 1481 * 1482 * Allocate enough pages to cover @size from the page level 1483 * allocator with @gfp_mask flags. Map them into contiguous 1484 * kernel virtual space, using a pagetable protection of @prot. 1485 */ 1486 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1487 int node, void *caller) 1488 { 1489 struct vm_struct *area; 1490 void *addr; 1491 unsigned long real_size = size; 1492 1493 size = PAGE_ALIGN(size); 1494 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1495 return NULL; 1496 1497 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1498 node, gfp_mask, caller); 1499 1500 if (!area) 1501 return NULL; 1502 1503 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1504 1505 /* 1506 * A ref_count = 3 is needed because the vm_struct and vmap_area 1507 * structures allocated in the __get_vm_area_node() function contain 1508 * references to the virtual address of the vmalloc'ed block. 1509 */ 1510 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1511 1512 return addr; 1513 } 1514 1515 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1516 { 1517 return __vmalloc_node(size, gfp_mask, prot, -1, 1518 __builtin_return_address(0)); 1519 } 1520 EXPORT_SYMBOL(__vmalloc); 1521 1522 /** 1523 * vmalloc - allocate virtually contiguous memory 1524 * @size: allocation size 1525 * Allocate enough pages to cover @size from the page level 1526 * allocator and map them into contiguous kernel virtual space. 1527 * 1528 * For tight control over page level allocator and protection flags 1529 * use __vmalloc() instead. 1530 */ 1531 void *vmalloc(unsigned long size) 1532 { 1533 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1534 -1, __builtin_return_address(0)); 1535 } 1536 EXPORT_SYMBOL(vmalloc); 1537 1538 /** 1539 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1540 * @size: allocation size 1541 * 1542 * The resulting memory area is zeroed so it can be mapped to userspace 1543 * without leaking data. 1544 */ 1545 void *vmalloc_user(unsigned long size) 1546 { 1547 struct vm_struct *area; 1548 void *ret; 1549 1550 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1551 PAGE_KERNEL, -1, __builtin_return_address(0)); 1552 if (ret) { 1553 area = find_vm_area(ret); 1554 area->flags |= VM_USERMAP; 1555 } 1556 return ret; 1557 } 1558 EXPORT_SYMBOL(vmalloc_user); 1559 1560 /** 1561 * vmalloc_node - allocate memory on a specific node 1562 * @size: allocation size 1563 * @node: numa node 1564 * 1565 * Allocate enough pages to cover @size from the page level 1566 * allocator and map them into contiguous kernel virtual space. 1567 * 1568 * For tight control over page level allocator and protection flags 1569 * use __vmalloc() instead. 1570 */ 1571 void *vmalloc_node(unsigned long size, int node) 1572 { 1573 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1574 node, __builtin_return_address(0)); 1575 } 1576 EXPORT_SYMBOL(vmalloc_node); 1577 1578 #ifndef PAGE_KERNEL_EXEC 1579 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1580 #endif 1581 1582 /** 1583 * vmalloc_exec - allocate virtually contiguous, executable memory 1584 * @size: allocation size 1585 * 1586 * Kernel-internal function to allocate enough pages to cover @size 1587 * the page level allocator and map them into contiguous and 1588 * executable kernel virtual space. 1589 * 1590 * For tight control over page level allocator and protection flags 1591 * use __vmalloc() instead. 1592 */ 1593 1594 void *vmalloc_exec(unsigned long size) 1595 { 1596 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1597 -1, __builtin_return_address(0)); 1598 } 1599 1600 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1601 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1602 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1603 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1604 #else 1605 #define GFP_VMALLOC32 GFP_KERNEL 1606 #endif 1607 1608 /** 1609 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1610 * @size: allocation size 1611 * 1612 * Allocate enough 32bit PA addressable pages to cover @size from the 1613 * page level allocator and map them into contiguous kernel virtual space. 1614 */ 1615 void *vmalloc_32(unsigned long size) 1616 { 1617 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, 1618 -1, __builtin_return_address(0)); 1619 } 1620 EXPORT_SYMBOL(vmalloc_32); 1621 1622 /** 1623 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1624 * @size: allocation size 1625 * 1626 * The resulting memory area is 32bit addressable and zeroed so it can be 1627 * mapped to userspace without leaking data. 1628 */ 1629 void *vmalloc_32_user(unsigned long size) 1630 { 1631 struct vm_struct *area; 1632 void *ret; 1633 1634 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1635 -1, __builtin_return_address(0)); 1636 if (ret) { 1637 area = find_vm_area(ret); 1638 area->flags |= VM_USERMAP; 1639 } 1640 return ret; 1641 } 1642 EXPORT_SYMBOL(vmalloc_32_user); 1643 1644 long vread(char *buf, char *addr, unsigned long count) 1645 { 1646 struct vm_struct *tmp; 1647 char *vaddr, *buf_start = buf; 1648 unsigned long n; 1649 1650 /* Don't allow overflow */ 1651 if ((unsigned long) addr + count < count) 1652 count = -(unsigned long) addr; 1653 1654 read_lock(&vmlist_lock); 1655 for (tmp = vmlist; tmp; tmp = tmp->next) { 1656 vaddr = (char *) tmp->addr; 1657 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1658 continue; 1659 while (addr < vaddr) { 1660 if (count == 0) 1661 goto finished; 1662 *buf = '\0'; 1663 buf++; 1664 addr++; 1665 count--; 1666 } 1667 n = vaddr + tmp->size - PAGE_SIZE - addr; 1668 do { 1669 if (count == 0) 1670 goto finished; 1671 *buf = *addr; 1672 buf++; 1673 addr++; 1674 count--; 1675 } while (--n > 0); 1676 } 1677 finished: 1678 read_unlock(&vmlist_lock); 1679 return buf - buf_start; 1680 } 1681 1682 long vwrite(char *buf, char *addr, unsigned long count) 1683 { 1684 struct vm_struct *tmp; 1685 char *vaddr, *buf_start = buf; 1686 unsigned long n; 1687 1688 /* Don't allow overflow */ 1689 if ((unsigned long) addr + count < count) 1690 count = -(unsigned long) addr; 1691 1692 read_lock(&vmlist_lock); 1693 for (tmp = vmlist; tmp; tmp = tmp->next) { 1694 vaddr = (char *) tmp->addr; 1695 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1696 continue; 1697 while (addr < vaddr) { 1698 if (count == 0) 1699 goto finished; 1700 buf++; 1701 addr++; 1702 count--; 1703 } 1704 n = vaddr + tmp->size - PAGE_SIZE - addr; 1705 do { 1706 if (count == 0) 1707 goto finished; 1708 *addr = *buf; 1709 buf++; 1710 addr++; 1711 count--; 1712 } while (--n > 0); 1713 } 1714 finished: 1715 read_unlock(&vmlist_lock); 1716 return buf - buf_start; 1717 } 1718 1719 /** 1720 * remap_vmalloc_range - map vmalloc pages to userspace 1721 * @vma: vma to cover (map full range of vma) 1722 * @addr: vmalloc memory 1723 * @pgoff: number of pages into addr before first page to map 1724 * 1725 * Returns: 0 for success, -Exxx on failure 1726 * 1727 * This function checks that addr is a valid vmalloc'ed area, and 1728 * that it is big enough to cover the vma. Will return failure if 1729 * that criteria isn't met. 1730 * 1731 * Similar to remap_pfn_range() (see mm/memory.c) 1732 */ 1733 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1734 unsigned long pgoff) 1735 { 1736 struct vm_struct *area; 1737 unsigned long uaddr = vma->vm_start; 1738 unsigned long usize = vma->vm_end - vma->vm_start; 1739 1740 if ((PAGE_SIZE-1) & (unsigned long)addr) 1741 return -EINVAL; 1742 1743 area = find_vm_area(addr); 1744 if (!area) 1745 return -EINVAL; 1746 1747 if (!(area->flags & VM_USERMAP)) 1748 return -EINVAL; 1749 1750 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1751 return -EINVAL; 1752 1753 addr += pgoff << PAGE_SHIFT; 1754 do { 1755 struct page *page = vmalloc_to_page(addr); 1756 int ret; 1757 1758 ret = vm_insert_page(vma, uaddr, page); 1759 if (ret) 1760 return ret; 1761 1762 uaddr += PAGE_SIZE; 1763 addr += PAGE_SIZE; 1764 usize -= PAGE_SIZE; 1765 } while (usize > 0); 1766 1767 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1768 vma->vm_flags |= VM_RESERVED; 1769 1770 return 0; 1771 } 1772 EXPORT_SYMBOL(remap_vmalloc_range); 1773 1774 /* 1775 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1776 * have one. 1777 */ 1778 void __attribute__((weak)) vmalloc_sync_all(void) 1779 { 1780 } 1781 1782 1783 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1784 { 1785 /* apply_to_page_range() does all the hard work. */ 1786 return 0; 1787 } 1788 1789 /** 1790 * alloc_vm_area - allocate a range of kernel address space 1791 * @size: size of the area 1792 * 1793 * Returns: NULL on failure, vm_struct on success 1794 * 1795 * This function reserves a range of kernel address space, and 1796 * allocates pagetables to map that range. No actual mappings 1797 * are created. If the kernel address space is not shared 1798 * between processes, it syncs the pagetable across all 1799 * processes. 1800 */ 1801 struct vm_struct *alloc_vm_area(size_t size) 1802 { 1803 struct vm_struct *area; 1804 1805 area = get_vm_area_caller(size, VM_IOREMAP, 1806 __builtin_return_address(0)); 1807 if (area == NULL) 1808 return NULL; 1809 1810 /* 1811 * This ensures that page tables are constructed for this region 1812 * of kernel virtual address space and mapped into init_mm. 1813 */ 1814 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1815 area->size, f, NULL)) { 1816 free_vm_area(area); 1817 return NULL; 1818 } 1819 1820 /* Make sure the pagetables are constructed in process kernel 1821 mappings */ 1822 vmalloc_sync_all(); 1823 1824 return area; 1825 } 1826 EXPORT_SYMBOL_GPL(alloc_vm_area); 1827 1828 void free_vm_area(struct vm_struct *area) 1829 { 1830 struct vm_struct *ret; 1831 ret = remove_vm_area(area->addr); 1832 BUG_ON(ret != area); 1833 kfree(area); 1834 } 1835 EXPORT_SYMBOL_GPL(free_vm_area); 1836 1837 static struct vmap_area *node_to_va(struct rb_node *n) 1838 { 1839 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 1840 } 1841 1842 /** 1843 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 1844 * @end: target address 1845 * @pnext: out arg for the next vmap_area 1846 * @pprev: out arg for the previous vmap_area 1847 * 1848 * Returns: %true if either or both of next and prev are found, 1849 * %false if no vmap_area exists 1850 * 1851 * Find vmap_areas end addresses of which enclose @end. ie. if not 1852 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 1853 */ 1854 static bool pvm_find_next_prev(unsigned long end, 1855 struct vmap_area **pnext, 1856 struct vmap_area **pprev) 1857 { 1858 struct rb_node *n = vmap_area_root.rb_node; 1859 struct vmap_area *va = NULL; 1860 1861 while (n) { 1862 va = rb_entry(n, struct vmap_area, rb_node); 1863 if (end < va->va_end) 1864 n = n->rb_left; 1865 else if (end > va->va_end) 1866 n = n->rb_right; 1867 else 1868 break; 1869 } 1870 1871 if (!va) 1872 return false; 1873 1874 if (va->va_end > end) { 1875 *pnext = va; 1876 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 1877 } else { 1878 *pprev = va; 1879 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 1880 } 1881 return true; 1882 } 1883 1884 /** 1885 * pvm_determine_end - find the highest aligned address between two vmap_areas 1886 * @pnext: in/out arg for the next vmap_area 1887 * @pprev: in/out arg for the previous vmap_area 1888 * @align: alignment 1889 * 1890 * Returns: determined end address 1891 * 1892 * Find the highest aligned address between *@pnext and *@pprev below 1893 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 1894 * down address is between the end addresses of the two vmap_areas. 1895 * 1896 * Please note that the address returned by this function may fall 1897 * inside *@pnext vmap_area. The caller is responsible for checking 1898 * that. 1899 */ 1900 static unsigned long pvm_determine_end(struct vmap_area **pnext, 1901 struct vmap_area **pprev, 1902 unsigned long align) 1903 { 1904 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 1905 unsigned long addr; 1906 1907 if (*pnext) 1908 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 1909 else 1910 addr = vmalloc_end; 1911 1912 while (*pprev && (*pprev)->va_end > addr) { 1913 *pnext = *pprev; 1914 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 1915 } 1916 1917 return addr; 1918 } 1919 1920 /** 1921 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 1922 * @offsets: array containing offset of each area 1923 * @sizes: array containing size of each area 1924 * @nr_vms: the number of areas to allocate 1925 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 1926 * @gfp_mask: allocation mask 1927 * 1928 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 1929 * vm_structs on success, %NULL on failure 1930 * 1931 * Percpu allocator wants to use congruent vm areas so that it can 1932 * maintain the offsets among percpu areas. This function allocates 1933 * congruent vmalloc areas for it. These areas tend to be scattered 1934 * pretty far, distance between two areas easily going up to 1935 * gigabytes. To avoid interacting with regular vmallocs, these areas 1936 * are allocated from top. 1937 * 1938 * Despite its complicated look, this allocator is rather simple. It 1939 * does everything top-down and scans areas from the end looking for 1940 * matching slot. While scanning, if any of the areas overlaps with 1941 * existing vmap_area, the base address is pulled down to fit the 1942 * area. Scanning is repeated till all the areas fit and then all 1943 * necessary data structres are inserted and the result is returned. 1944 */ 1945 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 1946 const size_t *sizes, int nr_vms, 1947 size_t align, gfp_t gfp_mask) 1948 { 1949 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 1950 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 1951 struct vmap_area **vas, *prev, *next; 1952 struct vm_struct **vms; 1953 int area, area2, last_area, term_area; 1954 unsigned long base, start, end, last_end; 1955 bool purged = false; 1956 1957 gfp_mask &= GFP_RECLAIM_MASK; 1958 1959 /* verify parameters and allocate data structures */ 1960 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 1961 for (last_area = 0, area = 0; area < nr_vms; area++) { 1962 start = offsets[area]; 1963 end = start + sizes[area]; 1964 1965 /* is everything aligned properly? */ 1966 BUG_ON(!IS_ALIGNED(offsets[area], align)); 1967 BUG_ON(!IS_ALIGNED(sizes[area], align)); 1968 1969 /* detect the area with the highest address */ 1970 if (start > offsets[last_area]) 1971 last_area = area; 1972 1973 for (area2 = 0; area2 < nr_vms; area2++) { 1974 unsigned long start2 = offsets[area2]; 1975 unsigned long end2 = start2 + sizes[area2]; 1976 1977 if (area2 == area) 1978 continue; 1979 1980 BUG_ON(start2 >= start && start2 < end); 1981 BUG_ON(end2 <= end && end2 > start); 1982 } 1983 } 1984 last_end = offsets[last_area] + sizes[last_area]; 1985 1986 if (vmalloc_end - vmalloc_start < last_end) { 1987 WARN_ON(true); 1988 return NULL; 1989 } 1990 1991 vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); 1992 vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); 1993 if (!vas || !vms) 1994 goto err_free; 1995 1996 for (area = 0; area < nr_vms; area++) { 1997 vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); 1998 vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); 1999 if (!vas[area] || !vms[area]) 2000 goto err_free; 2001 } 2002 retry: 2003 spin_lock(&vmap_area_lock); 2004 2005 /* start scanning - we scan from the top, begin with the last area */ 2006 area = term_area = last_area; 2007 start = offsets[area]; 2008 end = start + sizes[area]; 2009 2010 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2011 base = vmalloc_end - last_end; 2012 goto found; 2013 } 2014 base = pvm_determine_end(&next, &prev, align) - end; 2015 2016 while (true) { 2017 BUG_ON(next && next->va_end <= base + end); 2018 BUG_ON(prev && prev->va_end > base + end); 2019 2020 /* 2021 * base might have underflowed, add last_end before 2022 * comparing. 2023 */ 2024 if (base + last_end < vmalloc_start + last_end) { 2025 spin_unlock(&vmap_area_lock); 2026 if (!purged) { 2027 purge_vmap_area_lazy(); 2028 purged = true; 2029 goto retry; 2030 } 2031 goto err_free; 2032 } 2033 2034 /* 2035 * If next overlaps, move base downwards so that it's 2036 * right below next and then recheck. 2037 */ 2038 if (next && next->va_start < base + end) { 2039 base = pvm_determine_end(&next, &prev, align) - end; 2040 term_area = area; 2041 continue; 2042 } 2043 2044 /* 2045 * If prev overlaps, shift down next and prev and move 2046 * base so that it's right below new next and then 2047 * recheck. 2048 */ 2049 if (prev && prev->va_end > base + start) { 2050 next = prev; 2051 prev = node_to_va(rb_prev(&next->rb_node)); 2052 base = pvm_determine_end(&next, &prev, align) - end; 2053 term_area = area; 2054 continue; 2055 } 2056 2057 /* 2058 * This area fits, move on to the previous one. If 2059 * the previous one is the terminal one, we're done. 2060 */ 2061 area = (area + nr_vms - 1) % nr_vms; 2062 if (area == term_area) 2063 break; 2064 start = offsets[area]; 2065 end = start + sizes[area]; 2066 pvm_find_next_prev(base + end, &next, &prev); 2067 } 2068 found: 2069 /* we've found a fitting base, insert all va's */ 2070 for (area = 0; area < nr_vms; area++) { 2071 struct vmap_area *va = vas[area]; 2072 2073 va->va_start = base + offsets[area]; 2074 va->va_end = va->va_start + sizes[area]; 2075 __insert_vmap_area(va); 2076 } 2077 2078 vmap_area_pcpu_hole = base + offsets[last_area]; 2079 2080 spin_unlock(&vmap_area_lock); 2081 2082 /* insert all vm's */ 2083 for (area = 0; area < nr_vms; area++) 2084 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2085 pcpu_get_vm_areas); 2086 2087 kfree(vas); 2088 return vms; 2089 2090 err_free: 2091 for (area = 0; area < nr_vms; area++) { 2092 if (vas) 2093 kfree(vas[area]); 2094 if (vms) 2095 kfree(vms[area]); 2096 } 2097 kfree(vas); 2098 kfree(vms); 2099 return NULL; 2100 } 2101 2102 /** 2103 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2104 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2105 * @nr_vms: the number of allocated areas 2106 * 2107 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2108 */ 2109 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2110 { 2111 int i; 2112 2113 for (i = 0; i < nr_vms; i++) 2114 free_vm_area(vms[i]); 2115 kfree(vms); 2116 } 2117 2118 #ifdef CONFIG_PROC_FS 2119 static void *s_start(struct seq_file *m, loff_t *pos) 2120 { 2121 loff_t n = *pos; 2122 struct vm_struct *v; 2123 2124 read_lock(&vmlist_lock); 2125 v = vmlist; 2126 while (n > 0 && v) { 2127 n--; 2128 v = v->next; 2129 } 2130 if (!n) 2131 return v; 2132 2133 return NULL; 2134 2135 } 2136 2137 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2138 { 2139 struct vm_struct *v = p; 2140 2141 ++*pos; 2142 return v->next; 2143 } 2144 2145 static void s_stop(struct seq_file *m, void *p) 2146 { 2147 read_unlock(&vmlist_lock); 2148 } 2149 2150 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2151 { 2152 if (NUMA_BUILD) { 2153 unsigned int nr, *counters = m->private; 2154 2155 if (!counters) 2156 return; 2157 2158 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2159 2160 for (nr = 0; nr < v->nr_pages; nr++) 2161 counters[page_to_nid(v->pages[nr])]++; 2162 2163 for_each_node_state(nr, N_HIGH_MEMORY) 2164 if (counters[nr]) 2165 seq_printf(m, " N%u=%u", nr, counters[nr]); 2166 } 2167 } 2168 2169 static int s_show(struct seq_file *m, void *p) 2170 { 2171 struct vm_struct *v = p; 2172 2173 seq_printf(m, "0x%p-0x%p %7ld", 2174 v->addr, v->addr + v->size, v->size); 2175 2176 if (v->caller) { 2177 char buff[KSYM_SYMBOL_LEN]; 2178 2179 seq_putc(m, ' '); 2180 sprint_symbol(buff, (unsigned long)v->caller); 2181 seq_puts(m, buff); 2182 } 2183 2184 if (v->nr_pages) 2185 seq_printf(m, " pages=%d", v->nr_pages); 2186 2187 if (v->phys_addr) 2188 seq_printf(m, " phys=%lx", v->phys_addr); 2189 2190 if (v->flags & VM_IOREMAP) 2191 seq_printf(m, " ioremap"); 2192 2193 if (v->flags & VM_ALLOC) 2194 seq_printf(m, " vmalloc"); 2195 2196 if (v->flags & VM_MAP) 2197 seq_printf(m, " vmap"); 2198 2199 if (v->flags & VM_USERMAP) 2200 seq_printf(m, " user"); 2201 2202 if (v->flags & VM_VPAGES) 2203 seq_printf(m, " vpages"); 2204 2205 show_numa_info(m, v); 2206 seq_putc(m, '\n'); 2207 return 0; 2208 } 2209 2210 static const struct seq_operations vmalloc_op = { 2211 .start = s_start, 2212 .next = s_next, 2213 .stop = s_stop, 2214 .show = s_show, 2215 }; 2216 2217 static int vmalloc_open(struct inode *inode, struct file *file) 2218 { 2219 unsigned int *ptr = NULL; 2220 int ret; 2221 2222 if (NUMA_BUILD) 2223 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2224 ret = seq_open(file, &vmalloc_op); 2225 if (!ret) { 2226 struct seq_file *m = file->private_data; 2227 m->private = ptr; 2228 } else 2229 kfree(ptr); 2230 return ret; 2231 } 2232 2233 static const struct file_operations proc_vmalloc_operations = { 2234 .open = vmalloc_open, 2235 .read = seq_read, 2236 .llseek = seq_lseek, 2237 .release = seq_release_private, 2238 }; 2239 2240 static int __init proc_vmalloc_init(void) 2241 { 2242 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2243 return 0; 2244 } 2245 module_init(proc_vmalloc_init); 2246 #endif 2247 2248