xref: /linux/mm/vmalloc.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
37 
38 struct vfree_deferred {
39 	struct llist_head list;
40 	struct work_struct wq;
41 };
42 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
43 
44 static void __vunmap(const void *, int);
45 
46 static void free_work(struct work_struct *w)
47 {
48 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
49 	struct llist_node *llnode = llist_del_all(&p->list);
50 	while (llnode) {
51 		void *p = llnode;
52 		llnode = llist_next(llnode);
53 		__vunmap(p, 1);
54 	}
55 }
56 
57 /*** Page table manipulation functions ***/
58 
59 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
60 {
61 	pte_t *pte;
62 
63 	pte = pte_offset_kernel(pmd, addr);
64 	do {
65 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
66 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
67 	} while (pte++, addr += PAGE_SIZE, addr != end);
68 }
69 
70 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
71 {
72 	pmd_t *pmd;
73 	unsigned long next;
74 
75 	pmd = pmd_offset(pud, addr);
76 	do {
77 		next = pmd_addr_end(addr, end);
78 		if (pmd_clear_huge(pmd))
79 			continue;
80 		if (pmd_none_or_clear_bad(pmd))
81 			continue;
82 		vunmap_pte_range(pmd, addr, next);
83 	} while (pmd++, addr = next, addr != end);
84 }
85 
86 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
87 {
88 	pud_t *pud;
89 	unsigned long next;
90 
91 	pud = pud_offset(pgd, addr);
92 	do {
93 		next = pud_addr_end(addr, end);
94 		if (pud_clear_huge(pud))
95 			continue;
96 		if (pud_none_or_clear_bad(pud))
97 			continue;
98 		vunmap_pmd_range(pud, addr, next);
99 	} while (pud++, addr = next, addr != end);
100 }
101 
102 static void vunmap_page_range(unsigned long addr, unsigned long end)
103 {
104 	pgd_t *pgd;
105 	unsigned long next;
106 
107 	BUG_ON(addr >= end);
108 	pgd = pgd_offset_k(addr);
109 	do {
110 		next = pgd_addr_end(addr, end);
111 		if (pgd_none_or_clear_bad(pgd))
112 			continue;
113 		vunmap_pud_range(pgd, addr, next);
114 	} while (pgd++, addr = next, addr != end);
115 }
116 
117 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
118 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 {
120 	pte_t *pte;
121 
122 	/*
123 	 * nr is a running index into the array which helps higher level
124 	 * callers keep track of where we're up to.
125 	 */
126 
127 	pte = pte_alloc_kernel(pmd, addr);
128 	if (!pte)
129 		return -ENOMEM;
130 	do {
131 		struct page *page = pages[*nr];
132 
133 		if (WARN_ON(!pte_none(*pte)))
134 			return -EBUSY;
135 		if (WARN_ON(!page))
136 			return -ENOMEM;
137 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
138 		(*nr)++;
139 	} while (pte++, addr += PAGE_SIZE, addr != end);
140 	return 0;
141 }
142 
143 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
144 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
145 {
146 	pmd_t *pmd;
147 	unsigned long next;
148 
149 	pmd = pmd_alloc(&init_mm, pud, addr);
150 	if (!pmd)
151 		return -ENOMEM;
152 	do {
153 		next = pmd_addr_end(addr, end);
154 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
155 			return -ENOMEM;
156 	} while (pmd++, addr = next, addr != end);
157 	return 0;
158 }
159 
160 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
161 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 	pud_t *pud;
164 	unsigned long next;
165 
166 	pud = pud_alloc(&init_mm, pgd, addr);
167 	if (!pud)
168 		return -ENOMEM;
169 	do {
170 		next = pud_addr_end(addr, end);
171 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
172 			return -ENOMEM;
173 	} while (pud++, addr = next, addr != end);
174 	return 0;
175 }
176 
177 /*
178  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
179  * will have pfns corresponding to the "pages" array.
180  *
181  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
182  */
183 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
184 				   pgprot_t prot, struct page **pages)
185 {
186 	pgd_t *pgd;
187 	unsigned long next;
188 	unsigned long addr = start;
189 	int err = 0;
190 	int nr = 0;
191 
192 	BUG_ON(addr >= end);
193 	pgd = pgd_offset_k(addr);
194 	do {
195 		next = pgd_addr_end(addr, end);
196 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
197 		if (err)
198 			return err;
199 	} while (pgd++, addr = next, addr != end);
200 
201 	return nr;
202 }
203 
204 static int vmap_page_range(unsigned long start, unsigned long end,
205 			   pgprot_t prot, struct page **pages)
206 {
207 	int ret;
208 
209 	ret = vmap_page_range_noflush(start, end, prot, pages);
210 	flush_cache_vmap(start, end);
211 	return ret;
212 }
213 
214 int is_vmalloc_or_module_addr(const void *x)
215 {
216 	/*
217 	 * ARM, x86-64 and sparc64 put modules in a special place,
218 	 * and fall back on vmalloc() if that fails. Others
219 	 * just put it in the vmalloc space.
220 	 */
221 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
222 	unsigned long addr = (unsigned long)x;
223 	if (addr >= MODULES_VADDR && addr < MODULES_END)
224 		return 1;
225 #endif
226 	return is_vmalloc_addr(x);
227 }
228 
229 /*
230  * Walk a vmap address to the struct page it maps.
231  */
232 struct page *vmalloc_to_page(const void *vmalloc_addr)
233 {
234 	unsigned long addr = (unsigned long) vmalloc_addr;
235 	struct page *page = NULL;
236 	pgd_t *pgd = pgd_offset_k(addr);
237 
238 	/*
239 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
240 	 * architectures that do not vmalloc module space
241 	 */
242 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
243 
244 	if (!pgd_none(*pgd)) {
245 		pud_t *pud = pud_offset(pgd, addr);
246 		if (!pud_none(*pud)) {
247 			pmd_t *pmd = pmd_offset(pud, addr);
248 			if (!pmd_none(*pmd)) {
249 				pte_t *ptep, pte;
250 
251 				ptep = pte_offset_map(pmd, addr);
252 				pte = *ptep;
253 				if (pte_present(pte))
254 					page = pte_page(pte);
255 				pte_unmap(ptep);
256 			}
257 		}
258 	}
259 	return page;
260 }
261 EXPORT_SYMBOL(vmalloc_to_page);
262 
263 /*
264  * Map a vmalloc()-space virtual address to the physical page frame number.
265  */
266 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
267 {
268 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
269 }
270 EXPORT_SYMBOL(vmalloc_to_pfn);
271 
272 
273 /*** Global kva allocator ***/
274 
275 #define VM_LAZY_FREE	0x01
276 #define VM_LAZY_FREEING	0x02
277 #define VM_VM_AREA	0x04
278 
279 static DEFINE_SPINLOCK(vmap_area_lock);
280 /* Export for kexec only */
281 LIST_HEAD(vmap_area_list);
282 static struct rb_root vmap_area_root = RB_ROOT;
283 
284 /* The vmap cache globals are protected by vmap_area_lock */
285 static struct rb_node *free_vmap_cache;
286 static unsigned long cached_hole_size;
287 static unsigned long cached_vstart;
288 static unsigned long cached_align;
289 
290 static unsigned long vmap_area_pcpu_hole;
291 
292 static struct vmap_area *__find_vmap_area(unsigned long addr)
293 {
294 	struct rb_node *n = vmap_area_root.rb_node;
295 
296 	while (n) {
297 		struct vmap_area *va;
298 
299 		va = rb_entry(n, struct vmap_area, rb_node);
300 		if (addr < va->va_start)
301 			n = n->rb_left;
302 		else if (addr >= va->va_end)
303 			n = n->rb_right;
304 		else
305 			return va;
306 	}
307 
308 	return NULL;
309 }
310 
311 static void __insert_vmap_area(struct vmap_area *va)
312 {
313 	struct rb_node **p = &vmap_area_root.rb_node;
314 	struct rb_node *parent = NULL;
315 	struct rb_node *tmp;
316 
317 	while (*p) {
318 		struct vmap_area *tmp_va;
319 
320 		parent = *p;
321 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
322 		if (va->va_start < tmp_va->va_end)
323 			p = &(*p)->rb_left;
324 		else if (va->va_end > tmp_va->va_start)
325 			p = &(*p)->rb_right;
326 		else
327 			BUG();
328 	}
329 
330 	rb_link_node(&va->rb_node, parent, p);
331 	rb_insert_color(&va->rb_node, &vmap_area_root);
332 
333 	/* address-sort this list */
334 	tmp = rb_prev(&va->rb_node);
335 	if (tmp) {
336 		struct vmap_area *prev;
337 		prev = rb_entry(tmp, struct vmap_area, rb_node);
338 		list_add_rcu(&va->list, &prev->list);
339 	} else
340 		list_add_rcu(&va->list, &vmap_area_list);
341 }
342 
343 static void purge_vmap_area_lazy(void);
344 
345 /*
346  * Allocate a region of KVA of the specified size and alignment, within the
347  * vstart and vend.
348  */
349 static struct vmap_area *alloc_vmap_area(unsigned long size,
350 				unsigned long align,
351 				unsigned long vstart, unsigned long vend,
352 				int node, gfp_t gfp_mask)
353 {
354 	struct vmap_area *va;
355 	struct rb_node *n;
356 	unsigned long addr;
357 	int purged = 0;
358 	struct vmap_area *first;
359 
360 	BUG_ON(!size);
361 	BUG_ON(size & ~PAGE_MASK);
362 	BUG_ON(!is_power_of_2(align));
363 
364 	va = kmalloc_node(sizeof(struct vmap_area),
365 			gfp_mask & GFP_RECLAIM_MASK, node);
366 	if (unlikely(!va))
367 		return ERR_PTR(-ENOMEM);
368 
369 	/*
370 	 * Only scan the relevant parts containing pointers to other objects
371 	 * to avoid false negatives.
372 	 */
373 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
374 
375 retry:
376 	spin_lock(&vmap_area_lock);
377 	/*
378 	 * Invalidate cache if we have more permissive parameters.
379 	 * cached_hole_size notes the largest hole noticed _below_
380 	 * the vmap_area cached in free_vmap_cache: if size fits
381 	 * into that hole, we want to scan from vstart to reuse
382 	 * the hole instead of allocating above free_vmap_cache.
383 	 * Note that __free_vmap_area may update free_vmap_cache
384 	 * without updating cached_hole_size or cached_align.
385 	 */
386 	if (!free_vmap_cache ||
387 			size < cached_hole_size ||
388 			vstart < cached_vstart ||
389 			align < cached_align) {
390 nocache:
391 		cached_hole_size = 0;
392 		free_vmap_cache = NULL;
393 	}
394 	/* record if we encounter less permissive parameters */
395 	cached_vstart = vstart;
396 	cached_align = align;
397 
398 	/* find starting point for our search */
399 	if (free_vmap_cache) {
400 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
401 		addr = ALIGN(first->va_end, align);
402 		if (addr < vstart)
403 			goto nocache;
404 		if (addr + size < addr)
405 			goto overflow;
406 
407 	} else {
408 		addr = ALIGN(vstart, align);
409 		if (addr + size < addr)
410 			goto overflow;
411 
412 		n = vmap_area_root.rb_node;
413 		first = NULL;
414 
415 		while (n) {
416 			struct vmap_area *tmp;
417 			tmp = rb_entry(n, struct vmap_area, rb_node);
418 			if (tmp->va_end >= addr) {
419 				first = tmp;
420 				if (tmp->va_start <= addr)
421 					break;
422 				n = n->rb_left;
423 			} else
424 				n = n->rb_right;
425 		}
426 
427 		if (!first)
428 			goto found;
429 	}
430 
431 	/* from the starting point, walk areas until a suitable hole is found */
432 	while (addr + size > first->va_start && addr + size <= vend) {
433 		if (addr + cached_hole_size < first->va_start)
434 			cached_hole_size = first->va_start - addr;
435 		addr = ALIGN(first->va_end, align);
436 		if (addr + size < addr)
437 			goto overflow;
438 
439 		if (list_is_last(&first->list, &vmap_area_list))
440 			goto found;
441 
442 		first = list_entry(first->list.next,
443 				struct vmap_area, list);
444 	}
445 
446 found:
447 	if (addr + size > vend)
448 		goto overflow;
449 
450 	va->va_start = addr;
451 	va->va_end = addr + size;
452 	va->flags = 0;
453 	__insert_vmap_area(va);
454 	free_vmap_cache = &va->rb_node;
455 	spin_unlock(&vmap_area_lock);
456 
457 	BUG_ON(va->va_start & (align-1));
458 	BUG_ON(va->va_start < vstart);
459 	BUG_ON(va->va_end > vend);
460 
461 	return va;
462 
463 overflow:
464 	spin_unlock(&vmap_area_lock);
465 	if (!purged) {
466 		purge_vmap_area_lazy();
467 		purged = 1;
468 		goto retry;
469 	}
470 	if (printk_ratelimit())
471 		pr_warn("vmap allocation for size %lu failed: "
472 			"use vmalloc=<size> to increase size.\n", size);
473 	kfree(va);
474 	return ERR_PTR(-EBUSY);
475 }
476 
477 static void __free_vmap_area(struct vmap_area *va)
478 {
479 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
480 
481 	if (free_vmap_cache) {
482 		if (va->va_end < cached_vstart) {
483 			free_vmap_cache = NULL;
484 		} else {
485 			struct vmap_area *cache;
486 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
487 			if (va->va_start <= cache->va_start) {
488 				free_vmap_cache = rb_prev(&va->rb_node);
489 				/*
490 				 * We don't try to update cached_hole_size or
491 				 * cached_align, but it won't go very wrong.
492 				 */
493 			}
494 		}
495 	}
496 	rb_erase(&va->rb_node, &vmap_area_root);
497 	RB_CLEAR_NODE(&va->rb_node);
498 	list_del_rcu(&va->list);
499 
500 	/*
501 	 * Track the highest possible candidate for pcpu area
502 	 * allocation.  Areas outside of vmalloc area can be returned
503 	 * here too, consider only end addresses which fall inside
504 	 * vmalloc area proper.
505 	 */
506 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
507 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
508 
509 	kfree_rcu(va, rcu_head);
510 }
511 
512 /*
513  * Free a region of KVA allocated by alloc_vmap_area
514  */
515 static void free_vmap_area(struct vmap_area *va)
516 {
517 	spin_lock(&vmap_area_lock);
518 	__free_vmap_area(va);
519 	spin_unlock(&vmap_area_lock);
520 }
521 
522 /*
523  * Clear the pagetable entries of a given vmap_area
524  */
525 static void unmap_vmap_area(struct vmap_area *va)
526 {
527 	vunmap_page_range(va->va_start, va->va_end);
528 }
529 
530 static void vmap_debug_free_range(unsigned long start, unsigned long end)
531 {
532 	/*
533 	 * Unmap page tables and force a TLB flush immediately if
534 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
535 	 * bugs similarly to those in linear kernel virtual address
536 	 * space after a page has been freed.
537 	 *
538 	 * All the lazy freeing logic is still retained, in order to
539 	 * minimise intrusiveness of this debugging feature.
540 	 *
541 	 * This is going to be *slow* (linear kernel virtual address
542 	 * debugging doesn't do a broadcast TLB flush so it is a lot
543 	 * faster).
544 	 */
545 #ifdef CONFIG_DEBUG_PAGEALLOC
546 	vunmap_page_range(start, end);
547 	flush_tlb_kernel_range(start, end);
548 #endif
549 }
550 
551 /*
552  * lazy_max_pages is the maximum amount of virtual address space we gather up
553  * before attempting to purge with a TLB flush.
554  *
555  * There is a tradeoff here: a larger number will cover more kernel page tables
556  * and take slightly longer to purge, but it will linearly reduce the number of
557  * global TLB flushes that must be performed. It would seem natural to scale
558  * this number up linearly with the number of CPUs (because vmapping activity
559  * could also scale linearly with the number of CPUs), however it is likely
560  * that in practice, workloads might be constrained in other ways that mean
561  * vmap activity will not scale linearly with CPUs. Also, I want to be
562  * conservative and not introduce a big latency on huge systems, so go with
563  * a less aggressive log scale. It will still be an improvement over the old
564  * code, and it will be simple to change the scale factor if we find that it
565  * becomes a problem on bigger systems.
566  */
567 static unsigned long lazy_max_pages(void)
568 {
569 	unsigned int log;
570 
571 	log = fls(num_online_cpus());
572 
573 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
574 }
575 
576 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
577 
578 /* for per-CPU blocks */
579 static void purge_fragmented_blocks_allcpus(void);
580 
581 /*
582  * called before a call to iounmap() if the caller wants vm_area_struct's
583  * immediately freed.
584  */
585 void set_iounmap_nonlazy(void)
586 {
587 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
588 }
589 
590 /*
591  * Purges all lazily-freed vmap areas.
592  *
593  * If sync is 0 then don't purge if there is already a purge in progress.
594  * If force_flush is 1, then flush kernel TLBs between *start and *end even
595  * if we found no lazy vmap areas to unmap (callers can use this to optimise
596  * their own TLB flushing).
597  * Returns with *start = min(*start, lowest purged address)
598  *              *end = max(*end, highest purged address)
599  */
600 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
601 					int sync, int force_flush)
602 {
603 	static DEFINE_SPINLOCK(purge_lock);
604 	LIST_HEAD(valist);
605 	struct vmap_area *va;
606 	struct vmap_area *n_va;
607 	int nr = 0;
608 
609 	/*
610 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
611 	 * should not expect such behaviour. This just simplifies locking for
612 	 * the case that isn't actually used at the moment anyway.
613 	 */
614 	if (!sync && !force_flush) {
615 		if (!spin_trylock(&purge_lock))
616 			return;
617 	} else
618 		spin_lock(&purge_lock);
619 
620 	if (sync)
621 		purge_fragmented_blocks_allcpus();
622 
623 	rcu_read_lock();
624 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
625 		if (va->flags & VM_LAZY_FREE) {
626 			if (va->va_start < *start)
627 				*start = va->va_start;
628 			if (va->va_end > *end)
629 				*end = va->va_end;
630 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
631 			list_add_tail(&va->purge_list, &valist);
632 			va->flags |= VM_LAZY_FREEING;
633 			va->flags &= ~VM_LAZY_FREE;
634 		}
635 	}
636 	rcu_read_unlock();
637 
638 	if (nr)
639 		atomic_sub(nr, &vmap_lazy_nr);
640 
641 	if (nr || force_flush)
642 		flush_tlb_kernel_range(*start, *end);
643 
644 	if (nr) {
645 		spin_lock(&vmap_area_lock);
646 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
647 			__free_vmap_area(va);
648 		spin_unlock(&vmap_area_lock);
649 	}
650 	spin_unlock(&purge_lock);
651 }
652 
653 /*
654  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
655  * is already purging.
656  */
657 static void try_purge_vmap_area_lazy(void)
658 {
659 	unsigned long start = ULONG_MAX, end = 0;
660 
661 	__purge_vmap_area_lazy(&start, &end, 0, 0);
662 }
663 
664 /*
665  * Kick off a purge of the outstanding lazy areas.
666  */
667 static void purge_vmap_area_lazy(void)
668 {
669 	unsigned long start = ULONG_MAX, end = 0;
670 
671 	__purge_vmap_area_lazy(&start, &end, 1, 0);
672 }
673 
674 /*
675  * Free a vmap area, caller ensuring that the area has been unmapped
676  * and flush_cache_vunmap had been called for the correct range
677  * previously.
678  */
679 static void free_vmap_area_noflush(struct vmap_area *va)
680 {
681 	va->flags |= VM_LAZY_FREE;
682 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
683 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
684 		try_purge_vmap_area_lazy();
685 }
686 
687 /*
688  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
689  * called for the correct range previously.
690  */
691 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
692 {
693 	unmap_vmap_area(va);
694 	free_vmap_area_noflush(va);
695 }
696 
697 /*
698  * Free and unmap a vmap area
699  */
700 static void free_unmap_vmap_area(struct vmap_area *va)
701 {
702 	flush_cache_vunmap(va->va_start, va->va_end);
703 	free_unmap_vmap_area_noflush(va);
704 }
705 
706 static struct vmap_area *find_vmap_area(unsigned long addr)
707 {
708 	struct vmap_area *va;
709 
710 	spin_lock(&vmap_area_lock);
711 	va = __find_vmap_area(addr);
712 	spin_unlock(&vmap_area_lock);
713 
714 	return va;
715 }
716 
717 static void free_unmap_vmap_area_addr(unsigned long addr)
718 {
719 	struct vmap_area *va;
720 
721 	va = find_vmap_area(addr);
722 	BUG_ON(!va);
723 	free_unmap_vmap_area(va);
724 }
725 
726 
727 /*** Per cpu kva allocator ***/
728 
729 /*
730  * vmap space is limited especially on 32 bit architectures. Ensure there is
731  * room for at least 16 percpu vmap blocks per CPU.
732  */
733 /*
734  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
735  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
736  * instead (we just need a rough idea)
737  */
738 #if BITS_PER_LONG == 32
739 #define VMALLOC_SPACE		(128UL*1024*1024)
740 #else
741 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
742 #endif
743 
744 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
745 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
746 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
747 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
748 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
749 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
750 #define VMAP_BBMAP_BITS		\
751 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
752 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
753 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
754 
755 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
756 
757 static bool vmap_initialized __read_mostly = false;
758 
759 struct vmap_block_queue {
760 	spinlock_t lock;
761 	struct list_head free;
762 };
763 
764 struct vmap_block {
765 	spinlock_t lock;
766 	struct vmap_area *va;
767 	unsigned long free, dirty;
768 	unsigned long dirty_min, dirty_max; /*< dirty range */
769 	struct list_head free_list;
770 	struct rcu_head rcu_head;
771 	struct list_head purge;
772 };
773 
774 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
775 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
776 
777 /*
778  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
779  * in the free path. Could get rid of this if we change the API to return a
780  * "cookie" from alloc, to be passed to free. But no big deal yet.
781  */
782 static DEFINE_SPINLOCK(vmap_block_tree_lock);
783 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
784 
785 /*
786  * We should probably have a fallback mechanism to allocate virtual memory
787  * out of partially filled vmap blocks. However vmap block sizing should be
788  * fairly reasonable according to the vmalloc size, so it shouldn't be a
789  * big problem.
790  */
791 
792 static unsigned long addr_to_vb_idx(unsigned long addr)
793 {
794 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
795 	addr /= VMAP_BLOCK_SIZE;
796 	return addr;
797 }
798 
799 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
800 {
801 	unsigned long addr;
802 
803 	addr = va_start + (pages_off << PAGE_SHIFT);
804 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
805 	return (void *)addr;
806 }
807 
808 /**
809  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
810  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
811  * @order:    how many 2^order pages should be occupied in newly allocated block
812  * @gfp_mask: flags for the page level allocator
813  *
814  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
815  */
816 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
817 {
818 	struct vmap_block_queue *vbq;
819 	struct vmap_block *vb;
820 	struct vmap_area *va;
821 	unsigned long vb_idx;
822 	int node, err;
823 	void *vaddr;
824 
825 	node = numa_node_id();
826 
827 	vb = kmalloc_node(sizeof(struct vmap_block),
828 			gfp_mask & GFP_RECLAIM_MASK, node);
829 	if (unlikely(!vb))
830 		return ERR_PTR(-ENOMEM);
831 
832 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
833 					VMALLOC_START, VMALLOC_END,
834 					node, gfp_mask);
835 	if (IS_ERR(va)) {
836 		kfree(vb);
837 		return ERR_CAST(va);
838 	}
839 
840 	err = radix_tree_preload(gfp_mask);
841 	if (unlikely(err)) {
842 		kfree(vb);
843 		free_vmap_area(va);
844 		return ERR_PTR(err);
845 	}
846 
847 	vaddr = vmap_block_vaddr(va->va_start, 0);
848 	spin_lock_init(&vb->lock);
849 	vb->va = va;
850 	/* At least something should be left free */
851 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
852 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
853 	vb->dirty = 0;
854 	vb->dirty_min = VMAP_BBMAP_BITS;
855 	vb->dirty_max = 0;
856 	INIT_LIST_HEAD(&vb->free_list);
857 
858 	vb_idx = addr_to_vb_idx(va->va_start);
859 	spin_lock(&vmap_block_tree_lock);
860 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
861 	spin_unlock(&vmap_block_tree_lock);
862 	BUG_ON(err);
863 	radix_tree_preload_end();
864 
865 	vbq = &get_cpu_var(vmap_block_queue);
866 	spin_lock(&vbq->lock);
867 	list_add_tail_rcu(&vb->free_list, &vbq->free);
868 	spin_unlock(&vbq->lock);
869 	put_cpu_var(vmap_block_queue);
870 
871 	return vaddr;
872 }
873 
874 static void free_vmap_block(struct vmap_block *vb)
875 {
876 	struct vmap_block *tmp;
877 	unsigned long vb_idx;
878 
879 	vb_idx = addr_to_vb_idx(vb->va->va_start);
880 	spin_lock(&vmap_block_tree_lock);
881 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
882 	spin_unlock(&vmap_block_tree_lock);
883 	BUG_ON(tmp != vb);
884 
885 	free_vmap_area_noflush(vb->va);
886 	kfree_rcu(vb, rcu_head);
887 }
888 
889 static void purge_fragmented_blocks(int cpu)
890 {
891 	LIST_HEAD(purge);
892 	struct vmap_block *vb;
893 	struct vmap_block *n_vb;
894 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
895 
896 	rcu_read_lock();
897 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
898 
899 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
900 			continue;
901 
902 		spin_lock(&vb->lock);
903 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
904 			vb->free = 0; /* prevent further allocs after releasing lock */
905 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
906 			vb->dirty_min = 0;
907 			vb->dirty_max = VMAP_BBMAP_BITS;
908 			spin_lock(&vbq->lock);
909 			list_del_rcu(&vb->free_list);
910 			spin_unlock(&vbq->lock);
911 			spin_unlock(&vb->lock);
912 			list_add_tail(&vb->purge, &purge);
913 		} else
914 			spin_unlock(&vb->lock);
915 	}
916 	rcu_read_unlock();
917 
918 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
919 		list_del(&vb->purge);
920 		free_vmap_block(vb);
921 	}
922 }
923 
924 static void purge_fragmented_blocks_allcpus(void)
925 {
926 	int cpu;
927 
928 	for_each_possible_cpu(cpu)
929 		purge_fragmented_blocks(cpu);
930 }
931 
932 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
933 {
934 	struct vmap_block_queue *vbq;
935 	struct vmap_block *vb;
936 	void *vaddr = NULL;
937 	unsigned int order;
938 
939 	BUG_ON(size & ~PAGE_MASK);
940 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
941 	if (WARN_ON(size == 0)) {
942 		/*
943 		 * Allocating 0 bytes isn't what caller wants since
944 		 * get_order(0) returns funny result. Just warn and terminate
945 		 * early.
946 		 */
947 		return NULL;
948 	}
949 	order = get_order(size);
950 
951 	rcu_read_lock();
952 	vbq = &get_cpu_var(vmap_block_queue);
953 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
954 		unsigned long pages_off;
955 
956 		spin_lock(&vb->lock);
957 		if (vb->free < (1UL << order)) {
958 			spin_unlock(&vb->lock);
959 			continue;
960 		}
961 
962 		pages_off = VMAP_BBMAP_BITS - vb->free;
963 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
964 		vb->free -= 1UL << order;
965 		if (vb->free == 0) {
966 			spin_lock(&vbq->lock);
967 			list_del_rcu(&vb->free_list);
968 			spin_unlock(&vbq->lock);
969 		}
970 
971 		spin_unlock(&vb->lock);
972 		break;
973 	}
974 
975 	put_cpu_var(vmap_block_queue);
976 	rcu_read_unlock();
977 
978 	/* Allocate new block if nothing was found */
979 	if (!vaddr)
980 		vaddr = new_vmap_block(order, gfp_mask);
981 
982 	return vaddr;
983 }
984 
985 static void vb_free(const void *addr, unsigned long size)
986 {
987 	unsigned long offset;
988 	unsigned long vb_idx;
989 	unsigned int order;
990 	struct vmap_block *vb;
991 
992 	BUG_ON(size & ~PAGE_MASK);
993 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
994 
995 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
996 
997 	order = get_order(size);
998 
999 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1000 	offset >>= PAGE_SHIFT;
1001 
1002 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1003 	rcu_read_lock();
1004 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1005 	rcu_read_unlock();
1006 	BUG_ON(!vb);
1007 
1008 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1009 
1010 	spin_lock(&vb->lock);
1011 
1012 	/* Expand dirty range */
1013 	vb->dirty_min = min(vb->dirty_min, offset);
1014 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1015 
1016 	vb->dirty += 1UL << order;
1017 	if (vb->dirty == VMAP_BBMAP_BITS) {
1018 		BUG_ON(vb->free);
1019 		spin_unlock(&vb->lock);
1020 		free_vmap_block(vb);
1021 	} else
1022 		spin_unlock(&vb->lock);
1023 }
1024 
1025 /**
1026  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1027  *
1028  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1029  * to amortize TLB flushing overheads. What this means is that any page you
1030  * have now, may, in a former life, have been mapped into kernel virtual
1031  * address by the vmap layer and so there might be some CPUs with TLB entries
1032  * still referencing that page (additional to the regular 1:1 kernel mapping).
1033  *
1034  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1035  * be sure that none of the pages we have control over will have any aliases
1036  * from the vmap layer.
1037  */
1038 void vm_unmap_aliases(void)
1039 {
1040 	unsigned long start = ULONG_MAX, end = 0;
1041 	int cpu;
1042 	int flush = 0;
1043 
1044 	if (unlikely(!vmap_initialized))
1045 		return;
1046 
1047 	for_each_possible_cpu(cpu) {
1048 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1049 		struct vmap_block *vb;
1050 
1051 		rcu_read_lock();
1052 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1053 			spin_lock(&vb->lock);
1054 			if (vb->dirty) {
1055 				unsigned long va_start = vb->va->va_start;
1056 				unsigned long s, e;
1057 
1058 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1059 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1060 
1061 				start = min(s, start);
1062 				end   = max(e, end);
1063 
1064 				flush = 1;
1065 			}
1066 			spin_unlock(&vb->lock);
1067 		}
1068 		rcu_read_unlock();
1069 	}
1070 
1071 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1072 }
1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1074 
1075 /**
1076  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1077  * @mem: the pointer returned by vm_map_ram
1078  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1079  */
1080 void vm_unmap_ram(const void *mem, unsigned int count)
1081 {
1082 	unsigned long size = count << PAGE_SHIFT;
1083 	unsigned long addr = (unsigned long)mem;
1084 
1085 	BUG_ON(!addr);
1086 	BUG_ON(addr < VMALLOC_START);
1087 	BUG_ON(addr > VMALLOC_END);
1088 	BUG_ON(addr & (PAGE_SIZE-1));
1089 
1090 	debug_check_no_locks_freed(mem, size);
1091 	vmap_debug_free_range(addr, addr+size);
1092 
1093 	if (likely(count <= VMAP_MAX_ALLOC))
1094 		vb_free(mem, size);
1095 	else
1096 		free_unmap_vmap_area_addr(addr);
1097 }
1098 EXPORT_SYMBOL(vm_unmap_ram);
1099 
1100 /**
1101  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1102  * @pages: an array of pointers to the pages to be mapped
1103  * @count: number of pages
1104  * @node: prefer to allocate data structures on this node
1105  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1106  *
1107  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1108  * faster than vmap so it's good.  But if you mix long-life and short-life
1109  * objects with vm_map_ram(), it could consume lots of address space through
1110  * fragmentation (especially on a 32bit machine).  You could see failures in
1111  * the end.  Please use this function for short-lived objects.
1112  *
1113  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1114  */
1115 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1116 {
1117 	unsigned long size = count << PAGE_SHIFT;
1118 	unsigned long addr;
1119 	void *mem;
1120 
1121 	if (likely(count <= VMAP_MAX_ALLOC)) {
1122 		mem = vb_alloc(size, GFP_KERNEL);
1123 		if (IS_ERR(mem))
1124 			return NULL;
1125 		addr = (unsigned long)mem;
1126 	} else {
1127 		struct vmap_area *va;
1128 		va = alloc_vmap_area(size, PAGE_SIZE,
1129 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1130 		if (IS_ERR(va))
1131 			return NULL;
1132 
1133 		addr = va->va_start;
1134 		mem = (void *)addr;
1135 	}
1136 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1137 		vm_unmap_ram(mem, count);
1138 		return NULL;
1139 	}
1140 	return mem;
1141 }
1142 EXPORT_SYMBOL(vm_map_ram);
1143 
1144 static struct vm_struct *vmlist __initdata;
1145 /**
1146  * vm_area_add_early - add vmap area early during boot
1147  * @vm: vm_struct to add
1148  *
1149  * This function is used to add fixed kernel vm area to vmlist before
1150  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1151  * should contain proper values and the other fields should be zero.
1152  *
1153  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1154  */
1155 void __init vm_area_add_early(struct vm_struct *vm)
1156 {
1157 	struct vm_struct *tmp, **p;
1158 
1159 	BUG_ON(vmap_initialized);
1160 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1161 		if (tmp->addr >= vm->addr) {
1162 			BUG_ON(tmp->addr < vm->addr + vm->size);
1163 			break;
1164 		} else
1165 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1166 	}
1167 	vm->next = *p;
1168 	*p = vm;
1169 }
1170 
1171 /**
1172  * vm_area_register_early - register vmap area early during boot
1173  * @vm: vm_struct to register
1174  * @align: requested alignment
1175  *
1176  * This function is used to register kernel vm area before
1177  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1178  * proper values on entry and other fields should be zero.  On return,
1179  * vm->addr contains the allocated address.
1180  *
1181  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1182  */
1183 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1184 {
1185 	static size_t vm_init_off __initdata;
1186 	unsigned long addr;
1187 
1188 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1189 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1190 
1191 	vm->addr = (void *)addr;
1192 
1193 	vm_area_add_early(vm);
1194 }
1195 
1196 void __init vmalloc_init(void)
1197 {
1198 	struct vmap_area *va;
1199 	struct vm_struct *tmp;
1200 	int i;
1201 
1202 	for_each_possible_cpu(i) {
1203 		struct vmap_block_queue *vbq;
1204 		struct vfree_deferred *p;
1205 
1206 		vbq = &per_cpu(vmap_block_queue, i);
1207 		spin_lock_init(&vbq->lock);
1208 		INIT_LIST_HEAD(&vbq->free);
1209 		p = &per_cpu(vfree_deferred, i);
1210 		init_llist_head(&p->list);
1211 		INIT_WORK(&p->wq, free_work);
1212 	}
1213 
1214 	/* Import existing vmlist entries. */
1215 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1216 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1217 		va->flags = VM_VM_AREA;
1218 		va->va_start = (unsigned long)tmp->addr;
1219 		va->va_end = va->va_start + tmp->size;
1220 		va->vm = tmp;
1221 		__insert_vmap_area(va);
1222 	}
1223 
1224 	vmap_area_pcpu_hole = VMALLOC_END;
1225 
1226 	vmap_initialized = true;
1227 }
1228 
1229 /**
1230  * map_kernel_range_noflush - map kernel VM area with the specified pages
1231  * @addr: start of the VM area to map
1232  * @size: size of the VM area to map
1233  * @prot: page protection flags to use
1234  * @pages: pages to map
1235  *
1236  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1237  * specify should have been allocated using get_vm_area() and its
1238  * friends.
1239  *
1240  * NOTE:
1241  * This function does NOT do any cache flushing.  The caller is
1242  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1243  * before calling this function.
1244  *
1245  * RETURNS:
1246  * The number of pages mapped on success, -errno on failure.
1247  */
1248 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1249 			     pgprot_t prot, struct page **pages)
1250 {
1251 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1252 }
1253 
1254 /**
1255  * unmap_kernel_range_noflush - unmap kernel VM area
1256  * @addr: start of the VM area to unmap
1257  * @size: size of the VM area to unmap
1258  *
1259  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1260  * specify should have been allocated using get_vm_area() and its
1261  * friends.
1262  *
1263  * NOTE:
1264  * This function does NOT do any cache flushing.  The caller is
1265  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1266  * before calling this function and flush_tlb_kernel_range() after.
1267  */
1268 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1269 {
1270 	vunmap_page_range(addr, addr + size);
1271 }
1272 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1273 
1274 /**
1275  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1276  * @addr: start of the VM area to unmap
1277  * @size: size of the VM area to unmap
1278  *
1279  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1280  * the unmapping and tlb after.
1281  */
1282 void unmap_kernel_range(unsigned long addr, unsigned long size)
1283 {
1284 	unsigned long end = addr + size;
1285 
1286 	flush_cache_vunmap(addr, end);
1287 	vunmap_page_range(addr, end);
1288 	flush_tlb_kernel_range(addr, end);
1289 }
1290 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1291 
1292 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1293 {
1294 	unsigned long addr = (unsigned long)area->addr;
1295 	unsigned long end = addr + get_vm_area_size(area);
1296 	int err;
1297 
1298 	err = vmap_page_range(addr, end, prot, pages);
1299 
1300 	return err > 0 ? 0 : err;
1301 }
1302 EXPORT_SYMBOL_GPL(map_vm_area);
1303 
1304 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1305 			      unsigned long flags, const void *caller)
1306 {
1307 	spin_lock(&vmap_area_lock);
1308 	vm->flags = flags;
1309 	vm->addr = (void *)va->va_start;
1310 	vm->size = va->va_end - va->va_start;
1311 	vm->caller = caller;
1312 	va->vm = vm;
1313 	va->flags |= VM_VM_AREA;
1314 	spin_unlock(&vmap_area_lock);
1315 }
1316 
1317 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1318 {
1319 	/*
1320 	 * Before removing VM_UNINITIALIZED,
1321 	 * we should make sure that vm has proper values.
1322 	 * Pair with smp_rmb() in show_numa_info().
1323 	 */
1324 	smp_wmb();
1325 	vm->flags &= ~VM_UNINITIALIZED;
1326 }
1327 
1328 static struct vm_struct *__get_vm_area_node(unsigned long size,
1329 		unsigned long align, unsigned long flags, unsigned long start,
1330 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1331 {
1332 	struct vmap_area *va;
1333 	struct vm_struct *area;
1334 
1335 	BUG_ON(in_interrupt());
1336 	if (flags & VM_IOREMAP)
1337 		align = 1ul << clamp_t(int, fls_long(size),
1338 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1339 
1340 	size = PAGE_ALIGN(size);
1341 	if (unlikely(!size))
1342 		return NULL;
1343 
1344 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1345 	if (unlikely(!area))
1346 		return NULL;
1347 
1348 	if (!(flags & VM_NO_GUARD))
1349 		size += PAGE_SIZE;
1350 
1351 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1352 	if (IS_ERR(va)) {
1353 		kfree(area);
1354 		return NULL;
1355 	}
1356 
1357 	setup_vmalloc_vm(area, va, flags, caller);
1358 
1359 	return area;
1360 }
1361 
1362 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1363 				unsigned long start, unsigned long end)
1364 {
1365 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1366 				  GFP_KERNEL, __builtin_return_address(0));
1367 }
1368 EXPORT_SYMBOL_GPL(__get_vm_area);
1369 
1370 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1371 				       unsigned long start, unsigned long end,
1372 				       const void *caller)
1373 {
1374 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1375 				  GFP_KERNEL, caller);
1376 }
1377 
1378 /**
1379  *	get_vm_area  -  reserve a contiguous kernel virtual area
1380  *	@size:		size of the area
1381  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1382  *
1383  *	Search an area of @size in the kernel virtual mapping area,
1384  *	and reserved it for out purposes.  Returns the area descriptor
1385  *	on success or %NULL on failure.
1386  */
1387 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1388 {
1389 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1390 				  NUMA_NO_NODE, GFP_KERNEL,
1391 				  __builtin_return_address(0));
1392 }
1393 
1394 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1395 				const void *caller)
1396 {
1397 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1398 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1399 }
1400 
1401 /**
1402  *	find_vm_area  -  find a continuous kernel virtual area
1403  *	@addr:		base address
1404  *
1405  *	Search for the kernel VM area starting at @addr, and return it.
1406  *	It is up to the caller to do all required locking to keep the returned
1407  *	pointer valid.
1408  */
1409 struct vm_struct *find_vm_area(const void *addr)
1410 {
1411 	struct vmap_area *va;
1412 
1413 	va = find_vmap_area((unsigned long)addr);
1414 	if (va && va->flags & VM_VM_AREA)
1415 		return va->vm;
1416 
1417 	return NULL;
1418 }
1419 
1420 /**
1421  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1422  *	@addr:		base address
1423  *
1424  *	Search for the kernel VM area starting at @addr, and remove it.
1425  *	This function returns the found VM area, but using it is NOT safe
1426  *	on SMP machines, except for its size or flags.
1427  */
1428 struct vm_struct *remove_vm_area(const void *addr)
1429 {
1430 	struct vmap_area *va;
1431 
1432 	va = find_vmap_area((unsigned long)addr);
1433 	if (va && va->flags & VM_VM_AREA) {
1434 		struct vm_struct *vm = va->vm;
1435 
1436 		spin_lock(&vmap_area_lock);
1437 		va->vm = NULL;
1438 		va->flags &= ~VM_VM_AREA;
1439 		spin_unlock(&vmap_area_lock);
1440 
1441 		vmap_debug_free_range(va->va_start, va->va_end);
1442 		kasan_free_shadow(vm);
1443 		free_unmap_vmap_area(va);
1444 		vm->size -= PAGE_SIZE;
1445 
1446 		return vm;
1447 	}
1448 	return NULL;
1449 }
1450 
1451 static void __vunmap(const void *addr, int deallocate_pages)
1452 {
1453 	struct vm_struct *area;
1454 
1455 	if (!addr)
1456 		return;
1457 
1458 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1459 			addr))
1460 		return;
1461 
1462 	area = remove_vm_area(addr);
1463 	if (unlikely(!area)) {
1464 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1465 				addr);
1466 		return;
1467 	}
1468 
1469 	debug_check_no_locks_freed(addr, area->size);
1470 	debug_check_no_obj_freed(addr, area->size);
1471 
1472 	if (deallocate_pages) {
1473 		int i;
1474 
1475 		for (i = 0; i < area->nr_pages; i++) {
1476 			struct page *page = area->pages[i];
1477 
1478 			BUG_ON(!page);
1479 			__free_page(page);
1480 		}
1481 
1482 		if (area->flags & VM_VPAGES)
1483 			vfree(area->pages);
1484 		else
1485 			kfree(area->pages);
1486 	}
1487 
1488 	kfree(area);
1489 	return;
1490 }
1491 
1492 /**
1493  *	vfree  -  release memory allocated by vmalloc()
1494  *	@addr:		memory base address
1495  *
1496  *	Free the virtually continuous memory area starting at @addr, as
1497  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1498  *	NULL, no operation is performed.
1499  *
1500  *	Must not be called in NMI context (strictly speaking, only if we don't
1501  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1502  *	conventions for vfree() arch-depenedent would be a really bad idea)
1503  *
1504  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1505  */
1506 void vfree(const void *addr)
1507 {
1508 	BUG_ON(in_nmi());
1509 
1510 	kmemleak_free(addr);
1511 
1512 	if (!addr)
1513 		return;
1514 	if (unlikely(in_interrupt())) {
1515 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1516 		if (llist_add((struct llist_node *)addr, &p->list))
1517 			schedule_work(&p->wq);
1518 	} else
1519 		__vunmap(addr, 1);
1520 }
1521 EXPORT_SYMBOL(vfree);
1522 
1523 /**
1524  *	vunmap  -  release virtual mapping obtained by vmap()
1525  *	@addr:		memory base address
1526  *
1527  *	Free the virtually contiguous memory area starting at @addr,
1528  *	which was created from the page array passed to vmap().
1529  *
1530  *	Must not be called in interrupt context.
1531  */
1532 void vunmap(const void *addr)
1533 {
1534 	BUG_ON(in_interrupt());
1535 	might_sleep();
1536 	if (addr)
1537 		__vunmap(addr, 0);
1538 }
1539 EXPORT_SYMBOL(vunmap);
1540 
1541 /**
1542  *	vmap  -  map an array of pages into virtually contiguous space
1543  *	@pages:		array of page pointers
1544  *	@count:		number of pages to map
1545  *	@flags:		vm_area->flags
1546  *	@prot:		page protection for the mapping
1547  *
1548  *	Maps @count pages from @pages into contiguous kernel virtual
1549  *	space.
1550  */
1551 void *vmap(struct page **pages, unsigned int count,
1552 		unsigned long flags, pgprot_t prot)
1553 {
1554 	struct vm_struct *area;
1555 
1556 	might_sleep();
1557 
1558 	if (count > totalram_pages)
1559 		return NULL;
1560 
1561 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1562 					__builtin_return_address(0));
1563 	if (!area)
1564 		return NULL;
1565 
1566 	if (map_vm_area(area, prot, pages)) {
1567 		vunmap(area->addr);
1568 		return NULL;
1569 	}
1570 
1571 	return area->addr;
1572 }
1573 EXPORT_SYMBOL(vmap);
1574 
1575 static void *__vmalloc_node(unsigned long size, unsigned long align,
1576 			    gfp_t gfp_mask, pgprot_t prot,
1577 			    int node, const void *caller);
1578 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1579 				 pgprot_t prot, int node)
1580 {
1581 	const int order = 0;
1582 	struct page **pages;
1583 	unsigned int nr_pages, array_size, i;
1584 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1585 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1586 
1587 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1588 	array_size = (nr_pages * sizeof(struct page *));
1589 
1590 	area->nr_pages = nr_pages;
1591 	/* Please note that the recursion is strictly bounded. */
1592 	if (array_size > PAGE_SIZE) {
1593 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1594 				PAGE_KERNEL, node, area->caller);
1595 		area->flags |= VM_VPAGES;
1596 	} else {
1597 		pages = kmalloc_node(array_size, nested_gfp, node);
1598 	}
1599 	area->pages = pages;
1600 	if (!area->pages) {
1601 		remove_vm_area(area->addr);
1602 		kfree(area);
1603 		return NULL;
1604 	}
1605 
1606 	for (i = 0; i < area->nr_pages; i++) {
1607 		struct page *page;
1608 
1609 		if (node == NUMA_NO_NODE)
1610 			page = alloc_page(alloc_mask);
1611 		else
1612 			page = alloc_pages_node(node, alloc_mask, order);
1613 
1614 		if (unlikely(!page)) {
1615 			/* Successfully allocated i pages, free them in __vunmap() */
1616 			area->nr_pages = i;
1617 			goto fail;
1618 		}
1619 		area->pages[i] = page;
1620 		if (gfp_mask & __GFP_WAIT)
1621 			cond_resched();
1622 	}
1623 
1624 	if (map_vm_area(area, prot, pages))
1625 		goto fail;
1626 	return area->addr;
1627 
1628 fail:
1629 	warn_alloc_failed(gfp_mask, order,
1630 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1631 			  (area->nr_pages*PAGE_SIZE), area->size);
1632 	vfree(area->addr);
1633 	return NULL;
1634 }
1635 
1636 /**
1637  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1638  *	@size:		allocation size
1639  *	@align:		desired alignment
1640  *	@start:		vm area range start
1641  *	@end:		vm area range end
1642  *	@gfp_mask:	flags for the page level allocator
1643  *	@prot:		protection mask for the allocated pages
1644  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1645  *	@node:		node to use for allocation or NUMA_NO_NODE
1646  *	@caller:	caller's return address
1647  *
1648  *	Allocate enough pages to cover @size from the page level
1649  *	allocator with @gfp_mask flags.  Map them into contiguous
1650  *	kernel virtual space, using a pagetable protection of @prot.
1651  */
1652 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1653 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1654 			pgprot_t prot, unsigned long vm_flags, int node,
1655 			const void *caller)
1656 {
1657 	struct vm_struct *area;
1658 	void *addr;
1659 	unsigned long real_size = size;
1660 
1661 	size = PAGE_ALIGN(size);
1662 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1663 		goto fail;
1664 
1665 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1666 				vm_flags, start, end, node, gfp_mask, caller);
1667 	if (!area)
1668 		goto fail;
1669 
1670 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1671 	if (!addr)
1672 		return NULL;
1673 
1674 	/*
1675 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1676 	 * flag. It means that vm_struct is not fully initialized.
1677 	 * Now, it is fully initialized, so remove this flag here.
1678 	 */
1679 	clear_vm_uninitialized_flag(area);
1680 
1681 	/*
1682 	 * A ref_count = 2 is needed because vm_struct allocated in
1683 	 * __get_vm_area_node() contains a reference to the virtual address of
1684 	 * the vmalloc'ed block.
1685 	 */
1686 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1687 
1688 	return addr;
1689 
1690 fail:
1691 	warn_alloc_failed(gfp_mask, 0,
1692 			  "vmalloc: allocation failure: %lu bytes\n",
1693 			  real_size);
1694 	return NULL;
1695 }
1696 
1697 /**
1698  *	__vmalloc_node  -  allocate virtually contiguous memory
1699  *	@size:		allocation size
1700  *	@align:		desired alignment
1701  *	@gfp_mask:	flags for the page level allocator
1702  *	@prot:		protection mask for the allocated pages
1703  *	@node:		node to use for allocation or NUMA_NO_NODE
1704  *	@caller:	caller's return address
1705  *
1706  *	Allocate enough pages to cover @size from the page level
1707  *	allocator with @gfp_mask flags.  Map them into contiguous
1708  *	kernel virtual space, using a pagetable protection of @prot.
1709  */
1710 static void *__vmalloc_node(unsigned long size, unsigned long align,
1711 			    gfp_t gfp_mask, pgprot_t prot,
1712 			    int node, const void *caller)
1713 {
1714 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1715 				gfp_mask, prot, 0, node, caller);
1716 }
1717 
1718 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1719 {
1720 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1721 				__builtin_return_address(0));
1722 }
1723 EXPORT_SYMBOL(__vmalloc);
1724 
1725 static inline void *__vmalloc_node_flags(unsigned long size,
1726 					int node, gfp_t flags)
1727 {
1728 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1729 					node, __builtin_return_address(0));
1730 }
1731 
1732 /**
1733  *	vmalloc  -  allocate virtually contiguous memory
1734  *	@size:		allocation size
1735  *	Allocate enough pages to cover @size from the page level
1736  *	allocator and map them into contiguous kernel virtual space.
1737  *
1738  *	For tight control over page level allocator and protection flags
1739  *	use __vmalloc() instead.
1740  */
1741 void *vmalloc(unsigned long size)
1742 {
1743 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1744 				    GFP_KERNEL | __GFP_HIGHMEM);
1745 }
1746 EXPORT_SYMBOL(vmalloc);
1747 
1748 /**
1749  *	vzalloc - allocate virtually contiguous memory with zero fill
1750  *	@size:	allocation size
1751  *	Allocate enough pages to cover @size from the page level
1752  *	allocator and map them into contiguous kernel virtual space.
1753  *	The memory allocated is set to zero.
1754  *
1755  *	For tight control over page level allocator and protection flags
1756  *	use __vmalloc() instead.
1757  */
1758 void *vzalloc(unsigned long size)
1759 {
1760 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1761 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1762 }
1763 EXPORT_SYMBOL(vzalloc);
1764 
1765 /**
1766  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1767  * @size: allocation size
1768  *
1769  * The resulting memory area is zeroed so it can be mapped to userspace
1770  * without leaking data.
1771  */
1772 void *vmalloc_user(unsigned long size)
1773 {
1774 	struct vm_struct *area;
1775 	void *ret;
1776 
1777 	ret = __vmalloc_node(size, SHMLBA,
1778 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1779 			     PAGE_KERNEL, NUMA_NO_NODE,
1780 			     __builtin_return_address(0));
1781 	if (ret) {
1782 		area = find_vm_area(ret);
1783 		area->flags |= VM_USERMAP;
1784 	}
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL(vmalloc_user);
1788 
1789 /**
1790  *	vmalloc_node  -  allocate memory on a specific node
1791  *	@size:		allocation size
1792  *	@node:		numa node
1793  *
1794  *	Allocate enough pages to cover @size from the page level
1795  *	allocator and map them into contiguous kernel virtual space.
1796  *
1797  *	For tight control over page level allocator and protection flags
1798  *	use __vmalloc() instead.
1799  */
1800 void *vmalloc_node(unsigned long size, int node)
1801 {
1802 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1803 					node, __builtin_return_address(0));
1804 }
1805 EXPORT_SYMBOL(vmalloc_node);
1806 
1807 /**
1808  * vzalloc_node - allocate memory on a specific node with zero fill
1809  * @size:	allocation size
1810  * @node:	numa node
1811  *
1812  * Allocate enough pages to cover @size from the page level
1813  * allocator and map them into contiguous kernel virtual space.
1814  * The memory allocated is set to zero.
1815  *
1816  * For tight control over page level allocator and protection flags
1817  * use __vmalloc_node() instead.
1818  */
1819 void *vzalloc_node(unsigned long size, int node)
1820 {
1821 	return __vmalloc_node_flags(size, node,
1822 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1823 }
1824 EXPORT_SYMBOL(vzalloc_node);
1825 
1826 #ifndef PAGE_KERNEL_EXEC
1827 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1828 #endif
1829 
1830 /**
1831  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1832  *	@size:		allocation size
1833  *
1834  *	Kernel-internal function to allocate enough pages to cover @size
1835  *	the page level allocator and map them into contiguous and
1836  *	executable kernel virtual space.
1837  *
1838  *	For tight control over page level allocator and protection flags
1839  *	use __vmalloc() instead.
1840  */
1841 
1842 void *vmalloc_exec(unsigned long size)
1843 {
1844 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1845 			      NUMA_NO_NODE, __builtin_return_address(0));
1846 }
1847 
1848 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1849 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1850 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1851 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1852 #else
1853 #define GFP_VMALLOC32 GFP_KERNEL
1854 #endif
1855 
1856 /**
1857  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1858  *	@size:		allocation size
1859  *
1860  *	Allocate enough 32bit PA addressable pages to cover @size from the
1861  *	page level allocator and map them into contiguous kernel virtual space.
1862  */
1863 void *vmalloc_32(unsigned long size)
1864 {
1865 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1866 			      NUMA_NO_NODE, __builtin_return_address(0));
1867 }
1868 EXPORT_SYMBOL(vmalloc_32);
1869 
1870 /**
1871  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1872  *	@size:		allocation size
1873  *
1874  * The resulting memory area is 32bit addressable and zeroed so it can be
1875  * mapped to userspace without leaking data.
1876  */
1877 void *vmalloc_32_user(unsigned long size)
1878 {
1879 	struct vm_struct *area;
1880 	void *ret;
1881 
1882 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1883 			     NUMA_NO_NODE, __builtin_return_address(0));
1884 	if (ret) {
1885 		area = find_vm_area(ret);
1886 		area->flags |= VM_USERMAP;
1887 	}
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL(vmalloc_32_user);
1891 
1892 /*
1893  * small helper routine , copy contents to buf from addr.
1894  * If the page is not present, fill zero.
1895  */
1896 
1897 static int aligned_vread(char *buf, char *addr, unsigned long count)
1898 {
1899 	struct page *p;
1900 	int copied = 0;
1901 
1902 	while (count) {
1903 		unsigned long offset, length;
1904 
1905 		offset = (unsigned long)addr & ~PAGE_MASK;
1906 		length = PAGE_SIZE - offset;
1907 		if (length > count)
1908 			length = count;
1909 		p = vmalloc_to_page(addr);
1910 		/*
1911 		 * To do safe access to this _mapped_ area, we need
1912 		 * lock. But adding lock here means that we need to add
1913 		 * overhead of vmalloc()/vfree() calles for this _debug_
1914 		 * interface, rarely used. Instead of that, we'll use
1915 		 * kmap() and get small overhead in this access function.
1916 		 */
1917 		if (p) {
1918 			/*
1919 			 * we can expect USER0 is not used (see vread/vwrite's
1920 			 * function description)
1921 			 */
1922 			void *map = kmap_atomic(p);
1923 			memcpy(buf, map + offset, length);
1924 			kunmap_atomic(map);
1925 		} else
1926 			memset(buf, 0, length);
1927 
1928 		addr += length;
1929 		buf += length;
1930 		copied += length;
1931 		count -= length;
1932 	}
1933 	return copied;
1934 }
1935 
1936 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1937 {
1938 	struct page *p;
1939 	int copied = 0;
1940 
1941 	while (count) {
1942 		unsigned long offset, length;
1943 
1944 		offset = (unsigned long)addr & ~PAGE_MASK;
1945 		length = PAGE_SIZE - offset;
1946 		if (length > count)
1947 			length = count;
1948 		p = vmalloc_to_page(addr);
1949 		/*
1950 		 * To do safe access to this _mapped_ area, we need
1951 		 * lock. But adding lock here means that we need to add
1952 		 * overhead of vmalloc()/vfree() calles for this _debug_
1953 		 * interface, rarely used. Instead of that, we'll use
1954 		 * kmap() and get small overhead in this access function.
1955 		 */
1956 		if (p) {
1957 			/*
1958 			 * we can expect USER0 is not used (see vread/vwrite's
1959 			 * function description)
1960 			 */
1961 			void *map = kmap_atomic(p);
1962 			memcpy(map + offset, buf, length);
1963 			kunmap_atomic(map);
1964 		}
1965 		addr += length;
1966 		buf += length;
1967 		copied += length;
1968 		count -= length;
1969 	}
1970 	return copied;
1971 }
1972 
1973 /**
1974  *	vread() -  read vmalloc area in a safe way.
1975  *	@buf:		buffer for reading data
1976  *	@addr:		vm address.
1977  *	@count:		number of bytes to be read.
1978  *
1979  *	Returns # of bytes which addr and buf should be increased.
1980  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1981  *	includes any intersect with alive vmalloc area.
1982  *
1983  *	This function checks that addr is a valid vmalloc'ed area, and
1984  *	copy data from that area to a given buffer. If the given memory range
1985  *	of [addr...addr+count) includes some valid address, data is copied to
1986  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1987  *	IOREMAP area is treated as memory hole and no copy is done.
1988  *
1989  *	If [addr...addr+count) doesn't includes any intersects with alive
1990  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1991  *
1992  *	Note: In usual ops, vread() is never necessary because the caller
1993  *	should know vmalloc() area is valid and can use memcpy().
1994  *	This is for routines which have to access vmalloc area without
1995  *	any informaion, as /dev/kmem.
1996  *
1997  */
1998 
1999 long vread(char *buf, char *addr, unsigned long count)
2000 {
2001 	struct vmap_area *va;
2002 	struct vm_struct *vm;
2003 	char *vaddr, *buf_start = buf;
2004 	unsigned long buflen = count;
2005 	unsigned long n;
2006 
2007 	/* Don't allow overflow */
2008 	if ((unsigned long) addr + count < count)
2009 		count = -(unsigned long) addr;
2010 
2011 	spin_lock(&vmap_area_lock);
2012 	list_for_each_entry(va, &vmap_area_list, list) {
2013 		if (!count)
2014 			break;
2015 
2016 		if (!(va->flags & VM_VM_AREA))
2017 			continue;
2018 
2019 		vm = va->vm;
2020 		vaddr = (char *) vm->addr;
2021 		if (addr >= vaddr + get_vm_area_size(vm))
2022 			continue;
2023 		while (addr < vaddr) {
2024 			if (count == 0)
2025 				goto finished;
2026 			*buf = '\0';
2027 			buf++;
2028 			addr++;
2029 			count--;
2030 		}
2031 		n = vaddr + get_vm_area_size(vm) - addr;
2032 		if (n > count)
2033 			n = count;
2034 		if (!(vm->flags & VM_IOREMAP))
2035 			aligned_vread(buf, addr, n);
2036 		else /* IOREMAP area is treated as memory hole */
2037 			memset(buf, 0, n);
2038 		buf += n;
2039 		addr += n;
2040 		count -= n;
2041 	}
2042 finished:
2043 	spin_unlock(&vmap_area_lock);
2044 
2045 	if (buf == buf_start)
2046 		return 0;
2047 	/* zero-fill memory holes */
2048 	if (buf != buf_start + buflen)
2049 		memset(buf, 0, buflen - (buf - buf_start));
2050 
2051 	return buflen;
2052 }
2053 
2054 /**
2055  *	vwrite() -  write vmalloc area in a safe way.
2056  *	@buf:		buffer for source data
2057  *	@addr:		vm address.
2058  *	@count:		number of bytes to be read.
2059  *
2060  *	Returns # of bytes which addr and buf should be incresed.
2061  *	(same number to @count).
2062  *	If [addr...addr+count) doesn't includes any intersect with valid
2063  *	vmalloc area, returns 0.
2064  *
2065  *	This function checks that addr is a valid vmalloc'ed area, and
2066  *	copy data from a buffer to the given addr. If specified range of
2067  *	[addr...addr+count) includes some valid address, data is copied from
2068  *	proper area of @buf. If there are memory holes, no copy to hole.
2069  *	IOREMAP area is treated as memory hole and no copy is done.
2070  *
2071  *	If [addr...addr+count) doesn't includes any intersects with alive
2072  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2073  *
2074  *	Note: In usual ops, vwrite() is never necessary because the caller
2075  *	should know vmalloc() area is valid and can use memcpy().
2076  *	This is for routines which have to access vmalloc area without
2077  *	any informaion, as /dev/kmem.
2078  */
2079 
2080 long vwrite(char *buf, char *addr, unsigned long count)
2081 {
2082 	struct vmap_area *va;
2083 	struct vm_struct *vm;
2084 	char *vaddr;
2085 	unsigned long n, buflen;
2086 	int copied = 0;
2087 
2088 	/* Don't allow overflow */
2089 	if ((unsigned long) addr + count < count)
2090 		count = -(unsigned long) addr;
2091 	buflen = count;
2092 
2093 	spin_lock(&vmap_area_lock);
2094 	list_for_each_entry(va, &vmap_area_list, list) {
2095 		if (!count)
2096 			break;
2097 
2098 		if (!(va->flags & VM_VM_AREA))
2099 			continue;
2100 
2101 		vm = va->vm;
2102 		vaddr = (char *) vm->addr;
2103 		if (addr >= vaddr + get_vm_area_size(vm))
2104 			continue;
2105 		while (addr < vaddr) {
2106 			if (count == 0)
2107 				goto finished;
2108 			buf++;
2109 			addr++;
2110 			count--;
2111 		}
2112 		n = vaddr + get_vm_area_size(vm) - addr;
2113 		if (n > count)
2114 			n = count;
2115 		if (!(vm->flags & VM_IOREMAP)) {
2116 			aligned_vwrite(buf, addr, n);
2117 			copied++;
2118 		}
2119 		buf += n;
2120 		addr += n;
2121 		count -= n;
2122 	}
2123 finished:
2124 	spin_unlock(&vmap_area_lock);
2125 	if (!copied)
2126 		return 0;
2127 	return buflen;
2128 }
2129 
2130 /**
2131  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2132  *	@vma:		vma to cover
2133  *	@uaddr:		target user address to start at
2134  *	@kaddr:		virtual address of vmalloc kernel memory
2135  *	@size:		size of map area
2136  *
2137  *	Returns:	0 for success, -Exxx on failure
2138  *
2139  *	This function checks that @kaddr is a valid vmalloc'ed area,
2140  *	and that it is big enough to cover the range starting at
2141  *	@uaddr in @vma. Will return failure if that criteria isn't
2142  *	met.
2143  *
2144  *	Similar to remap_pfn_range() (see mm/memory.c)
2145  */
2146 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2147 				void *kaddr, unsigned long size)
2148 {
2149 	struct vm_struct *area;
2150 
2151 	size = PAGE_ALIGN(size);
2152 
2153 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2154 		return -EINVAL;
2155 
2156 	area = find_vm_area(kaddr);
2157 	if (!area)
2158 		return -EINVAL;
2159 
2160 	if (!(area->flags & VM_USERMAP))
2161 		return -EINVAL;
2162 
2163 	if (kaddr + size > area->addr + area->size)
2164 		return -EINVAL;
2165 
2166 	do {
2167 		struct page *page = vmalloc_to_page(kaddr);
2168 		int ret;
2169 
2170 		ret = vm_insert_page(vma, uaddr, page);
2171 		if (ret)
2172 			return ret;
2173 
2174 		uaddr += PAGE_SIZE;
2175 		kaddr += PAGE_SIZE;
2176 		size -= PAGE_SIZE;
2177 	} while (size > 0);
2178 
2179 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2180 
2181 	return 0;
2182 }
2183 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2184 
2185 /**
2186  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2187  *	@vma:		vma to cover (map full range of vma)
2188  *	@addr:		vmalloc memory
2189  *	@pgoff:		number of pages into addr before first page to map
2190  *
2191  *	Returns:	0 for success, -Exxx on failure
2192  *
2193  *	This function checks that addr is a valid vmalloc'ed area, and
2194  *	that it is big enough to cover the vma. Will return failure if
2195  *	that criteria isn't met.
2196  *
2197  *	Similar to remap_pfn_range() (see mm/memory.c)
2198  */
2199 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2200 						unsigned long pgoff)
2201 {
2202 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2203 					   addr + (pgoff << PAGE_SHIFT),
2204 					   vma->vm_end - vma->vm_start);
2205 }
2206 EXPORT_SYMBOL(remap_vmalloc_range);
2207 
2208 /*
2209  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2210  * have one.
2211  */
2212 void __weak vmalloc_sync_all(void)
2213 {
2214 }
2215 
2216 
2217 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2218 {
2219 	pte_t ***p = data;
2220 
2221 	if (p) {
2222 		*(*p) = pte;
2223 		(*p)++;
2224 	}
2225 	return 0;
2226 }
2227 
2228 /**
2229  *	alloc_vm_area - allocate a range of kernel address space
2230  *	@size:		size of the area
2231  *	@ptes:		returns the PTEs for the address space
2232  *
2233  *	Returns:	NULL on failure, vm_struct on success
2234  *
2235  *	This function reserves a range of kernel address space, and
2236  *	allocates pagetables to map that range.  No actual mappings
2237  *	are created.
2238  *
2239  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2240  *	allocated for the VM area are returned.
2241  */
2242 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2243 {
2244 	struct vm_struct *area;
2245 
2246 	area = get_vm_area_caller(size, VM_IOREMAP,
2247 				__builtin_return_address(0));
2248 	if (area == NULL)
2249 		return NULL;
2250 
2251 	/*
2252 	 * This ensures that page tables are constructed for this region
2253 	 * of kernel virtual address space and mapped into init_mm.
2254 	 */
2255 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2256 				size, f, ptes ? &ptes : NULL)) {
2257 		free_vm_area(area);
2258 		return NULL;
2259 	}
2260 
2261 	return area;
2262 }
2263 EXPORT_SYMBOL_GPL(alloc_vm_area);
2264 
2265 void free_vm_area(struct vm_struct *area)
2266 {
2267 	struct vm_struct *ret;
2268 	ret = remove_vm_area(area->addr);
2269 	BUG_ON(ret != area);
2270 	kfree(area);
2271 }
2272 EXPORT_SYMBOL_GPL(free_vm_area);
2273 
2274 #ifdef CONFIG_SMP
2275 static struct vmap_area *node_to_va(struct rb_node *n)
2276 {
2277 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2278 }
2279 
2280 /**
2281  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2282  * @end: target address
2283  * @pnext: out arg for the next vmap_area
2284  * @pprev: out arg for the previous vmap_area
2285  *
2286  * Returns: %true if either or both of next and prev are found,
2287  *	    %false if no vmap_area exists
2288  *
2289  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2290  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2291  */
2292 static bool pvm_find_next_prev(unsigned long end,
2293 			       struct vmap_area **pnext,
2294 			       struct vmap_area **pprev)
2295 {
2296 	struct rb_node *n = vmap_area_root.rb_node;
2297 	struct vmap_area *va = NULL;
2298 
2299 	while (n) {
2300 		va = rb_entry(n, struct vmap_area, rb_node);
2301 		if (end < va->va_end)
2302 			n = n->rb_left;
2303 		else if (end > va->va_end)
2304 			n = n->rb_right;
2305 		else
2306 			break;
2307 	}
2308 
2309 	if (!va)
2310 		return false;
2311 
2312 	if (va->va_end > end) {
2313 		*pnext = va;
2314 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2315 	} else {
2316 		*pprev = va;
2317 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2318 	}
2319 	return true;
2320 }
2321 
2322 /**
2323  * pvm_determine_end - find the highest aligned address between two vmap_areas
2324  * @pnext: in/out arg for the next vmap_area
2325  * @pprev: in/out arg for the previous vmap_area
2326  * @align: alignment
2327  *
2328  * Returns: determined end address
2329  *
2330  * Find the highest aligned address between *@pnext and *@pprev below
2331  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2332  * down address is between the end addresses of the two vmap_areas.
2333  *
2334  * Please note that the address returned by this function may fall
2335  * inside *@pnext vmap_area.  The caller is responsible for checking
2336  * that.
2337  */
2338 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2339 				       struct vmap_area **pprev,
2340 				       unsigned long align)
2341 {
2342 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2343 	unsigned long addr;
2344 
2345 	if (*pnext)
2346 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2347 	else
2348 		addr = vmalloc_end;
2349 
2350 	while (*pprev && (*pprev)->va_end > addr) {
2351 		*pnext = *pprev;
2352 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2353 	}
2354 
2355 	return addr;
2356 }
2357 
2358 /**
2359  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2360  * @offsets: array containing offset of each area
2361  * @sizes: array containing size of each area
2362  * @nr_vms: the number of areas to allocate
2363  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2364  *
2365  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2366  *	    vm_structs on success, %NULL on failure
2367  *
2368  * Percpu allocator wants to use congruent vm areas so that it can
2369  * maintain the offsets among percpu areas.  This function allocates
2370  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2371  * be scattered pretty far, distance between two areas easily going up
2372  * to gigabytes.  To avoid interacting with regular vmallocs, these
2373  * areas are allocated from top.
2374  *
2375  * Despite its complicated look, this allocator is rather simple.  It
2376  * does everything top-down and scans areas from the end looking for
2377  * matching slot.  While scanning, if any of the areas overlaps with
2378  * existing vmap_area, the base address is pulled down to fit the
2379  * area.  Scanning is repeated till all the areas fit and then all
2380  * necessary data structres are inserted and the result is returned.
2381  */
2382 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2383 				     const size_t *sizes, int nr_vms,
2384 				     size_t align)
2385 {
2386 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2387 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2388 	struct vmap_area **vas, *prev, *next;
2389 	struct vm_struct **vms;
2390 	int area, area2, last_area, term_area;
2391 	unsigned long base, start, end, last_end;
2392 	bool purged = false;
2393 
2394 	/* verify parameters and allocate data structures */
2395 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2396 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2397 		start = offsets[area];
2398 		end = start + sizes[area];
2399 
2400 		/* is everything aligned properly? */
2401 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2402 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2403 
2404 		/* detect the area with the highest address */
2405 		if (start > offsets[last_area])
2406 			last_area = area;
2407 
2408 		for (area2 = 0; area2 < nr_vms; area2++) {
2409 			unsigned long start2 = offsets[area2];
2410 			unsigned long end2 = start2 + sizes[area2];
2411 
2412 			if (area2 == area)
2413 				continue;
2414 
2415 			BUG_ON(start2 >= start && start2 < end);
2416 			BUG_ON(end2 <= end && end2 > start);
2417 		}
2418 	}
2419 	last_end = offsets[last_area] + sizes[last_area];
2420 
2421 	if (vmalloc_end - vmalloc_start < last_end) {
2422 		WARN_ON(true);
2423 		return NULL;
2424 	}
2425 
2426 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2427 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2428 	if (!vas || !vms)
2429 		goto err_free2;
2430 
2431 	for (area = 0; area < nr_vms; area++) {
2432 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2433 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2434 		if (!vas[area] || !vms[area])
2435 			goto err_free;
2436 	}
2437 retry:
2438 	spin_lock(&vmap_area_lock);
2439 
2440 	/* start scanning - we scan from the top, begin with the last area */
2441 	area = term_area = last_area;
2442 	start = offsets[area];
2443 	end = start + sizes[area];
2444 
2445 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2446 		base = vmalloc_end - last_end;
2447 		goto found;
2448 	}
2449 	base = pvm_determine_end(&next, &prev, align) - end;
2450 
2451 	while (true) {
2452 		BUG_ON(next && next->va_end <= base + end);
2453 		BUG_ON(prev && prev->va_end > base + end);
2454 
2455 		/*
2456 		 * base might have underflowed, add last_end before
2457 		 * comparing.
2458 		 */
2459 		if (base + last_end < vmalloc_start + last_end) {
2460 			spin_unlock(&vmap_area_lock);
2461 			if (!purged) {
2462 				purge_vmap_area_lazy();
2463 				purged = true;
2464 				goto retry;
2465 			}
2466 			goto err_free;
2467 		}
2468 
2469 		/*
2470 		 * If next overlaps, move base downwards so that it's
2471 		 * right below next and then recheck.
2472 		 */
2473 		if (next && next->va_start < base + end) {
2474 			base = pvm_determine_end(&next, &prev, align) - end;
2475 			term_area = area;
2476 			continue;
2477 		}
2478 
2479 		/*
2480 		 * If prev overlaps, shift down next and prev and move
2481 		 * base so that it's right below new next and then
2482 		 * recheck.
2483 		 */
2484 		if (prev && prev->va_end > base + start)  {
2485 			next = prev;
2486 			prev = node_to_va(rb_prev(&next->rb_node));
2487 			base = pvm_determine_end(&next, &prev, align) - end;
2488 			term_area = area;
2489 			continue;
2490 		}
2491 
2492 		/*
2493 		 * This area fits, move on to the previous one.  If
2494 		 * the previous one is the terminal one, we're done.
2495 		 */
2496 		area = (area + nr_vms - 1) % nr_vms;
2497 		if (area == term_area)
2498 			break;
2499 		start = offsets[area];
2500 		end = start + sizes[area];
2501 		pvm_find_next_prev(base + end, &next, &prev);
2502 	}
2503 found:
2504 	/* we've found a fitting base, insert all va's */
2505 	for (area = 0; area < nr_vms; area++) {
2506 		struct vmap_area *va = vas[area];
2507 
2508 		va->va_start = base + offsets[area];
2509 		va->va_end = va->va_start + sizes[area];
2510 		__insert_vmap_area(va);
2511 	}
2512 
2513 	vmap_area_pcpu_hole = base + offsets[last_area];
2514 
2515 	spin_unlock(&vmap_area_lock);
2516 
2517 	/* insert all vm's */
2518 	for (area = 0; area < nr_vms; area++)
2519 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2520 				 pcpu_get_vm_areas);
2521 
2522 	kfree(vas);
2523 	return vms;
2524 
2525 err_free:
2526 	for (area = 0; area < nr_vms; area++) {
2527 		kfree(vas[area]);
2528 		kfree(vms[area]);
2529 	}
2530 err_free2:
2531 	kfree(vas);
2532 	kfree(vms);
2533 	return NULL;
2534 }
2535 
2536 /**
2537  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2538  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2539  * @nr_vms: the number of allocated areas
2540  *
2541  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2542  */
2543 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2544 {
2545 	int i;
2546 
2547 	for (i = 0; i < nr_vms; i++)
2548 		free_vm_area(vms[i]);
2549 	kfree(vms);
2550 }
2551 #endif	/* CONFIG_SMP */
2552 
2553 #ifdef CONFIG_PROC_FS
2554 static void *s_start(struct seq_file *m, loff_t *pos)
2555 	__acquires(&vmap_area_lock)
2556 {
2557 	loff_t n = *pos;
2558 	struct vmap_area *va;
2559 
2560 	spin_lock(&vmap_area_lock);
2561 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2562 	while (n > 0 && &va->list != &vmap_area_list) {
2563 		n--;
2564 		va = list_entry(va->list.next, typeof(*va), list);
2565 	}
2566 	if (!n && &va->list != &vmap_area_list)
2567 		return va;
2568 
2569 	return NULL;
2570 
2571 }
2572 
2573 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2574 {
2575 	struct vmap_area *va = p, *next;
2576 
2577 	++*pos;
2578 	next = list_entry(va->list.next, typeof(*va), list);
2579 	if (&next->list != &vmap_area_list)
2580 		return next;
2581 
2582 	return NULL;
2583 }
2584 
2585 static void s_stop(struct seq_file *m, void *p)
2586 	__releases(&vmap_area_lock)
2587 {
2588 	spin_unlock(&vmap_area_lock);
2589 }
2590 
2591 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2592 {
2593 	if (IS_ENABLED(CONFIG_NUMA)) {
2594 		unsigned int nr, *counters = m->private;
2595 
2596 		if (!counters)
2597 			return;
2598 
2599 		if (v->flags & VM_UNINITIALIZED)
2600 			return;
2601 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2602 		smp_rmb();
2603 
2604 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2605 
2606 		for (nr = 0; nr < v->nr_pages; nr++)
2607 			counters[page_to_nid(v->pages[nr])]++;
2608 
2609 		for_each_node_state(nr, N_HIGH_MEMORY)
2610 			if (counters[nr])
2611 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2612 	}
2613 }
2614 
2615 static int s_show(struct seq_file *m, void *p)
2616 {
2617 	struct vmap_area *va = p;
2618 	struct vm_struct *v;
2619 
2620 	/*
2621 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2622 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2623 	 */
2624 	if (!(va->flags & VM_VM_AREA))
2625 		return 0;
2626 
2627 	v = va->vm;
2628 
2629 	seq_printf(m, "0x%pK-0x%pK %7ld",
2630 		v->addr, v->addr + v->size, v->size);
2631 
2632 	if (v->caller)
2633 		seq_printf(m, " %pS", v->caller);
2634 
2635 	if (v->nr_pages)
2636 		seq_printf(m, " pages=%d", v->nr_pages);
2637 
2638 	if (v->phys_addr)
2639 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2640 
2641 	if (v->flags & VM_IOREMAP)
2642 		seq_puts(m, " ioremap");
2643 
2644 	if (v->flags & VM_ALLOC)
2645 		seq_puts(m, " vmalloc");
2646 
2647 	if (v->flags & VM_MAP)
2648 		seq_puts(m, " vmap");
2649 
2650 	if (v->flags & VM_USERMAP)
2651 		seq_puts(m, " user");
2652 
2653 	if (v->flags & VM_VPAGES)
2654 		seq_puts(m, " vpages");
2655 
2656 	show_numa_info(m, v);
2657 	seq_putc(m, '\n');
2658 	return 0;
2659 }
2660 
2661 static const struct seq_operations vmalloc_op = {
2662 	.start = s_start,
2663 	.next = s_next,
2664 	.stop = s_stop,
2665 	.show = s_show,
2666 };
2667 
2668 static int vmalloc_open(struct inode *inode, struct file *file)
2669 {
2670 	if (IS_ENABLED(CONFIG_NUMA))
2671 		return seq_open_private(file, &vmalloc_op,
2672 					nr_node_ids * sizeof(unsigned int));
2673 	else
2674 		return seq_open(file, &vmalloc_op);
2675 }
2676 
2677 static const struct file_operations proc_vmalloc_operations = {
2678 	.open		= vmalloc_open,
2679 	.read		= seq_read,
2680 	.llseek		= seq_lseek,
2681 	.release	= seq_release_private,
2682 };
2683 
2684 static int __init proc_vmalloc_init(void)
2685 {
2686 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2687 	return 0;
2688 }
2689 module_init(proc_vmalloc_init);
2690 
2691 void get_vmalloc_info(struct vmalloc_info *vmi)
2692 {
2693 	struct vmap_area *va;
2694 	unsigned long free_area_size;
2695 	unsigned long prev_end;
2696 
2697 	vmi->used = 0;
2698 	vmi->largest_chunk = 0;
2699 
2700 	prev_end = VMALLOC_START;
2701 
2702 	rcu_read_lock();
2703 
2704 	if (list_empty(&vmap_area_list)) {
2705 		vmi->largest_chunk = VMALLOC_TOTAL;
2706 		goto out;
2707 	}
2708 
2709 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
2710 		unsigned long addr = va->va_start;
2711 
2712 		/*
2713 		 * Some archs keep another range for modules in vmalloc space
2714 		 */
2715 		if (addr < VMALLOC_START)
2716 			continue;
2717 		if (addr >= VMALLOC_END)
2718 			break;
2719 
2720 		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2721 			continue;
2722 
2723 		vmi->used += (va->va_end - va->va_start);
2724 
2725 		free_area_size = addr - prev_end;
2726 		if (vmi->largest_chunk < free_area_size)
2727 			vmi->largest_chunk = free_area_size;
2728 
2729 		prev_end = va->va_end;
2730 	}
2731 
2732 	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2733 		vmi->largest_chunk = VMALLOC_END - prev_end;
2734 
2735 out:
2736 	rcu_read_unlock();
2737 }
2738 #endif
2739 
2740