1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49
50 #include "internal.h"
51 #include "pgalloc-track.h"
52
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55
set_nohugeiomap(char * str)56 static int __init set_nohugeiomap(char *str)
57 {
58 ioremap_max_page_shift = PAGE_SHIFT;
59 return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68
set_nohugevmalloc(char * str)69 static int __init set_nohugevmalloc(char *str)
70 {
71 vmap_allow_huge = false;
72 return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78
is_vmalloc_addr(const void * x)79 bool is_vmalloc_addr(const void *x)
80 {
81 unsigned long addr = (unsigned long)kasan_reset_tag(x);
82
83 return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86
87 struct vfree_deferred {
88 struct llist_head list;
89 struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92
93 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 phys_addr_t phys_addr, pgprot_t prot,
96 unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 pte_t *pte;
99 u64 pfn;
100 struct page *page;
101 unsigned long size = PAGE_SIZE;
102
103 if (WARN_ON_ONCE(!PAGE_ALIGNED(end - addr)))
104 return -EINVAL;
105
106 pfn = phys_addr >> PAGE_SHIFT;
107 pte = pte_alloc_kernel_track(pmd, addr, mask);
108 if (!pte)
109 return -ENOMEM;
110
111 lazy_mmu_mode_enable();
112
113 do {
114 if (unlikely(!pte_none(ptep_get(pte)))) {
115 if (pfn_valid(pfn)) {
116 page = pfn_to_page(pfn);
117 dump_page(page, "remapping already mapped page");
118 }
119 BUG();
120 }
121
122 #ifdef CONFIG_HUGETLB_PAGE
123 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
124 if (size != PAGE_SIZE) {
125 pte_t entry = pfn_pte(pfn, prot);
126
127 entry = arch_make_huge_pte(entry, ilog2(size), 0);
128 set_huge_pte_at(&init_mm, addr, pte, entry, size);
129 pfn += PFN_DOWN(size);
130 continue;
131 }
132 #endif
133 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
134 pfn++;
135 } while (pte += PFN_DOWN(size), addr += size, addr != end);
136
137 lazy_mmu_mode_disable();
138 *mask |= PGTBL_PTE_MODIFIED;
139 return 0;
140 }
141
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)142 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
143 phys_addr_t phys_addr, pgprot_t prot,
144 unsigned int max_page_shift)
145 {
146 if (max_page_shift < PMD_SHIFT)
147 return 0;
148
149 if (!arch_vmap_pmd_supported(prot))
150 return 0;
151
152 if ((end - addr) != PMD_SIZE)
153 return 0;
154
155 if (!IS_ALIGNED(addr, PMD_SIZE))
156 return 0;
157
158 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
159 return 0;
160
161 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
162 return 0;
163
164 return pmd_set_huge(pmd, phys_addr, prot);
165 }
166
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)167 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
168 phys_addr_t phys_addr, pgprot_t prot,
169 unsigned int max_page_shift, pgtbl_mod_mask *mask)
170 {
171 pmd_t *pmd;
172 unsigned long next;
173 int err = 0;
174
175 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
176 if (!pmd)
177 return -ENOMEM;
178 do {
179 next = pmd_addr_end(addr, end);
180
181 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
182 max_page_shift)) {
183 *mask |= PGTBL_PMD_MODIFIED;
184 continue;
185 }
186
187 err = vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask);
188 if (err)
189 break;
190 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
191 return err;
192 }
193
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)194 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
195 phys_addr_t phys_addr, pgprot_t prot,
196 unsigned int max_page_shift)
197 {
198 if (max_page_shift < PUD_SHIFT)
199 return 0;
200
201 if (!arch_vmap_pud_supported(prot))
202 return 0;
203
204 if ((end - addr) != PUD_SIZE)
205 return 0;
206
207 if (!IS_ALIGNED(addr, PUD_SIZE))
208 return 0;
209
210 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
211 return 0;
212
213 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
214 return 0;
215
216 return pud_set_huge(pud, phys_addr, prot);
217 }
218
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)219 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
220 phys_addr_t phys_addr, pgprot_t prot,
221 unsigned int max_page_shift, pgtbl_mod_mask *mask)
222 {
223 pud_t *pud;
224 unsigned long next;
225 int err = 0;
226
227 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
228 if (!pud)
229 return -ENOMEM;
230 do {
231 next = pud_addr_end(addr, end);
232
233 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
234 max_page_shift)) {
235 *mask |= PGTBL_PUD_MODIFIED;
236 continue;
237 }
238
239 err = vmap_pmd_range(pud, addr, next, phys_addr, prot, max_page_shift, mask);
240 if (err)
241 break;
242 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
243 return err;
244 }
245
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)246 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
247 phys_addr_t phys_addr, pgprot_t prot,
248 unsigned int max_page_shift)
249 {
250 if (max_page_shift < P4D_SHIFT)
251 return 0;
252
253 if (!arch_vmap_p4d_supported(prot))
254 return 0;
255
256 if ((end - addr) != P4D_SIZE)
257 return 0;
258
259 if (!IS_ALIGNED(addr, P4D_SIZE))
260 return 0;
261
262 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
263 return 0;
264
265 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
266 return 0;
267
268 return p4d_set_huge(p4d, phys_addr, prot);
269 }
270
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)271 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
272 phys_addr_t phys_addr, pgprot_t prot,
273 unsigned int max_page_shift, pgtbl_mod_mask *mask)
274 {
275 p4d_t *p4d;
276 unsigned long next;
277 int err = 0;
278
279 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
280 if (!p4d)
281 return -ENOMEM;
282 do {
283 next = p4d_addr_end(addr, end);
284
285 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
286 max_page_shift)) {
287 *mask |= PGTBL_P4D_MODIFIED;
288 continue;
289 }
290
291 err = vmap_pud_range(p4d, addr, next, phys_addr, prot, max_page_shift, mask);
292 if (err)
293 break;
294 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
295 return err;
296 }
297
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)298 static int vmap_range_noflush(unsigned long addr, unsigned long end,
299 phys_addr_t phys_addr, pgprot_t prot,
300 unsigned int max_page_shift)
301 {
302 pgd_t *pgd;
303 unsigned long start;
304 unsigned long next;
305 int err;
306 pgtbl_mod_mask mask = 0;
307
308 /*
309 * Might allocate pagetables (for most archs a more precise annotation
310 * would be might_alloc(GFP_PGTABLE_KERNEL)). Also might shootdown TLB
311 * (requires IRQs enabled on x86).
312 */
313 might_sleep();
314 BUG_ON(addr >= end);
315
316 start = addr;
317 pgd = pgd_offset_k(addr);
318 do {
319 next = pgd_addr_end(addr, end);
320 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
321 max_page_shift, &mask);
322 if (err)
323 break;
324 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
325
326 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
327 arch_sync_kernel_mappings(start, end);
328
329 return err;
330 }
331
vmap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)332 int vmap_page_range(unsigned long addr, unsigned long end,
333 phys_addr_t phys_addr, pgprot_t prot)
334 {
335 int err;
336
337 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
338 ioremap_max_page_shift);
339 flush_cache_vmap(addr, end);
340 if (!err)
341 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
342 ioremap_max_page_shift);
343 return err;
344 }
345
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)346 int ioremap_page_range(unsigned long addr, unsigned long end,
347 phys_addr_t phys_addr, pgprot_t prot)
348 {
349 struct vm_struct *area;
350
351 area = find_vm_area((void *)addr);
352 if (!area || !(area->flags & VM_IOREMAP)) {
353 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
354 return -EINVAL;
355 }
356 if (addr != (unsigned long)area->addr ||
357 (void *)end != area->addr + get_vm_area_size(area)) {
358 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
359 addr, end, (long)area->addr,
360 (long)area->addr + get_vm_area_size(area));
361 return -ERANGE;
362 }
363 return vmap_page_range(addr, end, phys_addr, prot);
364 }
365
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)366 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
367 pgtbl_mod_mask *mask)
368 {
369 pte_t *pte;
370 pte_t ptent;
371 unsigned long size = PAGE_SIZE;
372
373 pte = pte_offset_kernel(pmd, addr);
374 lazy_mmu_mode_enable();
375
376 do {
377 #ifdef CONFIG_HUGETLB_PAGE
378 size = arch_vmap_pte_range_unmap_size(addr, pte);
379 if (size != PAGE_SIZE) {
380 if (WARN_ON(!IS_ALIGNED(addr, size))) {
381 addr = ALIGN_DOWN(addr, size);
382 pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT));
383 }
384 ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size);
385 if (WARN_ON(end - addr < size))
386 size = end - addr;
387 } else
388 #endif
389 ptent = ptep_get_and_clear(&init_mm, addr, pte);
390 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
391 } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end);
392
393 lazy_mmu_mode_disable();
394 *mask |= PGTBL_PTE_MODIFIED;
395 }
396
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)397 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
398 pgtbl_mod_mask *mask)
399 {
400 pmd_t *pmd;
401 unsigned long next;
402 int cleared;
403
404 pmd = pmd_offset(pud, addr);
405 do {
406 next = pmd_addr_end(addr, end);
407
408 cleared = pmd_clear_huge(pmd);
409 if (cleared || pmd_bad(*pmd))
410 *mask |= PGTBL_PMD_MODIFIED;
411
412 if (cleared) {
413 WARN_ON(next - addr < PMD_SIZE);
414 continue;
415 }
416 if (pmd_none_or_clear_bad(pmd))
417 continue;
418 vunmap_pte_range(pmd, addr, next, mask);
419
420 cond_resched();
421 } while (pmd++, addr = next, addr != end);
422 }
423
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)424 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
425 pgtbl_mod_mask *mask)
426 {
427 pud_t *pud;
428 unsigned long next;
429 int cleared;
430
431 pud = pud_offset(p4d, addr);
432 do {
433 next = pud_addr_end(addr, end);
434
435 cleared = pud_clear_huge(pud);
436 if (cleared || pud_bad(*pud))
437 *mask |= PGTBL_PUD_MODIFIED;
438
439 if (cleared) {
440 WARN_ON(next - addr < PUD_SIZE);
441 continue;
442 }
443 if (pud_none_or_clear_bad(pud))
444 continue;
445 vunmap_pmd_range(pud, addr, next, mask);
446 } while (pud++, addr = next, addr != end);
447 }
448
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)449 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
450 pgtbl_mod_mask *mask)
451 {
452 p4d_t *p4d;
453 unsigned long next;
454
455 p4d = p4d_offset(pgd, addr);
456 do {
457 next = p4d_addr_end(addr, end);
458
459 p4d_clear_huge(p4d);
460 if (p4d_bad(*p4d))
461 *mask |= PGTBL_P4D_MODIFIED;
462
463 if (p4d_none_or_clear_bad(p4d))
464 continue;
465 vunmap_pud_range(p4d, addr, next, mask);
466 } while (p4d++, addr = next, addr != end);
467 }
468
469 /*
470 * vunmap_range_noflush is similar to vunmap_range, but does not
471 * flush caches or TLBs.
472 *
473 * The caller is responsible for calling flush_cache_vmap() before calling
474 * this function, and flush_tlb_kernel_range after it has returned
475 * successfully (and before the addresses are expected to cause a page fault
476 * or be re-mapped for something else, if TLB flushes are being delayed or
477 * coalesced).
478 *
479 * This is an internal function only. Do not use outside mm/.
480 */
__vunmap_range_noflush(unsigned long start,unsigned long end)481 void __vunmap_range_noflush(unsigned long start, unsigned long end)
482 {
483 unsigned long next;
484 pgd_t *pgd;
485 unsigned long addr = start;
486 pgtbl_mod_mask mask = 0;
487
488 BUG_ON(addr >= end);
489 pgd = pgd_offset_k(addr);
490 do {
491 next = pgd_addr_end(addr, end);
492 if (pgd_bad(*pgd))
493 mask |= PGTBL_PGD_MODIFIED;
494 if (pgd_none_or_clear_bad(pgd))
495 continue;
496 vunmap_p4d_range(pgd, addr, next, &mask);
497 } while (pgd++, addr = next, addr != end);
498
499 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
500 arch_sync_kernel_mappings(start, end);
501 }
502
vunmap_range_noflush(unsigned long start,unsigned long end)503 void vunmap_range_noflush(unsigned long start, unsigned long end)
504 {
505 kmsan_vunmap_range_noflush(start, end);
506 __vunmap_range_noflush(start, end);
507 }
508
509 /**
510 * vunmap_range - unmap kernel virtual addresses
511 * @addr: start of the VM area to unmap
512 * @end: end of the VM area to unmap (non-inclusive)
513 *
514 * Clears any present PTEs in the virtual address range, flushes TLBs and
515 * caches. Any subsequent access to the address before it has been re-mapped
516 * is a kernel bug.
517 */
vunmap_range(unsigned long addr,unsigned long end)518 void vunmap_range(unsigned long addr, unsigned long end)
519 {
520 flush_cache_vunmap(addr, end);
521 vunmap_range_noflush(addr, end);
522 flush_tlb_kernel_range(addr, end);
523 }
524
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)525 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
528 {
529 int err = 0;
530 pte_t *pte;
531
532 /*
533 * nr is a running index into the array which helps higher level
534 * callers keep track of where we're up to.
535 */
536
537 pte = pte_alloc_kernel_track(pmd, addr, mask);
538 if (!pte)
539 return -ENOMEM;
540
541 lazy_mmu_mode_enable();
542
543 do {
544 struct page *page = pages[*nr];
545
546 if (WARN_ON(!pte_none(ptep_get(pte)))) {
547 err = -EBUSY;
548 break;
549 }
550 if (WARN_ON(!page)) {
551 err = -ENOMEM;
552 break;
553 }
554 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) {
555 err = -EINVAL;
556 break;
557 }
558
559 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
560 (*nr)++;
561 } while (pte++, addr += PAGE_SIZE, addr != end);
562
563 lazy_mmu_mode_disable();
564 *mask |= PGTBL_PTE_MODIFIED;
565
566 return err;
567 }
568
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)569 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
570 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
571 pgtbl_mod_mask *mask)
572 {
573 pmd_t *pmd;
574 unsigned long next;
575
576 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
577 if (!pmd)
578 return -ENOMEM;
579 do {
580 next = pmd_addr_end(addr, end);
581 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
582 return -ENOMEM;
583 } while (pmd++, addr = next, addr != end);
584 return 0;
585 }
586
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)587 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
588 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
589 pgtbl_mod_mask *mask)
590 {
591 pud_t *pud;
592 unsigned long next;
593
594 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
595 if (!pud)
596 return -ENOMEM;
597 do {
598 next = pud_addr_end(addr, end);
599 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
600 return -ENOMEM;
601 } while (pud++, addr = next, addr != end);
602 return 0;
603 }
604
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)605 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
606 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
607 pgtbl_mod_mask *mask)
608 {
609 p4d_t *p4d;
610 unsigned long next;
611
612 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
613 if (!p4d)
614 return -ENOMEM;
615 do {
616 next = p4d_addr_end(addr, end);
617 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
618 return -ENOMEM;
619 } while (p4d++, addr = next, addr != end);
620 return 0;
621 }
622
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)623 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
624 pgprot_t prot, struct page **pages)
625 {
626 unsigned long start = addr;
627 pgd_t *pgd;
628 unsigned long next;
629 int err = 0;
630 int nr = 0;
631 pgtbl_mod_mask mask = 0;
632
633 BUG_ON(addr >= end);
634 pgd = pgd_offset_k(addr);
635 do {
636 next = pgd_addr_end(addr, end);
637 if (pgd_bad(*pgd))
638 mask |= PGTBL_PGD_MODIFIED;
639 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
640 if (err)
641 break;
642 } while (pgd++, addr = next, addr != end);
643
644 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
645 arch_sync_kernel_mappings(start, end);
646
647 return err;
648 }
649
650 /*
651 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
652 * flush caches.
653 *
654 * The caller is responsible for calling flush_cache_vmap() after this
655 * function returns successfully and before the addresses are accessed.
656 *
657 * This is an internal function only. Do not use outside mm/.
658 */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)659 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
660 pgprot_t prot, struct page **pages, unsigned int page_shift)
661 {
662 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
663
664 WARN_ON(page_shift < PAGE_SHIFT);
665
666 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
667 page_shift == PAGE_SHIFT)
668 return vmap_small_pages_range_noflush(addr, end, prot, pages);
669
670 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
671 int err;
672
673 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
674 page_to_phys(pages[i]), prot,
675 page_shift);
676 if (err)
677 return err;
678
679 addr += 1UL << page_shift;
680 }
681
682 return 0;
683 }
684
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift,gfp_t gfp_mask)685 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
686 pgprot_t prot, struct page **pages, unsigned int page_shift,
687 gfp_t gfp_mask)
688 {
689 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
690 page_shift, gfp_mask);
691
692 if (ret)
693 return ret;
694 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
695 }
696
__vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift,gfp_t gfp_mask)697 static int __vmap_pages_range(unsigned long addr, unsigned long end,
698 pgprot_t prot, struct page **pages, unsigned int page_shift,
699 gfp_t gfp_mask)
700 {
701 int err;
702
703 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift, gfp_mask);
704 flush_cache_vmap(addr, end);
705 return err;
706 }
707
708 /**
709 * vmap_pages_range - map pages to a kernel virtual address
710 * @addr: start of the VM area to map
711 * @end: end of the VM area to map (non-inclusive)
712 * @prot: page protection flags to use
713 * @pages: pages to map (always PAGE_SIZE pages)
714 * @page_shift: maximum shift that the pages may be mapped with, @pages must
715 * be aligned and contiguous up to at least this shift.
716 *
717 * RETURNS:
718 * 0 on success, -errno on failure.
719 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)720 int vmap_pages_range(unsigned long addr, unsigned long end,
721 pgprot_t prot, struct page **pages, unsigned int page_shift)
722 {
723 return __vmap_pages_range(addr, end, prot, pages, page_shift, GFP_KERNEL);
724 }
725
check_sparse_vm_area(struct vm_struct * area,unsigned long start,unsigned long end)726 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
727 unsigned long end)
728 {
729 might_sleep();
730 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
731 return -EINVAL;
732 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
733 return -EINVAL;
734 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
735 return -EINVAL;
736 if ((end - start) >> PAGE_SHIFT > totalram_pages())
737 return -E2BIG;
738 if (start < (unsigned long)area->addr ||
739 (void *)end > area->addr + get_vm_area_size(area))
740 return -ERANGE;
741 return 0;
742 }
743
744 /**
745 * vm_area_map_pages - map pages inside given sparse vm_area
746 * @area: vm_area
747 * @start: start address inside vm_area
748 * @end: end address inside vm_area
749 * @pages: pages to map (always PAGE_SIZE pages)
750 */
vm_area_map_pages(struct vm_struct * area,unsigned long start,unsigned long end,struct page ** pages)751 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
752 unsigned long end, struct page **pages)
753 {
754 int err;
755
756 err = check_sparse_vm_area(area, start, end);
757 if (err)
758 return err;
759
760 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
761 }
762
763 /**
764 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
765 * @area: vm_area
766 * @start: start address inside vm_area
767 * @end: end address inside vm_area
768 */
vm_area_unmap_pages(struct vm_struct * area,unsigned long start,unsigned long end)769 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
770 unsigned long end)
771 {
772 if (check_sparse_vm_area(area, start, end))
773 return;
774
775 vunmap_range(start, end);
776 }
777
is_vmalloc_or_module_addr(const void * x)778 int is_vmalloc_or_module_addr(const void *x)
779 {
780 /*
781 * ARM, x86-64 and sparc64 put modules in a special place,
782 * and fall back on vmalloc() if that fails. Others
783 * just put it in the vmalloc space.
784 */
785 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
786 unsigned long addr = (unsigned long)kasan_reset_tag(x);
787 if (addr >= MODULES_VADDR && addr < MODULES_END)
788 return 1;
789 #endif
790 return is_vmalloc_addr(x);
791 }
792 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
793
794 /*
795 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
796 * return the tail page that corresponds to the base page address, which
797 * matches small vmap mappings.
798 */
vmalloc_to_page(const void * vmalloc_addr)799 struct page *vmalloc_to_page(const void *vmalloc_addr)
800 {
801 unsigned long addr = (unsigned long) vmalloc_addr;
802 struct page *page = NULL;
803 pgd_t *pgd = pgd_offset_k(addr);
804 p4d_t *p4d;
805 pud_t *pud;
806 pmd_t *pmd;
807 pte_t *ptep, pte;
808
809 /*
810 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
811 * architectures that do not vmalloc module space
812 */
813 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
814
815 if (pgd_none(*pgd))
816 return NULL;
817 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
818 return NULL; /* XXX: no allowance for huge pgd */
819 if (WARN_ON_ONCE(pgd_bad(*pgd)))
820 return NULL;
821
822 p4d = p4d_offset(pgd, addr);
823 if (p4d_none(*p4d))
824 return NULL;
825 if (p4d_leaf(*p4d))
826 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
827 if (WARN_ON_ONCE(p4d_bad(*p4d)))
828 return NULL;
829
830 pud = pud_offset(p4d, addr);
831 if (pud_none(*pud))
832 return NULL;
833 if (pud_leaf(*pud))
834 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
835 if (WARN_ON_ONCE(pud_bad(*pud)))
836 return NULL;
837
838 pmd = pmd_offset(pud, addr);
839 if (pmd_none(*pmd))
840 return NULL;
841 if (pmd_leaf(*pmd))
842 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
843 if (WARN_ON_ONCE(pmd_bad(*pmd)))
844 return NULL;
845
846 ptep = pte_offset_kernel(pmd, addr);
847 pte = ptep_get(ptep);
848 if (pte_present(pte))
849 page = pte_page(pte);
850
851 return page;
852 }
853 EXPORT_SYMBOL(vmalloc_to_page);
854
855 /*
856 * Map a vmalloc()-space virtual address to the physical page frame number.
857 */
vmalloc_to_pfn(const void * vmalloc_addr)858 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
859 {
860 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
861 }
862 EXPORT_SYMBOL(vmalloc_to_pfn);
863
864
865 /*** Global kva allocator ***/
866
867 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
868 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
869
870
871 static DEFINE_SPINLOCK(free_vmap_area_lock);
872 static bool vmap_initialized __read_mostly;
873
874 /*
875 * This kmem_cache is used for vmap_area objects. Instead of
876 * allocating from slab we reuse an object from this cache to
877 * make things faster. Especially in "no edge" splitting of
878 * free block.
879 */
880 static struct kmem_cache *vmap_area_cachep;
881
882 /*
883 * This linked list is used in pair with free_vmap_area_root.
884 * It gives O(1) access to prev/next to perform fast coalescing.
885 */
886 static LIST_HEAD(free_vmap_area_list);
887
888 /*
889 * This augment red-black tree represents the free vmap space.
890 * All vmap_area objects in this tree are sorted by va->va_start
891 * address. It is used for allocation and merging when a vmap
892 * object is released.
893 *
894 * Each vmap_area node contains a maximum available free block
895 * of its sub-tree, right or left. Therefore it is possible to
896 * find a lowest match of free area.
897 */
898 static struct rb_root free_vmap_area_root = RB_ROOT;
899
900 /*
901 * Preload a CPU with one object for "no edge" split case. The
902 * aim is to get rid of allocations from the atomic context, thus
903 * to use more permissive allocation masks.
904 */
905 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
906
907 /*
908 * This structure defines a single, solid model where a list and
909 * rb-tree are part of one entity protected by the lock. Nodes are
910 * sorted in ascending order, thus for O(1) access to left/right
911 * neighbors a list is used as well as for sequential traversal.
912 */
913 struct rb_list {
914 struct rb_root root;
915 struct list_head head;
916 spinlock_t lock;
917 };
918
919 /*
920 * A fast size storage contains VAs up to 1M size. A pool consists
921 * of linked between each other ready to go VAs of certain sizes.
922 * An index in the pool-array corresponds to number of pages + 1.
923 */
924 #define MAX_VA_SIZE_PAGES 256
925
926 struct vmap_pool {
927 struct list_head head;
928 unsigned long len;
929 };
930
931 /*
932 * An effective vmap-node logic. Users make use of nodes instead
933 * of a global heap. It allows to balance an access and mitigate
934 * contention.
935 */
936 static struct vmap_node {
937 /* Simple size segregated storage. */
938 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
939 spinlock_t pool_lock;
940 bool skip_populate;
941
942 /* Bookkeeping data of this node. */
943 struct rb_list busy;
944 struct rb_list lazy;
945
946 /*
947 * Ready-to-free areas.
948 */
949 struct list_head purge_list;
950 struct work_struct purge_work;
951 unsigned long nr_purged;
952 } single;
953
954 /*
955 * Initial setup consists of one single node, i.e. a balancing
956 * is fully disabled. Later on, after vmap is initialized these
957 * parameters are updated based on a system capacity.
958 */
959 static struct vmap_node *vmap_nodes = &single;
960 static __read_mostly unsigned int nr_vmap_nodes = 1;
961 static __read_mostly unsigned int vmap_zone_size = 1;
962
963 /* A simple iterator over all vmap-nodes. */
964 #define for_each_vmap_node(vn) \
965 for ((vn) = &vmap_nodes[0]; \
966 (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++)
967
968 static inline unsigned int
addr_to_node_id(unsigned long addr)969 addr_to_node_id(unsigned long addr)
970 {
971 return (addr / vmap_zone_size) % nr_vmap_nodes;
972 }
973
974 static inline struct vmap_node *
addr_to_node(unsigned long addr)975 addr_to_node(unsigned long addr)
976 {
977 return &vmap_nodes[addr_to_node_id(addr)];
978 }
979
980 static inline struct vmap_node *
id_to_node(unsigned int id)981 id_to_node(unsigned int id)
982 {
983 return &vmap_nodes[id % nr_vmap_nodes];
984 }
985
986 static inline unsigned int
node_to_id(struct vmap_node * node)987 node_to_id(struct vmap_node *node)
988 {
989 /* Pointer arithmetic. */
990 unsigned int id = node - vmap_nodes;
991
992 if (likely(id < nr_vmap_nodes))
993 return id;
994
995 WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node);
996 return 0;
997 }
998
999 /*
1000 * We use the value 0 to represent "no node", that is why
1001 * an encoded value will be the node-id incremented by 1.
1002 * It is always greater then 0. A valid node_id which can
1003 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
1004 * is not valid 0 is returned.
1005 */
1006 static unsigned int
encode_vn_id(unsigned int node_id)1007 encode_vn_id(unsigned int node_id)
1008 {
1009 /* Can store U8_MAX [0:254] nodes. */
1010 if (node_id < nr_vmap_nodes)
1011 return (node_id + 1) << BITS_PER_BYTE;
1012
1013 /* Warn and no node encoded. */
1014 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
1015 return 0;
1016 }
1017
1018 /*
1019 * Returns an encoded node-id, the valid range is within
1020 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
1021 * returned if extracted data is wrong.
1022 */
1023 static unsigned int
decode_vn_id(unsigned int val)1024 decode_vn_id(unsigned int val)
1025 {
1026 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
1027
1028 /* Can store U8_MAX [0:254] nodes. */
1029 if (node_id < nr_vmap_nodes)
1030 return node_id;
1031
1032 /* If it was _not_ zero, warn. */
1033 WARN_ONCE(node_id != UINT_MAX,
1034 "Decode wrong node id (%d)\n", node_id);
1035
1036 return nr_vmap_nodes;
1037 }
1038
1039 static bool
is_vn_id_valid(unsigned int node_id)1040 is_vn_id_valid(unsigned int node_id)
1041 {
1042 if (node_id < nr_vmap_nodes)
1043 return true;
1044
1045 return false;
1046 }
1047
1048 static __always_inline unsigned long
va_size(struct vmap_area * va)1049 va_size(struct vmap_area *va)
1050 {
1051 return (va->va_end - va->va_start);
1052 }
1053
1054 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)1055 get_subtree_max_size(struct rb_node *node)
1056 {
1057 struct vmap_area *va;
1058
1059 va = rb_entry_safe(node, struct vmap_area, rb_node);
1060 return va ? va->subtree_max_size : 0;
1061 }
1062
1063 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
1064 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
1065
1066 static void reclaim_and_purge_vmap_areas(void);
1067 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1068 static void drain_vmap_area_work(struct work_struct *work);
1069 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1070
1071 static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages;
1072 static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr;
1073
vmalloc_nr_pages(void)1074 unsigned long vmalloc_nr_pages(void)
1075 {
1076 return atomic_long_read(&nr_vmalloc_pages);
1077 }
1078
__find_vmap_area(unsigned long addr,struct rb_root * root)1079 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1080 {
1081 struct rb_node *n = root->rb_node;
1082
1083 addr = (unsigned long)kasan_reset_tag((void *)addr);
1084
1085 while (n) {
1086 struct vmap_area *va;
1087
1088 va = rb_entry(n, struct vmap_area, rb_node);
1089 if (addr < va->va_start)
1090 n = n->rb_left;
1091 else if (addr >= va->va_end)
1092 n = n->rb_right;
1093 else
1094 return va;
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1101 static struct vmap_area *
__find_vmap_area_exceed_addr(unsigned long addr,struct rb_root * root)1102 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1103 {
1104 struct vmap_area *va = NULL;
1105 struct rb_node *n = root->rb_node;
1106
1107 addr = (unsigned long)kasan_reset_tag((void *)addr);
1108
1109 while (n) {
1110 struct vmap_area *tmp;
1111
1112 tmp = rb_entry(n, struct vmap_area, rb_node);
1113 if (tmp->va_end > addr) {
1114 va = tmp;
1115 if (tmp->va_start <= addr)
1116 break;
1117
1118 n = n->rb_left;
1119 } else
1120 n = n->rb_right;
1121 }
1122
1123 return va;
1124 }
1125
1126 /*
1127 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1128 * If success, a node is locked. A user is responsible to unlock it when a
1129 * VA is no longer needed to be accessed.
1130 *
1131 * Returns NULL if nothing found.
1132 */
1133 static struct vmap_node *
find_vmap_area_exceed_addr_lock(unsigned long addr,struct vmap_area ** va)1134 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1135 {
1136 unsigned long va_start_lowest;
1137 struct vmap_node *vn;
1138
1139 repeat:
1140 va_start_lowest = 0;
1141
1142 for_each_vmap_node(vn) {
1143 spin_lock(&vn->busy.lock);
1144 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1145
1146 if (*va)
1147 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1148 va_start_lowest = (*va)->va_start;
1149 spin_unlock(&vn->busy.lock);
1150 }
1151
1152 /*
1153 * Check if found VA exists, it might have gone away. In this case we
1154 * repeat the search because a VA has been removed concurrently and we
1155 * need to proceed to the next one, which is a rare case.
1156 */
1157 if (va_start_lowest) {
1158 vn = addr_to_node(va_start_lowest);
1159
1160 spin_lock(&vn->busy.lock);
1161 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1162
1163 if (*va)
1164 return vn;
1165
1166 spin_unlock(&vn->busy.lock);
1167 goto repeat;
1168 }
1169
1170 return NULL;
1171 }
1172
1173 /*
1174 * This function returns back addresses of parent node
1175 * and its left or right link for further processing.
1176 *
1177 * Otherwise NULL is returned. In that case all further
1178 * steps regarding inserting of conflicting overlap range
1179 * have to be declined and actually considered as a bug.
1180 */
1181 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)1182 find_va_links(struct vmap_area *va,
1183 struct rb_root *root, struct rb_node *from,
1184 struct rb_node **parent)
1185 {
1186 struct vmap_area *tmp_va;
1187 struct rb_node **link;
1188
1189 if (root) {
1190 link = &root->rb_node;
1191 if (unlikely(!*link)) {
1192 *parent = NULL;
1193 return link;
1194 }
1195 } else {
1196 link = &from;
1197 }
1198
1199 /*
1200 * Go to the bottom of the tree. When we hit the last point
1201 * we end up with parent rb_node and correct direction, i name
1202 * it link, where the new va->rb_node will be attached to.
1203 */
1204 do {
1205 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1206
1207 /*
1208 * During the traversal we also do some sanity check.
1209 * Trigger the BUG() if there are sides(left/right)
1210 * or full overlaps.
1211 */
1212 if (va->va_end <= tmp_va->va_start)
1213 link = &(*link)->rb_left;
1214 else if (va->va_start >= tmp_va->va_end)
1215 link = &(*link)->rb_right;
1216 else {
1217 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1218 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1219
1220 return NULL;
1221 }
1222 } while (*link);
1223
1224 *parent = &tmp_va->rb_node;
1225 return link;
1226 }
1227
1228 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)1229 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1230 {
1231 struct list_head *list;
1232
1233 if (unlikely(!parent))
1234 /*
1235 * The red-black tree where we try to find VA neighbors
1236 * before merging or inserting is empty, i.e. it means
1237 * there is no free vmap space. Normally it does not
1238 * happen but we handle this case anyway.
1239 */
1240 return NULL;
1241
1242 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1243 return (&parent->rb_right == link ? list->next : list);
1244 }
1245
1246 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)1247 __link_va(struct vmap_area *va, struct rb_root *root,
1248 struct rb_node *parent, struct rb_node **link,
1249 struct list_head *head, bool augment)
1250 {
1251 /*
1252 * VA is still not in the list, but we can
1253 * identify its future previous list_head node.
1254 */
1255 if (likely(parent)) {
1256 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1257 if (&parent->rb_right != link)
1258 head = head->prev;
1259 }
1260
1261 /* Insert to the rb-tree */
1262 rb_link_node(&va->rb_node, parent, link);
1263 if (augment) {
1264 /*
1265 * Some explanation here. Just perform simple insertion
1266 * to the tree. We do not set va->subtree_max_size to
1267 * its current size before calling rb_insert_augmented().
1268 * It is because we populate the tree from the bottom
1269 * to parent levels when the node _is_ in the tree.
1270 *
1271 * Therefore we set subtree_max_size to zero after insertion,
1272 * to let __augment_tree_propagate_from() puts everything to
1273 * the correct order later on.
1274 */
1275 rb_insert_augmented(&va->rb_node,
1276 root, &free_vmap_area_rb_augment_cb);
1277 va->subtree_max_size = 0;
1278 } else {
1279 rb_insert_color(&va->rb_node, root);
1280 }
1281
1282 /* Address-sort this list */
1283 list_add(&va->list, head);
1284 }
1285
1286 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1287 link_va(struct vmap_area *va, struct rb_root *root,
1288 struct rb_node *parent, struct rb_node **link,
1289 struct list_head *head)
1290 {
1291 __link_va(va, root, parent, link, head, false);
1292 }
1293
1294 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1295 link_va_augment(struct vmap_area *va, struct rb_root *root,
1296 struct rb_node *parent, struct rb_node **link,
1297 struct list_head *head)
1298 {
1299 __link_va(va, root, parent, link, head, true);
1300 }
1301
1302 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)1303 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1304 {
1305 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1306 return;
1307
1308 if (augment)
1309 rb_erase_augmented(&va->rb_node,
1310 root, &free_vmap_area_rb_augment_cb);
1311 else
1312 rb_erase(&va->rb_node, root);
1313
1314 list_del_init(&va->list);
1315 RB_CLEAR_NODE(&va->rb_node);
1316 }
1317
1318 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1319 unlink_va(struct vmap_area *va, struct rb_root *root)
1320 {
1321 __unlink_va(va, root, false);
1322 }
1323
1324 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1325 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1326 {
1327 __unlink_va(va, root, true);
1328 }
1329
1330 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1331 /*
1332 * Gets called when remove the node and rotate.
1333 */
1334 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1335 compute_subtree_max_size(struct vmap_area *va)
1336 {
1337 return max3(va_size(va),
1338 get_subtree_max_size(va->rb_node.rb_left),
1339 get_subtree_max_size(va->rb_node.rb_right));
1340 }
1341
1342 static void
augment_tree_propagate_check(void)1343 augment_tree_propagate_check(void)
1344 {
1345 struct vmap_area *va;
1346 unsigned long computed_size;
1347
1348 list_for_each_entry(va, &free_vmap_area_list, list) {
1349 computed_size = compute_subtree_max_size(va);
1350 if (computed_size != va->subtree_max_size)
1351 pr_emerg("tree is corrupted: %lu, %lu\n",
1352 va_size(va), va->subtree_max_size);
1353 }
1354 }
1355 #endif
1356
1357 /*
1358 * This function populates subtree_max_size from bottom to upper
1359 * levels starting from VA point. The propagation must be done
1360 * when VA size is modified by changing its va_start/va_end. Or
1361 * in case of newly inserting of VA to the tree.
1362 *
1363 * It means that __augment_tree_propagate_from() must be called:
1364 * - After VA has been inserted to the tree(free path);
1365 * - After VA has been shrunk(allocation path);
1366 * - After VA has been increased(merging path).
1367 *
1368 * Please note that, it does not mean that upper parent nodes
1369 * and their subtree_max_size are recalculated all the time up
1370 * to the root node.
1371 *
1372 * 4--8
1373 * /\
1374 * / \
1375 * / \
1376 * 2--2 8--8
1377 *
1378 * For example if we modify the node 4, shrinking it to 2, then
1379 * no any modification is required. If we shrink the node 2 to 1
1380 * its subtree_max_size is updated only, and set to 1. If we shrink
1381 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1382 * node becomes 4--6.
1383 */
1384 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1385 augment_tree_propagate_from(struct vmap_area *va)
1386 {
1387 /*
1388 * Populate the tree from bottom towards the root until
1389 * the calculated maximum available size of checked node
1390 * is equal to its current one.
1391 */
1392 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1393
1394 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1395 augment_tree_propagate_check();
1396 #endif
1397 }
1398
1399 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1400 insert_vmap_area(struct vmap_area *va,
1401 struct rb_root *root, struct list_head *head)
1402 {
1403 struct rb_node **link;
1404 struct rb_node *parent;
1405
1406 link = find_va_links(va, root, NULL, &parent);
1407 if (link)
1408 link_va(va, root, parent, link, head);
1409 }
1410
1411 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1412 insert_vmap_area_augment(struct vmap_area *va,
1413 struct rb_node *from, struct rb_root *root,
1414 struct list_head *head)
1415 {
1416 struct rb_node **link;
1417 struct rb_node *parent;
1418
1419 if (from)
1420 link = find_va_links(va, NULL, from, &parent);
1421 else
1422 link = find_va_links(va, root, NULL, &parent);
1423
1424 if (link) {
1425 link_va_augment(va, root, parent, link, head);
1426 augment_tree_propagate_from(va);
1427 }
1428 }
1429
1430 /*
1431 * Merge de-allocated chunk of VA memory with previous
1432 * and next free blocks. If coalesce is not done a new
1433 * free area is inserted. If VA has been merged, it is
1434 * freed.
1435 *
1436 * Please note, it can return NULL in case of overlap
1437 * ranges, followed by WARN() report. Despite it is a
1438 * buggy behaviour, a system can be alive and keep
1439 * ongoing.
1440 */
1441 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1442 __merge_or_add_vmap_area(struct vmap_area *va,
1443 struct rb_root *root, struct list_head *head, bool augment)
1444 {
1445 struct vmap_area *sibling;
1446 struct list_head *next;
1447 struct rb_node **link;
1448 struct rb_node *parent;
1449 bool merged = false;
1450
1451 /*
1452 * Find a place in the tree where VA potentially will be
1453 * inserted, unless it is merged with its sibling/siblings.
1454 */
1455 link = find_va_links(va, root, NULL, &parent);
1456 if (!link)
1457 return NULL;
1458
1459 /*
1460 * Get next node of VA to check if merging can be done.
1461 */
1462 next = get_va_next_sibling(parent, link);
1463 if (unlikely(next == NULL))
1464 goto insert;
1465
1466 /*
1467 * start end
1468 * | |
1469 * |<------VA------>|<-----Next----->|
1470 * | |
1471 * start end
1472 */
1473 if (next != head) {
1474 sibling = list_entry(next, struct vmap_area, list);
1475 if (sibling->va_start == va->va_end) {
1476 sibling->va_start = va->va_start;
1477
1478 /* Free vmap_area object. */
1479 kmem_cache_free(vmap_area_cachep, va);
1480
1481 /* Point to the new merged area. */
1482 va = sibling;
1483 merged = true;
1484 }
1485 }
1486
1487 /*
1488 * start end
1489 * | |
1490 * |<-----Prev----->|<------VA------>|
1491 * | |
1492 * start end
1493 */
1494 if (next->prev != head) {
1495 sibling = list_entry(next->prev, struct vmap_area, list);
1496 if (sibling->va_end == va->va_start) {
1497 /*
1498 * If both neighbors are coalesced, it is important
1499 * to unlink the "next" node first, followed by merging
1500 * with "previous" one. Otherwise the tree might not be
1501 * fully populated if a sibling's augmented value is
1502 * "normalized" because of rotation operations.
1503 */
1504 if (merged)
1505 __unlink_va(va, root, augment);
1506
1507 sibling->va_end = va->va_end;
1508
1509 /* Free vmap_area object. */
1510 kmem_cache_free(vmap_area_cachep, va);
1511
1512 /* Point to the new merged area. */
1513 va = sibling;
1514 merged = true;
1515 }
1516 }
1517
1518 insert:
1519 if (!merged)
1520 __link_va(va, root, parent, link, head, augment);
1521
1522 return va;
1523 }
1524
1525 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1526 merge_or_add_vmap_area(struct vmap_area *va,
1527 struct rb_root *root, struct list_head *head)
1528 {
1529 return __merge_or_add_vmap_area(va, root, head, false);
1530 }
1531
1532 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1533 merge_or_add_vmap_area_augment(struct vmap_area *va,
1534 struct rb_root *root, struct list_head *head)
1535 {
1536 va = __merge_or_add_vmap_area(va, root, head, true);
1537 if (va)
1538 augment_tree_propagate_from(va);
1539
1540 return va;
1541 }
1542
1543 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1544 is_within_this_va(struct vmap_area *va, unsigned long size,
1545 unsigned long align, unsigned long vstart)
1546 {
1547 unsigned long nva_start_addr;
1548
1549 if (va->va_start > vstart)
1550 nva_start_addr = ALIGN(va->va_start, align);
1551 else
1552 nva_start_addr = ALIGN(vstart, align);
1553
1554 /* Can be overflowed due to big size or alignment. */
1555 if (nva_start_addr + size < nva_start_addr ||
1556 nva_start_addr < vstart)
1557 return false;
1558
1559 return (nva_start_addr + size <= va->va_end);
1560 }
1561
1562 /*
1563 * Find the first free block(lowest start address) in the tree,
1564 * that will accomplish the request corresponding to passing
1565 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1566 * a search length is adjusted to account for worst case alignment
1567 * overhead.
1568 */
1569 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1570 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1571 unsigned long align, unsigned long vstart, bool adjust_search_size)
1572 {
1573 struct vmap_area *va;
1574 struct rb_node *node;
1575 unsigned long length;
1576
1577 /* Start from the root. */
1578 node = root->rb_node;
1579
1580 /* Adjust the search size for alignment overhead. */
1581 length = adjust_search_size ? size + align - 1 : size;
1582
1583 while (node) {
1584 va = rb_entry(node, struct vmap_area, rb_node);
1585
1586 if (get_subtree_max_size(node->rb_left) >= length &&
1587 vstart < va->va_start) {
1588 node = node->rb_left;
1589 } else {
1590 if (is_within_this_va(va, size, align, vstart))
1591 return va;
1592
1593 /*
1594 * Does not make sense to go deeper towards the right
1595 * sub-tree if it does not have a free block that is
1596 * equal or bigger to the requested search length.
1597 */
1598 if (get_subtree_max_size(node->rb_right) >= length) {
1599 node = node->rb_right;
1600 continue;
1601 }
1602
1603 /*
1604 * OK. We roll back and find the first right sub-tree,
1605 * that will satisfy the search criteria. It can happen
1606 * due to "vstart" restriction or an alignment overhead
1607 * that is bigger then PAGE_SIZE.
1608 */
1609 while ((node = rb_parent(node))) {
1610 va = rb_entry(node, struct vmap_area, rb_node);
1611 if (is_within_this_va(va, size, align, vstart))
1612 return va;
1613
1614 if (get_subtree_max_size(node->rb_right) >= length &&
1615 vstart <= va->va_start) {
1616 /*
1617 * Shift the vstart forward. Please note, we update it with
1618 * parent's start address adding "1" because we do not want
1619 * to enter same sub-tree after it has already been checked
1620 * and no suitable free block found there.
1621 */
1622 vstart = va->va_start + 1;
1623 node = node->rb_right;
1624 break;
1625 }
1626 }
1627 }
1628 }
1629
1630 return NULL;
1631 }
1632
1633 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1634 #include <linux/random.h>
1635
1636 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1637 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1638 unsigned long align, unsigned long vstart)
1639 {
1640 struct vmap_area *va;
1641
1642 list_for_each_entry(va, head, list) {
1643 if (!is_within_this_va(va, size, align, vstart))
1644 continue;
1645
1646 return va;
1647 }
1648
1649 return NULL;
1650 }
1651
1652 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1653 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1654 unsigned long size, unsigned long align)
1655 {
1656 struct vmap_area *va_1, *va_2;
1657 unsigned long vstart;
1658 unsigned int rnd;
1659
1660 get_random_bytes(&rnd, sizeof(rnd));
1661 vstart = VMALLOC_START + rnd;
1662
1663 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1664 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1665
1666 if (va_1 != va_2)
1667 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1668 va_1, va_2, vstart);
1669 }
1670 #endif
1671
1672 enum fit_type {
1673 NOTHING_FIT = 0,
1674 FL_FIT_TYPE = 1, /* full fit */
1675 LE_FIT_TYPE = 2, /* left edge fit */
1676 RE_FIT_TYPE = 3, /* right edge fit */
1677 NE_FIT_TYPE = 4 /* no edge fit */
1678 };
1679
1680 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1681 classify_va_fit_type(struct vmap_area *va,
1682 unsigned long nva_start_addr, unsigned long size)
1683 {
1684 enum fit_type type;
1685
1686 /* Check if it is within VA. */
1687 if (nva_start_addr < va->va_start ||
1688 nva_start_addr + size > va->va_end)
1689 return NOTHING_FIT;
1690
1691 /* Now classify. */
1692 if (va->va_start == nva_start_addr) {
1693 if (va->va_end == nva_start_addr + size)
1694 type = FL_FIT_TYPE;
1695 else
1696 type = LE_FIT_TYPE;
1697 } else if (va->va_end == nva_start_addr + size) {
1698 type = RE_FIT_TYPE;
1699 } else {
1700 type = NE_FIT_TYPE;
1701 }
1702
1703 return type;
1704 }
1705
1706 static __always_inline int
va_clip(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1707 va_clip(struct rb_root *root, struct list_head *head,
1708 struct vmap_area *va, unsigned long nva_start_addr,
1709 unsigned long size)
1710 {
1711 struct vmap_area *lva = NULL;
1712 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1713
1714 if (type == FL_FIT_TYPE) {
1715 /*
1716 * No need to split VA, it fully fits.
1717 *
1718 * | |
1719 * V NVA V
1720 * |---------------|
1721 */
1722 unlink_va_augment(va, root);
1723 kmem_cache_free(vmap_area_cachep, va);
1724 } else if (type == LE_FIT_TYPE) {
1725 /*
1726 * Split left edge of fit VA.
1727 *
1728 * | |
1729 * V NVA V R
1730 * |-------|-------|
1731 */
1732 va->va_start += size;
1733 } else if (type == RE_FIT_TYPE) {
1734 /*
1735 * Split right edge of fit VA.
1736 *
1737 * | |
1738 * L V NVA V
1739 * |-------|-------|
1740 */
1741 va->va_end = nva_start_addr;
1742 } else if (type == NE_FIT_TYPE) {
1743 /*
1744 * Split no edge of fit VA.
1745 *
1746 * | |
1747 * L V NVA V R
1748 * |---|-------|---|
1749 */
1750 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1751 if (unlikely(!lva)) {
1752 /*
1753 * For percpu allocator we do not do any pre-allocation
1754 * and leave it as it is. The reason is it most likely
1755 * never ends up with NE_FIT_TYPE splitting. In case of
1756 * percpu allocations offsets and sizes are aligned to
1757 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1758 * are its main fitting cases.
1759 *
1760 * There are a few exceptions though, as an example it is
1761 * a first allocation (early boot up) when we have "one"
1762 * big free space that has to be split.
1763 *
1764 * Also we can hit this path in case of regular "vmap"
1765 * allocations, if "this" current CPU was not preloaded.
1766 * See the comment in alloc_vmap_area() why. If so, then
1767 * GFP_NOWAIT is used instead to get an extra object for
1768 * split purpose. That is rare and most time does not
1769 * occur.
1770 *
1771 * What happens if an allocation gets failed. Basically,
1772 * an "overflow" path is triggered to purge lazily freed
1773 * areas to free some memory, then, the "retry" path is
1774 * triggered to repeat one more time. See more details
1775 * in alloc_vmap_area() function.
1776 */
1777 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1778 if (!lva)
1779 return -ENOMEM;
1780 }
1781
1782 /*
1783 * Build the remainder.
1784 */
1785 lva->va_start = va->va_start;
1786 lva->va_end = nva_start_addr;
1787
1788 /*
1789 * Shrink this VA to remaining size.
1790 */
1791 va->va_start = nva_start_addr + size;
1792 } else {
1793 return -EINVAL;
1794 }
1795
1796 if (type != FL_FIT_TYPE) {
1797 augment_tree_propagate_from(va);
1798
1799 if (lva) /* type == NE_FIT_TYPE */
1800 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1801 }
1802
1803 return 0;
1804 }
1805
1806 static unsigned long
va_alloc(struct vmap_area * va,struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1807 va_alloc(struct vmap_area *va,
1808 struct rb_root *root, struct list_head *head,
1809 unsigned long size, unsigned long align,
1810 unsigned long vstart, unsigned long vend)
1811 {
1812 unsigned long nva_start_addr;
1813 int ret;
1814
1815 if (va->va_start > vstart)
1816 nva_start_addr = ALIGN(va->va_start, align);
1817 else
1818 nva_start_addr = ALIGN(vstart, align);
1819
1820 /* Check the "vend" restriction. */
1821 if (nva_start_addr + size > vend)
1822 return -ERANGE;
1823
1824 /* Update the free vmap_area. */
1825 ret = va_clip(root, head, va, nva_start_addr, size);
1826 if (WARN_ON_ONCE(ret))
1827 return ret;
1828
1829 return nva_start_addr;
1830 }
1831
1832 /*
1833 * Returns a start address of the newly allocated area, if success.
1834 * Otherwise an error value is returned that indicates failure.
1835 */
1836 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1837 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1838 unsigned long size, unsigned long align,
1839 unsigned long vstart, unsigned long vend)
1840 {
1841 bool adjust_search_size = true;
1842 unsigned long nva_start_addr;
1843 struct vmap_area *va;
1844
1845 /*
1846 * Do not adjust when:
1847 * a) align <= PAGE_SIZE, because it does not make any sense.
1848 * All blocks(their start addresses) are at least PAGE_SIZE
1849 * aligned anyway;
1850 * b) a short range where a requested size corresponds to exactly
1851 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1852 * With adjusted search length an allocation would not succeed.
1853 */
1854 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1855 adjust_search_size = false;
1856
1857 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1858 if (unlikely(!va))
1859 return -ENOENT;
1860
1861 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1862
1863 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1864 if (!IS_ERR_VALUE(nva_start_addr))
1865 find_vmap_lowest_match_check(root, head, size, align);
1866 #endif
1867
1868 return nva_start_addr;
1869 }
1870
1871 /*
1872 * Free a region of KVA allocated by alloc_vmap_area
1873 */
free_vmap_area(struct vmap_area * va)1874 static void free_vmap_area(struct vmap_area *va)
1875 {
1876 struct vmap_node *vn = addr_to_node(va->va_start);
1877
1878 /*
1879 * Remove from the busy tree/list.
1880 */
1881 spin_lock(&vn->busy.lock);
1882 unlink_va(va, &vn->busy.root);
1883 spin_unlock(&vn->busy.lock);
1884
1885 /*
1886 * Insert/Merge it back to the free tree/list.
1887 */
1888 spin_lock(&free_vmap_area_lock);
1889 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1890 spin_unlock(&free_vmap_area_lock);
1891 }
1892
1893 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1894 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1895 {
1896 struct vmap_area *va = NULL, *tmp;
1897
1898 /*
1899 * Preload this CPU with one extra vmap_area object. It is used
1900 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1901 * a CPU that does an allocation is preloaded.
1902 *
1903 * We do it in non-atomic context, thus it allows us to use more
1904 * permissive allocation masks to be more stable under low memory
1905 * condition and high memory pressure.
1906 */
1907 if (!this_cpu_read(ne_fit_preload_node))
1908 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1909
1910 spin_lock(lock);
1911
1912 tmp = NULL;
1913 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1914 kmem_cache_free(vmap_area_cachep, va);
1915 }
1916
1917 static struct vmap_pool *
size_to_va_pool(struct vmap_node * vn,unsigned long size)1918 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1919 {
1920 unsigned int idx = (size - 1) / PAGE_SIZE;
1921
1922 if (idx < MAX_VA_SIZE_PAGES)
1923 return &vn->pool[idx];
1924
1925 return NULL;
1926 }
1927
1928 static bool
node_pool_add_va(struct vmap_node * n,struct vmap_area * va)1929 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1930 {
1931 struct vmap_pool *vp;
1932
1933 vp = size_to_va_pool(n, va_size(va));
1934 if (!vp)
1935 return false;
1936
1937 spin_lock(&n->pool_lock);
1938 list_add(&va->list, &vp->head);
1939 WRITE_ONCE(vp->len, vp->len + 1);
1940 spin_unlock(&n->pool_lock);
1941
1942 return true;
1943 }
1944
1945 static struct vmap_area *
node_pool_del_va(struct vmap_node * vn,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1946 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1947 unsigned long align, unsigned long vstart,
1948 unsigned long vend)
1949 {
1950 struct vmap_area *va = NULL;
1951 struct vmap_pool *vp;
1952 int err = 0;
1953
1954 vp = size_to_va_pool(vn, size);
1955 if (!vp || list_empty(&vp->head))
1956 return NULL;
1957
1958 spin_lock(&vn->pool_lock);
1959 if (!list_empty(&vp->head)) {
1960 va = list_first_entry(&vp->head, struct vmap_area, list);
1961
1962 if (IS_ALIGNED(va->va_start, align)) {
1963 /*
1964 * Do some sanity check and emit a warning
1965 * if one of below checks detects an error.
1966 */
1967 err |= (va_size(va) != size);
1968 err |= (va->va_start < vstart);
1969 err |= (va->va_end > vend);
1970
1971 if (!WARN_ON_ONCE(err)) {
1972 list_del_init(&va->list);
1973 WRITE_ONCE(vp->len, vp->len - 1);
1974 } else {
1975 va = NULL;
1976 }
1977 } else {
1978 list_move_tail(&va->list, &vp->head);
1979 va = NULL;
1980 }
1981 }
1982 spin_unlock(&vn->pool_lock);
1983
1984 return va;
1985 }
1986
1987 static struct vmap_area *
node_alloc(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,unsigned long * addr,unsigned int * vn_id)1988 node_alloc(unsigned long size, unsigned long align,
1989 unsigned long vstart, unsigned long vend,
1990 unsigned long *addr, unsigned int *vn_id)
1991 {
1992 struct vmap_area *va;
1993
1994 *vn_id = 0;
1995 *addr = -EINVAL;
1996
1997 /*
1998 * Fallback to a global heap if not vmalloc or there
1999 * is only one node.
2000 */
2001 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
2002 nr_vmap_nodes == 1)
2003 return NULL;
2004
2005 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
2006 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
2007 *vn_id = encode_vn_id(*vn_id);
2008
2009 if (va)
2010 *addr = va->va_start;
2011
2012 return va;
2013 }
2014
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2015 static inline void setup_vmalloc_vm(struct vm_struct *vm,
2016 struct vmap_area *va, unsigned long flags, const void *caller)
2017 {
2018 vm->flags = flags;
2019 vm->addr = (void *)va->va_start;
2020 vm->size = vm->requested_size = va_size(va);
2021 vm->caller = caller;
2022 va->vm = vm;
2023 }
2024
2025 /*
2026 * Allocate a region of KVA of the specified size and alignment, within the
2027 * vstart and vend. If vm is passed in, the two will also be bound.
2028 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags,struct vm_struct * vm)2029 static struct vmap_area *alloc_vmap_area(unsigned long size,
2030 unsigned long align,
2031 unsigned long vstart, unsigned long vend,
2032 int node, gfp_t gfp_mask,
2033 unsigned long va_flags, struct vm_struct *vm)
2034 {
2035 struct vmap_node *vn;
2036 struct vmap_area *va;
2037 unsigned long freed;
2038 unsigned long addr;
2039 unsigned int vn_id;
2040 bool allow_block;
2041 int purged = 0;
2042 int ret;
2043
2044 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
2045 return ERR_PTR(-EINVAL);
2046
2047 if (unlikely(!vmap_initialized))
2048 return ERR_PTR(-EBUSY);
2049
2050 /* Only reclaim behaviour flags are relevant. */
2051 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
2052 allow_block = gfpflags_allow_blocking(gfp_mask);
2053 might_sleep_if(allow_block);
2054
2055 /*
2056 * If a VA is obtained from a global heap(if it fails here)
2057 * it is anyway marked with this "vn_id" so it is returned
2058 * to this pool's node later. Such way gives a possibility
2059 * to populate pools based on users demand.
2060 *
2061 * On success a ready to go VA is returned.
2062 */
2063 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
2064 if (!va) {
2065 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2066 if (unlikely(!va))
2067 return ERR_PTR(-ENOMEM);
2068
2069 /*
2070 * Only scan the relevant parts containing pointers to other objects
2071 * to avoid false negatives.
2072 */
2073 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2074 }
2075
2076 retry:
2077 if (IS_ERR_VALUE(addr)) {
2078 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2079 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2080 size, align, vstart, vend);
2081 spin_unlock(&free_vmap_area_lock);
2082
2083 /*
2084 * This is not a fast path. Check if yielding is needed. This
2085 * is the only reschedule point in the vmalloc() path.
2086 */
2087 if (allow_block)
2088 cond_resched();
2089 }
2090
2091 trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr));
2092
2093 /*
2094 * If an allocation fails, the error value is
2095 * returned. Therefore trigger the overflow path.
2096 */
2097 if (IS_ERR_VALUE(addr)) {
2098 if (allow_block)
2099 goto overflow;
2100
2101 /*
2102 * We can not trigger any reclaim logic because
2103 * sleeping is not allowed, thus fail an allocation.
2104 */
2105 goto out_free_va;
2106 }
2107
2108 va->va_start = addr;
2109 va->va_end = addr + size;
2110 va->vm = NULL;
2111 va->flags = (va_flags | vn_id);
2112
2113 if (vm) {
2114 vm->addr = (void *)va->va_start;
2115 vm->size = va_size(va);
2116 va->vm = vm;
2117 }
2118
2119 vn = addr_to_node(va->va_start);
2120
2121 spin_lock(&vn->busy.lock);
2122 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2123 spin_unlock(&vn->busy.lock);
2124
2125 BUG_ON(!IS_ALIGNED(va->va_start, align));
2126 BUG_ON(va->va_start < vstart);
2127 BUG_ON(va->va_end > vend);
2128
2129 ret = kasan_populate_vmalloc(addr, size, gfp_mask);
2130 if (ret) {
2131 free_vmap_area(va);
2132 return ERR_PTR(ret);
2133 }
2134
2135 return va;
2136
2137 overflow:
2138 if (!purged) {
2139 reclaim_and_purge_vmap_areas();
2140 purged = 1;
2141 goto retry;
2142 }
2143
2144 freed = 0;
2145 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2146
2147 if (freed > 0) {
2148 purged = 0;
2149 goto retry;
2150 }
2151
2152 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2153 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2154 size, vstart, vend);
2155
2156 out_free_va:
2157 kmem_cache_free(vmap_area_cachep, va);
2158 return ERR_PTR(-EBUSY);
2159 }
2160
register_vmap_purge_notifier(struct notifier_block * nb)2161 int register_vmap_purge_notifier(struct notifier_block *nb)
2162 {
2163 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2164 }
2165 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2166
unregister_vmap_purge_notifier(struct notifier_block * nb)2167 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2168 {
2169 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2170 }
2171 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2172
2173 /*
2174 * lazy_max_pages is the maximum amount of virtual address space we gather up
2175 * before attempting to purge with a TLB flush.
2176 *
2177 * There is a tradeoff here: a larger number will cover more kernel page tables
2178 * and take slightly longer to purge, but it will linearly reduce the number of
2179 * global TLB flushes that must be performed. It would seem natural to scale
2180 * this number up linearly with the number of CPUs (because vmapping activity
2181 * could also scale linearly with the number of CPUs), however it is likely
2182 * that in practice, workloads might be constrained in other ways that mean
2183 * vmap activity will not scale linearly with CPUs. Also, I want to be
2184 * conservative and not introduce a big latency on huge systems, so go with
2185 * a less aggressive log scale. It will still be an improvement over the old
2186 * code, and it will be simple to change the scale factor if we find that it
2187 * becomes a problem on bigger systems.
2188 */
lazy_max_pages(void)2189 static unsigned long lazy_max_pages(void)
2190 {
2191 unsigned int log;
2192
2193 log = fls(num_online_cpus());
2194
2195 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2196 }
2197
2198 /*
2199 * Serialize vmap purging. There is no actual critical section protected
2200 * by this lock, but we want to avoid concurrent calls for performance
2201 * reasons and to make the pcpu_get_vm_areas more deterministic.
2202 */
2203 static DEFINE_MUTEX(vmap_purge_lock);
2204
2205 /* for per-CPU blocks */
2206 static void purge_fragmented_blocks_allcpus(void);
2207
2208 static void
reclaim_list_global(struct list_head * head)2209 reclaim_list_global(struct list_head *head)
2210 {
2211 struct vmap_area *va, *n;
2212
2213 if (list_empty(head))
2214 return;
2215
2216 spin_lock(&free_vmap_area_lock);
2217 list_for_each_entry_safe(va, n, head, list)
2218 merge_or_add_vmap_area_augment(va,
2219 &free_vmap_area_root, &free_vmap_area_list);
2220 spin_unlock(&free_vmap_area_lock);
2221 }
2222
2223 static void
decay_va_pool_node(struct vmap_node * vn,bool full_decay)2224 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2225 {
2226 LIST_HEAD(decay_list);
2227 struct rb_root decay_root = RB_ROOT;
2228 struct vmap_area *va, *nva;
2229 unsigned long n_decay, pool_len;
2230 int i;
2231
2232 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2233 LIST_HEAD(tmp_list);
2234
2235 if (list_empty(&vn->pool[i].head))
2236 continue;
2237
2238 /* Detach the pool, so no-one can access it. */
2239 spin_lock(&vn->pool_lock);
2240 list_replace_init(&vn->pool[i].head, &tmp_list);
2241 spin_unlock(&vn->pool_lock);
2242
2243 pool_len = n_decay = vn->pool[i].len;
2244 WRITE_ONCE(vn->pool[i].len, 0);
2245
2246 /* Decay a pool by ~25% out of left objects. */
2247 if (!full_decay)
2248 n_decay >>= 2;
2249 pool_len -= n_decay;
2250
2251 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2252 if (!n_decay--)
2253 break;
2254
2255 list_del_init(&va->list);
2256 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2257 }
2258
2259 /*
2260 * Attach the pool back if it has been partly decayed.
2261 * Please note, it is supposed that nobody(other contexts)
2262 * can populate the pool therefore a simple list replace
2263 * operation takes place here.
2264 */
2265 if (!list_empty(&tmp_list)) {
2266 spin_lock(&vn->pool_lock);
2267 list_replace_init(&tmp_list, &vn->pool[i].head);
2268 WRITE_ONCE(vn->pool[i].len, pool_len);
2269 spin_unlock(&vn->pool_lock);
2270 }
2271 }
2272
2273 reclaim_list_global(&decay_list);
2274 }
2275
2276 #define KASAN_RELEASE_BATCH_SIZE 32
2277
2278 static void
kasan_release_vmalloc_node(struct vmap_node * vn)2279 kasan_release_vmalloc_node(struct vmap_node *vn)
2280 {
2281 struct vmap_area *va;
2282 unsigned long start, end;
2283 unsigned int batch_count = 0;
2284
2285 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2286 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2287
2288 list_for_each_entry(va, &vn->purge_list, list) {
2289 if (is_vmalloc_or_module_addr((void *) va->va_start))
2290 kasan_release_vmalloc(va->va_start, va->va_end,
2291 va->va_start, va->va_end,
2292 KASAN_VMALLOC_PAGE_RANGE);
2293
2294 if (need_resched() || (++batch_count >= KASAN_RELEASE_BATCH_SIZE)) {
2295 cond_resched();
2296 batch_count = 0;
2297 }
2298 }
2299
2300 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2301 }
2302
purge_vmap_node(struct work_struct * work)2303 static void purge_vmap_node(struct work_struct *work)
2304 {
2305 struct vmap_node *vn = container_of(work,
2306 struct vmap_node, purge_work);
2307 unsigned long nr_purged_pages = 0;
2308 struct vmap_area *va, *n_va;
2309 LIST_HEAD(local_list);
2310
2311 if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2312 kasan_release_vmalloc_node(vn);
2313
2314 vn->nr_purged = 0;
2315
2316 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2317 unsigned long nr = va_size(va) >> PAGE_SHIFT;
2318 unsigned int vn_id = decode_vn_id(va->flags);
2319
2320 list_del_init(&va->list);
2321
2322 nr_purged_pages += nr;
2323 vn->nr_purged++;
2324
2325 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2326 if (node_pool_add_va(vn, va))
2327 continue;
2328
2329 /* Go back to global. */
2330 list_add(&va->list, &local_list);
2331 }
2332
2333 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2334
2335 reclaim_list_global(&local_list);
2336 }
2337
2338 /*
2339 * Purges all lazily-freed vmap areas.
2340 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end,bool full_pool_decay)2341 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2342 bool full_pool_decay)
2343 {
2344 unsigned long nr_purged_areas = 0;
2345 unsigned int nr_purge_helpers;
2346 static cpumask_t purge_nodes;
2347 unsigned int nr_purge_nodes;
2348 struct vmap_node *vn;
2349 int i;
2350
2351 lockdep_assert_held(&vmap_purge_lock);
2352
2353 /*
2354 * Use cpumask to mark which node has to be processed.
2355 */
2356 purge_nodes = CPU_MASK_NONE;
2357
2358 for_each_vmap_node(vn) {
2359 INIT_LIST_HEAD(&vn->purge_list);
2360 vn->skip_populate = full_pool_decay;
2361 decay_va_pool_node(vn, full_pool_decay);
2362
2363 if (RB_EMPTY_ROOT(&vn->lazy.root))
2364 continue;
2365
2366 spin_lock(&vn->lazy.lock);
2367 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2368 list_replace_init(&vn->lazy.head, &vn->purge_list);
2369 spin_unlock(&vn->lazy.lock);
2370
2371 start = min(start, list_first_entry(&vn->purge_list,
2372 struct vmap_area, list)->va_start);
2373
2374 end = max(end, list_last_entry(&vn->purge_list,
2375 struct vmap_area, list)->va_end);
2376
2377 cpumask_set_cpu(node_to_id(vn), &purge_nodes);
2378 }
2379
2380 nr_purge_nodes = cpumask_weight(&purge_nodes);
2381 if (nr_purge_nodes > 0) {
2382 flush_tlb_kernel_range(start, end);
2383
2384 /* One extra worker is per a lazy_max_pages() full set minus one. */
2385 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2386 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2387
2388 for_each_cpu(i, &purge_nodes) {
2389 vn = &vmap_nodes[i];
2390
2391 if (nr_purge_helpers > 0) {
2392 INIT_WORK(&vn->purge_work, purge_vmap_node);
2393
2394 if (cpumask_test_cpu(i, cpu_online_mask))
2395 schedule_work_on(i, &vn->purge_work);
2396 else
2397 schedule_work(&vn->purge_work);
2398
2399 nr_purge_helpers--;
2400 } else {
2401 vn->purge_work.func = NULL;
2402 purge_vmap_node(&vn->purge_work);
2403 nr_purged_areas += vn->nr_purged;
2404 }
2405 }
2406
2407 for_each_cpu(i, &purge_nodes) {
2408 vn = &vmap_nodes[i];
2409
2410 if (vn->purge_work.func) {
2411 flush_work(&vn->purge_work);
2412 nr_purged_areas += vn->nr_purged;
2413 }
2414 }
2415 }
2416
2417 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2418 return nr_purged_areas > 0;
2419 }
2420
2421 /*
2422 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2423 */
reclaim_and_purge_vmap_areas(void)2424 static void reclaim_and_purge_vmap_areas(void)
2425
2426 {
2427 mutex_lock(&vmap_purge_lock);
2428 purge_fragmented_blocks_allcpus();
2429 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2430 mutex_unlock(&vmap_purge_lock);
2431 }
2432
drain_vmap_area_work(struct work_struct * work)2433 static void drain_vmap_area_work(struct work_struct *work)
2434 {
2435 mutex_lock(&vmap_purge_lock);
2436 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2437 mutex_unlock(&vmap_purge_lock);
2438 }
2439
2440 /*
2441 * Free a vmap area, caller ensuring that the area has been unmapped,
2442 * unlinked and flush_cache_vunmap had been called for the correct
2443 * range previously.
2444 */
free_vmap_area_noflush(struct vmap_area * va)2445 static void free_vmap_area_noflush(struct vmap_area *va)
2446 {
2447 unsigned long nr_lazy_max = lazy_max_pages();
2448 unsigned long va_start = va->va_start;
2449 unsigned int vn_id = decode_vn_id(va->flags);
2450 struct vmap_node *vn;
2451 unsigned long nr_lazy;
2452
2453 if (WARN_ON_ONCE(!list_empty(&va->list)))
2454 return;
2455
2456 nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT,
2457 &vmap_lazy_nr);
2458
2459 /*
2460 * If it was request by a certain node we would like to
2461 * return it to that node, i.e. its pool for later reuse.
2462 */
2463 vn = is_vn_id_valid(vn_id) ?
2464 id_to_node(vn_id):addr_to_node(va->va_start);
2465
2466 spin_lock(&vn->lazy.lock);
2467 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2468 spin_unlock(&vn->lazy.lock);
2469
2470 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2471
2472 /* After this point, we may free va at any time */
2473 if (unlikely(nr_lazy > nr_lazy_max))
2474 schedule_work(&drain_vmap_work);
2475 }
2476
2477 /*
2478 * Free and unmap a vmap area
2479 */
free_unmap_vmap_area(struct vmap_area * va)2480 static void free_unmap_vmap_area(struct vmap_area *va)
2481 {
2482 flush_cache_vunmap(va->va_start, va->va_end);
2483 vunmap_range_noflush(va->va_start, va->va_end);
2484 if (debug_pagealloc_enabled_static())
2485 flush_tlb_kernel_range(va->va_start, va->va_end);
2486
2487 free_vmap_area_noflush(va);
2488 }
2489
find_vmap_area(unsigned long addr)2490 struct vmap_area *find_vmap_area(unsigned long addr)
2491 {
2492 struct vmap_node *vn;
2493 struct vmap_area *va;
2494 int i, j;
2495
2496 if (unlikely(!vmap_initialized))
2497 return NULL;
2498
2499 /*
2500 * An addr_to_node_id(addr) converts an address to a node index
2501 * where a VA is located. If VA spans several zones and passed
2502 * addr is not the same as va->va_start, what is not common, we
2503 * may need to scan extra nodes. See an example:
2504 *
2505 * <----va---->
2506 * -|-----|-----|-----|-----|-
2507 * 1 2 0 1
2508 *
2509 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2510 * addr is within 2 or 0 nodes we should do extra work.
2511 */
2512 i = j = addr_to_node_id(addr);
2513 do {
2514 vn = &vmap_nodes[i];
2515
2516 spin_lock(&vn->busy.lock);
2517 va = __find_vmap_area(addr, &vn->busy.root);
2518 spin_unlock(&vn->busy.lock);
2519
2520 if (va)
2521 return va;
2522 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2523
2524 return NULL;
2525 }
2526
find_unlink_vmap_area(unsigned long addr)2527 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2528 {
2529 struct vmap_node *vn;
2530 struct vmap_area *va;
2531 int i, j;
2532
2533 /*
2534 * Check the comment in the find_vmap_area() about the loop.
2535 */
2536 i = j = addr_to_node_id(addr);
2537 do {
2538 vn = &vmap_nodes[i];
2539
2540 spin_lock(&vn->busy.lock);
2541 va = __find_vmap_area(addr, &vn->busy.root);
2542 if (va)
2543 unlink_va(va, &vn->busy.root);
2544 spin_unlock(&vn->busy.lock);
2545
2546 if (va)
2547 return va;
2548 } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j);
2549
2550 return NULL;
2551 }
2552
2553 /*** Per cpu kva allocator ***/
2554
2555 /*
2556 * vmap space is limited especially on 32 bit architectures. Ensure there is
2557 * room for at least 16 percpu vmap blocks per CPU.
2558 */
2559 /*
2560 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2561 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2562 * instead (we just need a rough idea)
2563 */
2564 #if BITS_PER_LONG == 32
2565 #define VMALLOC_SPACE (128UL*1024*1024)
2566 #else
2567 #define VMALLOC_SPACE (128UL*1024*1024*1024)
2568 #endif
2569
2570 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2571 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2572 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2573 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2574 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2575 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2576 #define VMAP_BBMAP_BITS \
2577 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2578 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2579 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2580
2581 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2582
2583 /*
2584 * Purge threshold to prevent overeager purging of fragmented blocks for
2585 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2586 */
2587 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2588
2589 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2590 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2591 #define VMAP_FLAGS_MASK 0x3
2592
2593 struct vmap_block_queue {
2594 spinlock_t lock;
2595 struct list_head free;
2596
2597 /*
2598 * An xarray requires an extra memory dynamically to
2599 * be allocated. If it is an issue, we can use rb-tree
2600 * instead.
2601 */
2602 struct xarray vmap_blocks;
2603 };
2604
2605 struct vmap_block {
2606 spinlock_t lock;
2607 struct vmap_area *va;
2608 unsigned long free, dirty;
2609 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2610 unsigned long dirty_min, dirty_max; /*< dirty range */
2611 struct list_head free_list;
2612 struct rcu_head rcu_head;
2613 struct list_head purge;
2614 unsigned int cpu;
2615 };
2616
2617 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2618 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2619
2620 /*
2621 * In order to fast access to any "vmap_block" associated with a
2622 * specific address, we use a hash.
2623 *
2624 * A per-cpu vmap_block_queue is used in both ways, to serialize
2625 * an access to free block chains among CPUs(alloc path) and it
2626 * also acts as a vmap_block hash(alloc/free paths). It means we
2627 * overload it, since we already have the per-cpu array which is
2628 * used as a hash table. When used as a hash a 'cpu' passed to
2629 * per_cpu() is not actually a CPU but rather a hash index.
2630 *
2631 * A hash function is addr_to_vb_xa() which hashes any address
2632 * to a specific index(in a hash) it belongs to. This then uses a
2633 * per_cpu() macro to access an array with generated index.
2634 *
2635 * An example:
2636 *
2637 * CPU_1 CPU_2 CPU_0
2638 * | | |
2639 * V V V
2640 * 0 10 20 30 40 50 60
2641 * |------|------|------|------|------|------|...<vmap address space>
2642 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2643 *
2644 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2645 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2646 *
2647 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2648 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2649 *
2650 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2651 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2652 *
2653 * This technique almost always avoids lock contention on insert/remove,
2654 * however xarray spinlocks protect against any contention that remains.
2655 */
2656 static struct xarray *
addr_to_vb_xa(unsigned long addr)2657 addr_to_vb_xa(unsigned long addr)
2658 {
2659 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2660
2661 /*
2662 * Please note, nr_cpu_ids points on a highest set
2663 * possible bit, i.e. we never invoke cpumask_next()
2664 * if an index points on it which is nr_cpu_ids - 1.
2665 */
2666 if (!cpu_possible(index))
2667 index = cpumask_next(index, cpu_possible_mask);
2668
2669 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2670 }
2671
2672 /*
2673 * We should probably have a fallback mechanism to allocate virtual memory
2674 * out of partially filled vmap blocks. However vmap block sizing should be
2675 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2676 * big problem.
2677 */
2678
addr_to_vb_idx(unsigned long addr)2679 static unsigned long addr_to_vb_idx(unsigned long addr)
2680 {
2681 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2682 addr /= VMAP_BLOCK_SIZE;
2683 return addr;
2684 }
2685
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2686 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2687 {
2688 unsigned long addr;
2689
2690 addr = va_start + (pages_off << PAGE_SHIFT);
2691 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2692 return (void *)addr;
2693 }
2694
2695 /**
2696 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2697 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2698 * @order: how many 2^order pages should be occupied in newly allocated block
2699 * @gfp_mask: flags for the page level allocator
2700 *
2701 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2702 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2703 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2704 {
2705 struct vmap_block_queue *vbq;
2706 struct vmap_block *vb;
2707 struct vmap_area *va;
2708 struct xarray *xa;
2709 unsigned long vb_idx;
2710 int node, err;
2711 void *vaddr;
2712
2713 node = numa_node_id();
2714
2715 vb = kmalloc_node(sizeof(struct vmap_block), gfp_mask, node);
2716 if (unlikely(!vb))
2717 return ERR_PTR(-ENOMEM);
2718
2719 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2720 VMALLOC_START, VMALLOC_END,
2721 node, gfp_mask,
2722 VMAP_RAM|VMAP_BLOCK, NULL);
2723 if (IS_ERR(va)) {
2724 kfree(vb);
2725 return ERR_CAST(va);
2726 }
2727
2728 vaddr = vmap_block_vaddr(va->va_start, 0);
2729 spin_lock_init(&vb->lock);
2730 vb->va = va;
2731 /* At least something should be left free */
2732 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2733 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2734 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2735 vb->dirty = 0;
2736 vb->dirty_min = VMAP_BBMAP_BITS;
2737 vb->dirty_max = 0;
2738 bitmap_set(vb->used_map, 0, (1UL << order));
2739 INIT_LIST_HEAD(&vb->free_list);
2740 vb->cpu = raw_smp_processor_id();
2741
2742 xa = addr_to_vb_xa(va->va_start);
2743 vb_idx = addr_to_vb_idx(va->va_start);
2744 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2745 if (err) {
2746 kfree(vb);
2747 free_vmap_area(va);
2748 return ERR_PTR(err);
2749 }
2750 /*
2751 * list_add_tail_rcu could happened in another core
2752 * rather than vb->cpu due to task migration, which
2753 * is safe as list_add_tail_rcu will ensure the list's
2754 * integrity together with list_for_each_rcu from read
2755 * side.
2756 */
2757 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2758 spin_lock(&vbq->lock);
2759 list_add_tail_rcu(&vb->free_list, &vbq->free);
2760 spin_unlock(&vbq->lock);
2761
2762 return vaddr;
2763 }
2764
free_vmap_block(struct vmap_block * vb)2765 static void free_vmap_block(struct vmap_block *vb)
2766 {
2767 struct vmap_node *vn;
2768 struct vmap_block *tmp;
2769 struct xarray *xa;
2770
2771 xa = addr_to_vb_xa(vb->va->va_start);
2772 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2773 BUG_ON(tmp != vb);
2774
2775 vn = addr_to_node(vb->va->va_start);
2776 spin_lock(&vn->busy.lock);
2777 unlink_va(vb->va, &vn->busy.root);
2778 spin_unlock(&vn->busy.lock);
2779
2780 free_vmap_area_noflush(vb->va);
2781 kfree_rcu(vb, rcu_head);
2782 }
2783
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2784 static bool purge_fragmented_block(struct vmap_block *vb,
2785 struct list_head *purge_list, bool force_purge)
2786 {
2787 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2788
2789 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2790 vb->dirty == VMAP_BBMAP_BITS)
2791 return false;
2792
2793 /* Don't overeagerly purge usable blocks unless requested */
2794 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2795 return false;
2796
2797 /* prevent further allocs after releasing lock */
2798 WRITE_ONCE(vb->free, 0);
2799 /* prevent purging it again */
2800 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2801 vb->dirty_min = 0;
2802 vb->dirty_max = VMAP_BBMAP_BITS;
2803 spin_lock(&vbq->lock);
2804 list_del_rcu(&vb->free_list);
2805 spin_unlock(&vbq->lock);
2806 list_add_tail(&vb->purge, purge_list);
2807 return true;
2808 }
2809
free_purged_blocks(struct list_head * purge_list)2810 static void free_purged_blocks(struct list_head *purge_list)
2811 {
2812 struct vmap_block *vb, *n_vb;
2813
2814 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2815 list_del(&vb->purge);
2816 free_vmap_block(vb);
2817 }
2818 }
2819
purge_fragmented_blocks(int cpu)2820 static void purge_fragmented_blocks(int cpu)
2821 {
2822 LIST_HEAD(purge);
2823 struct vmap_block *vb;
2824 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2825
2826 rcu_read_lock();
2827 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2828 unsigned long free = READ_ONCE(vb->free);
2829 unsigned long dirty = READ_ONCE(vb->dirty);
2830
2831 if (free + dirty != VMAP_BBMAP_BITS ||
2832 dirty == VMAP_BBMAP_BITS)
2833 continue;
2834
2835 spin_lock(&vb->lock);
2836 purge_fragmented_block(vb, &purge, true);
2837 spin_unlock(&vb->lock);
2838 }
2839 rcu_read_unlock();
2840 free_purged_blocks(&purge);
2841 }
2842
purge_fragmented_blocks_allcpus(void)2843 static void purge_fragmented_blocks_allcpus(void)
2844 {
2845 int cpu;
2846
2847 for_each_possible_cpu(cpu)
2848 purge_fragmented_blocks(cpu);
2849 }
2850
vb_alloc(unsigned long size,gfp_t gfp_mask)2851 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2852 {
2853 struct vmap_block_queue *vbq;
2854 struct vmap_block *vb;
2855 void *vaddr = NULL;
2856 unsigned int order;
2857
2858 BUG_ON(offset_in_page(size));
2859 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2860 if (WARN_ON(size == 0)) {
2861 /*
2862 * Allocating 0 bytes isn't what caller wants since
2863 * get_order(0) returns funny result. Just warn and terminate
2864 * early.
2865 */
2866 return ERR_PTR(-EINVAL);
2867 }
2868 order = get_order(size);
2869
2870 rcu_read_lock();
2871 vbq = raw_cpu_ptr(&vmap_block_queue);
2872 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2873 unsigned long pages_off;
2874
2875 if (READ_ONCE(vb->free) < (1UL << order))
2876 continue;
2877
2878 spin_lock(&vb->lock);
2879 if (vb->free < (1UL << order)) {
2880 spin_unlock(&vb->lock);
2881 continue;
2882 }
2883
2884 pages_off = VMAP_BBMAP_BITS - vb->free;
2885 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2886 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2887 bitmap_set(vb->used_map, pages_off, (1UL << order));
2888 if (vb->free == 0) {
2889 spin_lock(&vbq->lock);
2890 list_del_rcu(&vb->free_list);
2891 spin_unlock(&vbq->lock);
2892 }
2893
2894 spin_unlock(&vb->lock);
2895 break;
2896 }
2897
2898 rcu_read_unlock();
2899
2900 /* Allocate new block if nothing was found */
2901 if (!vaddr)
2902 vaddr = new_vmap_block(order, gfp_mask);
2903
2904 return vaddr;
2905 }
2906
vb_free(unsigned long addr,unsigned long size)2907 static void vb_free(unsigned long addr, unsigned long size)
2908 {
2909 unsigned long offset;
2910 unsigned int order;
2911 struct vmap_block *vb;
2912 struct xarray *xa;
2913
2914 BUG_ON(offset_in_page(size));
2915 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2916
2917 flush_cache_vunmap(addr, addr + size);
2918
2919 order = get_order(size);
2920 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2921
2922 xa = addr_to_vb_xa(addr);
2923 vb = xa_load(xa, addr_to_vb_idx(addr));
2924
2925 spin_lock(&vb->lock);
2926 bitmap_clear(vb->used_map, offset, (1UL << order));
2927 spin_unlock(&vb->lock);
2928
2929 vunmap_range_noflush(addr, addr + size);
2930
2931 if (debug_pagealloc_enabled_static())
2932 flush_tlb_kernel_range(addr, addr + size);
2933
2934 spin_lock(&vb->lock);
2935
2936 /* Expand the not yet TLB flushed dirty range */
2937 vb->dirty_min = min(vb->dirty_min, offset);
2938 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2939
2940 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2941 if (vb->dirty == VMAP_BBMAP_BITS) {
2942 BUG_ON(vb->free);
2943 spin_unlock(&vb->lock);
2944 free_vmap_block(vb);
2945 } else
2946 spin_unlock(&vb->lock);
2947 }
2948
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2949 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2950 {
2951 LIST_HEAD(purge_list);
2952 int cpu;
2953
2954 if (unlikely(!vmap_initialized))
2955 return;
2956
2957 mutex_lock(&vmap_purge_lock);
2958
2959 for_each_possible_cpu(cpu) {
2960 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2961 struct vmap_block *vb;
2962 unsigned long idx;
2963
2964 rcu_read_lock();
2965 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2966 spin_lock(&vb->lock);
2967
2968 /*
2969 * Try to purge a fragmented block first. If it's
2970 * not purgeable, check whether there is dirty
2971 * space to be flushed.
2972 */
2973 if (!purge_fragmented_block(vb, &purge_list, false) &&
2974 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2975 unsigned long va_start = vb->va->va_start;
2976 unsigned long s, e;
2977
2978 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2979 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2980
2981 start = min(s, start);
2982 end = max(e, end);
2983
2984 /* Prevent that this is flushed again */
2985 vb->dirty_min = VMAP_BBMAP_BITS;
2986 vb->dirty_max = 0;
2987
2988 flush = 1;
2989 }
2990 spin_unlock(&vb->lock);
2991 }
2992 rcu_read_unlock();
2993 }
2994 free_purged_blocks(&purge_list);
2995
2996 if (!__purge_vmap_area_lazy(start, end, false) && flush)
2997 flush_tlb_kernel_range(start, end);
2998 mutex_unlock(&vmap_purge_lock);
2999 }
3000
3001 /**
3002 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
3003 *
3004 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
3005 * to amortize TLB flushing overheads. What this means is that any page you
3006 * have now, may, in a former life, have been mapped into kernel virtual
3007 * address by the vmap layer and so there might be some CPUs with TLB entries
3008 * still referencing that page (additional to the regular 1:1 kernel mapping).
3009 *
3010 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
3011 * be sure that none of the pages we have control over will have any aliases
3012 * from the vmap layer.
3013 */
vm_unmap_aliases(void)3014 void vm_unmap_aliases(void)
3015 {
3016 _vm_unmap_aliases(ULONG_MAX, 0, 0);
3017 }
3018 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
3019
3020 /**
3021 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
3022 * @mem: the pointer returned by vm_map_ram
3023 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
3024 */
vm_unmap_ram(const void * mem,unsigned int count)3025 void vm_unmap_ram(const void *mem, unsigned int count)
3026 {
3027 unsigned long size = (unsigned long)count << PAGE_SHIFT;
3028 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
3029 struct vmap_area *va;
3030
3031 might_sleep();
3032 BUG_ON(!addr);
3033 BUG_ON(addr < VMALLOC_START);
3034 BUG_ON(addr > VMALLOC_END);
3035 BUG_ON(!PAGE_ALIGNED(addr));
3036
3037 kasan_poison_vmalloc(mem, size);
3038
3039 if (likely(count <= VMAP_MAX_ALLOC)) {
3040 debug_check_no_locks_freed(mem, size);
3041 vb_free(addr, size);
3042 return;
3043 }
3044
3045 va = find_unlink_vmap_area(addr);
3046 if (WARN_ON_ONCE(!va))
3047 return;
3048
3049 debug_check_no_locks_freed((void *)va->va_start, va_size(va));
3050 free_unmap_vmap_area(va);
3051 }
3052 EXPORT_SYMBOL(vm_unmap_ram);
3053
3054 /**
3055 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
3056 * @pages: an array of pointers to the pages to be mapped
3057 * @count: number of pages
3058 * @node: prefer to allocate data structures on this node
3059 *
3060 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
3061 * faster than vmap so it's good. But if you mix long-life and short-life
3062 * objects with vm_map_ram(), it could consume lots of address space through
3063 * fragmentation (especially on a 32bit machine). You could see failures in
3064 * the end. Please use this function for short-lived objects.
3065 *
3066 * Returns: a pointer to the address that has been mapped, or %NULL on failure
3067 */
vm_map_ram(struct page ** pages,unsigned int count,int node)3068 void *vm_map_ram(struct page **pages, unsigned int count, int node)
3069 {
3070 unsigned long size = (unsigned long)count << PAGE_SHIFT;
3071 unsigned long addr;
3072 void *mem;
3073
3074 if (likely(count <= VMAP_MAX_ALLOC)) {
3075 mem = vb_alloc(size, GFP_KERNEL);
3076 if (IS_ERR(mem))
3077 return NULL;
3078 addr = (unsigned long)mem;
3079 } else {
3080 struct vmap_area *va;
3081 va = alloc_vmap_area(size, PAGE_SIZE,
3082 VMALLOC_START, VMALLOC_END,
3083 node, GFP_KERNEL, VMAP_RAM,
3084 NULL);
3085 if (IS_ERR(va))
3086 return NULL;
3087
3088 addr = va->va_start;
3089 mem = (void *)addr;
3090 }
3091
3092 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3093 pages, PAGE_SHIFT) < 0) {
3094 vm_unmap_ram(mem, count);
3095 return NULL;
3096 }
3097
3098 /*
3099 * Mark the pages as accessible, now that they are mapped.
3100 * With hardware tag-based KASAN, marking is skipped for
3101 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3102 */
3103 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3104
3105 return mem;
3106 }
3107 EXPORT_SYMBOL(vm_map_ram);
3108
3109 static struct vm_struct *vmlist __initdata;
3110
vm_area_page_order(struct vm_struct * vm)3111 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3112 {
3113 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3114 return vm->page_order;
3115 #else
3116 return 0;
3117 #endif
3118 }
3119
get_vm_area_page_order(struct vm_struct * vm)3120 unsigned int get_vm_area_page_order(struct vm_struct *vm)
3121 {
3122 return vm_area_page_order(vm);
3123 }
3124
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)3125 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3126 {
3127 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3128 vm->page_order = order;
3129 #else
3130 BUG_ON(order != 0);
3131 #endif
3132 }
3133
3134 /**
3135 * vm_area_add_early - add vmap area early during boot
3136 * @vm: vm_struct to add
3137 *
3138 * This function is used to add fixed kernel vm area to vmlist before
3139 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3140 * should contain proper values and the other fields should be zero.
3141 *
3142 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3143 */
vm_area_add_early(struct vm_struct * vm)3144 void __init vm_area_add_early(struct vm_struct *vm)
3145 {
3146 struct vm_struct *tmp, **p;
3147
3148 BUG_ON(vmap_initialized);
3149 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3150 if (tmp->addr >= vm->addr) {
3151 BUG_ON(tmp->addr < vm->addr + vm->size);
3152 break;
3153 } else
3154 BUG_ON(tmp->addr + tmp->size > vm->addr);
3155 }
3156 vm->next = *p;
3157 *p = vm;
3158 }
3159
3160 /**
3161 * vm_area_register_early - register vmap area early during boot
3162 * @vm: vm_struct to register
3163 * @align: requested alignment
3164 *
3165 * This function is used to register kernel vm area before
3166 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3167 * proper values on entry and other fields should be zero. On return,
3168 * vm->addr contains the allocated address.
3169 *
3170 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3171 */
vm_area_register_early(struct vm_struct * vm,size_t align)3172 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3173 {
3174 unsigned long addr = ALIGN(VMALLOC_START, align);
3175 struct vm_struct *cur, **p;
3176
3177 BUG_ON(vmap_initialized);
3178
3179 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3180 if ((unsigned long)cur->addr - addr >= vm->size)
3181 break;
3182 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3183 }
3184
3185 BUG_ON(addr > VMALLOC_END - vm->size);
3186 vm->addr = (void *)addr;
3187 vm->next = *p;
3188 *p = vm;
3189 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3190 }
3191
clear_vm_uninitialized_flag(struct vm_struct * vm)3192 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3193 {
3194 /*
3195 * Before removing VM_UNINITIALIZED,
3196 * we should make sure that vm has proper values.
3197 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show().
3198 */
3199 smp_wmb();
3200 vm->flags &= ~VM_UNINITIALIZED;
3201 }
3202
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)3203 struct vm_struct *__get_vm_area_node(unsigned long size,
3204 unsigned long align, unsigned long shift, unsigned long flags,
3205 unsigned long start, unsigned long end, int node,
3206 gfp_t gfp_mask, const void *caller)
3207 {
3208 struct vmap_area *va;
3209 struct vm_struct *area;
3210 unsigned long requested_size = size;
3211
3212 BUG_ON(in_interrupt());
3213 size = ALIGN(size, 1ul << shift);
3214 if (unlikely(!size))
3215 return NULL;
3216
3217 if (flags & VM_IOREMAP)
3218 align = 1ul << clamp_t(int, get_count_order_long(size),
3219 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3220
3221 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3222 if (unlikely(!area))
3223 return NULL;
3224
3225 if (!(flags & VM_NO_GUARD))
3226 size += PAGE_SIZE;
3227
3228 area->flags = flags;
3229 area->caller = caller;
3230 area->requested_size = requested_size;
3231
3232 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3233 if (IS_ERR(va)) {
3234 kfree(area);
3235 return NULL;
3236 }
3237
3238 /*
3239 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3240 * best-effort approach, as they can be mapped outside of vmalloc code.
3241 * For VM_ALLOC mappings, the pages are marked as accessible after
3242 * getting mapped in __vmalloc_node_range().
3243 * With hardware tag-based KASAN, marking is skipped for
3244 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3245 */
3246 if (!(flags & VM_ALLOC))
3247 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3248 KASAN_VMALLOC_PROT_NORMAL);
3249
3250 return area;
3251 }
3252
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)3253 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3254 unsigned long start, unsigned long end,
3255 const void *caller)
3256 {
3257 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3258 NUMA_NO_NODE, GFP_KERNEL, caller);
3259 }
3260
3261 /**
3262 * get_vm_area - reserve a contiguous kernel virtual area
3263 * @size: size of the area
3264 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3265 *
3266 * Search an area of @size in the kernel virtual mapping area,
3267 * and reserved it for out purposes. Returns the area descriptor
3268 * on success or %NULL on failure.
3269 *
3270 * Return: the area descriptor on success or %NULL on failure.
3271 */
get_vm_area(unsigned long size,unsigned long flags)3272 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3273 {
3274 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3275 VMALLOC_START, VMALLOC_END,
3276 NUMA_NO_NODE, GFP_KERNEL,
3277 __builtin_return_address(0));
3278 }
3279
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)3280 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3281 const void *caller)
3282 {
3283 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3284 VMALLOC_START, VMALLOC_END,
3285 NUMA_NO_NODE, GFP_KERNEL, caller);
3286 }
3287
3288 /**
3289 * find_vm_area - find a continuous kernel virtual area
3290 * @addr: base address
3291 *
3292 * Search for the kernel VM area starting at @addr, and return it.
3293 * It is up to the caller to do all required locking to keep the returned
3294 * pointer valid.
3295 *
3296 * Return: the area descriptor on success or %NULL on failure.
3297 */
find_vm_area(const void * addr)3298 struct vm_struct *find_vm_area(const void *addr)
3299 {
3300 struct vmap_area *va;
3301
3302 va = find_vmap_area((unsigned long)addr);
3303 if (!va)
3304 return NULL;
3305
3306 return va->vm;
3307 }
3308
3309 /**
3310 * remove_vm_area - find and remove a continuous kernel virtual area
3311 * @addr: base address
3312 *
3313 * Search for the kernel VM area starting at @addr, and remove it.
3314 * This function returns the found VM area, but using it is NOT safe
3315 * on SMP machines, except for its size or flags.
3316 *
3317 * Return: the area descriptor on success or %NULL on failure.
3318 */
remove_vm_area(const void * addr)3319 struct vm_struct *remove_vm_area(const void *addr)
3320 {
3321 struct vmap_area *va;
3322 struct vm_struct *vm;
3323
3324 might_sleep();
3325
3326 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3327 addr))
3328 return NULL;
3329
3330 va = find_unlink_vmap_area((unsigned long)addr);
3331 if (!va || !va->vm)
3332 return NULL;
3333 vm = va->vm;
3334
3335 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3336 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3337 kasan_free_module_shadow(vm);
3338 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3339
3340 free_unmap_vmap_area(va);
3341 return vm;
3342 }
3343
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))3344 static inline void set_area_direct_map(const struct vm_struct *area,
3345 int (*set_direct_map)(struct page *page))
3346 {
3347 int i;
3348
3349 /* HUGE_VMALLOC passes small pages to set_direct_map */
3350 for (i = 0; i < area->nr_pages; i++)
3351 if (page_address(area->pages[i]))
3352 set_direct_map(area->pages[i]);
3353 }
3354
3355 /*
3356 * Flush the vm mapping and reset the direct map.
3357 */
vm_reset_perms(struct vm_struct * area)3358 static void vm_reset_perms(struct vm_struct *area)
3359 {
3360 unsigned long start = ULONG_MAX, end = 0;
3361 unsigned int page_order = vm_area_page_order(area);
3362 int flush_dmap = 0;
3363 int i;
3364
3365 /*
3366 * Find the start and end range of the direct mappings to make sure that
3367 * the vm_unmap_aliases() flush includes the direct map.
3368 */
3369 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3370 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3371
3372 if (addr) {
3373 unsigned long page_size;
3374
3375 page_size = PAGE_SIZE << page_order;
3376 start = min(addr, start);
3377 end = max(addr + page_size, end);
3378 flush_dmap = 1;
3379 }
3380 }
3381
3382 /*
3383 * Set direct map to something invalid so that it won't be cached if
3384 * there are any accesses after the TLB flush, then flush the TLB and
3385 * reset the direct map permissions to the default.
3386 */
3387 set_area_direct_map(area, set_direct_map_invalid_noflush);
3388 _vm_unmap_aliases(start, end, flush_dmap);
3389 set_area_direct_map(area, set_direct_map_default_noflush);
3390 }
3391
delayed_vfree_work(struct work_struct * w)3392 static void delayed_vfree_work(struct work_struct *w)
3393 {
3394 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3395 struct llist_node *t, *llnode;
3396
3397 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3398 vfree(llnode);
3399 }
3400
3401 /**
3402 * vfree_atomic - release memory allocated by vmalloc()
3403 * @addr: memory base address
3404 *
3405 * This one is just like vfree() but can be called in any atomic context
3406 * except NMIs.
3407 */
vfree_atomic(const void * addr)3408 void vfree_atomic(const void *addr)
3409 {
3410 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3411
3412 BUG_ON(in_nmi());
3413 kmemleak_free(addr);
3414
3415 /*
3416 * Use raw_cpu_ptr() because this can be called from preemptible
3417 * context. Preemption is absolutely fine here, because the llist_add()
3418 * implementation is lockless, so it works even if we are adding to
3419 * another cpu's list. schedule_work() should be fine with this too.
3420 */
3421 if (addr && llist_add((struct llist_node *)addr, &p->list))
3422 schedule_work(&p->wq);
3423 }
3424
3425 /**
3426 * vfree - Release memory allocated by vmalloc()
3427 * @addr: Memory base address
3428 *
3429 * Free the virtually continuous memory area starting at @addr, as obtained
3430 * from one of the vmalloc() family of APIs. This will usually also free the
3431 * physical memory underlying the virtual allocation, but that memory is
3432 * reference counted, so it will not be freed until the last user goes away.
3433 *
3434 * If @addr is NULL, no operation is performed.
3435 *
3436 * Context:
3437 * May sleep if called *not* from interrupt context.
3438 * Must not be called in NMI context (strictly speaking, it could be
3439 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3440 * conventions for vfree() arch-dependent would be a really bad idea).
3441 */
vfree(const void * addr)3442 void vfree(const void *addr)
3443 {
3444 struct vm_struct *vm;
3445 int i;
3446
3447 if (unlikely(in_interrupt())) {
3448 vfree_atomic(addr);
3449 return;
3450 }
3451
3452 BUG_ON(in_nmi());
3453 kmemleak_free(addr);
3454 might_sleep();
3455
3456 if (!addr)
3457 return;
3458
3459 vm = remove_vm_area(addr);
3460 if (unlikely(!vm)) {
3461 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3462 addr);
3463 return;
3464 }
3465
3466 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3467 vm_reset_perms(vm);
3468 /* All pages of vm should be charged to same memcg, so use first one. */
3469 if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES))
3470 mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages);
3471 for (i = 0; i < vm->nr_pages; i++) {
3472 struct page *page = vm->pages[i];
3473
3474 BUG_ON(!page);
3475 /*
3476 * High-order allocs for huge vmallocs are split, so
3477 * can be freed as an array of order-0 allocations
3478 */
3479 __free_page(page);
3480 cond_resched();
3481 }
3482 if (!(vm->flags & VM_MAP_PUT_PAGES))
3483 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3484 kvfree(vm->pages);
3485 kfree(vm);
3486 }
3487 EXPORT_SYMBOL(vfree);
3488
3489 /**
3490 * vunmap - release virtual mapping obtained by vmap()
3491 * @addr: memory base address
3492 *
3493 * Free the virtually contiguous memory area starting at @addr,
3494 * which was created from the page array passed to vmap().
3495 *
3496 * Must not be called in interrupt context.
3497 */
vunmap(const void * addr)3498 void vunmap(const void *addr)
3499 {
3500 struct vm_struct *vm;
3501
3502 BUG_ON(in_interrupt());
3503 might_sleep();
3504
3505 if (!addr)
3506 return;
3507 vm = remove_vm_area(addr);
3508 if (unlikely(!vm)) {
3509 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3510 addr);
3511 return;
3512 }
3513 kfree(vm);
3514 }
3515 EXPORT_SYMBOL(vunmap);
3516
3517 /**
3518 * vmap - map an array of pages into virtually contiguous space
3519 * @pages: array of page pointers
3520 * @count: number of pages to map
3521 * @flags: vm_area->flags
3522 * @prot: page protection for the mapping
3523 *
3524 * Maps @count pages from @pages into contiguous kernel virtual space.
3525 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3526 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3527 * are transferred from the caller to vmap(), and will be freed / dropped when
3528 * vfree() is called on the return value.
3529 *
3530 * Return: the address of the area or %NULL on failure
3531 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)3532 void *vmap(struct page **pages, unsigned int count,
3533 unsigned long flags, pgprot_t prot)
3534 {
3535 struct vm_struct *area;
3536 unsigned long addr;
3537 unsigned long size; /* In bytes */
3538
3539 might_sleep();
3540
3541 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3542 return NULL;
3543
3544 /*
3545 * Your top guard is someone else's bottom guard. Not having a top
3546 * guard compromises someone else's mappings too.
3547 */
3548 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3549 flags &= ~VM_NO_GUARD;
3550
3551 if (count > totalram_pages())
3552 return NULL;
3553
3554 size = (unsigned long)count << PAGE_SHIFT;
3555 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3556 if (!area)
3557 return NULL;
3558
3559 addr = (unsigned long)area->addr;
3560 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3561 pages, PAGE_SHIFT) < 0) {
3562 vunmap(area->addr);
3563 return NULL;
3564 }
3565
3566 if (flags & VM_MAP_PUT_PAGES) {
3567 area->pages = pages;
3568 area->nr_pages = count;
3569 }
3570 return area->addr;
3571 }
3572 EXPORT_SYMBOL(vmap);
3573
3574 #ifdef CONFIG_VMAP_PFN
3575 struct vmap_pfn_data {
3576 unsigned long *pfns;
3577 pgprot_t prot;
3578 unsigned int idx;
3579 };
3580
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)3581 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3582 {
3583 struct vmap_pfn_data *data = private;
3584 unsigned long pfn = data->pfns[data->idx];
3585 pte_t ptent;
3586
3587 if (WARN_ON_ONCE(pfn_valid(pfn)))
3588 return -EINVAL;
3589
3590 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3591 set_pte_at(&init_mm, addr, pte, ptent);
3592
3593 data->idx++;
3594 return 0;
3595 }
3596
3597 /**
3598 * vmap_pfn - map an array of PFNs into virtually contiguous space
3599 * @pfns: array of PFNs
3600 * @count: number of pages to map
3601 * @prot: page protection for the mapping
3602 *
3603 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3604 * the start address of the mapping.
3605 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3606 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3607 {
3608 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3609 struct vm_struct *area;
3610
3611 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3612 __builtin_return_address(0));
3613 if (!area)
3614 return NULL;
3615 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3616 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3617 free_vm_area(area);
3618 return NULL;
3619 }
3620
3621 flush_cache_vmap((unsigned long)area->addr,
3622 (unsigned long)area->addr + count * PAGE_SIZE);
3623
3624 return area->addr;
3625 }
3626 EXPORT_SYMBOL_GPL(vmap_pfn);
3627 #endif /* CONFIG_VMAP_PFN */
3628
3629 /*
3630 * Helper for vmalloc to adjust the gfp flags for certain allocations.
3631 */
vmalloc_gfp_adjust(gfp_t flags,const bool large)3632 static inline gfp_t vmalloc_gfp_adjust(gfp_t flags, const bool large)
3633 {
3634 flags |= __GFP_NOWARN;
3635 if (large)
3636 flags &= ~__GFP_NOFAIL;
3637 return flags;
3638 }
3639
3640 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3641 vm_area_alloc_pages(gfp_t gfp, int nid,
3642 unsigned int order, unsigned int nr_pages, struct page **pages)
3643 {
3644 unsigned int nr_allocated = 0;
3645 unsigned int nr_remaining = nr_pages;
3646 unsigned int max_attempt_order = MAX_PAGE_ORDER;
3647 struct page *page;
3648 int i;
3649 unsigned int large_order = ilog2(nr_remaining);
3650 gfp_t large_gfp = vmalloc_gfp_adjust(gfp, large_order) & ~__GFP_DIRECT_RECLAIM;
3651
3652 large_order = min(max_attempt_order, large_order);
3653
3654 /*
3655 * Initially, attempt to have the page allocator give us large order
3656 * pages. Do not attempt allocating smaller than order chunks since
3657 * __vmap_pages_range() expects physically contigous pages of exactly
3658 * order long chunks.
3659 */
3660 while (large_order > order && nr_remaining) {
3661 if (nid == NUMA_NO_NODE)
3662 page = alloc_pages_noprof(large_gfp, large_order);
3663 else
3664 page = alloc_pages_node_noprof(nid, large_gfp, large_order);
3665
3666 if (unlikely(!page)) {
3667 max_attempt_order = --large_order;
3668 continue;
3669 }
3670
3671 split_page(page, large_order);
3672 for (i = 0; i < (1U << large_order); i++)
3673 pages[nr_allocated + i] = page + i;
3674
3675 nr_allocated += 1U << large_order;
3676 nr_remaining = nr_pages - nr_allocated;
3677
3678 large_order = ilog2(nr_remaining);
3679 large_order = min(max_attempt_order, large_order);
3680 }
3681
3682 /*
3683 * For order-0 pages we make use of bulk allocator, if
3684 * the page array is partly or not at all populated due
3685 * to fails, fallback to a single page allocator that is
3686 * more permissive.
3687 */
3688 if (!order) {
3689 while (nr_allocated < nr_pages) {
3690 unsigned int nr, nr_pages_request;
3691
3692 /*
3693 * A maximum allowed request is hard-coded and is 100
3694 * pages per call. That is done in order to prevent a
3695 * long preemption off scenario in the bulk-allocator
3696 * so the range is [1:100].
3697 */
3698 nr_pages_request = min(100U, nr_pages - nr_allocated);
3699
3700 /* memory allocation should consider mempolicy, we can't
3701 * wrongly use nearest node when nid == NUMA_NO_NODE,
3702 * otherwise memory may be allocated in only one node,
3703 * but mempolicy wants to alloc memory by interleaving.
3704 */
3705 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3706 nr = alloc_pages_bulk_mempolicy_noprof(gfp,
3707 nr_pages_request,
3708 pages + nr_allocated);
3709 else
3710 nr = alloc_pages_bulk_node_noprof(gfp, nid,
3711 nr_pages_request,
3712 pages + nr_allocated);
3713
3714 nr_allocated += nr;
3715
3716 /*
3717 * If zero or pages were obtained partly,
3718 * fallback to a single page allocator.
3719 */
3720 if (nr != nr_pages_request)
3721 break;
3722 }
3723 }
3724
3725 /* High-order pages or fallback path if "bulk" fails. */
3726 while (nr_allocated < nr_pages) {
3727 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3728 break;
3729
3730 if (nid == NUMA_NO_NODE)
3731 page = alloc_pages_noprof(gfp, order);
3732 else
3733 page = alloc_pages_node_noprof(nid, gfp, order);
3734
3735 if (unlikely(!page))
3736 break;
3737
3738 /*
3739 * High-order allocations must be able to be treated as
3740 * independent small pages by callers (as they can with
3741 * small-page vmallocs). Some drivers do their own refcounting
3742 * on vmalloc_to_page() pages, some use page->mapping,
3743 * page->lru, etc.
3744 */
3745 if (order)
3746 split_page(page, order);
3747
3748 /*
3749 * Careful, we allocate and map page-order pages, but
3750 * tracking is done per PAGE_SIZE page so as to keep the
3751 * vm_struct APIs independent of the physical/mapped size.
3752 */
3753 for (i = 0; i < (1U << order); i++)
3754 pages[nr_allocated + i] = page + i;
3755
3756 nr_allocated += 1U << order;
3757 }
3758
3759 return nr_allocated;
3760 }
3761
3762 static LLIST_HEAD(pending_vm_area_cleanup);
cleanup_vm_area_work(struct work_struct * work)3763 static void cleanup_vm_area_work(struct work_struct *work)
3764 {
3765 struct vm_struct *area, *tmp;
3766 struct llist_node *head;
3767
3768 head = llist_del_all(&pending_vm_area_cleanup);
3769 if (!head)
3770 return;
3771
3772 llist_for_each_entry_safe(area, tmp, head, llnode) {
3773 if (!area->pages)
3774 free_vm_area(area);
3775 else
3776 vfree(area->addr);
3777 }
3778 }
3779
3780 /*
3781 * Helper for __vmalloc_area_node() to defer cleanup
3782 * of partially initialized vm_struct in error paths.
3783 */
3784 static DECLARE_WORK(cleanup_vm_area, cleanup_vm_area_work);
defer_vm_area_cleanup(struct vm_struct * area)3785 static void defer_vm_area_cleanup(struct vm_struct *area)
3786 {
3787 if (llist_add(&area->llnode, &pending_vm_area_cleanup))
3788 schedule_work(&cleanup_vm_area);
3789 }
3790
3791 /*
3792 * Page tables allocations ignore external GFP. Enforces it by
3793 * the memalloc scope API. It is used by vmalloc internals and
3794 * KASAN shadow population only.
3795 *
3796 * GFP to scope mapping:
3797 *
3798 * non-blocking (no __GFP_DIRECT_RECLAIM) - memalloc_noreclaim_save()
3799 * GFP_NOFS - memalloc_nofs_save()
3800 * GFP_NOIO - memalloc_noio_save()
3801 *
3802 * Returns a flag cookie to pair with restore.
3803 */
3804 unsigned int
memalloc_apply_gfp_scope(gfp_t gfp_mask)3805 memalloc_apply_gfp_scope(gfp_t gfp_mask)
3806 {
3807 unsigned int flags = 0;
3808
3809 if (!gfpflags_allow_blocking(gfp_mask))
3810 flags = memalloc_noreclaim_save();
3811 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3812 flags = memalloc_nofs_save();
3813 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3814 flags = memalloc_noio_save();
3815
3816 /* 0 - no scope applied. */
3817 return flags;
3818 }
3819
3820 void
memalloc_restore_scope(unsigned int flags)3821 memalloc_restore_scope(unsigned int flags)
3822 {
3823 if (flags)
3824 memalloc_flags_restore(flags);
3825 }
3826
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3827 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3828 pgprot_t prot, unsigned int page_shift,
3829 int node)
3830 {
3831 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3832 bool nofail = gfp_mask & __GFP_NOFAIL;
3833 unsigned long addr = (unsigned long)area->addr;
3834 unsigned long size = get_vm_area_size(area);
3835 unsigned long array_size;
3836 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3837 unsigned int page_order;
3838 unsigned int flags;
3839 int ret;
3840
3841 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3842
3843 /* __GFP_NOFAIL and "noblock" flags are mutually exclusive. */
3844 if (!gfpflags_allow_blocking(gfp_mask))
3845 nofail = false;
3846
3847 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3848 gfp_mask |= __GFP_HIGHMEM;
3849
3850 /* Please note that the recursion is strictly bounded. */
3851 if (array_size > PAGE_SIZE) {
3852 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3853 area->caller);
3854 } else {
3855 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3856 }
3857
3858 if (!area->pages) {
3859 warn_alloc(gfp_mask, NULL,
3860 "vmalloc error: size %lu, failed to allocated page array size %lu",
3861 nr_small_pages * PAGE_SIZE, array_size);
3862 goto fail;
3863 }
3864
3865 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3866 page_order = vm_area_page_order(area);
3867
3868 /*
3869 * High-order nofail allocations are really expensive and
3870 * potentially dangerous (pre-mature OOM, disruptive reclaim
3871 * and compaction etc.
3872 *
3873 * Please note, the __vmalloc_node_range_noprof() falls-back
3874 * to order-0 pages if high-order attempt is unsuccessful.
3875 */
3876 area->nr_pages = vm_area_alloc_pages(
3877 vmalloc_gfp_adjust(gfp_mask, page_order), node,
3878 page_order, nr_small_pages, area->pages);
3879
3880 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3881 /* All pages of vm should be charged to same memcg, so use first one. */
3882 if (gfp_mask & __GFP_ACCOUNT && area->nr_pages)
3883 mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC,
3884 area->nr_pages);
3885
3886 /*
3887 * If not enough pages were obtained to accomplish an
3888 * allocation request, free them via vfree() if any.
3889 */
3890 if (area->nr_pages != nr_small_pages) {
3891 /*
3892 * vm_area_alloc_pages() can fail due to insufficient memory but
3893 * also:-
3894 *
3895 * - a pending fatal signal
3896 * - insufficient huge page-order pages
3897 *
3898 * Since we always retry allocations at order-0 in the huge page
3899 * case a warning for either is spurious.
3900 */
3901 if (!fatal_signal_pending(current) && page_order == 0)
3902 warn_alloc(gfp_mask, NULL,
3903 "vmalloc error: size %lu, failed to allocate pages",
3904 area->nr_pages * PAGE_SIZE);
3905 goto fail;
3906 }
3907
3908 /*
3909 * page tables allocations ignore external gfp mask, enforce it
3910 * by the scope API
3911 */
3912 flags = memalloc_apply_gfp_scope(gfp_mask);
3913 do {
3914 ret = __vmap_pages_range(addr, addr + size, prot, area->pages,
3915 page_shift, nested_gfp);
3916 if (nofail && (ret < 0))
3917 schedule_timeout_uninterruptible(1);
3918 } while (nofail && (ret < 0));
3919 memalloc_restore_scope(flags);
3920
3921 if (ret < 0) {
3922 warn_alloc(gfp_mask, NULL,
3923 "vmalloc error: size %lu, failed to map pages",
3924 area->nr_pages * PAGE_SIZE);
3925 goto fail;
3926 }
3927
3928 return area->addr;
3929
3930 fail:
3931 defer_vm_area_cleanup(area);
3932 return NULL;
3933 }
3934
3935 /*
3936 * See __vmalloc_node_range() for a clear list of supported vmalloc flags.
3937 * This gfp lists all flags currently passed through vmalloc. Currently,
3938 * __GFP_ZERO is used by BPF and __GFP_NORETRY is used by percpu. Both drm
3939 * and BPF also use GFP_USER. Additionally, various users pass
3940 * GFP_KERNEL_ACCOUNT. Xfs uses __GFP_NOLOCKDEP.
3941 */
3942 #define GFP_VMALLOC_SUPPORTED (GFP_KERNEL | GFP_ATOMIC | GFP_NOWAIT |\
3943 __GFP_NOFAIL | __GFP_ZERO | __GFP_NORETRY |\
3944 GFP_NOFS | GFP_NOIO | GFP_KERNEL_ACCOUNT |\
3945 GFP_USER | __GFP_NOLOCKDEP)
3946
vmalloc_fix_flags(gfp_t flags)3947 static gfp_t vmalloc_fix_flags(gfp_t flags)
3948 {
3949 gfp_t invalid_mask = flags & ~GFP_VMALLOC_SUPPORTED;
3950
3951 flags &= GFP_VMALLOC_SUPPORTED;
3952 WARN_ONCE(1, "Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
3953 invalid_mask, &invalid_mask, flags, &flags);
3954 return flags;
3955 }
3956
3957 /**
3958 * __vmalloc_node_range - allocate virtually contiguous memory
3959 * @size: allocation size
3960 * @align: desired alignment
3961 * @start: vm area range start
3962 * @end: vm area range end
3963 * @gfp_mask: flags for the page level allocator
3964 * @prot: protection mask for the allocated pages
3965 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3966 * @node: node to use for allocation or NUMA_NO_NODE
3967 * @caller: caller's return address
3968 *
3969 * Allocate enough pages to cover @size from the page level
3970 * allocator with @gfp_mask flags and map them into contiguous
3971 * virtual range with protection @prot.
3972 *
3973 * Supported GFP classes: %GFP_KERNEL, %GFP_ATOMIC, %GFP_NOWAIT,
3974 * %GFP_NOFS and %GFP_NOIO. Zone modifiers are not supported.
3975 * Please note %GFP_ATOMIC and %GFP_NOWAIT are supported only
3976 * by __vmalloc().
3977 *
3978 * Retry modifiers: only %__GFP_NOFAIL is supported; %__GFP_NORETRY
3979 * and %__GFP_RETRY_MAYFAIL are not supported.
3980 *
3981 * %__GFP_NOWARN can be used to suppress failure messages.
3982 *
3983 * Can not be called from interrupt nor NMI contexts.
3984 * Return: the address of the area or %NULL on failure
3985 */
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3986 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3987 unsigned long start, unsigned long end, gfp_t gfp_mask,
3988 pgprot_t prot, unsigned long vm_flags, int node,
3989 const void *caller)
3990 {
3991 struct vm_struct *area;
3992 void *ret;
3993 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3994 unsigned long original_align = align;
3995 unsigned int shift = PAGE_SHIFT;
3996
3997 if (WARN_ON_ONCE(!size))
3998 return NULL;
3999
4000 if ((size >> PAGE_SHIFT) > totalram_pages()) {
4001 warn_alloc(gfp_mask, NULL,
4002 "vmalloc error: size %lu, exceeds total pages",
4003 size);
4004 return NULL;
4005 }
4006
4007 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
4008 /*
4009 * Try huge pages. Only try for PAGE_KERNEL allocations,
4010 * others like modules don't yet expect huge pages in
4011 * their allocations due to apply_to_page_range not
4012 * supporting them.
4013 */
4014
4015 if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE)
4016 shift = PMD_SHIFT;
4017 else
4018 shift = arch_vmap_pte_supported_shift(size);
4019
4020 align = max(original_align, 1UL << shift);
4021 }
4022
4023 again:
4024 area = __get_vm_area_node(size, align, shift, VM_ALLOC |
4025 VM_UNINITIALIZED | vm_flags, start, end, node,
4026 gfp_mask, caller);
4027 if (!area) {
4028 bool nofail = gfp_mask & __GFP_NOFAIL;
4029 warn_alloc(gfp_mask, NULL,
4030 "vmalloc error: size %lu, vm_struct allocation failed%s",
4031 size, (nofail) ? ". Retrying." : "");
4032 if (nofail) {
4033 schedule_timeout_uninterruptible(1);
4034 goto again;
4035 }
4036 goto fail;
4037 }
4038
4039 /*
4040 * Prepare arguments for __vmalloc_area_node() and
4041 * kasan_unpoison_vmalloc().
4042 */
4043 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
4044 if (kasan_hw_tags_enabled()) {
4045 /*
4046 * Modify protection bits to allow tagging.
4047 * This must be done before mapping.
4048 */
4049 prot = arch_vmap_pgprot_tagged(prot);
4050
4051 /*
4052 * Skip page_alloc poisoning and zeroing for physical
4053 * pages backing VM_ALLOC mapping. Memory is instead
4054 * poisoned and zeroed by kasan_unpoison_vmalloc().
4055 */
4056 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
4057 }
4058
4059 /* Take note that the mapping is PAGE_KERNEL. */
4060 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
4061 }
4062
4063 /* Allocate physical pages and map them into vmalloc space. */
4064 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
4065 if (!ret)
4066 goto fail;
4067
4068 /*
4069 * Mark the pages as accessible, now that they are mapped.
4070 * The condition for setting KASAN_VMALLOC_INIT should complement the
4071 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
4072 * to make sure that memory is initialized under the same conditions.
4073 * Tag-based KASAN modes only assign tags to normal non-executable
4074 * allocations, see __kasan_unpoison_vmalloc().
4075 */
4076 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
4077 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
4078 (gfp_mask & __GFP_SKIP_ZERO))
4079 kasan_flags |= KASAN_VMALLOC_INIT;
4080 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
4081 area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags);
4082
4083 /*
4084 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
4085 * flag. It means that vm_struct is not fully initialized.
4086 * Now, it is fully initialized, so remove this flag here.
4087 */
4088 clear_vm_uninitialized_flag(area);
4089
4090 if (!(vm_flags & VM_DEFER_KMEMLEAK))
4091 kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask);
4092
4093 return area->addr;
4094
4095 fail:
4096 if (shift > PAGE_SHIFT) {
4097 shift = PAGE_SHIFT;
4098 align = original_align;
4099 goto again;
4100 }
4101
4102 return NULL;
4103 }
4104
4105 /**
4106 * __vmalloc_node - allocate virtually contiguous memory
4107 * @size: allocation size
4108 * @align: desired alignment
4109 * @gfp_mask: flags for the page level allocator
4110 * @node: node to use for allocation or NUMA_NO_NODE
4111 * @caller: caller's return address
4112 *
4113 * Allocate enough pages to cover @size from the page level allocator with
4114 * @gfp_mask flags. Map them into contiguous kernel virtual space.
4115 *
4116 * Semantics of @gfp_mask (including reclaim/retry modifiers such as
4117 * __GFP_NOFAIL) are the same as in __vmalloc_node_range_noprof().
4118 *
4119 * Return: pointer to the allocated memory or %NULL on error
4120 */
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)4121 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
4122 gfp_t gfp_mask, int node, const void *caller)
4123 {
4124 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
4125 gfp_mask, PAGE_KERNEL, 0, node, caller);
4126 }
4127 /*
4128 * This is only for performance analysis of vmalloc and stress purpose.
4129 * It is required by vmalloc test module, therefore do not use it other
4130 * than that.
4131 */
4132 #ifdef CONFIG_TEST_VMALLOC_MODULE
4133 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
4134 #endif
4135
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)4136 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
4137 {
4138 if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED))
4139 gfp_mask = vmalloc_fix_flags(gfp_mask);
4140 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
4141 __builtin_return_address(0));
4142 }
4143 EXPORT_SYMBOL(__vmalloc_noprof);
4144
4145 /**
4146 * vmalloc - allocate virtually contiguous memory
4147 * @size: allocation size
4148 *
4149 * Allocate enough pages to cover @size from the page level
4150 * allocator and map them into contiguous kernel virtual space.
4151 *
4152 * For tight control over page level allocator and protection flags
4153 * use __vmalloc() instead.
4154 *
4155 * Return: pointer to the allocated memory or %NULL on error
4156 */
vmalloc_noprof(unsigned long size)4157 void *vmalloc_noprof(unsigned long size)
4158 {
4159 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
4160 __builtin_return_address(0));
4161 }
4162 EXPORT_SYMBOL(vmalloc_noprof);
4163
4164 /**
4165 * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages
4166 * @size: allocation size
4167 * @gfp_mask: flags for the page level allocator
4168 * @node: node to use for allocation or NUMA_NO_NODE
4169 *
4170 * Allocate enough pages to cover @size from the page level
4171 * allocator and map them into contiguous kernel virtual space.
4172 * If @size is greater than or equal to PMD_SIZE, allow using
4173 * huge pages for the memory
4174 *
4175 * Return: pointer to the allocated memory or %NULL on error
4176 */
vmalloc_huge_node_noprof(unsigned long size,gfp_t gfp_mask,int node)4177 void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node)
4178 {
4179 if (unlikely(gfp_mask & ~GFP_VMALLOC_SUPPORTED))
4180 gfp_mask = vmalloc_fix_flags(gfp_mask);
4181 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
4182 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
4183 node, __builtin_return_address(0));
4184 }
4185 EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof);
4186
4187 /**
4188 * vzalloc - allocate virtually contiguous memory with zero fill
4189 * @size: allocation size
4190 *
4191 * Allocate enough pages to cover @size from the page level
4192 * allocator and map them into contiguous kernel virtual space.
4193 * The memory allocated is set to zero.
4194 *
4195 * For tight control over page level allocator and protection flags
4196 * use __vmalloc() instead.
4197 *
4198 * Return: pointer to the allocated memory or %NULL on error
4199 */
vzalloc_noprof(unsigned long size)4200 void *vzalloc_noprof(unsigned long size)
4201 {
4202 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
4203 __builtin_return_address(0));
4204 }
4205 EXPORT_SYMBOL(vzalloc_noprof);
4206
4207 /**
4208 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4209 * @size: allocation size
4210 *
4211 * The resulting memory area is zeroed so it can be mapped to userspace
4212 * without leaking data.
4213 *
4214 * Return: pointer to the allocated memory or %NULL on error
4215 */
vmalloc_user_noprof(unsigned long size)4216 void *vmalloc_user_noprof(unsigned long size)
4217 {
4218 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4219 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4220 VM_USERMAP, NUMA_NO_NODE,
4221 __builtin_return_address(0));
4222 }
4223 EXPORT_SYMBOL(vmalloc_user_noprof);
4224
4225 /**
4226 * vmalloc_node - allocate memory on a specific node
4227 * @size: allocation size
4228 * @node: numa node
4229 *
4230 * Allocate enough pages to cover @size from the page level
4231 * allocator and map them into contiguous kernel virtual space.
4232 *
4233 * For tight control over page level allocator and protection flags
4234 * use __vmalloc() instead.
4235 *
4236 * Return: pointer to the allocated memory or %NULL on error
4237 */
vmalloc_node_noprof(unsigned long size,int node)4238 void *vmalloc_node_noprof(unsigned long size, int node)
4239 {
4240 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4241 __builtin_return_address(0));
4242 }
4243 EXPORT_SYMBOL(vmalloc_node_noprof);
4244
4245 /**
4246 * vzalloc_node - allocate memory on a specific node with zero fill
4247 * @size: allocation size
4248 * @node: numa node
4249 *
4250 * Allocate enough pages to cover @size from the page level
4251 * allocator and map them into contiguous kernel virtual space.
4252 * The memory allocated is set to zero.
4253 *
4254 * Return: pointer to the allocated memory or %NULL on error
4255 */
vzalloc_node_noprof(unsigned long size,int node)4256 void *vzalloc_node_noprof(unsigned long size, int node)
4257 {
4258 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4259 __builtin_return_address(0));
4260 }
4261 EXPORT_SYMBOL(vzalloc_node_noprof);
4262
4263 /**
4264 * vrealloc_node_align - reallocate virtually contiguous memory; contents
4265 * remain unchanged
4266 * @p: object to reallocate memory for
4267 * @size: the size to reallocate
4268 * @align: requested alignment
4269 * @flags: the flags for the page level allocator
4270 * @nid: node number of the target node
4271 *
4272 * If @p is %NULL, vrealloc_XXX() behaves exactly like vmalloc_XXX(). If @size
4273 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4274 *
4275 * If the caller wants the new memory to be on specific node *only*,
4276 * __GFP_THISNODE flag should be set, otherwise the function will try to avoid
4277 * reallocation and possibly disregard the specified @nid.
4278 *
4279 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4280 * initial memory allocation, every subsequent call to this API for the same
4281 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4282 * __GFP_ZERO is not fully honored by this API.
4283 *
4284 * Requesting an alignment that is bigger than the alignment of the existing
4285 * allocation will fail.
4286 *
4287 * In any case, the contents of the object pointed to are preserved up to the
4288 * lesser of the new and old sizes.
4289 *
4290 * This function must not be called concurrently with itself or vfree() for the
4291 * same memory allocation.
4292 *
4293 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4294 * failure
4295 */
vrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)4296 void *vrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
4297 gfp_t flags, int nid)
4298 {
4299 struct vm_struct *vm = NULL;
4300 size_t alloced_size = 0;
4301 size_t old_size = 0;
4302 void *n;
4303
4304 if (!size) {
4305 vfree(p);
4306 return NULL;
4307 }
4308
4309 if (p) {
4310 vm = find_vm_area(p);
4311 if (unlikely(!vm)) {
4312 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4313 return NULL;
4314 }
4315
4316 alloced_size = get_vm_area_size(vm);
4317 old_size = vm->requested_size;
4318 if (WARN(alloced_size < old_size,
4319 "vrealloc() has mismatched area vs requested sizes (%p)\n", p))
4320 return NULL;
4321 if (WARN(!IS_ALIGNED((unsigned long)p, align),
4322 "will not reallocate with a bigger alignment (0x%lx)\n", align))
4323 return NULL;
4324 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
4325 nid != page_to_nid(vmalloc_to_page(p)))
4326 goto need_realloc;
4327 }
4328
4329 /*
4330 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4331 * would be a good heuristic for when to shrink the vm_area?
4332 */
4333 if (size <= old_size) {
4334 /* Zero out "freed" memory, potentially for future realloc. */
4335 if (want_init_on_free() || want_init_on_alloc(flags))
4336 memset((void *)p + size, 0, old_size - size);
4337 vm->requested_size = size;
4338 kasan_vrealloc(p, old_size, size);
4339 return (void *)p;
4340 }
4341
4342 /*
4343 * We already have the bytes available in the allocation; use them.
4344 */
4345 if (size <= alloced_size) {
4346 /*
4347 * No need to zero memory here, as unused memory will have
4348 * already been zeroed at initial allocation time or during
4349 * realloc shrink time.
4350 */
4351 vm->requested_size = size;
4352 kasan_vrealloc(p, old_size, size);
4353 return (void *)p;
4354 }
4355
4356 need_realloc:
4357 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4358 n = __vmalloc_node_noprof(size, align, flags, nid, __builtin_return_address(0));
4359
4360 if (!n)
4361 return NULL;
4362
4363 if (p) {
4364 memcpy(n, p, old_size);
4365 vfree(p);
4366 }
4367
4368 return n;
4369 }
4370 EXPORT_SYMBOL(vrealloc_node_align_noprof);
4371
4372 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4373 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4374 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4375 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4376 #else
4377 /*
4378 * 64b systems should always have either DMA or DMA32 zones. For others
4379 * GFP_DMA32 should do the right thing and use the normal zone.
4380 */
4381 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4382 #endif
4383
4384 /**
4385 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4386 * @size: allocation size
4387 *
4388 * Allocate enough 32bit PA addressable pages to cover @size from the
4389 * page level allocator and map them into contiguous kernel virtual space.
4390 *
4391 * Return: pointer to the allocated memory or %NULL on error
4392 */
vmalloc_32_noprof(unsigned long size)4393 void *vmalloc_32_noprof(unsigned long size)
4394 {
4395 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4396 __builtin_return_address(0));
4397 }
4398 EXPORT_SYMBOL(vmalloc_32_noprof);
4399
4400 /**
4401 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4402 * @size: allocation size
4403 *
4404 * The resulting memory area is 32bit addressable and zeroed so it can be
4405 * mapped to userspace without leaking data.
4406 *
4407 * Return: pointer to the allocated memory or %NULL on error
4408 */
vmalloc_32_user_noprof(unsigned long size)4409 void *vmalloc_32_user_noprof(unsigned long size)
4410 {
4411 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4412 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4413 VM_USERMAP, NUMA_NO_NODE,
4414 __builtin_return_address(0));
4415 }
4416 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4417
4418 /*
4419 * Atomically zero bytes in the iterator.
4420 *
4421 * Returns the number of zeroed bytes.
4422 */
zero_iter(struct iov_iter * iter,size_t count)4423 static size_t zero_iter(struct iov_iter *iter, size_t count)
4424 {
4425 size_t remains = count;
4426
4427 while (remains > 0) {
4428 size_t num, copied;
4429
4430 num = min_t(size_t, remains, PAGE_SIZE);
4431 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4432 remains -= copied;
4433
4434 if (copied < num)
4435 break;
4436 }
4437
4438 return count - remains;
4439 }
4440
4441 /*
4442 * small helper routine, copy contents to iter from addr.
4443 * If the page is not present, fill zero.
4444 *
4445 * Returns the number of copied bytes.
4446 */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)4447 static size_t aligned_vread_iter(struct iov_iter *iter,
4448 const char *addr, size_t count)
4449 {
4450 size_t remains = count;
4451 struct page *page;
4452
4453 while (remains > 0) {
4454 unsigned long offset, length;
4455 size_t copied = 0;
4456
4457 offset = offset_in_page(addr);
4458 length = PAGE_SIZE - offset;
4459 if (length > remains)
4460 length = remains;
4461 page = vmalloc_to_page(addr);
4462 /*
4463 * To do safe access to this _mapped_ area, we need lock. But
4464 * adding lock here means that we need to add overhead of
4465 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4466 * used. Instead of that, we'll use an local mapping via
4467 * copy_page_to_iter_nofault() and accept a small overhead in
4468 * this access function.
4469 */
4470 if (page)
4471 copied = copy_page_to_iter_nofault(page, offset,
4472 length, iter);
4473 else
4474 copied = zero_iter(iter, length);
4475
4476 addr += copied;
4477 remains -= copied;
4478
4479 if (copied != length)
4480 break;
4481 }
4482
4483 return count - remains;
4484 }
4485
4486 /*
4487 * Read from a vm_map_ram region of memory.
4488 *
4489 * Returns the number of copied bytes.
4490 */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)4491 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4492 size_t count, unsigned long flags)
4493 {
4494 char *start;
4495 struct vmap_block *vb;
4496 struct xarray *xa;
4497 unsigned long offset;
4498 unsigned int rs, re;
4499 size_t remains, n;
4500
4501 /*
4502 * If it's area created by vm_map_ram() interface directly, but
4503 * not further subdividing and delegating management to vmap_block,
4504 * handle it here.
4505 */
4506 if (!(flags & VMAP_BLOCK))
4507 return aligned_vread_iter(iter, addr, count);
4508
4509 remains = count;
4510
4511 /*
4512 * Area is split into regions and tracked with vmap_block, read out
4513 * each region and zero fill the hole between regions.
4514 */
4515 xa = addr_to_vb_xa((unsigned long) addr);
4516 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4517 if (!vb)
4518 goto finished_zero;
4519
4520 spin_lock(&vb->lock);
4521 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4522 spin_unlock(&vb->lock);
4523 goto finished_zero;
4524 }
4525
4526 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4527 size_t copied;
4528
4529 if (remains == 0)
4530 goto finished;
4531
4532 start = vmap_block_vaddr(vb->va->va_start, rs);
4533
4534 if (addr < start) {
4535 size_t to_zero = min_t(size_t, start - addr, remains);
4536 size_t zeroed = zero_iter(iter, to_zero);
4537
4538 addr += zeroed;
4539 remains -= zeroed;
4540
4541 if (remains == 0 || zeroed != to_zero)
4542 goto finished;
4543 }
4544
4545 /*it could start reading from the middle of used region*/
4546 offset = offset_in_page(addr);
4547 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4548 if (n > remains)
4549 n = remains;
4550
4551 copied = aligned_vread_iter(iter, start + offset, n);
4552
4553 addr += copied;
4554 remains -= copied;
4555
4556 if (copied != n)
4557 goto finished;
4558 }
4559
4560 spin_unlock(&vb->lock);
4561
4562 finished_zero:
4563 /* zero-fill the left dirty or free regions */
4564 return count - remains + zero_iter(iter, remains);
4565 finished:
4566 /* We couldn't copy/zero everything */
4567 spin_unlock(&vb->lock);
4568 return count - remains;
4569 }
4570
4571 /**
4572 * vread_iter() - read vmalloc area in a safe way to an iterator.
4573 * @iter: the iterator to which data should be written.
4574 * @addr: vm address.
4575 * @count: number of bytes to be read.
4576 *
4577 * This function checks that addr is a valid vmalloc'ed area, and
4578 * copy data from that area to a given buffer. If the given memory range
4579 * of [addr...addr+count) includes some valid address, data is copied to
4580 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4581 * IOREMAP area is treated as memory hole and no copy is done.
4582 *
4583 * If [addr...addr+count) doesn't includes any intersects with alive
4584 * vm_struct area, returns 0. @buf should be kernel's buffer.
4585 *
4586 * Note: In usual ops, vread() is never necessary because the caller
4587 * should know vmalloc() area is valid and can use memcpy().
4588 * This is for routines which have to access vmalloc area without
4589 * any information, as /proc/kcore.
4590 *
4591 * Return: number of bytes for which addr and buf should be increased
4592 * (same number as @count) or %0 if [addr...addr+count) doesn't
4593 * include any intersection with valid vmalloc area
4594 */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)4595 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4596 {
4597 struct vmap_node *vn;
4598 struct vmap_area *va;
4599 struct vm_struct *vm;
4600 char *vaddr;
4601 size_t n, size, flags, remains;
4602 unsigned long next;
4603
4604 addr = kasan_reset_tag(addr);
4605
4606 /* Don't allow overflow */
4607 if ((unsigned long) addr + count < count)
4608 count = -(unsigned long) addr;
4609
4610 remains = count;
4611
4612 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4613 if (!vn)
4614 goto finished_zero;
4615
4616 /* no intersects with alive vmap_area */
4617 if ((unsigned long)addr + remains <= va->va_start)
4618 goto finished_zero;
4619
4620 do {
4621 size_t copied;
4622
4623 if (remains == 0)
4624 goto finished;
4625
4626 vm = va->vm;
4627 flags = va->flags & VMAP_FLAGS_MASK;
4628 /*
4629 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4630 * be set together with VMAP_RAM.
4631 */
4632 WARN_ON(flags == VMAP_BLOCK);
4633
4634 if (!vm && !flags)
4635 goto next_va;
4636
4637 if (vm && (vm->flags & VM_UNINITIALIZED))
4638 goto next_va;
4639
4640 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4641 smp_rmb();
4642
4643 vaddr = (char *) va->va_start;
4644 size = vm ? get_vm_area_size(vm) : va_size(va);
4645
4646 if (addr >= vaddr + size)
4647 goto next_va;
4648
4649 if (addr < vaddr) {
4650 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4651 size_t zeroed = zero_iter(iter, to_zero);
4652
4653 addr += zeroed;
4654 remains -= zeroed;
4655
4656 if (remains == 0 || zeroed != to_zero)
4657 goto finished;
4658 }
4659
4660 n = vaddr + size - addr;
4661 if (n > remains)
4662 n = remains;
4663
4664 if (flags & VMAP_RAM)
4665 copied = vmap_ram_vread_iter(iter, addr, n, flags);
4666 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4667 copied = aligned_vread_iter(iter, addr, n);
4668 else /* IOREMAP | SPARSE area is treated as memory hole */
4669 copied = zero_iter(iter, n);
4670
4671 addr += copied;
4672 remains -= copied;
4673
4674 if (copied != n)
4675 goto finished;
4676
4677 next_va:
4678 next = va->va_end;
4679 spin_unlock(&vn->busy.lock);
4680 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4681
4682 finished_zero:
4683 if (vn)
4684 spin_unlock(&vn->busy.lock);
4685
4686 /* zero-fill memory holes */
4687 return count - remains + zero_iter(iter, remains);
4688 finished:
4689 /* Nothing remains, or We couldn't copy/zero everything. */
4690 if (vn)
4691 spin_unlock(&vn->busy.lock);
4692
4693 return count - remains;
4694 }
4695
4696 /**
4697 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4698 * @vma: vma to cover
4699 * @uaddr: target user address to start at
4700 * @kaddr: virtual address of vmalloc kernel memory
4701 * @pgoff: offset from @kaddr to start at
4702 * @size: size of map area
4703 *
4704 * Returns: 0 for success, -Exxx on failure
4705 *
4706 * This function checks that @kaddr is a valid vmalloc'ed area,
4707 * and that it is big enough to cover the range starting at
4708 * @uaddr in @vma. Will return failure if that criteria isn't
4709 * met.
4710 *
4711 * Similar to remap_pfn_range() (see mm/memory.c)
4712 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)4713 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4714 void *kaddr, unsigned long pgoff,
4715 unsigned long size)
4716 {
4717 struct vm_struct *area;
4718 unsigned long off;
4719 unsigned long end_index;
4720
4721 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4722 return -EINVAL;
4723
4724 size = PAGE_ALIGN(size);
4725
4726 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4727 return -EINVAL;
4728
4729 area = find_vm_area(kaddr);
4730 if (!area)
4731 return -EINVAL;
4732
4733 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4734 return -EINVAL;
4735
4736 if (check_add_overflow(size, off, &end_index) ||
4737 end_index > get_vm_area_size(area))
4738 return -EINVAL;
4739 kaddr += off;
4740
4741 do {
4742 struct page *page = vmalloc_to_page(kaddr);
4743 int ret;
4744
4745 ret = vm_insert_page(vma, uaddr, page);
4746 if (ret)
4747 return ret;
4748
4749 uaddr += PAGE_SIZE;
4750 kaddr += PAGE_SIZE;
4751 size -= PAGE_SIZE;
4752 } while (size > 0);
4753
4754 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4755
4756 return 0;
4757 }
4758
4759 /**
4760 * remap_vmalloc_range - map vmalloc pages to userspace
4761 * @vma: vma to cover (map full range of vma)
4762 * @addr: vmalloc memory
4763 * @pgoff: number of pages into addr before first page to map
4764 *
4765 * Returns: 0 for success, -Exxx on failure
4766 *
4767 * This function checks that addr is a valid vmalloc'ed area, and
4768 * that it is big enough to cover the vma. Will return failure if
4769 * that criteria isn't met.
4770 *
4771 * Similar to remap_pfn_range() (see mm/memory.c)
4772 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)4773 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4774 unsigned long pgoff)
4775 {
4776 return remap_vmalloc_range_partial(vma, vma->vm_start,
4777 addr, pgoff,
4778 vma->vm_end - vma->vm_start);
4779 }
4780 EXPORT_SYMBOL(remap_vmalloc_range);
4781
free_vm_area(struct vm_struct * area)4782 void free_vm_area(struct vm_struct *area)
4783 {
4784 struct vm_struct *ret;
4785 ret = remove_vm_area(area->addr);
4786 BUG_ON(ret != area);
4787 kfree(area);
4788 }
4789 EXPORT_SYMBOL_GPL(free_vm_area);
4790
4791 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)4792 static struct vmap_area *node_to_va(struct rb_node *n)
4793 {
4794 return rb_entry_safe(n, struct vmap_area, rb_node);
4795 }
4796
4797 /**
4798 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4799 * @addr: target address
4800 *
4801 * Returns: vmap_area if it is found. If there is no such area
4802 * the first highest(reverse order) vmap_area is returned
4803 * i.e. va->va_start < addr && va->va_end < addr or NULL
4804 * if there are no any areas before @addr.
4805 */
4806 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)4807 pvm_find_va_enclose_addr(unsigned long addr)
4808 {
4809 struct vmap_area *va, *tmp;
4810 struct rb_node *n;
4811
4812 n = free_vmap_area_root.rb_node;
4813 va = NULL;
4814
4815 while (n) {
4816 tmp = rb_entry(n, struct vmap_area, rb_node);
4817 if (tmp->va_start <= addr) {
4818 va = tmp;
4819 if (tmp->va_end >= addr)
4820 break;
4821
4822 n = n->rb_right;
4823 } else {
4824 n = n->rb_left;
4825 }
4826 }
4827
4828 return va;
4829 }
4830
4831 /**
4832 * pvm_determine_end_from_reverse - find the highest aligned address
4833 * of free block below VMALLOC_END
4834 * @va:
4835 * in - the VA we start the search(reverse order);
4836 * out - the VA with the highest aligned end address.
4837 * @align: alignment for required highest address
4838 *
4839 * Returns: determined end address within vmap_area
4840 */
4841 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4842 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4843 {
4844 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4845 unsigned long addr;
4846
4847 if (likely(*va)) {
4848 list_for_each_entry_from_reverse((*va),
4849 &free_vmap_area_list, list) {
4850 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4851 if ((*va)->va_start < addr)
4852 return addr;
4853 }
4854 }
4855
4856 return 0;
4857 }
4858
4859 /**
4860 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4861 * @offsets: array containing offset of each area
4862 * @sizes: array containing size of each area
4863 * @nr_vms: the number of areas to allocate
4864 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4865 *
4866 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4867 * vm_structs on success, %NULL on failure
4868 *
4869 * Percpu allocator wants to use congruent vm areas so that it can
4870 * maintain the offsets among percpu areas. This function allocates
4871 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4872 * be scattered pretty far, distance between two areas easily going up
4873 * to gigabytes. To avoid interacting with regular vmallocs, these
4874 * areas are allocated from top.
4875 *
4876 * Despite its complicated look, this allocator is rather simple. It
4877 * does everything top-down and scans free blocks from the end looking
4878 * for matching base. While scanning, if any of the areas do not fit the
4879 * base address is pulled down to fit the area. Scanning is repeated till
4880 * all the areas fit and then all necessary data structures are inserted
4881 * and the result is returned.
4882 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4883 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4884 const size_t *sizes, int nr_vms,
4885 size_t align)
4886 {
4887 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4888 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4889 struct vmap_area **vas, *va;
4890 struct vm_struct **vms;
4891 int area, area2, last_area, term_area;
4892 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4893 bool purged = false;
4894
4895 /* verify parameters and allocate data structures */
4896 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4897 for (last_area = 0, area = 0; area < nr_vms; area++) {
4898 start = offsets[area];
4899 end = start + sizes[area];
4900
4901 /* is everything aligned properly? */
4902 BUG_ON(!IS_ALIGNED(offsets[area], align));
4903 BUG_ON(!IS_ALIGNED(sizes[area], align));
4904
4905 /* detect the area with the highest address */
4906 if (start > offsets[last_area])
4907 last_area = area;
4908
4909 for (area2 = area + 1; area2 < nr_vms; area2++) {
4910 unsigned long start2 = offsets[area2];
4911 unsigned long end2 = start2 + sizes[area2];
4912
4913 BUG_ON(start2 < end && start < end2);
4914 }
4915 }
4916 last_end = offsets[last_area] + sizes[last_area];
4917
4918 if (vmalloc_end - vmalloc_start < last_end) {
4919 WARN_ON(true);
4920 return NULL;
4921 }
4922
4923 vms = kzalloc_objs(vms[0], nr_vms, GFP_KERNEL);
4924 vas = kzalloc_objs(vas[0], nr_vms, GFP_KERNEL);
4925 if (!vas || !vms)
4926 goto err_free2;
4927
4928 for (area = 0; area < nr_vms; area++) {
4929 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4930 vms[area] = kzalloc_obj(struct vm_struct, GFP_KERNEL);
4931 if (!vas[area] || !vms[area])
4932 goto err_free;
4933 }
4934 retry:
4935 spin_lock(&free_vmap_area_lock);
4936
4937 /* start scanning - we scan from the top, begin with the last area */
4938 area = term_area = last_area;
4939 start = offsets[area];
4940 end = start + sizes[area];
4941
4942 va = pvm_find_va_enclose_addr(vmalloc_end);
4943 base = pvm_determine_end_from_reverse(&va, align) - end;
4944
4945 while (true) {
4946 /*
4947 * base might have underflowed, add last_end before
4948 * comparing.
4949 */
4950 if (base + last_end < vmalloc_start + last_end)
4951 goto overflow;
4952
4953 /*
4954 * Fitting base has not been found.
4955 */
4956 if (va == NULL)
4957 goto overflow;
4958
4959 /*
4960 * If required width exceeds current VA block, move
4961 * base downwards and then recheck.
4962 */
4963 if (base + end > va->va_end) {
4964 base = pvm_determine_end_from_reverse(&va, align) - end;
4965 term_area = area;
4966 continue;
4967 }
4968
4969 /*
4970 * If this VA does not fit, move base downwards and recheck.
4971 */
4972 if (base + start < va->va_start) {
4973 va = node_to_va(rb_prev(&va->rb_node));
4974 base = pvm_determine_end_from_reverse(&va, align) - end;
4975 term_area = area;
4976 continue;
4977 }
4978
4979 /*
4980 * This area fits, move on to the previous one. If
4981 * the previous one is the terminal one, we're done.
4982 */
4983 area = (area + nr_vms - 1) % nr_vms;
4984 if (area == term_area)
4985 break;
4986
4987 start = offsets[area];
4988 end = start + sizes[area];
4989 va = pvm_find_va_enclose_addr(base + end);
4990 }
4991
4992 /* we've found a fitting base, insert all va's */
4993 for (area = 0; area < nr_vms; area++) {
4994 int ret;
4995
4996 start = base + offsets[area];
4997 size = sizes[area];
4998
4999 va = pvm_find_va_enclose_addr(start);
5000 if (WARN_ON_ONCE(va == NULL))
5001 /* It is a BUG(), but trigger recovery instead. */
5002 goto recovery;
5003
5004 ret = va_clip(&free_vmap_area_root,
5005 &free_vmap_area_list, va, start, size);
5006 if (WARN_ON_ONCE(unlikely(ret)))
5007 /* It is a BUG(), but trigger recovery instead. */
5008 goto recovery;
5009
5010 /* Allocated area. */
5011 va = vas[area];
5012 va->va_start = start;
5013 va->va_end = start + size;
5014 }
5015
5016 spin_unlock(&free_vmap_area_lock);
5017
5018 /* populate the kasan shadow space */
5019 for (area = 0; area < nr_vms; area++) {
5020 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area], GFP_KERNEL))
5021 goto err_free_shadow;
5022 }
5023
5024 /* insert all vm's */
5025 for (area = 0; area < nr_vms; area++) {
5026 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
5027
5028 spin_lock(&vn->busy.lock);
5029 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
5030 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
5031 pcpu_get_vm_areas);
5032 spin_unlock(&vn->busy.lock);
5033 }
5034
5035 /*
5036 * Mark allocated areas as accessible. Do it now as a best-effort
5037 * approach, as they can be mapped outside of vmalloc code.
5038 * With hardware tag-based KASAN, marking is skipped for
5039 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
5040 */
5041 kasan_unpoison_vmap_areas(vms, nr_vms, KASAN_VMALLOC_PROT_NORMAL);
5042
5043 kfree(vas);
5044 return vms;
5045
5046 recovery:
5047 /*
5048 * Remove previously allocated areas. There is no
5049 * need in removing these areas from the busy tree,
5050 * because they are inserted only on the final step
5051 * and when pcpu_get_vm_areas() is success.
5052 */
5053 while (area--) {
5054 orig_start = vas[area]->va_start;
5055 orig_end = vas[area]->va_end;
5056 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
5057 &free_vmap_area_list);
5058 if (va)
5059 kasan_release_vmalloc(orig_start, orig_end,
5060 va->va_start, va->va_end,
5061 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
5062 vas[area] = NULL;
5063 }
5064
5065 overflow:
5066 spin_unlock(&free_vmap_area_lock);
5067 if (!purged) {
5068 reclaim_and_purge_vmap_areas();
5069 purged = true;
5070
5071 /* Before "retry", check if we recover. */
5072 for (area = 0; area < nr_vms; area++) {
5073 if (vas[area])
5074 continue;
5075
5076 vas[area] = kmem_cache_zalloc(
5077 vmap_area_cachep, GFP_KERNEL);
5078 if (!vas[area])
5079 goto err_free;
5080 }
5081
5082 goto retry;
5083 }
5084
5085 err_free:
5086 for (area = 0; area < nr_vms; area++) {
5087 if (vas[area])
5088 kmem_cache_free(vmap_area_cachep, vas[area]);
5089
5090 kfree(vms[area]);
5091 }
5092 err_free2:
5093 kfree(vas);
5094 kfree(vms);
5095 return NULL;
5096
5097 err_free_shadow:
5098 spin_lock(&free_vmap_area_lock);
5099 /*
5100 * We release all the vmalloc shadows, even the ones for regions that
5101 * hadn't been successfully added. This relies on kasan_release_vmalloc
5102 * being able to tolerate this case.
5103 */
5104 for (area = 0; area < nr_vms; area++) {
5105 orig_start = vas[area]->va_start;
5106 orig_end = vas[area]->va_end;
5107 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
5108 &free_vmap_area_list);
5109 if (va)
5110 kasan_release_vmalloc(orig_start, orig_end,
5111 va->va_start, va->va_end,
5112 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
5113 vas[area] = NULL;
5114 kfree(vms[area]);
5115 }
5116 spin_unlock(&free_vmap_area_lock);
5117 kfree(vas);
5118 kfree(vms);
5119 return NULL;
5120 }
5121
5122 /**
5123 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
5124 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
5125 * @nr_vms: the number of allocated areas
5126 *
5127 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
5128 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)5129 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
5130 {
5131 int i;
5132
5133 for (i = 0; i < nr_vms; i++)
5134 free_vm_area(vms[i]);
5135 kfree(vms);
5136 }
5137 #endif /* CONFIG_SMP */
5138
5139 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)5140 bool vmalloc_dump_obj(void *object)
5141 {
5142 const void *caller;
5143 struct vm_struct *vm;
5144 struct vmap_area *va;
5145 struct vmap_node *vn;
5146 unsigned long addr;
5147 unsigned int nr_pages;
5148
5149 addr = PAGE_ALIGN((unsigned long) object);
5150 vn = addr_to_node(addr);
5151
5152 if (!spin_trylock(&vn->busy.lock))
5153 return false;
5154
5155 va = __find_vmap_area(addr, &vn->busy.root);
5156 if (!va || !va->vm) {
5157 spin_unlock(&vn->busy.lock);
5158 return false;
5159 }
5160
5161 vm = va->vm;
5162 addr = (unsigned long) vm->addr;
5163 caller = vm->caller;
5164 nr_pages = vm->nr_pages;
5165 spin_unlock(&vn->busy.lock);
5166
5167 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
5168 nr_pages, addr, caller);
5169
5170 return true;
5171 }
5172 #endif
5173
5174 #ifdef CONFIG_PROC_FS
5175
5176 /*
5177 * Print number of pages allocated on each memory node.
5178 *
5179 * This function can only be called if CONFIG_NUMA is enabled
5180 * and VM_UNINITIALIZED bit in v->flags is disabled.
5181 */
show_numa_info(struct seq_file * m,struct vm_struct * v,unsigned int * counters)5182 static void show_numa_info(struct seq_file *m, struct vm_struct *v,
5183 unsigned int *counters)
5184 {
5185 unsigned int nr;
5186 unsigned int step = 1U << vm_area_page_order(v);
5187
5188 if (!counters)
5189 return;
5190
5191 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
5192
5193 for (nr = 0; nr < v->nr_pages; nr += step)
5194 counters[page_to_nid(v->pages[nr])] += step;
5195 for_each_node_state(nr, N_HIGH_MEMORY)
5196 if (counters[nr])
5197 seq_printf(m, " N%u=%u", nr, counters[nr]);
5198 }
5199
show_purge_info(struct seq_file * m)5200 static void show_purge_info(struct seq_file *m)
5201 {
5202 struct vmap_node *vn;
5203 struct vmap_area *va;
5204
5205 for_each_vmap_node(vn) {
5206 spin_lock(&vn->lazy.lock);
5207 list_for_each_entry(va, &vn->lazy.head, list) {
5208 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
5209 (void *)va->va_start, (void *)va->va_end,
5210 va_size(va));
5211 }
5212 spin_unlock(&vn->lazy.lock);
5213 }
5214 }
5215
vmalloc_info_show(struct seq_file * m,void * p)5216 static int vmalloc_info_show(struct seq_file *m, void *p)
5217 {
5218 struct vmap_node *vn;
5219 struct vmap_area *va;
5220 struct vm_struct *v;
5221 unsigned int *counters;
5222
5223 if (IS_ENABLED(CONFIG_NUMA))
5224 counters = kmalloc_array(nr_node_ids, sizeof(unsigned int), GFP_KERNEL);
5225
5226 for_each_vmap_node(vn) {
5227 spin_lock(&vn->busy.lock);
5228 list_for_each_entry(va, &vn->busy.head, list) {
5229 if (!va->vm) {
5230 if (va->flags & VMAP_RAM)
5231 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
5232 (void *)va->va_start, (void *)va->va_end,
5233 va_size(va));
5234
5235 continue;
5236 }
5237
5238 v = va->vm;
5239 if (v->flags & VM_UNINITIALIZED)
5240 continue;
5241
5242 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
5243 smp_rmb();
5244
5245 seq_printf(m, "0x%pK-0x%pK %7ld",
5246 v->addr, v->addr + v->size, v->size);
5247
5248 if (v->caller)
5249 seq_printf(m, " %pS", v->caller);
5250
5251 if (v->nr_pages)
5252 seq_printf(m, " pages=%d", v->nr_pages);
5253
5254 if (v->phys_addr)
5255 seq_printf(m, " phys=%pa", &v->phys_addr);
5256
5257 if (v->flags & VM_IOREMAP)
5258 seq_puts(m, " ioremap");
5259
5260 if (v->flags & VM_SPARSE)
5261 seq_puts(m, " sparse");
5262
5263 if (v->flags & VM_ALLOC)
5264 seq_puts(m, " vmalloc");
5265
5266 if (v->flags & VM_MAP)
5267 seq_puts(m, " vmap");
5268
5269 if (v->flags & VM_USERMAP)
5270 seq_puts(m, " user");
5271
5272 if (v->flags & VM_DMA_COHERENT)
5273 seq_puts(m, " dma-coherent");
5274
5275 if (is_vmalloc_addr(v->pages))
5276 seq_puts(m, " vpages");
5277
5278 if (IS_ENABLED(CONFIG_NUMA))
5279 show_numa_info(m, v, counters);
5280
5281 seq_putc(m, '\n');
5282 }
5283 spin_unlock(&vn->busy.lock);
5284 }
5285
5286 /*
5287 * As a final step, dump "unpurged" areas.
5288 */
5289 show_purge_info(m);
5290 if (IS_ENABLED(CONFIG_NUMA))
5291 kfree(counters);
5292 return 0;
5293 }
5294
proc_vmalloc_init(void)5295 static int __init proc_vmalloc_init(void)
5296 {
5297 proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show);
5298 return 0;
5299 }
5300 module_init(proc_vmalloc_init);
5301
5302 #endif
5303
vmap_init_free_space(void)5304 static void __init vmap_init_free_space(void)
5305 {
5306 unsigned long vmap_start = 1;
5307 const unsigned long vmap_end = ULONG_MAX;
5308 struct vmap_area *free;
5309 struct vm_struct *busy;
5310
5311 /*
5312 * B F B B B F
5313 * -|-----|.....|-----|-----|-----|.....|-
5314 * | The KVA space |
5315 * |<--------------------------------->|
5316 */
5317 for (busy = vmlist; busy; busy = busy->next) {
5318 if ((unsigned long) busy->addr - vmap_start > 0) {
5319 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5320 if (!WARN_ON_ONCE(!free)) {
5321 free->va_start = vmap_start;
5322 free->va_end = (unsigned long) busy->addr;
5323
5324 insert_vmap_area_augment(free, NULL,
5325 &free_vmap_area_root,
5326 &free_vmap_area_list);
5327 }
5328 }
5329
5330 vmap_start = (unsigned long) busy->addr + busy->size;
5331 }
5332
5333 if (vmap_end - vmap_start > 0) {
5334 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5335 if (!WARN_ON_ONCE(!free)) {
5336 free->va_start = vmap_start;
5337 free->va_end = vmap_end;
5338
5339 insert_vmap_area_augment(free, NULL,
5340 &free_vmap_area_root,
5341 &free_vmap_area_list);
5342 }
5343 }
5344 }
5345
vmap_init_nodes(void)5346 static void vmap_init_nodes(void)
5347 {
5348 struct vmap_node *vn;
5349 int i;
5350
5351 #if BITS_PER_LONG == 64
5352 /*
5353 * A high threshold of max nodes is fixed and bound to 128,
5354 * thus a scale factor is 1 for systems where number of cores
5355 * are less or equal to specified threshold.
5356 *
5357 * As for NUMA-aware notes. For bigger systems, for example
5358 * NUMA with multi-sockets, where we can end-up with thousands
5359 * of cores in total, a "sub-numa-clustering" should be added.
5360 *
5361 * In this case a NUMA domain is considered as a single entity
5362 * with dedicated sub-nodes in it which describe one group or
5363 * set of cores. Therefore a per-domain purging is supposed to
5364 * be added as well as a per-domain balancing.
5365 */
5366 int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5367
5368 if (n > 1) {
5369 vn = kmalloc_objs(*vn, n, GFP_NOWAIT);
5370 if (vn) {
5371 /* Node partition is 16 pages. */
5372 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5373 nr_vmap_nodes = n;
5374 vmap_nodes = vn;
5375 } else {
5376 pr_err("Failed to allocate an array. Disable a node layer\n");
5377 }
5378 }
5379 #endif
5380
5381 for_each_vmap_node(vn) {
5382 vn->busy.root = RB_ROOT;
5383 INIT_LIST_HEAD(&vn->busy.head);
5384 spin_lock_init(&vn->busy.lock);
5385
5386 vn->lazy.root = RB_ROOT;
5387 INIT_LIST_HEAD(&vn->lazy.head);
5388 spin_lock_init(&vn->lazy.lock);
5389
5390 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5391 INIT_LIST_HEAD(&vn->pool[i].head);
5392 WRITE_ONCE(vn->pool[i].len, 0);
5393 }
5394
5395 spin_lock_init(&vn->pool_lock);
5396 }
5397 }
5398
5399 static unsigned long
vmap_node_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5400 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5401 {
5402 unsigned long count = 0;
5403 struct vmap_node *vn;
5404 int i;
5405
5406 for_each_vmap_node(vn) {
5407 for (i = 0; i < MAX_VA_SIZE_PAGES; i++)
5408 count += READ_ONCE(vn->pool[i].len);
5409 }
5410
5411 return count ? count : SHRINK_EMPTY;
5412 }
5413
5414 static unsigned long
vmap_node_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5415 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5416 {
5417 struct vmap_node *vn;
5418
5419 for_each_vmap_node(vn)
5420 decay_va_pool_node(vn, true);
5421
5422 return SHRINK_STOP;
5423 }
5424
vmalloc_init(void)5425 void __init vmalloc_init(void)
5426 {
5427 struct shrinker *vmap_node_shrinker;
5428 struct vmap_area *va;
5429 struct vmap_node *vn;
5430 struct vm_struct *tmp;
5431 int i;
5432
5433 /*
5434 * Create the cache for vmap_area objects.
5435 */
5436 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5437
5438 for_each_possible_cpu(i) {
5439 struct vmap_block_queue *vbq;
5440 struct vfree_deferred *p;
5441
5442 vbq = &per_cpu(vmap_block_queue, i);
5443 spin_lock_init(&vbq->lock);
5444 INIT_LIST_HEAD(&vbq->free);
5445 p = &per_cpu(vfree_deferred, i);
5446 init_llist_head(&p->list);
5447 INIT_WORK(&p->wq, delayed_vfree_work);
5448 xa_init(&vbq->vmap_blocks);
5449 }
5450
5451 /*
5452 * Setup nodes before importing vmlist.
5453 */
5454 vmap_init_nodes();
5455
5456 /* Import existing vmlist entries. */
5457 for (tmp = vmlist; tmp; tmp = tmp->next) {
5458 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5459 if (WARN_ON_ONCE(!va))
5460 continue;
5461
5462 va->va_start = (unsigned long)tmp->addr;
5463 va->va_end = va->va_start + tmp->size;
5464 va->vm = tmp;
5465
5466 vn = addr_to_node(va->va_start);
5467 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5468 }
5469
5470 /*
5471 * Now we can initialize a free vmap space.
5472 */
5473 vmap_init_free_space();
5474 vmap_initialized = true;
5475
5476 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5477 if (!vmap_node_shrinker) {
5478 pr_err("Failed to allocate vmap-node shrinker!\n");
5479 return;
5480 }
5481
5482 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5483 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5484 shrinker_register(vmap_node_shrinker);
5485 }
5486