1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49
50 #include "internal.h"
51 #include "pgalloc-track.h"
52
53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
55
set_nohugeiomap(char * str)56 static int __init set_nohugeiomap(char *str)
57 {
58 ioremap_max_page_shift = PAGE_SHIFT;
59 return 0;
60 }
61 early_param("nohugeiomap", set_nohugeiomap);
62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
64 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
65
66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
67 static bool __ro_after_init vmap_allow_huge = true;
68
set_nohugevmalloc(char * str)69 static int __init set_nohugevmalloc(char *str)
70 {
71 vmap_allow_huge = false;
72 return 0;
73 }
74 early_param("nohugevmalloc", set_nohugevmalloc);
75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
76 static const bool vmap_allow_huge = false;
77 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
78
is_vmalloc_addr(const void * x)79 bool is_vmalloc_addr(const void *x)
80 {
81 unsigned long addr = (unsigned long)kasan_reset_tag(x);
82
83 return addr >= VMALLOC_START && addr < VMALLOC_END;
84 }
85 EXPORT_SYMBOL(is_vmalloc_addr);
86
87 struct vfree_deferred {
88 struct llist_head list;
89 struct work_struct wq;
90 };
91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
92
93 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
95 phys_addr_t phys_addr, pgprot_t prot,
96 unsigned int max_page_shift, pgtbl_mod_mask *mask)
97 {
98 pte_t *pte;
99 u64 pfn;
100 struct page *page;
101 unsigned long size = PAGE_SIZE;
102
103 pfn = phys_addr >> PAGE_SHIFT;
104 pte = pte_alloc_kernel_track(pmd, addr, mask);
105 if (!pte)
106 return -ENOMEM;
107 do {
108 if (unlikely(!pte_none(ptep_get(pte)))) {
109 if (pfn_valid(pfn)) {
110 page = pfn_to_page(pfn);
111 dump_page(page, "remapping already mapped page");
112 }
113 BUG();
114 }
115
116 #ifdef CONFIG_HUGETLB_PAGE
117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 if (size != PAGE_SIZE) {
119 pte_t entry = pfn_pte(pfn, prot);
120
121 entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 set_huge_pte_at(&init_mm, addr, pte, entry, size);
123 pfn += PFN_DOWN(size);
124 continue;
125 }
126 #endif
127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 pfn++;
129 } while (pte += PFN_DOWN(size), addr += size, addr != end);
130 *mask |= PGTBL_PTE_MODIFIED;
131 return 0;
132 }
133
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 phys_addr_t phys_addr, pgprot_t prot,
136 unsigned int max_page_shift)
137 {
138 if (max_page_shift < PMD_SHIFT)
139 return 0;
140
141 if (!arch_vmap_pmd_supported(prot))
142 return 0;
143
144 if ((end - addr) != PMD_SIZE)
145 return 0;
146
147 if (!IS_ALIGNED(addr, PMD_SIZE))
148 return 0;
149
150 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 return 0;
152
153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 return 0;
155
156 return pmd_set_huge(pmd, phys_addr, prot);
157 }
158
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 phys_addr_t phys_addr, pgprot_t prot,
161 unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 pmd_t *pmd;
164 unsigned long next;
165
166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 if (!pmd)
168 return -ENOMEM;
169 do {
170 next = pmd_addr_end(addr, end);
171
172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 max_page_shift)) {
174 *mask |= PGTBL_PMD_MODIFIED;
175 continue;
176 }
177
178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 return -ENOMEM;
180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 return 0;
182 }
183
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 phys_addr_t phys_addr, pgprot_t prot,
186 unsigned int max_page_shift)
187 {
188 if (max_page_shift < PUD_SHIFT)
189 return 0;
190
191 if (!arch_vmap_pud_supported(prot))
192 return 0;
193
194 if ((end - addr) != PUD_SIZE)
195 return 0;
196
197 if (!IS_ALIGNED(addr, PUD_SIZE))
198 return 0;
199
200 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 return 0;
202
203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 return 0;
205
206 return pud_set_huge(pud, phys_addr, prot);
207 }
208
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 phys_addr_t phys_addr, pgprot_t prot,
211 unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 pud_t *pud;
214 unsigned long next;
215
216 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 if (!pud)
218 return -ENOMEM;
219 do {
220 next = pud_addr_end(addr, end);
221
222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 max_page_shift)) {
224 *mask |= PGTBL_PUD_MODIFIED;
225 continue;
226 }
227
228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 max_page_shift, mask))
230 return -ENOMEM;
231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 return 0;
233 }
234
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 phys_addr_t phys_addr, pgprot_t prot,
237 unsigned int max_page_shift)
238 {
239 if (max_page_shift < P4D_SHIFT)
240 return 0;
241
242 if (!arch_vmap_p4d_supported(prot))
243 return 0;
244
245 if ((end - addr) != P4D_SIZE)
246 return 0;
247
248 if (!IS_ALIGNED(addr, P4D_SIZE))
249 return 0;
250
251 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 return 0;
253
254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 return 0;
256
257 return p4d_set_huge(p4d, phys_addr, prot);
258 }
259
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 phys_addr_t phys_addr, pgprot_t prot,
262 unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 p4d_t *p4d;
265 unsigned long next;
266
267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 if (!p4d)
269 return -ENOMEM;
270 do {
271 next = p4d_addr_end(addr, end);
272
273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 max_page_shift)) {
275 *mask |= PGTBL_P4D_MODIFIED;
276 continue;
277 }
278
279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 max_page_shift, mask))
281 return -ENOMEM;
282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 return 0;
284 }
285
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 phys_addr_t phys_addr, pgprot_t prot,
288 unsigned int max_page_shift)
289 {
290 pgd_t *pgd;
291 unsigned long start;
292 unsigned long next;
293 int err;
294 pgtbl_mod_mask mask = 0;
295
296 might_sleep();
297 BUG_ON(addr >= end);
298
299 start = addr;
300 pgd = pgd_offset_k(addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 max_page_shift, &mask);
305 if (err)
306 break;
307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308
309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 arch_sync_kernel_mappings(start, end);
311
312 return err;
313 }
314
vmap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)315 int vmap_page_range(unsigned long addr, unsigned long end,
316 phys_addr_t phys_addr, pgprot_t prot)
317 {
318 int err;
319
320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 ioremap_max_page_shift);
322 flush_cache_vmap(addr, end);
323 if (!err)
324 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 ioremap_max_page_shift);
326 return err;
327 }
328
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)329 int ioremap_page_range(unsigned long addr, unsigned long end,
330 phys_addr_t phys_addr, pgprot_t prot)
331 {
332 struct vm_struct *area;
333
334 area = find_vm_area((void *)addr);
335 if (!area || !(area->flags & VM_IOREMAP)) {
336 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337 return -EINVAL;
338 }
339 if (addr != (unsigned long)area->addr ||
340 (void *)end != area->addr + get_vm_area_size(area)) {
341 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342 addr, end, (long)area->addr,
343 (long)area->addr + get_vm_area_size(area));
344 return -ERANGE;
345 }
346 return vmap_page_range(addr, end, phys_addr, prot);
347 }
348
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350 pgtbl_mod_mask *mask)
351 {
352 pte_t *pte;
353
354 pte = pte_offset_kernel(pmd, addr);
355 do {
356 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358 } while (pte++, addr += PAGE_SIZE, addr != end);
359 *mask |= PGTBL_PTE_MODIFIED;
360 }
361
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363 pgtbl_mod_mask *mask)
364 {
365 pmd_t *pmd;
366 unsigned long next;
367 int cleared;
368
369 pmd = pmd_offset(pud, addr);
370 do {
371 next = pmd_addr_end(addr, end);
372
373 cleared = pmd_clear_huge(pmd);
374 if (cleared || pmd_bad(*pmd))
375 *mask |= PGTBL_PMD_MODIFIED;
376
377 if (cleared)
378 continue;
379 if (pmd_none_or_clear_bad(pmd))
380 continue;
381 vunmap_pte_range(pmd, addr, next, mask);
382
383 cond_resched();
384 } while (pmd++, addr = next, addr != end);
385 }
386
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388 pgtbl_mod_mask *mask)
389 {
390 pud_t *pud;
391 unsigned long next;
392 int cleared;
393
394 pud = pud_offset(p4d, addr);
395 do {
396 next = pud_addr_end(addr, end);
397
398 cleared = pud_clear_huge(pud);
399 if (cleared || pud_bad(*pud))
400 *mask |= PGTBL_PUD_MODIFIED;
401
402 if (cleared)
403 continue;
404 if (pud_none_or_clear_bad(pud))
405 continue;
406 vunmap_pmd_range(pud, addr, next, mask);
407 } while (pud++, addr = next, addr != end);
408 }
409
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411 pgtbl_mod_mask *mask)
412 {
413 p4d_t *p4d;
414 unsigned long next;
415
416 p4d = p4d_offset(pgd, addr);
417 do {
418 next = p4d_addr_end(addr, end);
419
420 p4d_clear_huge(p4d);
421 if (p4d_bad(*p4d))
422 *mask |= PGTBL_P4D_MODIFIED;
423
424 if (p4d_none_or_clear_bad(p4d))
425 continue;
426 vunmap_pud_range(p4d, addr, next, mask);
427 } while (p4d++, addr = next, addr != end);
428 }
429
430 /*
431 * vunmap_range_noflush is similar to vunmap_range, but does not
432 * flush caches or TLBs.
433 *
434 * The caller is responsible for calling flush_cache_vmap() before calling
435 * this function, and flush_tlb_kernel_range after it has returned
436 * successfully (and before the addresses are expected to cause a page fault
437 * or be re-mapped for something else, if TLB flushes are being delayed or
438 * coalesced).
439 *
440 * This is an internal function only. Do not use outside mm/.
441 */
__vunmap_range_noflush(unsigned long start,unsigned long end)442 void __vunmap_range_noflush(unsigned long start, unsigned long end)
443 {
444 unsigned long next;
445 pgd_t *pgd;
446 unsigned long addr = start;
447 pgtbl_mod_mask mask = 0;
448
449 BUG_ON(addr >= end);
450 pgd = pgd_offset_k(addr);
451 do {
452 next = pgd_addr_end(addr, end);
453 if (pgd_bad(*pgd))
454 mask |= PGTBL_PGD_MODIFIED;
455 if (pgd_none_or_clear_bad(pgd))
456 continue;
457 vunmap_p4d_range(pgd, addr, next, &mask);
458 } while (pgd++, addr = next, addr != end);
459
460 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461 arch_sync_kernel_mappings(start, end);
462 }
463
vunmap_range_noflush(unsigned long start,unsigned long end)464 void vunmap_range_noflush(unsigned long start, unsigned long end)
465 {
466 kmsan_vunmap_range_noflush(start, end);
467 __vunmap_range_noflush(start, end);
468 }
469
470 /**
471 * vunmap_range - unmap kernel virtual addresses
472 * @addr: start of the VM area to unmap
473 * @end: end of the VM area to unmap (non-inclusive)
474 *
475 * Clears any present PTEs in the virtual address range, flushes TLBs and
476 * caches. Any subsequent access to the address before it has been re-mapped
477 * is a kernel bug.
478 */
vunmap_range(unsigned long addr,unsigned long end)479 void vunmap_range(unsigned long addr, unsigned long end)
480 {
481 flush_cache_vunmap(addr, end);
482 vunmap_range_noflush(addr, end);
483 flush_tlb_kernel_range(addr, end);
484 }
485
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488 pgtbl_mod_mask *mask)
489 {
490 pte_t *pte;
491
492 /*
493 * nr is a running index into the array which helps higher level
494 * callers keep track of where we're up to.
495 */
496
497 pte = pte_alloc_kernel_track(pmd, addr, mask);
498 if (!pte)
499 return -ENOMEM;
500 do {
501 struct page *page = pages[*nr];
502
503 if (WARN_ON(!pte_none(ptep_get(pte))))
504 return -EBUSY;
505 if (WARN_ON(!page))
506 return -ENOMEM;
507 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508 return -EINVAL;
509
510 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511 (*nr)++;
512 } while (pte++, addr += PAGE_SIZE, addr != end);
513 *mask |= PGTBL_PTE_MODIFIED;
514 return 0;
515 }
516
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519 pgtbl_mod_mask *mask)
520 {
521 pmd_t *pmd;
522 unsigned long next;
523
524 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525 if (!pmd)
526 return -ENOMEM;
527 do {
528 next = pmd_addr_end(addr, end);
529 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530 return -ENOMEM;
531 } while (pmd++, addr = next, addr != end);
532 return 0;
533 }
534
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537 pgtbl_mod_mask *mask)
538 {
539 pud_t *pud;
540 unsigned long next;
541
542 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543 if (!pud)
544 return -ENOMEM;
545 do {
546 next = pud_addr_end(addr, end);
547 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548 return -ENOMEM;
549 } while (pud++, addr = next, addr != end);
550 return 0;
551 }
552
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555 pgtbl_mod_mask *mask)
556 {
557 p4d_t *p4d;
558 unsigned long next;
559
560 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561 if (!p4d)
562 return -ENOMEM;
563 do {
564 next = p4d_addr_end(addr, end);
565 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566 return -ENOMEM;
567 } while (p4d++, addr = next, addr != end);
568 return 0;
569 }
570
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572 pgprot_t prot, struct page **pages)
573 {
574 unsigned long start = addr;
575 pgd_t *pgd;
576 unsigned long next;
577 int err = 0;
578 int nr = 0;
579 pgtbl_mod_mask mask = 0;
580
581 BUG_ON(addr >= end);
582 pgd = pgd_offset_k(addr);
583 do {
584 next = pgd_addr_end(addr, end);
585 if (pgd_bad(*pgd))
586 mask |= PGTBL_PGD_MODIFIED;
587 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588 if (err)
589 return err;
590 } while (pgd++, addr = next, addr != end);
591
592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593 arch_sync_kernel_mappings(start, end);
594
595 return 0;
596 }
597
598 /*
599 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600 * flush caches.
601 *
602 * The caller is responsible for calling flush_cache_vmap() after this
603 * function returns successfully and before the addresses are accessed.
604 *
605 * This is an internal function only. Do not use outside mm/.
606 */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608 pgprot_t prot, struct page **pages, unsigned int page_shift)
609 {
610 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611
612 WARN_ON(page_shift < PAGE_SHIFT);
613
614 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615 page_shift == PAGE_SHIFT)
616 return vmap_small_pages_range_noflush(addr, end, prot, pages);
617
618 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619 int err;
620
621 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622 page_to_phys(pages[i]), prot,
623 page_shift);
624 if (err)
625 return err;
626
627 addr += 1UL << page_shift;
628 }
629
630 return 0;
631 }
632
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634 pgprot_t prot, struct page **pages, unsigned int page_shift)
635 {
636 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637 page_shift);
638
639 if (ret)
640 return ret;
641 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 }
643
644 /**
645 * vmap_pages_range - map pages to a kernel virtual address
646 * @addr: start of the VM area to map
647 * @end: end of the VM area to map (non-inclusive)
648 * @prot: page protection flags to use
649 * @pages: pages to map (always PAGE_SIZE pages)
650 * @page_shift: maximum shift that the pages may be mapped with, @pages must
651 * be aligned and contiguous up to at least this shift.
652 *
653 * RETURNS:
654 * 0 on success, -errno on failure.
655 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)656 static int vmap_pages_range(unsigned long addr, unsigned long end,
657 pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659 int err;
660
661 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662 flush_cache_vmap(addr, end);
663 return err;
664 }
665
check_sparse_vm_area(struct vm_struct * area,unsigned long start,unsigned long end)666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667 unsigned long end)
668 {
669 might_sleep();
670 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671 return -EINVAL;
672 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673 return -EINVAL;
674 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675 return -EINVAL;
676 if ((end - start) >> PAGE_SHIFT > totalram_pages())
677 return -E2BIG;
678 if (start < (unsigned long)area->addr ||
679 (void *)end > area->addr + get_vm_area_size(area))
680 return -ERANGE;
681 return 0;
682 }
683
684 /**
685 * vm_area_map_pages - map pages inside given sparse vm_area
686 * @area: vm_area
687 * @start: start address inside vm_area
688 * @end: end address inside vm_area
689 * @pages: pages to map (always PAGE_SIZE pages)
690 */
vm_area_map_pages(struct vm_struct * area,unsigned long start,unsigned long end,struct page ** pages)691 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692 unsigned long end, struct page **pages)
693 {
694 int err;
695
696 err = check_sparse_vm_area(area, start, end);
697 if (err)
698 return err;
699
700 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701 }
702
703 /**
704 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705 * @area: vm_area
706 * @start: start address inside vm_area
707 * @end: end address inside vm_area
708 */
vm_area_unmap_pages(struct vm_struct * area,unsigned long start,unsigned long end)709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710 unsigned long end)
711 {
712 if (check_sparse_vm_area(area, start, end))
713 return;
714
715 vunmap_range(start, end);
716 }
717
is_vmalloc_or_module_addr(const void * x)718 int is_vmalloc_or_module_addr(const void *x)
719 {
720 /*
721 * ARM, x86-64 and sparc64 put modules in a special place,
722 * and fall back on vmalloc() if that fails. Others
723 * just put it in the vmalloc space.
724 */
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726 unsigned long addr = (unsigned long)kasan_reset_tag(x);
727 if (addr >= MODULES_VADDR && addr < MODULES_END)
728 return 1;
729 #endif
730 return is_vmalloc_addr(x);
731 }
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733
734 /*
735 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736 * return the tail page that corresponds to the base page address, which
737 * matches small vmap mappings.
738 */
vmalloc_to_page(const void * vmalloc_addr)739 struct page *vmalloc_to_page(const void *vmalloc_addr)
740 {
741 unsigned long addr = (unsigned long) vmalloc_addr;
742 struct page *page = NULL;
743 pgd_t *pgd = pgd_offset_k(addr);
744 p4d_t *p4d;
745 pud_t *pud;
746 pmd_t *pmd;
747 pte_t *ptep, pte;
748
749 /*
750 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751 * architectures that do not vmalloc module space
752 */
753 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754
755 if (pgd_none(*pgd))
756 return NULL;
757 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758 return NULL; /* XXX: no allowance for huge pgd */
759 if (WARN_ON_ONCE(pgd_bad(*pgd)))
760 return NULL;
761
762 p4d = p4d_offset(pgd, addr);
763 if (p4d_none(*p4d))
764 return NULL;
765 if (p4d_leaf(*p4d))
766 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767 if (WARN_ON_ONCE(p4d_bad(*p4d)))
768 return NULL;
769
770 pud = pud_offset(p4d, addr);
771 if (pud_none(*pud))
772 return NULL;
773 if (pud_leaf(*pud))
774 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775 if (WARN_ON_ONCE(pud_bad(*pud)))
776 return NULL;
777
778 pmd = pmd_offset(pud, addr);
779 if (pmd_none(*pmd))
780 return NULL;
781 if (pmd_leaf(*pmd))
782 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783 if (WARN_ON_ONCE(pmd_bad(*pmd)))
784 return NULL;
785
786 ptep = pte_offset_kernel(pmd, addr);
787 pte = ptep_get(ptep);
788 if (pte_present(pte))
789 page = pte_page(pte);
790
791 return page;
792 }
793 EXPORT_SYMBOL(vmalloc_to_page);
794
795 /*
796 * Map a vmalloc()-space virtual address to the physical page frame number.
797 */
vmalloc_to_pfn(const void * vmalloc_addr)798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799 {
800 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801 }
802 EXPORT_SYMBOL(vmalloc_to_pfn);
803
804
805 /*** Global kva allocator ***/
806
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809
810
811 static DEFINE_SPINLOCK(free_vmap_area_lock);
812 static bool vmap_initialized __read_mostly;
813
814 /*
815 * This kmem_cache is used for vmap_area objects. Instead of
816 * allocating from slab we reuse an object from this cache to
817 * make things faster. Especially in "no edge" splitting of
818 * free block.
819 */
820 static struct kmem_cache *vmap_area_cachep;
821
822 /*
823 * This linked list is used in pair with free_vmap_area_root.
824 * It gives O(1) access to prev/next to perform fast coalescing.
825 */
826 static LIST_HEAD(free_vmap_area_list);
827
828 /*
829 * This augment red-black tree represents the free vmap space.
830 * All vmap_area objects in this tree are sorted by va->va_start
831 * address. It is used for allocation and merging when a vmap
832 * object is released.
833 *
834 * Each vmap_area node contains a maximum available free block
835 * of its sub-tree, right or left. Therefore it is possible to
836 * find a lowest match of free area.
837 */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839
840 /*
841 * Preload a CPU with one object for "no edge" split case. The
842 * aim is to get rid of allocations from the atomic context, thus
843 * to use more permissive allocation masks.
844 */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846
847 /*
848 * This structure defines a single, solid model where a list and
849 * rb-tree are part of one entity protected by the lock. Nodes are
850 * sorted in ascending order, thus for O(1) access to left/right
851 * neighbors a list is used as well as for sequential traversal.
852 */
853 struct rb_list {
854 struct rb_root root;
855 struct list_head head;
856 spinlock_t lock;
857 };
858
859 /*
860 * A fast size storage contains VAs up to 1M size. A pool consists
861 * of linked between each other ready to go VAs of certain sizes.
862 * An index in the pool-array corresponds to number of pages + 1.
863 */
864 #define MAX_VA_SIZE_PAGES 256
865
866 struct vmap_pool {
867 struct list_head head;
868 unsigned long len;
869 };
870
871 /*
872 * An effective vmap-node logic. Users make use of nodes instead
873 * of a global heap. It allows to balance an access and mitigate
874 * contention.
875 */
876 static struct vmap_node {
877 /* Simple size segregated storage. */
878 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879 spinlock_t pool_lock;
880 bool skip_populate;
881
882 /* Bookkeeping data of this node. */
883 struct rb_list busy;
884 struct rb_list lazy;
885
886 /*
887 * Ready-to-free areas.
888 */
889 struct list_head purge_list;
890 struct work_struct purge_work;
891 unsigned long nr_purged;
892 } single;
893
894 /*
895 * Initial setup consists of one single node, i.e. a balancing
896 * is fully disabled. Later on, after vmap is initialized these
897 * parameters are updated based on a system capacity.
898 */
899 static struct vmap_node *vmap_nodes = &single;
900 static __read_mostly unsigned int nr_vmap_nodes = 1;
901 static __read_mostly unsigned int vmap_zone_size = 1;
902
903 static inline unsigned int
addr_to_node_id(unsigned long addr)904 addr_to_node_id(unsigned long addr)
905 {
906 return (addr / vmap_zone_size) % nr_vmap_nodes;
907 }
908
909 static inline struct vmap_node *
addr_to_node(unsigned long addr)910 addr_to_node(unsigned long addr)
911 {
912 return &vmap_nodes[addr_to_node_id(addr)];
913 }
914
915 static inline struct vmap_node *
id_to_node(unsigned int id)916 id_to_node(unsigned int id)
917 {
918 return &vmap_nodes[id % nr_vmap_nodes];
919 }
920
921 /*
922 * We use the value 0 to represent "no node", that is why
923 * an encoded value will be the node-id incremented by 1.
924 * It is always greater then 0. A valid node_id which can
925 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926 * is not valid 0 is returned.
927 */
928 static unsigned int
encode_vn_id(unsigned int node_id)929 encode_vn_id(unsigned int node_id)
930 {
931 /* Can store U8_MAX [0:254] nodes. */
932 if (node_id < nr_vmap_nodes)
933 return (node_id + 1) << BITS_PER_BYTE;
934
935 /* Warn and no node encoded. */
936 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
937 return 0;
938 }
939
940 /*
941 * Returns an encoded node-id, the valid range is within
942 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943 * returned if extracted data is wrong.
944 */
945 static unsigned int
decode_vn_id(unsigned int val)946 decode_vn_id(unsigned int val)
947 {
948 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
949
950 /* Can store U8_MAX [0:254] nodes. */
951 if (node_id < nr_vmap_nodes)
952 return node_id;
953
954 /* If it was _not_ zero, warn. */
955 WARN_ONCE(node_id != UINT_MAX,
956 "Decode wrong node id (%d)\n", node_id);
957
958 return nr_vmap_nodes;
959 }
960
961 static bool
is_vn_id_valid(unsigned int node_id)962 is_vn_id_valid(unsigned int node_id)
963 {
964 if (node_id < nr_vmap_nodes)
965 return true;
966
967 return false;
968 }
969
970 static __always_inline unsigned long
va_size(struct vmap_area * va)971 va_size(struct vmap_area *va)
972 {
973 return (va->va_end - va->va_start);
974 }
975
976 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)977 get_subtree_max_size(struct rb_node *node)
978 {
979 struct vmap_area *va;
980
981 va = rb_entry_safe(node, struct vmap_area, rb_node);
982 return va ? va->subtree_max_size : 0;
983 }
984
985 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
986 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
987
988 static void reclaim_and_purge_vmap_areas(void);
989 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
990 static void drain_vmap_area_work(struct work_struct *work);
991 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
992
993 static atomic_long_t nr_vmalloc_pages;
994
vmalloc_nr_pages(void)995 unsigned long vmalloc_nr_pages(void)
996 {
997 return atomic_long_read(&nr_vmalloc_pages);
998 }
999
__find_vmap_area(unsigned long addr,struct rb_root * root)1000 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1001 {
1002 struct rb_node *n = root->rb_node;
1003
1004 addr = (unsigned long)kasan_reset_tag((void *)addr);
1005
1006 while (n) {
1007 struct vmap_area *va;
1008
1009 va = rb_entry(n, struct vmap_area, rb_node);
1010 if (addr < va->va_start)
1011 n = n->rb_left;
1012 else if (addr >= va->va_end)
1013 n = n->rb_right;
1014 else
1015 return va;
1016 }
1017
1018 return NULL;
1019 }
1020
1021 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1022 static struct vmap_area *
__find_vmap_area_exceed_addr(unsigned long addr,struct rb_root * root)1023 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1024 {
1025 struct vmap_area *va = NULL;
1026 struct rb_node *n = root->rb_node;
1027
1028 addr = (unsigned long)kasan_reset_tag((void *)addr);
1029
1030 while (n) {
1031 struct vmap_area *tmp;
1032
1033 tmp = rb_entry(n, struct vmap_area, rb_node);
1034 if (tmp->va_end > addr) {
1035 va = tmp;
1036 if (tmp->va_start <= addr)
1037 break;
1038
1039 n = n->rb_left;
1040 } else
1041 n = n->rb_right;
1042 }
1043
1044 return va;
1045 }
1046
1047 /*
1048 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049 * If success, a node is locked. A user is responsible to unlock it when a
1050 * VA is no longer needed to be accessed.
1051 *
1052 * Returns NULL if nothing found.
1053 */
1054 static struct vmap_node *
find_vmap_area_exceed_addr_lock(unsigned long addr,struct vmap_area ** va)1055 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1056 {
1057 unsigned long va_start_lowest;
1058 struct vmap_node *vn;
1059 int i;
1060
1061 repeat:
1062 for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1063 vn = &vmap_nodes[i];
1064
1065 spin_lock(&vn->busy.lock);
1066 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1067
1068 if (*va)
1069 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1070 va_start_lowest = (*va)->va_start;
1071 spin_unlock(&vn->busy.lock);
1072 }
1073
1074 /*
1075 * Check if found VA exists, it might have gone away. In this case we
1076 * repeat the search because a VA has been removed concurrently and we
1077 * need to proceed to the next one, which is a rare case.
1078 */
1079 if (va_start_lowest) {
1080 vn = addr_to_node(va_start_lowest);
1081
1082 spin_lock(&vn->busy.lock);
1083 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1084
1085 if (*va)
1086 return vn;
1087
1088 spin_unlock(&vn->busy.lock);
1089 goto repeat;
1090 }
1091
1092 return NULL;
1093 }
1094
1095 /*
1096 * This function returns back addresses of parent node
1097 * and its left or right link for further processing.
1098 *
1099 * Otherwise NULL is returned. In that case all further
1100 * steps regarding inserting of conflicting overlap range
1101 * have to be declined and actually considered as a bug.
1102 */
1103 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)1104 find_va_links(struct vmap_area *va,
1105 struct rb_root *root, struct rb_node *from,
1106 struct rb_node **parent)
1107 {
1108 struct vmap_area *tmp_va;
1109 struct rb_node **link;
1110
1111 if (root) {
1112 link = &root->rb_node;
1113 if (unlikely(!*link)) {
1114 *parent = NULL;
1115 return link;
1116 }
1117 } else {
1118 link = &from;
1119 }
1120
1121 /*
1122 * Go to the bottom of the tree. When we hit the last point
1123 * we end up with parent rb_node and correct direction, i name
1124 * it link, where the new va->rb_node will be attached to.
1125 */
1126 do {
1127 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1128
1129 /*
1130 * During the traversal we also do some sanity check.
1131 * Trigger the BUG() if there are sides(left/right)
1132 * or full overlaps.
1133 */
1134 if (va->va_end <= tmp_va->va_start)
1135 link = &(*link)->rb_left;
1136 else if (va->va_start >= tmp_va->va_end)
1137 link = &(*link)->rb_right;
1138 else {
1139 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1141
1142 return NULL;
1143 }
1144 } while (*link);
1145
1146 *parent = &tmp_va->rb_node;
1147 return link;
1148 }
1149
1150 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)1151 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1152 {
1153 struct list_head *list;
1154
1155 if (unlikely(!parent))
1156 /*
1157 * The red-black tree where we try to find VA neighbors
1158 * before merging or inserting is empty, i.e. it means
1159 * there is no free vmap space. Normally it does not
1160 * happen but we handle this case anyway.
1161 */
1162 return NULL;
1163
1164 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1165 return (&parent->rb_right == link ? list->next : list);
1166 }
1167
1168 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)1169 __link_va(struct vmap_area *va, struct rb_root *root,
1170 struct rb_node *parent, struct rb_node **link,
1171 struct list_head *head, bool augment)
1172 {
1173 /*
1174 * VA is still not in the list, but we can
1175 * identify its future previous list_head node.
1176 */
1177 if (likely(parent)) {
1178 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1179 if (&parent->rb_right != link)
1180 head = head->prev;
1181 }
1182
1183 /* Insert to the rb-tree */
1184 rb_link_node(&va->rb_node, parent, link);
1185 if (augment) {
1186 /*
1187 * Some explanation here. Just perform simple insertion
1188 * to the tree. We do not set va->subtree_max_size to
1189 * its current size before calling rb_insert_augmented().
1190 * It is because we populate the tree from the bottom
1191 * to parent levels when the node _is_ in the tree.
1192 *
1193 * Therefore we set subtree_max_size to zero after insertion,
1194 * to let __augment_tree_propagate_from() puts everything to
1195 * the correct order later on.
1196 */
1197 rb_insert_augmented(&va->rb_node,
1198 root, &free_vmap_area_rb_augment_cb);
1199 va->subtree_max_size = 0;
1200 } else {
1201 rb_insert_color(&va->rb_node, root);
1202 }
1203
1204 /* Address-sort this list */
1205 list_add(&va->list, head);
1206 }
1207
1208 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1209 link_va(struct vmap_area *va, struct rb_root *root,
1210 struct rb_node *parent, struct rb_node **link,
1211 struct list_head *head)
1212 {
1213 __link_va(va, root, parent, link, head, false);
1214 }
1215
1216 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1217 link_va_augment(struct vmap_area *va, struct rb_root *root,
1218 struct rb_node *parent, struct rb_node **link,
1219 struct list_head *head)
1220 {
1221 __link_va(va, root, parent, link, head, true);
1222 }
1223
1224 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)1225 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1226 {
1227 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1228 return;
1229
1230 if (augment)
1231 rb_erase_augmented(&va->rb_node,
1232 root, &free_vmap_area_rb_augment_cb);
1233 else
1234 rb_erase(&va->rb_node, root);
1235
1236 list_del_init(&va->list);
1237 RB_CLEAR_NODE(&va->rb_node);
1238 }
1239
1240 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1241 unlink_va(struct vmap_area *va, struct rb_root *root)
1242 {
1243 __unlink_va(va, root, false);
1244 }
1245
1246 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1247 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1248 {
1249 __unlink_va(va, root, true);
1250 }
1251
1252 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1253 /*
1254 * Gets called when remove the node and rotate.
1255 */
1256 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1257 compute_subtree_max_size(struct vmap_area *va)
1258 {
1259 return max3(va_size(va),
1260 get_subtree_max_size(va->rb_node.rb_left),
1261 get_subtree_max_size(va->rb_node.rb_right));
1262 }
1263
1264 static void
augment_tree_propagate_check(void)1265 augment_tree_propagate_check(void)
1266 {
1267 struct vmap_area *va;
1268 unsigned long computed_size;
1269
1270 list_for_each_entry(va, &free_vmap_area_list, list) {
1271 computed_size = compute_subtree_max_size(va);
1272 if (computed_size != va->subtree_max_size)
1273 pr_emerg("tree is corrupted: %lu, %lu\n",
1274 va_size(va), va->subtree_max_size);
1275 }
1276 }
1277 #endif
1278
1279 /*
1280 * This function populates subtree_max_size from bottom to upper
1281 * levels starting from VA point. The propagation must be done
1282 * when VA size is modified by changing its va_start/va_end. Or
1283 * in case of newly inserting of VA to the tree.
1284 *
1285 * It means that __augment_tree_propagate_from() must be called:
1286 * - After VA has been inserted to the tree(free path);
1287 * - After VA has been shrunk(allocation path);
1288 * - After VA has been increased(merging path).
1289 *
1290 * Please note that, it does not mean that upper parent nodes
1291 * and their subtree_max_size are recalculated all the time up
1292 * to the root node.
1293 *
1294 * 4--8
1295 * /\
1296 * / \
1297 * / \
1298 * 2--2 8--8
1299 *
1300 * For example if we modify the node 4, shrinking it to 2, then
1301 * no any modification is required. If we shrink the node 2 to 1
1302 * its subtree_max_size is updated only, and set to 1. If we shrink
1303 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304 * node becomes 4--6.
1305 */
1306 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1307 augment_tree_propagate_from(struct vmap_area *va)
1308 {
1309 /*
1310 * Populate the tree from bottom towards the root until
1311 * the calculated maximum available size of checked node
1312 * is equal to its current one.
1313 */
1314 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1315
1316 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1317 augment_tree_propagate_check();
1318 #endif
1319 }
1320
1321 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1322 insert_vmap_area(struct vmap_area *va,
1323 struct rb_root *root, struct list_head *head)
1324 {
1325 struct rb_node **link;
1326 struct rb_node *parent;
1327
1328 link = find_va_links(va, root, NULL, &parent);
1329 if (link)
1330 link_va(va, root, parent, link, head);
1331 }
1332
1333 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1334 insert_vmap_area_augment(struct vmap_area *va,
1335 struct rb_node *from, struct rb_root *root,
1336 struct list_head *head)
1337 {
1338 struct rb_node **link;
1339 struct rb_node *parent;
1340
1341 if (from)
1342 link = find_va_links(va, NULL, from, &parent);
1343 else
1344 link = find_va_links(va, root, NULL, &parent);
1345
1346 if (link) {
1347 link_va_augment(va, root, parent, link, head);
1348 augment_tree_propagate_from(va);
1349 }
1350 }
1351
1352 /*
1353 * Merge de-allocated chunk of VA memory with previous
1354 * and next free blocks. If coalesce is not done a new
1355 * free area is inserted. If VA has been merged, it is
1356 * freed.
1357 *
1358 * Please note, it can return NULL in case of overlap
1359 * ranges, followed by WARN() report. Despite it is a
1360 * buggy behaviour, a system can be alive and keep
1361 * ongoing.
1362 */
1363 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1364 __merge_or_add_vmap_area(struct vmap_area *va,
1365 struct rb_root *root, struct list_head *head, bool augment)
1366 {
1367 struct vmap_area *sibling;
1368 struct list_head *next;
1369 struct rb_node **link;
1370 struct rb_node *parent;
1371 bool merged = false;
1372
1373 /*
1374 * Find a place in the tree where VA potentially will be
1375 * inserted, unless it is merged with its sibling/siblings.
1376 */
1377 link = find_va_links(va, root, NULL, &parent);
1378 if (!link)
1379 return NULL;
1380
1381 /*
1382 * Get next node of VA to check if merging can be done.
1383 */
1384 next = get_va_next_sibling(parent, link);
1385 if (unlikely(next == NULL))
1386 goto insert;
1387
1388 /*
1389 * start end
1390 * | |
1391 * |<------VA------>|<-----Next----->|
1392 * | |
1393 * start end
1394 */
1395 if (next != head) {
1396 sibling = list_entry(next, struct vmap_area, list);
1397 if (sibling->va_start == va->va_end) {
1398 sibling->va_start = va->va_start;
1399
1400 /* Free vmap_area object. */
1401 kmem_cache_free(vmap_area_cachep, va);
1402
1403 /* Point to the new merged area. */
1404 va = sibling;
1405 merged = true;
1406 }
1407 }
1408
1409 /*
1410 * start end
1411 * | |
1412 * |<-----Prev----->|<------VA------>|
1413 * | |
1414 * start end
1415 */
1416 if (next->prev != head) {
1417 sibling = list_entry(next->prev, struct vmap_area, list);
1418 if (sibling->va_end == va->va_start) {
1419 /*
1420 * If both neighbors are coalesced, it is important
1421 * to unlink the "next" node first, followed by merging
1422 * with "previous" one. Otherwise the tree might not be
1423 * fully populated if a sibling's augmented value is
1424 * "normalized" because of rotation operations.
1425 */
1426 if (merged)
1427 __unlink_va(va, root, augment);
1428
1429 sibling->va_end = va->va_end;
1430
1431 /* Free vmap_area object. */
1432 kmem_cache_free(vmap_area_cachep, va);
1433
1434 /* Point to the new merged area. */
1435 va = sibling;
1436 merged = true;
1437 }
1438 }
1439
1440 insert:
1441 if (!merged)
1442 __link_va(va, root, parent, link, head, augment);
1443
1444 return va;
1445 }
1446
1447 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1448 merge_or_add_vmap_area(struct vmap_area *va,
1449 struct rb_root *root, struct list_head *head)
1450 {
1451 return __merge_or_add_vmap_area(va, root, head, false);
1452 }
1453
1454 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1455 merge_or_add_vmap_area_augment(struct vmap_area *va,
1456 struct rb_root *root, struct list_head *head)
1457 {
1458 va = __merge_or_add_vmap_area(va, root, head, true);
1459 if (va)
1460 augment_tree_propagate_from(va);
1461
1462 return va;
1463 }
1464
1465 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1466 is_within_this_va(struct vmap_area *va, unsigned long size,
1467 unsigned long align, unsigned long vstart)
1468 {
1469 unsigned long nva_start_addr;
1470
1471 if (va->va_start > vstart)
1472 nva_start_addr = ALIGN(va->va_start, align);
1473 else
1474 nva_start_addr = ALIGN(vstart, align);
1475
1476 /* Can be overflowed due to big size or alignment. */
1477 if (nva_start_addr + size < nva_start_addr ||
1478 nva_start_addr < vstart)
1479 return false;
1480
1481 return (nva_start_addr + size <= va->va_end);
1482 }
1483
1484 /*
1485 * Find the first free block(lowest start address) in the tree,
1486 * that will accomplish the request corresponding to passing
1487 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488 * a search length is adjusted to account for worst case alignment
1489 * overhead.
1490 */
1491 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1492 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1493 unsigned long align, unsigned long vstart, bool adjust_search_size)
1494 {
1495 struct vmap_area *va;
1496 struct rb_node *node;
1497 unsigned long length;
1498
1499 /* Start from the root. */
1500 node = root->rb_node;
1501
1502 /* Adjust the search size for alignment overhead. */
1503 length = adjust_search_size ? size + align - 1 : size;
1504
1505 while (node) {
1506 va = rb_entry(node, struct vmap_area, rb_node);
1507
1508 if (get_subtree_max_size(node->rb_left) >= length &&
1509 vstart < va->va_start) {
1510 node = node->rb_left;
1511 } else {
1512 if (is_within_this_va(va, size, align, vstart))
1513 return va;
1514
1515 /*
1516 * Does not make sense to go deeper towards the right
1517 * sub-tree if it does not have a free block that is
1518 * equal or bigger to the requested search length.
1519 */
1520 if (get_subtree_max_size(node->rb_right) >= length) {
1521 node = node->rb_right;
1522 continue;
1523 }
1524
1525 /*
1526 * OK. We roll back and find the first right sub-tree,
1527 * that will satisfy the search criteria. It can happen
1528 * due to "vstart" restriction or an alignment overhead
1529 * that is bigger then PAGE_SIZE.
1530 */
1531 while ((node = rb_parent(node))) {
1532 va = rb_entry(node, struct vmap_area, rb_node);
1533 if (is_within_this_va(va, size, align, vstart))
1534 return va;
1535
1536 if (get_subtree_max_size(node->rb_right) >= length &&
1537 vstart <= va->va_start) {
1538 /*
1539 * Shift the vstart forward. Please note, we update it with
1540 * parent's start address adding "1" because we do not want
1541 * to enter same sub-tree after it has already been checked
1542 * and no suitable free block found there.
1543 */
1544 vstart = va->va_start + 1;
1545 node = node->rb_right;
1546 break;
1547 }
1548 }
1549 }
1550 }
1551
1552 return NULL;
1553 }
1554
1555 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556 #include <linux/random.h>
1557
1558 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1559 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1560 unsigned long align, unsigned long vstart)
1561 {
1562 struct vmap_area *va;
1563
1564 list_for_each_entry(va, head, list) {
1565 if (!is_within_this_va(va, size, align, vstart))
1566 continue;
1567
1568 return va;
1569 }
1570
1571 return NULL;
1572 }
1573
1574 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1575 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1576 unsigned long size, unsigned long align)
1577 {
1578 struct vmap_area *va_1, *va_2;
1579 unsigned long vstart;
1580 unsigned int rnd;
1581
1582 get_random_bytes(&rnd, sizeof(rnd));
1583 vstart = VMALLOC_START + rnd;
1584
1585 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1586 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1587
1588 if (va_1 != va_2)
1589 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590 va_1, va_2, vstart);
1591 }
1592 #endif
1593
1594 enum fit_type {
1595 NOTHING_FIT = 0,
1596 FL_FIT_TYPE = 1, /* full fit */
1597 LE_FIT_TYPE = 2, /* left edge fit */
1598 RE_FIT_TYPE = 3, /* right edge fit */
1599 NE_FIT_TYPE = 4 /* no edge fit */
1600 };
1601
1602 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1603 classify_va_fit_type(struct vmap_area *va,
1604 unsigned long nva_start_addr, unsigned long size)
1605 {
1606 enum fit_type type;
1607
1608 /* Check if it is within VA. */
1609 if (nva_start_addr < va->va_start ||
1610 nva_start_addr + size > va->va_end)
1611 return NOTHING_FIT;
1612
1613 /* Now classify. */
1614 if (va->va_start == nva_start_addr) {
1615 if (va->va_end == nva_start_addr + size)
1616 type = FL_FIT_TYPE;
1617 else
1618 type = LE_FIT_TYPE;
1619 } else if (va->va_end == nva_start_addr + size) {
1620 type = RE_FIT_TYPE;
1621 } else {
1622 type = NE_FIT_TYPE;
1623 }
1624
1625 return type;
1626 }
1627
1628 static __always_inline int
va_clip(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1629 va_clip(struct rb_root *root, struct list_head *head,
1630 struct vmap_area *va, unsigned long nva_start_addr,
1631 unsigned long size)
1632 {
1633 struct vmap_area *lva = NULL;
1634 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1635
1636 if (type == FL_FIT_TYPE) {
1637 /*
1638 * No need to split VA, it fully fits.
1639 *
1640 * | |
1641 * V NVA V
1642 * |---------------|
1643 */
1644 unlink_va_augment(va, root);
1645 kmem_cache_free(vmap_area_cachep, va);
1646 } else if (type == LE_FIT_TYPE) {
1647 /*
1648 * Split left edge of fit VA.
1649 *
1650 * | |
1651 * V NVA V R
1652 * |-------|-------|
1653 */
1654 va->va_start += size;
1655 } else if (type == RE_FIT_TYPE) {
1656 /*
1657 * Split right edge of fit VA.
1658 *
1659 * | |
1660 * L V NVA V
1661 * |-------|-------|
1662 */
1663 va->va_end = nva_start_addr;
1664 } else if (type == NE_FIT_TYPE) {
1665 /*
1666 * Split no edge of fit VA.
1667 *
1668 * | |
1669 * L V NVA V R
1670 * |---|-------|---|
1671 */
1672 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1673 if (unlikely(!lva)) {
1674 /*
1675 * For percpu allocator we do not do any pre-allocation
1676 * and leave it as it is. The reason is it most likely
1677 * never ends up with NE_FIT_TYPE splitting. In case of
1678 * percpu allocations offsets and sizes are aligned to
1679 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680 * are its main fitting cases.
1681 *
1682 * There are a few exceptions though, as an example it is
1683 * a first allocation (early boot up) when we have "one"
1684 * big free space that has to be split.
1685 *
1686 * Also we can hit this path in case of regular "vmap"
1687 * allocations, if "this" current CPU was not preloaded.
1688 * See the comment in alloc_vmap_area() why. If so, then
1689 * GFP_NOWAIT is used instead to get an extra object for
1690 * split purpose. That is rare and most time does not
1691 * occur.
1692 *
1693 * What happens if an allocation gets failed. Basically,
1694 * an "overflow" path is triggered to purge lazily freed
1695 * areas to free some memory, then, the "retry" path is
1696 * triggered to repeat one more time. See more details
1697 * in alloc_vmap_area() function.
1698 */
1699 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1700 if (!lva)
1701 return -1;
1702 }
1703
1704 /*
1705 * Build the remainder.
1706 */
1707 lva->va_start = va->va_start;
1708 lva->va_end = nva_start_addr;
1709
1710 /*
1711 * Shrink this VA to remaining size.
1712 */
1713 va->va_start = nva_start_addr + size;
1714 } else {
1715 return -1;
1716 }
1717
1718 if (type != FL_FIT_TYPE) {
1719 augment_tree_propagate_from(va);
1720
1721 if (lva) /* type == NE_FIT_TYPE */
1722 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1723 }
1724
1725 return 0;
1726 }
1727
1728 static unsigned long
va_alloc(struct vmap_area * va,struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1729 va_alloc(struct vmap_area *va,
1730 struct rb_root *root, struct list_head *head,
1731 unsigned long size, unsigned long align,
1732 unsigned long vstart, unsigned long vend)
1733 {
1734 unsigned long nva_start_addr;
1735 int ret;
1736
1737 if (va->va_start > vstart)
1738 nva_start_addr = ALIGN(va->va_start, align);
1739 else
1740 nva_start_addr = ALIGN(vstart, align);
1741
1742 /* Check the "vend" restriction. */
1743 if (nva_start_addr + size > vend)
1744 return vend;
1745
1746 /* Update the free vmap_area. */
1747 ret = va_clip(root, head, va, nva_start_addr, size);
1748 if (WARN_ON_ONCE(ret))
1749 return vend;
1750
1751 return nva_start_addr;
1752 }
1753
1754 /*
1755 * Returns a start address of the newly allocated area, if success.
1756 * Otherwise a vend is returned that indicates failure.
1757 */
1758 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1759 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1760 unsigned long size, unsigned long align,
1761 unsigned long vstart, unsigned long vend)
1762 {
1763 bool adjust_search_size = true;
1764 unsigned long nva_start_addr;
1765 struct vmap_area *va;
1766
1767 /*
1768 * Do not adjust when:
1769 * a) align <= PAGE_SIZE, because it does not make any sense.
1770 * All blocks(their start addresses) are at least PAGE_SIZE
1771 * aligned anyway;
1772 * b) a short range where a requested size corresponds to exactly
1773 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774 * With adjusted search length an allocation would not succeed.
1775 */
1776 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1777 adjust_search_size = false;
1778
1779 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1780 if (unlikely(!va))
1781 return vend;
1782
1783 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1784 if (nva_start_addr == vend)
1785 return vend;
1786
1787 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1788 find_vmap_lowest_match_check(root, head, size, align);
1789 #endif
1790
1791 return nva_start_addr;
1792 }
1793
1794 /*
1795 * Free a region of KVA allocated by alloc_vmap_area
1796 */
free_vmap_area(struct vmap_area * va)1797 static void free_vmap_area(struct vmap_area *va)
1798 {
1799 struct vmap_node *vn = addr_to_node(va->va_start);
1800
1801 /*
1802 * Remove from the busy tree/list.
1803 */
1804 spin_lock(&vn->busy.lock);
1805 unlink_va(va, &vn->busy.root);
1806 spin_unlock(&vn->busy.lock);
1807
1808 /*
1809 * Insert/Merge it back to the free tree/list.
1810 */
1811 spin_lock(&free_vmap_area_lock);
1812 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1813 spin_unlock(&free_vmap_area_lock);
1814 }
1815
1816 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1817 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1818 {
1819 struct vmap_area *va = NULL, *tmp;
1820
1821 /*
1822 * Preload this CPU with one extra vmap_area object. It is used
1823 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824 * a CPU that does an allocation is preloaded.
1825 *
1826 * We do it in non-atomic context, thus it allows us to use more
1827 * permissive allocation masks to be more stable under low memory
1828 * condition and high memory pressure.
1829 */
1830 if (!this_cpu_read(ne_fit_preload_node))
1831 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1832
1833 spin_lock(lock);
1834
1835 tmp = NULL;
1836 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1837 kmem_cache_free(vmap_area_cachep, va);
1838 }
1839
1840 static struct vmap_pool *
size_to_va_pool(struct vmap_node * vn,unsigned long size)1841 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1842 {
1843 unsigned int idx = (size - 1) / PAGE_SIZE;
1844
1845 if (idx < MAX_VA_SIZE_PAGES)
1846 return &vn->pool[idx];
1847
1848 return NULL;
1849 }
1850
1851 static bool
node_pool_add_va(struct vmap_node * n,struct vmap_area * va)1852 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1853 {
1854 struct vmap_pool *vp;
1855
1856 vp = size_to_va_pool(n, va_size(va));
1857 if (!vp)
1858 return false;
1859
1860 spin_lock(&n->pool_lock);
1861 list_add(&va->list, &vp->head);
1862 WRITE_ONCE(vp->len, vp->len + 1);
1863 spin_unlock(&n->pool_lock);
1864
1865 return true;
1866 }
1867
1868 static struct vmap_area *
node_pool_del_va(struct vmap_node * vn,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1869 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1870 unsigned long align, unsigned long vstart,
1871 unsigned long vend)
1872 {
1873 struct vmap_area *va = NULL;
1874 struct vmap_pool *vp;
1875 int err = 0;
1876
1877 vp = size_to_va_pool(vn, size);
1878 if (!vp || list_empty(&vp->head))
1879 return NULL;
1880
1881 spin_lock(&vn->pool_lock);
1882 if (!list_empty(&vp->head)) {
1883 va = list_first_entry(&vp->head, struct vmap_area, list);
1884
1885 if (IS_ALIGNED(va->va_start, align)) {
1886 /*
1887 * Do some sanity check and emit a warning
1888 * if one of below checks detects an error.
1889 */
1890 err |= (va_size(va) != size);
1891 err |= (va->va_start < vstart);
1892 err |= (va->va_end > vend);
1893
1894 if (!WARN_ON_ONCE(err)) {
1895 list_del_init(&va->list);
1896 WRITE_ONCE(vp->len, vp->len - 1);
1897 } else {
1898 va = NULL;
1899 }
1900 } else {
1901 list_move_tail(&va->list, &vp->head);
1902 va = NULL;
1903 }
1904 }
1905 spin_unlock(&vn->pool_lock);
1906
1907 return va;
1908 }
1909
1910 static struct vmap_area *
node_alloc(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,unsigned long * addr,unsigned int * vn_id)1911 node_alloc(unsigned long size, unsigned long align,
1912 unsigned long vstart, unsigned long vend,
1913 unsigned long *addr, unsigned int *vn_id)
1914 {
1915 struct vmap_area *va;
1916
1917 *vn_id = 0;
1918 *addr = vend;
1919
1920 /*
1921 * Fallback to a global heap if not vmalloc or there
1922 * is only one node.
1923 */
1924 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1925 nr_vmap_nodes == 1)
1926 return NULL;
1927
1928 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1929 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1930 *vn_id = encode_vn_id(*vn_id);
1931
1932 if (va)
1933 *addr = va->va_start;
1934
1935 return va;
1936 }
1937
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1938 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1939 struct vmap_area *va, unsigned long flags, const void *caller)
1940 {
1941 vm->flags = flags;
1942 vm->addr = (void *)va->va_start;
1943 vm->size = va_size(va);
1944 vm->caller = caller;
1945 va->vm = vm;
1946 }
1947
1948 /*
1949 * Allocate a region of KVA of the specified size and alignment, within the
1950 * vstart and vend. If vm is passed in, the two will also be bound.
1951 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags,struct vm_struct * vm)1952 static struct vmap_area *alloc_vmap_area(unsigned long size,
1953 unsigned long align,
1954 unsigned long vstart, unsigned long vend,
1955 int node, gfp_t gfp_mask,
1956 unsigned long va_flags, struct vm_struct *vm)
1957 {
1958 struct vmap_node *vn;
1959 struct vmap_area *va;
1960 unsigned long freed;
1961 unsigned long addr;
1962 unsigned int vn_id;
1963 int purged = 0;
1964 int ret;
1965
1966 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1967 return ERR_PTR(-EINVAL);
1968
1969 if (unlikely(!vmap_initialized))
1970 return ERR_PTR(-EBUSY);
1971
1972 might_sleep();
1973
1974 /*
1975 * If a VA is obtained from a global heap(if it fails here)
1976 * it is anyway marked with this "vn_id" so it is returned
1977 * to this pool's node later. Such way gives a possibility
1978 * to populate pools based on users demand.
1979 *
1980 * On success a ready to go VA is returned.
1981 */
1982 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1983 if (!va) {
1984 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1985
1986 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1987 if (unlikely(!va))
1988 return ERR_PTR(-ENOMEM);
1989
1990 /*
1991 * Only scan the relevant parts containing pointers to other objects
1992 * to avoid false negatives.
1993 */
1994 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1995 }
1996
1997 retry:
1998 if (addr == vend) {
1999 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2000 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2001 size, align, vstart, vend);
2002 spin_unlock(&free_vmap_area_lock);
2003 }
2004
2005 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2006
2007 /*
2008 * If an allocation fails, the "vend" address is
2009 * returned. Therefore trigger the overflow path.
2010 */
2011 if (unlikely(addr == vend))
2012 goto overflow;
2013
2014 va->va_start = addr;
2015 va->va_end = addr + size;
2016 va->vm = NULL;
2017 va->flags = (va_flags | vn_id);
2018
2019 if (vm) {
2020 vm->addr = (void *)va->va_start;
2021 vm->size = va_size(va);
2022 va->vm = vm;
2023 }
2024
2025 vn = addr_to_node(va->va_start);
2026
2027 spin_lock(&vn->busy.lock);
2028 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2029 spin_unlock(&vn->busy.lock);
2030
2031 BUG_ON(!IS_ALIGNED(va->va_start, align));
2032 BUG_ON(va->va_start < vstart);
2033 BUG_ON(va->va_end > vend);
2034
2035 ret = kasan_populate_vmalloc(addr, size);
2036 if (ret) {
2037 free_vmap_area(va);
2038 return ERR_PTR(ret);
2039 }
2040
2041 return va;
2042
2043 overflow:
2044 if (!purged) {
2045 reclaim_and_purge_vmap_areas();
2046 purged = 1;
2047 goto retry;
2048 }
2049
2050 freed = 0;
2051 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2052
2053 if (freed > 0) {
2054 purged = 0;
2055 goto retry;
2056 }
2057
2058 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2059 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2060 size, vstart, vend);
2061
2062 kmem_cache_free(vmap_area_cachep, va);
2063 return ERR_PTR(-EBUSY);
2064 }
2065
register_vmap_purge_notifier(struct notifier_block * nb)2066 int register_vmap_purge_notifier(struct notifier_block *nb)
2067 {
2068 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2069 }
2070 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2071
unregister_vmap_purge_notifier(struct notifier_block * nb)2072 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2073 {
2074 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2075 }
2076 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2077
2078 /*
2079 * lazy_max_pages is the maximum amount of virtual address space we gather up
2080 * before attempting to purge with a TLB flush.
2081 *
2082 * There is a tradeoff here: a larger number will cover more kernel page tables
2083 * and take slightly longer to purge, but it will linearly reduce the number of
2084 * global TLB flushes that must be performed. It would seem natural to scale
2085 * this number up linearly with the number of CPUs (because vmapping activity
2086 * could also scale linearly with the number of CPUs), however it is likely
2087 * that in practice, workloads might be constrained in other ways that mean
2088 * vmap activity will not scale linearly with CPUs. Also, I want to be
2089 * conservative and not introduce a big latency on huge systems, so go with
2090 * a less aggressive log scale. It will still be an improvement over the old
2091 * code, and it will be simple to change the scale factor if we find that it
2092 * becomes a problem on bigger systems.
2093 */
lazy_max_pages(void)2094 static unsigned long lazy_max_pages(void)
2095 {
2096 unsigned int log;
2097
2098 log = fls(num_online_cpus());
2099
2100 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2101 }
2102
2103 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2104
2105 /*
2106 * Serialize vmap purging. There is no actual critical section protected
2107 * by this lock, but we want to avoid concurrent calls for performance
2108 * reasons and to make the pcpu_get_vm_areas more deterministic.
2109 */
2110 static DEFINE_MUTEX(vmap_purge_lock);
2111
2112 /* for per-CPU blocks */
2113 static void purge_fragmented_blocks_allcpus(void);
2114 static cpumask_t purge_nodes;
2115
2116 static void
reclaim_list_global(struct list_head * head)2117 reclaim_list_global(struct list_head *head)
2118 {
2119 struct vmap_area *va, *n;
2120
2121 if (list_empty(head))
2122 return;
2123
2124 spin_lock(&free_vmap_area_lock);
2125 list_for_each_entry_safe(va, n, head, list)
2126 merge_or_add_vmap_area_augment(va,
2127 &free_vmap_area_root, &free_vmap_area_list);
2128 spin_unlock(&free_vmap_area_lock);
2129 }
2130
2131 static void
decay_va_pool_node(struct vmap_node * vn,bool full_decay)2132 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2133 {
2134 LIST_HEAD(decay_list);
2135 struct rb_root decay_root = RB_ROOT;
2136 struct vmap_area *va, *nva;
2137 unsigned long n_decay;
2138 int i;
2139
2140 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2141 LIST_HEAD(tmp_list);
2142
2143 if (list_empty(&vn->pool[i].head))
2144 continue;
2145
2146 /* Detach the pool, so no-one can access it. */
2147 spin_lock(&vn->pool_lock);
2148 list_replace_init(&vn->pool[i].head, &tmp_list);
2149 spin_unlock(&vn->pool_lock);
2150
2151 if (full_decay)
2152 WRITE_ONCE(vn->pool[i].len, 0);
2153
2154 /* Decay a pool by ~25% out of left objects. */
2155 n_decay = vn->pool[i].len >> 2;
2156
2157 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2158 list_del_init(&va->list);
2159 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2160
2161 if (!full_decay) {
2162 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2163
2164 if (!--n_decay)
2165 break;
2166 }
2167 }
2168
2169 /*
2170 * Attach the pool back if it has been partly decayed.
2171 * Please note, it is supposed that nobody(other contexts)
2172 * can populate the pool therefore a simple list replace
2173 * operation takes place here.
2174 */
2175 if (!full_decay && !list_empty(&tmp_list)) {
2176 spin_lock(&vn->pool_lock);
2177 list_replace_init(&tmp_list, &vn->pool[i].head);
2178 spin_unlock(&vn->pool_lock);
2179 }
2180 }
2181
2182 reclaim_list_global(&decay_list);
2183 }
2184
purge_vmap_node(struct work_struct * work)2185 static void purge_vmap_node(struct work_struct *work)
2186 {
2187 struct vmap_node *vn = container_of(work,
2188 struct vmap_node, purge_work);
2189 unsigned long nr_purged_pages = 0;
2190 struct vmap_area *va, *n_va;
2191 LIST_HEAD(local_list);
2192
2193 vn->nr_purged = 0;
2194
2195 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2196 unsigned long nr = va_size(va) >> PAGE_SHIFT;
2197 unsigned long orig_start = va->va_start;
2198 unsigned long orig_end = va->va_end;
2199 unsigned int vn_id = decode_vn_id(va->flags);
2200
2201 list_del_init(&va->list);
2202
2203 if (is_vmalloc_or_module_addr((void *)orig_start))
2204 kasan_release_vmalloc(orig_start, orig_end,
2205 va->va_start, va->va_end);
2206
2207 nr_purged_pages += nr;
2208 vn->nr_purged++;
2209
2210 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2211 if (node_pool_add_va(vn, va))
2212 continue;
2213
2214 /* Go back to global. */
2215 list_add(&va->list, &local_list);
2216 }
2217
2218 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2219
2220 reclaim_list_global(&local_list);
2221 }
2222
2223 /*
2224 * Purges all lazily-freed vmap areas.
2225 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end,bool full_pool_decay)2226 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2227 bool full_pool_decay)
2228 {
2229 unsigned long nr_purged_areas = 0;
2230 unsigned int nr_purge_helpers;
2231 unsigned int nr_purge_nodes;
2232 struct vmap_node *vn;
2233 int i;
2234
2235 lockdep_assert_held(&vmap_purge_lock);
2236
2237 /*
2238 * Use cpumask to mark which node has to be processed.
2239 */
2240 purge_nodes = CPU_MASK_NONE;
2241
2242 for (i = 0; i < nr_vmap_nodes; i++) {
2243 vn = &vmap_nodes[i];
2244
2245 INIT_LIST_HEAD(&vn->purge_list);
2246 vn->skip_populate = full_pool_decay;
2247 decay_va_pool_node(vn, full_pool_decay);
2248
2249 if (RB_EMPTY_ROOT(&vn->lazy.root))
2250 continue;
2251
2252 spin_lock(&vn->lazy.lock);
2253 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2254 list_replace_init(&vn->lazy.head, &vn->purge_list);
2255 spin_unlock(&vn->lazy.lock);
2256
2257 start = min(start, list_first_entry(&vn->purge_list,
2258 struct vmap_area, list)->va_start);
2259
2260 end = max(end, list_last_entry(&vn->purge_list,
2261 struct vmap_area, list)->va_end);
2262
2263 cpumask_set_cpu(i, &purge_nodes);
2264 }
2265
2266 nr_purge_nodes = cpumask_weight(&purge_nodes);
2267 if (nr_purge_nodes > 0) {
2268 flush_tlb_kernel_range(start, end);
2269
2270 /* One extra worker is per a lazy_max_pages() full set minus one. */
2271 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2272 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2273
2274 for_each_cpu(i, &purge_nodes) {
2275 vn = &vmap_nodes[i];
2276
2277 if (nr_purge_helpers > 0) {
2278 INIT_WORK(&vn->purge_work, purge_vmap_node);
2279
2280 if (cpumask_test_cpu(i, cpu_online_mask))
2281 schedule_work_on(i, &vn->purge_work);
2282 else
2283 schedule_work(&vn->purge_work);
2284
2285 nr_purge_helpers--;
2286 } else {
2287 vn->purge_work.func = NULL;
2288 purge_vmap_node(&vn->purge_work);
2289 nr_purged_areas += vn->nr_purged;
2290 }
2291 }
2292
2293 for_each_cpu(i, &purge_nodes) {
2294 vn = &vmap_nodes[i];
2295
2296 if (vn->purge_work.func) {
2297 flush_work(&vn->purge_work);
2298 nr_purged_areas += vn->nr_purged;
2299 }
2300 }
2301 }
2302
2303 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2304 return nr_purged_areas > 0;
2305 }
2306
2307 /*
2308 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2309 */
reclaim_and_purge_vmap_areas(void)2310 static void reclaim_and_purge_vmap_areas(void)
2311
2312 {
2313 mutex_lock(&vmap_purge_lock);
2314 purge_fragmented_blocks_allcpus();
2315 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2316 mutex_unlock(&vmap_purge_lock);
2317 }
2318
drain_vmap_area_work(struct work_struct * work)2319 static void drain_vmap_area_work(struct work_struct *work)
2320 {
2321 mutex_lock(&vmap_purge_lock);
2322 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2323 mutex_unlock(&vmap_purge_lock);
2324 }
2325
2326 /*
2327 * Free a vmap area, caller ensuring that the area has been unmapped,
2328 * unlinked and flush_cache_vunmap had been called for the correct
2329 * range previously.
2330 */
free_vmap_area_noflush(struct vmap_area * va)2331 static void free_vmap_area_noflush(struct vmap_area *va)
2332 {
2333 unsigned long nr_lazy_max = lazy_max_pages();
2334 unsigned long va_start = va->va_start;
2335 unsigned int vn_id = decode_vn_id(va->flags);
2336 struct vmap_node *vn;
2337 unsigned long nr_lazy;
2338
2339 if (WARN_ON_ONCE(!list_empty(&va->list)))
2340 return;
2341
2342 nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT,
2343 &vmap_lazy_nr);
2344
2345 /*
2346 * If it was request by a certain node we would like to
2347 * return it to that node, i.e. its pool for later reuse.
2348 */
2349 vn = is_vn_id_valid(vn_id) ?
2350 id_to_node(vn_id):addr_to_node(va->va_start);
2351
2352 spin_lock(&vn->lazy.lock);
2353 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2354 spin_unlock(&vn->lazy.lock);
2355
2356 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2357
2358 /* After this point, we may free va at any time */
2359 if (unlikely(nr_lazy > nr_lazy_max))
2360 schedule_work(&drain_vmap_work);
2361 }
2362
2363 /*
2364 * Free and unmap a vmap area
2365 */
free_unmap_vmap_area(struct vmap_area * va)2366 static void free_unmap_vmap_area(struct vmap_area *va)
2367 {
2368 flush_cache_vunmap(va->va_start, va->va_end);
2369 vunmap_range_noflush(va->va_start, va->va_end);
2370 if (debug_pagealloc_enabled_static())
2371 flush_tlb_kernel_range(va->va_start, va->va_end);
2372
2373 free_vmap_area_noflush(va);
2374 }
2375
find_vmap_area(unsigned long addr)2376 struct vmap_area *find_vmap_area(unsigned long addr)
2377 {
2378 struct vmap_node *vn;
2379 struct vmap_area *va;
2380 int i, j;
2381
2382 if (unlikely(!vmap_initialized))
2383 return NULL;
2384
2385 /*
2386 * An addr_to_node_id(addr) converts an address to a node index
2387 * where a VA is located. If VA spans several zones and passed
2388 * addr is not the same as va->va_start, what is not common, we
2389 * may need to scan extra nodes. See an example:
2390 *
2391 * <----va---->
2392 * -|-----|-----|-----|-----|-
2393 * 1 2 0 1
2394 *
2395 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2396 * addr is within 2 or 0 nodes we should do extra work.
2397 */
2398 i = j = addr_to_node_id(addr);
2399 do {
2400 vn = &vmap_nodes[i];
2401
2402 spin_lock(&vn->busy.lock);
2403 va = __find_vmap_area(addr, &vn->busy.root);
2404 spin_unlock(&vn->busy.lock);
2405
2406 if (va)
2407 return va;
2408 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2409
2410 return NULL;
2411 }
2412
find_unlink_vmap_area(unsigned long addr)2413 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2414 {
2415 struct vmap_node *vn;
2416 struct vmap_area *va;
2417 int i, j;
2418
2419 /*
2420 * Check the comment in the find_vmap_area() about the loop.
2421 */
2422 i = j = addr_to_node_id(addr);
2423 do {
2424 vn = &vmap_nodes[i];
2425
2426 spin_lock(&vn->busy.lock);
2427 va = __find_vmap_area(addr, &vn->busy.root);
2428 if (va)
2429 unlink_va(va, &vn->busy.root);
2430 spin_unlock(&vn->busy.lock);
2431
2432 if (va)
2433 return va;
2434 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2435
2436 return NULL;
2437 }
2438
2439 /*** Per cpu kva allocator ***/
2440
2441 /*
2442 * vmap space is limited especially on 32 bit architectures. Ensure there is
2443 * room for at least 16 percpu vmap blocks per CPU.
2444 */
2445 /*
2446 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2447 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2448 * instead (we just need a rough idea)
2449 */
2450 #if BITS_PER_LONG == 32
2451 #define VMALLOC_SPACE (128UL*1024*1024)
2452 #else
2453 #define VMALLOC_SPACE (128UL*1024*1024*1024)
2454 #endif
2455
2456 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2457 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2458 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2459 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2460 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2461 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2462 #define VMAP_BBMAP_BITS \
2463 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2464 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2465 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2466
2467 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2468
2469 /*
2470 * Purge threshold to prevent overeager purging of fragmented blocks for
2471 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2472 */
2473 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2474
2475 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2476 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2477 #define VMAP_FLAGS_MASK 0x3
2478
2479 struct vmap_block_queue {
2480 spinlock_t lock;
2481 struct list_head free;
2482
2483 /*
2484 * An xarray requires an extra memory dynamically to
2485 * be allocated. If it is an issue, we can use rb-tree
2486 * instead.
2487 */
2488 struct xarray vmap_blocks;
2489 };
2490
2491 struct vmap_block {
2492 spinlock_t lock;
2493 struct vmap_area *va;
2494 unsigned long free, dirty;
2495 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2496 unsigned long dirty_min, dirty_max; /*< dirty range */
2497 struct list_head free_list;
2498 struct rcu_head rcu_head;
2499 struct list_head purge;
2500 unsigned int cpu;
2501 };
2502
2503 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2504 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2505
2506 /*
2507 * In order to fast access to any "vmap_block" associated with a
2508 * specific address, we use a hash.
2509 *
2510 * A per-cpu vmap_block_queue is used in both ways, to serialize
2511 * an access to free block chains among CPUs(alloc path) and it
2512 * also acts as a vmap_block hash(alloc/free paths). It means we
2513 * overload it, since we already have the per-cpu array which is
2514 * used as a hash table. When used as a hash a 'cpu' passed to
2515 * per_cpu() is not actually a CPU but rather a hash index.
2516 *
2517 * A hash function is addr_to_vb_xa() which hashes any address
2518 * to a specific index(in a hash) it belongs to. This then uses a
2519 * per_cpu() macro to access an array with generated index.
2520 *
2521 * An example:
2522 *
2523 * CPU_1 CPU_2 CPU_0
2524 * | | |
2525 * V V V
2526 * 0 10 20 30 40 50 60
2527 * |------|------|------|------|------|------|...<vmap address space>
2528 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2529 *
2530 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2531 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2532 *
2533 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2534 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2535 *
2536 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2537 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2538 *
2539 * This technique almost always avoids lock contention on insert/remove,
2540 * however xarray spinlocks protect against any contention that remains.
2541 */
2542 static struct xarray *
addr_to_vb_xa(unsigned long addr)2543 addr_to_vb_xa(unsigned long addr)
2544 {
2545 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2546
2547 /*
2548 * Please note, nr_cpu_ids points on a highest set
2549 * possible bit, i.e. we never invoke cpumask_next()
2550 * if an index points on it which is nr_cpu_ids - 1.
2551 */
2552 if (!cpu_possible(index))
2553 index = cpumask_next(index, cpu_possible_mask);
2554
2555 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2556 }
2557
2558 /*
2559 * We should probably have a fallback mechanism to allocate virtual memory
2560 * out of partially filled vmap blocks. However vmap block sizing should be
2561 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2562 * big problem.
2563 */
2564
addr_to_vb_idx(unsigned long addr)2565 static unsigned long addr_to_vb_idx(unsigned long addr)
2566 {
2567 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2568 addr /= VMAP_BLOCK_SIZE;
2569 return addr;
2570 }
2571
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2572 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2573 {
2574 unsigned long addr;
2575
2576 addr = va_start + (pages_off << PAGE_SHIFT);
2577 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2578 return (void *)addr;
2579 }
2580
2581 /**
2582 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2583 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2584 * @order: how many 2^order pages should be occupied in newly allocated block
2585 * @gfp_mask: flags for the page level allocator
2586 *
2587 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2588 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2589 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2590 {
2591 struct vmap_block_queue *vbq;
2592 struct vmap_block *vb;
2593 struct vmap_area *va;
2594 struct xarray *xa;
2595 unsigned long vb_idx;
2596 int node, err;
2597 void *vaddr;
2598
2599 node = numa_node_id();
2600
2601 vb = kmalloc_node(sizeof(struct vmap_block),
2602 gfp_mask & GFP_RECLAIM_MASK, node);
2603 if (unlikely(!vb))
2604 return ERR_PTR(-ENOMEM);
2605
2606 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2607 VMALLOC_START, VMALLOC_END,
2608 node, gfp_mask,
2609 VMAP_RAM|VMAP_BLOCK, NULL);
2610 if (IS_ERR(va)) {
2611 kfree(vb);
2612 return ERR_CAST(va);
2613 }
2614
2615 vaddr = vmap_block_vaddr(va->va_start, 0);
2616 spin_lock_init(&vb->lock);
2617 vb->va = va;
2618 /* At least something should be left free */
2619 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2620 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2621 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2622 vb->dirty = 0;
2623 vb->dirty_min = VMAP_BBMAP_BITS;
2624 vb->dirty_max = 0;
2625 bitmap_set(vb->used_map, 0, (1UL << order));
2626 INIT_LIST_HEAD(&vb->free_list);
2627 vb->cpu = raw_smp_processor_id();
2628
2629 xa = addr_to_vb_xa(va->va_start);
2630 vb_idx = addr_to_vb_idx(va->va_start);
2631 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2632 if (err) {
2633 kfree(vb);
2634 free_vmap_area(va);
2635 return ERR_PTR(err);
2636 }
2637 /*
2638 * list_add_tail_rcu could happened in another core
2639 * rather than vb->cpu due to task migration, which
2640 * is safe as list_add_tail_rcu will ensure the list's
2641 * integrity together with list_for_each_rcu from read
2642 * side.
2643 */
2644 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2645 spin_lock(&vbq->lock);
2646 list_add_tail_rcu(&vb->free_list, &vbq->free);
2647 spin_unlock(&vbq->lock);
2648
2649 return vaddr;
2650 }
2651
free_vmap_block(struct vmap_block * vb)2652 static void free_vmap_block(struct vmap_block *vb)
2653 {
2654 struct vmap_node *vn;
2655 struct vmap_block *tmp;
2656 struct xarray *xa;
2657
2658 xa = addr_to_vb_xa(vb->va->va_start);
2659 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2660 BUG_ON(tmp != vb);
2661
2662 vn = addr_to_node(vb->va->va_start);
2663 spin_lock(&vn->busy.lock);
2664 unlink_va(vb->va, &vn->busy.root);
2665 spin_unlock(&vn->busy.lock);
2666
2667 free_vmap_area_noflush(vb->va);
2668 kfree_rcu(vb, rcu_head);
2669 }
2670
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2671 static bool purge_fragmented_block(struct vmap_block *vb,
2672 struct list_head *purge_list, bool force_purge)
2673 {
2674 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2675
2676 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2677 vb->dirty == VMAP_BBMAP_BITS)
2678 return false;
2679
2680 /* Don't overeagerly purge usable blocks unless requested */
2681 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2682 return false;
2683
2684 /* prevent further allocs after releasing lock */
2685 WRITE_ONCE(vb->free, 0);
2686 /* prevent purging it again */
2687 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2688 vb->dirty_min = 0;
2689 vb->dirty_max = VMAP_BBMAP_BITS;
2690 spin_lock(&vbq->lock);
2691 list_del_rcu(&vb->free_list);
2692 spin_unlock(&vbq->lock);
2693 list_add_tail(&vb->purge, purge_list);
2694 return true;
2695 }
2696
free_purged_blocks(struct list_head * purge_list)2697 static void free_purged_blocks(struct list_head *purge_list)
2698 {
2699 struct vmap_block *vb, *n_vb;
2700
2701 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2702 list_del(&vb->purge);
2703 free_vmap_block(vb);
2704 }
2705 }
2706
purge_fragmented_blocks(int cpu)2707 static void purge_fragmented_blocks(int cpu)
2708 {
2709 LIST_HEAD(purge);
2710 struct vmap_block *vb;
2711 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2712
2713 rcu_read_lock();
2714 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2715 unsigned long free = READ_ONCE(vb->free);
2716 unsigned long dirty = READ_ONCE(vb->dirty);
2717
2718 if (free + dirty != VMAP_BBMAP_BITS ||
2719 dirty == VMAP_BBMAP_BITS)
2720 continue;
2721
2722 spin_lock(&vb->lock);
2723 purge_fragmented_block(vb, &purge, true);
2724 spin_unlock(&vb->lock);
2725 }
2726 rcu_read_unlock();
2727 free_purged_blocks(&purge);
2728 }
2729
purge_fragmented_blocks_allcpus(void)2730 static void purge_fragmented_blocks_allcpus(void)
2731 {
2732 int cpu;
2733
2734 for_each_possible_cpu(cpu)
2735 purge_fragmented_blocks(cpu);
2736 }
2737
vb_alloc(unsigned long size,gfp_t gfp_mask)2738 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2739 {
2740 struct vmap_block_queue *vbq;
2741 struct vmap_block *vb;
2742 void *vaddr = NULL;
2743 unsigned int order;
2744
2745 BUG_ON(offset_in_page(size));
2746 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2747 if (WARN_ON(size == 0)) {
2748 /*
2749 * Allocating 0 bytes isn't what caller wants since
2750 * get_order(0) returns funny result. Just warn and terminate
2751 * early.
2752 */
2753 return ERR_PTR(-EINVAL);
2754 }
2755 order = get_order(size);
2756
2757 rcu_read_lock();
2758 vbq = raw_cpu_ptr(&vmap_block_queue);
2759 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2760 unsigned long pages_off;
2761
2762 if (READ_ONCE(vb->free) < (1UL << order))
2763 continue;
2764
2765 spin_lock(&vb->lock);
2766 if (vb->free < (1UL << order)) {
2767 spin_unlock(&vb->lock);
2768 continue;
2769 }
2770
2771 pages_off = VMAP_BBMAP_BITS - vb->free;
2772 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2773 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2774 bitmap_set(vb->used_map, pages_off, (1UL << order));
2775 if (vb->free == 0) {
2776 spin_lock(&vbq->lock);
2777 list_del_rcu(&vb->free_list);
2778 spin_unlock(&vbq->lock);
2779 }
2780
2781 spin_unlock(&vb->lock);
2782 break;
2783 }
2784
2785 rcu_read_unlock();
2786
2787 /* Allocate new block if nothing was found */
2788 if (!vaddr)
2789 vaddr = new_vmap_block(order, gfp_mask);
2790
2791 return vaddr;
2792 }
2793
vb_free(unsigned long addr,unsigned long size)2794 static void vb_free(unsigned long addr, unsigned long size)
2795 {
2796 unsigned long offset;
2797 unsigned int order;
2798 struct vmap_block *vb;
2799 struct xarray *xa;
2800
2801 BUG_ON(offset_in_page(size));
2802 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2803
2804 flush_cache_vunmap(addr, addr + size);
2805
2806 order = get_order(size);
2807 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2808
2809 xa = addr_to_vb_xa(addr);
2810 vb = xa_load(xa, addr_to_vb_idx(addr));
2811
2812 spin_lock(&vb->lock);
2813 bitmap_clear(vb->used_map, offset, (1UL << order));
2814 spin_unlock(&vb->lock);
2815
2816 vunmap_range_noflush(addr, addr + size);
2817
2818 if (debug_pagealloc_enabled_static())
2819 flush_tlb_kernel_range(addr, addr + size);
2820
2821 spin_lock(&vb->lock);
2822
2823 /* Expand the not yet TLB flushed dirty range */
2824 vb->dirty_min = min(vb->dirty_min, offset);
2825 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2826
2827 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2828 if (vb->dirty == VMAP_BBMAP_BITS) {
2829 BUG_ON(vb->free);
2830 spin_unlock(&vb->lock);
2831 free_vmap_block(vb);
2832 } else
2833 spin_unlock(&vb->lock);
2834 }
2835
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2836 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2837 {
2838 LIST_HEAD(purge_list);
2839 int cpu;
2840
2841 if (unlikely(!vmap_initialized))
2842 return;
2843
2844 mutex_lock(&vmap_purge_lock);
2845
2846 for_each_possible_cpu(cpu) {
2847 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2848 struct vmap_block *vb;
2849 unsigned long idx;
2850
2851 rcu_read_lock();
2852 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2853 spin_lock(&vb->lock);
2854
2855 /*
2856 * Try to purge a fragmented block first. If it's
2857 * not purgeable, check whether there is dirty
2858 * space to be flushed.
2859 */
2860 if (!purge_fragmented_block(vb, &purge_list, false) &&
2861 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2862 unsigned long va_start = vb->va->va_start;
2863 unsigned long s, e;
2864
2865 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2866 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2867
2868 start = min(s, start);
2869 end = max(e, end);
2870
2871 /* Prevent that this is flushed again */
2872 vb->dirty_min = VMAP_BBMAP_BITS;
2873 vb->dirty_max = 0;
2874
2875 flush = 1;
2876 }
2877 spin_unlock(&vb->lock);
2878 }
2879 rcu_read_unlock();
2880 }
2881 free_purged_blocks(&purge_list);
2882
2883 if (!__purge_vmap_area_lazy(start, end, false) && flush)
2884 flush_tlb_kernel_range(start, end);
2885 mutex_unlock(&vmap_purge_lock);
2886 }
2887
2888 /**
2889 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2890 *
2891 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2892 * to amortize TLB flushing overheads. What this means is that any page you
2893 * have now, may, in a former life, have been mapped into kernel virtual
2894 * address by the vmap layer and so there might be some CPUs with TLB entries
2895 * still referencing that page (additional to the regular 1:1 kernel mapping).
2896 *
2897 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2898 * be sure that none of the pages we have control over will have any aliases
2899 * from the vmap layer.
2900 */
vm_unmap_aliases(void)2901 void vm_unmap_aliases(void)
2902 {
2903 unsigned long start = ULONG_MAX, end = 0;
2904 int flush = 0;
2905
2906 _vm_unmap_aliases(start, end, flush);
2907 }
2908 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2909
2910 /**
2911 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2912 * @mem: the pointer returned by vm_map_ram
2913 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2914 */
vm_unmap_ram(const void * mem,unsigned int count)2915 void vm_unmap_ram(const void *mem, unsigned int count)
2916 {
2917 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2918 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2919 struct vmap_area *va;
2920
2921 might_sleep();
2922 BUG_ON(!addr);
2923 BUG_ON(addr < VMALLOC_START);
2924 BUG_ON(addr > VMALLOC_END);
2925 BUG_ON(!PAGE_ALIGNED(addr));
2926
2927 kasan_poison_vmalloc(mem, size);
2928
2929 if (likely(count <= VMAP_MAX_ALLOC)) {
2930 debug_check_no_locks_freed(mem, size);
2931 vb_free(addr, size);
2932 return;
2933 }
2934
2935 va = find_unlink_vmap_area(addr);
2936 if (WARN_ON_ONCE(!va))
2937 return;
2938
2939 debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2940 free_unmap_vmap_area(va);
2941 }
2942 EXPORT_SYMBOL(vm_unmap_ram);
2943
2944 /**
2945 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2946 * @pages: an array of pointers to the pages to be mapped
2947 * @count: number of pages
2948 * @node: prefer to allocate data structures on this node
2949 *
2950 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2951 * faster than vmap so it's good. But if you mix long-life and short-life
2952 * objects with vm_map_ram(), it could consume lots of address space through
2953 * fragmentation (especially on a 32bit machine). You could see failures in
2954 * the end. Please use this function for short-lived objects.
2955 *
2956 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2957 */
vm_map_ram(struct page ** pages,unsigned int count,int node)2958 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2959 {
2960 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2961 unsigned long addr;
2962 void *mem;
2963
2964 if (likely(count <= VMAP_MAX_ALLOC)) {
2965 mem = vb_alloc(size, GFP_KERNEL);
2966 if (IS_ERR(mem))
2967 return NULL;
2968 addr = (unsigned long)mem;
2969 } else {
2970 struct vmap_area *va;
2971 va = alloc_vmap_area(size, PAGE_SIZE,
2972 VMALLOC_START, VMALLOC_END,
2973 node, GFP_KERNEL, VMAP_RAM,
2974 NULL);
2975 if (IS_ERR(va))
2976 return NULL;
2977
2978 addr = va->va_start;
2979 mem = (void *)addr;
2980 }
2981
2982 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2983 pages, PAGE_SHIFT) < 0) {
2984 vm_unmap_ram(mem, count);
2985 return NULL;
2986 }
2987
2988 /*
2989 * Mark the pages as accessible, now that they are mapped.
2990 * With hardware tag-based KASAN, marking is skipped for
2991 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2992 */
2993 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2994
2995 return mem;
2996 }
2997 EXPORT_SYMBOL(vm_map_ram);
2998
2999 static struct vm_struct *vmlist __initdata;
3000
vm_area_page_order(struct vm_struct * vm)3001 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3002 {
3003 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3004 return vm->page_order;
3005 #else
3006 return 0;
3007 #endif
3008 }
3009
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)3010 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3011 {
3012 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3013 vm->page_order = order;
3014 #else
3015 BUG_ON(order != 0);
3016 #endif
3017 }
3018
3019 /**
3020 * vm_area_add_early - add vmap area early during boot
3021 * @vm: vm_struct to add
3022 *
3023 * This function is used to add fixed kernel vm area to vmlist before
3024 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3025 * should contain proper values and the other fields should be zero.
3026 *
3027 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3028 */
vm_area_add_early(struct vm_struct * vm)3029 void __init vm_area_add_early(struct vm_struct *vm)
3030 {
3031 struct vm_struct *tmp, **p;
3032
3033 BUG_ON(vmap_initialized);
3034 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3035 if (tmp->addr >= vm->addr) {
3036 BUG_ON(tmp->addr < vm->addr + vm->size);
3037 break;
3038 } else
3039 BUG_ON(tmp->addr + tmp->size > vm->addr);
3040 }
3041 vm->next = *p;
3042 *p = vm;
3043 }
3044
3045 /**
3046 * vm_area_register_early - register vmap area early during boot
3047 * @vm: vm_struct to register
3048 * @align: requested alignment
3049 *
3050 * This function is used to register kernel vm area before
3051 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3052 * proper values on entry and other fields should be zero. On return,
3053 * vm->addr contains the allocated address.
3054 *
3055 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3056 */
vm_area_register_early(struct vm_struct * vm,size_t align)3057 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3058 {
3059 unsigned long addr = ALIGN(VMALLOC_START, align);
3060 struct vm_struct *cur, **p;
3061
3062 BUG_ON(vmap_initialized);
3063
3064 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3065 if ((unsigned long)cur->addr - addr >= vm->size)
3066 break;
3067 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3068 }
3069
3070 BUG_ON(addr > VMALLOC_END - vm->size);
3071 vm->addr = (void *)addr;
3072 vm->next = *p;
3073 *p = vm;
3074 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3075 }
3076
clear_vm_uninitialized_flag(struct vm_struct * vm)3077 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3078 {
3079 /*
3080 * Before removing VM_UNINITIALIZED,
3081 * we should make sure that vm has proper values.
3082 * Pair with smp_rmb() in show_numa_info().
3083 */
3084 smp_wmb();
3085 vm->flags &= ~VM_UNINITIALIZED;
3086 }
3087
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)3088 static struct vm_struct *__get_vm_area_node(unsigned long size,
3089 unsigned long align, unsigned long shift, unsigned long flags,
3090 unsigned long start, unsigned long end, int node,
3091 gfp_t gfp_mask, const void *caller)
3092 {
3093 struct vmap_area *va;
3094 struct vm_struct *area;
3095 unsigned long requested_size = size;
3096
3097 BUG_ON(in_interrupt());
3098 size = ALIGN(size, 1ul << shift);
3099 if (unlikely(!size))
3100 return NULL;
3101
3102 if (flags & VM_IOREMAP)
3103 align = 1ul << clamp_t(int, get_count_order_long(size),
3104 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3105
3106 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3107 if (unlikely(!area))
3108 return NULL;
3109
3110 if (!(flags & VM_NO_GUARD))
3111 size += PAGE_SIZE;
3112
3113 area->flags = flags;
3114 area->caller = caller;
3115
3116 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3117 if (IS_ERR(va)) {
3118 kfree(area);
3119 return NULL;
3120 }
3121
3122 /*
3123 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3124 * best-effort approach, as they can be mapped outside of vmalloc code.
3125 * For VM_ALLOC mappings, the pages are marked as accessible after
3126 * getting mapped in __vmalloc_node_range().
3127 * With hardware tag-based KASAN, marking is skipped for
3128 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3129 */
3130 if (!(flags & VM_ALLOC))
3131 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3132 KASAN_VMALLOC_PROT_NORMAL);
3133
3134 return area;
3135 }
3136
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)3137 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3138 unsigned long start, unsigned long end,
3139 const void *caller)
3140 {
3141 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3142 NUMA_NO_NODE, GFP_KERNEL, caller);
3143 }
3144
3145 /**
3146 * get_vm_area - reserve a contiguous kernel virtual area
3147 * @size: size of the area
3148 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3149 *
3150 * Search an area of @size in the kernel virtual mapping area,
3151 * and reserved it for out purposes. Returns the area descriptor
3152 * on success or %NULL on failure.
3153 *
3154 * Return: the area descriptor on success or %NULL on failure.
3155 */
get_vm_area(unsigned long size,unsigned long flags)3156 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3157 {
3158 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3159 VMALLOC_START, VMALLOC_END,
3160 NUMA_NO_NODE, GFP_KERNEL,
3161 __builtin_return_address(0));
3162 }
3163
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)3164 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3165 const void *caller)
3166 {
3167 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3168 VMALLOC_START, VMALLOC_END,
3169 NUMA_NO_NODE, GFP_KERNEL, caller);
3170 }
3171
3172 /**
3173 * find_vm_area - find a continuous kernel virtual area
3174 * @addr: base address
3175 *
3176 * Search for the kernel VM area starting at @addr, and return it.
3177 * It is up to the caller to do all required locking to keep the returned
3178 * pointer valid.
3179 *
3180 * Return: the area descriptor on success or %NULL on failure.
3181 */
find_vm_area(const void * addr)3182 struct vm_struct *find_vm_area(const void *addr)
3183 {
3184 struct vmap_area *va;
3185
3186 va = find_vmap_area((unsigned long)addr);
3187 if (!va)
3188 return NULL;
3189
3190 return va->vm;
3191 }
3192
3193 /**
3194 * remove_vm_area - find and remove a continuous kernel virtual area
3195 * @addr: base address
3196 *
3197 * Search for the kernel VM area starting at @addr, and remove it.
3198 * This function returns the found VM area, but using it is NOT safe
3199 * on SMP machines, except for its size or flags.
3200 *
3201 * Return: the area descriptor on success or %NULL on failure.
3202 */
remove_vm_area(const void * addr)3203 struct vm_struct *remove_vm_area(const void *addr)
3204 {
3205 struct vmap_area *va;
3206 struct vm_struct *vm;
3207
3208 might_sleep();
3209
3210 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3211 addr))
3212 return NULL;
3213
3214 va = find_unlink_vmap_area((unsigned long)addr);
3215 if (!va || !va->vm)
3216 return NULL;
3217 vm = va->vm;
3218
3219 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3220 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3221 kasan_free_module_shadow(vm);
3222 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3223
3224 free_unmap_vmap_area(va);
3225 return vm;
3226 }
3227
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))3228 static inline void set_area_direct_map(const struct vm_struct *area,
3229 int (*set_direct_map)(struct page *page))
3230 {
3231 int i;
3232
3233 /* HUGE_VMALLOC passes small pages to set_direct_map */
3234 for (i = 0; i < area->nr_pages; i++)
3235 if (page_address(area->pages[i]))
3236 set_direct_map(area->pages[i]);
3237 }
3238
3239 /*
3240 * Flush the vm mapping and reset the direct map.
3241 */
vm_reset_perms(struct vm_struct * area)3242 static void vm_reset_perms(struct vm_struct *area)
3243 {
3244 unsigned long start = ULONG_MAX, end = 0;
3245 unsigned int page_order = vm_area_page_order(area);
3246 int flush_dmap = 0;
3247 int i;
3248
3249 /*
3250 * Find the start and end range of the direct mappings to make sure that
3251 * the vm_unmap_aliases() flush includes the direct map.
3252 */
3253 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3254 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3255
3256 if (addr) {
3257 unsigned long page_size;
3258
3259 page_size = PAGE_SIZE << page_order;
3260 start = min(addr, start);
3261 end = max(addr + page_size, end);
3262 flush_dmap = 1;
3263 }
3264 }
3265
3266 /*
3267 * Set direct map to something invalid so that it won't be cached if
3268 * there are any accesses after the TLB flush, then flush the TLB and
3269 * reset the direct map permissions to the default.
3270 */
3271 set_area_direct_map(area, set_direct_map_invalid_noflush);
3272 _vm_unmap_aliases(start, end, flush_dmap);
3273 set_area_direct_map(area, set_direct_map_default_noflush);
3274 }
3275
delayed_vfree_work(struct work_struct * w)3276 static void delayed_vfree_work(struct work_struct *w)
3277 {
3278 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3279 struct llist_node *t, *llnode;
3280
3281 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3282 vfree(llnode);
3283 }
3284
3285 /**
3286 * vfree_atomic - release memory allocated by vmalloc()
3287 * @addr: memory base address
3288 *
3289 * This one is just like vfree() but can be called in any atomic context
3290 * except NMIs.
3291 */
vfree_atomic(const void * addr)3292 void vfree_atomic(const void *addr)
3293 {
3294 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3295
3296 BUG_ON(in_nmi());
3297 kmemleak_free(addr);
3298
3299 /*
3300 * Use raw_cpu_ptr() because this can be called from preemptible
3301 * context. Preemption is absolutely fine here, because the llist_add()
3302 * implementation is lockless, so it works even if we are adding to
3303 * another cpu's list. schedule_work() should be fine with this too.
3304 */
3305 if (addr && llist_add((struct llist_node *)addr, &p->list))
3306 schedule_work(&p->wq);
3307 }
3308
3309 /**
3310 * vfree - Release memory allocated by vmalloc()
3311 * @addr: Memory base address
3312 *
3313 * Free the virtually continuous memory area starting at @addr, as obtained
3314 * from one of the vmalloc() family of APIs. This will usually also free the
3315 * physical memory underlying the virtual allocation, but that memory is
3316 * reference counted, so it will not be freed until the last user goes away.
3317 *
3318 * If @addr is NULL, no operation is performed.
3319 *
3320 * Context:
3321 * May sleep if called *not* from interrupt context.
3322 * Must not be called in NMI context (strictly speaking, it could be
3323 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3324 * conventions for vfree() arch-dependent would be a really bad idea).
3325 */
vfree(const void * addr)3326 void vfree(const void *addr)
3327 {
3328 struct vm_struct *vm;
3329 int i;
3330
3331 if (unlikely(in_interrupt())) {
3332 vfree_atomic(addr);
3333 return;
3334 }
3335
3336 BUG_ON(in_nmi());
3337 kmemleak_free(addr);
3338 might_sleep();
3339
3340 if (!addr)
3341 return;
3342
3343 vm = remove_vm_area(addr);
3344 if (unlikely(!vm)) {
3345 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3346 addr);
3347 return;
3348 }
3349
3350 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3351 vm_reset_perms(vm);
3352 for (i = 0; i < vm->nr_pages; i++) {
3353 struct page *page = vm->pages[i];
3354
3355 BUG_ON(!page);
3356 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3357 /*
3358 * High-order allocs for huge vmallocs are split, so
3359 * can be freed as an array of order-0 allocations
3360 */
3361 __free_page(page);
3362 cond_resched();
3363 }
3364 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3365 kvfree(vm->pages);
3366 kfree(vm);
3367 }
3368 EXPORT_SYMBOL(vfree);
3369
3370 /**
3371 * vunmap - release virtual mapping obtained by vmap()
3372 * @addr: memory base address
3373 *
3374 * Free the virtually contiguous memory area starting at @addr,
3375 * which was created from the page array passed to vmap().
3376 *
3377 * Must not be called in interrupt context.
3378 */
vunmap(const void * addr)3379 void vunmap(const void *addr)
3380 {
3381 struct vm_struct *vm;
3382
3383 BUG_ON(in_interrupt());
3384 might_sleep();
3385
3386 if (!addr)
3387 return;
3388 vm = remove_vm_area(addr);
3389 if (unlikely(!vm)) {
3390 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3391 addr);
3392 return;
3393 }
3394 kfree(vm);
3395 }
3396 EXPORT_SYMBOL(vunmap);
3397
3398 /**
3399 * vmap - map an array of pages into virtually contiguous space
3400 * @pages: array of page pointers
3401 * @count: number of pages to map
3402 * @flags: vm_area->flags
3403 * @prot: page protection for the mapping
3404 *
3405 * Maps @count pages from @pages into contiguous kernel virtual space.
3406 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3407 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3408 * are transferred from the caller to vmap(), and will be freed / dropped when
3409 * vfree() is called on the return value.
3410 *
3411 * Return: the address of the area or %NULL on failure
3412 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)3413 void *vmap(struct page **pages, unsigned int count,
3414 unsigned long flags, pgprot_t prot)
3415 {
3416 struct vm_struct *area;
3417 unsigned long addr;
3418 unsigned long size; /* In bytes */
3419
3420 might_sleep();
3421
3422 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3423 return NULL;
3424
3425 /*
3426 * Your top guard is someone else's bottom guard. Not having a top
3427 * guard compromises someone else's mappings too.
3428 */
3429 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3430 flags &= ~VM_NO_GUARD;
3431
3432 if (count > totalram_pages())
3433 return NULL;
3434
3435 size = (unsigned long)count << PAGE_SHIFT;
3436 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3437 if (!area)
3438 return NULL;
3439
3440 addr = (unsigned long)area->addr;
3441 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3442 pages, PAGE_SHIFT) < 0) {
3443 vunmap(area->addr);
3444 return NULL;
3445 }
3446
3447 if (flags & VM_MAP_PUT_PAGES) {
3448 area->pages = pages;
3449 area->nr_pages = count;
3450 }
3451 return area->addr;
3452 }
3453 EXPORT_SYMBOL(vmap);
3454
3455 #ifdef CONFIG_VMAP_PFN
3456 struct vmap_pfn_data {
3457 unsigned long *pfns;
3458 pgprot_t prot;
3459 unsigned int idx;
3460 };
3461
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)3462 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3463 {
3464 struct vmap_pfn_data *data = private;
3465 unsigned long pfn = data->pfns[data->idx];
3466 pte_t ptent;
3467
3468 if (WARN_ON_ONCE(pfn_valid(pfn)))
3469 return -EINVAL;
3470
3471 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3472 set_pte_at(&init_mm, addr, pte, ptent);
3473
3474 data->idx++;
3475 return 0;
3476 }
3477
3478 /**
3479 * vmap_pfn - map an array of PFNs into virtually contiguous space
3480 * @pfns: array of PFNs
3481 * @count: number of pages to map
3482 * @prot: page protection for the mapping
3483 *
3484 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3485 * the start address of the mapping.
3486 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3487 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3488 {
3489 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3490 struct vm_struct *area;
3491
3492 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3493 __builtin_return_address(0));
3494 if (!area)
3495 return NULL;
3496 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3497 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3498 free_vm_area(area);
3499 return NULL;
3500 }
3501
3502 flush_cache_vmap((unsigned long)area->addr,
3503 (unsigned long)area->addr + count * PAGE_SIZE);
3504
3505 return area->addr;
3506 }
3507 EXPORT_SYMBOL_GPL(vmap_pfn);
3508 #endif /* CONFIG_VMAP_PFN */
3509
3510 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3511 vm_area_alloc_pages(gfp_t gfp, int nid,
3512 unsigned int order, unsigned int nr_pages, struct page **pages)
3513 {
3514 unsigned int nr_allocated = 0;
3515 struct page *page;
3516 int i;
3517
3518 /*
3519 * For order-0 pages we make use of bulk allocator, if
3520 * the page array is partly or not at all populated due
3521 * to fails, fallback to a single page allocator that is
3522 * more permissive.
3523 */
3524 if (!order) {
3525 while (nr_allocated < nr_pages) {
3526 unsigned int nr, nr_pages_request;
3527
3528 /*
3529 * A maximum allowed request is hard-coded and is 100
3530 * pages per call. That is done in order to prevent a
3531 * long preemption off scenario in the bulk-allocator
3532 * so the range is [1:100].
3533 */
3534 nr_pages_request = min(100U, nr_pages - nr_allocated);
3535
3536 /* memory allocation should consider mempolicy, we can't
3537 * wrongly use nearest node when nid == NUMA_NO_NODE,
3538 * otherwise memory may be allocated in only one node,
3539 * but mempolicy wants to alloc memory by interleaving.
3540 */
3541 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3542 nr = alloc_pages_bulk_array_mempolicy_noprof(gfp,
3543 nr_pages_request,
3544 pages + nr_allocated);
3545 else
3546 nr = alloc_pages_bulk_array_node_noprof(gfp, nid,
3547 nr_pages_request,
3548 pages + nr_allocated);
3549
3550 nr_allocated += nr;
3551 cond_resched();
3552
3553 /*
3554 * If zero or pages were obtained partly,
3555 * fallback to a single page allocator.
3556 */
3557 if (nr != nr_pages_request)
3558 break;
3559 }
3560 }
3561
3562 /* High-order pages or fallback path if "bulk" fails. */
3563 while (nr_allocated < nr_pages) {
3564 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3565 break;
3566
3567 if (nid == NUMA_NO_NODE)
3568 page = alloc_pages_noprof(gfp, order);
3569 else
3570 page = alloc_pages_node_noprof(nid, gfp, order);
3571
3572 if (unlikely(!page))
3573 break;
3574
3575 /*
3576 * High-order allocations must be able to be treated as
3577 * independent small pages by callers (as they can with
3578 * small-page vmallocs). Some drivers do their own refcounting
3579 * on vmalloc_to_page() pages, some use page->mapping,
3580 * page->lru, etc.
3581 */
3582 if (order)
3583 split_page(page, order);
3584
3585 /*
3586 * Careful, we allocate and map page-order pages, but
3587 * tracking is done per PAGE_SIZE page so as to keep the
3588 * vm_struct APIs independent of the physical/mapped size.
3589 */
3590 for (i = 0; i < (1U << order); i++)
3591 pages[nr_allocated + i] = page + i;
3592
3593 cond_resched();
3594 nr_allocated += 1U << order;
3595 }
3596
3597 return nr_allocated;
3598 }
3599
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3600 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3601 pgprot_t prot, unsigned int page_shift,
3602 int node)
3603 {
3604 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3605 bool nofail = gfp_mask & __GFP_NOFAIL;
3606 unsigned long addr = (unsigned long)area->addr;
3607 unsigned long size = get_vm_area_size(area);
3608 unsigned long array_size;
3609 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3610 unsigned int page_order;
3611 unsigned int flags;
3612 int ret;
3613
3614 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3615
3616 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3617 gfp_mask |= __GFP_HIGHMEM;
3618
3619 /* Please note that the recursion is strictly bounded. */
3620 if (array_size > PAGE_SIZE) {
3621 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3622 area->caller);
3623 } else {
3624 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3625 }
3626
3627 if (!area->pages) {
3628 warn_alloc(gfp_mask, NULL,
3629 "vmalloc error: size %lu, failed to allocated page array size %lu",
3630 nr_small_pages * PAGE_SIZE, array_size);
3631 free_vm_area(area);
3632 return NULL;
3633 }
3634
3635 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3636 page_order = vm_area_page_order(area);
3637
3638 /*
3639 * High-order nofail allocations are really expensive and
3640 * potentially dangerous (pre-mature OOM, disruptive reclaim
3641 * and compaction etc.
3642 *
3643 * Please note, the __vmalloc_node_range_noprof() falls-back
3644 * to order-0 pages if high-order attempt is unsuccessful.
3645 */
3646 area->nr_pages = vm_area_alloc_pages((page_order ?
3647 gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3648 node, page_order, nr_small_pages, area->pages);
3649
3650 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3651 if (gfp_mask & __GFP_ACCOUNT) {
3652 int i;
3653
3654 for (i = 0; i < area->nr_pages; i++)
3655 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3656 }
3657
3658 /*
3659 * If not enough pages were obtained to accomplish an
3660 * allocation request, free them via vfree() if any.
3661 */
3662 if (area->nr_pages != nr_small_pages) {
3663 /*
3664 * vm_area_alloc_pages() can fail due to insufficient memory but
3665 * also:-
3666 *
3667 * - a pending fatal signal
3668 * - insufficient huge page-order pages
3669 *
3670 * Since we always retry allocations at order-0 in the huge page
3671 * case a warning for either is spurious.
3672 */
3673 if (!fatal_signal_pending(current) && page_order == 0)
3674 warn_alloc(gfp_mask, NULL,
3675 "vmalloc error: size %lu, failed to allocate pages",
3676 area->nr_pages * PAGE_SIZE);
3677 goto fail;
3678 }
3679
3680 /*
3681 * page tables allocations ignore external gfp mask, enforce it
3682 * by the scope API
3683 */
3684 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3685 flags = memalloc_nofs_save();
3686 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3687 flags = memalloc_noio_save();
3688
3689 do {
3690 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3691 page_shift);
3692 if (nofail && (ret < 0))
3693 schedule_timeout_uninterruptible(1);
3694 } while (nofail && (ret < 0));
3695
3696 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3697 memalloc_nofs_restore(flags);
3698 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3699 memalloc_noio_restore(flags);
3700
3701 if (ret < 0) {
3702 warn_alloc(gfp_mask, NULL,
3703 "vmalloc error: size %lu, failed to map pages",
3704 area->nr_pages * PAGE_SIZE);
3705 goto fail;
3706 }
3707
3708 return area->addr;
3709
3710 fail:
3711 vfree(area->addr);
3712 return NULL;
3713 }
3714
3715 /**
3716 * __vmalloc_node_range - allocate virtually contiguous memory
3717 * @size: allocation size
3718 * @align: desired alignment
3719 * @start: vm area range start
3720 * @end: vm area range end
3721 * @gfp_mask: flags for the page level allocator
3722 * @prot: protection mask for the allocated pages
3723 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3724 * @node: node to use for allocation or NUMA_NO_NODE
3725 * @caller: caller's return address
3726 *
3727 * Allocate enough pages to cover @size from the page level
3728 * allocator with @gfp_mask flags. Please note that the full set of gfp
3729 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3730 * supported.
3731 * Zone modifiers are not supported. From the reclaim modifiers
3732 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3733 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3734 * __GFP_RETRY_MAYFAIL are not supported).
3735 *
3736 * __GFP_NOWARN can be used to suppress failures messages.
3737 *
3738 * Map them into contiguous kernel virtual space, using a pagetable
3739 * protection of @prot.
3740 *
3741 * Return: the address of the area or %NULL on failure
3742 */
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3743 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3744 unsigned long start, unsigned long end, gfp_t gfp_mask,
3745 pgprot_t prot, unsigned long vm_flags, int node,
3746 const void *caller)
3747 {
3748 struct vm_struct *area;
3749 void *ret;
3750 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3751 unsigned long real_size = size;
3752 unsigned long real_align = align;
3753 unsigned int shift = PAGE_SHIFT;
3754
3755 if (WARN_ON_ONCE(!size))
3756 return NULL;
3757
3758 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3759 warn_alloc(gfp_mask, NULL,
3760 "vmalloc error: size %lu, exceeds total pages",
3761 real_size);
3762 return NULL;
3763 }
3764
3765 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3766 unsigned long size_per_node;
3767
3768 /*
3769 * Try huge pages. Only try for PAGE_KERNEL allocations,
3770 * others like modules don't yet expect huge pages in
3771 * their allocations due to apply_to_page_range not
3772 * supporting them.
3773 */
3774
3775 size_per_node = size;
3776 if (node == NUMA_NO_NODE)
3777 size_per_node /= num_online_nodes();
3778 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3779 shift = PMD_SHIFT;
3780 else
3781 shift = arch_vmap_pte_supported_shift(size_per_node);
3782
3783 align = max(real_align, 1UL << shift);
3784 size = ALIGN(real_size, 1UL << shift);
3785 }
3786
3787 again:
3788 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3789 VM_UNINITIALIZED | vm_flags, start, end, node,
3790 gfp_mask, caller);
3791 if (!area) {
3792 bool nofail = gfp_mask & __GFP_NOFAIL;
3793 warn_alloc(gfp_mask, NULL,
3794 "vmalloc error: size %lu, vm_struct allocation failed%s",
3795 real_size, (nofail) ? ". Retrying." : "");
3796 if (nofail) {
3797 schedule_timeout_uninterruptible(1);
3798 goto again;
3799 }
3800 goto fail;
3801 }
3802
3803 /*
3804 * Prepare arguments for __vmalloc_area_node() and
3805 * kasan_unpoison_vmalloc().
3806 */
3807 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3808 if (kasan_hw_tags_enabled()) {
3809 /*
3810 * Modify protection bits to allow tagging.
3811 * This must be done before mapping.
3812 */
3813 prot = arch_vmap_pgprot_tagged(prot);
3814
3815 /*
3816 * Skip page_alloc poisoning and zeroing for physical
3817 * pages backing VM_ALLOC mapping. Memory is instead
3818 * poisoned and zeroed by kasan_unpoison_vmalloc().
3819 */
3820 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3821 }
3822
3823 /* Take note that the mapping is PAGE_KERNEL. */
3824 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3825 }
3826
3827 /* Allocate physical pages and map them into vmalloc space. */
3828 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3829 if (!ret)
3830 goto fail;
3831
3832 /*
3833 * Mark the pages as accessible, now that they are mapped.
3834 * The condition for setting KASAN_VMALLOC_INIT should complement the
3835 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3836 * to make sure that memory is initialized under the same conditions.
3837 * Tag-based KASAN modes only assign tags to normal non-executable
3838 * allocations, see __kasan_unpoison_vmalloc().
3839 */
3840 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3841 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3842 (gfp_mask & __GFP_SKIP_ZERO))
3843 kasan_flags |= KASAN_VMALLOC_INIT;
3844 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3845 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3846
3847 /*
3848 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3849 * flag. It means that vm_struct is not fully initialized.
3850 * Now, it is fully initialized, so remove this flag here.
3851 */
3852 clear_vm_uninitialized_flag(area);
3853
3854 size = PAGE_ALIGN(size);
3855 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3856 kmemleak_vmalloc(area, size, gfp_mask);
3857
3858 return area->addr;
3859
3860 fail:
3861 if (shift > PAGE_SHIFT) {
3862 shift = PAGE_SHIFT;
3863 align = real_align;
3864 size = real_size;
3865 goto again;
3866 }
3867
3868 return NULL;
3869 }
3870
3871 /**
3872 * __vmalloc_node - allocate virtually contiguous memory
3873 * @size: allocation size
3874 * @align: desired alignment
3875 * @gfp_mask: flags for the page level allocator
3876 * @node: node to use for allocation or NUMA_NO_NODE
3877 * @caller: caller's return address
3878 *
3879 * Allocate enough pages to cover @size from the page level allocator with
3880 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3881 *
3882 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3883 * and __GFP_NOFAIL are not supported
3884 *
3885 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3886 * with mm people.
3887 *
3888 * Return: pointer to the allocated memory or %NULL on error
3889 */
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3890 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3891 gfp_t gfp_mask, int node, const void *caller)
3892 {
3893 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3894 gfp_mask, PAGE_KERNEL, 0, node, caller);
3895 }
3896 /*
3897 * This is only for performance analysis of vmalloc and stress purpose.
3898 * It is required by vmalloc test module, therefore do not use it other
3899 * than that.
3900 */
3901 #ifdef CONFIG_TEST_VMALLOC_MODULE
3902 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3903 #endif
3904
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)3905 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3906 {
3907 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3908 __builtin_return_address(0));
3909 }
3910 EXPORT_SYMBOL(__vmalloc_noprof);
3911
3912 /**
3913 * vmalloc - allocate virtually contiguous memory
3914 * @size: allocation size
3915 *
3916 * Allocate enough pages to cover @size from the page level
3917 * allocator and map them into contiguous kernel virtual space.
3918 *
3919 * For tight control over page level allocator and protection flags
3920 * use __vmalloc() instead.
3921 *
3922 * Return: pointer to the allocated memory or %NULL on error
3923 */
vmalloc_noprof(unsigned long size)3924 void *vmalloc_noprof(unsigned long size)
3925 {
3926 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3927 __builtin_return_address(0));
3928 }
3929 EXPORT_SYMBOL(vmalloc_noprof);
3930
3931 /**
3932 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3933 * @size: allocation size
3934 * @gfp_mask: flags for the page level allocator
3935 *
3936 * Allocate enough pages to cover @size from the page level
3937 * allocator and map them into contiguous kernel virtual space.
3938 * If @size is greater than or equal to PMD_SIZE, allow using
3939 * huge pages for the memory
3940 *
3941 * Return: pointer to the allocated memory or %NULL on error
3942 */
vmalloc_huge_noprof(unsigned long size,gfp_t gfp_mask)3943 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3944 {
3945 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3946 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3947 NUMA_NO_NODE, __builtin_return_address(0));
3948 }
3949 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3950
3951 /**
3952 * vzalloc - allocate virtually contiguous memory with zero fill
3953 * @size: allocation size
3954 *
3955 * Allocate enough pages to cover @size from the page level
3956 * allocator and map them into contiguous kernel virtual space.
3957 * The memory allocated is set to zero.
3958 *
3959 * For tight control over page level allocator and protection flags
3960 * use __vmalloc() instead.
3961 *
3962 * Return: pointer to the allocated memory or %NULL on error
3963 */
vzalloc_noprof(unsigned long size)3964 void *vzalloc_noprof(unsigned long size)
3965 {
3966 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3967 __builtin_return_address(0));
3968 }
3969 EXPORT_SYMBOL(vzalloc_noprof);
3970
3971 /**
3972 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3973 * @size: allocation size
3974 *
3975 * The resulting memory area is zeroed so it can be mapped to userspace
3976 * without leaking data.
3977 *
3978 * Return: pointer to the allocated memory or %NULL on error
3979 */
vmalloc_user_noprof(unsigned long size)3980 void *vmalloc_user_noprof(unsigned long size)
3981 {
3982 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3983 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3984 VM_USERMAP, NUMA_NO_NODE,
3985 __builtin_return_address(0));
3986 }
3987 EXPORT_SYMBOL(vmalloc_user_noprof);
3988
3989 /**
3990 * vmalloc_node - allocate memory on a specific node
3991 * @size: allocation size
3992 * @node: numa node
3993 *
3994 * Allocate enough pages to cover @size from the page level
3995 * allocator and map them into contiguous kernel virtual space.
3996 *
3997 * For tight control over page level allocator and protection flags
3998 * use __vmalloc() instead.
3999 *
4000 * Return: pointer to the allocated memory or %NULL on error
4001 */
vmalloc_node_noprof(unsigned long size,int node)4002 void *vmalloc_node_noprof(unsigned long size, int node)
4003 {
4004 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4005 __builtin_return_address(0));
4006 }
4007 EXPORT_SYMBOL(vmalloc_node_noprof);
4008
4009 /**
4010 * vzalloc_node - allocate memory on a specific node with zero fill
4011 * @size: allocation size
4012 * @node: numa node
4013 *
4014 * Allocate enough pages to cover @size from the page level
4015 * allocator and map them into contiguous kernel virtual space.
4016 * The memory allocated is set to zero.
4017 *
4018 * Return: pointer to the allocated memory or %NULL on error
4019 */
vzalloc_node_noprof(unsigned long size,int node)4020 void *vzalloc_node_noprof(unsigned long size, int node)
4021 {
4022 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4023 __builtin_return_address(0));
4024 }
4025 EXPORT_SYMBOL(vzalloc_node_noprof);
4026
4027 /**
4028 * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4029 * @p: object to reallocate memory for
4030 * @size: the size to reallocate
4031 * @flags: the flags for the page level allocator
4032 *
4033 * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4034 * @p is not a %NULL pointer, the object pointed to is freed.
4035 *
4036 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4037 * initial memory allocation, every subsequent call to this API for the same
4038 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4039 * __GFP_ZERO is not fully honored by this API.
4040 *
4041 * In any case, the contents of the object pointed to are preserved up to the
4042 * lesser of the new and old sizes.
4043 *
4044 * This function must not be called concurrently with itself or vfree() for the
4045 * same memory allocation.
4046 *
4047 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4048 * failure
4049 */
vrealloc_noprof(const void * p,size_t size,gfp_t flags)4050 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4051 {
4052 size_t old_size = 0;
4053 void *n;
4054
4055 if (!size) {
4056 vfree(p);
4057 return NULL;
4058 }
4059
4060 if (p) {
4061 struct vm_struct *vm;
4062
4063 vm = find_vm_area(p);
4064 if (unlikely(!vm)) {
4065 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4066 return NULL;
4067 }
4068
4069 old_size = get_vm_area_size(vm);
4070 }
4071
4072 /*
4073 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4074 * would be a good heuristic for when to shrink the vm_area?
4075 */
4076 if (size <= old_size) {
4077 /* Zero out spare memory. */
4078 if (want_init_on_alloc(flags))
4079 memset((void *)p + size, 0, old_size - size);
4080
4081 return (void *)p;
4082 }
4083
4084 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4085 n = __vmalloc_noprof(size, flags);
4086 if (!n)
4087 return NULL;
4088
4089 if (p) {
4090 memcpy(n, p, old_size);
4091 vfree(p);
4092 }
4093
4094 return n;
4095 }
4096
4097 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4098 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4099 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4100 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4101 #else
4102 /*
4103 * 64b systems should always have either DMA or DMA32 zones. For others
4104 * GFP_DMA32 should do the right thing and use the normal zone.
4105 */
4106 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4107 #endif
4108
4109 /**
4110 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4111 * @size: allocation size
4112 *
4113 * Allocate enough 32bit PA addressable pages to cover @size from the
4114 * page level allocator and map them into contiguous kernel virtual space.
4115 *
4116 * Return: pointer to the allocated memory or %NULL on error
4117 */
vmalloc_32_noprof(unsigned long size)4118 void *vmalloc_32_noprof(unsigned long size)
4119 {
4120 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4121 __builtin_return_address(0));
4122 }
4123 EXPORT_SYMBOL(vmalloc_32_noprof);
4124
4125 /**
4126 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4127 * @size: allocation size
4128 *
4129 * The resulting memory area is 32bit addressable and zeroed so it can be
4130 * mapped to userspace without leaking data.
4131 *
4132 * Return: pointer to the allocated memory or %NULL on error
4133 */
vmalloc_32_user_noprof(unsigned long size)4134 void *vmalloc_32_user_noprof(unsigned long size)
4135 {
4136 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4137 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4138 VM_USERMAP, NUMA_NO_NODE,
4139 __builtin_return_address(0));
4140 }
4141 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4142
4143 /*
4144 * Atomically zero bytes in the iterator.
4145 *
4146 * Returns the number of zeroed bytes.
4147 */
zero_iter(struct iov_iter * iter,size_t count)4148 static size_t zero_iter(struct iov_iter *iter, size_t count)
4149 {
4150 size_t remains = count;
4151
4152 while (remains > 0) {
4153 size_t num, copied;
4154
4155 num = min_t(size_t, remains, PAGE_SIZE);
4156 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4157 remains -= copied;
4158
4159 if (copied < num)
4160 break;
4161 }
4162
4163 return count - remains;
4164 }
4165
4166 /*
4167 * small helper routine, copy contents to iter from addr.
4168 * If the page is not present, fill zero.
4169 *
4170 * Returns the number of copied bytes.
4171 */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)4172 static size_t aligned_vread_iter(struct iov_iter *iter,
4173 const char *addr, size_t count)
4174 {
4175 size_t remains = count;
4176 struct page *page;
4177
4178 while (remains > 0) {
4179 unsigned long offset, length;
4180 size_t copied = 0;
4181
4182 offset = offset_in_page(addr);
4183 length = PAGE_SIZE - offset;
4184 if (length > remains)
4185 length = remains;
4186 page = vmalloc_to_page(addr);
4187 /*
4188 * To do safe access to this _mapped_ area, we need lock. But
4189 * adding lock here means that we need to add overhead of
4190 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4191 * used. Instead of that, we'll use an local mapping via
4192 * copy_page_to_iter_nofault() and accept a small overhead in
4193 * this access function.
4194 */
4195 if (page)
4196 copied = copy_page_to_iter_nofault(page, offset,
4197 length, iter);
4198 else
4199 copied = zero_iter(iter, length);
4200
4201 addr += copied;
4202 remains -= copied;
4203
4204 if (copied != length)
4205 break;
4206 }
4207
4208 return count - remains;
4209 }
4210
4211 /*
4212 * Read from a vm_map_ram region of memory.
4213 *
4214 * Returns the number of copied bytes.
4215 */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)4216 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4217 size_t count, unsigned long flags)
4218 {
4219 char *start;
4220 struct vmap_block *vb;
4221 struct xarray *xa;
4222 unsigned long offset;
4223 unsigned int rs, re;
4224 size_t remains, n;
4225
4226 /*
4227 * If it's area created by vm_map_ram() interface directly, but
4228 * not further subdividing and delegating management to vmap_block,
4229 * handle it here.
4230 */
4231 if (!(flags & VMAP_BLOCK))
4232 return aligned_vread_iter(iter, addr, count);
4233
4234 remains = count;
4235
4236 /*
4237 * Area is split into regions and tracked with vmap_block, read out
4238 * each region and zero fill the hole between regions.
4239 */
4240 xa = addr_to_vb_xa((unsigned long) addr);
4241 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4242 if (!vb)
4243 goto finished_zero;
4244
4245 spin_lock(&vb->lock);
4246 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4247 spin_unlock(&vb->lock);
4248 goto finished_zero;
4249 }
4250
4251 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4252 size_t copied;
4253
4254 if (remains == 0)
4255 goto finished;
4256
4257 start = vmap_block_vaddr(vb->va->va_start, rs);
4258
4259 if (addr < start) {
4260 size_t to_zero = min_t(size_t, start - addr, remains);
4261 size_t zeroed = zero_iter(iter, to_zero);
4262
4263 addr += zeroed;
4264 remains -= zeroed;
4265
4266 if (remains == 0 || zeroed != to_zero)
4267 goto finished;
4268 }
4269
4270 /*it could start reading from the middle of used region*/
4271 offset = offset_in_page(addr);
4272 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4273 if (n > remains)
4274 n = remains;
4275
4276 copied = aligned_vread_iter(iter, start + offset, n);
4277
4278 addr += copied;
4279 remains -= copied;
4280
4281 if (copied != n)
4282 goto finished;
4283 }
4284
4285 spin_unlock(&vb->lock);
4286
4287 finished_zero:
4288 /* zero-fill the left dirty or free regions */
4289 return count - remains + zero_iter(iter, remains);
4290 finished:
4291 /* We couldn't copy/zero everything */
4292 spin_unlock(&vb->lock);
4293 return count - remains;
4294 }
4295
4296 /**
4297 * vread_iter() - read vmalloc area in a safe way to an iterator.
4298 * @iter: the iterator to which data should be written.
4299 * @addr: vm address.
4300 * @count: number of bytes to be read.
4301 *
4302 * This function checks that addr is a valid vmalloc'ed area, and
4303 * copy data from that area to a given buffer. If the given memory range
4304 * of [addr...addr+count) includes some valid address, data is copied to
4305 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4306 * IOREMAP area is treated as memory hole and no copy is done.
4307 *
4308 * If [addr...addr+count) doesn't includes any intersects with alive
4309 * vm_struct area, returns 0. @buf should be kernel's buffer.
4310 *
4311 * Note: In usual ops, vread() is never necessary because the caller
4312 * should know vmalloc() area is valid and can use memcpy().
4313 * This is for routines which have to access vmalloc area without
4314 * any information, as /proc/kcore.
4315 *
4316 * Return: number of bytes for which addr and buf should be increased
4317 * (same number as @count) or %0 if [addr...addr+count) doesn't
4318 * include any intersection with valid vmalloc area
4319 */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)4320 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4321 {
4322 struct vmap_node *vn;
4323 struct vmap_area *va;
4324 struct vm_struct *vm;
4325 char *vaddr;
4326 size_t n, size, flags, remains;
4327 unsigned long next;
4328
4329 addr = kasan_reset_tag(addr);
4330
4331 /* Don't allow overflow */
4332 if ((unsigned long) addr + count < count)
4333 count = -(unsigned long) addr;
4334
4335 remains = count;
4336
4337 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4338 if (!vn)
4339 goto finished_zero;
4340
4341 /* no intersects with alive vmap_area */
4342 if ((unsigned long)addr + remains <= va->va_start)
4343 goto finished_zero;
4344
4345 do {
4346 size_t copied;
4347
4348 if (remains == 0)
4349 goto finished;
4350
4351 vm = va->vm;
4352 flags = va->flags & VMAP_FLAGS_MASK;
4353 /*
4354 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4355 * be set together with VMAP_RAM.
4356 */
4357 WARN_ON(flags == VMAP_BLOCK);
4358
4359 if (!vm && !flags)
4360 goto next_va;
4361
4362 if (vm && (vm->flags & VM_UNINITIALIZED))
4363 goto next_va;
4364
4365 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4366 smp_rmb();
4367
4368 vaddr = (char *) va->va_start;
4369 size = vm ? get_vm_area_size(vm) : va_size(va);
4370
4371 if (addr >= vaddr + size)
4372 goto next_va;
4373
4374 if (addr < vaddr) {
4375 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4376 size_t zeroed = zero_iter(iter, to_zero);
4377
4378 addr += zeroed;
4379 remains -= zeroed;
4380
4381 if (remains == 0 || zeroed != to_zero)
4382 goto finished;
4383 }
4384
4385 n = vaddr + size - addr;
4386 if (n > remains)
4387 n = remains;
4388
4389 if (flags & VMAP_RAM)
4390 copied = vmap_ram_vread_iter(iter, addr, n, flags);
4391 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4392 copied = aligned_vread_iter(iter, addr, n);
4393 else /* IOREMAP | SPARSE area is treated as memory hole */
4394 copied = zero_iter(iter, n);
4395
4396 addr += copied;
4397 remains -= copied;
4398
4399 if (copied != n)
4400 goto finished;
4401
4402 next_va:
4403 next = va->va_end;
4404 spin_unlock(&vn->busy.lock);
4405 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4406
4407 finished_zero:
4408 if (vn)
4409 spin_unlock(&vn->busy.lock);
4410
4411 /* zero-fill memory holes */
4412 return count - remains + zero_iter(iter, remains);
4413 finished:
4414 /* Nothing remains, or We couldn't copy/zero everything. */
4415 if (vn)
4416 spin_unlock(&vn->busy.lock);
4417
4418 return count - remains;
4419 }
4420
4421 /**
4422 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4423 * @vma: vma to cover
4424 * @uaddr: target user address to start at
4425 * @kaddr: virtual address of vmalloc kernel memory
4426 * @pgoff: offset from @kaddr to start at
4427 * @size: size of map area
4428 *
4429 * Returns: 0 for success, -Exxx on failure
4430 *
4431 * This function checks that @kaddr is a valid vmalloc'ed area,
4432 * and that it is big enough to cover the range starting at
4433 * @uaddr in @vma. Will return failure if that criteria isn't
4434 * met.
4435 *
4436 * Similar to remap_pfn_range() (see mm/memory.c)
4437 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)4438 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4439 void *kaddr, unsigned long pgoff,
4440 unsigned long size)
4441 {
4442 struct vm_struct *area;
4443 unsigned long off;
4444 unsigned long end_index;
4445
4446 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4447 return -EINVAL;
4448
4449 size = PAGE_ALIGN(size);
4450
4451 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4452 return -EINVAL;
4453
4454 area = find_vm_area(kaddr);
4455 if (!area)
4456 return -EINVAL;
4457
4458 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4459 return -EINVAL;
4460
4461 if (check_add_overflow(size, off, &end_index) ||
4462 end_index > get_vm_area_size(area))
4463 return -EINVAL;
4464 kaddr += off;
4465
4466 do {
4467 struct page *page = vmalloc_to_page(kaddr);
4468 int ret;
4469
4470 ret = vm_insert_page(vma, uaddr, page);
4471 if (ret)
4472 return ret;
4473
4474 uaddr += PAGE_SIZE;
4475 kaddr += PAGE_SIZE;
4476 size -= PAGE_SIZE;
4477 } while (size > 0);
4478
4479 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4480
4481 return 0;
4482 }
4483
4484 /**
4485 * remap_vmalloc_range - map vmalloc pages to userspace
4486 * @vma: vma to cover (map full range of vma)
4487 * @addr: vmalloc memory
4488 * @pgoff: number of pages into addr before first page to map
4489 *
4490 * Returns: 0 for success, -Exxx on failure
4491 *
4492 * This function checks that addr is a valid vmalloc'ed area, and
4493 * that it is big enough to cover the vma. Will return failure if
4494 * that criteria isn't met.
4495 *
4496 * Similar to remap_pfn_range() (see mm/memory.c)
4497 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)4498 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4499 unsigned long pgoff)
4500 {
4501 return remap_vmalloc_range_partial(vma, vma->vm_start,
4502 addr, pgoff,
4503 vma->vm_end - vma->vm_start);
4504 }
4505 EXPORT_SYMBOL(remap_vmalloc_range);
4506
free_vm_area(struct vm_struct * area)4507 void free_vm_area(struct vm_struct *area)
4508 {
4509 struct vm_struct *ret;
4510 ret = remove_vm_area(area->addr);
4511 BUG_ON(ret != area);
4512 kfree(area);
4513 }
4514 EXPORT_SYMBOL_GPL(free_vm_area);
4515
4516 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)4517 static struct vmap_area *node_to_va(struct rb_node *n)
4518 {
4519 return rb_entry_safe(n, struct vmap_area, rb_node);
4520 }
4521
4522 /**
4523 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4524 * @addr: target address
4525 *
4526 * Returns: vmap_area if it is found. If there is no such area
4527 * the first highest(reverse order) vmap_area is returned
4528 * i.e. va->va_start < addr && va->va_end < addr or NULL
4529 * if there are no any areas before @addr.
4530 */
4531 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)4532 pvm_find_va_enclose_addr(unsigned long addr)
4533 {
4534 struct vmap_area *va, *tmp;
4535 struct rb_node *n;
4536
4537 n = free_vmap_area_root.rb_node;
4538 va = NULL;
4539
4540 while (n) {
4541 tmp = rb_entry(n, struct vmap_area, rb_node);
4542 if (tmp->va_start <= addr) {
4543 va = tmp;
4544 if (tmp->va_end >= addr)
4545 break;
4546
4547 n = n->rb_right;
4548 } else {
4549 n = n->rb_left;
4550 }
4551 }
4552
4553 return va;
4554 }
4555
4556 /**
4557 * pvm_determine_end_from_reverse - find the highest aligned address
4558 * of free block below VMALLOC_END
4559 * @va:
4560 * in - the VA we start the search(reverse order);
4561 * out - the VA with the highest aligned end address.
4562 * @align: alignment for required highest address
4563 *
4564 * Returns: determined end address within vmap_area
4565 */
4566 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4567 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4568 {
4569 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4570 unsigned long addr;
4571
4572 if (likely(*va)) {
4573 list_for_each_entry_from_reverse((*va),
4574 &free_vmap_area_list, list) {
4575 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4576 if ((*va)->va_start < addr)
4577 return addr;
4578 }
4579 }
4580
4581 return 0;
4582 }
4583
4584 /**
4585 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4586 * @offsets: array containing offset of each area
4587 * @sizes: array containing size of each area
4588 * @nr_vms: the number of areas to allocate
4589 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4590 *
4591 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4592 * vm_structs on success, %NULL on failure
4593 *
4594 * Percpu allocator wants to use congruent vm areas so that it can
4595 * maintain the offsets among percpu areas. This function allocates
4596 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4597 * be scattered pretty far, distance between two areas easily going up
4598 * to gigabytes. To avoid interacting with regular vmallocs, these
4599 * areas are allocated from top.
4600 *
4601 * Despite its complicated look, this allocator is rather simple. It
4602 * does everything top-down and scans free blocks from the end looking
4603 * for matching base. While scanning, if any of the areas do not fit the
4604 * base address is pulled down to fit the area. Scanning is repeated till
4605 * all the areas fit and then all necessary data structures are inserted
4606 * and the result is returned.
4607 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4608 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4609 const size_t *sizes, int nr_vms,
4610 size_t align)
4611 {
4612 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4613 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4614 struct vmap_area **vas, *va;
4615 struct vm_struct **vms;
4616 int area, area2, last_area, term_area;
4617 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4618 bool purged = false;
4619
4620 /* verify parameters and allocate data structures */
4621 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4622 for (last_area = 0, area = 0; area < nr_vms; area++) {
4623 start = offsets[area];
4624 end = start + sizes[area];
4625
4626 /* is everything aligned properly? */
4627 BUG_ON(!IS_ALIGNED(offsets[area], align));
4628 BUG_ON(!IS_ALIGNED(sizes[area], align));
4629
4630 /* detect the area with the highest address */
4631 if (start > offsets[last_area])
4632 last_area = area;
4633
4634 for (area2 = area + 1; area2 < nr_vms; area2++) {
4635 unsigned long start2 = offsets[area2];
4636 unsigned long end2 = start2 + sizes[area2];
4637
4638 BUG_ON(start2 < end && start < end2);
4639 }
4640 }
4641 last_end = offsets[last_area] + sizes[last_area];
4642
4643 if (vmalloc_end - vmalloc_start < last_end) {
4644 WARN_ON(true);
4645 return NULL;
4646 }
4647
4648 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4649 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4650 if (!vas || !vms)
4651 goto err_free2;
4652
4653 for (area = 0; area < nr_vms; area++) {
4654 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4655 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4656 if (!vas[area] || !vms[area])
4657 goto err_free;
4658 }
4659 retry:
4660 spin_lock(&free_vmap_area_lock);
4661
4662 /* start scanning - we scan from the top, begin with the last area */
4663 area = term_area = last_area;
4664 start = offsets[area];
4665 end = start + sizes[area];
4666
4667 va = pvm_find_va_enclose_addr(vmalloc_end);
4668 base = pvm_determine_end_from_reverse(&va, align) - end;
4669
4670 while (true) {
4671 /*
4672 * base might have underflowed, add last_end before
4673 * comparing.
4674 */
4675 if (base + last_end < vmalloc_start + last_end)
4676 goto overflow;
4677
4678 /*
4679 * Fitting base has not been found.
4680 */
4681 if (va == NULL)
4682 goto overflow;
4683
4684 /*
4685 * If required width exceeds current VA block, move
4686 * base downwards and then recheck.
4687 */
4688 if (base + end > va->va_end) {
4689 base = pvm_determine_end_from_reverse(&va, align) - end;
4690 term_area = area;
4691 continue;
4692 }
4693
4694 /*
4695 * If this VA does not fit, move base downwards and recheck.
4696 */
4697 if (base + start < va->va_start) {
4698 va = node_to_va(rb_prev(&va->rb_node));
4699 base = pvm_determine_end_from_reverse(&va, align) - end;
4700 term_area = area;
4701 continue;
4702 }
4703
4704 /*
4705 * This area fits, move on to the previous one. If
4706 * the previous one is the terminal one, we're done.
4707 */
4708 area = (area + nr_vms - 1) % nr_vms;
4709 if (area == term_area)
4710 break;
4711
4712 start = offsets[area];
4713 end = start + sizes[area];
4714 va = pvm_find_va_enclose_addr(base + end);
4715 }
4716
4717 /* we've found a fitting base, insert all va's */
4718 for (area = 0; area < nr_vms; area++) {
4719 int ret;
4720
4721 start = base + offsets[area];
4722 size = sizes[area];
4723
4724 va = pvm_find_va_enclose_addr(start);
4725 if (WARN_ON_ONCE(va == NULL))
4726 /* It is a BUG(), but trigger recovery instead. */
4727 goto recovery;
4728
4729 ret = va_clip(&free_vmap_area_root,
4730 &free_vmap_area_list, va, start, size);
4731 if (WARN_ON_ONCE(unlikely(ret)))
4732 /* It is a BUG(), but trigger recovery instead. */
4733 goto recovery;
4734
4735 /* Allocated area. */
4736 va = vas[area];
4737 va->va_start = start;
4738 va->va_end = start + size;
4739 }
4740
4741 spin_unlock(&free_vmap_area_lock);
4742
4743 /* populate the kasan shadow space */
4744 for (area = 0; area < nr_vms; area++) {
4745 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4746 goto err_free_shadow;
4747 }
4748
4749 /* insert all vm's */
4750 for (area = 0; area < nr_vms; area++) {
4751 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4752
4753 spin_lock(&vn->busy.lock);
4754 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4755 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4756 pcpu_get_vm_areas);
4757 spin_unlock(&vn->busy.lock);
4758 }
4759
4760 /*
4761 * Mark allocated areas as accessible. Do it now as a best-effort
4762 * approach, as they can be mapped outside of vmalloc code.
4763 * With hardware tag-based KASAN, marking is skipped for
4764 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4765 */
4766 for (area = 0; area < nr_vms; area++)
4767 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4768 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4769
4770 kfree(vas);
4771 return vms;
4772
4773 recovery:
4774 /*
4775 * Remove previously allocated areas. There is no
4776 * need in removing these areas from the busy tree,
4777 * because they are inserted only on the final step
4778 * and when pcpu_get_vm_areas() is success.
4779 */
4780 while (area--) {
4781 orig_start = vas[area]->va_start;
4782 orig_end = vas[area]->va_end;
4783 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4784 &free_vmap_area_list);
4785 if (va)
4786 kasan_release_vmalloc(orig_start, orig_end,
4787 va->va_start, va->va_end);
4788 vas[area] = NULL;
4789 }
4790
4791 overflow:
4792 spin_unlock(&free_vmap_area_lock);
4793 if (!purged) {
4794 reclaim_and_purge_vmap_areas();
4795 purged = true;
4796
4797 /* Before "retry", check if we recover. */
4798 for (area = 0; area < nr_vms; area++) {
4799 if (vas[area])
4800 continue;
4801
4802 vas[area] = kmem_cache_zalloc(
4803 vmap_area_cachep, GFP_KERNEL);
4804 if (!vas[area])
4805 goto err_free;
4806 }
4807
4808 goto retry;
4809 }
4810
4811 err_free:
4812 for (area = 0; area < nr_vms; area++) {
4813 if (vas[area])
4814 kmem_cache_free(vmap_area_cachep, vas[area]);
4815
4816 kfree(vms[area]);
4817 }
4818 err_free2:
4819 kfree(vas);
4820 kfree(vms);
4821 return NULL;
4822
4823 err_free_shadow:
4824 spin_lock(&free_vmap_area_lock);
4825 /*
4826 * We release all the vmalloc shadows, even the ones for regions that
4827 * hadn't been successfully added. This relies on kasan_release_vmalloc
4828 * being able to tolerate this case.
4829 */
4830 for (area = 0; area < nr_vms; area++) {
4831 orig_start = vas[area]->va_start;
4832 orig_end = vas[area]->va_end;
4833 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4834 &free_vmap_area_list);
4835 if (va)
4836 kasan_release_vmalloc(orig_start, orig_end,
4837 va->va_start, va->va_end);
4838 vas[area] = NULL;
4839 kfree(vms[area]);
4840 }
4841 spin_unlock(&free_vmap_area_lock);
4842 kfree(vas);
4843 kfree(vms);
4844 return NULL;
4845 }
4846
4847 /**
4848 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4849 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4850 * @nr_vms: the number of allocated areas
4851 *
4852 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4853 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)4854 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4855 {
4856 int i;
4857
4858 for (i = 0; i < nr_vms; i++)
4859 free_vm_area(vms[i]);
4860 kfree(vms);
4861 }
4862 #endif /* CONFIG_SMP */
4863
4864 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)4865 bool vmalloc_dump_obj(void *object)
4866 {
4867 const void *caller;
4868 struct vm_struct *vm;
4869 struct vmap_area *va;
4870 struct vmap_node *vn;
4871 unsigned long addr;
4872 unsigned int nr_pages;
4873
4874 addr = PAGE_ALIGN((unsigned long) object);
4875 vn = addr_to_node(addr);
4876
4877 if (!spin_trylock(&vn->busy.lock))
4878 return false;
4879
4880 va = __find_vmap_area(addr, &vn->busy.root);
4881 if (!va || !va->vm) {
4882 spin_unlock(&vn->busy.lock);
4883 return false;
4884 }
4885
4886 vm = va->vm;
4887 addr = (unsigned long) vm->addr;
4888 caller = vm->caller;
4889 nr_pages = vm->nr_pages;
4890 spin_unlock(&vn->busy.lock);
4891
4892 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4893 nr_pages, addr, caller);
4894
4895 return true;
4896 }
4897 #endif
4898
4899 #ifdef CONFIG_PROC_FS
show_numa_info(struct seq_file * m,struct vm_struct * v)4900 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4901 {
4902 if (IS_ENABLED(CONFIG_NUMA)) {
4903 unsigned int nr, *counters = m->private;
4904 unsigned int step = 1U << vm_area_page_order(v);
4905
4906 if (!counters)
4907 return;
4908
4909 if (v->flags & VM_UNINITIALIZED)
4910 return;
4911 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4912 smp_rmb();
4913
4914 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4915
4916 for (nr = 0; nr < v->nr_pages; nr += step)
4917 counters[page_to_nid(v->pages[nr])] += step;
4918 for_each_node_state(nr, N_HIGH_MEMORY)
4919 if (counters[nr])
4920 seq_printf(m, " N%u=%u", nr, counters[nr]);
4921 }
4922 }
4923
show_purge_info(struct seq_file * m)4924 static void show_purge_info(struct seq_file *m)
4925 {
4926 struct vmap_node *vn;
4927 struct vmap_area *va;
4928 int i;
4929
4930 for (i = 0; i < nr_vmap_nodes; i++) {
4931 vn = &vmap_nodes[i];
4932
4933 spin_lock(&vn->lazy.lock);
4934 list_for_each_entry(va, &vn->lazy.head, list) {
4935 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4936 (void *)va->va_start, (void *)va->va_end,
4937 va_size(va));
4938 }
4939 spin_unlock(&vn->lazy.lock);
4940 }
4941 }
4942
vmalloc_info_show(struct seq_file * m,void * p)4943 static int vmalloc_info_show(struct seq_file *m, void *p)
4944 {
4945 struct vmap_node *vn;
4946 struct vmap_area *va;
4947 struct vm_struct *v;
4948 int i;
4949
4950 for (i = 0; i < nr_vmap_nodes; i++) {
4951 vn = &vmap_nodes[i];
4952
4953 spin_lock(&vn->busy.lock);
4954 list_for_each_entry(va, &vn->busy.head, list) {
4955 if (!va->vm) {
4956 if (va->flags & VMAP_RAM)
4957 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4958 (void *)va->va_start, (void *)va->va_end,
4959 va_size(va));
4960
4961 continue;
4962 }
4963
4964 v = va->vm;
4965
4966 seq_printf(m, "0x%pK-0x%pK %7ld",
4967 v->addr, v->addr + v->size, v->size);
4968
4969 if (v->caller)
4970 seq_printf(m, " %pS", v->caller);
4971
4972 if (v->nr_pages)
4973 seq_printf(m, " pages=%d", v->nr_pages);
4974
4975 if (v->phys_addr)
4976 seq_printf(m, " phys=%pa", &v->phys_addr);
4977
4978 if (v->flags & VM_IOREMAP)
4979 seq_puts(m, " ioremap");
4980
4981 if (v->flags & VM_SPARSE)
4982 seq_puts(m, " sparse");
4983
4984 if (v->flags & VM_ALLOC)
4985 seq_puts(m, " vmalloc");
4986
4987 if (v->flags & VM_MAP)
4988 seq_puts(m, " vmap");
4989
4990 if (v->flags & VM_USERMAP)
4991 seq_puts(m, " user");
4992
4993 if (v->flags & VM_DMA_COHERENT)
4994 seq_puts(m, " dma-coherent");
4995
4996 if (is_vmalloc_addr(v->pages))
4997 seq_puts(m, " vpages");
4998
4999 show_numa_info(m, v);
5000 seq_putc(m, '\n');
5001 }
5002 spin_unlock(&vn->busy.lock);
5003 }
5004
5005 /*
5006 * As a final step, dump "unpurged" areas.
5007 */
5008 show_purge_info(m);
5009 return 0;
5010 }
5011
proc_vmalloc_init(void)5012 static int __init proc_vmalloc_init(void)
5013 {
5014 void *priv_data = NULL;
5015
5016 if (IS_ENABLED(CONFIG_NUMA))
5017 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
5018
5019 proc_create_single_data("vmallocinfo",
5020 0400, NULL, vmalloc_info_show, priv_data);
5021
5022 return 0;
5023 }
5024 module_init(proc_vmalloc_init);
5025
5026 #endif
5027
vmap_init_free_space(void)5028 static void __init vmap_init_free_space(void)
5029 {
5030 unsigned long vmap_start = 1;
5031 const unsigned long vmap_end = ULONG_MAX;
5032 struct vmap_area *free;
5033 struct vm_struct *busy;
5034
5035 /*
5036 * B F B B B F
5037 * -|-----|.....|-----|-----|-----|.....|-
5038 * | The KVA space |
5039 * |<--------------------------------->|
5040 */
5041 for (busy = vmlist; busy; busy = busy->next) {
5042 if ((unsigned long) busy->addr - vmap_start > 0) {
5043 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5044 if (!WARN_ON_ONCE(!free)) {
5045 free->va_start = vmap_start;
5046 free->va_end = (unsigned long) busy->addr;
5047
5048 insert_vmap_area_augment(free, NULL,
5049 &free_vmap_area_root,
5050 &free_vmap_area_list);
5051 }
5052 }
5053
5054 vmap_start = (unsigned long) busy->addr + busy->size;
5055 }
5056
5057 if (vmap_end - vmap_start > 0) {
5058 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5059 if (!WARN_ON_ONCE(!free)) {
5060 free->va_start = vmap_start;
5061 free->va_end = vmap_end;
5062
5063 insert_vmap_area_augment(free, NULL,
5064 &free_vmap_area_root,
5065 &free_vmap_area_list);
5066 }
5067 }
5068 }
5069
vmap_init_nodes(void)5070 static void vmap_init_nodes(void)
5071 {
5072 struct vmap_node *vn;
5073 int i, n;
5074
5075 #if BITS_PER_LONG == 64
5076 /*
5077 * A high threshold of max nodes is fixed and bound to 128,
5078 * thus a scale factor is 1 for systems where number of cores
5079 * are less or equal to specified threshold.
5080 *
5081 * As for NUMA-aware notes. For bigger systems, for example
5082 * NUMA with multi-sockets, where we can end-up with thousands
5083 * of cores in total, a "sub-numa-clustering" should be added.
5084 *
5085 * In this case a NUMA domain is considered as a single entity
5086 * with dedicated sub-nodes in it which describe one group or
5087 * set of cores. Therefore a per-domain purging is supposed to
5088 * be added as well as a per-domain balancing.
5089 */
5090 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5091
5092 if (n > 1) {
5093 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5094 if (vn) {
5095 /* Node partition is 16 pages. */
5096 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5097 nr_vmap_nodes = n;
5098 vmap_nodes = vn;
5099 } else {
5100 pr_err("Failed to allocate an array. Disable a node layer\n");
5101 }
5102 }
5103 #endif
5104
5105 for (n = 0; n < nr_vmap_nodes; n++) {
5106 vn = &vmap_nodes[n];
5107 vn->busy.root = RB_ROOT;
5108 INIT_LIST_HEAD(&vn->busy.head);
5109 spin_lock_init(&vn->busy.lock);
5110
5111 vn->lazy.root = RB_ROOT;
5112 INIT_LIST_HEAD(&vn->lazy.head);
5113 spin_lock_init(&vn->lazy.lock);
5114
5115 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5116 INIT_LIST_HEAD(&vn->pool[i].head);
5117 WRITE_ONCE(vn->pool[i].len, 0);
5118 }
5119
5120 spin_lock_init(&vn->pool_lock);
5121 }
5122 }
5123
5124 static unsigned long
vmap_node_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5125 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5126 {
5127 unsigned long count;
5128 struct vmap_node *vn;
5129 int i, j;
5130
5131 for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5132 vn = &vmap_nodes[i];
5133
5134 for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5135 count += READ_ONCE(vn->pool[j].len);
5136 }
5137
5138 return count ? count : SHRINK_EMPTY;
5139 }
5140
5141 static unsigned long
vmap_node_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5142 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5143 {
5144 int i;
5145
5146 for (i = 0; i < nr_vmap_nodes; i++)
5147 decay_va_pool_node(&vmap_nodes[i], true);
5148
5149 return SHRINK_STOP;
5150 }
5151
vmalloc_init(void)5152 void __init vmalloc_init(void)
5153 {
5154 struct shrinker *vmap_node_shrinker;
5155 struct vmap_area *va;
5156 struct vmap_node *vn;
5157 struct vm_struct *tmp;
5158 int i;
5159
5160 /*
5161 * Create the cache for vmap_area objects.
5162 */
5163 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5164
5165 for_each_possible_cpu(i) {
5166 struct vmap_block_queue *vbq;
5167 struct vfree_deferred *p;
5168
5169 vbq = &per_cpu(vmap_block_queue, i);
5170 spin_lock_init(&vbq->lock);
5171 INIT_LIST_HEAD(&vbq->free);
5172 p = &per_cpu(vfree_deferred, i);
5173 init_llist_head(&p->list);
5174 INIT_WORK(&p->wq, delayed_vfree_work);
5175 xa_init(&vbq->vmap_blocks);
5176 }
5177
5178 /*
5179 * Setup nodes before importing vmlist.
5180 */
5181 vmap_init_nodes();
5182
5183 /* Import existing vmlist entries. */
5184 for (tmp = vmlist; tmp; tmp = tmp->next) {
5185 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5186 if (WARN_ON_ONCE(!va))
5187 continue;
5188
5189 va->va_start = (unsigned long)tmp->addr;
5190 va->va_end = va->va_start + tmp->size;
5191 va->vm = tmp;
5192
5193 vn = addr_to_node(va->va_start);
5194 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5195 }
5196
5197 /*
5198 * Now we can initialize a free vmap space.
5199 */
5200 vmap_init_free_space();
5201 vmap_initialized = true;
5202
5203 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5204 if (!vmap_node_shrinker) {
5205 pr_err("Failed to allocate vmap-node shrinker!\n");
5206 return;
5207 }
5208
5209 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5210 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5211 shrinker_register(vmap_node_shrinker);
5212 }
5213