1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * vma.h 4 * 5 * Core VMA manipulation API implemented in vma.c. 6 */ 7 #ifndef __MM_VMA_H 8 #define __MM_VMA_H 9 10 /* 11 * VMA lock generalization 12 */ 13 struct vma_prepare { 14 struct vm_area_struct *vma; 15 struct vm_area_struct *adj_next; 16 struct file *file; 17 struct address_space *mapping; 18 struct anon_vma *anon_vma; 19 struct vm_area_struct *insert; 20 struct vm_area_struct *remove; 21 struct vm_area_struct *remove2; 22 23 bool skip_vma_uprobe :1; 24 }; 25 26 struct unlink_vma_file_batch { 27 int count; 28 struct vm_area_struct *vmas[8]; 29 }; 30 31 /* 32 * vma munmap operation 33 */ 34 struct vma_munmap_struct { 35 struct vma_iterator *vmi; 36 struct vm_area_struct *vma; /* The first vma to munmap */ 37 struct vm_area_struct *prev; /* vma before the munmap area */ 38 struct vm_area_struct *next; /* vma after the munmap area */ 39 struct list_head *uf; /* Userfaultfd list_head */ 40 unsigned long start; /* Aligned start addr (inclusive) */ 41 unsigned long end; /* Aligned end addr (exclusive) */ 42 unsigned long unmap_start; /* Unmap PTE start */ 43 unsigned long unmap_end; /* Unmap PTE end */ 44 int vma_count; /* Number of vmas that will be removed */ 45 bool unlock; /* Unlock after the munmap */ 46 bool clear_ptes; /* If there are outstanding PTE to be cleared */ 47 /* 2 byte hole */ 48 unsigned long nr_pages; /* Number of pages being removed */ 49 unsigned long locked_vm; /* Number of locked pages */ 50 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ 51 unsigned long exec_vm; 52 unsigned long stack_vm; 53 unsigned long data_vm; 54 }; 55 56 enum vma_merge_state { 57 VMA_MERGE_START, 58 VMA_MERGE_ERROR_NOMEM, 59 VMA_MERGE_NOMERGE, 60 VMA_MERGE_SUCCESS, 61 }; 62 63 /* 64 * Describes a VMA merge operation and is threaded throughout it. 65 * 66 * Any of the fields may be mutated by the merge operation, so no guarantees are 67 * made to the contents of this structure after a merge operation has completed. 68 */ 69 struct vma_merge_struct { 70 struct mm_struct *mm; 71 struct vma_iterator *vmi; 72 /* 73 * Adjacent VMAs, any of which may be NULL if not present: 74 * 75 * |------|--------|------| 76 * | prev | middle | next | 77 * |------|--------|------| 78 * 79 * middle may not yet exist in the case of a proposed new VMA being 80 * merged, or it may be an existing VMA. 81 * 82 * next may be assigned by the caller. 83 */ 84 struct vm_area_struct *prev; 85 struct vm_area_struct *middle; 86 struct vm_area_struct *next; 87 /* This is the VMA we ultimately target to become the merged VMA. */ 88 struct vm_area_struct *target; 89 /* 90 * Initially, the start, end, pgoff fields are provided by the caller 91 * and describe the proposed new VMA range, whether modifying an 92 * existing VMA (which will be 'middle'), or adding a new one. 93 * 94 * During the merge process these fields are updated to describe the new 95 * range _including those VMAs which will be merged_. 96 */ 97 unsigned long start; 98 unsigned long end; 99 pgoff_t pgoff; 100 101 unsigned long flags; 102 struct file *file; 103 struct anon_vma *anon_vma; 104 struct mempolicy *policy; 105 struct vm_userfaultfd_ctx uffd_ctx; 106 struct anon_vma_name *anon_name; 107 enum vma_merge_state state; 108 109 /* Flags which callers can use to modify merge behaviour: */ 110 111 /* 112 * If we can expand, simply do so. We know there is nothing to merge to 113 * the right. Does not reset state upon failure to merge. The VMA 114 * iterator is assumed to be positioned at the previous VMA, rather than 115 * at the gap. 116 */ 117 bool just_expand :1; 118 119 /* 120 * If a merge is possible, but an OOM error occurs, give up and don't 121 * execute the merge, returning NULL. 122 */ 123 bool give_up_on_oom :1; 124 125 /* 126 * If set, skip uprobe_mmap upon merged vma. 127 */ 128 bool skip_vma_uprobe :1; 129 130 /* Internal flags set during merge process: */ 131 132 /* 133 * Internal flag indicating the merge increases vmg->middle->vm_start 134 * (and thereby, vmg->prev->vm_end). 135 */ 136 bool __adjust_middle_start :1; 137 /* 138 * Internal flag indicating the merge decreases vmg->next->vm_start 139 * (and thereby, vmg->middle->vm_end). 140 */ 141 bool __adjust_next_start :1; 142 /* 143 * Internal flag used during the merge operation to indicate we will 144 * remove vmg->middle. 145 */ 146 bool __remove_middle :1; 147 /* 148 * Internal flag used during the merge operationr to indicate we will 149 * remove vmg->next. 150 */ 151 bool __remove_next :1; 152 153 }; 154 155 static inline bool vmg_nomem(struct vma_merge_struct *vmg) 156 { 157 return vmg->state == VMA_MERGE_ERROR_NOMEM; 158 } 159 160 /* Assumes addr >= vma->vm_start. */ 161 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, 162 unsigned long addr) 163 { 164 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); 165 } 166 167 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \ 168 struct vma_merge_struct name = { \ 169 .mm = mm_, \ 170 .vmi = vmi_, \ 171 .start = start_, \ 172 .end = end_, \ 173 .flags = flags_, \ 174 .pgoff = pgoff_, \ 175 .state = VMA_MERGE_START, \ 176 } 177 178 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ 179 struct vma_merge_struct name = { \ 180 .mm = vma_->vm_mm, \ 181 .vmi = vmi_, \ 182 .prev = prev_, \ 183 .middle = vma_, \ 184 .next = NULL, \ 185 .start = start_, \ 186 .end = end_, \ 187 .flags = vma_->vm_flags, \ 188 .pgoff = vma_pgoff_offset(vma_, start_), \ 189 .file = vma_->vm_file, \ 190 .anon_vma = vma_->anon_vma, \ 191 .policy = vma_policy(vma_), \ 192 .uffd_ctx = vma_->vm_userfaultfd_ctx, \ 193 .anon_name = anon_vma_name(vma_), \ 194 .state = VMA_MERGE_START, \ 195 } 196 197 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 198 void validate_mm(struct mm_struct *mm); 199 #else 200 #define validate_mm(mm) do { } while (0) 201 #endif 202 203 __must_check int vma_expand(struct vma_merge_struct *vmg); 204 __must_check int vma_shrink(struct vma_iterator *vmi, 205 struct vm_area_struct *vma, 206 unsigned long start, unsigned long end, pgoff_t pgoff); 207 208 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 209 struct vm_area_struct *vma, gfp_t gfp) 210 211 { 212 if (vmi->mas.status != ma_start && 213 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 214 vma_iter_invalidate(vmi); 215 216 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 217 mas_store_gfp(&vmi->mas, vma, gfp); 218 if (unlikely(mas_is_err(&vmi->mas))) 219 return -ENOMEM; 220 221 vma_mark_attached(vma); 222 return 0; 223 } 224 225 int 226 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 227 struct mm_struct *mm, unsigned long start, 228 unsigned long end, struct list_head *uf, bool unlock); 229 230 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 231 unsigned long start, size_t len, struct list_head *uf, 232 bool unlock); 233 234 void remove_vma(struct vm_area_struct *vma); 235 236 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 237 struct vm_area_struct *prev, struct vm_area_struct *next); 238 239 /* We are about to modify the VMA's flags. */ 240 __must_check struct vm_area_struct 241 *vma_modify_flags(struct vma_iterator *vmi, 242 struct vm_area_struct *prev, struct vm_area_struct *vma, 243 unsigned long start, unsigned long end, 244 unsigned long new_flags); 245 246 /* We are about to modify the VMA's flags and/or anon_name. */ 247 __must_check struct vm_area_struct 248 *vma_modify_flags_name(struct vma_iterator *vmi, 249 struct vm_area_struct *prev, 250 struct vm_area_struct *vma, 251 unsigned long start, 252 unsigned long end, 253 unsigned long new_flags, 254 struct anon_vma_name *new_name); 255 256 /* We are about to modify the VMA's memory policy. */ 257 __must_check struct vm_area_struct 258 *vma_modify_policy(struct vma_iterator *vmi, 259 struct vm_area_struct *prev, 260 struct vm_area_struct *vma, 261 unsigned long start, unsigned long end, 262 struct mempolicy *new_pol); 263 264 /* We are about to modify the VMA's flags and/or uffd context. */ 265 __must_check struct vm_area_struct 266 *vma_modify_flags_uffd(struct vma_iterator *vmi, 267 struct vm_area_struct *prev, 268 struct vm_area_struct *vma, 269 unsigned long start, unsigned long end, 270 unsigned long new_flags, 271 struct vm_userfaultfd_ctx new_ctx, 272 bool give_up_on_oom); 273 274 __must_check struct vm_area_struct 275 *vma_merge_new_range(struct vma_merge_struct *vmg); 276 277 __must_check struct vm_area_struct 278 *vma_merge_extend(struct vma_iterator *vmi, 279 struct vm_area_struct *vma, 280 unsigned long delta); 281 282 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); 283 284 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); 285 286 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 287 struct vm_area_struct *vma); 288 289 void unlink_file_vma(struct vm_area_struct *vma); 290 291 void vma_link_file(struct vm_area_struct *vma); 292 293 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); 294 295 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 296 unsigned long addr, unsigned long len, pgoff_t pgoff, 297 bool *need_rmap_locks); 298 299 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); 300 301 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 302 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 303 304 int mm_take_all_locks(struct mm_struct *mm); 305 void mm_drop_all_locks(struct mm_struct *mm); 306 307 unsigned long mmap_region(struct file *file, unsigned long addr, 308 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 309 struct list_head *uf); 310 311 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 312 unsigned long addr, unsigned long request, unsigned long flags); 313 314 unsigned long unmapped_area(struct vm_unmapped_area_info *info); 315 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 316 317 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 318 { 319 /* 320 * We want to check manually if we can change individual PTEs writable 321 * if we can't do that automatically for all PTEs in a mapping. For 322 * private mappings, that's always the case when we have write 323 * permissions as we properly have to handle COW. 324 */ 325 if (vma->vm_flags & VM_SHARED) 326 return vma_wants_writenotify(vma, vma->vm_page_prot); 327 return !!(vma->vm_flags & VM_WRITE); 328 } 329 330 #ifdef CONFIG_MMU 331 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 332 { 333 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 334 } 335 #endif 336 337 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 338 unsigned long min) 339 { 340 return mas_prev(&vmi->mas, min); 341 } 342 343 /* 344 * These three helpers classifies VMAs for virtual memory accounting. 345 */ 346 347 /* 348 * Executable code area - executable, not writable, not stack 349 */ 350 static inline bool is_exec_mapping(vm_flags_t flags) 351 { 352 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 353 } 354 355 /* 356 * Stack area (including shadow stacks) 357 * 358 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 359 * do_mmap() forbids all other combinations. 360 */ 361 static inline bool is_stack_mapping(vm_flags_t flags) 362 { 363 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 364 } 365 366 /* 367 * Data area - private, writable, not stack 368 */ 369 static inline bool is_data_mapping(vm_flags_t flags) 370 { 371 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 372 } 373 374 375 static inline void vma_iter_config(struct vma_iterator *vmi, 376 unsigned long index, unsigned long last) 377 { 378 __mas_set_range(&vmi->mas, index, last - 1); 379 } 380 381 static inline void vma_iter_reset(struct vma_iterator *vmi) 382 { 383 mas_reset(&vmi->mas); 384 } 385 386 static inline 387 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 388 { 389 return mas_prev_range(&vmi->mas, min); 390 } 391 392 static inline 393 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 394 { 395 return mas_next_range(&vmi->mas, max); 396 } 397 398 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 399 unsigned long max, unsigned long size) 400 { 401 return mas_empty_area(&vmi->mas, min, max - 1, size); 402 } 403 404 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 405 unsigned long max, unsigned long size) 406 { 407 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 408 } 409 410 /* 411 * VMA Iterator functions shared between nommu and mmap 412 */ 413 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 414 struct vm_area_struct *vma) 415 { 416 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 417 } 418 419 static inline void vma_iter_clear(struct vma_iterator *vmi) 420 { 421 mas_store_prealloc(&vmi->mas, NULL); 422 } 423 424 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 425 { 426 return mas_walk(&vmi->mas); 427 } 428 429 /* Store a VMA with preallocated memory */ 430 static inline void vma_iter_store_overwrite(struct vma_iterator *vmi, 431 struct vm_area_struct *vma) 432 { 433 vma_assert_attached(vma); 434 435 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 436 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 437 vmi->mas.index > vma->vm_start)) { 438 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 439 vmi->mas.index, vma->vm_start, vma->vm_start, 440 vma->vm_end, vmi->mas.index, vmi->mas.last); 441 } 442 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 443 vmi->mas.last < vma->vm_start)) { 444 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 445 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 446 vmi->mas.index, vmi->mas.last); 447 } 448 #endif 449 450 if (vmi->mas.status != ma_start && 451 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 452 vma_iter_invalidate(vmi); 453 454 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 455 mas_store_prealloc(&vmi->mas, vma); 456 } 457 458 static inline void vma_iter_store_new(struct vma_iterator *vmi, 459 struct vm_area_struct *vma) 460 { 461 vma_mark_attached(vma); 462 vma_iter_store_overwrite(vmi, vma); 463 } 464 465 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 466 { 467 return vmi->mas.index; 468 } 469 470 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 471 { 472 return vmi->mas.last + 1; 473 } 474 475 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 476 unsigned long count) 477 { 478 return mas_expected_entries(&vmi->mas, count); 479 } 480 481 static inline 482 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 483 { 484 return mas_prev_range(&vmi->mas, 0); 485 } 486 487 /* 488 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or 489 * if no previous VMA, to index 0. 490 */ 491 static inline 492 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, 493 struct vm_area_struct **pprev) 494 { 495 struct vm_area_struct *next = vma_next(vmi); 496 struct vm_area_struct *prev = vma_prev(vmi); 497 498 /* 499 * Consider the case where no previous VMA exists. We advance to the 500 * next VMA, skipping any gap, then rewind to the start of the range. 501 * 502 * If we were to unconditionally advance to the next range we'd wind up 503 * at the next VMA again, so we check to ensure there is a previous VMA 504 * to skip over. 505 */ 506 if (prev) 507 vma_iter_next_range(vmi); 508 509 if (pprev) 510 *pprev = prev; 511 512 return next; 513 } 514 515 #ifdef CONFIG_64BIT 516 517 static inline bool vma_is_sealed(struct vm_area_struct *vma) 518 { 519 return (vma->vm_flags & VM_SEALED); 520 } 521 522 /* 523 * check if a vma is sealed for modification. 524 * return true, if modification is allowed. 525 */ 526 static inline bool can_modify_vma(struct vm_area_struct *vma) 527 { 528 if (unlikely(vma_is_sealed(vma))) 529 return false; 530 531 return true; 532 } 533 534 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior); 535 536 #else 537 538 static inline bool can_modify_vma(struct vm_area_struct *vma) 539 { 540 return true; 541 } 542 543 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior) 544 { 545 return true; 546 } 547 548 #endif 549 550 #if defined(CONFIG_STACK_GROWSUP) 551 int expand_upwards(struct vm_area_struct *vma, unsigned long address); 552 #endif 553 554 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 555 556 int __vm_munmap(unsigned long start, size_t len, bool unlock); 557 558 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma); 559 560 /* vma_init.h, shared between CONFIG_MMU and nommu. */ 561 void __init vma_state_init(void); 562 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm); 563 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig); 564 void vm_area_free(struct vm_area_struct *vma); 565 566 /* vma_exec.c */ 567 #ifdef CONFIG_MMU 568 int create_init_stack_vma(struct mm_struct *mm, struct vm_area_struct **vmap, 569 unsigned long *top_mem_p); 570 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 571 #endif 572 573 #endif /* __MM_VMA_H */ 574