xref: /linux/mm/vma.h (revision f8d112a4e657c65c888e6b8a8435ef61a66e4ab8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * vma.h
4  *
5  * Core VMA manipulation API implemented in vma.c.
6  */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9 
10 /*
11  * VMA lock generalization
12  */
13 struct vma_prepare {
14 	struct vm_area_struct *vma;
15 	struct vm_area_struct *adj_next;
16 	struct file *file;
17 	struct address_space *mapping;
18 	struct anon_vma *anon_vma;
19 	struct vm_area_struct *insert;
20 	struct vm_area_struct *remove;
21 	struct vm_area_struct *remove2;
22 };
23 
24 struct unlink_vma_file_batch {
25 	int count;
26 	struct vm_area_struct *vmas[8];
27 };
28 
29 /*
30  * vma munmap operation
31  */
32 struct vma_munmap_struct {
33 	struct vma_iterator *vmi;
34 	struct mm_struct *mm;
35 	struct vm_area_struct *vma;     /* The first vma to munmap */
36 	struct vm_area_struct *prev;    /* vma before the munmap area */
37 	struct vm_area_struct *next;    /* vma after the munmap area */
38 	struct list_head *uf;           /* Userfaultfd list_head */
39 	unsigned long start;            /* Aligned start addr (inclusive) */
40 	unsigned long end;              /* Aligned end addr (exclusive) */
41 	unsigned long unmap_start;      /* Unmap PTE start */
42 	unsigned long unmap_end;        /* Unmap PTE end */
43 	int vma_count;                  /* Number of vmas that will be removed */
44 	unsigned long nr_pages;         /* Number of pages being removed */
45 	unsigned long locked_vm;        /* Number of locked pages */
46 	unsigned long nr_accounted;     /* Number of VM_ACCOUNT pages */
47 	unsigned long exec_vm;
48 	unsigned long stack_vm;
49 	unsigned long data_vm;
50 	bool unlock;                    /* Unlock after the munmap */
51 	bool clear_ptes;                /* If there are outstanding PTE to be cleared */
52 	bool closed_vm_ops;		/* call_mmap() was encountered, so vmas may be closed */
53 };
54 
55 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
56 void validate_mm(struct mm_struct *mm);
57 #else
58 #define validate_mm(mm) do { } while (0)
59 #endif
60 
61 /* Required for expand_downwards(). */
62 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma);
63 
64 /* Required for expand_downwards(). */
65 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma);
66 
67 /* Required for do_brk_flags(). */
68 void vma_prepare(struct vma_prepare *vp);
69 
70 /* Required for do_brk_flags(). */
71 void init_vma_prep(struct vma_prepare *vp,
72 		   struct vm_area_struct *vma);
73 
74 /* Required for do_brk_flags(). */
75 void vma_complete(struct vma_prepare *vp,
76 		  struct vma_iterator *vmi, struct mm_struct *mm);
77 
78 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
79 	       unsigned long start, unsigned long end, pgoff_t pgoff,
80 	       struct vm_area_struct *next);
81 
82 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
83 	       unsigned long start, unsigned long end, pgoff_t pgoff);
84 
85 #ifdef CONFIG_MMU
86 /*
87  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
88  * @vms: The vma munmap struct
89  * @vmi: The vma iterator
90  * @vma: The first vm_area_struct to munmap
91  * @start: The aligned start address to munmap
92  * @end: The aligned end address to munmap
93  * @uf: The userfaultfd list_head
94  * @unlock: Unlock after the operation.  Only unlocked on success
95  */
96 static inline void init_vma_munmap(struct vma_munmap_struct *vms,
97 		struct vma_iterator *vmi, struct vm_area_struct *vma,
98 		unsigned long start, unsigned long end, struct list_head *uf,
99 		bool unlock)
100 {
101 	vms->mm = current->mm;
102 	vms->vmi = vmi;
103 	vms->vma = vma;
104 	if (vma) {
105 		vms->start = start;
106 		vms->end = end;
107 	} else {
108 		vms->start = vms->end = 0;
109 	}
110 	vms->unlock = unlock;
111 	vms->uf = uf;
112 	vms->vma_count = 0;
113 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
114 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
115 	vms->unmap_start = FIRST_USER_ADDRESS;
116 	vms->unmap_end = USER_PGTABLES_CEILING;
117 	vms->clear_ptes = false;
118 	vms->closed_vm_ops = false;
119 }
120 #endif
121 
122 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
123 		struct ma_state *mas_detach);
124 
125 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
126 		struct ma_state *mas_detach);
127 
128 void vms_clean_up_area(struct vma_munmap_struct *vms,
129 		struct ma_state *mas_detach, bool mm_wr_locked);
130 
131 /*
132  * abort_munmap_vmas - Undo any munmap work and free resources
133  *
134  * Reattach any detached vmas and free up the maple tree used to track the vmas.
135  */
136 static inline void abort_munmap_vmas(struct ma_state *mas_detach, bool closed)
137 {
138 	struct vm_area_struct *vma;
139 
140 	mas_set(mas_detach, 0);
141 	mas_for_each(mas_detach, vma, ULONG_MAX) {
142 		vma_mark_detached(vma, false);
143 		if (closed && vma->vm_ops && vma->vm_ops->open)
144 			vma->vm_ops->open(vma);
145 	}
146 
147 	__mt_destroy(mas_detach->tree);
148 }
149 
150 int
151 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
152 		    struct mm_struct *mm, unsigned long start,
153 		    unsigned long end, struct list_head *uf, bool unlock);
154 
155 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
156 		  unsigned long start, size_t len, struct list_head *uf,
157 		  bool unlock);
158 
159 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed);
160 
161 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
162 		struct vm_area_struct *prev, struct vm_area_struct *next);
163 
164 /* Required by mmap_region(). */
165 bool
166 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
167 		struct anon_vma *anon_vma, struct file *file,
168 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
169 		struct anon_vma_name *anon_name);
170 
171 /* Required by mmap_region() and do_brk_flags(). */
172 bool
173 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
174 		struct anon_vma *anon_vma, struct file *file,
175 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
176 		struct anon_vma_name *anon_name);
177 
178 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
179 				  struct vm_area_struct *prev,
180 				  struct vm_area_struct *vma,
181 				  unsigned long start, unsigned long end,
182 				  unsigned long vm_flags,
183 				  struct mempolicy *policy,
184 				  struct vm_userfaultfd_ctx uffd_ctx,
185 				  struct anon_vma_name *anon_name);
186 
187 /* We are about to modify the VMA's flags. */
188 static inline struct vm_area_struct
189 *vma_modify_flags(struct vma_iterator *vmi,
190 		  struct vm_area_struct *prev,
191 		  struct vm_area_struct *vma,
192 		  unsigned long start, unsigned long end,
193 		  unsigned long new_flags)
194 {
195 	return vma_modify(vmi, prev, vma, start, end, new_flags,
196 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
197 			  anon_vma_name(vma));
198 }
199 
200 /* We are about to modify the VMA's flags and/or anon_name. */
201 static inline struct vm_area_struct
202 *vma_modify_flags_name(struct vma_iterator *vmi,
203 		       struct vm_area_struct *prev,
204 		       struct vm_area_struct *vma,
205 		       unsigned long start,
206 		       unsigned long end,
207 		       unsigned long new_flags,
208 		       struct anon_vma_name *new_name)
209 {
210 	return vma_modify(vmi, prev, vma, start, end, new_flags,
211 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
212 }
213 
214 /* We are about to modify the VMA's memory policy. */
215 static inline struct vm_area_struct
216 *vma_modify_policy(struct vma_iterator *vmi,
217 		   struct vm_area_struct *prev,
218 		   struct vm_area_struct *vma,
219 		   unsigned long start, unsigned long end,
220 		   struct mempolicy *new_pol)
221 {
222 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
223 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
224 }
225 
226 /* We are about to modify the VMA's flags and/or uffd context. */
227 static inline struct vm_area_struct
228 *vma_modify_flags_uffd(struct vma_iterator *vmi,
229 		       struct vm_area_struct *prev,
230 		       struct vm_area_struct *vma,
231 		       unsigned long start, unsigned long end,
232 		       unsigned long new_flags,
233 		       struct vm_userfaultfd_ctx new_ctx)
234 {
235 	return vma_modify(vmi, prev, vma, start, end, new_flags,
236 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
237 }
238 
239 struct vm_area_struct
240 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
241 		   struct vm_area_struct *vma, unsigned long start,
242 		   unsigned long end, pgoff_t pgoff);
243 
244 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
245 					struct vm_area_struct *vma,
246 					unsigned long delta);
247 
248 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
249 
250 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
251 
252 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
253 			       struct vm_area_struct *vma);
254 
255 void unlink_file_vma(struct vm_area_struct *vma);
256 
257 void vma_link_file(struct vm_area_struct *vma);
258 
259 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
260 
261 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
262 	unsigned long addr, unsigned long len, pgoff_t pgoff,
263 	bool *need_rmap_locks);
264 
265 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
266 
267 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
268 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
269 
270 int mm_take_all_locks(struct mm_struct *mm);
271 void mm_drop_all_locks(struct mm_struct *mm);
272 unsigned long count_vma_pages_range(struct mm_struct *mm,
273 				    unsigned long addr, unsigned long end,
274 				    unsigned long *nr_accounted);
275 
276 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
277 {
278 	/*
279 	 * We want to check manually if we can change individual PTEs writable
280 	 * if we can't do that automatically for all PTEs in a mapping. For
281 	 * private mappings, that's always the case when we have write
282 	 * permissions as we properly have to handle COW.
283 	 */
284 	if (vma->vm_flags & VM_SHARED)
285 		return vma_wants_writenotify(vma, vma->vm_page_prot);
286 	return !!(vma->vm_flags & VM_WRITE);
287 }
288 
289 #ifdef CONFIG_MMU
290 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
291 {
292 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
293 }
294 #endif
295 
296 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
297 						    unsigned long min)
298 {
299 	return mas_prev(&vmi->mas, min);
300 }
301 
302 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
303 			struct vm_area_struct *vma, gfp_t gfp)
304 {
305 	if (vmi->mas.status != ma_start &&
306 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
307 		vma_iter_invalidate(vmi);
308 
309 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
310 	mas_store_gfp(&vmi->mas, vma, gfp);
311 	if (unlikely(mas_is_err(&vmi->mas)))
312 		return -ENOMEM;
313 
314 	return 0;
315 }
316 
317 
318 /*
319  * These three helpers classifies VMAs for virtual memory accounting.
320  */
321 
322 /*
323  * Executable code area - executable, not writable, not stack
324  */
325 static inline bool is_exec_mapping(vm_flags_t flags)
326 {
327 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
328 }
329 
330 /*
331  * Stack area (including shadow stacks)
332  *
333  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
334  * do_mmap() forbids all other combinations.
335  */
336 static inline bool is_stack_mapping(vm_flags_t flags)
337 {
338 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
339 }
340 
341 /*
342  * Data area - private, writable, not stack
343  */
344 static inline bool is_data_mapping(vm_flags_t flags)
345 {
346 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
347 }
348 
349 
350 static inline void vma_iter_config(struct vma_iterator *vmi,
351 		unsigned long index, unsigned long last)
352 {
353 	__mas_set_range(&vmi->mas, index, last - 1);
354 }
355 
356 static inline void vma_iter_reset(struct vma_iterator *vmi)
357 {
358 	mas_reset(&vmi->mas);
359 }
360 
361 static inline
362 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
363 {
364 	return mas_prev_range(&vmi->mas, min);
365 }
366 
367 static inline
368 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
369 {
370 	return mas_next_range(&vmi->mas, max);
371 }
372 
373 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
374 				       unsigned long max, unsigned long size)
375 {
376 	return mas_empty_area(&vmi->mas, min, max - 1, size);
377 }
378 
379 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
380 					unsigned long max, unsigned long size)
381 {
382 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
383 }
384 
385 /*
386  * VMA Iterator functions shared between nommu and mmap
387  */
388 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
389 		struct vm_area_struct *vma)
390 {
391 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
392 }
393 
394 static inline void vma_iter_clear(struct vma_iterator *vmi)
395 {
396 	mas_store_prealloc(&vmi->mas, NULL);
397 }
398 
399 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
400 {
401 	return mas_walk(&vmi->mas);
402 }
403 
404 /* Store a VMA with preallocated memory */
405 static inline void vma_iter_store(struct vma_iterator *vmi,
406 				  struct vm_area_struct *vma)
407 {
408 
409 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
410 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
411 			vmi->mas.index > vma->vm_start)) {
412 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
413 			vmi->mas.index, vma->vm_start, vma->vm_start,
414 			vma->vm_end, vmi->mas.index, vmi->mas.last);
415 	}
416 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
417 			vmi->mas.last <  vma->vm_start)) {
418 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
419 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
420 		       vmi->mas.index, vmi->mas.last);
421 	}
422 #endif
423 
424 	if (vmi->mas.status != ma_start &&
425 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
426 		vma_iter_invalidate(vmi);
427 
428 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
429 	mas_store_prealloc(&vmi->mas, vma);
430 }
431 
432 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
433 {
434 	return vmi->mas.index;
435 }
436 
437 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
438 {
439 	return vmi->mas.last + 1;
440 }
441 
442 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
443 				      unsigned long count)
444 {
445 	return mas_expected_entries(&vmi->mas, count);
446 }
447 
448 static inline
449 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
450 {
451 	return mas_prev_range(&vmi->mas, 0);
452 }
453 
454 #ifdef CONFIG_64BIT
455 
456 static inline bool vma_is_sealed(struct vm_area_struct *vma)
457 {
458 	return (vma->vm_flags & VM_SEALED);
459 }
460 
461 /*
462  * check if a vma is sealed for modification.
463  * return true, if modification is allowed.
464  */
465 static inline bool can_modify_vma(struct vm_area_struct *vma)
466 {
467 	if (unlikely(vma_is_sealed(vma)))
468 		return false;
469 
470 	return true;
471 }
472 
473 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
474 
475 #else
476 
477 static inline bool can_modify_vma(struct vm_area_struct *vma)
478 {
479 	return true;
480 }
481 
482 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
483 {
484 	return true;
485 }
486 
487 #endif
488 
489 #endif	/* __MM_VMA_H */
490