xref: /linux/mm/vma.h (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * vma.h
4  *
5  * Core VMA manipulation API implemented in vma.c.
6  */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9 
10 /*
11  * VMA lock generalization
12  */
13 struct vma_prepare {
14 	struct vm_area_struct *vma;
15 	struct vm_area_struct *adj_next;
16 	struct file *file;
17 	struct address_space *mapping;
18 	struct anon_vma *anon_vma;
19 	struct vm_area_struct *insert;
20 	struct vm_area_struct *remove;
21 	struct vm_area_struct *remove2;
22 };
23 
24 struct unlink_vma_file_batch {
25 	int count;
26 	struct vm_area_struct *vmas[8];
27 };
28 
29 /*
30  * vma munmap operation
31  */
32 struct vma_munmap_struct {
33 	struct vma_iterator *vmi;
34 	struct vm_area_struct *vma;     /* The first vma to munmap */
35 	struct vm_area_struct *prev;    /* vma before the munmap area */
36 	struct vm_area_struct *next;    /* vma after the munmap area */
37 	struct list_head *uf;           /* Userfaultfd list_head */
38 	unsigned long start;            /* Aligned start addr (inclusive) */
39 	unsigned long end;              /* Aligned end addr (exclusive) */
40 	unsigned long unmap_start;      /* Unmap PTE start */
41 	unsigned long unmap_end;        /* Unmap PTE end */
42 	int vma_count;                  /* Number of vmas that will be removed */
43 	bool unlock;                    /* Unlock after the munmap */
44 	bool clear_ptes;                /* If there are outstanding PTE to be cleared */
45 	/* 2 byte hole */
46 	unsigned long nr_pages;         /* Number of pages being removed */
47 	unsigned long locked_vm;        /* Number of locked pages */
48 	unsigned long nr_accounted;     /* Number of VM_ACCOUNT pages */
49 	unsigned long exec_vm;
50 	unsigned long stack_vm;
51 	unsigned long data_vm;
52 };
53 
54 enum vma_merge_state {
55 	VMA_MERGE_START,
56 	VMA_MERGE_ERROR_NOMEM,
57 	VMA_MERGE_NOMERGE,
58 	VMA_MERGE_SUCCESS,
59 };
60 
61 enum vma_merge_flags {
62 	VMG_FLAG_DEFAULT = 0,
63 	/*
64 	 * If we can expand, simply do so. We know there is nothing to merge to
65 	 * the right. Does not reset state upon failure to merge. The VMA
66 	 * iterator is assumed to be positioned at the previous VMA, rather than
67 	 * at the gap.
68 	 */
69 	VMG_FLAG_JUST_EXPAND = 1 << 0,
70 };
71 
72 /* Represents a VMA merge operation. */
73 struct vma_merge_struct {
74 	struct mm_struct *mm;
75 	struct vma_iterator *vmi;
76 	pgoff_t pgoff;
77 	struct vm_area_struct *prev;
78 	struct vm_area_struct *next; /* Modified by vma_merge(). */
79 	struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */
80 	unsigned long start;
81 	unsigned long end;
82 	unsigned long flags;
83 	struct file *file;
84 	struct anon_vma *anon_vma;
85 	struct mempolicy *policy;
86 	struct vm_userfaultfd_ctx uffd_ctx;
87 	struct anon_vma_name *anon_name;
88 	enum vma_merge_flags merge_flags;
89 	enum vma_merge_state state;
90 };
91 
92 static inline bool vmg_nomem(struct vma_merge_struct *vmg)
93 {
94 	return vmg->state == VMA_MERGE_ERROR_NOMEM;
95 }
96 
97 /* Assumes addr >= vma->vm_start. */
98 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma,
99 				       unsigned long addr)
100 {
101 	return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start);
102 }
103 
104 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_)	\
105 	struct vma_merge_struct name = {				\
106 		.mm = mm_,						\
107 		.vmi = vmi_,						\
108 		.start = start_,					\
109 		.end = end_,						\
110 		.flags = flags_,					\
111 		.pgoff = pgoff_,					\
112 		.state = VMA_MERGE_START,				\
113 		.merge_flags = VMG_FLAG_DEFAULT,			\
114 	}
115 
116 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_)	\
117 	struct vma_merge_struct name = {			\
118 		.mm = vma_->vm_mm,				\
119 		.vmi = vmi_,					\
120 		.prev = prev_,					\
121 		.next = NULL,					\
122 		.vma = vma_,					\
123 		.start = start_,				\
124 		.end = end_,					\
125 		.flags = vma_->vm_flags,			\
126 		.pgoff = vma_pgoff_offset(vma_, start_),	\
127 		.file = vma_->vm_file,				\
128 		.anon_vma = vma_->anon_vma,			\
129 		.policy = vma_policy(vma_),			\
130 		.uffd_ctx = vma_->vm_userfaultfd_ctx,		\
131 		.anon_name = anon_vma_name(vma_),		\
132 		.state = VMA_MERGE_START,			\
133 		.merge_flags = VMG_FLAG_DEFAULT,		\
134 	}
135 
136 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
137 void validate_mm(struct mm_struct *mm);
138 #else
139 #define validate_mm(mm) do { } while (0)
140 #endif
141 
142 /* Required for expand_downwards(). */
143 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma);
144 
145 /* Required for expand_downwards(). */
146 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma);
147 
148 int vma_expand(struct vma_merge_struct *vmg);
149 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
150 	       unsigned long start, unsigned long end, pgoff_t pgoff);
151 
152 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
153 			struct vm_area_struct *vma, gfp_t gfp)
154 
155 {
156 	if (vmi->mas.status != ma_start &&
157 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
158 		vma_iter_invalidate(vmi);
159 
160 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
161 	mas_store_gfp(&vmi->mas, vma, gfp);
162 	if (unlikely(mas_is_err(&vmi->mas)))
163 		return -ENOMEM;
164 
165 	return 0;
166 }
167 
168 int
169 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
170 		    struct mm_struct *mm, unsigned long start,
171 		    unsigned long end, struct list_head *uf, bool unlock);
172 
173 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
174 		  unsigned long start, size_t len, struct list_head *uf,
175 		  bool unlock);
176 
177 void remove_vma(struct vm_area_struct *vma, bool unreachable);
178 
179 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
180 		struct vm_area_struct *prev, struct vm_area_struct *next);
181 
182 /* We are about to modify the VMA's flags. */
183 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
184 		struct vm_area_struct *prev, struct vm_area_struct *vma,
185 		unsigned long start, unsigned long end,
186 		unsigned long new_flags);
187 
188 /* We are about to modify the VMA's flags and/or anon_name. */
189 struct vm_area_struct
190 *vma_modify_flags_name(struct vma_iterator *vmi,
191 		       struct vm_area_struct *prev,
192 		       struct vm_area_struct *vma,
193 		       unsigned long start,
194 		       unsigned long end,
195 		       unsigned long new_flags,
196 		       struct anon_vma_name *new_name);
197 
198 /* We are about to modify the VMA's memory policy. */
199 struct vm_area_struct
200 *vma_modify_policy(struct vma_iterator *vmi,
201 		   struct vm_area_struct *prev,
202 		   struct vm_area_struct *vma,
203 		   unsigned long start, unsigned long end,
204 		   struct mempolicy *new_pol);
205 
206 /* We are about to modify the VMA's flags and/or uffd context. */
207 struct vm_area_struct
208 *vma_modify_flags_uffd(struct vma_iterator *vmi,
209 		       struct vm_area_struct *prev,
210 		       struct vm_area_struct *vma,
211 		       unsigned long start, unsigned long end,
212 		       unsigned long new_flags,
213 		       struct vm_userfaultfd_ctx new_ctx);
214 
215 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg);
216 
217 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
218 					struct vm_area_struct *vma,
219 					unsigned long delta);
220 
221 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
222 
223 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
224 
225 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
226 			       struct vm_area_struct *vma);
227 
228 void unlink_file_vma(struct vm_area_struct *vma);
229 
230 void vma_link_file(struct vm_area_struct *vma);
231 
232 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
233 
234 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
235 	unsigned long addr, unsigned long len, pgoff_t pgoff,
236 	bool *need_rmap_locks);
237 
238 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
239 
240 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
241 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
242 
243 int mm_take_all_locks(struct mm_struct *mm);
244 void mm_drop_all_locks(struct mm_struct *mm);
245 
246 unsigned long __mmap_region(struct file *file, unsigned long addr,
247 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
248 		struct list_head *uf);
249 
250 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
251 {
252 	/*
253 	 * We want to check manually if we can change individual PTEs writable
254 	 * if we can't do that automatically for all PTEs in a mapping. For
255 	 * private mappings, that's always the case when we have write
256 	 * permissions as we properly have to handle COW.
257 	 */
258 	if (vma->vm_flags & VM_SHARED)
259 		return vma_wants_writenotify(vma, vma->vm_page_prot);
260 	return !!(vma->vm_flags & VM_WRITE);
261 }
262 
263 #ifdef CONFIG_MMU
264 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
265 {
266 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
267 }
268 #endif
269 
270 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
271 						    unsigned long min)
272 {
273 	return mas_prev(&vmi->mas, min);
274 }
275 
276 /*
277  * These three helpers classifies VMAs for virtual memory accounting.
278  */
279 
280 /*
281  * Executable code area - executable, not writable, not stack
282  */
283 static inline bool is_exec_mapping(vm_flags_t flags)
284 {
285 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
286 }
287 
288 /*
289  * Stack area (including shadow stacks)
290  *
291  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
292  * do_mmap() forbids all other combinations.
293  */
294 static inline bool is_stack_mapping(vm_flags_t flags)
295 {
296 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
297 }
298 
299 /*
300  * Data area - private, writable, not stack
301  */
302 static inline bool is_data_mapping(vm_flags_t flags)
303 {
304 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
305 }
306 
307 
308 static inline void vma_iter_config(struct vma_iterator *vmi,
309 		unsigned long index, unsigned long last)
310 {
311 	__mas_set_range(&vmi->mas, index, last - 1);
312 }
313 
314 static inline void vma_iter_reset(struct vma_iterator *vmi)
315 {
316 	mas_reset(&vmi->mas);
317 }
318 
319 static inline
320 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
321 {
322 	return mas_prev_range(&vmi->mas, min);
323 }
324 
325 static inline
326 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
327 {
328 	return mas_next_range(&vmi->mas, max);
329 }
330 
331 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
332 				       unsigned long max, unsigned long size)
333 {
334 	return mas_empty_area(&vmi->mas, min, max - 1, size);
335 }
336 
337 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
338 					unsigned long max, unsigned long size)
339 {
340 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
341 }
342 
343 /*
344  * VMA Iterator functions shared between nommu and mmap
345  */
346 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
347 		struct vm_area_struct *vma)
348 {
349 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
350 }
351 
352 static inline void vma_iter_clear(struct vma_iterator *vmi)
353 {
354 	mas_store_prealloc(&vmi->mas, NULL);
355 }
356 
357 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
358 {
359 	return mas_walk(&vmi->mas);
360 }
361 
362 /* Store a VMA with preallocated memory */
363 static inline void vma_iter_store(struct vma_iterator *vmi,
364 				  struct vm_area_struct *vma)
365 {
366 
367 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
368 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
369 			vmi->mas.index > vma->vm_start)) {
370 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
371 			vmi->mas.index, vma->vm_start, vma->vm_start,
372 			vma->vm_end, vmi->mas.index, vmi->mas.last);
373 	}
374 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
375 			vmi->mas.last <  vma->vm_start)) {
376 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
377 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
378 		       vmi->mas.index, vmi->mas.last);
379 	}
380 #endif
381 
382 	if (vmi->mas.status != ma_start &&
383 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
384 		vma_iter_invalidate(vmi);
385 
386 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
387 	mas_store_prealloc(&vmi->mas, vma);
388 }
389 
390 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
391 {
392 	return vmi->mas.index;
393 }
394 
395 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
396 {
397 	return vmi->mas.last + 1;
398 }
399 
400 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
401 				      unsigned long count)
402 {
403 	return mas_expected_entries(&vmi->mas, count);
404 }
405 
406 static inline
407 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
408 {
409 	return mas_prev_range(&vmi->mas, 0);
410 }
411 
412 /*
413  * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or
414  * if no previous VMA, to index 0.
415  */
416 static inline
417 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi,
418 		struct vm_area_struct **pprev)
419 {
420 	struct vm_area_struct *next = vma_next(vmi);
421 	struct vm_area_struct *prev = vma_prev(vmi);
422 
423 	/*
424 	 * Consider the case where no previous VMA exists. We advance to the
425 	 * next VMA, skipping any gap, then rewind to the start of the range.
426 	 *
427 	 * If we were to unconditionally advance to the next range we'd wind up
428 	 * at the next VMA again, so we check to ensure there is a previous VMA
429 	 * to skip over.
430 	 */
431 	if (prev)
432 		vma_iter_next_range(vmi);
433 
434 	if (pprev)
435 		*pprev = prev;
436 
437 	return next;
438 }
439 
440 #ifdef CONFIG_64BIT
441 
442 static inline bool vma_is_sealed(struct vm_area_struct *vma)
443 {
444 	return (vma->vm_flags & VM_SEALED);
445 }
446 
447 /*
448  * check if a vma is sealed for modification.
449  * return true, if modification is allowed.
450  */
451 static inline bool can_modify_vma(struct vm_area_struct *vma)
452 {
453 	if (unlikely(vma_is_sealed(vma)))
454 		return false;
455 
456 	return true;
457 }
458 
459 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
460 
461 #else
462 
463 static inline bool can_modify_vma(struct vm_area_struct *vma)
464 {
465 	return true;
466 }
467 
468 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
469 {
470 	return true;
471 }
472 
473 #endif
474 
475 #endif	/* __MM_VMA_H */
476