1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * vma.h 4 * 5 * Core VMA manipulation API implemented in vma.c. 6 */ 7 #ifndef __MM_VMA_H 8 #define __MM_VMA_H 9 10 /* 11 * VMA lock generalization 12 */ 13 struct vma_prepare { 14 struct vm_area_struct *vma; 15 struct vm_area_struct *adj_next; 16 struct file *file; 17 struct address_space *mapping; 18 struct anon_vma *anon_vma; 19 struct vm_area_struct *insert; 20 struct vm_area_struct *remove; 21 struct vm_area_struct *remove2; 22 }; 23 24 struct unlink_vma_file_batch { 25 int count; 26 struct vm_area_struct *vmas[8]; 27 }; 28 29 /* 30 * vma munmap operation 31 */ 32 struct vma_munmap_struct { 33 struct vma_iterator *vmi; 34 struct vm_area_struct *vma; /* The first vma to munmap */ 35 struct vm_area_struct *prev; /* vma before the munmap area */ 36 struct vm_area_struct *next; /* vma after the munmap area */ 37 struct list_head *uf; /* Userfaultfd list_head */ 38 unsigned long start; /* Aligned start addr (inclusive) */ 39 unsigned long end; /* Aligned end addr (exclusive) */ 40 unsigned long unmap_start; /* Unmap PTE start */ 41 unsigned long unmap_end; /* Unmap PTE end */ 42 int vma_count; /* Number of vmas that will be removed */ 43 bool unlock; /* Unlock after the munmap */ 44 bool clear_ptes; /* If there are outstanding PTE to be cleared */ 45 bool closed_vm_ops; /* call_mmap() was encountered, so vmas may be closed */ 46 /* 1 byte hole */ 47 unsigned long nr_pages; /* Number of pages being removed */ 48 unsigned long locked_vm; /* Number of locked pages */ 49 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ 50 unsigned long exec_vm; 51 unsigned long stack_vm; 52 unsigned long data_vm; 53 }; 54 55 enum vma_merge_state { 56 VMA_MERGE_START, 57 VMA_MERGE_ERROR_NOMEM, 58 VMA_MERGE_NOMERGE, 59 VMA_MERGE_SUCCESS, 60 }; 61 62 /* Represents a VMA merge operation. */ 63 struct vma_merge_struct { 64 struct mm_struct *mm; 65 struct vma_iterator *vmi; 66 pgoff_t pgoff; 67 struct vm_area_struct *prev; 68 struct vm_area_struct *next; /* Modified by vma_merge(). */ 69 struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */ 70 unsigned long start; 71 unsigned long end; 72 unsigned long flags; 73 struct file *file; 74 struct anon_vma *anon_vma; 75 struct mempolicy *policy; 76 struct vm_userfaultfd_ctx uffd_ctx; 77 struct anon_vma_name *anon_name; 78 enum vma_merge_state state; 79 }; 80 81 static inline bool vmg_nomem(struct vma_merge_struct *vmg) 82 { 83 return vmg->state == VMA_MERGE_ERROR_NOMEM; 84 } 85 86 /* Assumes addr >= vma->vm_start. */ 87 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, 88 unsigned long addr) 89 { 90 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); 91 } 92 93 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \ 94 struct vma_merge_struct name = { \ 95 .mm = mm_, \ 96 .vmi = vmi_, \ 97 .start = start_, \ 98 .end = end_, \ 99 .flags = flags_, \ 100 .pgoff = pgoff_, \ 101 .state = VMA_MERGE_START, \ 102 } 103 104 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ 105 struct vma_merge_struct name = { \ 106 .mm = vma_->vm_mm, \ 107 .vmi = vmi_, \ 108 .prev = prev_, \ 109 .next = NULL, \ 110 .vma = vma_, \ 111 .start = start_, \ 112 .end = end_, \ 113 .flags = vma_->vm_flags, \ 114 .pgoff = vma_pgoff_offset(vma_, start_), \ 115 .file = vma_->vm_file, \ 116 .anon_vma = vma_->anon_vma, \ 117 .policy = vma_policy(vma_), \ 118 .uffd_ctx = vma_->vm_userfaultfd_ctx, \ 119 .anon_name = anon_vma_name(vma_), \ 120 .state = VMA_MERGE_START, \ 121 } 122 123 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 124 void validate_mm(struct mm_struct *mm); 125 #else 126 #define validate_mm(mm) do { } while (0) 127 #endif 128 129 /* Required for expand_downwards(). */ 130 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma); 131 132 /* Required for expand_downwards(). */ 133 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma); 134 135 /* Required for do_brk_flags(). */ 136 void vma_prepare(struct vma_prepare *vp); 137 138 /* Required for do_brk_flags(). */ 139 void init_vma_prep(struct vma_prepare *vp, 140 struct vm_area_struct *vma); 141 142 /* Required for do_brk_flags(). */ 143 void vma_complete(struct vma_prepare *vp, 144 struct vma_iterator *vmi, struct mm_struct *mm); 145 146 int vma_expand(struct vma_merge_struct *vmg); 147 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 148 unsigned long start, unsigned long end, pgoff_t pgoff); 149 150 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 151 struct vm_area_struct *vma, gfp_t gfp) 152 153 { 154 if (vmi->mas.status != ma_start && 155 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 156 vma_iter_invalidate(vmi); 157 158 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 159 mas_store_gfp(&vmi->mas, vma, gfp); 160 if (unlikely(mas_is_err(&vmi->mas))) 161 return -ENOMEM; 162 163 return 0; 164 } 165 166 #ifdef CONFIG_MMU 167 /* 168 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 169 * @vms: The vma munmap struct 170 * @vmi: The vma iterator 171 * @vma: The first vm_area_struct to munmap 172 * @start: The aligned start address to munmap 173 * @end: The aligned end address to munmap 174 * @uf: The userfaultfd list_head 175 * @unlock: Unlock after the operation. Only unlocked on success 176 */ 177 static inline void init_vma_munmap(struct vma_munmap_struct *vms, 178 struct vma_iterator *vmi, struct vm_area_struct *vma, 179 unsigned long start, unsigned long end, struct list_head *uf, 180 bool unlock) 181 { 182 vms->vmi = vmi; 183 vms->vma = vma; 184 if (vma) { 185 vms->start = start; 186 vms->end = end; 187 } else { 188 vms->start = vms->end = 0; 189 } 190 vms->unlock = unlock; 191 vms->uf = uf; 192 vms->vma_count = 0; 193 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 194 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 195 vms->unmap_start = FIRST_USER_ADDRESS; 196 vms->unmap_end = USER_PGTABLES_CEILING; 197 vms->clear_ptes = false; 198 vms->closed_vm_ops = false; 199 } 200 #endif 201 202 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 203 struct ma_state *mas_detach); 204 205 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 206 struct ma_state *mas_detach); 207 208 void vms_clean_up_area(struct vma_munmap_struct *vms, 209 struct ma_state *mas_detach); 210 211 /* 212 * reattach_vmas() - Undo any munmap work and free resources 213 * @mas_detach: The maple state with the detached maple tree 214 * 215 * Reattach any detached vmas and free up the maple tree used to track the vmas. 216 */ 217 static inline void reattach_vmas(struct ma_state *mas_detach) 218 { 219 struct vm_area_struct *vma; 220 221 mas_set(mas_detach, 0); 222 mas_for_each(mas_detach, vma, ULONG_MAX) 223 vma_mark_detached(vma, false); 224 225 __mt_destroy(mas_detach->tree); 226 } 227 228 /* 229 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 230 * operation. 231 * @vms: The vma unmap structure 232 * @mas_detach: The maple state with the detached maple tree 233 * 234 * Reattach any detached vmas, free up the maple tree used to track the vmas. 235 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 236 * have been called), then a NULL is written over the vmas and the vmas are 237 * removed (munmap() completed). 238 */ 239 static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 240 struct ma_state *mas_detach) 241 { 242 struct ma_state *mas = &vms->vmi->mas; 243 if (!vms->nr_pages) 244 return; 245 246 if (vms->clear_ptes) 247 return reattach_vmas(mas_detach); 248 249 /* 250 * Aborting cannot just call the vm_ops open() because they are often 251 * not symmetrical and state data has been lost. Resort to the old 252 * failure method of leaving a gap where the MAP_FIXED mapping failed. 253 */ 254 mas_set_range(mas, vms->start, vms->end - 1); 255 if (unlikely(mas_store_gfp(mas, NULL, GFP_KERNEL))) { 256 pr_warn_once("%s: (%d) Unable to abort munmap() operation\n", 257 current->comm, current->pid); 258 /* Leaving vmas detached and in-tree may hamper recovery */ 259 reattach_vmas(mas_detach); 260 } else { 261 /* Clean up the insertion of the unfortunate gap */ 262 vms_complete_munmap_vmas(vms, mas_detach); 263 } 264 } 265 266 int 267 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 268 struct mm_struct *mm, unsigned long start, 269 unsigned long end, struct list_head *uf, bool unlock); 270 271 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 272 unsigned long start, size_t len, struct list_head *uf, 273 bool unlock); 274 275 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed); 276 277 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 278 struct vm_area_struct *prev, struct vm_area_struct *next); 279 280 /* 281 * Can we merge the VMA described by vmg into the following VMA vmg->next? 282 * 283 * Required by mmap_region(). 284 */ 285 bool can_vma_merge_before(struct vma_merge_struct *vmg); 286 287 /* 288 * Can we merge the VMA described by vmg into the preceding VMA vmg->prev? 289 * 290 * Required by mmap_region() and do_brk_flags(). 291 */ 292 bool can_vma_merge_after(struct vma_merge_struct *vmg); 293 294 /* We are about to modify the VMA's flags. */ 295 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 296 struct vm_area_struct *prev, struct vm_area_struct *vma, 297 unsigned long start, unsigned long end, 298 unsigned long new_flags); 299 300 /* We are about to modify the VMA's flags and/or anon_name. */ 301 struct vm_area_struct 302 *vma_modify_flags_name(struct vma_iterator *vmi, 303 struct vm_area_struct *prev, 304 struct vm_area_struct *vma, 305 unsigned long start, 306 unsigned long end, 307 unsigned long new_flags, 308 struct anon_vma_name *new_name); 309 310 /* We are about to modify the VMA's memory policy. */ 311 struct vm_area_struct 312 *vma_modify_policy(struct vma_iterator *vmi, 313 struct vm_area_struct *prev, 314 struct vm_area_struct *vma, 315 unsigned long start, unsigned long end, 316 struct mempolicy *new_pol); 317 318 /* We are about to modify the VMA's flags and/or uffd context. */ 319 struct vm_area_struct 320 *vma_modify_flags_uffd(struct vma_iterator *vmi, 321 struct vm_area_struct *prev, 322 struct vm_area_struct *vma, 323 unsigned long start, unsigned long end, 324 unsigned long new_flags, 325 struct vm_userfaultfd_ctx new_ctx); 326 327 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg); 328 329 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 330 struct vm_area_struct *vma, 331 unsigned long delta); 332 333 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); 334 335 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); 336 337 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 338 struct vm_area_struct *vma); 339 340 void unlink_file_vma(struct vm_area_struct *vma); 341 342 void vma_link_file(struct vm_area_struct *vma); 343 344 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); 345 346 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 347 unsigned long addr, unsigned long len, pgoff_t pgoff, 348 bool *need_rmap_locks); 349 350 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); 351 352 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 353 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 354 355 int mm_take_all_locks(struct mm_struct *mm); 356 void mm_drop_all_locks(struct mm_struct *mm); 357 358 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 359 { 360 /* 361 * We want to check manually if we can change individual PTEs writable 362 * if we can't do that automatically for all PTEs in a mapping. For 363 * private mappings, that's always the case when we have write 364 * permissions as we properly have to handle COW. 365 */ 366 if (vma->vm_flags & VM_SHARED) 367 return vma_wants_writenotify(vma, vma->vm_page_prot); 368 return !!(vma->vm_flags & VM_WRITE); 369 } 370 371 #ifdef CONFIG_MMU 372 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 373 { 374 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 375 } 376 #endif 377 378 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 379 unsigned long min) 380 { 381 return mas_prev(&vmi->mas, min); 382 } 383 384 /* 385 * These three helpers classifies VMAs for virtual memory accounting. 386 */ 387 388 /* 389 * Executable code area - executable, not writable, not stack 390 */ 391 static inline bool is_exec_mapping(vm_flags_t flags) 392 { 393 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 394 } 395 396 /* 397 * Stack area (including shadow stacks) 398 * 399 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 400 * do_mmap() forbids all other combinations. 401 */ 402 static inline bool is_stack_mapping(vm_flags_t flags) 403 { 404 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 405 } 406 407 /* 408 * Data area - private, writable, not stack 409 */ 410 static inline bool is_data_mapping(vm_flags_t flags) 411 { 412 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 413 } 414 415 416 static inline void vma_iter_config(struct vma_iterator *vmi, 417 unsigned long index, unsigned long last) 418 { 419 __mas_set_range(&vmi->mas, index, last - 1); 420 } 421 422 static inline void vma_iter_reset(struct vma_iterator *vmi) 423 { 424 mas_reset(&vmi->mas); 425 } 426 427 static inline 428 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 429 { 430 return mas_prev_range(&vmi->mas, min); 431 } 432 433 static inline 434 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 435 { 436 return mas_next_range(&vmi->mas, max); 437 } 438 439 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 440 unsigned long max, unsigned long size) 441 { 442 return mas_empty_area(&vmi->mas, min, max - 1, size); 443 } 444 445 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 446 unsigned long max, unsigned long size) 447 { 448 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 449 } 450 451 /* 452 * VMA Iterator functions shared between nommu and mmap 453 */ 454 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 455 struct vm_area_struct *vma) 456 { 457 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 458 } 459 460 static inline void vma_iter_clear(struct vma_iterator *vmi) 461 { 462 mas_store_prealloc(&vmi->mas, NULL); 463 } 464 465 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 466 { 467 return mas_walk(&vmi->mas); 468 } 469 470 /* Store a VMA with preallocated memory */ 471 static inline void vma_iter_store(struct vma_iterator *vmi, 472 struct vm_area_struct *vma) 473 { 474 475 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 476 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 477 vmi->mas.index > vma->vm_start)) { 478 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 479 vmi->mas.index, vma->vm_start, vma->vm_start, 480 vma->vm_end, vmi->mas.index, vmi->mas.last); 481 } 482 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 483 vmi->mas.last < vma->vm_start)) { 484 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 485 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 486 vmi->mas.index, vmi->mas.last); 487 } 488 #endif 489 490 if (vmi->mas.status != ma_start && 491 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 492 vma_iter_invalidate(vmi); 493 494 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 495 mas_store_prealloc(&vmi->mas, vma); 496 } 497 498 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 499 { 500 return vmi->mas.index; 501 } 502 503 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 504 { 505 return vmi->mas.last + 1; 506 } 507 508 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 509 unsigned long count) 510 { 511 return mas_expected_entries(&vmi->mas, count); 512 } 513 514 static inline 515 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 516 { 517 return mas_prev_range(&vmi->mas, 0); 518 } 519 520 /* 521 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or 522 * if no previous VMA, to index 0. 523 */ 524 static inline 525 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, 526 struct vm_area_struct **pprev) 527 { 528 struct vm_area_struct *next = vma_next(vmi); 529 struct vm_area_struct *prev = vma_prev(vmi); 530 531 /* 532 * Consider the case where no previous VMA exists. We advance to the 533 * next VMA, skipping any gap, then rewind to the start of the range. 534 * 535 * If we were to unconditionally advance to the next range we'd wind up 536 * at the next VMA again, so we check to ensure there is a previous VMA 537 * to skip over. 538 */ 539 if (prev) 540 vma_iter_next_range(vmi); 541 542 if (pprev) 543 *pprev = prev; 544 545 return next; 546 } 547 548 #ifdef CONFIG_64BIT 549 550 static inline bool vma_is_sealed(struct vm_area_struct *vma) 551 { 552 return (vma->vm_flags & VM_SEALED); 553 } 554 555 /* 556 * check if a vma is sealed for modification. 557 * return true, if modification is allowed. 558 */ 559 static inline bool can_modify_vma(struct vm_area_struct *vma) 560 { 561 if (unlikely(vma_is_sealed(vma))) 562 return false; 563 564 return true; 565 } 566 567 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior); 568 569 #else 570 571 static inline bool can_modify_vma(struct vm_area_struct *vma) 572 { 573 return true; 574 } 575 576 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior) 577 { 578 return true; 579 } 580 581 #endif 582 583 #endif /* __MM_VMA_H */ 584