1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * vma.h 4 * 5 * Core VMA manipulation API implemented in vma.c. 6 */ 7 #ifndef __MM_VMA_H 8 #define __MM_VMA_H 9 10 /* 11 * VMA lock generalization 12 */ 13 struct vma_prepare { 14 struct vm_area_struct *vma; 15 struct vm_area_struct *adj_next; 16 struct file *file; 17 struct address_space *mapping; 18 struct anon_vma *anon_vma; 19 struct vm_area_struct *insert; 20 struct vm_area_struct *remove; 21 struct vm_area_struct *remove2; 22 }; 23 24 struct unlink_vma_file_batch { 25 int count; 26 struct vm_area_struct *vmas[8]; 27 }; 28 29 /* 30 * vma munmap operation 31 */ 32 struct vma_munmap_struct { 33 struct vma_iterator *vmi; 34 struct vm_area_struct *vma; /* The first vma to munmap */ 35 struct vm_area_struct *prev; /* vma before the munmap area */ 36 struct vm_area_struct *next; /* vma after the munmap area */ 37 struct list_head *uf; /* Userfaultfd list_head */ 38 unsigned long start; /* Aligned start addr (inclusive) */ 39 unsigned long end; /* Aligned end addr (exclusive) */ 40 unsigned long unmap_start; /* Unmap PTE start */ 41 unsigned long unmap_end; /* Unmap PTE end */ 42 int vma_count; /* Number of vmas that will be removed */ 43 bool unlock; /* Unlock after the munmap */ 44 bool clear_ptes; /* If there are outstanding PTE to be cleared */ 45 /* 2 byte hole */ 46 unsigned long nr_pages; /* Number of pages being removed */ 47 unsigned long locked_vm; /* Number of locked pages */ 48 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ 49 unsigned long exec_vm; 50 unsigned long stack_vm; 51 unsigned long data_vm; 52 }; 53 54 enum vma_merge_state { 55 VMA_MERGE_START, 56 VMA_MERGE_ERROR_NOMEM, 57 VMA_MERGE_NOMERGE, 58 VMA_MERGE_SUCCESS, 59 }; 60 61 enum vma_merge_flags { 62 VMG_FLAG_DEFAULT = 0, 63 /* 64 * If we can expand, simply do so. We know there is nothing to merge to 65 * the right. Does not reset state upon failure to merge. The VMA 66 * iterator is assumed to be positioned at the previous VMA, rather than 67 * at the gap. 68 */ 69 VMG_FLAG_JUST_EXPAND = 1 << 0, 70 }; 71 72 /* Represents a VMA merge operation. */ 73 struct vma_merge_struct { 74 struct mm_struct *mm; 75 struct vma_iterator *vmi; 76 pgoff_t pgoff; 77 struct vm_area_struct *prev; 78 struct vm_area_struct *next; /* Modified by vma_merge(). */ 79 struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */ 80 unsigned long start; 81 unsigned long end; 82 unsigned long flags; 83 struct file *file; 84 struct anon_vma *anon_vma; 85 struct mempolicy *policy; 86 struct vm_userfaultfd_ctx uffd_ctx; 87 struct anon_vma_name *anon_name; 88 enum vma_merge_flags merge_flags; 89 enum vma_merge_state state; 90 }; 91 92 static inline bool vmg_nomem(struct vma_merge_struct *vmg) 93 { 94 return vmg->state == VMA_MERGE_ERROR_NOMEM; 95 } 96 97 /* Assumes addr >= vma->vm_start. */ 98 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, 99 unsigned long addr) 100 { 101 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); 102 } 103 104 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \ 105 struct vma_merge_struct name = { \ 106 .mm = mm_, \ 107 .vmi = vmi_, \ 108 .start = start_, \ 109 .end = end_, \ 110 .flags = flags_, \ 111 .pgoff = pgoff_, \ 112 .state = VMA_MERGE_START, \ 113 .merge_flags = VMG_FLAG_DEFAULT, \ 114 } 115 116 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ 117 struct vma_merge_struct name = { \ 118 .mm = vma_->vm_mm, \ 119 .vmi = vmi_, \ 120 .prev = prev_, \ 121 .next = NULL, \ 122 .vma = vma_, \ 123 .start = start_, \ 124 .end = end_, \ 125 .flags = vma_->vm_flags, \ 126 .pgoff = vma_pgoff_offset(vma_, start_), \ 127 .file = vma_->vm_file, \ 128 .anon_vma = vma_->anon_vma, \ 129 .policy = vma_policy(vma_), \ 130 .uffd_ctx = vma_->vm_userfaultfd_ctx, \ 131 .anon_name = anon_vma_name(vma_), \ 132 .state = VMA_MERGE_START, \ 133 .merge_flags = VMG_FLAG_DEFAULT, \ 134 } 135 136 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 137 void validate_mm(struct mm_struct *mm); 138 #else 139 #define validate_mm(mm) do { } while (0) 140 #endif 141 142 /* Required for expand_downwards(). */ 143 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma); 144 145 /* Required for expand_downwards(). */ 146 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma); 147 148 int vma_expand(struct vma_merge_struct *vmg); 149 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 150 unsigned long start, unsigned long end, pgoff_t pgoff); 151 152 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 153 struct vm_area_struct *vma, gfp_t gfp) 154 155 { 156 if (vmi->mas.status != ma_start && 157 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 158 vma_iter_invalidate(vmi); 159 160 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 161 mas_store_gfp(&vmi->mas, vma, gfp); 162 if (unlikely(mas_is_err(&vmi->mas))) 163 return -ENOMEM; 164 165 return 0; 166 } 167 168 #ifdef CONFIG_MMU 169 /* 170 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 171 * @vms: The vma munmap struct 172 * @vmi: The vma iterator 173 * @vma: The first vm_area_struct to munmap 174 * @start: The aligned start address to munmap 175 * @end: The aligned end address to munmap 176 * @uf: The userfaultfd list_head 177 * @unlock: Unlock after the operation. Only unlocked on success 178 */ 179 static inline void init_vma_munmap(struct vma_munmap_struct *vms, 180 struct vma_iterator *vmi, struct vm_area_struct *vma, 181 unsigned long start, unsigned long end, struct list_head *uf, 182 bool unlock) 183 { 184 vms->vmi = vmi; 185 vms->vma = vma; 186 if (vma) { 187 vms->start = start; 188 vms->end = end; 189 } else { 190 vms->start = vms->end = 0; 191 } 192 vms->unlock = unlock; 193 vms->uf = uf; 194 vms->vma_count = 0; 195 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 196 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 197 vms->unmap_start = FIRST_USER_ADDRESS; 198 vms->unmap_end = USER_PGTABLES_CEILING; 199 vms->clear_ptes = false; 200 } 201 #endif 202 203 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 204 struct ma_state *mas_detach); 205 206 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 207 struct ma_state *mas_detach); 208 209 void vms_clean_up_area(struct vma_munmap_struct *vms, 210 struct ma_state *mas_detach); 211 212 /* 213 * reattach_vmas() - Undo any munmap work and free resources 214 * @mas_detach: The maple state with the detached maple tree 215 * 216 * Reattach any detached vmas and free up the maple tree used to track the vmas. 217 */ 218 static inline void reattach_vmas(struct ma_state *mas_detach) 219 { 220 struct vm_area_struct *vma; 221 222 mas_set(mas_detach, 0); 223 mas_for_each(mas_detach, vma, ULONG_MAX) 224 vma_mark_detached(vma, false); 225 226 __mt_destroy(mas_detach->tree); 227 } 228 229 /* 230 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 231 * operation. 232 * @vms: The vma unmap structure 233 * @mas_detach: The maple state with the detached maple tree 234 * 235 * Reattach any detached vmas, free up the maple tree used to track the vmas. 236 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 237 * have been called), then a NULL is written over the vmas and the vmas are 238 * removed (munmap() completed). 239 */ 240 static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 241 struct ma_state *mas_detach) 242 { 243 struct ma_state *mas = &vms->vmi->mas; 244 if (!vms->nr_pages) 245 return; 246 247 if (vms->clear_ptes) 248 return reattach_vmas(mas_detach); 249 250 /* 251 * Aborting cannot just call the vm_ops open() because they are often 252 * not symmetrical and state data has been lost. Resort to the old 253 * failure method of leaving a gap where the MAP_FIXED mapping failed. 254 */ 255 mas_set_range(mas, vms->start, vms->end - 1); 256 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 257 /* Clean up the insertion of the unfortunate gap */ 258 vms_complete_munmap_vmas(vms, mas_detach); 259 } 260 261 int 262 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 263 struct mm_struct *mm, unsigned long start, 264 unsigned long end, struct list_head *uf, bool unlock); 265 266 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 267 unsigned long start, size_t len, struct list_head *uf, 268 bool unlock); 269 270 void remove_vma(struct vm_area_struct *vma, bool unreachable); 271 272 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 273 struct vm_area_struct *prev, struct vm_area_struct *next); 274 275 /* We are about to modify the VMA's flags. */ 276 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 277 struct vm_area_struct *prev, struct vm_area_struct *vma, 278 unsigned long start, unsigned long end, 279 unsigned long new_flags); 280 281 /* We are about to modify the VMA's flags and/or anon_name. */ 282 struct vm_area_struct 283 *vma_modify_flags_name(struct vma_iterator *vmi, 284 struct vm_area_struct *prev, 285 struct vm_area_struct *vma, 286 unsigned long start, 287 unsigned long end, 288 unsigned long new_flags, 289 struct anon_vma_name *new_name); 290 291 /* We are about to modify the VMA's memory policy. */ 292 struct vm_area_struct 293 *vma_modify_policy(struct vma_iterator *vmi, 294 struct vm_area_struct *prev, 295 struct vm_area_struct *vma, 296 unsigned long start, unsigned long end, 297 struct mempolicy *new_pol); 298 299 /* We are about to modify the VMA's flags and/or uffd context. */ 300 struct vm_area_struct 301 *vma_modify_flags_uffd(struct vma_iterator *vmi, 302 struct vm_area_struct *prev, 303 struct vm_area_struct *vma, 304 unsigned long start, unsigned long end, 305 unsigned long new_flags, 306 struct vm_userfaultfd_ctx new_ctx); 307 308 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg); 309 310 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 311 struct vm_area_struct *vma, 312 unsigned long delta); 313 314 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); 315 316 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); 317 318 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 319 struct vm_area_struct *vma); 320 321 void unlink_file_vma(struct vm_area_struct *vma); 322 323 void vma_link_file(struct vm_area_struct *vma); 324 325 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); 326 327 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 328 unsigned long addr, unsigned long len, pgoff_t pgoff, 329 bool *need_rmap_locks); 330 331 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); 332 333 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 334 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 335 336 int mm_take_all_locks(struct mm_struct *mm); 337 void mm_drop_all_locks(struct mm_struct *mm); 338 339 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 340 { 341 /* 342 * We want to check manually if we can change individual PTEs writable 343 * if we can't do that automatically for all PTEs in a mapping. For 344 * private mappings, that's always the case when we have write 345 * permissions as we properly have to handle COW. 346 */ 347 if (vma->vm_flags & VM_SHARED) 348 return vma_wants_writenotify(vma, vma->vm_page_prot); 349 return !!(vma->vm_flags & VM_WRITE); 350 } 351 352 #ifdef CONFIG_MMU 353 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 354 { 355 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 356 } 357 #endif 358 359 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 360 unsigned long min) 361 { 362 return mas_prev(&vmi->mas, min); 363 } 364 365 /* 366 * These three helpers classifies VMAs for virtual memory accounting. 367 */ 368 369 /* 370 * Executable code area - executable, not writable, not stack 371 */ 372 static inline bool is_exec_mapping(vm_flags_t flags) 373 { 374 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 375 } 376 377 /* 378 * Stack area (including shadow stacks) 379 * 380 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 381 * do_mmap() forbids all other combinations. 382 */ 383 static inline bool is_stack_mapping(vm_flags_t flags) 384 { 385 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 386 } 387 388 /* 389 * Data area - private, writable, not stack 390 */ 391 static inline bool is_data_mapping(vm_flags_t flags) 392 { 393 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 394 } 395 396 397 static inline void vma_iter_config(struct vma_iterator *vmi, 398 unsigned long index, unsigned long last) 399 { 400 __mas_set_range(&vmi->mas, index, last - 1); 401 } 402 403 static inline void vma_iter_reset(struct vma_iterator *vmi) 404 { 405 mas_reset(&vmi->mas); 406 } 407 408 static inline 409 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 410 { 411 return mas_prev_range(&vmi->mas, min); 412 } 413 414 static inline 415 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 416 { 417 return mas_next_range(&vmi->mas, max); 418 } 419 420 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 421 unsigned long max, unsigned long size) 422 { 423 return mas_empty_area(&vmi->mas, min, max - 1, size); 424 } 425 426 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 427 unsigned long max, unsigned long size) 428 { 429 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 430 } 431 432 /* 433 * VMA Iterator functions shared between nommu and mmap 434 */ 435 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 436 struct vm_area_struct *vma) 437 { 438 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 439 } 440 441 static inline void vma_iter_clear(struct vma_iterator *vmi) 442 { 443 mas_store_prealloc(&vmi->mas, NULL); 444 } 445 446 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 447 { 448 return mas_walk(&vmi->mas); 449 } 450 451 /* Store a VMA with preallocated memory */ 452 static inline void vma_iter_store(struct vma_iterator *vmi, 453 struct vm_area_struct *vma) 454 { 455 456 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 457 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 458 vmi->mas.index > vma->vm_start)) { 459 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 460 vmi->mas.index, vma->vm_start, vma->vm_start, 461 vma->vm_end, vmi->mas.index, vmi->mas.last); 462 } 463 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 464 vmi->mas.last < vma->vm_start)) { 465 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 466 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 467 vmi->mas.index, vmi->mas.last); 468 } 469 #endif 470 471 if (vmi->mas.status != ma_start && 472 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 473 vma_iter_invalidate(vmi); 474 475 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 476 mas_store_prealloc(&vmi->mas, vma); 477 } 478 479 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 480 { 481 return vmi->mas.index; 482 } 483 484 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 485 { 486 return vmi->mas.last + 1; 487 } 488 489 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 490 unsigned long count) 491 { 492 return mas_expected_entries(&vmi->mas, count); 493 } 494 495 static inline 496 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 497 { 498 return mas_prev_range(&vmi->mas, 0); 499 } 500 501 /* 502 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or 503 * if no previous VMA, to index 0. 504 */ 505 static inline 506 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, 507 struct vm_area_struct **pprev) 508 { 509 struct vm_area_struct *next = vma_next(vmi); 510 struct vm_area_struct *prev = vma_prev(vmi); 511 512 /* 513 * Consider the case where no previous VMA exists. We advance to the 514 * next VMA, skipping any gap, then rewind to the start of the range. 515 * 516 * If we were to unconditionally advance to the next range we'd wind up 517 * at the next VMA again, so we check to ensure there is a previous VMA 518 * to skip over. 519 */ 520 if (prev) 521 vma_iter_next_range(vmi); 522 523 if (pprev) 524 *pprev = prev; 525 526 return next; 527 } 528 529 #ifdef CONFIG_64BIT 530 531 static inline bool vma_is_sealed(struct vm_area_struct *vma) 532 { 533 return (vma->vm_flags & VM_SEALED); 534 } 535 536 /* 537 * check if a vma is sealed for modification. 538 * return true, if modification is allowed. 539 */ 540 static inline bool can_modify_vma(struct vm_area_struct *vma) 541 { 542 if (unlikely(vma_is_sealed(vma))) 543 return false; 544 545 return true; 546 } 547 548 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior); 549 550 #else 551 552 static inline bool can_modify_vma(struct vm_area_struct *vma) 553 { 554 return true; 555 } 556 557 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior) 558 { 559 return true; 560 } 561 562 #endif 563 564 #endif /* __MM_VMA_H */ 565