1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * vma.h 4 * 5 * Core VMA manipulation API implemented in vma.c. 6 */ 7 #ifndef __MM_VMA_H 8 #define __MM_VMA_H 9 10 /* 11 * VMA lock generalization 12 */ 13 struct vma_prepare { 14 struct vm_area_struct *vma; 15 struct vm_area_struct *adj_next; 16 struct file *file; 17 struct address_space *mapping; 18 struct anon_vma *anon_vma; 19 struct vm_area_struct *insert; 20 struct vm_area_struct *remove; 21 struct vm_area_struct *remove2; 22 }; 23 24 struct unlink_vma_file_batch { 25 int count; 26 struct vm_area_struct *vmas[8]; 27 }; 28 29 /* 30 * vma munmap operation 31 */ 32 struct vma_munmap_struct { 33 struct vma_iterator *vmi; 34 struct vm_area_struct *vma; /* The first vma to munmap */ 35 struct vm_area_struct *prev; /* vma before the munmap area */ 36 struct vm_area_struct *next; /* vma after the munmap area */ 37 struct list_head *uf; /* Userfaultfd list_head */ 38 unsigned long start; /* Aligned start addr (inclusive) */ 39 unsigned long end; /* Aligned end addr (exclusive) */ 40 unsigned long unmap_start; /* Unmap PTE start */ 41 unsigned long unmap_end; /* Unmap PTE end */ 42 int vma_count; /* Number of vmas that will be removed */ 43 bool unlock; /* Unlock after the munmap */ 44 bool clear_ptes; /* If there are outstanding PTE to be cleared */ 45 bool closed_vm_ops; /* call_mmap() was encountered, so vmas may be closed */ 46 /* 1 byte hole */ 47 unsigned long nr_pages; /* Number of pages being removed */ 48 unsigned long locked_vm; /* Number of locked pages */ 49 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ 50 unsigned long exec_vm; 51 unsigned long stack_vm; 52 unsigned long data_vm; 53 }; 54 55 enum vma_merge_state { 56 VMA_MERGE_START, 57 VMA_MERGE_ERROR_NOMEM, 58 VMA_MERGE_NOMERGE, 59 VMA_MERGE_SUCCESS, 60 }; 61 62 enum vma_merge_flags { 63 VMG_FLAG_DEFAULT = 0, 64 /* 65 * If we can expand, simply do so. We know there is nothing to merge to 66 * the right. Does not reset state upon failure to merge. The VMA 67 * iterator is assumed to be positioned at the previous VMA, rather than 68 * at the gap. 69 */ 70 VMG_FLAG_JUST_EXPAND = 1 << 0, 71 }; 72 73 /* Represents a VMA merge operation. */ 74 struct vma_merge_struct { 75 struct mm_struct *mm; 76 struct vma_iterator *vmi; 77 pgoff_t pgoff; 78 struct vm_area_struct *prev; 79 struct vm_area_struct *next; /* Modified by vma_merge(). */ 80 struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */ 81 unsigned long start; 82 unsigned long end; 83 unsigned long flags; 84 struct file *file; 85 struct anon_vma *anon_vma; 86 struct mempolicy *policy; 87 struct vm_userfaultfd_ctx uffd_ctx; 88 struct anon_vma_name *anon_name; 89 enum vma_merge_flags merge_flags; 90 enum vma_merge_state state; 91 }; 92 93 static inline bool vmg_nomem(struct vma_merge_struct *vmg) 94 { 95 return vmg->state == VMA_MERGE_ERROR_NOMEM; 96 } 97 98 /* Assumes addr >= vma->vm_start. */ 99 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, 100 unsigned long addr) 101 { 102 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); 103 } 104 105 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \ 106 struct vma_merge_struct name = { \ 107 .mm = mm_, \ 108 .vmi = vmi_, \ 109 .start = start_, \ 110 .end = end_, \ 111 .flags = flags_, \ 112 .pgoff = pgoff_, \ 113 .state = VMA_MERGE_START, \ 114 .merge_flags = VMG_FLAG_DEFAULT, \ 115 } 116 117 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ 118 struct vma_merge_struct name = { \ 119 .mm = vma_->vm_mm, \ 120 .vmi = vmi_, \ 121 .prev = prev_, \ 122 .next = NULL, \ 123 .vma = vma_, \ 124 .start = start_, \ 125 .end = end_, \ 126 .flags = vma_->vm_flags, \ 127 .pgoff = vma_pgoff_offset(vma_, start_), \ 128 .file = vma_->vm_file, \ 129 .anon_vma = vma_->anon_vma, \ 130 .policy = vma_policy(vma_), \ 131 .uffd_ctx = vma_->vm_userfaultfd_ctx, \ 132 .anon_name = anon_vma_name(vma_), \ 133 .state = VMA_MERGE_START, \ 134 .merge_flags = VMG_FLAG_DEFAULT, \ 135 } 136 137 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 138 void validate_mm(struct mm_struct *mm); 139 #else 140 #define validate_mm(mm) do { } while (0) 141 #endif 142 143 /* Required for expand_downwards(). */ 144 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma); 145 146 /* Required for expand_downwards(). */ 147 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma); 148 149 int vma_expand(struct vma_merge_struct *vmg); 150 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 151 unsigned long start, unsigned long end, pgoff_t pgoff); 152 153 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 154 struct vm_area_struct *vma, gfp_t gfp) 155 156 { 157 if (vmi->mas.status != ma_start && 158 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 159 vma_iter_invalidate(vmi); 160 161 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 162 mas_store_gfp(&vmi->mas, vma, gfp); 163 if (unlikely(mas_is_err(&vmi->mas))) 164 return -ENOMEM; 165 166 return 0; 167 } 168 169 #ifdef CONFIG_MMU 170 /* 171 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 172 * @vms: The vma munmap struct 173 * @vmi: The vma iterator 174 * @vma: The first vm_area_struct to munmap 175 * @start: The aligned start address to munmap 176 * @end: The aligned end address to munmap 177 * @uf: The userfaultfd list_head 178 * @unlock: Unlock after the operation. Only unlocked on success 179 */ 180 static inline void init_vma_munmap(struct vma_munmap_struct *vms, 181 struct vma_iterator *vmi, struct vm_area_struct *vma, 182 unsigned long start, unsigned long end, struct list_head *uf, 183 bool unlock) 184 { 185 vms->vmi = vmi; 186 vms->vma = vma; 187 if (vma) { 188 vms->start = start; 189 vms->end = end; 190 } else { 191 vms->start = vms->end = 0; 192 } 193 vms->unlock = unlock; 194 vms->uf = uf; 195 vms->vma_count = 0; 196 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 197 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 198 vms->unmap_start = FIRST_USER_ADDRESS; 199 vms->unmap_end = USER_PGTABLES_CEILING; 200 vms->clear_ptes = false; 201 vms->closed_vm_ops = false; 202 } 203 #endif 204 205 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 206 struct ma_state *mas_detach); 207 208 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 209 struct ma_state *mas_detach); 210 211 void vms_clean_up_area(struct vma_munmap_struct *vms, 212 struct ma_state *mas_detach); 213 214 /* 215 * reattach_vmas() - Undo any munmap work and free resources 216 * @mas_detach: The maple state with the detached maple tree 217 * 218 * Reattach any detached vmas and free up the maple tree used to track the vmas. 219 */ 220 static inline void reattach_vmas(struct ma_state *mas_detach) 221 { 222 struct vm_area_struct *vma; 223 224 mas_set(mas_detach, 0); 225 mas_for_each(mas_detach, vma, ULONG_MAX) 226 vma_mark_detached(vma, false); 227 228 __mt_destroy(mas_detach->tree); 229 } 230 231 /* 232 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 233 * operation. 234 * @vms: The vma unmap structure 235 * @mas_detach: The maple state with the detached maple tree 236 * 237 * Reattach any detached vmas, free up the maple tree used to track the vmas. 238 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 239 * have been called), then a NULL is written over the vmas and the vmas are 240 * removed (munmap() completed). 241 */ 242 static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 243 struct ma_state *mas_detach) 244 { 245 struct ma_state *mas = &vms->vmi->mas; 246 if (!vms->nr_pages) 247 return; 248 249 if (vms->clear_ptes) 250 return reattach_vmas(mas_detach); 251 252 /* 253 * Aborting cannot just call the vm_ops open() because they are often 254 * not symmetrical and state data has been lost. Resort to the old 255 * failure method of leaving a gap where the MAP_FIXED mapping failed. 256 */ 257 mas_set_range(mas, vms->start, vms->end - 1); 258 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 259 /* Clean up the insertion of the unfortunate gap */ 260 vms_complete_munmap_vmas(vms, mas_detach); 261 } 262 263 int 264 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 265 struct mm_struct *mm, unsigned long start, 266 unsigned long end, struct list_head *uf, bool unlock); 267 268 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 269 unsigned long start, size_t len, struct list_head *uf, 270 bool unlock); 271 272 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed); 273 274 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 275 struct vm_area_struct *prev, struct vm_area_struct *next); 276 277 /* We are about to modify the VMA's flags. */ 278 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 279 struct vm_area_struct *prev, struct vm_area_struct *vma, 280 unsigned long start, unsigned long end, 281 unsigned long new_flags); 282 283 /* We are about to modify the VMA's flags and/or anon_name. */ 284 struct vm_area_struct 285 *vma_modify_flags_name(struct vma_iterator *vmi, 286 struct vm_area_struct *prev, 287 struct vm_area_struct *vma, 288 unsigned long start, 289 unsigned long end, 290 unsigned long new_flags, 291 struct anon_vma_name *new_name); 292 293 /* We are about to modify the VMA's memory policy. */ 294 struct vm_area_struct 295 *vma_modify_policy(struct vma_iterator *vmi, 296 struct vm_area_struct *prev, 297 struct vm_area_struct *vma, 298 unsigned long start, unsigned long end, 299 struct mempolicy *new_pol); 300 301 /* We are about to modify the VMA's flags and/or uffd context. */ 302 struct vm_area_struct 303 *vma_modify_flags_uffd(struct vma_iterator *vmi, 304 struct vm_area_struct *prev, 305 struct vm_area_struct *vma, 306 unsigned long start, unsigned long end, 307 unsigned long new_flags, 308 struct vm_userfaultfd_ctx new_ctx); 309 310 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg); 311 312 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 313 struct vm_area_struct *vma, 314 unsigned long delta); 315 316 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); 317 318 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); 319 320 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 321 struct vm_area_struct *vma); 322 323 void unlink_file_vma(struct vm_area_struct *vma); 324 325 void vma_link_file(struct vm_area_struct *vma); 326 327 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); 328 329 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 330 unsigned long addr, unsigned long len, pgoff_t pgoff, 331 bool *need_rmap_locks); 332 333 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); 334 335 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 336 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 337 338 int mm_take_all_locks(struct mm_struct *mm); 339 void mm_drop_all_locks(struct mm_struct *mm); 340 341 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 342 { 343 /* 344 * We want to check manually if we can change individual PTEs writable 345 * if we can't do that automatically for all PTEs in a mapping. For 346 * private mappings, that's always the case when we have write 347 * permissions as we properly have to handle COW. 348 */ 349 if (vma->vm_flags & VM_SHARED) 350 return vma_wants_writenotify(vma, vma->vm_page_prot); 351 return !!(vma->vm_flags & VM_WRITE); 352 } 353 354 #ifdef CONFIG_MMU 355 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 356 { 357 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 358 } 359 #endif 360 361 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 362 unsigned long min) 363 { 364 return mas_prev(&vmi->mas, min); 365 } 366 367 /* 368 * These three helpers classifies VMAs for virtual memory accounting. 369 */ 370 371 /* 372 * Executable code area - executable, not writable, not stack 373 */ 374 static inline bool is_exec_mapping(vm_flags_t flags) 375 { 376 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 377 } 378 379 /* 380 * Stack area (including shadow stacks) 381 * 382 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 383 * do_mmap() forbids all other combinations. 384 */ 385 static inline bool is_stack_mapping(vm_flags_t flags) 386 { 387 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 388 } 389 390 /* 391 * Data area - private, writable, not stack 392 */ 393 static inline bool is_data_mapping(vm_flags_t flags) 394 { 395 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 396 } 397 398 399 static inline void vma_iter_config(struct vma_iterator *vmi, 400 unsigned long index, unsigned long last) 401 { 402 __mas_set_range(&vmi->mas, index, last - 1); 403 } 404 405 static inline void vma_iter_reset(struct vma_iterator *vmi) 406 { 407 mas_reset(&vmi->mas); 408 } 409 410 static inline 411 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 412 { 413 return mas_prev_range(&vmi->mas, min); 414 } 415 416 static inline 417 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 418 { 419 return mas_next_range(&vmi->mas, max); 420 } 421 422 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 423 unsigned long max, unsigned long size) 424 { 425 return mas_empty_area(&vmi->mas, min, max - 1, size); 426 } 427 428 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 429 unsigned long max, unsigned long size) 430 { 431 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 432 } 433 434 /* 435 * VMA Iterator functions shared between nommu and mmap 436 */ 437 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 438 struct vm_area_struct *vma) 439 { 440 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 441 } 442 443 static inline void vma_iter_clear(struct vma_iterator *vmi) 444 { 445 mas_store_prealloc(&vmi->mas, NULL); 446 } 447 448 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 449 { 450 return mas_walk(&vmi->mas); 451 } 452 453 /* Store a VMA with preallocated memory */ 454 static inline void vma_iter_store(struct vma_iterator *vmi, 455 struct vm_area_struct *vma) 456 { 457 458 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 459 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 460 vmi->mas.index > vma->vm_start)) { 461 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 462 vmi->mas.index, vma->vm_start, vma->vm_start, 463 vma->vm_end, vmi->mas.index, vmi->mas.last); 464 } 465 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 466 vmi->mas.last < vma->vm_start)) { 467 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 468 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 469 vmi->mas.index, vmi->mas.last); 470 } 471 #endif 472 473 if (vmi->mas.status != ma_start && 474 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 475 vma_iter_invalidate(vmi); 476 477 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 478 mas_store_prealloc(&vmi->mas, vma); 479 } 480 481 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 482 { 483 return vmi->mas.index; 484 } 485 486 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 487 { 488 return vmi->mas.last + 1; 489 } 490 491 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 492 unsigned long count) 493 { 494 return mas_expected_entries(&vmi->mas, count); 495 } 496 497 static inline 498 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 499 { 500 return mas_prev_range(&vmi->mas, 0); 501 } 502 503 /* 504 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or 505 * if no previous VMA, to index 0. 506 */ 507 static inline 508 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, 509 struct vm_area_struct **pprev) 510 { 511 struct vm_area_struct *next = vma_next(vmi); 512 struct vm_area_struct *prev = vma_prev(vmi); 513 514 /* 515 * Consider the case where no previous VMA exists. We advance to the 516 * next VMA, skipping any gap, then rewind to the start of the range. 517 * 518 * If we were to unconditionally advance to the next range we'd wind up 519 * at the next VMA again, so we check to ensure there is a previous VMA 520 * to skip over. 521 */ 522 if (prev) 523 vma_iter_next_range(vmi); 524 525 if (pprev) 526 *pprev = prev; 527 528 return next; 529 } 530 531 #ifdef CONFIG_64BIT 532 533 static inline bool vma_is_sealed(struct vm_area_struct *vma) 534 { 535 return (vma->vm_flags & VM_SEALED); 536 } 537 538 /* 539 * check if a vma is sealed for modification. 540 * return true, if modification is allowed. 541 */ 542 static inline bool can_modify_vma(struct vm_area_struct *vma) 543 { 544 if (unlikely(vma_is_sealed(vma))) 545 return false; 546 547 return true; 548 } 549 550 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior); 551 552 #else 553 554 static inline bool can_modify_vma(struct vm_area_struct *vma) 555 { 556 return true; 557 } 558 559 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior) 560 { 561 return true; 562 } 563 564 #endif 565 566 #endif /* __MM_VMA_H */ 567