xref: /linux/mm/vma.h (revision 9f5270d758d955506dcb114cb863a86b30a4c783)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * vma.h
4  *
5  * Core VMA manipulation API implemented in vma.c.
6  */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9 
10 /*
11  * VMA lock generalization
12  */
13 struct vma_prepare {
14 	struct vm_area_struct *vma;
15 	struct vm_area_struct *adj_next;
16 	struct file *file;
17 	struct address_space *mapping;
18 	struct anon_vma *anon_vma;
19 	struct vm_area_struct *insert;
20 	struct vm_area_struct *remove;
21 	struct vm_area_struct *remove2;
22 };
23 
24 struct unlink_vma_file_batch {
25 	int count;
26 	struct vm_area_struct *vmas[8];
27 };
28 
29 /*
30  * vma munmap operation
31  */
32 struct vma_munmap_struct {
33 	struct vma_iterator *vmi;
34 	struct vm_area_struct *vma;     /* The first vma to munmap */
35 	struct vm_area_struct *prev;    /* vma before the munmap area */
36 	struct vm_area_struct *next;    /* vma after the munmap area */
37 	struct list_head *uf;           /* Userfaultfd list_head */
38 	unsigned long start;            /* Aligned start addr (inclusive) */
39 	unsigned long end;              /* Aligned end addr (exclusive) */
40 	unsigned long unmap_start;      /* Unmap PTE start */
41 	unsigned long unmap_end;        /* Unmap PTE end */
42 	int vma_count;                  /* Number of vmas that will be removed */
43 	bool unlock;                    /* Unlock after the munmap */
44 	bool clear_ptes;                /* If there are outstanding PTE to be cleared */
45 	/* 2 byte hole */
46 	unsigned long nr_pages;         /* Number of pages being removed */
47 	unsigned long locked_vm;        /* Number of locked pages */
48 	unsigned long nr_accounted;     /* Number of VM_ACCOUNT pages */
49 	unsigned long exec_vm;
50 	unsigned long stack_vm;
51 	unsigned long data_vm;
52 };
53 
54 enum vma_merge_state {
55 	VMA_MERGE_START,
56 	VMA_MERGE_ERROR_NOMEM,
57 	VMA_MERGE_NOMERGE,
58 	VMA_MERGE_SUCCESS,
59 };
60 
61 enum vma_merge_flags {
62 	VMG_FLAG_DEFAULT = 0,
63 	/*
64 	 * If we can expand, simply do so. We know there is nothing to merge to
65 	 * the right. Does not reset state upon failure to merge. The VMA
66 	 * iterator is assumed to be positioned at the previous VMA, rather than
67 	 * at the gap.
68 	 */
69 	VMG_FLAG_JUST_EXPAND = 1 << 0,
70 };
71 
72 /* Represents a VMA merge operation. */
73 struct vma_merge_struct {
74 	struct mm_struct *mm;
75 	struct vma_iterator *vmi;
76 	pgoff_t pgoff;
77 	struct vm_area_struct *prev;
78 	struct vm_area_struct *next; /* Modified by vma_merge(). */
79 	struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */
80 	unsigned long start;
81 	unsigned long end;
82 	unsigned long flags;
83 	struct file *file;
84 	struct anon_vma *anon_vma;
85 	struct mempolicy *policy;
86 	struct vm_userfaultfd_ctx uffd_ctx;
87 	struct anon_vma_name *anon_name;
88 	enum vma_merge_flags merge_flags;
89 	enum vma_merge_state state;
90 };
91 
92 static inline bool vmg_nomem(struct vma_merge_struct *vmg)
93 {
94 	return vmg->state == VMA_MERGE_ERROR_NOMEM;
95 }
96 
97 /* Assumes addr >= vma->vm_start. */
98 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma,
99 				       unsigned long addr)
100 {
101 	return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start);
102 }
103 
104 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_)	\
105 	struct vma_merge_struct name = {				\
106 		.mm = mm_,						\
107 		.vmi = vmi_,						\
108 		.start = start_,					\
109 		.end = end_,						\
110 		.flags = flags_,					\
111 		.pgoff = pgoff_,					\
112 		.state = VMA_MERGE_START,				\
113 		.merge_flags = VMG_FLAG_DEFAULT,			\
114 	}
115 
116 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_)	\
117 	struct vma_merge_struct name = {			\
118 		.mm = vma_->vm_mm,				\
119 		.vmi = vmi_,					\
120 		.prev = prev_,					\
121 		.next = NULL,					\
122 		.vma = vma_,					\
123 		.start = start_,				\
124 		.end = end_,					\
125 		.flags = vma_->vm_flags,			\
126 		.pgoff = vma_pgoff_offset(vma_, start_),	\
127 		.file = vma_->vm_file,				\
128 		.anon_vma = vma_->anon_vma,			\
129 		.policy = vma_policy(vma_),			\
130 		.uffd_ctx = vma_->vm_userfaultfd_ctx,		\
131 		.anon_name = anon_vma_name(vma_),		\
132 		.state = VMA_MERGE_START,			\
133 		.merge_flags = VMG_FLAG_DEFAULT,		\
134 	}
135 
136 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
137 void validate_mm(struct mm_struct *mm);
138 #else
139 #define validate_mm(mm) do { } while (0)
140 #endif
141 
142 __must_check int vma_expand(struct vma_merge_struct *vmg);
143 __must_check int vma_shrink(struct vma_iterator *vmi,
144 		struct vm_area_struct *vma,
145 		unsigned long start, unsigned long end, pgoff_t pgoff);
146 
147 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
148 			struct vm_area_struct *vma, gfp_t gfp)
149 
150 {
151 	if (vmi->mas.status != ma_start &&
152 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
153 		vma_iter_invalidate(vmi);
154 
155 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
156 	mas_store_gfp(&vmi->mas, vma, gfp);
157 	if (unlikely(mas_is_err(&vmi->mas)))
158 		return -ENOMEM;
159 
160 	return 0;
161 }
162 
163 int
164 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
165 		    struct mm_struct *mm, unsigned long start,
166 		    unsigned long end, struct list_head *uf, bool unlock);
167 
168 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
169 		  unsigned long start, size_t len, struct list_head *uf,
170 		  bool unlock);
171 
172 void remove_vma(struct vm_area_struct *vma, bool unreachable);
173 
174 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
175 		struct vm_area_struct *prev, struct vm_area_struct *next);
176 
177 /* We are about to modify the VMA's flags. */
178 __must_check struct vm_area_struct
179 *vma_modify_flags(struct vma_iterator *vmi,
180 		struct vm_area_struct *prev, struct vm_area_struct *vma,
181 		unsigned long start, unsigned long end,
182 		unsigned long new_flags);
183 
184 /* We are about to modify the VMA's flags and/or anon_name. */
185 __must_check struct vm_area_struct
186 *vma_modify_flags_name(struct vma_iterator *vmi,
187 		       struct vm_area_struct *prev,
188 		       struct vm_area_struct *vma,
189 		       unsigned long start,
190 		       unsigned long end,
191 		       unsigned long new_flags,
192 		       struct anon_vma_name *new_name);
193 
194 /* We are about to modify the VMA's memory policy. */
195 __must_check struct vm_area_struct
196 *vma_modify_policy(struct vma_iterator *vmi,
197 		   struct vm_area_struct *prev,
198 		   struct vm_area_struct *vma,
199 		   unsigned long start, unsigned long end,
200 		   struct mempolicy *new_pol);
201 
202 /* We are about to modify the VMA's flags and/or uffd context. */
203 __must_check struct vm_area_struct
204 *vma_modify_flags_uffd(struct vma_iterator *vmi,
205 		       struct vm_area_struct *prev,
206 		       struct vm_area_struct *vma,
207 		       unsigned long start, unsigned long end,
208 		       unsigned long new_flags,
209 		       struct vm_userfaultfd_ctx new_ctx);
210 
211 __must_check struct vm_area_struct
212 *vma_merge_new_range(struct vma_merge_struct *vmg);
213 
214 __must_check struct vm_area_struct
215 *vma_merge_extend(struct vma_iterator *vmi,
216 		  struct vm_area_struct *vma,
217 		  unsigned long delta);
218 
219 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
220 
221 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
222 
223 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
224 			       struct vm_area_struct *vma);
225 
226 void unlink_file_vma(struct vm_area_struct *vma);
227 
228 void vma_link_file(struct vm_area_struct *vma);
229 
230 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
231 
232 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
233 	unsigned long addr, unsigned long len, pgoff_t pgoff,
234 	bool *need_rmap_locks);
235 
236 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
237 
238 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
239 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
240 
241 int mm_take_all_locks(struct mm_struct *mm);
242 void mm_drop_all_locks(struct mm_struct *mm);
243 
244 unsigned long mmap_region(struct file *file, unsigned long addr,
245 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
246 		struct list_head *uf);
247 
248 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
249 		 unsigned long addr, unsigned long request, unsigned long flags);
250 
251 unsigned long unmapped_area(struct vm_unmapped_area_info *info);
252 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
253 
254 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
255 {
256 	/*
257 	 * We want to check manually if we can change individual PTEs writable
258 	 * if we can't do that automatically for all PTEs in a mapping. For
259 	 * private mappings, that's always the case when we have write
260 	 * permissions as we properly have to handle COW.
261 	 */
262 	if (vma->vm_flags & VM_SHARED)
263 		return vma_wants_writenotify(vma, vma->vm_page_prot);
264 	return !!(vma->vm_flags & VM_WRITE);
265 }
266 
267 #ifdef CONFIG_MMU
268 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
269 {
270 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
271 }
272 #endif
273 
274 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
275 						    unsigned long min)
276 {
277 	return mas_prev(&vmi->mas, min);
278 }
279 
280 /*
281  * These three helpers classifies VMAs for virtual memory accounting.
282  */
283 
284 /*
285  * Executable code area - executable, not writable, not stack
286  */
287 static inline bool is_exec_mapping(vm_flags_t flags)
288 {
289 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
290 }
291 
292 /*
293  * Stack area (including shadow stacks)
294  *
295  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
296  * do_mmap() forbids all other combinations.
297  */
298 static inline bool is_stack_mapping(vm_flags_t flags)
299 {
300 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
301 }
302 
303 /*
304  * Data area - private, writable, not stack
305  */
306 static inline bool is_data_mapping(vm_flags_t flags)
307 {
308 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
309 }
310 
311 
312 static inline void vma_iter_config(struct vma_iterator *vmi,
313 		unsigned long index, unsigned long last)
314 {
315 	__mas_set_range(&vmi->mas, index, last - 1);
316 }
317 
318 static inline void vma_iter_reset(struct vma_iterator *vmi)
319 {
320 	mas_reset(&vmi->mas);
321 }
322 
323 static inline
324 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
325 {
326 	return mas_prev_range(&vmi->mas, min);
327 }
328 
329 static inline
330 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
331 {
332 	return mas_next_range(&vmi->mas, max);
333 }
334 
335 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
336 				       unsigned long max, unsigned long size)
337 {
338 	return mas_empty_area(&vmi->mas, min, max - 1, size);
339 }
340 
341 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
342 					unsigned long max, unsigned long size)
343 {
344 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
345 }
346 
347 /*
348  * VMA Iterator functions shared between nommu and mmap
349  */
350 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
351 		struct vm_area_struct *vma)
352 {
353 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
354 }
355 
356 static inline void vma_iter_clear(struct vma_iterator *vmi)
357 {
358 	mas_store_prealloc(&vmi->mas, NULL);
359 }
360 
361 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
362 {
363 	return mas_walk(&vmi->mas);
364 }
365 
366 /* Store a VMA with preallocated memory */
367 static inline void vma_iter_store(struct vma_iterator *vmi,
368 				  struct vm_area_struct *vma)
369 {
370 
371 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
372 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
373 			vmi->mas.index > vma->vm_start)) {
374 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
375 			vmi->mas.index, vma->vm_start, vma->vm_start,
376 			vma->vm_end, vmi->mas.index, vmi->mas.last);
377 	}
378 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
379 			vmi->mas.last <  vma->vm_start)) {
380 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
381 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
382 		       vmi->mas.index, vmi->mas.last);
383 	}
384 #endif
385 
386 	if (vmi->mas.status != ma_start &&
387 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
388 		vma_iter_invalidate(vmi);
389 
390 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
391 	mas_store_prealloc(&vmi->mas, vma);
392 }
393 
394 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
395 {
396 	return vmi->mas.index;
397 }
398 
399 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
400 {
401 	return vmi->mas.last + 1;
402 }
403 
404 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
405 				      unsigned long count)
406 {
407 	return mas_expected_entries(&vmi->mas, count);
408 }
409 
410 static inline
411 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
412 {
413 	return mas_prev_range(&vmi->mas, 0);
414 }
415 
416 /*
417  * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or
418  * if no previous VMA, to index 0.
419  */
420 static inline
421 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi,
422 		struct vm_area_struct **pprev)
423 {
424 	struct vm_area_struct *next = vma_next(vmi);
425 	struct vm_area_struct *prev = vma_prev(vmi);
426 
427 	/*
428 	 * Consider the case where no previous VMA exists. We advance to the
429 	 * next VMA, skipping any gap, then rewind to the start of the range.
430 	 *
431 	 * If we were to unconditionally advance to the next range we'd wind up
432 	 * at the next VMA again, so we check to ensure there is a previous VMA
433 	 * to skip over.
434 	 */
435 	if (prev)
436 		vma_iter_next_range(vmi);
437 
438 	if (pprev)
439 		*pprev = prev;
440 
441 	return next;
442 }
443 
444 #ifdef CONFIG_64BIT
445 
446 static inline bool vma_is_sealed(struct vm_area_struct *vma)
447 {
448 	return (vma->vm_flags & VM_SEALED);
449 }
450 
451 /*
452  * check if a vma is sealed for modification.
453  * return true, if modification is allowed.
454  */
455 static inline bool can_modify_vma(struct vm_area_struct *vma)
456 {
457 	if (unlikely(vma_is_sealed(vma)))
458 		return false;
459 
460 	return true;
461 }
462 
463 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
464 
465 #else
466 
467 static inline bool can_modify_vma(struct vm_area_struct *vma)
468 {
469 	return true;
470 }
471 
472 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
473 {
474 	return true;
475 }
476 
477 #endif
478 
479 #if defined(CONFIG_STACK_GROWSUP)
480 int expand_upwards(struct vm_area_struct *vma, unsigned long address);
481 #endif
482 
483 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
484 
485 int __vm_munmap(unsigned long start, size_t len, bool unlock);
486 
487 #endif	/* __MM_VMA_H */
488