xref: /linux/mm/vma.h (revision 63fc66f5b6b18f39269a66cf34d8cb7a24fbfe88)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * vma.h
4  *
5  * Core VMA manipulation API implemented in vma.c.
6  */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9 
10 /*
11  * VMA lock generalization
12  */
13 struct vma_prepare {
14 	struct vm_area_struct *vma;
15 	struct vm_area_struct *adj_next;
16 	struct file *file;
17 	struct address_space *mapping;
18 	struct anon_vma *anon_vma;
19 	struct vm_area_struct *insert;
20 	struct vm_area_struct *remove;
21 	struct vm_area_struct *remove2;
22 };
23 
24 struct unlink_vma_file_batch {
25 	int count;
26 	struct vm_area_struct *vmas[8];
27 };
28 
29 /*
30  * vma munmap operation
31  */
32 struct vma_munmap_struct {
33 	struct vma_iterator *vmi;
34 	struct vm_area_struct *vma;     /* The first vma to munmap */
35 	struct vm_area_struct *prev;    /* vma before the munmap area */
36 	struct vm_area_struct *next;    /* vma after the munmap area */
37 	struct list_head *uf;           /* Userfaultfd list_head */
38 	unsigned long start;            /* Aligned start addr (inclusive) */
39 	unsigned long end;              /* Aligned end addr (exclusive) */
40 	unsigned long unmap_start;      /* Unmap PTE start */
41 	unsigned long unmap_end;        /* Unmap PTE end */
42 	int vma_count;                  /* Number of vmas that will be removed */
43 	unsigned long nr_pages;         /* Number of pages being removed */
44 	unsigned long locked_vm;        /* Number of locked pages */
45 	unsigned long nr_accounted;     /* Number of VM_ACCOUNT pages */
46 	unsigned long exec_vm;
47 	unsigned long stack_vm;
48 	unsigned long data_vm;
49 	bool unlock;                    /* Unlock after the munmap */
50 	bool clear_ptes;                /* If there are outstanding PTE to be cleared */
51 	bool closed_vm_ops;		/* call_mmap() was encountered, so vmas may be closed */
52 };
53 
54 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
55 void validate_mm(struct mm_struct *mm);
56 #else
57 #define validate_mm(mm) do { } while (0)
58 #endif
59 
60 /* Required for expand_downwards(). */
61 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma);
62 
63 /* Required for expand_downwards(). */
64 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma);
65 
66 /* Required for do_brk_flags(). */
67 void vma_prepare(struct vma_prepare *vp);
68 
69 /* Required for do_brk_flags(). */
70 void init_vma_prep(struct vma_prepare *vp,
71 		   struct vm_area_struct *vma);
72 
73 /* Required for do_brk_flags(). */
74 void vma_complete(struct vma_prepare *vp,
75 		  struct vma_iterator *vmi, struct mm_struct *mm);
76 
77 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
78 	       unsigned long start, unsigned long end, pgoff_t pgoff,
79 	       struct vm_area_struct *next);
80 
81 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
82 	       unsigned long start, unsigned long end, pgoff_t pgoff);
83 
84 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
85 			struct vm_area_struct *vma, gfp_t gfp)
86 
87 {
88 	if (vmi->mas.status != ma_start &&
89 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
90 		vma_iter_invalidate(vmi);
91 
92 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
93 	mas_store_gfp(&vmi->mas, vma, gfp);
94 	if (unlikely(mas_is_err(&vmi->mas)))
95 		return -ENOMEM;
96 
97 	return 0;
98 }
99 
100 #ifdef CONFIG_MMU
101 /*
102  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
103  * @vms: The vma munmap struct
104  * @vmi: The vma iterator
105  * @vma: The first vm_area_struct to munmap
106  * @start: The aligned start address to munmap
107  * @end: The aligned end address to munmap
108  * @uf: The userfaultfd list_head
109  * @unlock: Unlock after the operation.  Only unlocked on success
110  */
111 static inline void init_vma_munmap(struct vma_munmap_struct *vms,
112 		struct vma_iterator *vmi, struct vm_area_struct *vma,
113 		unsigned long start, unsigned long end, struct list_head *uf,
114 		bool unlock)
115 {
116 	vms->vmi = vmi;
117 	vms->vma = vma;
118 	if (vma) {
119 		vms->start = start;
120 		vms->end = end;
121 	} else {
122 		vms->start = vms->end = 0;
123 	}
124 	vms->unlock = unlock;
125 	vms->uf = uf;
126 	vms->vma_count = 0;
127 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
128 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
129 	vms->unmap_start = FIRST_USER_ADDRESS;
130 	vms->unmap_end = USER_PGTABLES_CEILING;
131 	vms->clear_ptes = false;
132 	vms->closed_vm_ops = false;
133 }
134 #endif
135 
136 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
137 		struct ma_state *mas_detach);
138 
139 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
140 		struct ma_state *mas_detach);
141 
142 void vms_clean_up_area(struct vma_munmap_struct *vms,
143 		struct ma_state *mas_detach);
144 
145 /*
146  * reattach_vmas() - Undo any munmap work and free resources
147  * @mas_detach: The maple state with the detached maple tree
148  *
149  * Reattach any detached vmas and free up the maple tree used to track the vmas.
150  */
151 static inline void reattach_vmas(struct ma_state *mas_detach)
152 {
153 	struct vm_area_struct *vma;
154 
155 	mas_set(mas_detach, 0);
156 	mas_for_each(mas_detach, vma, ULONG_MAX)
157 		vma_mark_detached(vma, false);
158 
159 	__mt_destroy(mas_detach->tree);
160 }
161 
162 /*
163  * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
164  * operation.
165  * @vms: The vma unmap structure
166  * @mas_detach: The maple state with the detached maple tree
167  *
168  * Reattach any detached vmas, free up the maple tree used to track the vmas.
169  * If that's not possible because the ptes are cleared (and vm_ops->closed() may
170  * have been called), then a NULL is written over the vmas and the vmas are
171  * removed (munmap() completed).
172  */
173 static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
174 		struct ma_state *mas_detach)
175 {
176 	struct ma_state *mas = &vms->vmi->mas;
177 	if (!vms->nr_pages)
178 		return;
179 
180 	if (vms->clear_ptes)
181 		return reattach_vmas(mas_detach);
182 
183 	/*
184 	 * Aborting cannot just call the vm_ops open() because they are often
185 	 * not symmetrical and state data has been lost.  Resort to the old
186 	 * failure method of leaving a gap where the MAP_FIXED mapping failed.
187 	 */
188 	mas_set_range(mas, vms->start, vms->end - 1);
189 	if (unlikely(mas_store_gfp(mas, NULL, GFP_KERNEL))) {
190 		pr_warn_once("%s: (%d) Unable to abort munmap() operation\n",
191 			     current->comm, current->pid);
192 		/* Leaving vmas detached and in-tree may hamper recovery */
193 		reattach_vmas(mas_detach);
194 	} else {
195 		/* Clean up the insertion of the unfortunate gap */
196 		vms_complete_munmap_vmas(vms, mas_detach);
197 	}
198 }
199 
200 int
201 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
202 		    struct mm_struct *mm, unsigned long start,
203 		    unsigned long end, struct list_head *uf, bool unlock);
204 
205 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
206 		  unsigned long start, size_t len, struct list_head *uf,
207 		  bool unlock);
208 
209 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed);
210 
211 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
212 		struct vm_area_struct *prev, struct vm_area_struct *next);
213 
214 /* Required by mmap_region(). */
215 bool
216 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
217 		struct anon_vma *anon_vma, struct file *file,
218 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
219 		struct anon_vma_name *anon_name);
220 
221 /* Required by mmap_region() and do_brk_flags(). */
222 bool
223 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
224 		struct anon_vma *anon_vma, struct file *file,
225 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
226 		struct anon_vma_name *anon_name);
227 
228 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
229 				  struct vm_area_struct *prev,
230 				  struct vm_area_struct *vma,
231 				  unsigned long start, unsigned long end,
232 				  unsigned long vm_flags,
233 				  struct mempolicy *policy,
234 				  struct vm_userfaultfd_ctx uffd_ctx,
235 				  struct anon_vma_name *anon_name);
236 
237 /* We are about to modify the VMA's flags. */
238 static inline struct vm_area_struct
239 *vma_modify_flags(struct vma_iterator *vmi,
240 		  struct vm_area_struct *prev,
241 		  struct vm_area_struct *vma,
242 		  unsigned long start, unsigned long end,
243 		  unsigned long new_flags)
244 {
245 	return vma_modify(vmi, prev, vma, start, end, new_flags,
246 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
247 			  anon_vma_name(vma));
248 }
249 
250 /* We are about to modify the VMA's flags and/or anon_name. */
251 static inline struct vm_area_struct
252 *vma_modify_flags_name(struct vma_iterator *vmi,
253 		       struct vm_area_struct *prev,
254 		       struct vm_area_struct *vma,
255 		       unsigned long start,
256 		       unsigned long end,
257 		       unsigned long new_flags,
258 		       struct anon_vma_name *new_name)
259 {
260 	return vma_modify(vmi, prev, vma, start, end, new_flags,
261 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
262 }
263 
264 /* We are about to modify the VMA's memory policy. */
265 static inline struct vm_area_struct
266 *vma_modify_policy(struct vma_iterator *vmi,
267 		   struct vm_area_struct *prev,
268 		   struct vm_area_struct *vma,
269 		   unsigned long start, unsigned long end,
270 		   struct mempolicy *new_pol)
271 {
272 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
273 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
274 }
275 
276 /* We are about to modify the VMA's flags and/or uffd context. */
277 static inline struct vm_area_struct
278 *vma_modify_flags_uffd(struct vma_iterator *vmi,
279 		       struct vm_area_struct *prev,
280 		       struct vm_area_struct *vma,
281 		       unsigned long start, unsigned long end,
282 		       unsigned long new_flags,
283 		       struct vm_userfaultfd_ctx new_ctx)
284 {
285 	return vma_modify(vmi, prev, vma, start, end, new_flags,
286 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
287 }
288 
289 struct vm_area_struct
290 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
291 		   struct vm_area_struct *vma, unsigned long start,
292 		   unsigned long end, pgoff_t pgoff);
293 
294 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
295 					struct vm_area_struct *vma,
296 					unsigned long delta);
297 
298 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
299 
300 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
301 
302 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
303 			       struct vm_area_struct *vma);
304 
305 void unlink_file_vma(struct vm_area_struct *vma);
306 
307 void vma_link_file(struct vm_area_struct *vma);
308 
309 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
310 
311 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
312 	unsigned long addr, unsigned long len, pgoff_t pgoff,
313 	bool *need_rmap_locks);
314 
315 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
316 
317 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
318 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
319 
320 int mm_take_all_locks(struct mm_struct *mm);
321 void mm_drop_all_locks(struct mm_struct *mm);
322 unsigned long count_vma_pages_range(struct mm_struct *mm,
323 				    unsigned long addr, unsigned long end,
324 				    unsigned long *nr_accounted);
325 
326 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
327 {
328 	/*
329 	 * We want to check manually if we can change individual PTEs writable
330 	 * if we can't do that automatically for all PTEs in a mapping. For
331 	 * private mappings, that's always the case when we have write
332 	 * permissions as we properly have to handle COW.
333 	 */
334 	if (vma->vm_flags & VM_SHARED)
335 		return vma_wants_writenotify(vma, vma->vm_page_prot);
336 	return !!(vma->vm_flags & VM_WRITE);
337 }
338 
339 #ifdef CONFIG_MMU
340 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
341 {
342 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
343 }
344 #endif
345 
346 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
347 						    unsigned long min)
348 {
349 	return mas_prev(&vmi->mas, min);
350 }
351 
352 /*
353  * These three helpers classifies VMAs for virtual memory accounting.
354  */
355 
356 /*
357  * Executable code area - executable, not writable, not stack
358  */
359 static inline bool is_exec_mapping(vm_flags_t flags)
360 {
361 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
362 }
363 
364 /*
365  * Stack area (including shadow stacks)
366  *
367  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
368  * do_mmap() forbids all other combinations.
369  */
370 static inline bool is_stack_mapping(vm_flags_t flags)
371 {
372 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
373 }
374 
375 /*
376  * Data area - private, writable, not stack
377  */
378 static inline bool is_data_mapping(vm_flags_t flags)
379 {
380 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
381 }
382 
383 
384 static inline void vma_iter_config(struct vma_iterator *vmi,
385 		unsigned long index, unsigned long last)
386 {
387 	__mas_set_range(&vmi->mas, index, last - 1);
388 }
389 
390 static inline void vma_iter_reset(struct vma_iterator *vmi)
391 {
392 	mas_reset(&vmi->mas);
393 }
394 
395 static inline
396 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
397 {
398 	return mas_prev_range(&vmi->mas, min);
399 }
400 
401 static inline
402 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
403 {
404 	return mas_next_range(&vmi->mas, max);
405 }
406 
407 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
408 				       unsigned long max, unsigned long size)
409 {
410 	return mas_empty_area(&vmi->mas, min, max - 1, size);
411 }
412 
413 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
414 					unsigned long max, unsigned long size)
415 {
416 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
417 }
418 
419 /*
420  * VMA Iterator functions shared between nommu and mmap
421  */
422 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
423 		struct vm_area_struct *vma)
424 {
425 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
426 }
427 
428 static inline void vma_iter_clear(struct vma_iterator *vmi)
429 {
430 	mas_store_prealloc(&vmi->mas, NULL);
431 }
432 
433 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
434 {
435 	return mas_walk(&vmi->mas);
436 }
437 
438 /* Store a VMA with preallocated memory */
439 static inline void vma_iter_store(struct vma_iterator *vmi,
440 				  struct vm_area_struct *vma)
441 {
442 
443 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
444 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
445 			vmi->mas.index > vma->vm_start)) {
446 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
447 			vmi->mas.index, vma->vm_start, vma->vm_start,
448 			vma->vm_end, vmi->mas.index, vmi->mas.last);
449 	}
450 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
451 			vmi->mas.last <  vma->vm_start)) {
452 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
453 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
454 		       vmi->mas.index, vmi->mas.last);
455 	}
456 #endif
457 
458 	if (vmi->mas.status != ma_start &&
459 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
460 		vma_iter_invalidate(vmi);
461 
462 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
463 	mas_store_prealloc(&vmi->mas, vma);
464 }
465 
466 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
467 {
468 	return vmi->mas.index;
469 }
470 
471 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
472 {
473 	return vmi->mas.last + 1;
474 }
475 
476 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
477 				      unsigned long count)
478 {
479 	return mas_expected_entries(&vmi->mas, count);
480 }
481 
482 static inline
483 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
484 {
485 	return mas_prev_range(&vmi->mas, 0);
486 }
487 
488 #ifdef CONFIG_64BIT
489 
490 static inline bool vma_is_sealed(struct vm_area_struct *vma)
491 {
492 	return (vma->vm_flags & VM_SEALED);
493 }
494 
495 /*
496  * check if a vma is sealed for modification.
497  * return true, if modification is allowed.
498  */
499 static inline bool can_modify_vma(struct vm_area_struct *vma)
500 {
501 	if (unlikely(vma_is_sealed(vma)))
502 		return false;
503 
504 	return true;
505 }
506 
507 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
508 
509 #else
510 
511 static inline bool can_modify_vma(struct vm_area_struct *vma)
512 {
513 	return true;
514 }
515 
516 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
517 {
518 	return true;
519 }
520 
521 #endif
522 
523 #endif	/* __MM_VMA_H */
524