1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * vma.h 4 * 5 * Core VMA manipulation API implemented in vma.c. 6 */ 7 #ifndef __MM_VMA_H 8 #define __MM_VMA_H 9 10 /* 11 * VMA lock generalization 12 */ 13 struct vma_prepare { 14 struct vm_area_struct *vma; 15 struct vm_area_struct *adj_next; 16 struct file *file; 17 struct address_space *mapping; 18 struct anon_vma *anon_vma; 19 struct vm_area_struct *insert; 20 struct vm_area_struct *remove; 21 struct vm_area_struct *remove2; 22 }; 23 24 struct unlink_vma_file_batch { 25 int count; 26 struct vm_area_struct *vmas[8]; 27 }; 28 29 /* 30 * vma munmap operation 31 */ 32 struct vma_munmap_struct { 33 struct vma_iterator *vmi; 34 struct vm_area_struct *vma; /* The first vma to munmap */ 35 struct vm_area_struct *prev; /* vma before the munmap area */ 36 struct vm_area_struct *next; /* vma after the munmap area */ 37 struct list_head *uf; /* Userfaultfd list_head */ 38 unsigned long start; /* Aligned start addr (inclusive) */ 39 unsigned long end; /* Aligned end addr (exclusive) */ 40 unsigned long unmap_start; /* Unmap PTE start */ 41 unsigned long unmap_end; /* Unmap PTE end */ 42 int vma_count; /* Number of vmas that will be removed */ 43 bool unlock; /* Unlock after the munmap */ 44 bool clear_ptes; /* If there are outstanding PTE to be cleared */ 45 bool closed_vm_ops; /* call_mmap() was encountered, so vmas may be closed */ 46 /* 1 byte hole */ 47 unsigned long nr_pages; /* Number of pages being removed */ 48 unsigned long locked_vm; /* Number of locked pages */ 49 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ 50 unsigned long exec_vm; 51 unsigned long stack_vm; 52 unsigned long data_vm; 53 }; 54 55 /* Represents a VMA merge operation. */ 56 struct vma_merge_struct { 57 struct mm_struct *mm; 58 struct vma_iterator *vmi; 59 pgoff_t pgoff; 60 struct vm_area_struct *prev; 61 struct vm_area_struct *next; /* Modified by vma_merge(). */ 62 struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */ 63 unsigned long start; 64 unsigned long end; 65 unsigned long flags; 66 struct file *file; 67 struct anon_vma *anon_vma; 68 struct mempolicy *policy; 69 struct vm_userfaultfd_ctx uffd_ctx; 70 struct anon_vma_name *anon_name; 71 }; 72 73 /* Assumes addr >= vma->vm_start. */ 74 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, 75 unsigned long addr) 76 { 77 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); 78 } 79 80 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \ 81 struct vma_merge_struct name = { \ 82 .mm = mm_, \ 83 .vmi = vmi_, \ 84 .start = start_, \ 85 .end = end_, \ 86 .flags = flags_, \ 87 .pgoff = pgoff_, \ 88 } 89 90 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ 91 struct vma_merge_struct name = { \ 92 .mm = vma_->vm_mm, \ 93 .vmi = vmi_, \ 94 .prev = prev_, \ 95 .next = NULL, \ 96 .vma = vma_, \ 97 .start = start_, \ 98 .end = end_, \ 99 .flags = vma_->vm_flags, \ 100 .pgoff = vma_pgoff_offset(vma_, start_), \ 101 .file = vma_->vm_file, \ 102 .anon_vma = vma_->anon_vma, \ 103 .policy = vma_policy(vma_), \ 104 .uffd_ctx = vma_->vm_userfaultfd_ctx, \ 105 .anon_name = anon_vma_name(vma_), \ 106 } 107 108 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 109 void validate_mm(struct mm_struct *mm); 110 #else 111 #define validate_mm(mm) do { } while (0) 112 #endif 113 114 /* Required for expand_downwards(). */ 115 void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma); 116 117 /* Required for expand_downwards(). */ 118 void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma); 119 120 /* Required for do_brk_flags(). */ 121 void vma_prepare(struct vma_prepare *vp); 122 123 /* Required for do_brk_flags(). */ 124 void init_vma_prep(struct vma_prepare *vp, 125 struct vm_area_struct *vma); 126 127 /* Required for do_brk_flags(). */ 128 void vma_complete(struct vma_prepare *vp, 129 struct vma_iterator *vmi, struct mm_struct *mm); 130 131 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 132 unsigned long start, unsigned long end, pgoff_t pgoff, 133 struct vm_area_struct *next); 134 135 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 136 unsigned long start, unsigned long end, pgoff_t pgoff); 137 138 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 139 struct vm_area_struct *vma, gfp_t gfp) 140 141 { 142 if (vmi->mas.status != ma_start && 143 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 144 vma_iter_invalidate(vmi); 145 146 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 147 mas_store_gfp(&vmi->mas, vma, gfp); 148 if (unlikely(mas_is_err(&vmi->mas))) 149 return -ENOMEM; 150 151 return 0; 152 } 153 154 #ifdef CONFIG_MMU 155 /* 156 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 157 * @vms: The vma munmap struct 158 * @vmi: The vma iterator 159 * @vma: The first vm_area_struct to munmap 160 * @start: The aligned start address to munmap 161 * @end: The aligned end address to munmap 162 * @uf: The userfaultfd list_head 163 * @unlock: Unlock after the operation. Only unlocked on success 164 */ 165 static inline void init_vma_munmap(struct vma_munmap_struct *vms, 166 struct vma_iterator *vmi, struct vm_area_struct *vma, 167 unsigned long start, unsigned long end, struct list_head *uf, 168 bool unlock) 169 { 170 vms->vmi = vmi; 171 vms->vma = vma; 172 if (vma) { 173 vms->start = start; 174 vms->end = end; 175 } else { 176 vms->start = vms->end = 0; 177 } 178 vms->unlock = unlock; 179 vms->uf = uf; 180 vms->vma_count = 0; 181 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 182 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 183 vms->unmap_start = FIRST_USER_ADDRESS; 184 vms->unmap_end = USER_PGTABLES_CEILING; 185 vms->clear_ptes = false; 186 vms->closed_vm_ops = false; 187 } 188 #endif 189 190 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 191 struct ma_state *mas_detach); 192 193 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 194 struct ma_state *mas_detach); 195 196 void vms_clean_up_area(struct vma_munmap_struct *vms, 197 struct ma_state *mas_detach); 198 199 /* 200 * reattach_vmas() - Undo any munmap work and free resources 201 * @mas_detach: The maple state with the detached maple tree 202 * 203 * Reattach any detached vmas and free up the maple tree used to track the vmas. 204 */ 205 static inline void reattach_vmas(struct ma_state *mas_detach) 206 { 207 struct vm_area_struct *vma; 208 209 mas_set(mas_detach, 0); 210 mas_for_each(mas_detach, vma, ULONG_MAX) 211 vma_mark_detached(vma, false); 212 213 __mt_destroy(mas_detach->tree); 214 } 215 216 /* 217 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 218 * operation. 219 * @vms: The vma unmap structure 220 * @mas_detach: The maple state with the detached maple tree 221 * 222 * Reattach any detached vmas, free up the maple tree used to track the vmas. 223 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 224 * have been called), then a NULL is written over the vmas and the vmas are 225 * removed (munmap() completed). 226 */ 227 static inline void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 228 struct ma_state *mas_detach) 229 { 230 struct ma_state *mas = &vms->vmi->mas; 231 if (!vms->nr_pages) 232 return; 233 234 if (vms->clear_ptes) 235 return reattach_vmas(mas_detach); 236 237 /* 238 * Aborting cannot just call the vm_ops open() because they are often 239 * not symmetrical and state data has been lost. Resort to the old 240 * failure method of leaving a gap where the MAP_FIXED mapping failed. 241 */ 242 mas_set_range(mas, vms->start, vms->end - 1); 243 if (unlikely(mas_store_gfp(mas, NULL, GFP_KERNEL))) { 244 pr_warn_once("%s: (%d) Unable to abort munmap() operation\n", 245 current->comm, current->pid); 246 /* Leaving vmas detached and in-tree may hamper recovery */ 247 reattach_vmas(mas_detach); 248 } else { 249 /* Clean up the insertion of the unfortunate gap */ 250 vms_complete_munmap_vmas(vms, mas_detach); 251 } 252 } 253 254 int 255 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 256 struct mm_struct *mm, unsigned long start, 257 unsigned long end, struct list_head *uf, bool unlock); 258 259 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 260 unsigned long start, size_t len, struct list_head *uf, 261 bool unlock); 262 263 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed); 264 265 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 266 struct vm_area_struct *prev, struct vm_area_struct *next); 267 268 /* 269 * Can we merge the VMA described by vmg into the following VMA vmg->next? 270 * 271 * Required by mmap_region(). 272 */ 273 bool can_vma_merge_before(struct vma_merge_struct *vmg); 274 275 /* 276 * Can we merge the VMA described by vmg into the preceding VMA vmg->prev? 277 * 278 * Required by mmap_region() and do_brk_flags(). 279 */ 280 bool can_vma_merge_after(struct vma_merge_struct *vmg); 281 282 /* We are about to modify the VMA's flags. */ 283 struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi, 284 struct vm_area_struct *prev, struct vm_area_struct *vma, 285 unsigned long start, unsigned long end, 286 unsigned long new_flags); 287 288 /* We are about to modify the VMA's flags and/or anon_name. */ 289 struct vm_area_struct 290 *vma_modify_flags_name(struct vma_iterator *vmi, 291 struct vm_area_struct *prev, 292 struct vm_area_struct *vma, 293 unsigned long start, 294 unsigned long end, 295 unsigned long new_flags, 296 struct anon_vma_name *new_name); 297 298 /* We are about to modify the VMA's memory policy. */ 299 struct vm_area_struct 300 *vma_modify_policy(struct vma_iterator *vmi, 301 struct vm_area_struct *prev, 302 struct vm_area_struct *vma, 303 unsigned long start, unsigned long end, 304 struct mempolicy *new_pol); 305 306 /* We are about to modify the VMA's flags and/or uffd context. */ 307 struct vm_area_struct 308 *vma_modify_flags_uffd(struct vma_iterator *vmi, 309 struct vm_area_struct *prev, 310 struct vm_area_struct *vma, 311 unsigned long start, unsigned long end, 312 unsigned long new_flags, 313 struct vm_userfaultfd_ctx new_ctx); 314 315 struct vm_area_struct 316 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 317 struct vm_area_struct *vma, unsigned long start, 318 unsigned long end, pgoff_t pgoff); 319 320 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 321 struct vm_area_struct *vma, 322 unsigned long delta); 323 324 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); 325 326 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); 327 328 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 329 struct vm_area_struct *vma); 330 331 void unlink_file_vma(struct vm_area_struct *vma); 332 333 void vma_link_file(struct vm_area_struct *vma); 334 335 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); 336 337 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 338 unsigned long addr, unsigned long len, pgoff_t pgoff, 339 bool *need_rmap_locks); 340 341 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); 342 343 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 344 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 345 346 int mm_take_all_locks(struct mm_struct *mm); 347 void mm_drop_all_locks(struct mm_struct *mm); 348 349 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 350 { 351 /* 352 * We want to check manually if we can change individual PTEs writable 353 * if we can't do that automatically for all PTEs in a mapping. For 354 * private mappings, that's always the case when we have write 355 * permissions as we properly have to handle COW. 356 */ 357 if (vma->vm_flags & VM_SHARED) 358 return vma_wants_writenotify(vma, vma->vm_page_prot); 359 return !!(vma->vm_flags & VM_WRITE); 360 } 361 362 #ifdef CONFIG_MMU 363 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) 364 { 365 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 366 } 367 #endif 368 369 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 370 unsigned long min) 371 { 372 return mas_prev(&vmi->mas, min); 373 } 374 375 /* 376 * These three helpers classifies VMAs for virtual memory accounting. 377 */ 378 379 /* 380 * Executable code area - executable, not writable, not stack 381 */ 382 static inline bool is_exec_mapping(vm_flags_t flags) 383 { 384 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 385 } 386 387 /* 388 * Stack area (including shadow stacks) 389 * 390 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 391 * do_mmap() forbids all other combinations. 392 */ 393 static inline bool is_stack_mapping(vm_flags_t flags) 394 { 395 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 396 } 397 398 /* 399 * Data area - private, writable, not stack 400 */ 401 static inline bool is_data_mapping(vm_flags_t flags) 402 { 403 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 404 } 405 406 407 static inline void vma_iter_config(struct vma_iterator *vmi, 408 unsigned long index, unsigned long last) 409 { 410 __mas_set_range(&vmi->mas, index, last - 1); 411 } 412 413 static inline void vma_iter_reset(struct vma_iterator *vmi) 414 { 415 mas_reset(&vmi->mas); 416 } 417 418 static inline 419 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 420 { 421 return mas_prev_range(&vmi->mas, min); 422 } 423 424 static inline 425 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 426 { 427 return mas_next_range(&vmi->mas, max); 428 } 429 430 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 431 unsigned long max, unsigned long size) 432 { 433 return mas_empty_area(&vmi->mas, min, max - 1, size); 434 } 435 436 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 437 unsigned long max, unsigned long size) 438 { 439 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 440 } 441 442 /* 443 * VMA Iterator functions shared between nommu and mmap 444 */ 445 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 446 struct vm_area_struct *vma) 447 { 448 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 449 } 450 451 static inline void vma_iter_clear(struct vma_iterator *vmi) 452 { 453 mas_store_prealloc(&vmi->mas, NULL); 454 } 455 456 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 457 { 458 return mas_walk(&vmi->mas); 459 } 460 461 /* Store a VMA with preallocated memory */ 462 static inline void vma_iter_store(struct vma_iterator *vmi, 463 struct vm_area_struct *vma) 464 { 465 466 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 467 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 468 vmi->mas.index > vma->vm_start)) { 469 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 470 vmi->mas.index, vma->vm_start, vma->vm_start, 471 vma->vm_end, vmi->mas.index, vmi->mas.last); 472 } 473 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 474 vmi->mas.last < vma->vm_start)) { 475 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 476 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 477 vmi->mas.index, vmi->mas.last); 478 } 479 #endif 480 481 if (vmi->mas.status != ma_start && 482 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 483 vma_iter_invalidate(vmi); 484 485 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 486 mas_store_prealloc(&vmi->mas, vma); 487 } 488 489 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 490 { 491 return vmi->mas.index; 492 } 493 494 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 495 { 496 return vmi->mas.last + 1; 497 } 498 499 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 500 unsigned long count) 501 { 502 return mas_expected_entries(&vmi->mas, count); 503 } 504 505 static inline 506 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 507 { 508 return mas_prev_range(&vmi->mas, 0); 509 } 510 511 #ifdef CONFIG_64BIT 512 513 static inline bool vma_is_sealed(struct vm_area_struct *vma) 514 { 515 return (vma->vm_flags & VM_SEALED); 516 } 517 518 /* 519 * check if a vma is sealed for modification. 520 * return true, if modification is allowed. 521 */ 522 static inline bool can_modify_vma(struct vm_area_struct *vma) 523 { 524 if (unlikely(vma_is_sealed(vma))) 525 return false; 526 527 return true; 528 } 529 530 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior); 531 532 #else 533 534 static inline bool can_modify_vma(struct vm_area_struct *vma) 535 { 536 return true; 537 } 538 539 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior) 540 { 541 return true; 542 } 543 544 #endif 545 546 #endif /* __MM_VMA_H */ 547