1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * vma.h 4 * 5 * Core VMA manipulation API implemented in vma.c. 6 */ 7 #ifndef __MM_VMA_H 8 #define __MM_VMA_H 9 10 /* 11 * VMA lock generalization 12 */ 13 struct vma_prepare { 14 struct vm_area_struct *vma; 15 struct vm_area_struct *adj_next; 16 struct file *file; 17 struct address_space *mapping; 18 struct anon_vma *anon_vma; 19 struct vm_area_struct *insert; 20 struct vm_area_struct *remove; 21 struct vm_area_struct *remove2; 22 23 bool skip_vma_uprobe :1; 24 }; 25 26 struct unlink_vma_file_batch { 27 int count; 28 struct vm_area_struct *vmas[8]; 29 }; 30 31 /* 32 * vma munmap operation 33 */ 34 struct vma_munmap_struct { 35 struct vma_iterator *vmi; 36 struct vm_area_struct *vma; /* The first vma to munmap */ 37 struct vm_area_struct *prev; /* vma before the munmap area */ 38 struct vm_area_struct *next; /* vma after the munmap area */ 39 struct list_head *uf; /* Userfaultfd list_head */ 40 unsigned long start; /* Aligned start addr (inclusive) */ 41 unsigned long end; /* Aligned end addr (exclusive) */ 42 unsigned long unmap_start; /* Unmap PTE start */ 43 unsigned long unmap_end; /* Unmap PTE end */ 44 int vma_count; /* Number of vmas that will be removed */ 45 bool unlock; /* Unlock after the munmap */ 46 bool clear_ptes; /* If there are outstanding PTE to be cleared */ 47 /* 2 byte hole */ 48 unsigned long nr_pages; /* Number of pages being removed */ 49 unsigned long locked_vm; /* Number of locked pages */ 50 unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */ 51 unsigned long exec_vm; 52 unsigned long stack_vm; 53 unsigned long data_vm; 54 }; 55 56 enum vma_merge_state { 57 VMA_MERGE_START, 58 VMA_MERGE_ERROR_NOMEM, 59 VMA_MERGE_NOMERGE, 60 VMA_MERGE_SUCCESS, 61 }; 62 63 /* 64 * Describes a VMA merge operation and is threaded throughout it. 65 * 66 * Any of the fields may be mutated by the merge operation, so no guarantees are 67 * made to the contents of this structure after a merge operation has completed. 68 */ 69 struct vma_merge_struct { 70 struct mm_struct *mm; 71 struct vma_iterator *vmi; 72 /* 73 * Adjacent VMAs, any of which may be NULL if not present: 74 * 75 * |------|--------|------| 76 * | prev | middle | next | 77 * |------|--------|------| 78 * 79 * middle may not yet exist in the case of a proposed new VMA being 80 * merged, or it may be an existing VMA. 81 * 82 * next may be assigned by the caller. 83 */ 84 struct vm_area_struct *prev; 85 struct vm_area_struct *middle; 86 struct vm_area_struct *next; 87 /* This is the VMA we ultimately target to become the merged VMA. */ 88 struct vm_area_struct *target; 89 /* 90 * Initially, the start, end, pgoff fields are provided by the caller 91 * and describe the proposed new VMA range, whether modifying an 92 * existing VMA (which will be 'middle'), or adding a new one. 93 * 94 * During the merge process these fields are updated to describe the new 95 * range _including those VMAs which will be merged_. 96 */ 97 unsigned long start; 98 unsigned long end; 99 pgoff_t pgoff; 100 101 vm_flags_t vm_flags; 102 struct file *file; 103 struct anon_vma *anon_vma; 104 struct mempolicy *policy; 105 struct vm_userfaultfd_ctx uffd_ctx; 106 struct anon_vma_name *anon_name; 107 enum vma_merge_state state; 108 109 /* Flags which callers can use to modify merge behaviour: */ 110 111 /* 112 * If we can expand, simply do so. We know there is nothing to merge to 113 * the right. Does not reset state upon failure to merge. The VMA 114 * iterator is assumed to be positioned at the previous VMA, rather than 115 * at the gap. 116 */ 117 bool just_expand :1; 118 119 /* 120 * If a merge is possible, but an OOM error occurs, give up and don't 121 * execute the merge, returning NULL. 122 */ 123 bool give_up_on_oom :1; 124 125 /* 126 * If set, skip uprobe_mmap upon merged vma. 127 */ 128 bool skip_vma_uprobe :1; 129 130 /* Internal flags set during merge process: */ 131 132 /* 133 * Internal flag indicating the merge increases vmg->middle->vm_start 134 * (and thereby, vmg->prev->vm_end). 135 */ 136 bool __adjust_middle_start :1; 137 /* 138 * Internal flag indicating the merge decreases vmg->next->vm_start 139 * (and thereby, vmg->middle->vm_end). 140 */ 141 bool __adjust_next_start :1; 142 /* 143 * Internal flag used during the merge operation to indicate we will 144 * remove vmg->middle. 145 */ 146 bool __remove_middle :1; 147 /* 148 * Internal flag used during the merge operationr to indicate we will 149 * remove vmg->next. 150 */ 151 bool __remove_next :1; 152 153 }; 154 155 static inline bool vmg_nomem(struct vma_merge_struct *vmg) 156 { 157 return vmg->state == VMA_MERGE_ERROR_NOMEM; 158 } 159 160 /* Assumes addr >= vma->vm_start. */ 161 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma, 162 unsigned long addr) 163 { 164 return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start); 165 } 166 167 #define VMG_STATE(name, mm_, vmi_, start_, end_, vm_flags_, pgoff_) \ 168 struct vma_merge_struct name = { \ 169 .mm = mm_, \ 170 .vmi = vmi_, \ 171 .start = start_, \ 172 .end = end_, \ 173 .vm_flags = vm_flags_, \ 174 .pgoff = pgoff_, \ 175 .state = VMA_MERGE_START, \ 176 } 177 178 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \ 179 struct vma_merge_struct name = { \ 180 .mm = vma_->vm_mm, \ 181 .vmi = vmi_, \ 182 .prev = prev_, \ 183 .middle = vma_, \ 184 .next = NULL, \ 185 .start = start_, \ 186 .end = end_, \ 187 .vm_flags = vma_->vm_flags, \ 188 .pgoff = vma_pgoff_offset(vma_, start_), \ 189 .file = vma_->vm_file, \ 190 .anon_vma = vma_->anon_vma, \ 191 .policy = vma_policy(vma_), \ 192 .uffd_ctx = vma_->vm_userfaultfd_ctx, \ 193 .anon_name = anon_vma_name(vma_), \ 194 .state = VMA_MERGE_START, \ 195 } 196 197 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 198 void validate_mm(struct mm_struct *mm); 199 #else 200 #define validate_mm(mm) do { } while (0) 201 #endif 202 203 __must_check int vma_expand(struct vma_merge_struct *vmg); 204 __must_check int vma_shrink(struct vma_iterator *vmi, 205 struct vm_area_struct *vma, 206 unsigned long start, unsigned long end, pgoff_t pgoff); 207 208 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 209 struct vm_area_struct *vma, gfp_t gfp) 210 211 { 212 if (vmi->mas.status != ma_start && 213 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 214 vma_iter_invalidate(vmi); 215 216 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 217 mas_store_gfp(&vmi->mas, vma, gfp); 218 if (unlikely(mas_is_err(&vmi->mas))) 219 return -ENOMEM; 220 221 vma_mark_attached(vma); 222 return 0; 223 } 224 225 226 /* 227 * Temporary helper functions for file systems which wrap an invocation of 228 * f_op->mmap() but which might have an underlying file system which implements 229 * f_op->mmap_prepare(). 230 */ 231 232 static inline struct vm_area_desc *vma_to_desc(struct vm_area_struct *vma, 233 struct vm_area_desc *desc) 234 { 235 desc->mm = vma->vm_mm; 236 desc->start = vma->vm_start; 237 desc->end = vma->vm_end; 238 239 desc->pgoff = vma->vm_pgoff; 240 desc->file = vma->vm_file; 241 desc->vm_flags = vma->vm_flags; 242 desc->page_prot = vma->vm_page_prot; 243 244 desc->vm_ops = NULL; 245 desc->private_data = NULL; 246 247 return desc; 248 } 249 250 static inline void set_vma_from_desc(struct vm_area_struct *vma, 251 struct vm_area_desc *desc) 252 { 253 /* 254 * Since we're invoking .mmap_prepare() despite having a partially 255 * established VMA, we must take care to handle setting fields 256 * correctly. 257 */ 258 259 /* Mutable fields. Populated with initial state. */ 260 vma->vm_pgoff = desc->pgoff; 261 if (vma->vm_file != desc->file) 262 vma_set_file(vma, desc->file); 263 if (vma->vm_flags != desc->vm_flags) 264 vm_flags_set(vma, desc->vm_flags); 265 vma->vm_page_prot = desc->page_prot; 266 267 /* User-defined fields. */ 268 vma->vm_ops = desc->vm_ops; 269 vma->vm_private_data = desc->private_data; 270 } 271 272 int 273 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 274 struct mm_struct *mm, unsigned long start, 275 unsigned long end, struct list_head *uf, bool unlock); 276 277 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 278 unsigned long start, size_t len, struct list_head *uf, 279 bool unlock); 280 281 void remove_vma(struct vm_area_struct *vma); 282 283 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 284 struct vm_area_struct *prev, struct vm_area_struct *next); 285 286 /* We are about to modify the VMA's flags. */ 287 __must_check struct vm_area_struct 288 *vma_modify_flags(struct vma_iterator *vmi, 289 struct vm_area_struct *prev, struct vm_area_struct *vma, 290 unsigned long start, unsigned long end, 291 vm_flags_t vm_flags); 292 293 /* We are about to modify the VMA's anon_name. */ 294 __must_check struct vm_area_struct 295 *vma_modify_name(struct vma_iterator *vmi, 296 struct vm_area_struct *prev, 297 struct vm_area_struct *vma, 298 unsigned long start, 299 unsigned long end, 300 struct anon_vma_name *new_name); 301 302 /* We are about to modify the VMA's memory policy. */ 303 __must_check struct vm_area_struct 304 *vma_modify_policy(struct vma_iterator *vmi, 305 struct vm_area_struct *prev, 306 struct vm_area_struct *vma, 307 unsigned long start, unsigned long end, 308 struct mempolicy *new_pol); 309 310 /* We are about to modify the VMA's flags and/or uffd context. */ 311 __must_check struct vm_area_struct 312 *vma_modify_flags_uffd(struct vma_iterator *vmi, 313 struct vm_area_struct *prev, 314 struct vm_area_struct *vma, 315 unsigned long start, unsigned long end, 316 vm_flags_t vm_flags, 317 struct vm_userfaultfd_ctx new_ctx, 318 bool give_up_on_oom); 319 320 __must_check struct vm_area_struct 321 *vma_merge_new_range(struct vma_merge_struct *vmg); 322 323 __must_check struct vm_area_struct 324 *vma_merge_extend(struct vma_iterator *vmi, 325 struct vm_area_struct *vma, 326 unsigned long delta); 327 328 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb); 329 330 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb); 331 332 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 333 struct vm_area_struct *vma); 334 335 void unlink_file_vma(struct vm_area_struct *vma); 336 337 void vma_link_file(struct vm_area_struct *vma); 338 339 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma); 340 341 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 342 unsigned long addr, unsigned long len, pgoff_t pgoff, 343 bool *need_rmap_locks); 344 345 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma); 346 347 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 348 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 349 350 int mm_take_all_locks(struct mm_struct *mm); 351 void mm_drop_all_locks(struct mm_struct *mm); 352 353 unsigned long mmap_region(struct file *file, unsigned long addr, 354 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 355 struct list_head *uf); 356 357 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma, 358 unsigned long addr, unsigned long request, unsigned long flags); 359 360 unsigned long unmapped_area(struct vm_unmapped_area_info *info); 361 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 362 363 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 364 { 365 /* 366 * We want to check manually if we can change individual PTEs writable 367 * if we can't do that automatically for all PTEs in a mapping. For 368 * private mappings, that's always the case when we have write 369 * permissions as we properly have to handle COW. 370 */ 371 if (vma->vm_flags & VM_SHARED) 372 return vma_wants_writenotify(vma, vma->vm_page_prot); 373 return !!(vma->vm_flags & VM_WRITE); 374 } 375 376 #ifdef CONFIG_MMU 377 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, vm_flags_t vm_flags) 378 { 379 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); 380 } 381 #endif 382 383 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi, 384 unsigned long min) 385 { 386 return mas_prev(&vmi->mas, min); 387 } 388 389 /* 390 * These three helpers classifies VMAs for virtual memory accounting. 391 */ 392 393 /* 394 * Executable code area - executable, not writable, not stack 395 */ 396 static inline bool is_exec_mapping(vm_flags_t flags) 397 { 398 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 399 } 400 401 /* 402 * Stack area (including shadow stacks) 403 * 404 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 405 * do_mmap() forbids all other combinations. 406 */ 407 static inline bool is_stack_mapping(vm_flags_t flags) 408 { 409 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 410 } 411 412 /* 413 * Data area - private, writable, not stack 414 */ 415 static inline bool is_data_mapping(vm_flags_t flags) 416 { 417 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 418 } 419 420 421 static inline void vma_iter_config(struct vma_iterator *vmi, 422 unsigned long index, unsigned long last) 423 { 424 __mas_set_range(&vmi->mas, index, last - 1); 425 } 426 427 static inline void vma_iter_reset(struct vma_iterator *vmi) 428 { 429 mas_reset(&vmi->mas); 430 } 431 432 static inline 433 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min) 434 { 435 return mas_prev_range(&vmi->mas, min); 436 } 437 438 static inline 439 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max) 440 { 441 return mas_next_range(&vmi->mas, max); 442 } 443 444 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min, 445 unsigned long max, unsigned long size) 446 { 447 return mas_empty_area(&vmi->mas, min, max - 1, size); 448 } 449 450 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min, 451 unsigned long max, unsigned long size) 452 { 453 return mas_empty_area_rev(&vmi->mas, min, max - 1, size); 454 } 455 456 /* 457 * VMA Iterator functions shared between nommu and mmap 458 */ 459 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 460 struct vm_area_struct *vma) 461 { 462 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 463 } 464 465 static inline void vma_iter_clear(struct vma_iterator *vmi) 466 { 467 mas_store_prealloc(&vmi->mas, NULL); 468 } 469 470 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 471 { 472 return mas_walk(&vmi->mas); 473 } 474 475 /* Store a VMA with preallocated memory */ 476 static inline void vma_iter_store_overwrite(struct vma_iterator *vmi, 477 struct vm_area_struct *vma) 478 { 479 vma_assert_attached(vma); 480 481 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 482 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 483 vmi->mas.index > vma->vm_start)) { 484 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 485 vmi->mas.index, vma->vm_start, vma->vm_start, 486 vma->vm_end, vmi->mas.index, vmi->mas.last); 487 } 488 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 489 vmi->mas.last < vma->vm_start)) { 490 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 491 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 492 vmi->mas.index, vmi->mas.last); 493 } 494 #endif 495 496 if (vmi->mas.status != ma_start && 497 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 498 vma_iter_invalidate(vmi); 499 500 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 501 mas_store_prealloc(&vmi->mas, vma); 502 } 503 504 static inline void vma_iter_store_new(struct vma_iterator *vmi, 505 struct vm_area_struct *vma) 506 { 507 vma_mark_attached(vma); 508 vma_iter_store_overwrite(vmi, vma); 509 } 510 511 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 512 { 513 return vmi->mas.index; 514 } 515 516 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 517 { 518 return vmi->mas.last + 1; 519 } 520 521 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 522 unsigned long count) 523 { 524 return mas_expected_entries(&vmi->mas, count); 525 } 526 527 static inline 528 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 529 { 530 return mas_prev_range(&vmi->mas, 0); 531 } 532 533 /* 534 * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or 535 * if no previous VMA, to index 0. 536 */ 537 static inline 538 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi, 539 struct vm_area_struct **pprev) 540 { 541 struct vm_area_struct *next = vma_next(vmi); 542 struct vm_area_struct *prev = vma_prev(vmi); 543 544 /* 545 * Consider the case where no previous VMA exists. We advance to the 546 * next VMA, skipping any gap, then rewind to the start of the range. 547 * 548 * If we were to unconditionally advance to the next range we'd wind up 549 * at the next VMA again, so we check to ensure there is a previous VMA 550 * to skip over. 551 */ 552 if (prev) 553 vma_iter_next_range(vmi); 554 555 if (pprev) 556 *pprev = prev; 557 558 return next; 559 } 560 561 #ifdef CONFIG_64BIT 562 static inline bool vma_is_sealed(struct vm_area_struct *vma) 563 { 564 return (vma->vm_flags & VM_SEALED); 565 } 566 #else 567 static inline bool vma_is_sealed(struct vm_area_struct *vma) 568 { 569 return false; 570 } 571 #endif 572 573 #if defined(CONFIG_STACK_GROWSUP) 574 int expand_upwards(struct vm_area_struct *vma, unsigned long address); 575 #endif 576 577 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 578 579 int __vm_munmap(unsigned long start, size_t len, bool unlock); 580 581 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma); 582 583 /* vma_init.h, shared between CONFIG_MMU and nommu. */ 584 void __init vma_state_init(void); 585 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm); 586 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig); 587 void vm_area_free(struct vm_area_struct *vma); 588 589 /* vma_exec.c */ 590 #ifdef CONFIG_MMU 591 int create_init_stack_vma(struct mm_struct *mm, struct vm_area_struct **vmap, 592 unsigned long *top_mem_p); 593 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 594 #endif 595 596 #endif /* __MM_VMA_H */ 597