1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + (len_), \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .middle = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 } 59 60 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 61 { 62 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 63 64 if (!mpol_equal(vmg->policy, vma_policy(vma))) 65 return false; 66 /* 67 * VM_SOFTDIRTY should not prevent from VMA merging, if we 68 * match the flags but dirty bit -- the caller should mark 69 * merged VMA as dirty. If dirty bit won't be excluded from 70 * comparison, we increase pressure on the memory system forcing 71 * the kernel to generate new VMAs when old one could be 72 * extended instead. 73 */ 74 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 75 return false; 76 if (vma->vm_file != vmg->file) 77 return false; 78 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 79 return false; 80 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 81 return false; 82 return true; 83 } 84 85 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 86 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 87 { 88 /* 89 * The list_is_singular() test is to avoid merging VMA cloned from 90 * parents. This can improve scalability caused by anon_vma lock. 91 */ 92 if ((!anon_vma1 || !anon_vma2) && (!vma || 93 list_is_singular(&vma->anon_vma_chain))) 94 return true; 95 return anon_vma1 == anon_vma2; 96 } 97 98 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 99 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 100 struct vm_area_struct *vma2) 101 { 102 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 103 } 104 105 /* 106 * init_multi_vma_prep() - Initializer for struct vma_prepare 107 * @vp: The vma_prepare struct 108 * @vma: The vma that will be altered once locked 109 * @vmg: The merge state that will be used to determine adjustment and VMA 110 * removal. 111 */ 112 static void init_multi_vma_prep(struct vma_prepare *vp, 113 struct vm_area_struct *vma, 114 struct vma_merge_struct *vmg) 115 { 116 struct vm_area_struct *adjust; 117 struct vm_area_struct **remove = &vp->remove; 118 119 memset(vp, 0, sizeof(struct vma_prepare)); 120 vp->vma = vma; 121 vp->anon_vma = vma->anon_vma; 122 123 if (vmg && vmg->__remove_middle) { 124 *remove = vmg->middle; 125 remove = &vp->remove2; 126 } 127 if (vmg && vmg->__remove_next) 128 *remove = vmg->next; 129 130 if (vmg && vmg->__adjust_middle_start) 131 adjust = vmg->middle; 132 else if (vmg && vmg->__adjust_next_start) 133 adjust = vmg->next; 134 else 135 adjust = NULL; 136 137 vp->adj_next = adjust; 138 if (!vp->anon_vma && adjust) 139 vp->anon_vma = adjust->anon_vma; 140 141 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 142 vp->anon_vma != adjust->anon_vma); 143 144 vp->file = vma->vm_file; 145 if (vp->file) 146 vp->mapping = vma->vm_file->f_mapping; 147 } 148 149 /* 150 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 151 * in front of (at a lower virtual address and file offset than) the vma. 152 * 153 * We cannot merge two vmas if they have differently assigned (non-NULL) 154 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 155 * 156 * We don't check here for the merged mmap wrapping around the end of pagecache 157 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 158 * wrap, nor mmaps which cover the final page at index -1UL. 159 * 160 * We assume the vma may be removed as part of the merge. 161 */ 162 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 163 { 164 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 165 166 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 167 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 168 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 169 return true; 170 } 171 172 return false; 173 } 174 175 /* 176 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 177 * beyond (at a higher virtual address and file offset than) the vma. 178 * 179 * We cannot merge two vmas if they have differently assigned (non-NULL) 180 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 181 * 182 * We assume that vma is not removed as part of the merge. 183 */ 184 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 185 { 186 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 187 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 188 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 189 return true; 190 } 191 return false; 192 } 193 194 static void __vma_link_file(struct vm_area_struct *vma, 195 struct address_space *mapping) 196 { 197 if (vma_is_shared_maywrite(vma)) 198 mapping_allow_writable(mapping); 199 200 flush_dcache_mmap_lock(mapping); 201 vma_interval_tree_insert(vma, &mapping->i_mmap); 202 flush_dcache_mmap_unlock(mapping); 203 } 204 205 /* 206 * Requires inode->i_mapping->i_mmap_rwsem 207 */ 208 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 209 struct address_space *mapping) 210 { 211 if (vma_is_shared_maywrite(vma)) 212 mapping_unmap_writable(mapping); 213 214 flush_dcache_mmap_lock(mapping); 215 vma_interval_tree_remove(vma, &mapping->i_mmap); 216 flush_dcache_mmap_unlock(mapping); 217 } 218 219 /* 220 * vma has some anon_vma assigned, and is already inserted on that 221 * anon_vma's interval trees. 222 * 223 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 224 * vma must be removed from the anon_vma's interval trees using 225 * anon_vma_interval_tree_pre_update_vma(). 226 * 227 * After the update, the vma will be reinserted using 228 * anon_vma_interval_tree_post_update_vma(). 229 * 230 * The entire update must be protected by exclusive mmap_lock and by 231 * the root anon_vma's mutex. 232 */ 233 static void 234 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 235 { 236 struct anon_vma_chain *avc; 237 238 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 239 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 240 } 241 242 static void 243 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 244 { 245 struct anon_vma_chain *avc; 246 247 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 248 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 249 } 250 251 /* 252 * vma_prepare() - Helper function for handling locking VMAs prior to altering 253 * @vp: The initialized vma_prepare struct 254 */ 255 static void vma_prepare(struct vma_prepare *vp) 256 { 257 if (vp->file) { 258 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 259 260 if (vp->adj_next) 261 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 262 vp->adj_next->vm_end); 263 264 i_mmap_lock_write(vp->mapping); 265 if (vp->insert && vp->insert->vm_file) { 266 /* 267 * Put into interval tree now, so instantiated pages 268 * are visible to arm/parisc __flush_dcache_page 269 * throughout; but we cannot insert into address 270 * space until vma start or end is updated. 271 */ 272 __vma_link_file(vp->insert, 273 vp->insert->vm_file->f_mapping); 274 } 275 } 276 277 if (vp->anon_vma) { 278 anon_vma_lock_write(vp->anon_vma); 279 anon_vma_interval_tree_pre_update_vma(vp->vma); 280 if (vp->adj_next) 281 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 282 } 283 284 if (vp->file) { 285 flush_dcache_mmap_lock(vp->mapping); 286 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 287 if (vp->adj_next) 288 vma_interval_tree_remove(vp->adj_next, 289 &vp->mapping->i_mmap); 290 } 291 292 } 293 294 /* 295 * vma_complete- Helper function for handling the unlocking after altering VMAs, 296 * or for inserting a VMA. 297 * 298 * @vp: The vma_prepare struct 299 * @vmi: The vma iterator 300 * @mm: The mm_struct 301 */ 302 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 303 struct mm_struct *mm) 304 { 305 if (vp->file) { 306 if (vp->adj_next) 307 vma_interval_tree_insert(vp->adj_next, 308 &vp->mapping->i_mmap); 309 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 310 flush_dcache_mmap_unlock(vp->mapping); 311 } 312 313 if (vp->remove && vp->file) { 314 __remove_shared_vm_struct(vp->remove, vp->mapping); 315 if (vp->remove2) 316 __remove_shared_vm_struct(vp->remove2, vp->mapping); 317 } else if (vp->insert) { 318 /* 319 * split_vma has split insert from vma, and needs 320 * us to insert it before dropping the locks 321 * (it may either follow vma or precede it). 322 */ 323 vma_iter_store(vmi, vp->insert); 324 mm->map_count++; 325 } 326 327 if (vp->anon_vma) { 328 anon_vma_interval_tree_post_update_vma(vp->vma); 329 if (vp->adj_next) 330 anon_vma_interval_tree_post_update_vma(vp->adj_next); 331 anon_vma_unlock_write(vp->anon_vma); 332 } 333 334 if (vp->file) { 335 i_mmap_unlock_write(vp->mapping); 336 uprobe_mmap(vp->vma); 337 338 if (vp->adj_next) 339 uprobe_mmap(vp->adj_next); 340 } 341 342 if (vp->remove) { 343 again: 344 vma_mark_detached(vp->remove, true); 345 if (vp->file) { 346 uprobe_munmap(vp->remove, vp->remove->vm_start, 347 vp->remove->vm_end); 348 fput(vp->file); 349 } 350 if (vp->remove->anon_vma) 351 anon_vma_merge(vp->vma, vp->remove); 352 mm->map_count--; 353 mpol_put(vma_policy(vp->remove)); 354 if (!vp->remove2) 355 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 356 vm_area_free(vp->remove); 357 358 /* 359 * In mprotect's case 6 (see comments on vma_merge), 360 * we are removing both mid and next vmas 361 */ 362 if (vp->remove2) { 363 vp->remove = vp->remove2; 364 vp->remove2 = NULL; 365 goto again; 366 } 367 } 368 if (vp->insert && vp->file) 369 uprobe_mmap(vp->insert); 370 } 371 372 /* 373 * init_vma_prep() - Initializer wrapper for vma_prepare struct 374 * @vp: The vma_prepare struct 375 * @vma: The vma that will be altered once locked 376 */ 377 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 378 { 379 init_multi_vma_prep(vp, vma, NULL); 380 } 381 382 /* 383 * Can the proposed VMA be merged with the left (previous) VMA taking into 384 * account the start position of the proposed range. 385 */ 386 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 387 388 { 389 return vmg->prev && vmg->prev->vm_end == vmg->start && 390 can_vma_merge_after(vmg); 391 } 392 393 /* 394 * Can the proposed VMA be merged with the right (next) VMA taking into 395 * account the end position of the proposed range. 396 * 397 * In addition, if we can merge with the left VMA, ensure that left and right 398 * anon_vma's are also compatible. 399 */ 400 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 401 bool can_merge_left) 402 { 403 if (!vmg->next || vmg->end != vmg->next->vm_start || 404 !can_vma_merge_before(vmg)) 405 return false; 406 407 if (!can_merge_left) 408 return true; 409 410 /* 411 * If we can merge with prev (left) and next (right), indicating that 412 * each VMA's anon_vma is compatible with the proposed anon_vma, this 413 * does not mean prev and next are compatible with EACH OTHER. 414 * 415 * We therefore check this in addition to mergeability to either side. 416 */ 417 return are_anon_vmas_compatible(vmg->prev, vmg->next); 418 } 419 420 /* 421 * Close a vm structure and free it. 422 */ 423 void remove_vma(struct vm_area_struct *vma, bool unreachable) 424 { 425 might_sleep(); 426 vma_close(vma); 427 if (vma->vm_file) 428 fput(vma->vm_file); 429 mpol_put(vma_policy(vma)); 430 if (unreachable) 431 __vm_area_free(vma); 432 else 433 vm_area_free(vma); 434 } 435 436 /* 437 * Get rid of page table information in the indicated region. 438 * 439 * Called with the mm semaphore held. 440 */ 441 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 442 struct vm_area_struct *prev, struct vm_area_struct *next) 443 { 444 struct mm_struct *mm = vma->vm_mm; 445 struct mmu_gather tlb; 446 447 tlb_gather_mmu(&tlb, mm); 448 update_hiwater_rss(mm); 449 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 450 /* mm_wr_locked = */ true); 451 mas_set(mas, vma->vm_end); 452 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 453 next ? next->vm_start : USER_PGTABLES_CEILING, 454 /* mm_wr_locked = */ true); 455 tlb_finish_mmu(&tlb); 456 } 457 458 /* 459 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 460 * has already been checked or doesn't make sense to fail. 461 * VMA Iterator will point to the original VMA. 462 */ 463 static __must_check int 464 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 465 unsigned long addr, int new_below) 466 { 467 struct vma_prepare vp; 468 struct vm_area_struct *new; 469 int err; 470 471 WARN_ON(vma->vm_start >= addr); 472 WARN_ON(vma->vm_end <= addr); 473 474 if (vma->vm_ops && vma->vm_ops->may_split) { 475 err = vma->vm_ops->may_split(vma, addr); 476 if (err) 477 return err; 478 } 479 480 new = vm_area_dup(vma); 481 if (!new) 482 return -ENOMEM; 483 484 if (new_below) { 485 new->vm_end = addr; 486 } else { 487 new->vm_start = addr; 488 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 489 } 490 491 err = -ENOMEM; 492 vma_iter_config(vmi, new->vm_start, new->vm_end); 493 if (vma_iter_prealloc(vmi, new)) 494 goto out_free_vma; 495 496 err = vma_dup_policy(vma, new); 497 if (err) 498 goto out_free_vmi; 499 500 err = anon_vma_clone(new, vma); 501 if (err) 502 goto out_free_mpol; 503 504 if (new->vm_file) 505 get_file(new->vm_file); 506 507 if (new->vm_ops && new->vm_ops->open) 508 new->vm_ops->open(new); 509 510 vma_start_write(vma); 511 vma_start_write(new); 512 513 init_vma_prep(&vp, vma); 514 vp.insert = new; 515 vma_prepare(&vp); 516 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 517 518 if (new_below) { 519 vma->vm_start = addr; 520 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 521 } else { 522 vma->vm_end = addr; 523 } 524 525 /* vma_complete stores the new vma */ 526 vma_complete(&vp, vmi, vma->vm_mm); 527 validate_mm(vma->vm_mm); 528 529 /* Success. */ 530 if (new_below) 531 vma_next(vmi); 532 else 533 vma_prev(vmi); 534 535 return 0; 536 537 out_free_mpol: 538 mpol_put(vma_policy(new)); 539 out_free_vmi: 540 vma_iter_free(vmi); 541 out_free_vma: 542 vm_area_free(new); 543 return err; 544 } 545 546 /* 547 * Split a vma into two pieces at address 'addr', a new vma is allocated 548 * either for the first part or the tail. 549 */ 550 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 551 unsigned long addr, int new_below) 552 { 553 if (vma->vm_mm->map_count >= sysctl_max_map_count) 554 return -ENOMEM; 555 556 return __split_vma(vmi, vma, addr, new_below); 557 } 558 559 /* 560 * dup_anon_vma() - Helper function to duplicate anon_vma 561 * @dst: The destination VMA 562 * @src: The source VMA 563 * @dup: Pointer to the destination VMA when successful. 564 * 565 * Returns: 0 on success. 566 */ 567 static int dup_anon_vma(struct vm_area_struct *dst, 568 struct vm_area_struct *src, struct vm_area_struct **dup) 569 { 570 /* 571 * Easily overlooked: when mprotect shifts the boundary, make sure the 572 * expanding vma has anon_vma set if the shrinking vma had, to cover any 573 * anon pages imported. 574 */ 575 if (src->anon_vma && !dst->anon_vma) { 576 int ret; 577 578 vma_assert_write_locked(dst); 579 dst->anon_vma = src->anon_vma; 580 ret = anon_vma_clone(dst, src); 581 if (ret) 582 return ret; 583 584 *dup = dst; 585 } 586 587 return 0; 588 } 589 590 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 591 void validate_mm(struct mm_struct *mm) 592 { 593 int bug = 0; 594 int i = 0; 595 struct vm_area_struct *vma; 596 VMA_ITERATOR(vmi, mm, 0); 597 598 mt_validate(&mm->mm_mt); 599 for_each_vma(vmi, vma) { 600 #ifdef CONFIG_DEBUG_VM_RB 601 struct anon_vma *anon_vma = vma->anon_vma; 602 struct anon_vma_chain *avc; 603 #endif 604 unsigned long vmi_start, vmi_end; 605 bool warn = 0; 606 607 vmi_start = vma_iter_addr(&vmi); 608 vmi_end = vma_iter_end(&vmi); 609 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 610 warn = 1; 611 612 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 613 warn = 1; 614 615 if (warn) { 616 pr_emerg("issue in %s\n", current->comm); 617 dump_stack(); 618 dump_vma(vma); 619 pr_emerg("tree range: %px start %lx end %lx\n", vma, 620 vmi_start, vmi_end - 1); 621 vma_iter_dump_tree(&vmi); 622 } 623 624 #ifdef CONFIG_DEBUG_VM_RB 625 if (anon_vma) { 626 anon_vma_lock_read(anon_vma); 627 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 628 anon_vma_interval_tree_verify(avc); 629 anon_vma_unlock_read(anon_vma); 630 } 631 #endif 632 /* Check for a infinite loop */ 633 if (++i > mm->map_count + 10) { 634 i = -1; 635 break; 636 } 637 } 638 if (i != mm->map_count) { 639 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 640 bug = 1; 641 } 642 VM_BUG_ON_MM(bug, mm); 643 } 644 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 645 646 /* 647 * Based on the vmg flag indicating whether we need to adjust the vm_start field 648 * for the middle or next VMA, we calculate what the range of the newly adjusted 649 * VMA ought to be, and set the VMA's range accordingly. 650 */ 651 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 652 { 653 struct vm_area_struct *adjust; 654 pgoff_t pgoff; 655 656 if (vmg->__adjust_middle_start) { 657 adjust = vmg->middle; 658 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 659 } else if (vmg->__adjust_next_start) { 660 adjust = vmg->next; 661 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 662 } else { 663 return; 664 } 665 666 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 667 } 668 669 /* 670 * Actually perform the VMA merge operation. 671 * 672 * Returns 0 on success, or an error value on failure. 673 */ 674 static int commit_merge(struct vma_merge_struct *vmg) 675 { 676 struct vm_area_struct *vma; 677 struct vma_prepare vp; 678 679 if (vmg->__adjust_next_start) { 680 /* We manipulate middle and adjust next, which is the target. */ 681 vma = vmg->middle; 682 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 683 } else { 684 vma = vmg->target; 685 /* Note: vma iterator must be pointing to 'start'. */ 686 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 687 } 688 689 init_multi_vma_prep(&vp, vma, vmg); 690 691 if (vma_iter_prealloc(vmg->vmi, vma)) 692 return -ENOMEM; 693 694 vma_prepare(&vp); 695 /* 696 * THP pages may need to do additional splits if we increase 697 * middle->vm_start. 698 */ 699 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 700 vmg->__adjust_middle_start ? vmg->middle : NULL); 701 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 702 vmg_adjust_set_range(vmg); 703 vma_iter_store(vmg->vmi, vmg->target); 704 705 vma_complete(&vp, vmg->vmi, vma->vm_mm); 706 707 return 0; 708 } 709 710 /* We can only remove VMAs when merging if they do not have a close hook. */ 711 static bool can_merge_remove_vma(struct vm_area_struct *vma) 712 { 713 return !vma->vm_ops || !vma->vm_ops->close; 714 } 715 716 /* 717 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 718 * attributes modified. 719 * 720 * @vmg: Describes the modifications being made to a VMA and associated 721 * metadata. 722 * 723 * When the attributes of a range within a VMA change, then it might be possible 724 * for immediately adjacent VMAs to be merged into that VMA due to having 725 * identical properties. 726 * 727 * This function checks for the existence of any such mergeable VMAs and updates 728 * the maple tree describing the @vmg->middle->vm_mm address space to account 729 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 730 * merge. 731 * 732 * As part of this operation, if a merge occurs, the @vmg object will have its 733 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 734 * calls to this function should reset these fields. 735 * 736 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 737 * 738 * ASSUMPTIONS: 739 * - The caller must assign the VMA to be modifed to @vmg->middle. 740 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 741 * - The caller must not set @vmg->next, as we determine this. 742 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 743 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 744 */ 745 static __must_check struct vm_area_struct *vma_merge_existing_range( 746 struct vma_merge_struct *vmg) 747 { 748 struct vm_area_struct *middle = vmg->middle; 749 struct vm_area_struct *prev = vmg->prev; 750 struct vm_area_struct *next; 751 struct vm_area_struct *anon_dup = NULL; 752 unsigned long start = vmg->start; 753 unsigned long end = vmg->end; 754 bool left_side = middle && start == middle->vm_start; 755 bool right_side = middle && end == middle->vm_end; 756 int err = 0; 757 bool merge_left, merge_right, merge_both; 758 759 mmap_assert_write_locked(vmg->mm); 760 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 761 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 762 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 763 VM_WARN_ON_VMG(start >= end, vmg); 764 765 /* 766 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 767 * not, we must span a portion of the VMA. 768 */ 769 VM_WARN_ON_VMG(middle && 770 ((middle != prev && vmg->start != middle->vm_start) || 771 vmg->end > middle->vm_end), vmg); 772 /* The vmi must be positioned within vmg->middle. */ 773 VM_WARN_ON_VMG(middle && 774 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 775 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 776 777 vmg->state = VMA_MERGE_NOMERGE; 778 779 /* 780 * If a special mapping or if the range being modified is neither at the 781 * furthermost left or right side of the VMA, then we have no chance of 782 * merging and should abort. 783 */ 784 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 785 return NULL; 786 787 if (left_side) 788 merge_left = can_vma_merge_left(vmg); 789 else 790 merge_left = false; 791 792 if (right_side) { 793 next = vmg->next = vma_iter_next_range(vmg->vmi); 794 vma_iter_prev_range(vmg->vmi); 795 796 merge_right = can_vma_merge_right(vmg, merge_left); 797 } else { 798 merge_right = false; 799 next = NULL; 800 } 801 802 if (merge_left) /* If merging prev, position iterator there. */ 803 vma_prev(vmg->vmi); 804 else if (!merge_right) /* If we have nothing to merge, abort. */ 805 return NULL; 806 807 merge_both = merge_left && merge_right; 808 /* If we span the entire VMA, a merge implies it will be deleted. */ 809 vmg->__remove_middle = left_side && right_side; 810 811 /* 812 * If we need to remove middle in its entirety but are unable to do so, 813 * we have no sensible recourse but to abort the merge. 814 */ 815 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 816 return NULL; 817 818 /* 819 * If we merge both VMAs, then next is also deleted. This implies 820 * merge_will_delete_vma also. 821 */ 822 vmg->__remove_next = merge_both; 823 824 /* 825 * If we cannot delete next, then we can reduce the operation to merging 826 * prev and middle (thereby deleting middle). 827 */ 828 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 829 vmg->__remove_next = false; 830 merge_right = false; 831 merge_both = false; 832 } 833 834 /* No matter what happens, we will be adjusting middle. */ 835 vma_start_write(middle); 836 837 if (merge_right) { 838 vma_start_write(next); 839 vmg->target = next; 840 } 841 842 if (merge_left) { 843 vma_start_write(prev); 844 vmg->target = prev; 845 } 846 847 if (merge_both) { 848 /* 849 * |<-------------------->| 850 * |-------********-------| 851 * prev middle next 852 * extend delete delete 853 */ 854 855 vmg->start = prev->vm_start; 856 vmg->end = next->vm_end; 857 vmg->pgoff = prev->vm_pgoff; 858 859 /* 860 * We already ensured anon_vma compatibility above, so now it's 861 * simply a case of, if prev has no anon_vma object, which of 862 * next or middle contains the anon_vma we must duplicate. 863 */ 864 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 865 &anon_dup); 866 } else if (merge_left) { 867 /* 868 * |<------------>| OR 869 * |<----------------->| 870 * |-------************* 871 * prev middle 872 * extend shrink/delete 873 */ 874 875 vmg->start = prev->vm_start; 876 vmg->pgoff = prev->vm_pgoff; 877 878 if (!vmg->__remove_middle) 879 vmg->__adjust_middle_start = true; 880 881 err = dup_anon_vma(prev, middle, &anon_dup); 882 } else { /* merge_right */ 883 /* 884 * |<------------->| OR 885 * |<----------------->| 886 * *************-------| 887 * middle next 888 * shrink/delete extend 889 */ 890 891 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 892 893 VM_WARN_ON_VMG(!merge_right, vmg); 894 /* If we are offset into a VMA, then prev must be middle. */ 895 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 896 897 if (vmg->__remove_middle) { 898 vmg->end = next->vm_end; 899 vmg->pgoff = next->vm_pgoff - pglen; 900 } else { 901 /* We shrink middle and expand next. */ 902 vmg->__adjust_next_start = true; 903 vmg->start = middle->vm_start; 904 vmg->end = start; 905 vmg->pgoff = middle->vm_pgoff; 906 } 907 908 err = dup_anon_vma(next, middle, &anon_dup); 909 } 910 911 if (err) 912 goto abort; 913 914 err = commit_merge(vmg); 915 if (err) { 916 VM_WARN_ON(err != -ENOMEM); 917 918 if (anon_dup) 919 unlink_anon_vmas(anon_dup); 920 921 vmg->state = VMA_MERGE_ERROR_NOMEM; 922 return NULL; 923 } 924 925 khugepaged_enter_vma(vmg->target, vmg->flags); 926 vmg->state = VMA_MERGE_SUCCESS; 927 return vmg->target; 928 929 abort: 930 vma_iter_set(vmg->vmi, start); 931 vma_iter_load(vmg->vmi); 932 vmg->state = VMA_MERGE_ERROR_NOMEM; 933 return NULL; 934 } 935 936 /* 937 * vma_merge_new_range - Attempt to merge a new VMA into address space 938 * 939 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 940 * (exclusive), which we try to merge with any adjacent VMAs if possible. 941 * 942 * We are about to add a VMA to the address space starting at @vmg->start and 943 * ending at @vmg->end. There are three different possible scenarios: 944 * 945 * 1. There is a VMA with identical properties immediately adjacent to the 946 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 947 * EXPAND that VMA: 948 * 949 * Proposed: |-----| or |-----| 950 * Existing: |----| |----| 951 * 952 * 2. There are VMAs with identical properties immediately adjacent to the 953 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 954 * EXPAND the former and REMOVE the latter: 955 * 956 * Proposed: |-----| 957 * Existing: |----| |----| 958 * 959 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 960 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 961 * 962 * In instances where we can merge, this function returns the expanded VMA which 963 * will have its range adjusted accordingly and the underlying maple tree also 964 * adjusted. 965 * 966 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 967 * to the VMA we expanded. 968 * 969 * This function adjusts @vmg to provide @vmg->next if not already specified, 970 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 971 * 972 * ASSUMPTIONS: 973 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 974 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 975 other than VMAs that will be unmapped should the operation succeed. 976 * - The caller must have specified the previous vma in @vmg->prev. 977 * - The caller must have specified the next vma in @vmg->next. 978 * - The caller must have positioned the vmi at or before the gap. 979 */ 980 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 981 { 982 struct vm_area_struct *prev = vmg->prev; 983 struct vm_area_struct *next = vmg->next; 984 unsigned long end = vmg->end; 985 bool can_merge_left, can_merge_right; 986 987 mmap_assert_write_locked(vmg->mm); 988 VM_WARN_ON_VMG(vmg->middle, vmg); 989 /* vmi must point at or before the gap. */ 990 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 991 992 vmg->state = VMA_MERGE_NOMERGE; 993 994 /* Special VMAs are unmergeable, also if no prev/next. */ 995 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 996 return NULL; 997 998 can_merge_left = can_vma_merge_left(vmg); 999 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 1000 1001 /* If we can merge with the next VMA, adjust vmg accordingly. */ 1002 if (can_merge_right) { 1003 vmg->end = next->vm_end; 1004 vmg->middle = next; 1005 } 1006 1007 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1008 if (can_merge_left) { 1009 vmg->start = prev->vm_start; 1010 vmg->middle = prev; 1011 vmg->pgoff = prev->vm_pgoff; 1012 1013 /* 1014 * If this merge would result in removal of the next VMA but we 1015 * are not permitted to do so, reduce the operation to merging 1016 * prev and vma. 1017 */ 1018 if (can_merge_right && !can_merge_remove_vma(next)) 1019 vmg->end = end; 1020 1021 /* In expand-only case we are already positioned at prev. */ 1022 if (!vmg->just_expand) { 1023 /* Equivalent to going to the previous range. */ 1024 vma_prev(vmg->vmi); 1025 } 1026 } 1027 1028 /* 1029 * Now try to expand adjacent VMA(s). This takes care of removing the 1030 * following VMA if we have VMAs on both sides. 1031 */ 1032 if (vmg->middle && !vma_expand(vmg)) { 1033 khugepaged_enter_vma(vmg->middle, vmg->flags); 1034 vmg->state = VMA_MERGE_SUCCESS; 1035 return vmg->middle; 1036 } 1037 1038 return NULL; 1039 } 1040 1041 /* 1042 * vma_expand - Expand an existing VMA 1043 * 1044 * @vmg: Describes a VMA expansion operation. 1045 * 1046 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1047 * Will expand over vmg->next if it's different from vmg->middle and vmg->end == 1048 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with 1049 * vmg->next needs to be handled by the caller. 1050 * 1051 * Returns: 0 on success. 1052 * 1053 * ASSUMPTIONS: 1054 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. 1055 * - The caller must have set @vmg->middle and @vmg->next. 1056 */ 1057 int vma_expand(struct vma_merge_struct *vmg) 1058 { 1059 struct vm_area_struct *anon_dup = NULL; 1060 bool remove_next = false; 1061 struct vm_area_struct *middle = vmg->middle; 1062 struct vm_area_struct *next = vmg->next; 1063 1064 mmap_assert_write_locked(vmg->mm); 1065 1066 vma_start_write(middle); 1067 if (next && (middle != next) && (vmg->end == next->vm_end)) { 1068 int ret; 1069 1070 remove_next = true; 1071 /* This should already have been checked by this point. */ 1072 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1073 vma_start_write(next); 1074 ret = dup_anon_vma(middle, next, &anon_dup); 1075 if (ret) 1076 return ret; 1077 } 1078 1079 /* Not merging but overwriting any part of next is not handled. */ 1080 VM_WARN_ON_VMG(next && !remove_next && 1081 next != middle && vmg->end > next->vm_start, vmg); 1082 /* Only handles expanding */ 1083 VM_WARN_ON_VMG(middle->vm_start < vmg->start || 1084 middle->vm_end > vmg->end, vmg); 1085 1086 vmg->target = middle; 1087 if (remove_next) 1088 vmg->__remove_next = true; 1089 1090 if (commit_merge(vmg)) 1091 goto nomem; 1092 1093 return 0; 1094 1095 nomem: 1096 vmg->state = VMA_MERGE_ERROR_NOMEM; 1097 if (anon_dup) 1098 unlink_anon_vmas(anon_dup); 1099 return -ENOMEM; 1100 } 1101 1102 /* 1103 * vma_shrink() - Reduce an existing VMAs memory area 1104 * @vmi: The vma iterator 1105 * @vma: The VMA to modify 1106 * @start: The new start 1107 * @end: The new end 1108 * 1109 * Returns: 0 on success, -ENOMEM otherwise 1110 */ 1111 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1112 unsigned long start, unsigned long end, pgoff_t pgoff) 1113 { 1114 struct vma_prepare vp; 1115 1116 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1117 1118 if (vma->vm_start < start) 1119 vma_iter_config(vmi, vma->vm_start, start); 1120 else 1121 vma_iter_config(vmi, end, vma->vm_end); 1122 1123 if (vma_iter_prealloc(vmi, NULL)) 1124 return -ENOMEM; 1125 1126 vma_start_write(vma); 1127 1128 init_vma_prep(&vp, vma); 1129 vma_prepare(&vp); 1130 vma_adjust_trans_huge(vma, start, end, NULL); 1131 1132 vma_iter_clear(vmi); 1133 vma_set_range(vma, start, end, pgoff); 1134 vma_complete(&vp, vmi, vma->vm_mm); 1135 validate_mm(vma->vm_mm); 1136 return 0; 1137 } 1138 1139 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1140 struct ma_state *mas_detach, bool mm_wr_locked) 1141 { 1142 struct mmu_gather tlb; 1143 1144 if (!vms->clear_ptes) /* Nothing to do */ 1145 return; 1146 1147 /* 1148 * We can free page tables without write-locking mmap_lock because VMAs 1149 * were isolated before we downgraded mmap_lock. 1150 */ 1151 mas_set(mas_detach, 1); 1152 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1153 update_hiwater_rss(vms->vma->vm_mm); 1154 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1155 vms->vma_count, mm_wr_locked); 1156 1157 mas_set(mas_detach, 1); 1158 /* start and end may be different if there is no prev or next vma. */ 1159 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1160 vms->unmap_end, mm_wr_locked); 1161 tlb_finish_mmu(&tlb); 1162 vms->clear_ptes = false; 1163 } 1164 1165 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1166 struct ma_state *mas_detach) 1167 { 1168 struct vm_area_struct *vma; 1169 1170 if (!vms->nr_pages) 1171 return; 1172 1173 vms_clear_ptes(vms, mas_detach, true); 1174 mas_set(mas_detach, 0); 1175 mas_for_each(mas_detach, vma, ULONG_MAX) 1176 vma_close(vma); 1177 } 1178 1179 /* 1180 * vms_complete_munmap_vmas() - Finish the munmap() operation 1181 * @vms: The vma munmap struct 1182 * @mas_detach: The maple state of the detached vmas 1183 * 1184 * This updates the mm_struct, unmaps the region, frees the resources 1185 * used for the munmap() and may downgrade the lock - if requested. Everything 1186 * needed to be done once the vma maple tree is updated. 1187 */ 1188 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1189 struct ma_state *mas_detach) 1190 { 1191 struct vm_area_struct *vma; 1192 struct mm_struct *mm; 1193 1194 mm = current->mm; 1195 mm->map_count -= vms->vma_count; 1196 mm->locked_vm -= vms->locked_vm; 1197 if (vms->unlock) 1198 mmap_write_downgrade(mm); 1199 1200 if (!vms->nr_pages) 1201 return; 1202 1203 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1204 /* Update high watermark before we lower total_vm */ 1205 update_hiwater_vm(mm); 1206 /* Stat accounting */ 1207 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1208 /* Paranoid bookkeeping */ 1209 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1210 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1211 VM_WARN_ON(vms->data_vm > mm->data_vm); 1212 mm->exec_vm -= vms->exec_vm; 1213 mm->stack_vm -= vms->stack_vm; 1214 mm->data_vm -= vms->data_vm; 1215 1216 /* Remove and clean up vmas */ 1217 mas_set(mas_detach, 0); 1218 mas_for_each(mas_detach, vma, ULONG_MAX) 1219 remove_vma(vma, /* unreachable = */ false); 1220 1221 vm_unacct_memory(vms->nr_accounted); 1222 validate_mm(mm); 1223 if (vms->unlock) 1224 mmap_read_unlock(mm); 1225 1226 __mt_destroy(mas_detach->tree); 1227 } 1228 1229 /* 1230 * reattach_vmas() - Undo any munmap work and free resources 1231 * @mas_detach: The maple state with the detached maple tree 1232 * 1233 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1234 */ 1235 static void reattach_vmas(struct ma_state *mas_detach) 1236 { 1237 struct vm_area_struct *vma; 1238 1239 mas_set(mas_detach, 0); 1240 mas_for_each(mas_detach, vma, ULONG_MAX) 1241 vma_mark_detached(vma, false); 1242 1243 __mt_destroy(mas_detach->tree); 1244 } 1245 1246 /* 1247 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1248 * for removal at a later date. Handles splitting first and last if necessary 1249 * and marking the vmas as isolated. 1250 * 1251 * @vms: The vma munmap struct 1252 * @mas_detach: The maple state tracking the detached tree 1253 * 1254 * Return: 0 on success, error otherwise 1255 */ 1256 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1257 struct ma_state *mas_detach) 1258 { 1259 struct vm_area_struct *next = NULL; 1260 int error; 1261 1262 /* 1263 * If we need to split any vma, do it now to save pain later. 1264 * Does it split the first one? 1265 */ 1266 if (vms->start > vms->vma->vm_start) { 1267 1268 /* 1269 * Make sure that map_count on return from munmap() will 1270 * not exceed its limit; but let map_count go just above 1271 * its limit temporarily, to help free resources as expected. 1272 */ 1273 if (vms->end < vms->vma->vm_end && 1274 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1275 error = -ENOMEM; 1276 goto map_count_exceeded; 1277 } 1278 1279 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1280 if (!can_modify_vma(vms->vma)) { 1281 error = -EPERM; 1282 goto start_split_failed; 1283 } 1284 1285 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1286 if (error) 1287 goto start_split_failed; 1288 } 1289 vms->prev = vma_prev(vms->vmi); 1290 if (vms->prev) 1291 vms->unmap_start = vms->prev->vm_end; 1292 1293 /* 1294 * Detach a range of VMAs from the mm. Using next as a temp variable as 1295 * it is always overwritten. 1296 */ 1297 for_each_vma_range(*(vms->vmi), next, vms->end) { 1298 long nrpages; 1299 1300 if (!can_modify_vma(next)) { 1301 error = -EPERM; 1302 goto modify_vma_failed; 1303 } 1304 /* Does it split the end? */ 1305 if (next->vm_end > vms->end) { 1306 error = __split_vma(vms->vmi, next, vms->end, 0); 1307 if (error) 1308 goto end_split_failed; 1309 } 1310 vma_start_write(next); 1311 mas_set(mas_detach, vms->vma_count++); 1312 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1313 if (error) 1314 goto munmap_gather_failed; 1315 1316 vma_mark_detached(next, true); 1317 nrpages = vma_pages(next); 1318 1319 vms->nr_pages += nrpages; 1320 if (next->vm_flags & VM_LOCKED) 1321 vms->locked_vm += nrpages; 1322 1323 if (next->vm_flags & VM_ACCOUNT) 1324 vms->nr_accounted += nrpages; 1325 1326 if (is_exec_mapping(next->vm_flags)) 1327 vms->exec_vm += nrpages; 1328 else if (is_stack_mapping(next->vm_flags)) 1329 vms->stack_vm += nrpages; 1330 else if (is_data_mapping(next->vm_flags)) 1331 vms->data_vm += nrpages; 1332 1333 if (vms->uf) { 1334 /* 1335 * If userfaultfd_unmap_prep returns an error the vmas 1336 * will remain split, but userland will get a 1337 * highly unexpected error anyway. This is no 1338 * different than the case where the first of the two 1339 * __split_vma fails, but we don't undo the first 1340 * split, despite we could. This is unlikely enough 1341 * failure that it's not worth optimizing it for. 1342 */ 1343 error = userfaultfd_unmap_prep(next, vms->start, 1344 vms->end, vms->uf); 1345 if (error) 1346 goto userfaultfd_error; 1347 } 1348 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1349 BUG_ON(next->vm_start < vms->start); 1350 BUG_ON(next->vm_start > vms->end); 1351 #endif 1352 } 1353 1354 vms->next = vma_next(vms->vmi); 1355 if (vms->next) 1356 vms->unmap_end = vms->next->vm_start; 1357 1358 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1359 /* Make sure no VMAs are about to be lost. */ 1360 { 1361 MA_STATE(test, mas_detach->tree, 0, 0); 1362 struct vm_area_struct *vma_mas, *vma_test; 1363 int test_count = 0; 1364 1365 vma_iter_set(vms->vmi, vms->start); 1366 rcu_read_lock(); 1367 vma_test = mas_find(&test, vms->vma_count - 1); 1368 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1369 BUG_ON(vma_mas != vma_test); 1370 test_count++; 1371 vma_test = mas_next(&test, vms->vma_count - 1); 1372 } 1373 rcu_read_unlock(); 1374 BUG_ON(vms->vma_count != test_count); 1375 } 1376 #endif 1377 1378 while (vma_iter_addr(vms->vmi) > vms->start) 1379 vma_iter_prev_range(vms->vmi); 1380 1381 vms->clear_ptes = true; 1382 return 0; 1383 1384 userfaultfd_error: 1385 munmap_gather_failed: 1386 end_split_failed: 1387 modify_vma_failed: 1388 reattach_vmas(mas_detach); 1389 start_split_failed: 1390 map_count_exceeded: 1391 return error; 1392 } 1393 1394 /* 1395 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1396 * @vms: The vma munmap struct 1397 * @vmi: The vma iterator 1398 * @vma: The first vm_area_struct to munmap 1399 * @start: The aligned start address to munmap 1400 * @end: The aligned end address to munmap 1401 * @uf: The userfaultfd list_head 1402 * @unlock: Unlock after the operation. Only unlocked on success 1403 */ 1404 static void init_vma_munmap(struct vma_munmap_struct *vms, 1405 struct vma_iterator *vmi, struct vm_area_struct *vma, 1406 unsigned long start, unsigned long end, struct list_head *uf, 1407 bool unlock) 1408 { 1409 vms->vmi = vmi; 1410 vms->vma = vma; 1411 if (vma) { 1412 vms->start = start; 1413 vms->end = end; 1414 } else { 1415 vms->start = vms->end = 0; 1416 } 1417 vms->unlock = unlock; 1418 vms->uf = uf; 1419 vms->vma_count = 0; 1420 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1421 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1422 vms->unmap_start = FIRST_USER_ADDRESS; 1423 vms->unmap_end = USER_PGTABLES_CEILING; 1424 vms->clear_ptes = false; 1425 } 1426 1427 /* 1428 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1429 * @vmi: The vma iterator 1430 * @vma: The starting vm_area_struct 1431 * @mm: The mm_struct 1432 * @start: The aligned start address to munmap. 1433 * @end: The aligned end address to munmap. 1434 * @uf: The userfaultfd list_head 1435 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1436 * success. 1437 * 1438 * Return: 0 on success and drops the lock if so directed, error and leaves the 1439 * lock held otherwise. 1440 */ 1441 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1442 struct mm_struct *mm, unsigned long start, unsigned long end, 1443 struct list_head *uf, bool unlock) 1444 { 1445 struct maple_tree mt_detach; 1446 MA_STATE(mas_detach, &mt_detach, 0, 0); 1447 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1448 mt_on_stack(mt_detach); 1449 struct vma_munmap_struct vms; 1450 int error; 1451 1452 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1453 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1454 if (error) 1455 goto gather_failed; 1456 1457 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1458 if (error) 1459 goto clear_tree_failed; 1460 1461 /* Point of no return */ 1462 vms_complete_munmap_vmas(&vms, &mas_detach); 1463 return 0; 1464 1465 clear_tree_failed: 1466 reattach_vmas(&mas_detach); 1467 gather_failed: 1468 validate_mm(mm); 1469 return error; 1470 } 1471 1472 /* 1473 * do_vmi_munmap() - munmap a given range. 1474 * @vmi: The vma iterator 1475 * @mm: The mm_struct 1476 * @start: The start address to munmap 1477 * @len: The length of the range to munmap 1478 * @uf: The userfaultfd list_head 1479 * @unlock: set to true if the user wants to drop the mmap_lock on success 1480 * 1481 * This function takes a @mas that is either pointing to the previous VMA or set 1482 * to MA_START and sets it up to remove the mapping(s). The @len will be 1483 * aligned. 1484 * 1485 * Return: 0 on success and drops the lock if so directed, error and leaves the 1486 * lock held otherwise. 1487 */ 1488 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1489 unsigned long start, size_t len, struct list_head *uf, 1490 bool unlock) 1491 { 1492 unsigned long end; 1493 struct vm_area_struct *vma; 1494 1495 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1496 return -EINVAL; 1497 1498 end = start + PAGE_ALIGN(len); 1499 if (end == start) 1500 return -EINVAL; 1501 1502 /* Find the first overlapping VMA */ 1503 vma = vma_find(vmi, end); 1504 if (!vma) { 1505 if (unlock) 1506 mmap_write_unlock(mm); 1507 return 0; 1508 } 1509 1510 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1511 } 1512 1513 /* 1514 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1515 * context and anonymous VMA name within the range [start, end). 1516 * 1517 * As a result, we might be able to merge the newly modified VMA range with an 1518 * adjacent VMA with identical properties. 1519 * 1520 * If no merge is possible and the range does not span the entirety of the VMA, 1521 * we then need to split the VMA to accommodate the change. 1522 * 1523 * The function returns either the merged VMA, the original VMA if a split was 1524 * required instead, or an error if the split failed. 1525 */ 1526 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1527 { 1528 struct vm_area_struct *vma = vmg->middle; 1529 unsigned long start = vmg->start; 1530 unsigned long end = vmg->end; 1531 struct vm_area_struct *merged; 1532 1533 /* First, try to merge. */ 1534 merged = vma_merge_existing_range(vmg); 1535 if (merged) 1536 return merged; 1537 if (vmg_nomem(vmg)) 1538 return ERR_PTR(-ENOMEM); 1539 1540 /* Split any preceding portion of the VMA. */ 1541 if (vma->vm_start < start) { 1542 int err = split_vma(vmg->vmi, vma, start, 1); 1543 1544 if (err) 1545 return ERR_PTR(err); 1546 } 1547 1548 /* Split any trailing portion of the VMA. */ 1549 if (vma->vm_end > end) { 1550 int err = split_vma(vmg->vmi, vma, end, 0); 1551 1552 if (err) 1553 return ERR_PTR(err); 1554 } 1555 1556 return vma; 1557 } 1558 1559 struct vm_area_struct *vma_modify_flags( 1560 struct vma_iterator *vmi, struct vm_area_struct *prev, 1561 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1562 unsigned long new_flags) 1563 { 1564 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1565 1566 vmg.flags = new_flags; 1567 1568 return vma_modify(&vmg); 1569 } 1570 1571 struct vm_area_struct 1572 *vma_modify_flags_name(struct vma_iterator *vmi, 1573 struct vm_area_struct *prev, 1574 struct vm_area_struct *vma, 1575 unsigned long start, 1576 unsigned long end, 1577 unsigned long new_flags, 1578 struct anon_vma_name *new_name) 1579 { 1580 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1581 1582 vmg.flags = new_flags; 1583 vmg.anon_name = new_name; 1584 1585 return vma_modify(&vmg); 1586 } 1587 1588 struct vm_area_struct 1589 *vma_modify_policy(struct vma_iterator *vmi, 1590 struct vm_area_struct *prev, 1591 struct vm_area_struct *vma, 1592 unsigned long start, unsigned long end, 1593 struct mempolicy *new_pol) 1594 { 1595 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1596 1597 vmg.policy = new_pol; 1598 1599 return vma_modify(&vmg); 1600 } 1601 1602 struct vm_area_struct 1603 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1604 struct vm_area_struct *prev, 1605 struct vm_area_struct *vma, 1606 unsigned long start, unsigned long end, 1607 unsigned long new_flags, 1608 struct vm_userfaultfd_ctx new_ctx) 1609 { 1610 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1611 1612 vmg.flags = new_flags; 1613 vmg.uffd_ctx = new_ctx; 1614 1615 return vma_modify(&vmg); 1616 } 1617 1618 /* 1619 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1620 * VMA with identical properties. 1621 */ 1622 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1623 struct vm_area_struct *vma, 1624 unsigned long delta) 1625 { 1626 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1627 1628 vmg.next = vma_iter_next_rewind(vmi, NULL); 1629 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1630 1631 return vma_merge_new_range(&vmg); 1632 } 1633 1634 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1635 { 1636 vb->count = 0; 1637 } 1638 1639 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1640 { 1641 struct address_space *mapping; 1642 int i; 1643 1644 mapping = vb->vmas[0]->vm_file->f_mapping; 1645 i_mmap_lock_write(mapping); 1646 for (i = 0; i < vb->count; i++) { 1647 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1648 __remove_shared_vm_struct(vb->vmas[i], mapping); 1649 } 1650 i_mmap_unlock_write(mapping); 1651 1652 unlink_file_vma_batch_init(vb); 1653 } 1654 1655 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1656 struct vm_area_struct *vma) 1657 { 1658 if (vma->vm_file == NULL) 1659 return; 1660 1661 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1662 vb->count == ARRAY_SIZE(vb->vmas)) 1663 unlink_file_vma_batch_process(vb); 1664 1665 vb->vmas[vb->count] = vma; 1666 vb->count++; 1667 } 1668 1669 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1670 { 1671 if (vb->count > 0) 1672 unlink_file_vma_batch_process(vb); 1673 } 1674 1675 /* 1676 * Unlink a file-based vm structure from its interval tree, to hide 1677 * vma from rmap and vmtruncate before freeing its page tables. 1678 */ 1679 void unlink_file_vma(struct vm_area_struct *vma) 1680 { 1681 struct file *file = vma->vm_file; 1682 1683 if (file) { 1684 struct address_space *mapping = file->f_mapping; 1685 1686 i_mmap_lock_write(mapping); 1687 __remove_shared_vm_struct(vma, mapping); 1688 i_mmap_unlock_write(mapping); 1689 } 1690 } 1691 1692 void vma_link_file(struct vm_area_struct *vma) 1693 { 1694 struct file *file = vma->vm_file; 1695 struct address_space *mapping; 1696 1697 if (file) { 1698 mapping = file->f_mapping; 1699 i_mmap_lock_write(mapping); 1700 __vma_link_file(vma, mapping); 1701 i_mmap_unlock_write(mapping); 1702 } 1703 } 1704 1705 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1706 { 1707 VMA_ITERATOR(vmi, mm, 0); 1708 1709 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1710 if (vma_iter_prealloc(&vmi, vma)) 1711 return -ENOMEM; 1712 1713 vma_start_write(vma); 1714 vma_iter_store(&vmi, vma); 1715 vma_link_file(vma); 1716 mm->map_count++; 1717 validate_mm(mm); 1718 return 0; 1719 } 1720 1721 /* 1722 * Copy the vma structure to a new location in the same mm, 1723 * prior to moving page table entries, to effect an mremap move. 1724 */ 1725 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1726 unsigned long addr, unsigned long len, pgoff_t pgoff, 1727 bool *need_rmap_locks) 1728 { 1729 struct vm_area_struct *vma = *vmap; 1730 unsigned long vma_start = vma->vm_start; 1731 struct mm_struct *mm = vma->vm_mm; 1732 struct vm_area_struct *new_vma; 1733 bool faulted_in_anon_vma = true; 1734 VMA_ITERATOR(vmi, mm, addr); 1735 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1736 1737 /* 1738 * If anonymous vma has not yet been faulted, update new pgoff 1739 * to match new location, to increase its chance of merging. 1740 */ 1741 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1742 pgoff = addr >> PAGE_SHIFT; 1743 faulted_in_anon_vma = false; 1744 } 1745 1746 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1747 if (new_vma && new_vma->vm_start < addr + len) 1748 return NULL; /* should never get here */ 1749 1750 vmg.middle = NULL; /* New VMA range. */ 1751 vmg.pgoff = pgoff; 1752 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1753 new_vma = vma_merge_new_range(&vmg); 1754 1755 if (new_vma) { 1756 /* 1757 * Source vma may have been merged into new_vma 1758 */ 1759 if (unlikely(vma_start >= new_vma->vm_start && 1760 vma_start < new_vma->vm_end)) { 1761 /* 1762 * The only way we can get a vma_merge with 1763 * self during an mremap is if the vma hasn't 1764 * been faulted in yet and we were allowed to 1765 * reset the dst vma->vm_pgoff to the 1766 * destination address of the mremap to allow 1767 * the merge to happen. mremap must change the 1768 * vm_pgoff linearity between src and dst vmas 1769 * (in turn preventing a vma_merge) to be 1770 * safe. It is only safe to keep the vm_pgoff 1771 * linear if there are no pages mapped yet. 1772 */ 1773 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1774 *vmap = vma = new_vma; 1775 } 1776 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1777 } else { 1778 new_vma = vm_area_dup(vma); 1779 if (!new_vma) 1780 goto out; 1781 vma_set_range(new_vma, addr, addr + len, pgoff); 1782 if (vma_dup_policy(vma, new_vma)) 1783 goto out_free_vma; 1784 if (anon_vma_clone(new_vma, vma)) 1785 goto out_free_mempol; 1786 if (new_vma->vm_file) 1787 get_file(new_vma->vm_file); 1788 if (new_vma->vm_ops && new_vma->vm_ops->open) 1789 new_vma->vm_ops->open(new_vma); 1790 if (vma_link(mm, new_vma)) 1791 goto out_vma_link; 1792 *need_rmap_locks = false; 1793 } 1794 return new_vma; 1795 1796 out_vma_link: 1797 vma_close(new_vma); 1798 1799 if (new_vma->vm_file) 1800 fput(new_vma->vm_file); 1801 1802 unlink_anon_vmas(new_vma); 1803 out_free_mempol: 1804 mpol_put(vma_policy(new_vma)); 1805 out_free_vma: 1806 vm_area_free(new_vma); 1807 out: 1808 return NULL; 1809 } 1810 1811 /* 1812 * Rough compatibility check to quickly see if it's even worth looking 1813 * at sharing an anon_vma. 1814 * 1815 * They need to have the same vm_file, and the flags can only differ 1816 * in things that mprotect may change. 1817 * 1818 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1819 * we can merge the two vma's. For example, we refuse to merge a vma if 1820 * there is a vm_ops->close() function, because that indicates that the 1821 * driver is doing some kind of reference counting. But that doesn't 1822 * really matter for the anon_vma sharing case. 1823 */ 1824 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1825 { 1826 return a->vm_end == b->vm_start && 1827 mpol_equal(vma_policy(a), vma_policy(b)) && 1828 a->vm_file == b->vm_file && 1829 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1830 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1831 } 1832 1833 /* 1834 * Do some basic sanity checking to see if we can re-use the anon_vma 1835 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1836 * the same as 'old', the other will be the new one that is trying 1837 * to share the anon_vma. 1838 * 1839 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1840 * the anon_vma of 'old' is concurrently in the process of being set up 1841 * by another page fault trying to merge _that_. But that's ok: if it 1842 * is being set up, that automatically means that it will be a singleton 1843 * acceptable for merging, so we can do all of this optimistically. But 1844 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1845 * 1846 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1847 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1848 * is to return an anon_vma that is "complex" due to having gone through 1849 * a fork). 1850 * 1851 * We also make sure that the two vma's are compatible (adjacent, 1852 * and with the same memory policies). That's all stable, even with just 1853 * a read lock on the mmap_lock. 1854 */ 1855 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1856 struct vm_area_struct *a, 1857 struct vm_area_struct *b) 1858 { 1859 if (anon_vma_compatible(a, b)) { 1860 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1861 1862 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1863 return anon_vma; 1864 } 1865 return NULL; 1866 } 1867 1868 /* 1869 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1870 * neighbouring vmas for a suitable anon_vma, before it goes off 1871 * to allocate a new anon_vma. It checks because a repetitive 1872 * sequence of mprotects and faults may otherwise lead to distinct 1873 * anon_vmas being allocated, preventing vma merge in subsequent 1874 * mprotect. 1875 */ 1876 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1877 { 1878 struct anon_vma *anon_vma = NULL; 1879 struct vm_area_struct *prev, *next; 1880 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1881 1882 /* Try next first. */ 1883 next = vma_iter_load(&vmi); 1884 if (next) { 1885 anon_vma = reusable_anon_vma(next, vma, next); 1886 if (anon_vma) 1887 return anon_vma; 1888 } 1889 1890 prev = vma_prev(&vmi); 1891 VM_BUG_ON_VMA(prev != vma, vma); 1892 prev = vma_prev(&vmi); 1893 /* Try prev next. */ 1894 if (prev) 1895 anon_vma = reusable_anon_vma(prev, prev, vma); 1896 1897 /* 1898 * We might reach here with anon_vma == NULL if we can't find 1899 * any reusable anon_vma. 1900 * There's no absolute need to look only at touching neighbours: 1901 * we could search further afield for "compatible" anon_vmas. 1902 * But it would probably just be a waste of time searching, 1903 * or lead to too many vmas hanging off the same anon_vma. 1904 * We're trying to allow mprotect remerging later on, 1905 * not trying to minimize memory used for anon_vmas. 1906 */ 1907 return anon_vma; 1908 } 1909 1910 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1911 { 1912 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1913 } 1914 1915 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1916 { 1917 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1918 (VM_WRITE | VM_SHARED); 1919 } 1920 1921 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1922 { 1923 /* No managed pages to writeback. */ 1924 if (vma->vm_flags & VM_PFNMAP) 1925 return false; 1926 1927 return vma->vm_file && vma->vm_file->f_mapping && 1928 mapping_can_writeback(vma->vm_file->f_mapping); 1929 } 1930 1931 /* 1932 * Does this VMA require the underlying folios to have their dirty state 1933 * tracked? 1934 */ 1935 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1936 { 1937 /* Only shared, writable VMAs require dirty tracking. */ 1938 if (!vma_is_shared_writable(vma)) 1939 return false; 1940 1941 /* Does the filesystem need to be notified? */ 1942 if (vm_ops_needs_writenotify(vma->vm_ops)) 1943 return true; 1944 1945 /* 1946 * Even if the filesystem doesn't indicate a need for writenotify, if it 1947 * can writeback, dirty tracking is still required. 1948 */ 1949 return vma_fs_can_writeback(vma); 1950 } 1951 1952 /* 1953 * Some shared mappings will want the pages marked read-only 1954 * to track write events. If so, we'll downgrade vm_page_prot 1955 * to the private version (using protection_map[] without the 1956 * VM_SHARED bit). 1957 */ 1958 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1959 { 1960 /* If it was private or non-writable, the write bit is already clear */ 1961 if (!vma_is_shared_writable(vma)) 1962 return false; 1963 1964 /* The backer wishes to know when pages are first written to? */ 1965 if (vm_ops_needs_writenotify(vma->vm_ops)) 1966 return true; 1967 1968 /* The open routine did something to the protections that pgprot_modify 1969 * won't preserve? */ 1970 if (pgprot_val(vm_page_prot) != 1971 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1972 return false; 1973 1974 /* 1975 * Do we need to track softdirty? hugetlb does not support softdirty 1976 * tracking yet. 1977 */ 1978 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1979 return true; 1980 1981 /* Do we need write faults for uffd-wp tracking? */ 1982 if (userfaultfd_wp(vma)) 1983 return true; 1984 1985 /* Can the mapping track the dirty pages? */ 1986 return vma_fs_can_writeback(vma); 1987 } 1988 1989 static DEFINE_MUTEX(mm_all_locks_mutex); 1990 1991 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1992 { 1993 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1994 /* 1995 * The LSB of head.next can't change from under us 1996 * because we hold the mm_all_locks_mutex. 1997 */ 1998 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1999 /* 2000 * We can safely modify head.next after taking the 2001 * anon_vma->root->rwsem. If some other vma in this mm shares 2002 * the same anon_vma we won't take it again. 2003 * 2004 * No need of atomic instructions here, head.next 2005 * can't change from under us thanks to the 2006 * anon_vma->root->rwsem. 2007 */ 2008 if (__test_and_set_bit(0, (unsigned long *) 2009 &anon_vma->root->rb_root.rb_root.rb_node)) 2010 BUG(); 2011 } 2012 } 2013 2014 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2015 { 2016 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2017 /* 2018 * AS_MM_ALL_LOCKS can't change from under us because 2019 * we hold the mm_all_locks_mutex. 2020 * 2021 * Operations on ->flags have to be atomic because 2022 * even if AS_MM_ALL_LOCKS is stable thanks to the 2023 * mm_all_locks_mutex, there may be other cpus 2024 * changing other bitflags in parallel to us. 2025 */ 2026 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2027 BUG(); 2028 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2029 } 2030 } 2031 2032 /* 2033 * This operation locks against the VM for all pte/vma/mm related 2034 * operations that could ever happen on a certain mm. This includes 2035 * vmtruncate, try_to_unmap, and all page faults. 2036 * 2037 * The caller must take the mmap_lock in write mode before calling 2038 * mm_take_all_locks(). The caller isn't allowed to release the 2039 * mmap_lock until mm_drop_all_locks() returns. 2040 * 2041 * mmap_lock in write mode is required in order to block all operations 2042 * that could modify pagetables and free pages without need of 2043 * altering the vma layout. It's also needed in write mode to avoid new 2044 * anon_vmas to be associated with existing vmas. 2045 * 2046 * A single task can't take more than one mm_take_all_locks() in a row 2047 * or it would deadlock. 2048 * 2049 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2050 * mapping->flags avoid to take the same lock twice, if more than one 2051 * vma in this mm is backed by the same anon_vma or address_space. 2052 * 2053 * We take locks in following order, accordingly to comment at beginning 2054 * of mm/rmap.c: 2055 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2056 * hugetlb mapping); 2057 * - all vmas marked locked 2058 * - all i_mmap_rwsem locks; 2059 * - all anon_vma->rwseml 2060 * 2061 * We can take all locks within these types randomly because the VM code 2062 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2063 * mm_all_locks_mutex. 2064 * 2065 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2066 * that may have to take thousand of locks. 2067 * 2068 * mm_take_all_locks() can fail if it's interrupted by signals. 2069 */ 2070 int mm_take_all_locks(struct mm_struct *mm) 2071 { 2072 struct vm_area_struct *vma; 2073 struct anon_vma_chain *avc; 2074 VMA_ITERATOR(vmi, mm, 0); 2075 2076 mmap_assert_write_locked(mm); 2077 2078 mutex_lock(&mm_all_locks_mutex); 2079 2080 /* 2081 * vma_start_write() does not have a complement in mm_drop_all_locks() 2082 * because vma_start_write() is always asymmetrical; it marks a VMA as 2083 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2084 * is reached. 2085 */ 2086 for_each_vma(vmi, vma) { 2087 if (signal_pending(current)) 2088 goto out_unlock; 2089 vma_start_write(vma); 2090 } 2091 2092 vma_iter_init(&vmi, mm, 0); 2093 for_each_vma(vmi, vma) { 2094 if (signal_pending(current)) 2095 goto out_unlock; 2096 if (vma->vm_file && vma->vm_file->f_mapping && 2097 is_vm_hugetlb_page(vma)) 2098 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2099 } 2100 2101 vma_iter_init(&vmi, mm, 0); 2102 for_each_vma(vmi, vma) { 2103 if (signal_pending(current)) 2104 goto out_unlock; 2105 if (vma->vm_file && vma->vm_file->f_mapping && 2106 !is_vm_hugetlb_page(vma)) 2107 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2108 } 2109 2110 vma_iter_init(&vmi, mm, 0); 2111 for_each_vma(vmi, vma) { 2112 if (signal_pending(current)) 2113 goto out_unlock; 2114 if (vma->anon_vma) 2115 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2116 vm_lock_anon_vma(mm, avc->anon_vma); 2117 } 2118 2119 return 0; 2120 2121 out_unlock: 2122 mm_drop_all_locks(mm); 2123 return -EINTR; 2124 } 2125 2126 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2127 { 2128 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2129 /* 2130 * The LSB of head.next can't change to 0 from under 2131 * us because we hold the mm_all_locks_mutex. 2132 * 2133 * We must however clear the bitflag before unlocking 2134 * the vma so the users using the anon_vma->rb_root will 2135 * never see our bitflag. 2136 * 2137 * No need of atomic instructions here, head.next 2138 * can't change from under us until we release the 2139 * anon_vma->root->rwsem. 2140 */ 2141 if (!__test_and_clear_bit(0, (unsigned long *) 2142 &anon_vma->root->rb_root.rb_root.rb_node)) 2143 BUG(); 2144 anon_vma_unlock_write(anon_vma); 2145 } 2146 } 2147 2148 static void vm_unlock_mapping(struct address_space *mapping) 2149 { 2150 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2151 /* 2152 * AS_MM_ALL_LOCKS can't change to 0 from under us 2153 * because we hold the mm_all_locks_mutex. 2154 */ 2155 i_mmap_unlock_write(mapping); 2156 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2157 &mapping->flags)) 2158 BUG(); 2159 } 2160 } 2161 2162 /* 2163 * The mmap_lock cannot be released by the caller until 2164 * mm_drop_all_locks() returns. 2165 */ 2166 void mm_drop_all_locks(struct mm_struct *mm) 2167 { 2168 struct vm_area_struct *vma; 2169 struct anon_vma_chain *avc; 2170 VMA_ITERATOR(vmi, mm, 0); 2171 2172 mmap_assert_write_locked(mm); 2173 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2174 2175 for_each_vma(vmi, vma) { 2176 if (vma->anon_vma) 2177 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2178 vm_unlock_anon_vma(avc->anon_vma); 2179 if (vma->vm_file && vma->vm_file->f_mapping) 2180 vm_unlock_mapping(vma->vm_file->f_mapping); 2181 } 2182 2183 mutex_unlock(&mm_all_locks_mutex); 2184 } 2185 2186 /* 2187 * We account for memory if it's a private writeable mapping, 2188 * not hugepages and VM_NORESERVE wasn't set. 2189 */ 2190 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2191 { 2192 /* 2193 * hugetlb has its own accounting separate from the core VM 2194 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2195 */ 2196 if (file && is_file_hugepages(file)) 2197 return false; 2198 2199 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2200 } 2201 2202 /* 2203 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2204 * operation. 2205 * @vms: The vma unmap structure 2206 * @mas_detach: The maple state with the detached maple tree 2207 * 2208 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2209 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2210 * have been called), then a NULL is written over the vmas and the vmas are 2211 * removed (munmap() completed). 2212 */ 2213 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2214 struct ma_state *mas_detach) 2215 { 2216 struct ma_state *mas = &vms->vmi->mas; 2217 2218 if (!vms->nr_pages) 2219 return; 2220 2221 if (vms->clear_ptes) 2222 return reattach_vmas(mas_detach); 2223 2224 /* 2225 * Aborting cannot just call the vm_ops open() because they are often 2226 * not symmetrical and state data has been lost. Resort to the old 2227 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2228 */ 2229 mas_set_range(mas, vms->start, vms->end - 1); 2230 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2231 /* Clean up the insertion of the unfortunate gap */ 2232 vms_complete_munmap_vmas(vms, mas_detach); 2233 } 2234 2235 /* 2236 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2237 * unmapped once the map operation is completed, check limits, account mapping 2238 * and clean up any pre-existing VMAs. 2239 * 2240 * @map: Mapping state. 2241 * @uf: Userfaultfd context list. 2242 * 2243 * Returns: 0 on success, error code otherwise. 2244 */ 2245 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2246 { 2247 int error; 2248 struct vma_iterator *vmi = map->vmi; 2249 struct vma_munmap_struct *vms = &map->vms; 2250 2251 /* Find the first overlapping VMA and initialise unmap state. */ 2252 vms->vma = vma_find(vmi, map->end); 2253 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2254 /* unlock = */ false); 2255 2256 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2257 if (vms->vma) { 2258 mt_init_flags(&map->mt_detach, 2259 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2260 mt_on_stack(map->mt_detach); 2261 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2262 /* Prepare to unmap any existing mapping in the area */ 2263 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2264 if (error) { 2265 /* On error VMAs will already have been reattached. */ 2266 vms->nr_pages = 0; 2267 return error; 2268 } 2269 2270 map->next = vms->next; 2271 map->prev = vms->prev; 2272 } else { 2273 map->next = vma_iter_next_rewind(vmi, &map->prev); 2274 } 2275 2276 /* Check against address space limit. */ 2277 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2278 return -ENOMEM; 2279 2280 /* Private writable mapping: check memory availability. */ 2281 if (accountable_mapping(map->file, map->flags)) { 2282 map->charged = map->pglen; 2283 map->charged -= vms->nr_accounted; 2284 if (map->charged) { 2285 error = security_vm_enough_memory_mm(map->mm, map->charged); 2286 if (error) 2287 return error; 2288 } 2289 2290 vms->nr_accounted = 0; 2291 map->flags |= VM_ACCOUNT; 2292 } 2293 2294 /* 2295 * Clear PTEs while the vma is still in the tree so that rmap 2296 * cannot race with the freeing later in the truncate scenario. 2297 * This is also needed for mmap_file(), which is why vm_ops 2298 * close function is called. 2299 */ 2300 vms_clean_up_area(vms, &map->mas_detach); 2301 2302 return 0; 2303 } 2304 2305 2306 static int __mmap_new_file_vma(struct mmap_state *map, 2307 struct vm_area_struct *vma) 2308 { 2309 struct vma_iterator *vmi = map->vmi; 2310 int error; 2311 2312 vma->vm_file = get_file(map->file); 2313 error = mmap_file(vma->vm_file, vma); 2314 if (error) { 2315 fput(vma->vm_file); 2316 vma->vm_file = NULL; 2317 2318 vma_iter_set(vmi, vma->vm_end); 2319 /* Undo any partial mapping done by a device driver. */ 2320 unmap_region(&vmi->mas, vma, map->prev, map->next); 2321 2322 return error; 2323 } 2324 2325 /* Drivers cannot alter the address of the VMA. */ 2326 WARN_ON_ONCE(map->addr != vma->vm_start); 2327 /* 2328 * Drivers should not permit writability when previously it was 2329 * disallowed. 2330 */ 2331 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2332 !(map->flags & VM_MAYWRITE) && 2333 (vma->vm_flags & VM_MAYWRITE)); 2334 2335 /* If the flags change (and are mergeable), let's retry later. */ 2336 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2337 map->flags = vma->vm_flags; 2338 2339 return 0; 2340 } 2341 2342 /* 2343 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2344 * possible. 2345 * 2346 * @map: Mapping state. 2347 * @vmap: Output pointer for the new VMA. 2348 * 2349 * Returns: Zero on success, or an error. 2350 */ 2351 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2352 { 2353 struct vma_iterator *vmi = map->vmi; 2354 int error = 0; 2355 struct vm_area_struct *vma; 2356 2357 /* 2358 * Determine the object being mapped and call the appropriate 2359 * specific mapper. the address has already been validated, but 2360 * not unmapped, but the maps are removed from the list. 2361 */ 2362 vma = vm_area_alloc(map->mm); 2363 if (!vma) 2364 return -ENOMEM; 2365 2366 vma_iter_config(vmi, map->addr, map->end); 2367 vma_set_range(vma, map->addr, map->end, map->pgoff); 2368 vm_flags_init(vma, map->flags); 2369 vma->vm_page_prot = vm_get_page_prot(map->flags); 2370 2371 if (vma_iter_prealloc(vmi, vma)) { 2372 error = -ENOMEM; 2373 goto free_vma; 2374 } 2375 2376 if (map->file) 2377 error = __mmap_new_file_vma(map, vma); 2378 else if (map->flags & VM_SHARED) 2379 error = shmem_zero_setup(vma); 2380 else 2381 vma_set_anonymous(vma); 2382 2383 if (error) 2384 goto free_iter_vma; 2385 2386 #ifdef CONFIG_SPARC64 2387 /* TODO: Fix SPARC ADI! */ 2388 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2389 #endif 2390 2391 /* Lock the VMA since it is modified after insertion into VMA tree */ 2392 vma_start_write(vma); 2393 vma_iter_store(vmi, vma); 2394 map->mm->map_count++; 2395 vma_link_file(vma); 2396 2397 /* 2398 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2399 * call covers the non-merge case. 2400 */ 2401 if (!vma_is_anonymous(vma)) 2402 khugepaged_enter_vma(vma, map->flags); 2403 ksm_add_vma(vma); 2404 *vmap = vma; 2405 return 0; 2406 2407 free_iter_vma: 2408 vma_iter_free(vmi); 2409 free_vma: 2410 vm_area_free(vma); 2411 return error; 2412 } 2413 2414 /* 2415 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2416 * statistics, handle locking and finalise the VMA. 2417 * 2418 * @map: Mapping state. 2419 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2420 */ 2421 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2422 { 2423 struct mm_struct *mm = map->mm; 2424 unsigned long vm_flags = vma->vm_flags; 2425 2426 perf_event_mmap(vma); 2427 2428 /* Unmap any existing mapping in the area. */ 2429 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2430 2431 vm_stat_account(mm, vma->vm_flags, map->pglen); 2432 if (vm_flags & VM_LOCKED) { 2433 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2434 is_vm_hugetlb_page(vma) || 2435 vma == get_gate_vma(mm)) 2436 vm_flags_clear(vma, VM_LOCKED_MASK); 2437 else 2438 mm->locked_vm += map->pglen; 2439 } 2440 2441 if (vma->vm_file) 2442 uprobe_mmap(vma); 2443 2444 /* 2445 * New (or expanded) vma always get soft dirty status. 2446 * Otherwise user-space soft-dirty page tracker won't 2447 * be able to distinguish situation when vma area unmapped, 2448 * then new mapped in-place (which must be aimed as 2449 * a completely new data area). 2450 */ 2451 vm_flags_set(vma, VM_SOFTDIRTY); 2452 2453 vma_set_page_prot(vma); 2454 } 2455 2456 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2457 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2458 struct list_head *uf) 2459 { 2460 struct mm_struct *mm = current->mm; 2461 struct vm_area_struct *vma = NULL; 2462 int error; 2463 VMA_ITERATOR(vmi, mm, addr); 2464 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2465 2466 error = __mmap_prepare(&map, uf); 2467 if (error) 2468 goto abort_munmap; 2469 2470 /* Attempt to merge with adjacent VMAs... */ 2471 if (map.prev || map.next) { 2472 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2473 2474 vma = vma_merge_new_range(&vmg); 2475 } 2476 2477 /* ...but if we can't, allocate a new VMA. */ 2478 if (!vma) { 2479 error = __mmap_new_vma(&map, &vma); 2480 if (error) 2481 goto unacct_error; 2482 } 2483 2484 /* If flags changed, we might be able to merge, so try again. */ 2485 if (map.retry_merge) { 2486 struct vm_area_struct *merged; 2487 VMG_MMAP_STATE(vmg, &map, vma); 2488 2489 vma_iter_config(map.vmi, map.addr, map.end); 2490 merged = vma_merge_existing_range(&vmg); 2491 if (merged) 2492 vma = merged; 2493 } 2494 2495 __mmap_complete(&map, vma); 2496 2497 return addr; 2498 2499 /* Accounting was done by __mmap_prepare(). */ 2500 unacct_error: 2501 if (map.charged) 2502 vm_unacct_memory(map.charged); 2503 abort_munmap: 2504 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2505 return error; 2506 } 2507 2508 /** 2509 * mmap_region() - Actually perform the userland mapping of a VMA into 2510 * current->mm with known, aligned and overflow-checked @addr and @len, and 2511 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2512 * 2513 * This is an internal memory management function, and should not be used 2514 * directly. 2515 * 2516 * The caller must write-lock current->mm->mmap_lock. 2517 * 2518 * @file: If a file-backed mapping, a pointer to the struct file describing the 2519 * file to be mapped, otherwise NULL. 2520 * @addr: The page-aligned address at which to perform the mapping. 2521 * @len: The page-aligned, non-zero, length of the mapping. 2522 * @vm_flags: The VMA flags which should be applied to the mapping. 2523 * @pgoff: If @file is specified, the page offset into the file, if not then 2524 * the virtual page offset in memory of the anonymous mapping. 2525 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2526 * events. 2527 * 2528 * Returns: Either an error, or the address at which the requested mapping has 2529 * been performed. 2530 */ 2531 unsigned long mmap_region(struct file *file, unsigned long addr, 2532 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2533 struct list_head *uf) 2534 { 2535 unsigned long ret; 2536 bool writable_file_mapping = false; 2537 2538 mmap_assert_write_locked(current->mm); 2539 2540 /* Check to see if MDWE is applicable. */ 2541 if (map_deny_write_exec(vm_flags, vm_flags)) 2542 return -EACCES; 2543 2544 /* Allow architectures to sanity-check the vm_flags. */ 2545 if (!arch_validate_flags(vm_flags)) 2546 return -EINVAL; 2547 2548 /* Map writable and ensure this isn't a sealed memfd. */ 2549 if (file && is_shared_maywrite(vm_flags)) { 2550 int error = mapping_map_writable(file->f_mapping); 2551 2552 if (error) 2553 return error; 2554 writable_file_mapping = true; 2555 } 2556 2557 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2558 2559 /* Clear our write mapping regardless of error. */ 2560 if (writable_file_mapping) 2561 mapping_unmap_writable(file->f_mapping); 2562 2563 validate_mm(current->mm); 2564 return ret; 2565 } 2566 2567 /* 2568 * do_brk_flags() - Increase the brk vma if the flags match. 2569 * @vmi: The vma iterator 2570 * @addr: The start address 2571 * @len: The length of the increase 2572 * @vma: The vma, 2573 * @flags: The VMA Flags 2574 * 2575 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2576 * do not match then create a new anonymous VMA. Eventually we may be able to 2577 * do some brk-specific accounting here. 2578 */ 2579 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2580 unsigned long addr, unsigned long len, unsigned long flags) 2581 { 2582 struct mm_struct *mm = current->mm; 2583 2584 /* 2585 * Check against address space limits by the changed size 2586 * Note: This happens *after* clearing old mappings in some code paths. 2587 */ 2588 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2589 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2590 return -ENOMEM; 2591 2592 if (mm->map_count > sysctl_max_map_count) 2593 return -ENOMEM; 2594 2595 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2596 return -ENOMEM; 2597 2598 /* 2599 * Expand the existing vma if possible; Note that singular lists do not 2600 * occur after forking, so the expand will only happen on new VMAs. 2601 */ 2602 if (vma && vma->vm_end == addr) { 2603 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 2604 2605 vmg.prev = vma; 2606 /* vmi is positioned at prev, which this mode expects. */ 2607 vmg.just_expand = true; 2608 2609 if (vma_merge_new_range(&vmg)) 2610 goto out; 2611 else if (vmg_nomem(&vmg)) 2612 goto unacct_fail; 2613 } 2614 2615 if (vma) 2616 vma_iter_next_range(vmi); 2617 /* create a vma struct for an anonymous mapping */ 2618 vma = vm_area_alloc(mm); 2619 if (!vma) 2620 goto unacct_fail; 2621 2622 vma_set_anonymous(vma); 2623 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2624 vm_flags_init(vma, flags); 2625 vma->vm_page_prot = vm_get_page_prot(flags); 2626 vma_start_write(vma); 2627 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2628 goto mas_store_fail; 2629 2630 mm->map_count++; 2631 validate_mm(mm); 2632 ksm_add_vma(vma); 2633 out: 2634 perf_event_mmap(vma); 2635 mm->total_vm += len >> PAGE_SHIFT; 2636 mm->data_vm += len >> PAGE_SHIFT; 2637 if (flags & VM_LOCKED) 2638 mm->locked_vm += (len >> PAGE_SHIFT); 2639 vm_flags_set(vma, VM_SOFTDIRTY); 2640 return 0; 2641 2642 mas_store_fail: 2643 vm_area_free(vma); 2644 unacct_fail: 2645 vm_unacct_memory(len >> PAGE_SHIFT); 2646 return -ENOMEM; 2647 } 2648 2649 /** 2650 * unmapped_area() - Find an area between the low_limit and the high_limit with 2651 * the correct alignment and offset, all from @info. Note: current->mm is used 2652 * for the search. 2653 * 2654 * @info: The unmapped area information including the range [low_limit - 2655 * high_limit), the alignment offset and mask. 2656 * 2657 * Return: A memory address or -ENOMEM. 2658 */ 2659 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2660 { 2661 unsigned long length, gap; 2662 unsigned long low_limit, high_limit; 2663 struct vm_area_struct *tmp; 2664 VMA_ITERATOR(vmi, current->mm, 0); 2665 2666 /* Adjust search length to account for worst case alignment overhead */ 2667 length = info->length + info->align_mask + info->start_gap; 2668 if (length < info->length) 2669 return -ENOMEM; 2670 2671 low_limit = info->low_limit; 2672 if (low_limit < mmap_min_addr) 2673 low_limit = mmap_min_addr; 2674 high_limit = info->high_limit; 2675 retry: 2676 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2677 return -ENOMEM; 2678 2679 /* 2680 * Adjust for the gap first so it doesn't interfere with the 2681 * later alignment. The first step is the minimum needed to 2682 * fulill the start gap, the next steps is the minimum to align 2683 * that. It is the minimum needed to fulill both. 2684 */ 2685 gap = vma_iter_addr(&vmi) + info->start_gap; 2686 gap += (info->align_offset - gap) & info->align_mask; 2687 tmp = vma_next(&vmi); 2688 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2689 if (vm_start_gap(tmp) < gap + length - 1) { 2690 low_limit = tmp->vm_end; 2691 vma_iter_reset(&vmi); 2692 goto retry; 2693 } 2694 } else { 2695 tmp = vma_prev(&vmi); 2696 if (tmp && vm_end_gap(tmp) > gap) { 2697 low_limit = vm_end_gap(tmp); 2698 vma_iter_reset(&vmi); 2699 goto retry; 2700 } 2701 } 2702 2703 return gap; 2704 } 2705 2706 /** 2707 * unmapped_area_topdown() - Find an area between the low_limit and the 2708 * high_limit with the correct alignment and offset at the highest available 2709 * address, all from @info. Note: current->mm is used for the search. 2710 * 2711 * @info: The unmapped area information including the range [low_limit - 2712 * high_limit), the alignment offset and mask. 2713 * 2714 * Return: A memory address or -ENOMEM. 2715 */ 2716 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2717 { 2718 unsigned long length, gap, gap_end; 2719 unsigned long low_limit, high_limit; 2720 struct vm_area_struct *tmp; 2721 VMA_ITERATOR(vmi, current->mm, 0); 2722 2723 /* Adjust search length to account for worst case alignment overhead */ 2724 length = info->length + info->align_mask + info->start_gap; 2725 if (length < info->length) 2726 return -ENOMEM; 2727 2728 low_limit = info->low_limit; 2729 if (low_limit < mmap_min_addr) 2730 low_limit = mmap_min_addr; 2731 high_limit = info->high_limit; 2732 retry: 2733 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2734 return -ENOMEM; 2735 2736 gap = vma_iter_end(&vmi) - info->length; 2737 gap -= (gap - info->align_offset) & info->align_mask; 2738 gap_end = vma_iter_end(&vmi); 2739 tmp = vma_next(&vmi); 2740 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2741 if (vm_start_gap(tmp) < gap_end) { 2742 high_limit = vm_start_gap(tmp); 2743 vma_iter_reset(&vmi); 2744 goto retry; 2745 } 2746 } else { 2747 tmp = vma_prev(&vmi); 2748 if (tmp && vm_end_gap(tmp) > gap) { 2749 high_limit = tmp->vm_start; 2750 vma_iter_reset(&vmi); 2751 goto retry; 2752 } 2753 } 2754 2755 return gap; 2756 } 2757 2758 /* 2759 * Verify that the stack growth is acceptable and 2760 * update accounting. This is shared with both the 2761 * grow-up and grow-down cases. 2762 */ 2763 static int acct_stack_growth(struct vm_area_struct *vma, 2764 unsigned long size, unsigned long grow) 2765 { 2766 struct mm_struct *mm = vma->vm_mm; 2767 unsigned long new_start; 2768 2769 /* address space limit tests */ 2770 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2771 return -ENOMEM; 2772 2773 /* Stack limit test */ 2774 if (size > rlimit(RLIMIT_STACK)) 2775 return -ENOMEM; 2776 2777 /* mlock limit tests */ 2778 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2779 return -ENOMEM; 2780 2781 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2782 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2783 vma->vm_end - size; 2784 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2785 return -EFAULT; 2786 2787 /* 2788 * Overcommit.. This must be the final test, as it will 2789 * update security statistics. 2790 */ 2791 if (security_vm_enough_memory_mm(mm, grow)) 2792 return -ENOMEM; 2793 2794 return 0; 2795 } 2796 2797 #if defined(CONFIG_STACK_GROWSUP) 2798 /* 2799 * PA-RISC uses this for its stack. 2800 * vma is the last one with address > vma->vm_end. Have to extend vma. 2801 */ 2802 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2803 { 2804 struct mm_struct *mm = vma->vm_mm; 2805 struct vm_area_struct *next; 2806 unsigned long gap_addr; 2807 int error = 0; 2808 VMA_ITERATOR(vmi, mm, vma->vm_start); 2809 2810 if (!(vma->vm_flags & VM_GROWSUP)) 2811 return -EFAULT; 2812 2813 mmap_assert_write_locked(mm); 2814 2815 /* Guard against exceeding limits of the address space. */ 2816 address &= PAGE_MASK; 2817 if (address >= (TASK_SIZE & PAGE_MASK)) 2818 return -ENOMEM; 2819 address += PAGE_SIZE; 2820 2821 /* Enforce stack_guard_gap */ 2822 gap_addr = address + stack_guard_gap; 2823 2824 /* Guard against overflow */ 2825 if (gap_addr < address || gap_addr > TASK_SIZE) 2826 gap_addr = TASK_SIZE; 2827 2828 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2829 if (next && vma_is_accessible(next)) { 2830 if (!(next->vm_flags & VM_GROWSUP)) 2831 return -ENOMEM; 2832 /* Check that both stack segments have the same anon_vma? */ 2833 } 2834 2835 if (next) 2836 vma_iter_prev_range_limit(&vmi, address); 2837 2838 vma_iter_config(&vmi, vma->vm_start, address); 2839 if (vma_iter_prealloc(&vmi, vma)) 2840 return -ENOMEM; 2841 2842 /* We must make sure the anon_vma is allocated. */ 2843 if (unlikely(anon_vma_prepare(vma))) { 2844 vma_iter_free(&vmi); 2845 return -ENOMEM; 2846 } 2847 2848 /* Lock the VMA before expanding to prevent concurrent page faults */ 2849 vma_start_write(vma); 2850 /* We update the anon VMA tree. */ 2851 anon_vma_lock_write(vma->anon_vma); 2852 2853 /* Somebody else might have raced and expanded it already */ 2854 if (address > vma->vm_end) { 2855 unsigned long size, grow; 2856 2857 size = address - vma->vm_start; 2858 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2859 2860 error = -ENOMEM; 2861 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2862 error = acct_stack_growth(vma, size, grow); 2863 if (!error) { 2864 if (vma->vm_flags & VM_LOCKED) 2865 mm->locked_vm += grow; 2866 vm_stat_account(mm, vma->vm_flags, grow); 2867 anon_vma_interval_tree_pre_update_vma(vma); 2868 vma->vm_end = address; 2869 /* Overwrite old entry in mtree. */ 2870 vma_iter_store(&vmi, vma); 2871 anon_vma_interval_tree_post_update_vma(vma); 2872 2873 perf_event_mmap(vma); 2874 } 2875 } 2876 } 2877 anon_vma_unlock_write(vma->anon_vma); 2878 vma_iter_free(&vmi); 2879 validate_mm(mm); 2880 return error; 2881 } 2882 #endif /* CONFIG_STACK_GROWSUP */ 2883 2884 /* 2885 * vma is the first one with address < vma->vm_start. Have to extend vma. 2886 * mmap_lock held for writing. 2887 */ 2888 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2889 { 2890 struct mm_struct *mm = vma->vm_mm; 2891 struct vm_area_struct *prev; 2892 int error = 0; 2893 VMA_ITERATOR(vmi, mm, vma->vm_start); 2894 2895 if (!(vma->vm_flags & VM_GROWSDOWN)) 2896 return -EFAULT; 2897 2898 mmap_assert_write_locked(mm); 2899 2900 address &= PAGE_MASK; 2901 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2902 return -EPERM; 2903 2904 /* Enforce stack_guard_gap */ 2905 prev = vma_prev(&vmi); 2906 /* Check that both stack segments have the same anon_vma? */ 2907 if (prev) { 2908 if (!(prev->vm_flags & VM_GROWSDOWN) && 2909 vma_is_accessible(prev) && 2910 (address - prev->vm_end < stack_guard_gap)) 2911 return -ENOMEM; 2912 } 2913 2914 if (prev) 2915 vma_iter_next_range_limit(&vmi, vma->vm_start); 2916 2917 vma_iter_config(&vmi, address, vma->vm_end); 2918 if (vma_iter_prealloc(&vmi, vma)) 2919 return -ENOMEM; 2920 2921 /* We must make sure the anon_vma is allocated. */ 2922 if (unlikely(anon_vma_prepare(vma))) { 2923 vma_iter_free(&vmi); 2924 return -ENOMEM; 2925 } 2926 2927 /* Lock the VMA before expanding to prevent concurrent page faults */ 2928 vma_start_write(vma); 2929 /* We update the anon VMA tree. */ 2930 anon_vma_lock_write(vma->anon_vma); 2931 2932 /* Somebody else might have raced and expanded it already */ 2933 if (address < vma->vm_start) { 2934 unsigned long size, grow; 2935 2936 size = vma->vm_end - address; 2937 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2938 2939 error = -ENOMEM; 2940 if (grow <= vma->vm_pgoff) { 2941 error = acct_stack_growth(vma, size, grow); 2942 if (!error) { 2943 if (vma->vm_flags & VM_LOCKED) 2944 mm->locked_vm += grow; 2945 vm_stat_account(mm, vma->vm_flags, grow); 2946 anon_vma_interval_tree_pre_update_vma(vma); 2947 vma->vm_start = address; 2948 vma->vm_pgoff -= grow; 2949 /* Overwrite old entry in mtree. */ 2950 vma_iter_store(&vmi, vma); 2951 anon_vma_interval_tree_post_update_vma(vma); 2952 2953 perf_event_mmap(vma); 2954 } 2955 } 2956 } 2957 anon_vma_unlock_write(vma->anon_vma); 2958 vma_iter_free(&vmi); 2959 validate_mm(mm); 2960 return error; 2961 } 2962 2963 int __vm_munmap(unsigned long start, size_t len, bool unlock) 2964 { 2965 int ret; 2966 struct mm_struct *mm = current->mm; 2967 LIST_HEAD(uf); 2968 VMA_ITERATOR(vmi, mm, start); 2969 2970 if (mmap_write_lock_killable(mm)) 2971 return -EINTR; 2972 2973 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2974 if (ret || !unlock) 2975 mmap_write_unlock(mm); 2976 2977 userfaultfd_unmap_complete(mm, &uf); 2978 return ret; 2979 } 2980