xref: /linux/mm/vma.c (revision f8d112a4e657c65c888e6b8a8435ef61a66e4ab8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 /*
11  * If the vma has a ->close operation then the driver probably needs to release
12  * per-vma resources, so we don't attempt to merge those if the caller indicates
13  * the current vma may be removed as part of the merge.
14  */
15 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
16 		struct file *file, unsigned long vm_flags,
17 		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
18 		struct anon_vma_name *anon_name, bool may_remove_vma)
19 {
20 	/*
21 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
22 	 * match the flags but dirty bit -- the caller should mark
23 	 * merged VMA as dirty. If dirty bit won't be excluded from
24 	 * comparison, we increase pressure on the memory system forcing
25 	 * the kernel to generate new VMAs when old one could be
26 	 * extended instead.
27 	 */
28 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
29 		return false;
30 	if (vma->vm_file != file)
31 		return false;
32 	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
33 		return false;
34 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
35 		return false;
36 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
37 		return false;
38 	return true;
39 }
40 
41 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
42 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
43 {
44 	/*
45 	 * The list_is_singular() test is to avoid merging VMA cloned from
46 	 * parents. This can improve scalability caused by anon_vma lock.
47 	 */
48 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
49 		list_is_singular(&vma->anon_vma_chain)))
50 		return true;
51 	return anon_vma1 == anon_vma2;
52 }
53 
54 /*
55  * init_multi_vma_prep() - Initializer for struct vma_prepare
56  * @vp: The vma_prepare struct
57  * @vma: The vma that will be altered once locked
58  * @next: The next vma if it is to be adjusted
59  * @remove: The first vma to be removed
60  * @remove2: The second vma to be removed
61  */
62 static void init_multi_vma_prep(struct vma_prepare *vp,
63 				struct vm_area_struct *vma,
64 				struct vm_area_struct *next,
65 				struct vm_area_struct *remove,
66 				struct vm_area_struct *remove2)
67 {
68 	memset(vp, 0, sizeof(struct vma_prepare));
69 	vp->vma = vma;
70 	vp->anon_vma = vma->anon_vma;
71 	vp->remove = remove;
72 	vp->remove2 = remove2;
73 	vp->adj_next = next;
74 	if (!vp->anon_vma && next)
75 		vp->anon_vma = next->anon_vma;
76 
77 	vp->file = vma->vm_file;
78 	if (vp->file)
79 		vp->mapping = vma->vm_file->f_mapping;
80 
81 }
82 
83 /*
84  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
85  * in front of (at a lower virtual address and file offset than) the vma.
86  *
87  * We cannot merge two vmas if they have differently assigned (non-NULL)
88  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
89  *
90  * We don't check here for the merged mmap wrapping around the end of pagecache
91  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
92  * wrap, nor mmaps which cover the final page at index -1UL.
93  *
94  * We assume the vma may be removed as part of the merge.
95  */
96 bool
97 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
98 		struct anon_vma *anon_vma, struct file *file,
99 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
100 		struct anon_vma_name *anon_name)
101 {
102 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
103 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
104 		if (vma->vm_pgoff == vm_pgoff)
105 			return true;
106 	}
107 	return false;
108 }
109 
110 /*
111  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
112  * beyond (at a higher virtual address and file offset than) the vma.
113  *
114  * We cannot merge two vmas if they have differently assigned (non-NULL)
115  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
116  *
117  * We assume that vma is not removed as part of the merge.
118  */
119 bool
120 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
121 		struct anon_vma *anon_vma, struct file *file,
122 		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
123 		struct anon_vma_name *anon_name)
124 {
125 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
126 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
127 		pgoff_t vm_pglen;
128 
129 		vm_pglen = vma_pages(vma);
130 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
131 			return true;
132 	}
133 	return false;
134 }
135 
136 /*
137  * Close a vm structure and free it.
138  */
139 void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed)
140 {
141 	might_sleep();
142 	if (!closed && vma->vm_ops && vma->vm_ops->close)
143 		vma->vm_ops->close(vma);
144 	if (vma->vm_file)
145 		fput(vma->vm_file);
146 	mpol_put(vma_policy(vma));
147 	if (unreachable)
148 		__vm_area_free(vma);
149 	else
150 		vm_area_free(vma);
151 }
152 
153 /*
154  * Get rid of page table information in the indicated region.
155  *
156  * Called with the mm semaphore held.
157  */
158 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
159 		struct vm_area_struct *prev, struct vm_area_struct *next)
160 {
161 	struct mm_struct *mm = vma->vm_mm;
162 	struct mmu_gather tlb;
163 
164 	lru_add_drain();
165 	tlb_gather_mmu(&tlb, mm);
166 	update_hiwater_rss(mm);
167 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
168 		   /* mm_wr_locked = */ true);
169 	mas_set(mas, vma->vm_end);
170 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
171 		      next ? next->vm_start : USER_PGTABLES_CEILING,
172 		      /* mm_wr_locked = */ true);
173 	tlb_finish_mmu(&tlb);
174 }
175 
176 /*
177  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
178  * has already been checked or doesn't make sense to fail.
179  * VMA Iterator will point to the original VMA.
180  */
181 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
182 		       unsigned long addr, int new_below)
183 {
184 	struct vma_prepare vp;
185 	struct vm_area_struct *new;
186 	int err;
187 
188 	WARN_ON(vma->vm_start >= addr);
189 	WARN_ON(vma->vm_end <= addr);
190 
191 	if (vma->vm_ops && vma->vm_ops->may_split) {
192 		err = vma->vm_ops->may_split(vma, addr);
193 		if (err)
194 			return err;
195 	}
196 
197 	new = vm_area_dup(vma);
198 	if (!new)
199 		return -ENOMEM;
200 
201 	if (new_below) {
202 		new->vm_end = addr;
203 	} else {
204 		new->vm_start = addr;
205 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
206 	}
207 
208 	err = -ENOMEM;
209 	vma_iter_config(vmi, new->vm_start, new->vm_end);
210 	if (vma_iter_prealloc(vmi, new))
211 		goto out_free_vma;
212 
213 	err = vma_dup_policy(vma, new);
214 	if (err)
215 		goto out_free_vmi;
216 
217 	err = anon_vma_clone(new, vma);
218 	if (err)
219 		goto out_free_mpol;
220 
221 	if (new->vm_file)
222 		get_file(new->vm_file);
223 
224 	if (new->vm_ops && new->vm_ops->open)
225 		new->vm_ops->open(new);
226 
227 	vma_start_write(vma);
228 	vma_start_write(new);
229 
230 	init_vma_prep(&vp, vma);
231 	vp.insert = new;
232 	vma_prepare(&vp);
233 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
234 
235 	if (new_below) {
236 		vma->vm_start = addr;
237 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
238 	} else {
239 		vma->vm_end = addr;
240 	}
241 
242 	/* vma_complete stores the new vma */
243 	vma_complete(&vp, vmi, vma->vm_mm);
244 	validate_mm(vma->vm_mm);
245 
246 	/* Success. */
247 	if (new_below)
248 		vma_next(vmi);
249 	else
250 		vma_prev(vmi);
251 
252 	return 0;
253 
254 out_free_mpol:
255 	mpol_put(vma_policy(new));
256 out_free_vmi:
257 	vma_iter_free(vmi);
258 out_free_vma:
259 	vm_area_free(new);
260 	return err;
261 }
262 
263 /*
264  * Split a vma into two pieces at address 'addr', a new vma is allocated
265  * either for the first part or the tail.
266  */
267 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
268 		     unsigned long addr, int new_below)
269 {
270 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
271 		return -ENOMEM;
272 
273 	return __split_vma(vmi, vma, addr, new_below);
274 }
275 
276 /*
277  * init_vma_prep() - Initializer wrapper for vma_prepare struct
278  * @vp: The vma_prepare struct
279  * @vma: The vma that will be altered once locked
280  */
281 void init_vma_prep(struct vma_prepare *vp,
282 		   struct vm_area_struct *vma)
283 {
284 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
285 }
286 
287 /*
288  * Requires inode->i_mapping->i_mmap_rwsem
289  */
290 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
291 				      struct address_space *mapping)
292 {
293 	if (vma_is_shared_maywrite(vma))
294 		mapping_unmap_writable(mapping);
295 
296 	flush_dcache_mmap_lock(mapping);
297 	vma_interval_tree_remove(vma, &mapping->i_mmap);
298 	flush_dcache_mmap_unlock(mapping);
299 }
300 
301 /*
302  * vma has some anon_vma assigned, and is already inserted on that
303  * anon_vma's interval trees.
304  *
305  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
306  * vma must be removed from the anon_vma's interval trees using
307  * anon_vma_interval_tree_pre_update_vma().
308  *
309  * After the update, the vma will be reinserted using
310  * anon_vma_interval_tree_post_update_vma().
311  *
312  * The entire update must be protected by exclusive mmap_lock and by
313  * the root anon_vma's mutex.
314  */
315 void
316 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
317 {
318 	struct anon_vma_chain *avc;
319 
320 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
321 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
322 }
323 
324 void
325 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
326 {
327 	struct anon_vma_chain *avc;
328 
329 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
331 }
332 
333 static void __vma_link_file(struct vm_area_struct *vma,
334 			    struct address_space *mapping)
335 {
336 	if (vma_is_shared_maywrite(vma))
337 		mapping_allow_writable(mapping);
338 
339 	flush_dcache_mmap_lock(mapping);
340 	vma_interval_tree_insert(vma, &mapping->i_mmap);
341 	flush_dcache_mmap_unlock(mapping);
342 }
343 
344 /*
345  * vma_prepare() - Helper function for handling locking VMAs prior to altering
346  * @vp: The initialized vma_prepare struct
347  */
348 void vma_prepare(struct vma_prepare *vp)
349 {
350 	if (vp->file) {
351 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
352 
353 		if (vp->adj_next)
354 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
355 				      vp->adj_next->vm_end);
356 
357 		i_mmap_lock_write(vp->mapping);
358 		if (vp->insert && vp->insert->vm_file) {
359 			/*
360 			 * Put into interval tree now, so instantiated pages
361 			 * are visible to arm/parisc __flush_dcache_page
362 			 * throughout; but we cannot insert into address
363 			 * space until vma start or end is updated.
364 			 */
365 			__vma_link_file(vp->insert,
366 					vp->insert->vm_file->f_mapping);
367 		}
368 	}
369 
370 	if (vp->anon_vma) {
371 		anon_vma_lock_write(vp->anon_vma);
372 		anon_vma_interval_tree_pre_update_vma(vp->vma);
373 		if (vp->adj_next)
374 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
375 	}
376 
377 	if (vp->file) {
378 		flush_dcache_mmap_lock(vp->mapping);
379 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
380 		if (vp->adj_next)
381 			vma_interval_tree_remove(vp->adj_next,
382 						 &vp->mapping->i_mmap);
383 	}
384 
385 }
386 
387 /*
388  * dup_anon_vma() - Helper function to duplicate anon_vma
389  * @dst: The destination VMA
390  * @src: The source VMA
391  * @dup: Pointer to the destination VMA when successful.
392  *
393  * Returns: 0 on success.
394  */
395 static int dup_anon_vma(struct vm_area_struct *dst,
396 			struct vm_area_struct *src, struct vm_area_struct **dup)
397 {
398 	/*
399 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
400 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
401 	 * anon pages imported.
402 	 */
403 	if (src->anon_vma && !dst->anon_vma) {
404 		int ret;
405 
406 		vma_assert_write_locked(dst);
407 		dst->anon_vma = src->anon_vma;
408 		ret = anon_vma_clone(dst, src);
409 		if (ret)
410 			return ret;
411 
412 		*dup = dst;
413 	}
414 
415 	return 0;
416 }
417 
418 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
419 void validate_mm(struct mm_struct *mm)
420 {
421 	int bug = 0;
422 	int i = 0;
423 	struct vm_area_struct *vma;
424 	VMA_ITERATOR(vmi, mm, 0);
425 
426 	mt_validate(&mm->mm_mt);
427 	for_each_vma(vmi, vma) {
428 #ifdef CONFIG_DEBUG_VM_RB
429 		struct anon_vma *anon_vma = vma->anon_vma;
430 		struct anon_vma_chain *avc;
431 #endif
432 		unsigned long vmi_start, vmi_end;
433 		bool warn = 0;
434 
435 		vmi_start = vma_iter_addr(&vmi);
436 		vmi_end = vma_iter_end(&vmi);
437 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
438 			warn = 1;
439 
440 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
441 			warn = 1;
442 
443 		if (warn) {
444 			pr_emerg("issue in %s\n", current->comm);
445 			dump_stack();
446 			dump_vma(vma);
447 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
448 				 vmi_start, vmi_end - 1);
449 			vma_iter_dump_tree(&vmi);
450 		}
451 
452 #ifdef CONFIG_DEBUG_VM_RB
453 		if (anon_vma) {
454 			anon_vma_lock_read(anon_vma);
455 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
456 				anon_vma_interval_tree_verify(avc);
457 			anon_vma_unlock_read(anon_vma);
458 		}
459 #endif
460 		i++;
461 	}
462 	if (i != mm->map_count) {
463 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
464 		bug = 1;
465 	}
466 	VM_BUG_ON_MM(bug, mm);
467 }
468 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
469 
470 /*
471  * vma_expand - Expand an existing VMA
472  *
473  * @vmi: The vma iterator
474  * @vma: The vma to expand
475  * @start: The start of the vma
476  * @end: The exclusive end of the vma
477  * @pgoff: The page offset of vma
478  * @next: The current of next vma.
479  *
480  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
481  * expand over @next if it's different from @vma and @end == @next->vm_end.
482  * Checking if the @vma can expand and merge with @next needs to be handled by
483  * the caller.
484  *
485  * Returns: 0 on success
486  */
487 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
488 	       unsigned long start, unsigned long end, pgoff_t pgoff,
489 	       struct vm_area_struct *next)
490 {
491 	struct vm_area_struct *anon_dup = NULL;
492 	bool remove_next = false;
493 	struct vma_prepare vp;
494 
495 	vma_start_write(vma);
496 	if (next && (vma != next) && (end == next->vm_end)) {
497 		int ret;
498 
499 		remove_next = true;
500 		vma_start_write(next);
501 		ret = dup_anon_vma(vma, next, &anon_dup);
502 		if (ret)
503 			return ret;
504 	}
505 
506 	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
507 	/* Not merging but overwriting any part of next is not handled. */
508 	VM_WARN_ON(next && !vp.remove &&
509 		  next != vma && end > next->vm_start);
510 	/* Only handles expanding */
511 	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
512 
513 	/* Note: vma iterator must be pointing to 'start' */
514 	vma_iter_config(vmi, start, end);
515 	if (vma_iter_prealloc(vmi, vma))
516 		goto nomem;
517 
518 	vma_prepare(&vp);
519 	vma_adjust_trans_huge(vma, start, end, 0);
520 	vma_set_range(vma, start, end, pgoff);
521 	vma_iter_store(vmi, vma);
522 
523 	vma_complete(&vp, vmi, vma->vm_mm);
524 	return 0;
525 
526 nomem:
527 	if (anon_dup)
528 		unlink_anon_vmas(anon_dup);
529 	return -ENOMEM;
530 }
531 
532 /*
533  * vma_shrink() - Reduce an existing VMAs memory area
534  * @vmi: The vma iterator
535  * @vma: The VMA to modify
536  * @start: The new start
537  * @end: The new end
538  *
539  * Returns: 0 on success, -ENOMEM otherwise
540  */
541 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
542 	       unsigned long start, unsigned long end, pgoff_t pgoff)
543 {
544 	struct vma_prepare vp;
545 
546 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
547 
548 	if (vma->vm_start < start)
549 		vma_iter_config(vmi, vma->vm_start, start);
550 	else
551 		vma_iter_config(vmi, end, vma->vm_end);
552 
553 	if (vma_iter_prealloc(vmi, NULL))
554 		return -ENOMEM;
555 
556 	vma_start_write(vma);
557 
558 	init_vma_prep(&vp, vma);
559 	vma_prepare(&vp);
560 	vma_adjust_trans_huge(vma, start, end, 0);
561 
562 	vma_iter_clear(vmi);
563 	vma_set_range(vma, start, end, pgoff);
564 	vma_complete(&vp, vmi, vma->vm_mm);
565 	validate_mm(vma->vm_mm);
566 	return 0;
567 }
568 
569 /*
570  * vma_complete- Helper function for handling the unlocking after altering VMAs,
571  * or for inserting a VMA.
572  *
573  * @vp: The vma_prepare struct
574  * @vmi: The vma iterator
575  * @mm: The mm_struct
576  */
577 void vma_complete(struct vma_prepare *vp,
578 		  struct vma_iterator *vmi, struct mm_struct *mm)
579 {
580 	if (vp->file) {
581 		if (vp->adj_next)
582 			vma_interval_tree_insert(vp->adj_next,
583 						 &vp->mapping->i_mmap);
584 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
585 		flush_dcache_mmap_unlock(vp->mapping);
586 	}
587 
588 	if (vp->remove && vp->file) {
589 		__remove_shared_vm_struct(vp->remove, vp->mapping);
590 		if (vp->remove2)
591 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
592 	} else if (vp->insert) {
593 		/*
594 		 * split_vma has split insert from vma, and needs
595 		 * us to insert it before dropping the locks
596 		 * (it may either follow vma or precede it).
597 		 */
598 		vma_iter_store(vmi, vp->insert);
599 		mm->map_count++;
600 	}
601 
602 	if (vp->anon_vma) {
603 		anon_vma_interval_tree_post_update_vma(vp->vma);
604 		if (vp->adj_next)
605 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
606 		anon_vma_unlock_write(vp->anon_vma);
607 	}
608 
609 	if (vp->file) {
610 		i_mmap_unlock_write(vp->mapping);
611 		uprobe_mmap(vp->vma);
612 
613 		if (vp->adj_next)
614 			uprobe_mmap(vp->adj_next);
615 	}
616 
617 	if (vp->remove) {
618 again:
619 		vma_mark_detached(vp->remove, true);
620 		if (vp->file) {
621 			uprobe_munmap(vp->remove, vp->remove->vm_start,
622 				      vp->remove->vm_end);
623 			fput(vp->file);
624 		}
625 		if (vp->remove->anon_vma)
626 			anon_vma_merge(vp->vma, vp->remove);
627 		mm->map_count--;
628 		mpol_put(vma_policy(vp->remove));
629 		if (!vp->remove2)
630 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
631 		vm_area_free(vp->remove);
632 
633 		/*
634 		 * In mprotect's case 6 (see comments on vma_merge),
635 		 * we are removing both mid and next vmas
636 		 */
637 		if (vp->remove2) {
638 			vp->remove = vp->remove2;
639 			vp->remove2 = NULL;
640 			goto again;
641 		}
642 	}
643 	if (vp->insert && vp->file)
644 		uprobe_mmap(vp->insert);
645 }
646 
647 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
648 		    struct ma_state *mas_detach, bool mm_wr_locked)
649 {
650 	struct mmu_gather tlb;
651 
652 	if (!vms->clear_ptes) /* Nothing to do */
653 		return;
654 
655 	/*
656 	 * We can free page tables without write-locking mmap_lock because VMAs
657 	 * were isolated before we downgraded mmap_lock.
658 	 */
659 	mas_set(mas_detach, 1);
660 	lru_add_drain();
661 	tlb_gather_mmu(&tlb, vms->mm);
662 	update_hiwater_rss(vms->mm);
663 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
664 		   vms->vma_count, mm_wr_locked);
665 
666 	mas_set(mas_detach, 1);
667 	/* start and end may be different if there is no prev or next vma. */
668 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
669 		      vms->unmap_end, mm_wr_locked);
670 	tlb_finish_mmu(&tlb);
671 	vms->clear_ptes = false;
672 }
673 
674 void vms_clean_up_area(struct vma_munmap_struct *vms,
675 		struct ma_state *mas_detach, bool mm_wr_locked)
676 {
677 	struct vm_area_struct *vma;
678 
679 	if (!vms->nr_pages)
680 		return;
681 
682 	vms_clear_ptes(vms, mas_detach, mm_wr_locked);
683 	mas_set(mas_detach, 0);
684 	mas_for_each(mas_detach, vma, ULONG_MAX)
685 		if (vma->vm_ops && vma->vm_ops->close)
686 			vma->vm_ops->close(vma);
687 	vms->closed_vm_ops = true;
688 }
689 
690 /*
691  * vms_complete_munmap_vmas() - Finish the munmap() operation
692  * @vms: The vma munmap struct
693  * @mas_detach: The maple state of the detached vmas
694  *
695  * This updates the mm_struct, unmaps the region, frees the resources
696  * used for the munmap() and may downgrade the lock - if requested.  Everything
697  * needed to be done once the vma maple tree is updated.
698  */
699 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
700 		struct ma_state *mas_detach)
701 {
702 	struct vm_area_struct *vma;
703 	struct mm_struct *mm;
704 
705 	mm = vms->mm;
706 	mm->map_count -= vms->vma_count;
707 	mm->locked_vm -= vms->locked_vm;
708 	if (vms->unlock)
709 		mmap_write_downgrade(mm);
710 
711 	if (!vms->nr_pages)
712 		return;
713 
714 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
715 	/* Update high watermark before we lower total_vm */
716 	update_hiwater_vm(mm);
717 	/* Stat accounting */
718 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
719 	/* Paranoid bookkeeping */
720 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
721 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
722 	VM_WARN_ON(vms->data_vm > mm->data_vm);
723 	mm->exec_vm -= vms->exec_vm;
724 	mm->stack_vm -= vms->stack_vm;
725 	mm->data_vm -= vms->data_vm;
726 
727 	/* Remove and clean up vmas */
728 	mas_set(mas_detach, 0);
729 	mas_for_each(mas_detach, vma, ULONG_MAX)
730 		remove_vma(vma, /* = */ false, vms->closed_vm_ops);
731 
732 	vm_unacct_memory(vms->nr_accounted);
733 	validate_mm(mm);
734 	if (vms->unlock)
735 		mmap_read_unlock(mm);
736 
737 	__mt_destroy(mas_detach->tree);
738 }
739 
740 /*
741  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
742  * for removal at a later date.  Handles splitting first and last if necessary
743  * and marking the vmas as isolated.
744  *
745  * @vms: The vma munmap struct
746  * @mas_detach: The maple state tracking the detached tree
747  *
748  * Return: 0 on success, -EPERM on mseal vmas, -ENOMEM otherwise
749  */
750 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
751 		struct ma_state *mas_detach)
752 {
753 	struct vm_area_struct *next = NULL;
754 	int error = -ENOMEM;
755 
756 	/*
757 	 * If we need to split any vma, do it now to save pain later.
758 	 *
759 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
760 	 * unmapped vm_area_struct will remain in use: so lower split_vma
761 	 * places tmp vma above, and higher split_vma places tmp vma below.
762 	 */
763 
764 	/* Does it split the first one? */
765 	if (vms->start > vms->vma->vm_start) {
766 
767 		/*
768 		 * Make sure that map_count on return from munmap() will
769 		 * not exceed its limit; but let map_count go just above
770 		 * its limit temporarily, to help free resources as expected.
771 		 */
772 		if (vms->end < vms->vma->vm_end &&
773 		    vms->mm->map_count >= sysctl_max_map_count)
774 			goto map_count_exceeded;
775 
776 		/* Don't bother splitting the VMA if we can't unmap it anyway */
777 		if (!can_modify_vma(vms->vma)) {
778 			error = -EPERM;
779 			goto start_split_failed;
780 		}
781 
782 		if (__split_vma(vms->vmi, vms->vma, vms->start, 1))
783 			goto start_split_failed;
784 	}
785 	vms->prev = vma_prev(vms->vmi);
786 	if (vms->prev)
787 		vms->unmap_start = vms->prev->vm_end;
788 
789 	/*
790 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
791 	 * it is always overwritten.
792 	 */
793 	for_each_vma_range(*(vms->vmi), next, vms->end) {
794 		long nrpages;
795 
796 		if (!can_modify_vma(next)) {
797 			error = -EPERM;
798 			goto modify_vma_failed;
799 		}
800 		/* Does it split the end? */
801 		if (next->vm_end > vms->end) {
802 			if (__split_vma(vms->vmi, next, vms->end, 0))
803 				goto end_split_failed;
804 		}
805 		vma_start_write(next);
806 		mas_set(mas_detach, vms->vma_count++);
807 		if (mas_store_gfp(mas_detach, next, GFP_KERNEL))
808 			goto munmap_gather_failed;
809 
810 		vma_mark_detached(next, true);
811 		nrpages = vma_pages(next);
812 
813 		vms->nr_pages += nrpages;
814 		if (next->vm_flags & VM_LOCKED)
815 			vms->locked_vm += nrpages;
816 
817 		if (next->vm_flags & VM_ACCOUNT)
818 			vms->nr_accounted += nrpages;
819 
820 		if (is_exec_mapping(next->vm_flags))
821 			vms->exec_vm += nrpages;
822 		else if (is_stack_mapping(next->vm_flags))
823 			vms->stack_vm += nrpages;
824 		else if (is_data_mapping(next->vm_flags))
825 			vms->data_vm += nrpages;
826 
827 		if (unlikely(vms->uf)) {
828 			/*
829 			 * If userfaultfd_unmap_prep returns an error the vmas
830 			 * will remain split, but userland will get a
831 			 * highly unexpected error anyway. This is no
832 			 * different than the case where the first of the two
833 			 * __split_vma fails, but we don't undo the first
834 			 * split, despite we could. This is unlikely enough
835 			 * failure that it's not worth optimizing it for.
836 			 */
837 			if (userfaultfd_unmap_prep(next, vms->start, vms->end,
838 						   vms->uf))
839 				goto userfaultfd_error;
840 		}
841 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
842 		BUG_ON(next->vm_start < vms->start);
843 		BUG_ON(next->vm_start > vms->end);
844 #endif
845 	}
846 
847 	vms->next = vma_next(vms->vmi);
848 	if (vms->next)
849 		vms->unmap_end = vms->next->vm_start;
850 
851 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
852 	/* Make sure no VMAs are about to be lost. */
853 	{
854 		MA_STATE(test, mas_detach->tree, 0, 0);
855 		struct vm_area_struct *vma_mas, *vma_test;
856 		int test_count = 0;
857 
858 		vma_iter_set(vms->vmi, vms->start);
859 		rcu_read_lock();
860 		vma_test = mas_find(&test, vms->vma_count - 1);
861 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
862 			BUG_ON(vma_mas != vma_test);
863 			test_count++;
864 			vma_test = mas_next(&test, vms->vma_count - 1);
865 		}
866 		rcu_read_unlock();
867 		BUG_ON(vms->vma_count != test_count);
868 	}
869 #endif
870 
871 	while (vma_iter_addr(vms->vmi) > vms->start)
872 		vma_iter_prev_range(vms->vmi);
873 
874 	vms->clear_ptes = true;
875 	return 0;
876 
877 userfaultfd_error:
878 munmap_gather_failed:
879 end_split_failed:
880 modify_vma_failed:
881 	abort_munmap_vmas(mas_detach, /* closed = */ false);
882 start_split_failed:
883 map_count_exceeded:
884 	return error;
885 }
886 
887 /*
888  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
889  * @vmi: The vma iterator
890  * @vma: The starting vm_area_struct
891  * @mm: The mm_struct
892  * @start: The aligned start address to munmap.
893  * @end: The aligned end address to munmap.
894  * @uf: The userfaultfd list_head
895  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
896  * success.
897  *
898  * Return: 0 on success and drops the lock if so directed, error and leaves the
899  * lock held otherwise.
900  */
901 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
902 		struct mm_struct *mm, unsigned long start, unsigned long end,
903 		struct list_head *uf, bool unlock)
904 {
905 	struct maple_tree mt_detach;
906 	MA_STATE(mas_detach, &mt_detach, 0, 0);
907 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
908 	mt_on_stack(mt_detach);
909 	struct vma_munmap_struct vms;
910 	int error;
911 
912 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
913 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
914 	if (error)
915 		goto gather_failed;
916 
917 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
918 	if (error)
919 		goto clear_tree_failed;
920 
921 	/* Point of no return */
922 	vms_complete_munmap_vmas(&vms, &mas_detach);
923 	return 0;
924 
925 clear_tree_failed:
926 	abort_munmap_vmas(&mas_detach, /* closed = */ false);
927 gather_failed:
928 	validate_mm(mm);
929 	return error;
930 }
931 
932 /*
933  * do_vmi_munmap() - munmap a given range.
934  * @vmi: The vma iterator
935  * @mm: The mm_struct
936  * @start: The start address to munmap
937  * @len: The length of the range to munmap
938  * @uf: The userfaultfd list_head
939  * @unlock: set to true if the user wants to drop the mmap_lock on success
940  *
941  * This function takes a @mas that is either pointing to the previous VMA or set
942  * to MA_START and sets it up to remove the mapping(s).  The @len will be
943  * aligned.
944  *
945  * Return: 0 on success and drops the lock if so directed, error and leaves the
946  * lock held otherwise.
947  */
948 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
949 		  unsigned long start, size_t len, struct list_head *uf,
950 		  bool unlock)
951 {
952 	unsigned long end;
953 	struct vm_area_struct *vma;
954 
955 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
956 		return -EINVAL;
957 
958 	end = start + PAGE_ALIGN(len);
959 	if (end == start)
960 		return -EINVAL;
961 
962 	/* Find the first overlapping VMA */
963 	vma = vma_find(vmi, end);
964 	if (!vma) {
965 		if (unlock)
966 			mmap_write_unlock(mm);
967 		return 0;
968 	}
969 
970 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
971 }
972 
973 /*
974  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
975  * figure out whether that can be merged with its predecessor or its
976  * successor.  Or both (it neatly fills a hole).
977  *
978  * In most cases - when called for mmap, brk or mremap - [addr,end) is
979  * certain not to be mapped by the time vma_merge is called; but when
980  * called for mprotect, it is certain to be already mapped (either at
981  * an offset within prev, or at the start of next), and the flags of
982  * this area are about to be changed to vm_flags - and the no-change
983  * case has already been eliminated.
984  *
985  * The following mprotect cases have to be considered, where **** is
986  * the area passed down from mprotect_fixup, never extending beyond one
987  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
988  * at the same address as **** and is of the same or larger span, and
989  * NNNN the next vma after ****:
990  *
991  *     ****             ****                   ****
992  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
993  *    cannot merge    might become       might become
994  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
995  *    mmap, brk or    case 4 below       case 5 below
996  *    mremap move:
997  *                        ****               ****
998  *                    PPPP    NNNN       PPPPCCCCNNNN
999  *                    might become       might become
1000  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1001  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
1002  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
1003  *
1004  * It is important for case 8 that the vma CCCC overlapping the
1005  * region **** is never going to extended over NNNN. Instead NNNN must
1006  * be extended in region **** and CCCC must be removed. This way in
1007  * all cases where vma_merge succeeds, the moment vma_merge drops the
1008  * rmap_locks, the properties of the merged vma will be already
1009  * correct for the whole merged range. Some of those properties like
1010  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1011  * be correct for the whole merged range immediately after the
1012  * rmap_locks are released. Otherwise if NNNN would be removed and
1013  * CCCC would be extended over the NNNN range, remove_migration_ptes
1014  * or other rmap walkers (if working on addresses beyond the "end"
1015  * parameter) may establish ptes with the wrong permissions of CCCC
1016  * instead of the right permissions of NNNN.
1017  *
1018  * In the code below:
1019  * PPPP is represented by *prev
1020  * CCCC is represented by *curr or not represented at all (NULL)
1021  * NNNN is represented by *next or not represented at all (NULL)
1022  * **** is not represented - it will be merged and the vma containing the
1023  *      area is returned, or the function will return NULL
1024  */
1025 static struct vm_area_struct
1026 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
1027 	   struct vm_area_struct *src, unsigned long addr, unsigned long end,
1028 	   unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
1029 	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1030 	   struct anon_vma_name *anon_name)
1031 {
1032 	struct mm_struct *mm = src->vm_mm;
1033 	struct anon_vma *anon_vma = src->anon_vma;
1034 	struct file *file = src->vm_file;
1035 	struct vm_area_struct *curr, *next, *res;
1036 	struct vm_area_struct *vma, *adjust, *remove, *remove2;
1037 	struct vm_area_struct *anon_dup = NULL;
1038 	struct vma_prepare vp;
1039 	pgoff_t vma_pgoff;
1040 	int err = 0;
1041 	bool merge_prev = false;
1042 	bool merge_next = false;
1043 	bool vma_expanded = false;
1044 	unsigned long vma_start = addr;
1045 	unsigned long vma_end = end;
1046 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1047 	long adj_start = 0;
1048 
1049 	/*
1050 	 * We later require that vma->vm_flags == vm_flags,
1051 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1052 	 */
1053 	if (vm_flags & VM_SPECIAL)
1054 		return NULL;
1055 
1056 	/* Does the input range span an existing VMA? (cases 5 - 8) */
1057 	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
1058 
1059 	if (!curr ||			/* cases 1 - 4 */
1060 	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
1061 		next = vma_lookup(mm, end);
1062 	else
1063 		next = NULL;		/* case 5 */
1064 
1065 	if (prev) {
1066 		vma_start = prev->vm_start;
1067 		vma_pgoff = prev->vm_pgoff;
1068 
1069 		/* Can we merge the predecessor? */
1070 		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
1071 		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
1072 					   pgoff, vm_userfaultfd_ctx, anon_name)) {
1073 			merge_prev = true;
1074 			vma_prev(vmi);
1075 		}
1076 	}
1077 
1078 	/* Can we merge the successor? */
1079 	if (next && mpol_equal(policy, vma_policy(next)) &&
1080 	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
1081 				 vm_userfaultfd_ctx, anon_name)) {
1082 		merge_next = true;
1083 	}
1084 
1085 	/* Verify some invariant that must be enforced by the caller. */
1086 	VM_WARN_ON(prev && addr <= prev->vm_start);
1087 	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
1088 	VM_WARN_ON(addr >= end);
1089 
1090 	if (!merge_prev && !merge_next)
1091 		return NULL; /* Not mergeable. */
1092 
1093 	if (merge_prev)
1094 		vma_start_write(prev);
1095 
1096 	res = vma = prev;
1097 	remove = remove2 = adjust = NULL;
1098 
1099 	/* Can we merge both the predecessor and the successor? */
1100 	if (merge_prev && merge_next &&
1101 	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
1102 		vma_start_write(next);
1103 		remove = next;				/* case 1 */
1104 		vma_end = next->vm_end;
1105 		err = dup_anon_vma(prev, next, &anon_dup);
1106 		if (curr) {				/* case 6 */
1107 			vma_start_write(curr);
1108 			remove = curr;
1109 			remove2 = next;
1110 			/*
1111 			 * Note that the dup_anon_vma below cannot overwrite err
1112 			 * since the first caller would do nothing unless next
1113 			 * has an anon_vma.
1114 			 */
1115 			if (!next->anon_vma)
1116 				err = dup_anon_vma(prev, curr, &anon_dup);
1117 		}
1118 	} else if (merge_prev) {			/* case 2 */
1119 		if (curr) {
1120 			vma_start_write(curr);
1121 			if (end == curr->vm_end) {	/* case 7 */
1122 				/*
1123 				 * can_vma_merge_after() assumed we would not be
1124 				 * removing prev vma, so it skipped the check
1125 				 * for vm_ops->close, but we are removing curr
1126 				 */
1127 				if (curr->vm_ops && curr->vm_ops->close)
1128 					err = -EINVAL;
1129 				remove = curr;
1130 			} else {			/* case 5 */
1131 				adjust = curr;
1132 				adj_start = (end - curr->vm_start);
1133 			}
1134 			if (!err)
1135 				err = dup_anon_vma(prev, curr, &anon_dup);
1136 		}
1137 	} else { /* merge_next */
1138 		vma_start_write(next);
1139 		res = next;
1140 		if (prev && addr < prev->vm_end) {	/* case 4 */
1141 			vma_start_write(prev);
1142 			vma_end = addr;
1143 			adjust = next;
1144 			adj_start = -(prev->vm_end - addr);
1145 			err = dup_anon_vma(next, prev, &anon_dup);
1146 		} else {
1147 			/*
1148 			 * Note that cases 3 and 8 are the ONLY ones where prev
1149 			 * is permitted to be (but is not necessarily) NULL.
1150 			 */
1151 			vma = next;			/* case 3 */
1152 			vma_start = addr;
1153 			vma_end = next->vm_end;
1154 			vma_pgoff = next->vm_pgoff - pglen;
1155 			if (curr) {			/* case 8 */
1156 				vma_pgoff = curr->vm_pgoff;
1157 				vma_start_write(curr);
1158 				remove = curr;
1159 				err = dup_anon_vma(next, curr, &anon_dup);
1160 			}
1161 		}
1162 	}
1163 
1164 	/* Error in anon_vma clone. */
1165 	if (err)
1166 		goto anon_vma_fail;
1167 
1168 	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1169 		vma_expanded = true;
1170 
1171 	if (vma_expanded) {
1172 		vma_iter_config(vmi, vma_start, vma_end);
1173 	} else {
1174 		vma_iter_config(vmi, adjust->vm_start + adj_start,
1175 				adjust->vm_end);
1176 	}
1177 
1178 	if (vma_iter_prealloc(vmi, vma))
1179 		goto prealloc_fail;
1180 
1181 	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1182 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1183 		   vp.anon_vma != adjust->anon_vma);
1184 
1185 	vma_prepare(&vp);
1186 	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1187 	vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1188 
1189 	if (vma_expanded)
1190 		vma_iter_store(vmi, vma);
1191 
1192 	if (adj_start) {
1193 		adjust->vm_start += adj_start;
1194 		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1195 		if (adj_start < 0) {
1196 			WARN_ON(vma_expanded);
1197 			vma_iter_store(vmi, next);
1198 		}
1199 	}
1200 
1201 	vma_complete(&vp, vmi, mm);
1202 	validate_mm(mm);
1203 	khugepaged_enter_vma(res, vm_flags);
1204 	return res;
1205 
1206 prealloc_fail:
1207 	if (anon_dup)
1208 		unlink_anon_vmas(anon_dup);
1209 
1210 anon_vma_fail:
1211 	vma_iter_set(vmi, addr);
1212 	vma_iter_load(vmi);
1213 	return NULL;
1214 }
1215 
1216 /*
1217  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1218  * context and anonymous VMA name within the range [start, end).
1219  *
1220  * As a result, we might be able to merge the newly modified VMA range with an
1221  * adjacent VMA with identical properties.
1222  *
1223  * If no merge is possible and the range does not span the entirety of the VMA,
1224  * we then need to split the VMA to accommodate the change.
1225  *
1226  * The function returns either the merged VMA, the original VMA if a split was
1227  * required instead, or an error if the split failed.
1228  */
1229 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
1230 				  struct vm_area_struct *prev,
1231 				  struct vm_area_struct *vma,
1232 				  unsigned long start, unsigned long end,
1233 				  unsigned long vm_flags,
1234 				  struct mempolicy *policy,
1235 				  struct vm_userfaultfd_ctx uffd_ctx,
1236 				  struct anon_vma_name *anon_name)
1237 {
1238 	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1239 	struct vm_area_struct *merged;
1240 
1241 	merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
1242 			   pgoff, policy, uffd_ctx, anon_name);
1243 	if (merged)
1244 		return merged;
1245 
1246 	if (vma->vm_start < start) {
1247 		int err = split_vma(vmi, vma, start, 1);
1248 
1249 		if (err)
1250 			return ERR_PTR(err);
1251 	}
1252 
1253 	if (vma->vm_end > end) {
1254 		int err = split_vma(vmi, vma, end, 0);
1255 
1256 		if (err)
1257 			return ERR_PTR(err);
1258 	}
1259 
1260 	return vma;
1261 }
1262 
1263 /*
1264  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
1265  * must ensure that [start, end) does not overlap any existing VMA.
1266  */
1267 struct vm_area_struct
1268 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
1269 		   struct vm_area_struct *vma, unsigned long start,
1270 		   unsigned long end, pgoff_t pgoff)
1271 {
1272 	return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
1273 			 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1274 }
1275 
1276 /*
1277  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1278  * VMA with identical properties.
1279  */
1280 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1281 					struct vm_area_struct *vma,
1282 					unsigned long delta)
1283 {
1284 	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
1285 
1286 	/* vma is specified as prev, so case 1 or 2 will apply. */
1287 	return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
1288 			 vma->vm_flags, pgoff, vma_policy(vma),
1289 			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1290 }
1291 
1292 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1293 {
1294 	vb->count = 0;
1295 }
1296 
1297 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1298 {
1299 	struct address_space *mapping;
1300 	int i;
1301 
1302 	mapping = vb->vmas[0]->vm_file->f_mapping;
1303 	i_mmap_lock_write(mapping);
1304 	for (i = 0; i < vb->count; i++) {
1305 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1306 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1307 	}
1308 	i_mmap_unlock_write(mapping);
1309 
1310 	unlink_file_vma_batch_init(vb);
1311 }
1312 
1313 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1314 			       struct vm_area_struct *vma)
1315 {
1316 	if (vma->vm_file == NULL)
1317 		return;
1318 
1319 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1320 	    vb->count == ARRAY_SIZE(vb->vmas))
1321 		unlink_file_vma_batch_process(vb);
1322 
1323 	vb->vmas[vb->count] = vma;
1324 	vb->count++;
1325 }
1326 
1327 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1328 {
1329 	if (vb->count > 0)
1330 		unlink_file_vma_batch_process(vb);
1331 }
1332 
1333 /*
1334  * Unlink a file-based vm structure from its interval tree, to hide
1335  * vma from rmap and vmtruncate before freeing its page tables.
1336  */
1337 void unlink_file_vma(struct vm_area_struct *vma)
1338 {
1339 	struct file *file = vma->vm_file;
1340 
1341 	if (file) {
1342 		struct address_space *mapping = file->f_mapping;
1343 
1344 		i_mmap_lock_write(mapping);
1345 		__remove_shared_vm_struct(vma, mapping);
1346 		i_mmap_unlock_write(mapping);
1347 	}
1348 }
1349 
1350 void vma_link_file(struct vm_area_struct *vma)
1351 {
1352 	struct file *file = vma->vm_file;
1353 	struct address_space *mapping;
1354 
1355 	if (file) {
1356 		mapping = file->f_mapping;
1357 		i_mmap_lock_write(mapping);
1358 		__vma_link_file(vma, mapping);
1359 		i_mmap_unlock_write(mapping);
1360 	}
1361 }
1362 
1363 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1364 {
1365 	VMA_ITERATOR(vmi, mm, 0);
1366 
1367 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1368 	if (vma_iter_prealloc(&vmi, vma))
1369 		return -ENOMEM;
1370 
1371 	vma_start_write(vma);
1372 	vma_iter_store(&vmi, vma);
1373 	vma_link_file(vma);
1374 	mm->map_count++;
1375 	validate_mm(mm);
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Copy the vma structure to a new location in the same mm,
1381  * prior to moving page table entries, to effect an mremap move.
1382  */
1383 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1384 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1385 	bool *need_rmap_locks)
1386 {
1387 	struct vm_area_struct *vma = *vmap;
1388 	unsigned long vma_start = vma->vm_start;
1389 	struct mm_struct *mm = vma->vm_mm;
1390 	struct vm_area_struct *new_vma, *prev;
1391 	bool faulted_in_anon_vma = true;
1392 	VMA_ITERATOR(vmi, mm, addr);
1393 
1394 	/*
1395 	 * If anonymous vma has not yet been faulted, update new pgoff
1396 	 * to match new location, to increase its chance of merging.
1397 	 */
1398 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1399 		pgoff = addr >> PAGE_SHIFT;
1400 		faulted_in_anon_vma = false;
1401 	}
1402 
1403 	new_vma = find_vma_prev(mm, addr, &prev);
1404 	if (new_vma && new_vma->vm_start < addr + len)
1405 		return NULL;	/* should never get here */
1406 
1407 	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
1408 	if (new_vma) {
1409 		/*
1410 		 * Source vma may have been merged into new_vma
1411 		 */
1412 		if (unlikely(vma_start >= new_vma->vm_start &&
1413 			     vma_start < new_vma->vm_end)) {
1414 			/*
1415 			 * The only way we can get a vma_merge with
1416 			 * self during an mremap is if the vma hasn't
1417 			 * been faulted in yet and we were allowed to
1418 			 * reset the dst vma->vm_pgoff to the
1419 			 * destination address of the mremap to allow
1420 			 * the merge to happen. mremap must change the
1421 			 * vm_pgoff linearity between src and dst vmas
1422 			 * (in turn preventing a vma_merge) to be
1423 			 * safe. It is only safe to keep the vm_pgoff
1424 			 * linear if there are no pages mapped yet.
1425 			 */
1426 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1427 			*vmap = vma = new_vma;
1428 		}
1429 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1430 	} else {
1431 		new_vma = vm_area_dup(vma);
1432 		if (!new_vma)
1433 			goto out;
1434 		vma_set_range(new_vma, addr, addr + len, pgoff);
1435 		if (vma_dup_policy(vma, new_vma))
1436 			goto out_free_vma;
1437 		if (anon_vma_clone(new_vma, vma))
1438 			goto out_free_mempol;
1439 		if (new_vma->vm_file)
1440 			get_file(new_vma->vm_file);
1441 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1442 			new_vma->vm_ops->open(new_vma);
1443 		if (vma_link(mm, new_vma))
1444 			goto out_vma_link;
1445 		*need_rmap_locks = false;
1446 	}
1447 	return new_vma;
1448 
1449 out_vma_link:
1450 	if (new_vma->vm_ops && new_vma->vm_ops->close)
1451 		new_vma->vm_ops->close(new_vma);
1452 
1453 	if (new_vma->vm_file)
1454 		fput(new_vma->vm_file);
1455 
1456 	unlink_anon_vmas(new_vma);
1457 out_free_mempol:
1458 	mpol_put(vma_policy(new_vma));
1459 out_free_vma:
1460 	vm_area_free(new_vma);
1461 out:
1462 	return NULL;
1463 }
1464 
1465 /*
1466  * Rough compatibility check to quickly see if it's even worth looking
1467  * at sharing an anon_vma.
1468  *
1469  * They need to have the same vm_file, and the flags can only differ
1470  * in things that mprotect may change.
1471  *
1472  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1473  * we can merge the two vma's. For example, we refuse to merge a vma if
1474  * there is a vm_ops->close() function, because that indicates that the
1475  * driver is doing some kind of reference counting. But that doesn't
1476  * really matter for the anon_vma sharing case.
1477  */
1478 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1479 {
1480 	return a->vm_end == b->vm_start &&
1481 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1482 		a->vm_file == b->vm_file &&
1483 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1484 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1485 }
1486 
1487 /*
1488  * Do some basic sanity checking to see if we can re-use the anon_vma
1489  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1490  * the same as 'old', the other will be the new one that is trying
1491  * to share the anon_vma.
1492  *
1493  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1494  * the anon_vma of 'old' is concurrently in the process of being set up
1495  * by another page fault trying to merge _that_. But that's ok: if it
1496  * is being set up, that automatically means that it will be a singleton
1497  * acceptable for merging, so we can do all of this optimistically. But
1498  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1499  *
1500  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1501  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1502  * is to return an anon_vma that is "complex" due to having gone through
1503  * a fork).
1504  *
1505  * We also make sure that the two vma's are compatible (adjacent,
1506  * and with the same memory policies). That's all stable, even with just
1507  * a read lock on the mmap_lock.
1508  */
1509 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1510 					  struct vm_area_struct *a,
1511 					  struct vm_area_struct *b)
1512 {
1513 	if (anon_vma_compatible(a, b)) {
1514 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1515 
1516 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1517 			return anon_vma;
1518 	}
1519 	return NULL;
1520 }
1521 
1522 /*
1523  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1524  * neighbouring vmas for a suitable anon_vma, before it goes off
1525  * to allocate a new anon_vma.  It checks because a repetitive
1526  * sequence of mprotects and faults may otherwise lead to distinct
1527  * anon_vmas being allocated, preventing vma merge in subsequent
1528  * mprotect.
1529  */
1530 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1531 {
1532 	struct anon_vma *anon_vma = NULL;
1533 	struct vm_area_struct *prev, *next;
1534 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1535 
1536 	/* Try next first. */
1537 	next = vma_iter_load(&vmi);
1538 	if (next) {
1539 		anon_vma = reusable_anon_vma(next, vma, next);
1540 		if (anon_vma)
1541 			return anon_vma;
1542 	}
1543 
1544 	prev = vma_prev(&vmi);
1545 	VM_BUG_ON_VMA(prev != vma, vma);
1546 	prev = vma_prev(&vmi);
1547 	/* Try prev next. */
1548 	if (prev)
1549 		anon_vma = reusable_anon_vma(prev, prev, vma);
1550 
1551 	/*
1552 	 * We might reach here with anon_vma == NULL if we can't find
1553 	 * any reusable anon_vma.
1554 	 * There's no absolute need to look only at touching neighbours:
1555 	 * we could search further afield for "compatible" anon_vmas.
1556 	 * But it would probably just be a waste of time searching,
1557 	 * or lead to too many vmas hanging off the same anon_vma.
1558 	 * We're trying to allow mprotect remerging later on,
1559 	 * not trying to minimize memory used for anon_vmas.
1560 	 */
1561 	return anon_vma;
1562 }
1563 
1564 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1565 {
1566 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1567 }
1568 
1569 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1570 {
1571 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1572 		(VM_WRITE | VM_SHARED);
1573 }
1574 
1575 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1576 {
1577 	/* No managed pages to writeback. */
1578 	if (vma->vm_flags & VM_PFNMAP)
1579 		return false;
1580 
1581 	return vma->vm_file && vma->vm_file->f_mapping &&
1582 		mapping_can_writeback(vma->vm_file->f_mapping);
1583 }
1584 
1585 /*
1586  * Does this VMA require the underlying folios to have their dirty state
1587  * tracked?
1588  */
1589 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1590 {
1591 	/* Only shared, writable VMAs require dirty tracking. */
1592 	if (!vma_is_shared_writable(vma))
1593 		return false;
1594 
1595 	/* Does the filesystem need to be notified? */
1596 	if (vm_ops_needs_writenotify(vma->vm_ops))
1597 		return true;
1598 
1599 	/*
1600 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1601 	 * can writeback, dirty tracking is still required.
1602 	 */
1603 	return vma_fs_can_writeback(vma);
1604 }
1605 
1606 /*
1607  * Some shared mappings will want the pages marked read-only
1608  * to track write events. If so, we'll downgrade vm_page_prot
1609  * to the private version (using protection_map[] without the
1610  * VM_SHARED bit).
1611  */
1612 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1613 {
1614 	/* If it was private or non-writable, the write bit is already clear */
1615 	if (!vma_is_shared_writable(vma))
1616 		return false;
1617 
1618 	/* The backer wishes to know when pages are first written to? */
1619 	if (vm_ops_needs_writenotify(vma->vm_ops))
1620 		return true;
1621 
1622 	/* The open routine did something to the protections that pgprot_modify
1623 	 * won't preserve? */
1624 	if (pgprot_val(vm_page_prot) !=
1625 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1626 		return false;
1627 
1628 	/*
1629 	 * Do we need to track softdirty? hugetlb does not support softdirty
1630 	 * tracking yet.
1631 	 */
1632 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1633 		return true;
1634 
1635 	/* Do we need write faults for uffd-wp tracking? */
1636 	if (userfaultfd_wp(vma))
1637 		return true;
1638 
1639 	/* Can the mapping track the dirty pages? */
1640 	return vma_fs_can_writeback(vma);
1641 }
1642 
1643 unsigned long count_vma_pages_range(struct mm_struct *mm,
1644 		unsigned long addr, unsigned long end,
1645 		unsigned long *nr_accounted)
1646 {
1647 	VMA_ITERATOR(vmi, mm, addr);
1648 	struct vm_area_struct *vma;
1649 	unsigned long nr_pages = 0;
1650 
1651 	*nr_accounted = 0;
1652 	for_each_vma_range(vmi, vma, end) {
1653 		unsigned long vm_start = max(addr, vma->vm_start);
1654 		unsigned long vm_end = min(end, vma->vm_end);
1655 
1656 		nr_pages += PHYS_PFN(vm_end - vm_start);
1657 		if (vma->vm_flags & VM_ACCOUNT)
1658 			*nr_accounted += PHYS_PFN(vm_end - vm_start);
1659 	}
1660 
1661 	return nr_pages;
1662 }
1663 
1664 static DEFINE_MUTEX(mm_all_locks_mutex);
1665 
1666 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1667 {
1668 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1669 		/*
1670 		 * The LSB of head.next can't change from under us
1671 		 * because we hold the mm_all_locks_mutex.
1672 		 */
1673 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1674 		/*
1675 		 * We can safely modify head.next after taking the
1676 		 * anon_vma->root->rwsem. If some other vma in this mm shares
1677 		 * the same anon_vma we won't take it again.
1678 		 *
1679 		 * No need of atomic instructions here, head.next
1680 		 * can't change from under us thanks to the
1681 		 * anon_vma->root->rwsem.
1682 		 */
1683 		if (__test_and_set_bit(0, (unsigned long *)
1684 				       &anon_vma->root->rb_root.rb_root.rb_node))
1685 			BUG();
1686 	}
1687 }
1688 
1689 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1690 {
1691 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1692 		/*
1693 		 * AS_MM_ALL_LOCKS can't change from under us because
1694 		 * we hold the mm_all_locks_mutex.
1695 		 *
1696 		 * Operations on ->flags have to be atomic because
1697 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
1698 		 * mm_all_locks_mutex, there may be other cpus
1699 		 * changing other bitflags in parallel to us.
1700 		 */
1701 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1702 			BUG();
1703 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1704 	}
1705 }
1706 
1707 /*
1708  * This operation locks against the VM for all pte/vma/mm related
1709  * operations that could ever happen on a certain mm. This includes
1710  * vmtruncate, try_to_unmap, and all page faults.
1711  *
1712  * The caller must take the mmap_lock in write mode before calling
1713  * mm_take_all_locks(). The caller isn't allowed to release the
1714  * mmap_lock until mm_drop_all_locks() returns.
1715  *
1716  * mmap_lock in write mode is required in order to block all operations
1717  * that could modify pagetables and free pages without need of
1718  * altering the vma layout. It's also needed in write mode to avoid new
1719  * anon_vmas to be associated with existing vmas.
1720  *
1721  * A single task can't take more than one mm_take_all_locks() in a row
1722  * or it would deadlock.
1723  *
1724  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1725  * mapping->flags avoid to take the same lock twice, if more than one
1726  * vma in this mm is backed by the same anon_vma or address_space.
1727  *
1728  * We take locks in following order, accordingly to comment at beginning
1729  * of mm/rmap.c:
1730  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1731  *     hugetlb mapping);
1732  *   - all vmas marked locked
1733  *   - all i_mmap_rwsem locks;
1734  *   - all anon_vma->rwseml
1735  *
1736  * We can take all locks within these types randomly because the VM code
1737  * doesn't nest them and we protected from parallel mm_take_all_locks() by
1738  * mm_all_locks_mutex.
1739  *
1740  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1741  * that may have to take thousand of locks.
1742  *
1743  * mm_take_all_locks() can fail if it's interrupted by signals.
1744  */
1745 int mm_take_all_locks(struct mm_struct *mm)
1746 {
1747 	struct vm_area_struct *vma;
1748 	struct anon_vma_chain *avc;
1749 	VMA_ITERATOR(vmi, mm, 0);
1750 
1751 	mmap_assert_write_locked(mm);
1752 
1753 	mutex_lock(&mm_all_locks_mutex);
1754 
1755 	/*
1756 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
1757 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
1758 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
1759 	 * is reached.
1760 	 */
1761 	for_each_vma(vmi, vma) {
1762 		if (signal_pending(current))
1763 			goto out_unlock;
1764 		vma_start_write(vma);
1765 	}
1766 
1767 	vma_iter_init(&vmi, mm, 0);
1768 	for_each_vma(vmi, vma) {
1769 		if (signal_pending(current))
1770 			goto out_unlock;
1771 		if (vma->vm_file && vma->vm_file->f_mapping &&
1772 				is_vm_hugetlb_page(vma))
1773 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
1774 	}
1775 
1776 	vma_iter_init(&vmi, mm, 0);
1777 	for_each_vma(vmi, vma) {
1778 		if (signal_pending(current))
1779 			goto out_unlock;
1780 		if (vma->vm_file && vma->vm_file->f_mapping &&
1781 				!is_vm_hugetlb_page(vma))
1782 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
1783 	}
1784 
1785 	vma_iter_init(&vmi, mm, 0);
1786 	for_each_vma(vmi, vma) {
1787 		if (signal_pending(current))
1788 			goto out_unlock;
1789 		if (vma->anon_vma)
1790 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
1791 				vm_lock_anon_vma(mm, avc->anon_vma);
1792 	}
1793 
1794 	return 0;
1795 
1796 out_unlock:
1797 	mm_drop_all_locks(mm);
1798 	return -EINTR;
1799 }
1800 
1801 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
1802 {
1803 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1804 		/*
1805 		 * The LSB of head.next can't change to 0 from under
1806 		 * us because we hold the mm_all_locks_mutex.
1807 		 *
1808 		 * We must however clear the bitflag before unlocking
1809 		 * the vma so the users using the anon_vma->rb_root will
1810 		 * never see our bitflag.
1811 		 *
1812 		 * No need of atomic instructions here, head.next
1813 		 * can't change from under us until we release the
1814 		 * anon_vma->root->rwsem.
1815 		 */
1816 		if (!__test_and_clear_bit(0, (unsigned long *)
1817 					  &anon_vma->root->rb_root.rb_root.rb_node))
1818 			BUG();
1819 		anon_vma_unlock_write(anon_vma);
1820 	}
1821 }
1822 
1823 static void vm_unlock_mapping(struct address_space *mapping)
1824 {
1825 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1826 		/*
1827 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
1828 		 * because we hold the mm_all_locks_mutex.
1829 		 */
1830 		i_mmap_unlock_write(mapping);
1831 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
1832 					&mapping->flags))
1833 			BUG();
1834 	}
1835 }
1836 
1837 /*
1838  * The mmap_lock cannot be released by the caller until
1839  * mm_drop_all_locks() returns.
1840  */
1841 void mm_drop_all_locks(struct mm_struct *mm)
1842 {
1843 	struct vm_area_struct *vma;
1844 	struct anon_vma_chain *avc;
1845 	VMA_ITERATOR(vmi, mm, 0);
1846 
1847 	mmap_assert_write_locked(mm);
1848 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
1849 
1850 	for_each_vma(vmi, vma) {
1851 		if (vma->anon_vma)
1852 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
1853 				vm_unlock_anon_vma(avc->anon_vma);
1854 		if (vma->vm_file && vma->vm_file->f_mapping)
1855 			vm_unlock_mapping(vma->vm_file->f_mapping);
1856 	}
1857 
1858 	mutex_unlock(&mm_all_locks_mutex);
1859 }
1860