1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 struct mmap_state { 11 struct mm_struct *mm; 12 struct vma_iterator *vmi; 13 14 unsigned long addr; 15 unsigned long end; 16 pgoff_t pgoff; 17 unsigned long pglen; 18 unsigned long flags; 19 struct file *file; 20 21 unsigned long charged; 22 bool retry_merge; 23 24 struct vm_area_struct *prev; 25 struct vm_area_struct *next; 26 27 /* Unmapping state. */ 28 struct vma_munmap_struct vms; 29 struct ma_state mas_detach; 30 struct maple_tree mt_detach; 31 }; 32 33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ 34 struct mmap_state name = { \ 35 .mm = mm_, \ 36 .vmi = vmi_, \ 37 .addr = addr_, \ 38 .end = (addr_) + (len_), \ 39 .pgoff = pgoff_, \ 40 .pglen = PHYS_PFN(len_), \ 41 .flags = flags_, \ 42 .file = file_, \ 43 } 44 45 #define VMG_MMAP_STATE(name, map_, vma_) \ 46 struct vma_merge_struct name = { \ 47 .mm = (map_)->mm, \ 48 .vmi = (map_)->vmi, \ 49 .start = (map_)->addr, \ 50 .end = (map_)->end, \ 51 .flags = (map_)->flags, \ 52 .pgoff = (map_)->pgoff, \ 53 .file = (map_)->file, \ 54 .prev = (map_)->prev, \ 55 .middle = vma_, \ 56 .next = (vma_) ? NULL : (map_)->next, \ 57 .state = VMA_MERGE_START, \ 58 } 59 60 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 61 { 62 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 63 64 if (!mpol_equal(vmg->policy, vma_policy(vma))) 65 return false; 66 /* 67 * VM_SOFTDIRTY should not prevent from VMA merging, if we 68 * match the flags but dirty bit -- the caller should mark 69 * merged VMA as dirty. If dirty bit won't be excluded from 70 * comparison, we increase pressure on the memory system forcing 71 * the kernel to generate new VMAs when old one could be 72 * extended instead. 73 */ 74 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 75 return false; 76 if (vma->vm_file != vmg->file) 77 return false; 78 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 79 return false; 80 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 81 return false; 82 return true; 83 } 84 85 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 86 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 87 { 88 /* 89 * The list_is_singular() test is to avoid merging VMA cloned from 90 * parents. This can improve scalability caused by anon_vma lock. 91 */ 92 if ((!anon_vma1 || !anon_vma2) && (!vma || 93 list_is_singular(&vma->anon_vma_chain))) 94 return true; 95 return anon_vma1 == anon_vma2; 96 } 97 98 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 99 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 100 struct vm_area_struct *vma2) 101 { 102 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 103 } 104 105 /* 106 * init_multi_vma_prep() - Initializer for struct vma_prepare 107 * @vp: The vma_prepare struct 108 * @vma: The vma that will be altered once locked 109 * @vmg: The merge state that will be used to determine adjustment and VMA 110 * removal. 111 */ 112 static void init_multi_vma_prep(struct vma_prepare *vp, 113 struct vm_area_struct *vma, 114 struct vma_merge_struct *vmg) 115 { 116 struct vm_area_struct *adjust; 117 struct vm_area_struct **remove = &vp->remove; 118 119 memset(vp, 0, sizeof(struct vma_prepare)); 120 vp->vma = vma; 121 vp->anon_vma = vma->anon_vma; 122 123 if (vmg && vmg->__remove_middle) { 124 *remove = vmg->middle; 125 remove = &vp->remove2; 126 } 127 if (vmg && vmg->__remove_next) 128 *remove = vmg->next; 129 130 if (vmg && vmg->__adjust_middle_start) 131 adjust = vmg->middle; 132 else if (vmg && vmg->__adjust_next_start) 133 adjust = vmg->next; 134 else 135 adjust = NULL; 136 137 vp->adj_next = adjust; 138 if (!vp->anon_vma && adjust) 139 vp->anon_vma = adjust->anon_vma; 140 141 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && 142 vp->anon_vma != adjust->anon_vma); 143 144 vp->file = vma->vm_file; 145 if (vp->file) 146 vp->mapping = vma->vm_file->f_mapping; 147 } 148 149 /* 150 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 151 * in front of (at a lower virtual address and file offset than) the vma. 152 * 153 * We cannot merge two vmas if they have differently assigned (non-NULL) 154 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 155 * 156 * We don't check here for the merged mmap wrapping around the end of pagecache 157 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 158 * wrap, nor mmaps which cover the final page at index -1UL. 159 * 160 * We assume the vma may be removed as part of the merge. 161 */ 162 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 163 { 164 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 165 166 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 167 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 168 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 169 return true; 170 } 171 172 return false; 173 } 174 175 /* 176 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 177 * beyond (at a higher virtual address and file offset than) the vma. 178 * 179 * We cannot merge two vmas if they have differently assigned (non-NULL) 180 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 181 * 182 * We assume that vma is not removed as part of the merge. 183 */ 184 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 185 { 186 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 187 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 188 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 189 return true; 190 } 191 return false; 192 } 193 194 static void __vma_link_file(struct vm_area_struct *vma, 195 struct address_space *mapping) 196 { 197 if (vma_is_shared_maywrite(vma)) 198 mapping_allow_writable(mapping); 199 200 flush_dcache_mmap_lock(mapping); 201 vma_interval_tree_insert(vma, &mapping->i_mmap); 202 flush_dcache_mmap_unlock(mapping); 203 } 204 205 /* 206 * Requires inode->i_mapping->i_mmap_rwsem 207 */ 208 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 209 struct address_space *mapping) 210 { 211 if (vma_is_shared_maywrite(vma)) 212 mapping_unmap_writable(mapping); 213 214 flush_dcache_mmap_lock(mapping); 215 vma_interval_tree_remove(vma, &mapping->i_mmap); 216 flush_dcache_mmap_unlock(mapping); 217 } 218 219 /* 220 * vma has some anon_vma assigned, and is already inserted on that 221 * anon_vma's interval trees. 222 * 223 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 224 * vma must be removed from the anon_vma's interval trees using 225 * anon_vma_interval_tree_pre_update_vma(). 226 * 227 * After the update, the vma will be reinserted using 228 * anon_vma_interval_tree_post_update_vma(). 229 * 230 * The entire update must be protected by exclusive mmap_lock and by 231 * the root anon_vma's mutex. 232 */ 233 static void 234 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 235 { 236 struct anon_vma_chain *avc; 237 238 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 239 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 240 } 241 242 static void 243 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 244 { 245 struct anon_vma_chain *avc; 246 247 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 248 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 249 } 250 251 /* 252 * vma_prepare() - Helper function for handling locking VMAs prior to altering 253 * @vp: The initialized vma_prepare struct 254 */ 255 static void vma_prepare(struct vma_prepare *vp) 256 { 257 if (vp->file) { 258 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 259 260 if (vp->adj_next) 261 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 262 vp->adj_next->vm_end); 263 264 i_mmap_lock_write(vp->mapping); 265 if (vp->insert && vp->insert->vm_file) { 266 /* 267 * Put into interval tree now, so instantiated pages 268 * are visible to arm/parisc __flush_dcache_page 269 * throughout; but we cannot insert into address 270 * space until vma start or end is updated. 271 */ 272 __vma_link_file(vp->insert, 273 vp->insert->vm_file->f_mapping); 274 } 275 } 276 277 if (vp->anon_vma) { 278 anon_vma_lock_write(vp->anon_vma); 279 anon_vma_interval_tree_pre_update_vma(vp->vma); 280 if (vp->adj_next) 281 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 282 } 283 284 if (vp->file) { 285 flush_dcache_mmap_lock(vp->mapping); 286 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 287 if (vp->adj_next) 288 vma_interval_tree_remove(vp->adj_next, 289 &vp->mapping->i_mmap); 290 } 291 292 } 293 294 /* 295 * vma_complete- Helper function for handling the unlocking after altering VMAs, 296 * or for inserting a VMA. 297 * 298 * @vp: The vma_prepare struct 299 * @vmi: The vma iterator 300 * @mm: The mm_struct 301 */ 302 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 303 struct mm_struct *mm) 304 { 305 if (vp->file) { 306 if (vp->adj_next) 307 vma_interval_tree_insert(vp->adj_next, 308 &vp->mapping->i_mmap); 309 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 310 flush_dcache_mmap_unlock(vp->mapping); 311 } 312 313 if (vp->remove && vp->file) { 314 __remove_shared_vm_struct(vp->remove, vp->mapping); 315 if (vp->remove2) 316 __remove_shared_vm_struct(vp->remove2, vp->mapping); 317 } else if (vp->insert) { 318 /* 319 * split_vma has split insert from vma, and needs 320 * us to insert it before dropping the locks 321 * (it may either follow vma or precede it). 322 */ 323 vma_iter_store_new(vmi, vp->insert); 324 mm->map_count++; 325 } 326 327 if (vp->anon_vma) { 328 anon_vma_interval_tree_post_update_vma(vp->vma); 329 if (vp->adj_next) 330 anon_vma_interval_tree_post_update_vma(vp->adj_next); 331 anon_vma_unlock_write(vp->anon_vma); 332 } 333 334 if (vp->file) { 335 i_mmap_unlock_write(vp->mapping); 336 uprobe_mmap(vp->vma); 337 338 if (vp->adj_next) 339 uprobe_mmap(vp->adj_next); 340 } 341 342 if (vp->remove) { 343 again: 344 vma_mark_detached(vp->remove); 345 if (vp->file) { 346 uprobe_munmap(vp->remove, vp->remove->vm_start, 347 vp->remove->vm_end); 348 fput(vp->file); 349 } 350 if (vp->remove->anon_vma) 351 anon_vma_merge(vp->vma, vp->remove); 352 mm->map_count--; 353 mpol_put(vma_policy(vp->remove)); 354 if (!vp->remove2) 355 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 356 vm_area_free(vp->remove); 357 358 /* 359 * In mprotect's case 6 (see comments on vma_merge), 360 * we are removing both mid and next vmas 361 */ 362 if (vp->remove2) { 363 vp->remove = vp->remove2; 364 vp->remove2 = NULL; 365 goto again; 366 } 367 } 368 if (vp->insert && vp->file) 369 uprobe_mmap(vp->insert); 370 } 371 372 /* 373 * init_vma_prep() - Initializer wrapper for vma_prepare struct 374 * @vp: The vma_prepare struct 375 * @vma: The vma that will be altered once locked 376 */ 377 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 378 { 379 init_multi_vma_prep(vp, vma, NULL); 380 } 381 382 /* 383 * Can the proposed VMA be merged with the left (previous) VMA taking into 384 * account the start position of the proposed range. 385 */ 386 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 387 388 { 389 return vmg->prev && vmg->prev->vm_end == vmg->start && 390 can_vma_merge_after(vmg); 391 } 392 393 /* 394 * Can the proposed VMA be merged with the right (next) VMA taking into 395 * account the end position of the proposed range. 396 * 397 * In addition, if we can merge with the left VMA, ensure that left and right 398 * anon_vma's are also compatible. 399 */ 400 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 401 bool can_merge_left) 402 { 403 if (!vmg->next || vmg->end != vmg->next->vm_start || 404 !can_vma_merge_before(vmg)) 405 return false; 406 407 if (!can_merge_left) 408 return true; 409 410 /* 411 * If we can merge with prev (left) and next (right), indicating that 412 * each VMA's anon_vma is compatible with the proposed anon_vma, this 413 * does not mean prev and next are compatible with EACH OTHER. 414 * 415 * We therefore check this in addition to mergeability to either side. 416 */ 417 return are_anon_vmas_compatible(vmg->prev, vmg->next); 418 } 419 420 /* 421 * Close a vm structure and free it. 422 */ 423 void remove_vma(struct vm_area_struct *vma) 424 { 425 might_sleep(); 426 vma_close(vma); 427 if (vma->vm_file) 428 fput(vma->vm_file); 429 mpol_put(vma_policy(vma)); 430 vm_area_free(vma); 431 } 432 433 /* 434 * Get rid of page table information in the indicated region. 435 * 436 * Called with the mm semaphore held. 437 */ 438 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 439 struct vm_area_struct *prev, struct vm_area_struct *next) 440 { 441 struct mm_struct *mm = vma->vm_mm; 442 struct mmu_gather tlb; 443 444 tlb_gather_mmu(&tlb, mm); 445 update_hiwater_rss(mm); 446 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 447 /* mm_wr_locked = */ true); 448 mas_set(mas, vma->vm_end); 449 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 450 next ? next->vm_start : USER_PGTABLES_CEILING, 451 /* mm_wr_locked = */ true); 452 tlb_finish_mmu(&tlb); 453 } 454 455 /* 456 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 457 * has already been checked or doesn't make sense to fail. 458 * VMA Iterator will point to the original VMA. 459 */ 460 static __must_check int 461 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 462 unsigned long addr, int new_below) 463 { 464 struct vma_prepare vp; 465 struct vm_area_struct *new; 466 int err; 467 468 WARN_ON(vma->vm_start >= addr); 469 WARN_ON(vma->vm_end <= addr); 470 471 if (vma->vm_ops && vma->vm_ops->may_split) { 472 err = vma->vm_ops->may_split(vma, addr); 473 if (err) 474 return err; 475 } 476 477 new = vm_area_dup(vma); 478 if (!new) 479 return -ENOMEM; 480 481 if (new_below) { 482 new->vm_end = addr; 483 } else { 484 new->vm_start = addr; 485 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 486 } 487 488 err = -ENOMEM; 489 vma_iter_config(vmi, new->vm_start, new->vm_end); 490 if (vma_iter_prealloc(vmi, new)) 491 goto out_free_vma; 492 493 err = vma_dup_policy(vma, new); 494 if (err) 495 goto out_free_vmi; 496 497 err = anon_vma_clone(new, vma); 498 if (err) 499 goto out_free_mpol; 500 501 if (new->vm_file) 502 get_file(new->vm_file); 503 504 if (new->vm_ops && new->vm_ops->open) 505 new->vm_ops->open(new); 506 507 vma_start_write(vma); 508 vma_start_write(new); 509 510 init_vma_prep(&vp, vma); 511 vp.insert = new; 512 vma_prepare(&vp); 513 vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); 514 515 if (new_below) { 516 vma->vm_start = addr; 517 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 518 } else { 519 vma->vm_end = addr; 520 } 521 522 /* vma_complete stores the new vma */ 523 vma_complete(&vp, vmi, vma->vm_mm); 524 validate_mm(vma->vm_mm); 525 526 /* Success. */ 527 if (new_below) 528 vma_next(vmi); 529 else 530 vma_prev(vmi); 531 532 return 0; 533 534 out_free_mpol: 535 mpol_put(vma_policy(new)); 536 out_free_vmi: 537 vma_iter_free(vmi); 538 out_free_vma: 539 vm_area_free(new); 540 return err; 541 } 542 543 /* 544 * Split a vma into two pieces at address 'addr', a new vma is allocated 545 * either for the first part or the tail. 546 */ 547 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 548 unsigned long addr, int new_below) 549 { 550 if (vma->vm_mm->map_count >= sysctl_max_map_count) 551 return -ENOMEM; 552 553 return __split_vma(vmi, vma, addr, new_below); 554 } 555 556 /* 557 * dup_anon_vma() - Helper function to duplicate anon_vma 558 * @dst: The destination VMA 559 * @src: The source VMA 560 * @dup: Pointer to the destination VMA when successful. 561 * 562 * Returns: 0 on success. 563 */ 564 static int dup_anon_vma(struct vm_area_struct *dst, 565 struct vm_area_struct *src, struct vm_area_struct **dup) 566 { 567 /* 568 * Easily overlooked: when mprotect shifts the boundary, make sure the 569 * expanding vma has anon_vma set if the shrinking vma had, to cover any 570 * anon pages imported. 571 */ 572 if (src->anon_vma && !dst->anon_vma) { 573 int ret; 574 575 vma_assert_write_locked(dst); 576 dst->anon_vma = src->anon_vma; 577 ret = anon_vma_clone(dst, src); 578 if (ret) 579 return ret; 580 581 *dup = dst; 582 } 583 584 return 0; 585 } 586 587 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 588 void validate_mm(struct mm_struct *mm) 589 { 590 int bug = 0; 591 int i = 0; 592 struct vm_area_struct *vma; 593 VMA_ITERATOR(vmi, mm, 0); 594 595 mt_validate(&mm->mm_mt); 596 for_each_vma(vmi, vma) { 597 #ifdef CONFIG_DEBUG_VM_RB 598 struct anon_vma *anon_vma = vma->anon_vma; 599 struct anon_vma_chain *avc; 600 #endif 601 unsigned long vmi_start, vmi_end; 602 bool warn = 0; 603 604 vmi_start = vma_iter_addr(&vmi); 605 vmi_end = vma_iter_end(&vmi); 606 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 607 warn = 1; 608 609 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 610 warn = 1; 611 612 if (warn) { 613 pr_emerg("issue in %s\n", current->comm); 614 dump_stack(); 615 dump_vma(vma); 616 pr_emerg("tree range: %px start %lx end %lx\n", vma, 617 vmi_start, vmi_end - 1); 618 vma_iter_dump_tree(&vmi); 619 } 620 621 #ifdef CONFIG_DEBUG_VM_RB 622 if (anon_vma) { 623 anon_vma_lock_read(anon_vma); 624 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 625 anon_vma_interval_tree_verify(avc); 626 anon_vma_unlock_read(anon_vma); 627 } 628 #endif 629 /* Check for a infinite loop */ 630 if (++i > mm->map_count + 10) { 631 i = -1; 632 break; 633 } 634 } 635 if (i != mm->map_count) { 636 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 637 bug = 1; 638 } 639 VM_BUG_ON_MM(bug, mm); 640 } 641 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 642 643 /* 644 * Based on the vmg flag indicating whether we need to adjust the vm_start field 645 * for the middle or next VMA, we calculate what the range of the newly adjusted 646 * VMA ought to be, and set the VMA's range accordingly. 647 */ 648 static void vmg_adjust_set_range(struct vma_merge_struct *vmg) 649 { 650 struct vm_area_struct *adjust; 651 pgoff_t pgoff; 652 653 if (vmg->__adjust_middle_start) { 654 adjust = vmg->middle; 655 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); 656 } else if (vmg->__adjust_next_start) { 657 adjust = vmg->next; 658 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); 659 } else { 660 return; 661 } 662 663 vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); 664 } 665 666 /* 667 * Actually perform the VMA merge operation. 668 * 669 * Returns 0 on success, or an error value on failure. 670 */ 671 static int commit_merge(struct vma_merge_struct *vmg) 672 { 673 struct vm_area_struct *vma; 674 struct vma_prepare vp; 675 676 if (vmg->__adjust_next_start) { 677 /* We manipulate middle and adjust next, which is the target. */ 678 vma = vmg->middle; 679 vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); 680 } else { 681 vma = vmg->target; 682 /* Note: vma iterator must be pointing to 'start'. */ 683 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 684 } 685 686 init_multi_vma_prep(&vp, vma, vmg); 687 688 if (vma_iter_prealloc(vmg->vmi, vma)) 689 return -ENOMEM; 690 691 vma_prepare(&vp); 692 /* 693 * THP pages may need to do additional splits if we increase 694 * middle->vm_start. 695 */ 696 vma_adjust_trans_huge(vma, vmg->start, vmg->end, 697 vmg->__adjust_middle_start ? vmg->middle : NULL); 698 vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); 699 vmg_adjust_set_range(vmg); 700 vma_iter_store_overwrite(vmg->vmi, vmg->target); 701 702 vma_complete(&vp, vmg->vmi, vma->vm_mm); 703 704 return 0; 705 } 706 707 /* We can only remove VMAs when merging if they do not have a close hook. */ 708 static bool can_merge_remove_vma(struct vm_area_struct *vma) 709 { 710 return !vma->vm_ops || !vma->vm_ops->close; 711 } 712 713 /* 714 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 715 * attributes modified. 716 * 717 * @vmg: Describes the modifications being made to a VMA and associated 718 * metadata. 719 * 720 * When the attributes of a range within a VMA change, then it might be possible 721 * for immediately adjacent VMAs to be merged into that VMA due to having 722 * identical properties. 723 * 724 * This function checks for the existence of any such mergeable VMAs and updates 725 * the maple tree describing the @vmg->middle->vm_mm address space to account 726 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this 727 * merge. 728 * 729 * As part of this operation, if a merge occurs, the @vmg object will have its 730 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 731 * calls to this function should reset these fields. 732 * 733 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 734 * 735 * ASSUMPTIONS: 736 * - The caller must assign the VMA to be modifed to @vmg->middle. 737 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 738 * - The caller must not set @vmg->next, as we determine this. 739 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 740 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). 741 */ 742 static __must_check struct vm_area_struct *vma_merge_existing_range( 743 struct vma_merge_struct *vmg) 744 { 745 struct vm_area_struct *middle = vmg->middle; 746 struct vm_area_struct *prev = vmg->prev; 747 struct vm_area_struct *next; 748 struct vm_area_struct *anon_dup = NULL; 749 unsigned long start = vmg->start; 750 unsigned long end = vmg->end; 751 bool left_side = middle && start == middle->vm_start; 752 bool right_side = middle && end == middle->vm_end; 753 int err = 0; 754 bool merge_left, merge_right, merge_both; 755 756 mmap_assert_write_locked(vmg->mm); 757 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ 758 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ 759 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); 760 VM_WARN_ON_VMG(start >= end, vmg); 761 762 /* 763 * If middle == prev, then we are offset into a VMA. Otherwise, if we are 764 * not, we must span a portion of the VMA. 765 */ 766 VM_WARN_ON_VMG(middle && 767 ((middle != prev && vmg->start != middle->vm_start) || 768 vmg->end > middle->vm_end), vmg); 769 /* The vmi must be positioned within vmg->middle. */ 770 VM_WARN_ON_VMG(middle && 771 !(vma_iter_addr(vmg->vmi) >= middle->vm_start && 772 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); 773 774 vmg->state = VMA_MERGE_NOMERGE; 775 776 /* 777 * If a special mapping or if the range being modified is neither at the 778 * furthermost left or right side of the VMA, then we have no chance of 779 * merging and should abort. 780 */ 781 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 782 return NULL; 783 784 if (left_side) 785 merge_left = can_vma_merge_left(vmg); 786 else 787 merge_left = false; 788 789 if (right_side) { 790 next = vmg->next = vma_iter_next_range(vmg->vmi); 791 vma_iter_prev_range(vmg->vmi); 792 793 merge_right = can_vma_merge_right(vmg, merge_left); 794 } else { 795 merge_right = false; 796 next = NULL; 797 } 798 799 if (merge_left) /* If merging prev, position iterator there. */ 800 vma_prev(vmg->vmi); 801 else if (!merge_right) /* If we have nothing to merge, abort. */ 802 return NULL; 803 804 merge_both = merge_left && merge_right; 805 /* If we span the entire VMA, a merge implies it will be deleted. */ 806 vmg->__remove_middle = left_side && right_side; 807 808 /* 809 * If we need to remove middle in its entirety but are unable to do so, 810 * we have no sensible recourse but to abort the merge. 811 */ 812 if (vmg->__remove_middle && !can_merge_remove_vma(middle)) 813 return NULL; 814 815 /* 816 * If we merge both VMAs, then next is also deleted. This implies 817 * merge_will_delete_vma also. 818 */ 819 vmg->__remove_next = merge_both; 820 821 /* 822 * If we cannot delete next, then we can reduce the operation to merging 823 * prev and middle (thereby deleting middle). 824 */ 825 if (vmg->__remove_next && !can_merge_remove_vma(next)) { 826 vmg->__remove_next = false; 827 merge_right = false; 828 merge_both = false; 829 } 830 831 /* No matter what happens, we will be adjusting middle. */ 832 vma_start_write(middle); 833 834 if (merge_right) { 835 vma_start_write(next); 836 vmg->target = next; 837 } 838 839 if (merge_left) { 840 vma_start_write(prev); 841 vmg->target = prev; 842 } 843 844 if (merge_both) { 845 /* 846 * |<-------------------->| 847 * |-------********-------| 848 * prev middle next 849 * extend delete delete 850 */ 851 852 vmg->start = prev->vm_start; 853 vmg->end = next->vm_end; 854 vmg->pgoff = prev->vm_pgoff; 855 856 /* 857 * We already ensured anon_vma compatibility above, so now it's 858 * simply a case of, if prev has no anon_vma object, which of 859 * next or middle contains the anon_vma we must duplicate. 860 */ 861 err = dup_anon_vma(prev, next->anon_vma ? next : middle, 862 &anon_dup); 863 } else if (merge_left) { 864 /* 865 * |<------------>| OR 866 * |<----------------->| 867 * |-------************* 868 * prev middle 869 * extend shrink/delete 870 */ 871 872 vmg->start = prev->vm_start; 873 vmg->pgoff = prev->vm_pgoff; 874 875 if (!vmg->__remove_middle) 876 vmg->__adjust_middle_start = true; 877 878 err = dup_anon_vma(prev, middle, &anon_dup); 879 } else { /* merge_right */ 880 /* 881 * |<------------->| OR 882 * |<----------------->| 883 * *************-------| 884 * middle next 885 * shrink/delete extend 886 */ 887 888 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 889 890 VM_WARN_ON_VMG(!merge_right, vmg); 891 /* If we are offset into a VMA, then prev must be middle. */ 892 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); 893 894 if (vmg->__remove_middle) { 895 vmg->end = next->vm_end; 896 vmg->pgoff = next->vm_pgoff - pglen; 897 } else { 898 /* We shrink middle and expand next. */ 899 vmg->__adjust_next_start = true; 900 vmg->start = middle->vm_start; 901 vmg->end = start; 902 vmg->pgoff = middle->vm_pgoff; 903 } 904 905 err = dup_anon_vma(next, middle, &anon_dup); 906 } 907 908 if (err) 909 goto abort; 910 911 err = commit_merge(vmg); 912 if (err) { 913 VM_WARN_ON(err != -ENOMEM); 914 915 if (anon_dup) 916 unlink_anon_vmas(anon_dup); 917 918 vmg->state = VMA_MERGE_ERROR_NOMEM; 919 return NULL; 920 } 921 922 khugepaged_enter_vma(vmg->target, vmg->flags); 923 vmg->state = VMA_MERGE_SUCCESS; 924 return vmg->target; 925 926 abort: 927 vma_iter_set(vmg->vmi, start); 928 vma_iter_load(vmg->vmi); 929 vmg->state = VMA_MERGE_ERROR_NOMEM; 930 return NULL; 931 } 932 933 /* 934 * vma_merge_new_range - Attempt to merge a new VMA into address space 935 * 936 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 937 * (exclusive), which we try to merge with any adjacent VMAs if possible. 938 * 939 * We are about to add a VMA to the address space starting at @vmg->start and 940 * ending at @vmg->end. There are three different possible scenarios: 941 * 942 * 1. There is a VMA with identical properties immediately adjacent to the 943 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 944 * EXPAND that VMA: 945 * 946 * Proposed: |-----| or |-----| 947 * Existing: |----| |----| 948 * 949 * 2. There are VMAs with identical properties immediately adjacent to the 950 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 951 * EXPAND the former and REMOVE the latter: 952 * 953 * Proposed: |-----| 954 * Existing: |----| |----| 955 * 956 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 957 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 958 * 959 * In instances where we can merge, this function returns the expanded VMA which 960 * will have its range adjusted accordingly and the underlying maple tree also 961 * adjusted. 962 * 963 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 964 * to the VMA we expanded. 965 * 966 * This function adjusts @vmg to provide @vmg->next if not already specified, 967 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 968 * 969 * ASSUMPTIONS: 970 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 971 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 972 other than VMAs that will be unmapped should the operation succeed. 973 * - The caller must have specified the previous vma in @vmg->prev. 974 * - The caller must have specified the next vma in @vmg->next. 975 * - The caller must have positioned the vmi at or before the gap. 976 */ 977 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 978 { 979 struct vm_area_struct *prev = vmg->prev; 980 struct vm_area_struct *next = vmg->next; 981 unsigned long end = vmg->end; 982 bool can_merge_left, can_merge_right; 983 984 mmap_assert_write_locked(vmg->mm); 985 VM_WARN_ON_VMG(vmg->middle, vmg); 986 /* vmi must point at or before the gap. */ 987 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); 988 989 vmg->state = VMA_MERGE_NOMERGE; 990 991 /* Special VMAs are unmergeable, also if no prev/next. */ 992 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 993 return NULL; 994 995 can_merge_left = can_vma_merge_left(vmg); 996 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); 997 998 /* If we can merge with the next VMA, adjust vmg accordingly. */ 999 if (can_merge_right) { 1000 vmg->end = next->vm_end; 1001 vmg->middle = next; 1002 } 1003 1004 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 1005 if (can_merge_left) { 1006 vmg->start = prev->vm_start; 1007 vmg->middle = prev; 1008 vmg->pgoff = prev->vm_pgoff; 1009 1010 /* 1011 * If this merge would result in removal of the next VMA but we 1012 * are not permitted to do so, reduce the operation to merging 1013 * prev and vma. 1014 */ 1015 if (can_merge_right && !can_merge_remove_vma(next)) 1016 vmg->end = end; 1017 1018 /* In expand-only case we are already positioned at prev. */ 1019 if (!vmg->just_expand) { 1020 /* Equivalent to going to the previous range. */ 1021 vma_prev(vmg->vmi); 1022 } 1023 } 1024 1025 /* 1026 * Now try to expand adjacent VMA(s). This takes care of removing the 1027 * following VMA if we have VMAs on both sides. 1028 */ 1029 if (vmg->middle && !vma_expand(vmg)) { 1030 khugepaged_enter_vma(vmg->middle, vmg->flags); 1031 vmg->state = VMA_MERGE_SUCCESS; 1032 return vmg->middle; 1033 } 1034 1035 return NULL; 1036 } 1037 1038 /* 1039 * vma_expand - Expand an existing VMA 1040 * 1041 * @vmg: Describes a VMA expansion operation. 1042 * 1043 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 1044 * Will expand over vmg->next if it's different from vmg->middle and vmg->end == 1045 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with 1046 * vmg->next needs to be handled by the caller. 1047 * 1048 * Returns: 0 on success. 1049 * 1050 * ASSUMPTIONS: 1051 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. 1052 * - The caller must have set @vmg->middle and @vmg->next. 1053 */ 1054 int vma_expand(struct vma_merge_struct *vmg) 1055 { 1056 struct vm_area_struct *anon_dup = NULL; 1057 bool remove_next = false; 1058 struct vm_area_struct *middle = vmg->middle; 1059 struct vm_area_struct *next = vmg->next; 1060 1061 mmap_assert_write_locked(vmg->mm); 1062 1063 vma_start_write(middle); 1064 if (next && (middle != next) && (vmg->end == next->vm_end)) { 1065 int ret; 1066 1067 remove_next = true; 1068 /* This should already have been checked by this point. */ 1069 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); 1070 vma_start_write(next); 1071 ret = dup_anon_vma(middle, next, &anon_dup); 1072 if (ret) 1073 return ret; 1074 } 1075 1076 /* Not merging but overwriting any part of next is not handled. */ 1077 VM_WARN_ON_VMG(next && !remove_next && 1078 next != middle && vmg->end > next->vm_start, vmg); 1079 /* Only handles expanding */ 1080 VM_WARN_ON_VMG(middle->vm_start < vmg->start || 1081 middle->vm_end > vmg->end, vmg); 1082 1083 vmg->target = middle; 1084 if (remove_next) 1085 vmg->__remove_next = true; 1086 1087 if (commit_merge(vmg)) 1088 goto nomem; 1089 1090 return 0; 1091 1092 nomem: 1093 vmg->state = VMA_MERGE_ERROR_NOMEM; 1094 if (anon_dup) 1095 unlink_anon_vmas(anon_dup); 1096 return -ENOMEM; 1097 } 1098 1099 /* 1100 * vma_shrink() - Reduce an existing VMAs memory area 1101 * @vmi: The vma iterator 1102 * @vma: The VMA to modify 1103 * @start: The new start 1104 * @end: The new end 1105 * 1106 * Returns: 0 on success, -ENOMEM otherwise 1107 */ 1108 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1109 unsigned long start, unsigned long end, pgoff_t pgoff) 1110 { 1111 struct vma_prepare vp; 1112 1113 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1114 1115 if (vma->vm_start < start) 1116 vma_iter_config(vmi, vma->vm_start, start); 1117 else 1118 vma_iter_config(vmi, end, vma->vm_end); 1119 1120 if (vma_iter_prealloc(vmi, NULL)) 1121 return -ENOMEM; 1122 1123 vma_start_write(vma); 1124 1125 init_vma_prep(&vp, vma); 1126 vma_prepare(&vp); 1127 vma_adjust_trans_huge(vma, start, end, NULL); 1128 1129 vma_iter_clear(vmi); 1130 vma_set_range(vma, start, end, pgoff); 1131 vma_complete(&vp, vmi, vma->vm_mm); 1132 validate_mm(vma->vm_mm); 1133 return 0; 1134 } 1135 1136 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1137 struct ma_state *mas_detach, bool mm_wr_locked) 1138 { 1139 struct mmu_gather tlb; 1140 1141 if (!vms->clear_ptes) /* Nothing to do */ 1142 return; 1143 1144 /* 1145 * We can free page tables without write-locking mmap_lock because VMAs 1146 * were isolated before we downgraded mmap_lock. 1147 */ 1148 mas_set(mas_detach, 1); 1149 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1150 update_hiwater_rss(vms->vma->vm_mm); 1151 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1152 vms->vma_count, mm_wr_locked); 1153 1154 mas_set(mas_detach, 1); 1155 /* start and end may be different if there is no prev or next vma. */ 1156 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1157 vms->unmap_end, mm_wr_locked); 1158 tlb_finish_mmu(&tlb); 1159 vms->clear_ptes = false; 1160 } 1161 1162 static void vms_clean_up_area(struct vma_munmap_struct *vms, 1163 struct ma_state *mas_detach) 1164 { 1165 struct vm_area_struct *vma; 1166 1167 if (!vms->nr_pages) 1168 return; 1169 1170 vms_clear_ptes(vms, mas_detach, true); 1171 mas_set(mas_detach, 0); 1172 mas_for_each(mas_detach, vma, ULONG_MAX) 1173 vma_close(vma); 1174 } 1175 1176 /* 1177 * vms_complete_munmap_vmas() - Finish the munmap() operation 1178 * @vms: The vma munmap struct 1179 * @mas_detach: The maple state of the detached vmas 1180 * 1181 * This updates the mm_struct, unmaps the region, frees the resources 1182 * used for the munmap() and may downgrade the lock - if requested. Everything 1183 * needed to be done once the vma maple tree is updated. 1184 */ 1185 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1186 struct ma_state *mas_detach) 1187 { 1188 struct vm_area_struct *vma; 1189 struct mm_struct *mm; 1190 1191 mm = current->mm; 1192 mm->map_count -= vms->vma_count; 1193 mm->locked_vm -= vms->locked_vm; 1194 if (vms->unlock) 1195 mmap_write_downgrade(mm); 1196 1197 if (!vms->nr_pages) 1198 return; 1199 1200 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1201 /* Update high watermark before we lower total_vm */ 1202 update_hiwater_vm(mm); 1203 /* Stat accounting */ 1204 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1205 /* Paranoid bookkeeping */ 1206 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1207 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1208 VM_WARN_ON(vms->data_vm > mm->data_vm); 1209 mm->exec_vm -= vms->exec_vm; 1210 mm->stack_vm -= vms->stack_vm; 1211 mm->data_vm -= vms->data_vm; 1212 1213 /* Remove and clean up vmas */ 1214 mas_set(mas_detach, 0); 1215 mas_for_each(mas_detach, vma, ULONG_MAX) 1216 remove_vma(vma); 1217 1218 vm_unacct_memory(vms->nr_accounted); 1219 validate_mm(mm); 1220 if (vms->unlock) 1221 mmap_read_unlock(mm); 1222 1223 __mt_destroy(mas_detach->tree); 1224 } 1225 1226 /* 1227 * reattach_vmas() - Undo any munmap work and free resources 1228 * @mas_detach: The maple state with the detached maple tree 1229 * 1230 * Reattach any detached vmas and free up the maple tree used to track the vmas. 1231 */ 1232 static void reattach_vmas(struct ma_state *mas_detach) 1233 { 1234 struct vm_area_struct *vma; 1235 1236 mas_set(mas_detach, 0); 1237 mas_for_each(mas_detach, vma, ULONG_MAX) 1238 vma_mark_attached(vma); 1239 1240 __mt_destroy(mas_detach->tree); 1241 } 1242 1243 /* 1244 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1245 * for removal at a later date. Handles splitting first and last if necessary 1246 * and marking the vmas as isolated. 1247 * 1248 * @vms: The vma munmap struct 1249 * @mas_detach: The maple state tracking the detached tree 1250 * 1251 * Return: 0 on success, error otherwise 1252 */ 1253 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1254 struct ma_state *mas_detach) 1255 { 1256 struct vm_area_struct *next = NULL; 1257 int error; 1258 1259 /* 1260 * If we need to split any vma, do it now to save pain later. 1261 * Does it split the first one? 1262 */ 1263 if (vms->start > vms->vma->vm_start) { 1264 1265 /* 1266 * Make sure that map_count on return from munmap() will 1267 * not exceed its limit; but let map_count go just above 1268 * its limit temporarily, to help free resources as expected. 1269 */ 1270 if (vms->end < vms->vma->vm_end && 1271 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1272 error = -ENOMEM; 1273 goto map_count_exceeded; 1274 } 1275 1276 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1277 if (!can_modify_vma(vms->vma)) { 1278 error = -EPERM; 1279 goto start_split_failed; 1280 } 1281 1282 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1283 if (error) 1284 goto start_split_failed; 1285 } 1286 vms->prev = vma_prev(vms->vmi); 1287 if (vms->prev) 1288 vms->unmap_start = vms->prev->vm_end; 1289 1290 /* 1291 * Detach a range of VMAs from the mm. Using next as a temp variable as 1292 * it is always overwritten. 1293 */ 1294 for_each_vma_range(*(vms->vmi), next, vms->end) { 1295 long nrpages; 1296 1297 if (!can_modify_vma(next)) { 1298 error = -EPERM; 1299 goto modify_vma_failed; 1300 } 1301 /* Does it split the end? */ 1302 if (next->vm_end > vms->end) { 1303 error = __split_vma(vms->vmi, next, vms->end, 0); 1304 if (error) 1305 goto end_split_failed; 1306 } 1307 vma_start_write(next); 1308 mas_set(mas_detach, vms->vma_count++); 1309 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1310 if (error) 1311 goto munmap_gather_failed; 1312 1313 vma_mark_detached(next); 1314 nrpages = vma_pages(next); 1315 1316 vms->nr_pages += nrpages; 1317 if (next->vm_flags & VM_LOCKED) 1318 vms->locked_vm += nrpages; 1319 1320 if (next->vm_flags & VM_ACCOUNT) 1321 vms->nr_accounted += nrpages; 1322 1323 if (is_exec_mapping(next->vm_flags)) 1324 vms->exec_vm += nrpages; 1325 else if (is_stack_mapping(next->vm_flags)) 1326 vms->stack_vm += nrpages; 1327 else if (is_data_mapping(next->vm_flags)) 1328 vms->data_vm += nrpages; 1329 1330 if (vms->uf) { 1331 /* 1332 * If userfaultfd_unmap_prep returns an error the vmas 1333 * will remain split, but userland will get a 1334 * highly unexpected error anyway. This is no 1335 * different than the case where the first of the two 1336 * __split_vma fails, but we don't undo the first 1337 * split, despite we could. This is unlikely enough 1338 * failure that it's not worth optimizing it for. 1339 */ 1340 error = userfaultfd_unmap_prep(next, vms->start, 1341 vms->end, vms->uf); 1342 if (error) 1343 goto userfaultfd_error; 1344 } 1345 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1346 BUG_ON(next->vm_start < vms->start); 1347 BUG_ON(next->vm_start > vms->end); 1348 #endif 1349 } 1350 1351 vms->next = vma_next(vms->vmi); 1352 if (vms->next) 1353 vms->unmap_end = vms->next->vm_start; 1354 1355 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1356 /* Make sure no VMAs are about to be lost. */ 1357 { 1358 MA_STATE(test, mas_detach->tree, 0, 0); 1359 struct vm_area_struct *vma_mas, *vma_test; 1360 int test_count = 0; 1361 1362 vma_iter_set(vms->vmi, vms->start); 1363 rcu_read_lock(); 1364 vma_test = mas_find(&test, vms->vma_count - 1); 1365 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1366 BUG_ON(vma_mas != vma_test); 1367 test_count++; 1368 vma_test = mas_next(&test, vms->vma_count - 1); 1369 } 1370 rcu_read_unlock(); 1371 BUG_ON(vms->vma_count != test_count); 1372 } 1373 #endif 1374 1375 while (vma_iter_addr(vms->vmi) > vms->start) 1376 vma_iter_prev_range(vms->vmi); 1377 1378 vms->clear_ptes = true; 1379 return 0; 1380 1381 userfaultfd_error: 1382 munmap_gather_failed: 1383 end_split_failed: 1384 modify_vma_failed: 1385 reattach_vmas(mas_detach); 1386 start_split_failed: 1387 map_count_exceeded: 1388 return error; 1389 } 1390 1391 /* 1392 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct 1393 * @vms: The vma munmap struct 1394 * @vmi: The vma iterator 1395 * @vma: The first vm_area_struct to munmap 1396 * @start: The aligned start address to munmap 1397 * @end: The aligned end address to munmap 1398 * @uf: The userfaultfd list_head 1399 * @unlock: Unlock after the operation. Only unlocked on success 1400 */ 1401 static void init_vma_munmap(struct vma_munmap_struct *vms, 1402 struct vma_iterator *vmi, struct vm_area_struct *vma, 1403 unsigned long start, unsigned long end, struct list_head *uf, 1404 bool unlock) 1405 { 1406 vms->vmi = vmi; 1407 vms->vma = vma; 1408 if (vma) { 1409 vms->start = start; 1410 vms->end = end; 1411 } else { 1412 vms->start = vms->end = 0; 1413 } 1414 vms->unlock = unlock; 1415 vms->uf = uf; 1416 vms->vma_count = 0; 1417 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; 1418 vms->exec_vm = vms->stack_vm = vms->data_vm = 0; 1419 vms->unmap_start = FIRST_USER_ADDRESS; 1420 vms->unmap_end = USER_PGTABLES_CEILING; 1421 vms->clear_ptes = false; 1422 } 1423 1424 /* 1425 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1426 * @vmi: The vma iterator 1427 * @vma: The starting vm_area_struct 1428 * @mm: The mm_struct 1429 * @start: The aligned start address to munmap. 1430 * @end: The aligned end address to munmap. 1431 * @uf: The userfaultfd list_head 1432 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1433 * success. 1434 * 1435 * Return: 0 on success and drops the lock if so directed, error and leaves the 1436 * lock held otherwise. 1437 */ 1438 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1439 struct mm_struct *mm, unsigned long start, unsigned long end, 1440 struct list_head *uf, bool unlock) 1441 { 1442 struct maple_tree mt_detach; 1443 MA_STATE(mas_detach, &mt_detach, 0, 0); 1444 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1445 mt_on_stack(mt_detach); 1446 struct vma_munmap_struct vms; 1447 int error; 1448 1449 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1450 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1451 if (error) 1452 goto gather_failed; 1453 1454 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1455 if (error) 1456 goto clear_tree_failed; 1457 1458 /* Point of no return */ 1459 vms_complete_munmap_vmas(&vms, &mas_detach); 1460 return 0; 1461 1462 clear_tree_failed: 1463 reattach_vmas(&mas_detach); 1464 gather_failed: 1465 validate_mm(mm); 1466 return error; 1467 } 1468 1469 /* 1470 * do_vmi_munmap() - munmap a given range. 1471 * @vmi: The vma iterator 1472 * @mm: The mm_struct 1473 * @start: The start address to munmap 1474 * @len: The length of the range to munmap 1475 * @uf: The userfaultfd list_head 1476 * @unlock: set to true if the user wants to drop the mmap_lock on success 1477 * 1478 * This function takes a @mas that is either pointing to the previous VMA or set 1479 * to MA_START and sets it up to remove the mapping(s). The @len will be 1480 * aligned. 1481 * 1482 * Return: 0 on success and drops the lock if so directed, error and leaves the 1483 * lock held otherwise. 1484 */ 1485 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1486 unsigned long start, size_t len, struct list_head *uf, 1487 bool unlock) 1488 { 1489 unsigned long end; 1490 struct vm_area_struct *vma; 1491 1492 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1493 return -EINVAL; 1494 1495 end = start + PAGE_ALIGN(len); 1496 if (end == start) 1497 return -EINVAL; 1498 1499 /* Find the first overlapping VMA */ 1500 vma = vma_find(vmi, end); 1501 if (!vma) { 1502 if (unlock) 1503 mmap_write_unlock(mm); 1504 return 0; 1505 } 1506 1507 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1508 } 1509 1510 /* 1511 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1512 * context and anonymous VMA name within the range [start, end). 1513 * 1514 * As a result, we might be able to merge the newly modified VMA range with an 1515 * adjacent VMA with identical properties. 1516 * 1517 * If no merge is possible and the range does not span the entirety of the VMA, 1518 * we then need to split the VMA to accommodate the change. 1519 * 1520 * The function returns either the merged VMA, the original VMA if a split was 1521 * required instead, or an error if the split failed. 1522 */ 1523 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1524 { 1525 struct vm_area_struct *vma = vmg->middle; 1526 unsigned long start = vmg->start; 1527 unsigned long end = vmg->end; 1528 struct vm_area_struct *merged; 1529 1530 /* First, try to merge. */ 1531 merged = vma_merge_existing_range(vmg); 1532 if (merged) 1533 return merged; 1534 if (vmg_nomem(vmg)) 1535 return ERR_PTR(-ENOMEM); 1536 1537 /* Split any preceding portion of the VMA. */ 1538 if (vma->vm_start < start) { 1539 int err = split_vma(vmg->vmi, vma, start, 1); 1540 1541 if (err) 1542 return ERR_PTR(err); 1543 } 1544 1545 /* Split any trailing portion of the VMA. */ 1546 if (vma->vm_end > end) { 1547 int err = split_vma(vmg->vmi, vma, end, 0); 1548 1549 if (err) 1550 return ERR_PTR(err); 1551 } 1552 1553 return vma; 1554 } 1555 1556 struct vm_area_struct *vma_modify_flags( 1557 struct vma_iterator *vmi, struct vm_area_struct *prev, 1558 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1559 unsigned long new_flags) 1560 { 1561 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1562 1563 vmg.flags = new_flags; 1564 1565 return vma_modify(&vmg); 1566 } 1567 1568 struct vm_area_struct 1569 *vma_modify_flags_name(struct vma_iterator *vmi, 1570 struct vm_area_struct *prev, 1571 struct vm_area_struct *vma, 1572 unsigned long start, 1573 unsigned long end, 1574 unsigned long new_flags, 1575 struct anon_vma_name *new_name) 1576 { 1577 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1578 1579 vmg.flags = new_flags; 1580 vmg.anon_name = new_name; 1581 1582 return vma_modify(&vmg); 1583 } 1584 1585 struct vm_area_struct 1586 *vma_modify_policy(struct vma_iterator *vmi, 1587 struct vm_area_struct *prev, 1588 struct vm_area_struct *vma, 1589 unsigned long start, unsigned long end, 1590 struct mempolicy *new_pol) 1591 { 1592 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1593 1594 vmg.policy = new_pol; 1595 1596 return vma_modify(&vmg); 1597 } 1598 1599 struct vm_area_struct 1600 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1601 struct vm_area_struct *prev, 1602 struct vm_area_struct *vma, 1603 unsigned long start, unsigned long end, 1604 unsigned long new_flags, 1605 struct vm_userfaultfd_ctx new_ctx) 1606 { 1607 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1608 1609 vmg.flags = new_flags; 1610 vmg.uffd_ctx = new_ctx; 1611 1612 return vma_modify(&vmg); 1613 } 1614 1615 /* 1616 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1617 * VMA with identical properties. 1618 */ 1619 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1620 struct vm_area_struct *vma, 1621 unsigned long delta) 1622 { 1623 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1624 1625 vmg.next = vma_iter_next_rewind(vmi, NULL); 1626 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ 1627 1628 return vma_merge_new_range(&vmg); 1629 } 1630 1631 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1632 { 1633 vb->count = 0; 1634 } 1635 1636 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1637 { 1638 struct address_space *mapping; 1639 int i; 1640 1641 mapping = vb->vmas[0]->vm_file->f_mapping; 1642 i_mmap_lock_write(mapping); 1643 for (i = 0; i < vb->count; i++) { 1644 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1645 __remove_shared_vm_struct(vb->vmas[i], mapping); 1646 } 1647 i_mmap_unlock_write(mapping); 1648 1649 unlink_file_vma_batch_init(vb); 1650 } 1651 1652 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1653 struct vm_area_struct *vma) 1654 { 1655 if (vma->vm_file == NULL) 1656 return; 1657 1658 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1659 vb->count == ARRAY_SIZE(vb->vmas)) 1660 unlink_file_vma_batch_process(vb); 1661 1662 vb->vmas[vb->count] = vma; 1663 vb->count++; 1664 } 1665 1666 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1667 { 1668 if (vb->count > 0) 1669 unlink_file_vma_batch_process(vb); 1670 } 1671 1672 /* 1673 * Unlink a file-based vm structure from its interval tree, to hide 1674 * vma from rmap and vmtruncate before freeing its page tables. 1675 */ 1676 void unlink_file_vma(struct vm_area_struct *vma) 1677 { 1678 struct file *file = vma->vm_file; 1679 1680 if (file) { 1681 struct address_space *mapping = file->f_mapping; 1682 1683 i_mmap_lock_write(mapping); 1684 __remove_shared_vm_struct(vma, mapping); 1685 i_mmap_unlock_write(mapping); 1686 } 1687 } 1688 1689 void vma_link_file(struct vm_area_struct *vma) 1690 { 1691 struct file *file = vma->vm_file; 1692 struct address_space *mapping; 1693 1694 if (file) { 1695 mapping = file->f_mapping; 1696 i_mmap_lock_write(mapping); 1697 __vma_link_file(vma, mapping); 1698 i_mmap_unlock_write(mapping); 1699 } 1700 } 1701 1702 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1703 { 1704 VMA_ITERATOR(vmi, mm, 0); 1705 1706 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1707 if (vma_iter_prealloc(&vmi, vma)) 1708 return -ENOMEM; 1709 1710 vma_start_write(vma); 1711 vma_iter_store_new(&vmi, vma); 1712 vma_link_file(vma); 1713 mm->map_count++; 1714 validate_mm(mm); 1715 return 0; 1716 } 1717 1718 /* 1719 * Copy the vma structure to a new location in the same mm, 1720 * prior to moving page table entries, to effect an mremap move. 1721 */ 1722 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1723 unsigned long addr, unsigned long len, pgoff_t pgoff, 1724 bool *need_rmap_locks) 1725 { 1726 struct vm_area_struct *vma = *vmap; 1727 unsigned long vma_start = vma->vm_start; 1728 struct mm_struct *mm = vma->vm_mm; 1729 struct vm_area_struct *new_vma; 1730 bool faulted_in_anon_vma = true; 1731 VMA_ITERATOR(vmi, mm, addr); 1732 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1733 1734 /* 1735 * If anonymous vma has not yet been faulted, update new pgoff 1736 * to match new location, to increase its chance of merging. 1737 */ 1738 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1739 pgoff = addr >> PAGE_SHIFT; 1740 faulted_in_anon_vma = false; 1741 } 1742 1743 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1744 if (new_vma && new_vma->vm_start < addr + len) 1745 return NULL; /* should never get here */ 1746 1747 vmg.middle = NULL; /* New VMA range. */ 1748 vmg.pgoff = pgoff; 1749 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1750 new_vma = vma_merge_new_range(&vmg); 1751 1752 if (new_vma) { 1753 /* 1754 * Source vma may have been merged into new_vma 1755 */ 1756 if (unlikely(vma_start >= new_vma->vm_start && 1757 vma_start < new_vma->vm_end)) { 1758 /* 1759 * The only way we can get a vma_merge with 1760 * self during an mremap is if the vma hasn't 1761 * been faulted in yet and we were allowed to 1762 * reset the dst vma->vm_pgoff to the 1763 * destination address of the mremap to allow 1764 * the merge to happen. mremap must change the 1765 * vm_pgoff linearity between src and dst vmas 1766 * (in turn preventing a vma_merge) to be 1767 * safe. It is only safe to keep the vm_pgoff 1768 * linear if there are no pages mapped yet. 1769 */ 1770 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1771 *vmap = vma = new_vma; 1772 } 1773 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1774 } else { 1775 new_vma = vm_area_dup(vma); 1776 if (!new_vma) 1777 goto out; 1778 vma_set_range(new_vma, addr, addr + len, pgoff); 1779 if (vma_dup_policy(vma, new_vma)) 1780 goto out_free_vma; 1781 if (anon_vma_clone(new_vma, vma)) 1782 goto out_free_mempol; 1783 if (new_vma->vm_file) 1784 get_file(new_vma->vm_file); 1785 if (new_vma->vm_ops && new_vma->vm_ops->open) 1786 new_vma->vm_ops->open(new_vma); 1787 if (vma_link(mm, new_vma)) 1788 goto out_vma_link; 1789 *need_rmap_locks = false; 1790 } 1791 return new_vma; 1792 1793 out_vma_link: 1794 vma_close(new_vma); 1795 1796 if (new_vma->vm_file) 1797 fput(new_vma->vm_file); 1798 1799 unlink_anon_vmas(new_vma); 1800 out_free_mempol: 1801 mpol_put(vma_policy(new_vma)); 1802 out_free_vma: 1803 vm_area_free(new_vma); 1804 out: 1805 return NULL; 1806 } 1807 1808 /* 1809 * Rough compatibility check to quickly see if it's even worth looking 1810 * at sharing an anon_vma. 1811 * 1812 * They need to have the same vm_file, and the flags can only differ 1813 * in things that mprotect may change. 1814 * 1815 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1816 * we can merge the two vma's. For example, we refuse to merge a vma if 1817 * there is a vm_ops->close() function, because that indicates that the 1818 * driver is doing some kind of reference counting. But that doesn't 1819 * really matter for the anon_vma sharing case. 1820 */ 1821 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1822 { 1823 return a->vm_end == b->vm_start && 1824 mpol_equal(vma_policy(a), vma_policy(b)) && 1825 a->vm_file == b->vm_file && 1826 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1827 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1828 } 1829 1830 /* 1831 * Do some basic sanity checking to see if we can re-use the anon_vma 1832 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1833 * the same as 'old', the other will be the new one that is trying 1834 * to share the anon_vma. 1835 * 1836 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1837 * the anon_vma of 'old' is concurrently in the process of being set up 1838 * by another page fault trying to merge _that_. But that's ok: if it 1839 * is being set up, that automatically means that it will be a singleton 1840 * acceptable for merging, so we can do all of this optimistically. But 1841 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1842 * 1843 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1844 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1845 * is to return an anon_vma that is "complex" due to having gone through 1846 * a fork). 1847 * 1848 * We also make sure that the two vma's are compatible (adjacent, 1849 * and with the same memory policies). That's all stable, even with just 1850 * a read lock on the mmap_lock. 1851 */ 1852 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1853 struct vm_area_struct *a, 1854 struct vm_area_struct *b) 1855 { 1856 if (anon_vma_compatible(a, b)) { 1857 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1858 1859 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1860 return anon_vma; 1861 } 1862 return NULL; 1863 } 1864 1865 /* 1866 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1867 * neighbouring vmas for a suitable anon_vma, before it goes off 1868 * to allocate a new anon_vma. It checks because a repetitive 1869 * sequence of mprotects and faults may otherwise lead to distinct 1870 * anon_vmas being allocated, preventing vma merge in subsequent 1871 * mprotect. 1872 */ 1873 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1874 { 1875 struct anon_vma *anon_vma = NULL; 1876 struct vm_area_struct *prev, *next; 1877 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1878 1879 /* Try next first. */ 1880 next = vma_iter_load(&vmi); 1881 if (next) { 1882 anon_vma = reusable_anon_vma(next, vma, next); 1883 if (anon_vma) 1884 return anon_vma; 1885 } 1886 1887 prev = vma_prev(&vmi); 1888 VM_BUG_ON_VMA(prev != vma, vma); 1889 prev = vma_prev(&vmi); 1890 /* Try prev next. */ 1891 if (prev) 1892 anon_vma = reusable_anon_vma(prev, prev, vma); 1893 1894 /* 1895 * We might reach here with anon_vma == NULL if we can't find 1896 * any reusable anon_vma. 1897 * There's no absolute need to look only at touching neighbours: 1898 * we could search further afield for "compatible" anon_vmas. 1899 * But it would probably just be a waste of time searching, 1900 * or lead to too many vmas hanging off the same anon_vma. 1901 * We're trying to allow mprotect remerging later on, 1902 * not trying to minimize memory used for anon_vmas. 1903 */ 1904 return anon_vma; 1905 } 1906 1907 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1908 { 1909 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1910 } 1911 1912 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1913 { 1914 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1915 (VM_WRITE | VM_SHARED); 1916 } 1917 1918 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1919 { 1920 /* No managed pages to writeback. */ 1921 if (vma->vm_flags & VM_PFNMAP) 1922 return false; 1923 1924 return vma->vm_file && vma->vm_file->f_mapping && 1925 mapping_can_writeback(vma->vm_file->f_mapping); 1926 } 1927 1928 /* 1929 * Does this VMA require the underlying folios to have their dirty state 1930 * tracked? 1931 */ 1932 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1933 { 1934 /* Only shared, writable VMAs require dirty tracking. */ 1935 if (!vma_is_shared_writable(vma)) 1936 return false; 1937 1938 /* Does the filesystem need to be notified? */ 1939 if (vm_ops_needs_writenotify(vma->vm_ops)) 1940 return true; 1941 1942 /* 1943 * Even if the filesystem doesn't indicate a need for writenotify, if it 1944 * can writeback, dirty tracking is still required. 1945 */ 1946 return vma_fs_can_writeback(vma); 1947 } 1948 1949 /* 1950 * Some shared mappings will want the pages marked read-only 1951 * to track write events. If so, we'll downgrade vm_page_prot 1952 * to the private version (using protection_map[] without the 1953 * VM_SHARED bit). 1954 */ 1955 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1956 { 1957 /* If it was private or non-writable, the write bit is already clear */ 1958 if (!vma_is_shared_writable(vma)) 1959 return false; 1960 1961 /* The backer wishes to know when pages are first written to? */ 1962 if (vm_ops_needs_writenotify(vma->vm_ops)) 1963 return true; 1964 1965 /* The open routine did something to the protections that pgprot_modify 1966 * won't preserve? */ 1967 if (pgprot_val(vm_page_prot) != 1968 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1969 return false; 1970 1971 /* 1972 * Do we need to track softdirty? hugetlb does not support softdirty 1973 * tracking yet. 1974 */ 1975 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1976 return true; 1977 1978 /* Do we need write faults for uffd-wp tracking? */ 1979 if (userfaultfd_wp(vma)) 1980 return true; 1981 1982 /* Can the mapping track the dirty pages? */ 1983 return vma_fs_can_writeback(vma); 1984 } 1985 1986 static DEFINE_MUTEX(mm_all_locks_mutex); 1987 1988 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1989 { 1990 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1991 /* 1992 * The LSB of head.next can't change from under us 1993 * because we hold the mm_all_locks_mutex. 1994 */ 1995 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1996 /* 1997 * We can safely modify head.next after taking the 1998 * anon_vma->root->rwsem. If some other vma in this mm shares 1999 * the same anon_vma we won't take it again. 2000 * 2001 * No need of atomic instructions here, head.next 2002 * can't change from under us thanks to the 2003 * anon_vma->root->rwsem. 2004 */ 2005 if (__test_and_set_bit(0, (unsigned long *) 2006 &anon_vma->root->rb_root.rb_root.rb_node)) 2007 BUG(); 2008 } 2009 } 2010 2011 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 2012 { 2013 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2014 /* 2015 * AS_MM_ALL_LOCKS can't change from under us because 2016 * we hold the mm_all_locks_mutex. 2017 * 2018 * Operations on ->flags have to be atomic because 2019 * even if AS_MM_ALL_LOCKS is stable thanks to the 2020 * mm_all_locks_mutex, there may be other cpus 2021 * changing other bitflags in parallel to us. 2022 */ 2023 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 2024 BUG(); 2025 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 2026 } 2027 } 2028 2029 /* 2030 * This operation locks against the VM for all pte/vma/mm related 2031 * operations that could ever happen on a certain mm. This includes 2032 * vmtruncate, try_to_unmap, and all page faults. 2033 * 2034 * The caller must take the mmap_lock in write mode before calling 2035 * mm_take_all_locks(). The caller isn't allowed to release the 2036 * mmap_lock until mm_drop_all_locks() returns. 2037 * 2038 * mmap_lock in write mode is required in order to block all operations 2039 * that could modify pagetables and free pages without need of 2040 * altering the vma layout. It's also needed in write mode to avoid new 2041 * anon_vmas to be associated with existing vmas. 2042 * 2043 * A single task can't take more than one mm_take_all_locks() in a row 2044 * or it would deadlock. 2045 * 2046 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 2047 * mapping->flags avoid to take the same lock twice, if more than one 2048 * vma in this mm is backed by the same anon_vma or address_space. 2049 * 2050 * We take locks in following order, accordingly to comment at beginning 2051 * of mm/rmap.c: 2052 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 2053 * hugetlb mapping); 2054 * - all vmas marked locked 2055 * - all i_mmap_rwsem locks; 2056 * - all anon_vma->rwseml 2057 * 2058 * We can take all locks within these types randomly because the VM code 2059 * doesn't nest them and we protected from parallel mm_take_all_locks() by 2060 * mm_all_locks_mutex. 2061 * 2062 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 2063 * that may have to take thousand of locks. 2064 * 2065 * mm_take_all_locks() can fail if it's interrupted by signals. 2066 */ 2067 int mm_take_all_locks(struct mm_struct *mm) 2068 { 2069 struct vm_area_struct *vma; 2070 struct anon_vma_chain *avc; 2071 VMA_ITERATOR(vmi, mm, 0); 2072 2073 mmap_assert_write_locked(mm); 2074 2075 mutex_lock(&mm_all_locks_mutex); 2076 2077 /* 2078 * vma_start_write() does not have a complement in mm_drop_all_locks() 2079 * because vma_start_write() is always asymmetrical; it marks a VMA as 2080 * being written to until mmap_write_unlock() or mmap_write_downgrade() 2081 * is reached. 2082 */ 2083 for_each_vma(vmi, vma) { 2084 if (signal_pending(current)) 2085 goto out_unlock; 2086 vma_start_write(vma); 2087 } 2088 2089 vma_iter_init(&vmi, mm, 0); 2090 for_each_vma(vmi, vma) { 2091 if (signal_pending(current)) 2092 goto out_unlock; 2093 if (vma->vm_file && vma->vm_file->f_mapping && 2094 is_vm_hugetlb_page(vma)) 2095 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2096 } 2097 2098 vma_iter_init(&vmi, mm, 0); 2099 for_each_vma(vmi, vma) { 2100 if (signal_pending(current)) 2101 goto out_unlock; 2102 if (vma->vm_file && vma->vm_file->f_mapping && 2103 !is_vm_hugetlb_page(vma)) 2104 vm_lock_mapping(mm, vma->vm_file->f_mapping); 2105 } 2106 2107 vma_iter_init(&vmi, mm, 0); 2108 for_each_vma(vmi, vma) { 2109 if (signal_pending(current)) 2110 goto out_unlock; 2111 if (vma->anon_vma) 2112 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2113 vm_lock_anon_vma(mm, avc->anon_vma); 2114 } 2115 2116 return 0; 2117 2118 out_unlock: 2119 mm_drop_all_locks(mm); 2120 return -EINTR; 2121 } 2122 2123 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2124 { 2125 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2126 /* 2127 * The LSB of head.next can't change to 0 from under 2128 * us because we hold the mm_all_locks_mutex. 2129 * 2130 * We must however clear the bitflag before unlocking 2131 * the vma so the users using the anon_vma->rb_root will 2132 * never see our bitflag. 2133 * 2134 * No need of atomic instructions here, head.next 2135 * can't change from under us until we release the 2136 * anon_vma->root->rwsem. 2137 */ 2138 if (!__test_and_clear_bit(0, (unsigned long *) 2139 &anon_vma->root->rb_root.rb_root.rb_node)) 2140 BUG(); 2141 anon_vma_unlock_write(anon_vma); 2142 } 2143 } 2144 2145 static void vm_unlock_mapping(struct address_space *mapping) 2146 { 2147 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2148 /* 2149 * AS_MM_ALL_LOCKS can't change to 0 from under us 2150 * because we hold the mm_all_locks_mutex. 2151 */ 2152 i_mmap_unlock_write(mapping); 2153 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2154 &mapping->flags)) 2155 BUG(); 2156 } 2157 } 2158 2159 /* 2160 * The mmap_lock cannot be released by the caller until 2161 * mm_drop_all_locks() returns. 2162 */ 2163 void mm_drop_all_locks(struct mm_struct *mm) 2164 { 2165 struct vm_area_struct *vma; 2166 struct anon_vma_chain *avc; 2167 VMA_ITERATOR(vmi, mm, 0); 2168 2169 mmap_assert_write_locked(mm); 2170 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2171 2172 for_each_vma(vmi, vma) { 2173 if (vma->anon_vma) 2174 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2175 vm_unlock_anon_vma(avc->anon_vma); 2176 if (vma->vm_file && vma->vm_file->f_mapping) 2177 vm_unlock_mapping(vma->vm_file->f_mapping); 2178 } 2179 2180 mutex_unlock(&mm_all_locks_mutex); 2181 } 2182 2183 /* 2184 * We account for memory if it's a private writeable mapping, 2185 * not hugepages and VM_NORESERVE wasn't set. 2186 */ 2187 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) 2188 { 2189 /* 2190 * hugetlb has its own accounting separate from the core VM 2191 * VM_HUGETLB may not be set yet so we cannot check for that flag. 2192 */ 2193 if (file && is_file_hugepages(file)) 2194 return false; 2195 2196 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; 2197 } 2198 2199 /* 2200 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() 2201 * operation. 2202 * @vms: The vma unmap structure 2203 * @mas_detach: The maple state with the detached maple tree 2204 * 2205 * Reattach any detached vmas, free up the maple tree used to track the vmas. 2206 * If that's not possible because the ptes are cleared (and vm_ops->closed() may 2207 * have been called), then a NULL is written over the vmas and the vmas are 2208 * removed (munmap() completed). 2209 */ 2210 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, 2211 struct ma_state *mas_detach) 2212 { 2213 struct ma_state *mas = &vms->vmi->mas; 2214 2215 if (!vms->nr_pages) 2216 return; 2217 2218 if (vms->clear_ptes) 2219 return reattach_vmas(mas_detach); 2220 2221 /* 2222 * Aborting cannot just call the vm_ops open() because they are often 2223 * not symmetrical and state data has been lost. Resort to the old 2224 * failure method of leaving a gap where the MAP_FIXED mapping failed. 2225 */ 2226 mas_set_range(mas, vms->start, vms->end - 1); 2227 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); 2228 /* Clean up the insertion of the unfortunate gap */ 2229 vms_complete_munmap_vmas(vms, mas_detach); 2230 } 2231 2232 /* 2233 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be 2234 * unmapped once the map operation is completed, check limits, account mapping 2235 * and clean up any pre-existing VMAs. 2236 * 2237 * @map: Mapping state. 2238 * @uf: Userfaultfd context list. 2239 * 2240 * Returns: 0 on success, error code otherwise. 2241 */ 2242 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) 2243 { 2244 int error; 2245 struct vma_iterator *vmi = map->vmi; 2246 struct vma_munmap_struct *vms = &map->vms; 2247 2248 /* Find the first overlapping VMA and initialise unmap state. */ 2249 vms->vma = vma_find(vmi, map->end); 2250 init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf, 2251 /* unlock = */ false); 2252 2253 /* OK, we have overlapping VMAs - prepare to unmap them. */ 2254 if (vms->vma) { 2255 mt_init_flags(&map->mt_detach, 2256 vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 2257 mt_on_stack(map->mt_detach); 2258 mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0); 2259 /* Prepare to unmap any existing mapping in the area */ 2260 error = vms_gather_munmap_vmas(vms, &map->mas_detach); 2261 if (error) { 2262 /* On error VMAs will already have been reattached. */ 2263 vms->nr_pages = 0; 2264 return error; 2265 } 2266 2267 map->next = vms->next; 2268 map->prev = vms->prev; 2269 } else { 2270 map->next = vma_iter_next_rewind(vmi, &map->prev); 2271 } 2272 2273 /* Check against address space limit. */ 2274 if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages)) 2275 return -ENOMEM; 2276 2277 /* Private writable mapping: check memory availability. */ 2278 if (accountable_mapping(map->file, map->flags)) { 2279 map->charged = map->pglen; 2280 map->charged -= vms->nr_accounted; 2281 if (map->charged) { 2282 error = security_vm_enough_memory_mm(map->mm, map->charged); 2283 if (error) 2284 return error; 2285 } 2286 2287 vms->nr_accounted = 0; 2288 map->flags |= VM_ACCOUNT; 2289 } 2290 2291 /* 2292 * Clear PTEs while the vma is still in the tree so that rmap 2293 * cannot race with the freeing later in the truncate scenario. 2294 * This is also needed for mmap_file(), which is why vm_ops 2295 * close function is called. 2296 */ 2297 vms_clean_up_area(vms, &map->mas_detach); 2298 2299 return 0; 2300 } 2301 2302 2303 static int __mmap_new_file_vma(struct mmap_state *map, 2304 struct vm_area_struct *vma) 2305 { 2306 struct vma_iterator *vmi = map->vmi; 2307 int error; 2308 2309 vma->vm_file = get_file(map->file); 2310 error = mmap_file(vma->vm_file, vma); 2311 if (error) { 2312 fput(vma->vm_file); 2313 vma->vm_file = NULL; 2314 2315 vma_iter_set(vmi, vma->vm_end); 2316 /* Undo any partial mapping done by a device driver. */ 2317 unmap_region(&vmi->mas, vma, map->prev, map->next); 2318 2319 return error; 2320 } 2321 2322 /* Drivers cannot alter the address of the VMA. */ 2323 WARN_ON_ONCE(map->addr != vma->vm_start); 2324 /* 2325 * Drivers should not permit writability when previously it was 2326 * disallowed. 2327 */ 2328 VM_WARN_ON_ONCE(map->flags != vma->vm_flags && 2329 !(map->flags & VM_MAYWRITE) && 2330 (vma->vm_flags & VM_MAYWRITE)); 2331 2332 /* If the flags change (and are mergeable), let's retry later. */ 2333 map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL); 2334 map->flags = vma->vm_flags; 2335 2336 return 0; 2337 } 2338 2339 /* 2340 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not 2341 * possible. 2342 * 2343 * @map: Mapping state. 2344 * @vmap: Output pointer for the new VMA. 2345 * 2346 * Returns: Zero on success, or an error. 2347 */ 2348 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) 2349 { 2350 struct vma_iterator *vmi = map->vmi; 2351 int error = 0; 2352 struct vm_area_struct *vma; 2353 2354 /* 2355 * Determine the object being mapped and call the appropriate 2356 * specific mapper. the address has already been validated, but 2357 * not unmapped, but the maps are removed from the list. 2358 */ 2359 vma = vm_area_alloc(map->mm); 2360 if (!vma) 2361 return -ENOMEM; 2362 2363 vma_iter_config(vmi, map->addr, map->end); 2364 vma_set_range(vma, map->addr, map->end, map->pgoff); 2365 vm_flags_init(vma, map->flags); 2366 vma->vm_page_prot = vm_get_page_prot(map->flags); 2367 2368 if (vma_iter_prealloc(vmi, vma)) { 2369 error = -ENOMEM; 2370 goto free_vma; 2371 } 2372 2373 if (map->file) 2374 error = __mmap_new_file_vma(map, vma); 2375 else if (map->flags & VM_SHARED) 2376 error = shmem_zero_setup(vma); 2377 else 2378 vma_set_anonymous(vma); 2379 2380 if (error) 2381 goto free_iter_vma; 2382 2383 #ifdef CONFIG_SPARC64 2384 /* TODO: Fix SPARC ADI! */ 2385 WARN_ON_ONCE(!arch_validate_flags(map->flags)); 2386 #endif 2387 2388 /* Lock the VMA since it is modified after insertion into VMA tree */ 2389 vma_start_write(vma); 2390 vma_iter_store_new(vmi, vma); 2391 map->mm->map_count++; 2392 vma_link_file(vma); 2393 2394 /* 2395 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below 2396 * call covers the non-merge case. 2397 */ 2398 if (!vma_is_anonymous(vma)) 2399 khugepaged_enter_vma(vma, map->flags); 2400 ksm_add_vma(vma); 2401 *vmap = vma; 2402 return 0; 2403 2404 free_iter_vma: 2405 vma_iter_free(vmi); 2406 free_vma: 2407 vm_area_free(vma); 2408 return error; 2409 } 2410 2411 /* 2412 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping 2413 * statistics, handle locking and finalise the VMA. 2414 * 2415 * @map: Mapping state. 2416 * @vma: Merged or newly allocated VMA for the mmap()'d region. 2417 */ 2418 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) 2419 { 2420 struct mm_struct *mm = map->mm; 2421 unsigned long vm_flags = vma->vm_flags; 2422 2423 perf_event_mmap(vma); 2424 2425 /* Unmap any existing mapping in the area. */ 2426 vms_complete_munmap_vmas(&map->vms, &map->mas_detach); 2427 2428 vm_stat_account(mm, vma->vm_flags, map->pglen); 2429 if (vm_flags & VM_LOCKED) { 2430 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || 2431 is_vm_hugetlb_page(vma) || 2432 vma == get_gate_vma(mm)) 2433 vm_flags_clear(vma, VM_LOCKED_MASK); 2434 else 2435 mm->locked_vm += map->pglen; 2436 } 2437 2438 if (vma->vm_file) 2439 uprobe_mmap(vma); 2440 2441 /* 2442 * New (or expanded) vma always get soft dirty status. 2443 * Otherwise user-space soft-dirty page tracker won't 2444 * be able to distinguish situation when vma area unmapped, 2445 * then new mapped in-place (which must be aimed as 2446 * a completely new data area). 2447 */ 2448 vm_flags_set(vma, VM_SOFTDIRTY); 2449 2450 vma_set_page_prot(vma); 2451 } 2452 2453 static unsigned long __mmap_region(struct file *file, unsigned long addr, 2454 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2455 struct list_head *uf) 2456 { 2457 struct mm_struct *mm = current->mm; 2458 struct vm_area_struct *vma = NULL; 2459 int error; 2460 VMA_ITERATOR(vmi, mm, addr); 2461 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); 2462 2463 error = __mmap_prepare(&map, uf); 2464 if (error) 2465 goto abort_munmap; 2466 2467 /* Attempt to merge with adjacent VMAs... */ 2468 if (map.prev || map.next) { 2469 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); 2470 2471 vma = vma_merge_new_range(&vmg); 2472 } 2473 2474 /* ...but if we can't, allocate a new VMA. */ 2475 if (!vma) { 2476 error = __mmap_new_vma(&map, &vma); 2477 if (error) 2478 goto unacct_error; 2479 } 2480 2481 /* If flags changed, we might be able to merge, so try again. */ 2482 if (map.retry_merge) { 2483 struct vm_area_struct *merged; 2484 VMG_MMAP_STATE(vmg, &map, vma); 2485 2486 vma_iter_config(map.vmi, map.addr, map.end); 2487 merged = vma_merge_existing_range(&vmg); 2488 if (merged) 2489 vma = merged; 2490 } 2491 2492 __mmap_complete(&map, vma); 2493 2494 return addr; 2495 2496 /* Accounting was done by __mmap_prepare(). */ 2497 unacct_error: 2498 if (map.charged) 2499 vm_unacct_memory(map.charged); 2500 abort_munmap: 2501 vms_abort_munmap_vmas(&map.vms, &map.mas_detach); 2502 return error; 2503 } 2504 2505 /** 2506 * mmap_region() - Actually perform the userland mapping of a VMA into 2507 * current->mm with known, aligned and overflow-checked @addr and @len, and 2508 * correctly determined VMA flags @vm_flags and page offset @pgoff. 2509 * 2510 * This is an internal memory management function, and should not be used 2511 * directly. 2512 * 2513 * The caller must write-lock current->mm->mmap_lock. 2514 * 2515 * @file: If a file-backed mapping, a pointer to the struct file describing the 2516 * file to be mapped, otherwise NULL. 2517 * @addr: The page-aligned address at which to perform the mapping. 2518 * @len: The page-aligned, non-zero, length of the mapping. 2519 * @vm_flags: The VMA flags which should be applied to the mapping. 2520 * @pgoff: If @file is specified, the page offset into the file, if not then 2521 * the virtual page offset in memory of the anonymous mapping. 2522 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap 2523 * events. 2524 * 2525 * Returns: Either an error, or the address at which the requested mapping has 2526 * been performed. 2527 */ 2528 unsigned long mmap_region(struct file *file, unsigned long addr, 2529 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2530 struct list_head *uf) 2531 { 2532 unsigned long ret; 2533 bool writable_file_mapping = false; 2534 2535 mmap_assert_write_locked(current->mm); 2536 2537 /* Check to see if MDWE is applicable. */ 2538 if (map_deny_write_exec(vm_flags, vm_flags)) 2539 return -EACCES; 2540 2541 /* Allow architectures to sanity-check the vm_flags. */ 2542 if (!arch_validate_flags(vm_flags)) 2543 return -EINVAL; 2544 2545 /* Map writable and ensure this isn't a sealed memfd. */ 2546 if (file && is_shared_maywrite(vm_flags)) { 2547 int error = mapping_map_writable(file->f_mapping); 2548 2549 if (error) 2550 return error; 2551 writable_file_mapping = true; 2552 } 2553 2554 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); 2555 2556 /* Clear our write mapping regardless of error. */ 2557 if (writable_file_mapping) 2558 mapping_unmap_writable(file->f_mapping); 2559 2560 validate_mm(current->mm); 2561 return ret; 2562 } 2563 2564 /* 2565 * do_brk_flags() - Increase the brk vma if the flags match. 2566 * @vmi: The vma iterator 2567 * @addr: The start address 2568 * @len: The length of the increase 2569 * @vma: The vma, 2570 * @flags: The VMA Flags 2571 * 2572 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags 2573 * do not match then create a new anonymous VMA. Eventually we may be able to 2574 * do some brk-specific accounting here. 2575 */ 2576 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, 2577 unsigned long addr, unsigned long len, unsigned long flags) 2578 { 2579 struct mm_struct *mm = current->mm; 2580 2581 /* 2582 * Check against address space limits by the changed size 2583 * Note: This happens *after* clearing old mappings in some code paths. 2584 */ 2585 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; 2586 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) 2587 return -ENOMEM; 2588 2589 if (mm->map_count > sysctl_max_map_count) 2590 return -ENOMEM; 2591 2592 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) 2593 return -ENOMEM; 2594 2595 /* 2596 * Expand the existing vma if possible; Note that singular lists do not 2597 * occur after forking, so the expand will only happen on new VMAs. 2598 */ 2599 if (vma && vma->vm_end == addr) { 2600 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); 2601 2602 vmg.prev = vma; 2603 /* vmi is positioned at prev, which this mode expects. */ 2604 vmg.just_expand = true; 2605 2606 if (vma_merge_new_range(&vmg)) 2607 goto out; 2608 else if (vmg_nomem(&vmg)) 2609 goto unacct_fail; 2610 } 2611 2612 if (vma) 2613 vma_iter_next_range(vmi); 2614 /* create a vma struct for an anonymous mapping */ 2615 vma = vm_area_alloc(mm); 2616 if (!vma) 2617 goto unacct_fail; 2618 2619 vma_set_anonymous(vma); 2620 vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT); 2621 vm_flags_init(vma, flags); 2622 vma->vm_page_prot = vm_get_page_prot(flags); 2623 vma_start_write(vma); 2624 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) 2625 goto mas_store_fail; 2626 2627 mm->map_count++; 2628 validate_mm(mm); 2629 ksm_add_vma(vma); 2630 out: 2631 perf_event_mmap(vma); 2632 mm->total_vm += len >> PAGE_SHIFT; 2633 mm->data_vm += len >> PAGE_SHIFT; 2634 if (flags & VM_LOCKED) 2635 mm->locked_vm += (len >> PAGE_SHIFT); 2636 vm_flags_set(vma, VM_SOFTDIRTY); 2637 return 0; 2638 2639 mas_store_fail: 2640 vm_area_free(vma); 2641 unacct_fail: 2642 vm_unacct_memory(len >> PAGE_SHIFT); 2643 return -ENOMEM; 2644 } 2645 2646 /** 2647 * unmapped_area() - Find an area between the low_limit and the high_limit with 2648 * the correct alignment and offset, all from @info. Note: current->mm is used 2649 * for the search. 2650 * 2651 * @info: The unmapped area information including the range [low_limit - 2652 * high_limit), the alignment offset and mask. 2653 * 2654 * Return: A memory address or -ENOMEM. 2655 */ 2656 unsigned long unmapped_area(struct vm_unmapped_area_info *info) 2657 { 2658 unsigned long length, gap; 2659 unsigned long low_limit, high_limit; 2660 struct vm_area_struct *tmp; 2661 VMA_ITERATOR(vmi, current->mm, 0); 2662 2663 /* Adjust search length to account for worst case alignment overhead */ 2664 length = info->length + info->align_mask + info->start_gap; 2665 if (length < info->length) 2666 return -ENOMEM; 2667 2668 low_limit = info->low_limit; 2669 if (low_limit < mmap_min_addr) 2670 low_limit = mmap_min_addr; 2671 high_limit = info->high_limit; 2672 retry: 2673 if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length)) 2674 return -ENOMEM; 2675 2676 /* 2677 * Adjust for the gap first so it doesn't interfere with the 2678 * later alignment. The first step is the minimum needed to 2679 * fulill the start gap, the next steps is the minimum to align 2680 * that. It is the minimum needed to fulill both. 2681 */ 2682 gap = vma_iter_addr(&vmi) + info->start_gap; 2683 gap += (info->align_offset - gap) & info->align_mask; 2684 tmp = vma_next(&vmi); 2685 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2686 if (vm_start_gap(tmp) < gap + length - 1) { 2687 low_limit = tmp->vm_end; 2688 vma_iter_reset(&vmi); 2689 goto retry; 2690 } 2691 } else { 2692 tmp = vma_prev(&vmi); 2693 if (tmp && vm_end_gap(tmp) > gap) { 2694 low_limit = vm_end_gap(tmp); 2695 vma_iter_reset(&vmi); 2696 goto retry; 2697 } 2698 } 2699 2700 return gap; 2701 } 2702 2703 /** 2704 * unmapped_area_topdown() - Find an area between the low_limit and the 2705 * high_limit with the correct alignment and offset at the highest available 2706 * address, all from @info. Note: current->mm is used for the search. 2707 * 2708 * @info: The unmapped area information including the range [low_limit - 2709 * high_limit), the alignment offset and mask. 2710 * 2711 * Return: A memory address or -ENOMEM. 2712 */ 2713 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) 2714 { 2715 unsigned long length, gap, gap_end; 2716 unsigned long low_limit, high_limit; 2717 struct vm_area_struct *tmp; 2718 VMA_ITERATOR(vmi, current->mm, 0); 2719 2720 /* Adjust search length to account for worst case alignment overhead */ 2721 length = info->length + info->align_mask + info->start_gap; 2722 if (length < info->length) 2723 return -ENOMEM; 2724 2725 low_limit = info->low_limit; 2726 if (low_limit < mmap_min_addr) 2727 low_limit = mmap_min_addr; 2728 high_limit = info->high_limit; 2729 retry: 2730 if (vma_iter_area_highest(&vmi, low_limit, high_limit, length)) 2731 return -ENOMEM; 2732 2733 gap = vma_iter_end(&vmi) - info->length; 2734 gap -= (gap - info->align_offset) & info->align_mask; 2735 gap_end = vma_iter_end(&vmi); 2736 tmp = vma_next(&vmi); 2737 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ 2738 if (vm_start_gap(tmp) < gap_end) { 2739 high_limit = vm_start_gap(tmp); 2740 vma_iter_reset(&vmi); 2741 goto retry; 2742 } 2743 } else { 2744 tmp = vma_prev(&vmi); 2745 if (tmp && vm_end_gap(tmp) > gap) { 2746 high_limit = tmp->vm_start; 2747 vma_iter_reset(&vmi); 2748 goto retry; 2749 } 2750 } 2751 2752 return gap; 2753 } 2754 2755 /* 2756 * Verify that the stack growth is acceptable and 2757 * update accounting. This is shared with both the 2758 * grow-up and grow-down cases. 2759 */ 2760 static int acct_stack_growth(struct vm_area_struct *vma, 2761 unsigned long size, unsigned long grow) 2762 { 2763 struct mm_struct *mm = vma->vm_mm; 2764 unsigned long new_start; 2765 2766 /* address space limit tests */ 2767 if (!may_expand_vm(mm, vma->vm_flags, grow)) 2768 return -ENOMEM; 2769 2770 /* Stack limit test */ 2771 if (size > rlimit(RLIMIT_STACK)) 2772 return -ENOMEM; 2773 2774 /* mlock limit tests */ 2775 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT)) 2776 return -ENOMEM; 2777 2778 /* Check to ensure the stack will not grow into a hugetlb-only region */ 2779 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : 2780 vma->vm_end - size; 2781 if (is_hugepage_only_range(vma->vm_mm, new_start, size)) 2782 return -EFAULT; 2783 2784 /* 2785 * Overcommit.. This must be the final test, as it will 2786 * update security statistics. 2787 */ 2788 if (security_vm_enough_memory_mm(mm, grow)) 2789 return -ENOMEM; 2790 2791 return 0; 2792 } 2793 2794 #if defined(CONFIG_STACK_GROWSUP) 2795 /* 2796 * PA-RISC uses this for its stack. 2797 * vma is the last one with address > vma->vm_end. Have to extend vma. 2798 */ 2799 int expand_upwards(struct vm_area_struct *vma, unsigned long address) 2800 { 2801 struct mm_struct *mm = vma->vm_mm; 2802 struct vm_area_struct *next; 2803 unsigned long gap_addr; 2804 int error = 0; 2805 VMA_ITERATOR(vmi, mm, vma->vm_start); 2806 2807 if (!(vma->vm_flags & VM_GROWSUP)) 2808 return -EFAULT; 2809 2810 mmap_assert_write_locked(mm); 2811 2812 /* Guard against exceeding limits of the address space. */ 2813 address &= PAGE_MASK; 2814 if (address >= (TASK_SIZE & PAGE_MASK)) 2815 return -ENOMEM; 2816 address += PAGE_SIZE; 2817 2818 /* Enforce stack_guard_gap */ 2819 gap_addr = address + stack_guard_gap; 2820 2821 /* Guard against overflow */ 2822 if (gap_addr < address || gap_addr > TASK_SIZE) 2823 gap_addr = TASK_SIZE; 2824 2825 next = find_vma_intersection(mm, vma->vm_end, gap_addr); 2826 if (next && vma_is_accessible(next)) { 2827 if (!(next->vm_flags & VM_GROWSUP)) 2828 return -ENOMEM; 2829 /* Check that both stack segments have the same anon_vma? */ 2830 } 2831 2832 if (next) 2833 vma_iter_prev_range_limit(&vmi, address); 2834 2835 vma_iter_config(&vmi, vma->vm_start, address); 2836 if (vma_iter_prealloc(&vmi, vma)) 2837 return -ENOMEM; 2838 2839 /* We must make sure the anon_vma is allocated. */ 2840 if (unlikely(anon_vma_prepare(vma))) { 2841 vma_iter_free(&vmi); 2842 return -ENOMEM; 2843 } 2844 2845 /* Lock the VMA before expanding to prevent concurrent page faults */ 2846 vma_start_write(vma); 2847 /* We update the anon VMA tree. */ 2848 anon_vma_lock_write(vma->anon_vma); 2849 2850 /* Somebody else might have raced and expanded it already */ 2851 if (address > vma->vm_end) { 2852 unsigned long size, grow; 2853 2854 size = address - vma->vm_start; 2855 grow = (address - vma->vm_end) >> PAGE_SHIFT; 2856 2857 error = -ENOMEM; 2858 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { 2859 error = acct_stack_growth(vma, size, grow); 2860 if (!error) { 2861 if (vma->vm_flags & VM_LOCKED) 2862 mm->locked_vm += grow; 2863 vm_stat_account(mm, vma->vm_flags, grow); 2864 anon_vma_interval_tree_pre_update_vma(vma); 2865 vma->vm_end = address; 2866 /* Overwrite old entry in mtree. */ 2867 vma_iter_store_overwrite(&vmi, vma); 2868 anon_vma_interval_tree_post_update_vma(vma); 2869 2870 perf_event_mmap(vma); 2871 } 2872 } 2873 } 2874 anon_vma_unlock_write(vma->anon_vma); 2875 vma_iter_free(&vmi); 2876 validate_mm(mm); 2877 return error; 2878 } 2879 #endif /* CONFIG_STACK_GROWSUP */ 2880 2881 /* 2882 * vma is the first one with address < vma->vm_start. Have to extend vma. 2883 * mmap_lock held for writing. 2884 */ 2885 int expand_downwards(struct vm_area_struct *vma, unsigned long address) 2886 { 2887 struct mm_struct *mm = vma->vm_mm; 2888 struct vm_area_struct *prev; 2889 int error = 0; 2890 VMA_ITERATOR(vmi, mm, vma->vm_start); 2891 2892 if (!(vma->vm_flags & VM_GROWSDOWN)) 2893 return -EFAULT; 2894 2895 mmap_assert_write_locked(mm); 2896 2897 address &= PAGE_MASK; 2898 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) 2899 return -EPERM; 2900 2901 /* Enforce stack_guard_gap */ 2902 prev = vma_prev(&vmi); 2903 /* Check that both stack segments have the same anon_vma? */ 2904 if (prev) { 2905 if (!(prev->vm_flags & VM_GROWSDOWN) && 2906 vma_is_accessible(prev) && 2907 (address - prev->vm_end < stack_guard_gap)) 2908 return -ENOMEM; 2909 } 2910 2911 if (prev) 2912 vma_iter_next_range_limit(&vmi, vma->vm_start); 2913 2914 vma_iter_config(&vmi, address, vma->vm_end); 2915 if (vma_iter_prealloc(&vmi, vma)) 2916 return -ENOMEM; 2917 2918 /* We must make sure the anon_vma is allocated. */ 2919 if (unlikely(anon_vma_prepare(vma))) { 2920 vma_iter_free(&vmi); 2921 return -ENOMEM; 2922 } 2923 2924 /* Lock the VMA before expanding to prevent concurrent page faults */ 2925 vma_start_write(vma); 2926 /* We update the anon VMA tree. */ 2927 anon_vma_lock_write(vma->anon_vma); 2928 2929 /* Somebody else might have raced and expanded it already */ 2930 if (address < vma->vm_start) { 2931 unsigned long size, grow; 2932 2933 size = vma->vm_end - address; 2934 grow = (vma->vm_start - address) >> PAGE_SHIFT; 2935 2936 error = -ENOMEM; 2937 if (grow <= vma->vm_pgoff) { 2938 error = acct_stack_growth(vma, size, grow); 2939 if (!error) { 2940 if (vma->vm_flags & VM_LOCKED) 2941 mm->locked_vm += grow; 2942 vm_stat_account(mm, vma->vm_flags, grow); 2943 anon_vma_interval_tree_pre_update_vma(vma); 2944 vma->vm_start = address; 2945 vma->vm_pgoff -= grow; 2946 /* Overwrite old entry in mtree. */ 2947 vma_iter_store_overwrite(&vmi, vma); 2948 anon_vma_interval_tree_post_update_vma(vma); 2949 2950 perf_event_mmap(vma); 2951 } 2952 } 2953 } 2954 anon_vma_unlock_write(vma->anon_vma); 2955 vma_iter_free(&vmi); 2956 validate_mm(mm); 2957 return error; 2958 } 2959 2960 int __vm_munmap(unsigned long start, size_t len, bool unlock) 2961 { 2962 int ret; 2963 struct mm_struct *mm = current->mm; 2964 LIST_HEAD(uf); 2965 VMA_ITERATOR(vmi, mm, start); 2966 2967 if (mmap_write_lock_killable(mm)) 2968 return -EINTR; 2969 2970 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock); 2971 if (ret || !unlock) 2972 mmap_write_unlock(mm); 2973 2974 userfaultfd_unmap_complete(mm, &uf); 2975 return ret; 2976 } 2977