1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 /* 11 * If the vma has a ->close operation then the driver probably needs to release 12 * per-vma resources, so we don't attempt to merge those if the caller indicates 13 * the current vma may be removed as part of the merge. 14 */ 15 static inline bool is_mergeable_vma(struct vm_area_struct *vma, 16 struct file *file, unsigned long vm_flags, 17 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 18 struct anon_vma_name *anon_name, bool may_remove_vma) 19 { 20 /* 21 * VM_SOFTDIRTY should not prevent from VMA merging, if we 22 * match the flags but dirty bit -- the caller should mark 23 * merged VMA as dirty. If dirty bit won't be excluded from 24 * comparison, we increase pressure on the memory system forcing 25 * the kernel to generate new VMAs when old one could be 26 * extended instead. 27 */ 28 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) 29 return false; 30 if (vma->vm_file != file) 31 return false; 32 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close) 33 return false; 34 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) 35 return false; 36 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name)) 37 return false; 38 return true; 39 } 40 41 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 42 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 43 { 44 /* 45 * The list_is_singular() test is to avoid merging VMA cloned from 46 * parents. This can improve scalability caused by anon_vma lock. 47 */ 48 if ((!anon_vma1 || !anon_vma2) && (!vma || 49 list_is_singular(&vma->anon_vma_chain))) 50 return true; 51 return anon_vma1 == anon_vma2; 52 } 53 54 /* 55 * init_multi_vma_prep() - Initializer for struct vma_prepare 56 * @vp: The vma_prepare struct 57 * @vma: The vma that will be altered once locked 58 * @next: The next vma if it is to be adjusted 59 * @remove: The first vma to be removed 60 * @remove2: The second vma to be removed 61 */ 62 static void init_multi_vma_prep(struct vma_prepare *vp, 63 struct vm_area_struct *vma, 64 struct vm_area_struct *next, 65 struct vm_area_struct *remove, 66 struct vm_area_struct *remove2) 67 { 68 memset(vp, 0, sizeof(struct vma_prepare)); 69 vp->vma = vma; 70 vp->anon_vma = vma->anon_vma; 71 vp->remove = remove; 72 vp->remove2 = remove2; 73 vp->adj_next = next; 74 if (!vp->anon_vma && next) 75 vp->anon_vma = next->anon_vma; 76 77 vp->file = vma->vm_file; 78 if (vp->file) 79 vp->mapping = vma->vm_file->f_mapping; 80 81 } 82 83 /* 84 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 85 * in front of (at a lower virtual address and file offset than) the vma. 86 * 87 * We cannot merge two vmas if they have differently assigned (non-NULL) 88 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 89 * 90 * We don't check here for the merged mmap wrapping around the end of pagecache 91 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 92 * wrap, nor mmaps which cover the final page at index -1UL. 93 * 94 * We assume the vma may be removed as part of the merge. 95 */ 96 bool 97 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, 98 struct anon_vma *anon_vma, struct file *file, 99 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 100 struct anon_vma_name *anon_name) 101 { 102 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) && 103 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 104 if (vma->vm_pgoff == vm_pgoff) 105 return true; 106 } 107 return false; 108 } 109 110 /* 111 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 112 * beyond (at a higher virtual address and file offset than) the vma. 113 * 114 * We cannot merge two vmas if they have differently assigned (non-NULL) 115 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 116 * 117 * We assume that vma is not removed as part of the merge. 118 */ 119 bool 120 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, 121 struct anon_vma *anon_vma, struct file *file, 122 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 123 struct anon_vma_name *anon_name) 124 { 125 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) && 126 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { 127 pgoff_t vm_pglen; 128 129 vm_pglen = vma_pages(vma); 130 if (vma->vm_pgoff + vm_pglen == vm_pgoff) 131 return true; 132 } 133 return false; 134 } 135 136 /* 137 * Close a vm structure and free it. 138 */ 139 void remove_vma(struct vm_area_struct *vma, bool unreachable) 140 { 141 might_sleep(); 142 if (vma->vm_ops && vma->vm_ops->close) 143 vma->vm_ops->close(vma); 144 if (vma->vm_file) 145 fput(vma->vm_file); 146 mpol_put(vma_policy(vma)); 147 if (unreachable) 148 __vm_area_free(vma); 149 else 150 vm_area_free(vma); 151 } 152 153 /* 154 * Get rid of page table information in the indicated region. 155 * 156 * Called with the mm semaphore held. 157 */ 158 void unmap_region(struct mm_struct *mm, struct ma_state *mas, 159 struct vm_area_struct *vma, struct vm_area_struct *prev, 160 struct vm_area_struct *next, unsigned long start, 161 unsigned long end, unsigned long tree_end, bool mm_wr_locked) 162 { 163 struct mmu_gather tlb; 164 unsigned long mt_start = mas->index; 165 166 lru_add_drain(); 167 tlb_gather_mmu(&tlb, mm); 168 update_hiwater_rss(mm); 169 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked); 170 mas_set(mas, mt_start); 171 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 172 next ? next->vm_start : USER_PGTABLES_CEILING, 173 mm_wr_locked); 174 tlb_finish_mmu(&tlb); 175 } 176 177 /* 178 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 179 * has already been checked or doesn't make sense to fail. 180 * VMA Iterator will point to the original VMA. 181 */ 182 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 183 unsigned long addr, int new_below) 184 { 185 struct vma_prepare vp; 186 struct vm_area_struct *new; 187 int err; 188 189 WARN_ON(vma->vm_start >= addr); 190 WARN_ON(vma->vm_end <= addr); 191 192 if (vma->vm_ops && vma->vm_ops->may_split) { 193 err = vma->vm_ops->may_split(vma, addr); 194 if (err) 195 return err; 196 } 197 198 new = vm_area_dup(vma); 199 if (!new) 200 return -ENOMEM; 201 202 if (new_below) { 203 new->vm_end = addr; 204 } else { 205 new->vm_start = addr; 206 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 207 } 208 209 err = -ENOMEM; 210 vma_iter_config(vmi, new->vm_start, new->vm_end); 211 if (vma_iter_prealloc(vmi, new)) 212 goto out_free_vma; 213 214 err = vma_dup_policy(vma, new); 215 if (err) 216 goto out_free_vmi; 217 218 err = anon_vma_clone(new, vma); 219 if (err) 220 goto out_free_mpol; 221 222 if (new->vm_file) 223 get_file(new->vm_file); 224 225 if (new->vm_ops && new->vm_ops->open) 226 new->vm_ops->open(new); 227 228 vma_start_write(vma); 229 vma_start_write(new); 230 231 init_vma_prep(&vp, vma); 232 vp.insert = new; 233 vma_prepare(&vp); 234 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 235 236 if (new_below) { 237 vma->vm_start = addr; 238 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 239 } else { 240 vma->vm_end = addr; 241 } 242 243 /* vma_complete stores the new vma */ 244 vma_complete(&vp, vmi, vma->vm_mm); 245 validate_mm(vma->vm_mm); 246 247 /* Success. */ 248 if (new_below) 249 vma_next(vmi); 250 else 251 vma_prev(vmi); 252 253 return 0; 254 255 out_free_mpol: 256 mpol_put(vma_policy(new)); 257 out_free_vmi: 258 vma_iter_free(vmi); 259 out_free_vma: 260 vm_area_free(new); 261 return err; 262 } 263 264 /* 265 * Split a vma into two pieces at address 'addr', a new vma is allocated 266 * either for the first part or the tail. 267 */ 268 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 269 unsigned long addr, int new_below) 270 { 271 if (vma->vm_mm->map_count >= sysctl_max_map_count) 272 return -ENOMEM; 273 274 return __split_vma(vmi, vma, addr, new_below); 275 } 276 277 /* 278 * init_vma_prep() - Initializer wrapper for vma_prepare struct 279 * @vp: The vma_prepare struct 280 * @vma: The vma that will be altered once locked 281 */ 282 void init_vma_prep(struct vma_prepare *vp, 283 struct vm_area_struct *vma) 284 { 285 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 286 } 287 288 /* 289 * Requires inode->i_mapping->i_mmap_rwsem 290 */ 291 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 292 struct address_space *mapping) 293 { 294 if (vma_is_shared_maywrite(vma)) 295 mapping_unmap_writable(mapping); 296 297 flush_dcache_mmap_lock(mapping); 298 vma_interval_tree_remove(vma, &mapping->i_mmap); 299 flush_dcache_mmap_unlock(mapping); 300 } 301 302 /* 303 * vma has some anon_vma assigned, and is already inserted on that 304 * anon_vma's interval trees. 305 * 306 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 307 * vma must be removed from the anon_vma's interval trees using 308 * anon_vma_interval_tree_pre_update_vma(). 309 * 310 * After the update, the vma will be reinserted using 311 * anon_vma_interval_tree_post_update_vma(). 312 * 313 * The entire update must be protected by exclusive mmap_lock and by 314 * the root anon_vma's mutex. 315 */ 316 void 317 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 318 { 319 struct anon_vma_chain *avc; 320 321 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 322 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 323 } 324 325 void 326 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 327 { 328 struct anon_vma_chain *avc; 329 330 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 331 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 332 } 333 334 static void __vma_link_file(struct vm_area_struct *vma, 335 struct address_space *mapping) 336 { 337 if (vma_is_shared_maywrite(vma)) 338 mapping_allow_writable(mapping); 339 340 flush_dcache_mmap_lock(mapping); 341 vma_interval_tree_insert(vma, &mapping->i_mmap); 342 flush_dcache_mmap_unlock(mapping); 343 } 344 345 /* 346 * vma_prepare() - Helper function for handling locking VMAs prior to altering 347 * @vp: The initialized vma_prepare struct 348 */ 349 void vma_prepare(struct vma_prepare *vp) 350 { 351 if (vp->file) { 352 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 353 354 if (vp->adj_next) 355 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 356 vp->adj_next->vm_end); 357 358 i_mmap_lock_write(vp->mapping); 359 if (vp->insert && vp->insert->vm_file) { 360 /* 361 * Put into interval tree now, so instantiated pages 362 * are visible to arm/parisc __flush_dcache_page 363 * throughout; but we cannot insert into address 364 * space until vma start or end is updated. 365 */ 366 __vma_link_file(vp->insert, 367 vp->insert->vm_file->f_mapping); 368 } 369 } 370 371 if (vp->anon_vma) { 372 anon_vma_lock_write(vp->anon_vma); 373 anon_vma_interval_tree_pre_update_vma(vp->vma); 374 if (vp->adj_next) 375 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 376 } 377 378 if (vp->file) { 379 flush_dcache_mmap_lock(vp->mapping); 380 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 381 if (vp->adj_next) 382 vma_interval_tree_remove(vp->adj_next, 383 &vp->mapping->i_mmap); 384 } 385 386 } 387 388 /* 389 * dup_anon_vma() - Helper function to duplicate anon_vma 390 * @dst: The destination VMA 391 * @src: The source VMA 392 * @dup: Pointer to the destination VMA when successful. 393 * 394 * Returns: 0 on success. 395 */ 396 static int dup_anon_vma(struct vm_area_struct *dst, 397 struct vm_area_struct *src, struct vm_area_struct **dup) 398 { 399 /* 400 * Easily overlooked: when mprotect shifts the boundary, make sure the 401 * expanding vma has anon_vma set if the shrinking vma had, to cover any 402 * anon pages imported. 403 */ 404 if (src->anon_vma && !dst->anon_vma) { 405 int ret; 406 407 vma_assert_write_locked(dst); 408 dst->anon_vma = src->anon_vma; 409 ret = anon_vma_clone(dst, src); 410 if (ret) 411 return ret; 412 413 *dup = dst; 414 } 415 416 return 0; 417 } 418 419 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 420 void validate_mm(struct mm_struct *mm) 421 { 422 int bug = 0; 423 int i = 0; 424 struct vm_area_struct *vma; 425 VMA_ITERATOR(vmi, mm, 0); 426 427 mt_validate(&mm->mm_mt); 428 for_each_vma(vmi, vma) { 429 #ifdef CONFIG_DEBUG_VM_RB 430 struct anon_vma *anon_vma = vma->anon_vma; 431 struct anon_vma_chain *avc; 432 #endif 433 unsigned long vmi_start, vmi_end; 434 bool warn = 0; 435 436 vmi_start = vma_iter_addr(&vmi); 437 vmi_end = vma_iter_end(&vmi); 438 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 439 warn = 1; 440 441 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 442 warn = 1; 443 444 if (warn) { 445 pr_emerg("issue in %s\n", current->comm); 446 dump_stack(); 447 dump_vma(vma); 448 pr_emerg("tree range: %px start %lx end %lx\n", vma, 449 vmi_start, vmi_end - 1); 450 vma_iter_dump_tree(&vmi); 451 } 452 453 #ifdef CONFIG_DEBUG_VM_RB 454 if (anon_vma) { 455 anon_vma_lock_read(anon_vma); 456 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 457 anon_vma_interval_tree_verify(avc); 458 anon_vma_unlock_read(anon_vma); 459 } 460 #endif 461 i++; 462 } 463 if (i != mm->map_count) { 464 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 465 bug = 1; 466 } 467 VM_BUG_ON_MM(bug, mm); 468 } 469 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 470 471 /* 472 * vma_expand - Expand an existing VMA 473 * 474 * @vmi: The vma iterator 475 * @vma: The vma to expand 476 * @start: The start of the vma 477 * @end: The exclusive end of the vma 478 * @pgoff: The page offset of vma 479 * @next: The current of next vma. 480 * 481 * Expand @vma to @start and @end. Can expand off the start and end. Will 482 * expand over @next if it's different from @vma and @end == @next->vm_end. 483 * Checking if the @vma can expand and merge with @next needs to be handled by 484 * the caller. 485 * 486 * Returns: 0 on success 487 */ 488 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 489 unsigned long start, unsigned long end, pgoff_t pgoff, 490 struct vm_area_struct *next) 491 { 492 struct vm_area_struct *anon_dup = NULL; 493 bool remove_next = false; 494 struct vma_prepare vp; 495 496 vma_start_write(vma); 497 if (next && (vma != next) && (end == next->vm_end)) { 498 int ret; 499 500 remove_next = true; 501 vma_start_write(next); 502 ret = dup_anon_vma(vma, next, &anon_dup); 503 if (ret) 504 return ret; 505 } 506 507 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL); 508 /* Not merging but overwriting any part of next is not handled. */ 509 VM_WARN_ON(next && !vp.remove && 510 next != vma && end > next->vm_start); 511 /* Only handles expanding */ 512 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end); 513 514 /* Note: vma iterator must be pointing to 'start' */ 515 vma_iter_config(vmi, start, end); 516 if (vma_iter_prealloc(vmi, vma)) 517 goto nomem; 518 519 vma_prepare(&vp); 520 vma_adjust_trans_huge(vma, start, end, 0); 521 vma_set_range(vma, start, end, pgoff); 522 vma_iter_store(vmi, vma); 523 524 vma_complete(&vp, vmi, vma->vm_mm); 525 validate_mm(vma->vm_mm); 526 return 0; 527 528 nomem: 529 if (anon_dup) 530 unlink_anon_vmas(anon_dup); 531 return -ENOMEM; 532 } 533 534 /* 535 * vma_shrink() - Reduce an existing VMAs memory area 536 * @vmi: The vma iterator 537 * @vma: The VMA to modify 538 * @start: The new start 539 * @end: The new end 540 * 541 * Returns: 0 on success, -ENOMEM otherwise 542 */ 543 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 544 unsigned long start, unsigned long end, pgoff_t pgoff) 545 { 546 struct vma_prepare vp; 547 548 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 549 550 if (vma->vm_start < start) 551 vma_iter_config(vmi, vma->vm_start, start); 552 else 553 vma_iter_config(vmi, end, vma->vm_end); 554 555 if (vma_iter_prealloc(vmi, NULL)) 556 return -ENOMEM; 557 558 vma_start_write(vma); 559 560 init_vma_prep(&vp, vma); 561 vma_prepare(&vp); 562 vma_adjust_trans_huge(vma, start, end, 0); 563 564 vma_iter_clear(vmi); 565 vma_set_range(vma, start, end, pgoff); 566 vma_complete(&vp, vmi, vma->vm_mm); 567 validate_mm(vma->vm_mm); 568 return 0; 569 } 570 571 /* 572 * vma_complete- Helper function for handling the unlocking after altering VMAs, 573 * or for inserting a VMA. 574 * 575 * @vp: The vma_prepare struct 576 * @vmi: The vma iterator 577 * @mm: The mm_struct 578 */ 579 void vma_complete(struct vma_prepare *vp, 580 struct vma_iterator *vmi, struct mm_struct *mm) 581 { 582 if (vp->file) { 583 if (vp->adj_next) 584 vma_interval_tree_insert(vp->adj_next, 585 &vp->mapping->i_mmap); 586 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 587 flush_dcache_mmap_unlock(vp->mapping); 588 } 589 590 if (vp->remove && vp->file) { 591 __remove_shared_vm_struct(vp->remove, vp->mapping); 592 if (vp->remove2) 593 __remove_shared_vm_struct(vp->remove2, vp->mapping); 594 } else if (vp->insert) { 595 /* 596 * split_vma has split insert from vma, and needs 597 * us to insert it before dropping the locks 598 * (it may either follow vma or precede it). 599 */ 600 vma_iter_store(vmi, vp->insert); 601 mm->map_count++; 602 } 603 604 if (vp->anon_vma) { 605 anon_vma_interval_tree_post_update_vma(vp->vma); 606 if (vp->adj_next) 607 anon_vma_interval_tree_post_update_vma(vp->adj_next); 608 anon_vma_unlock_write(vp->anon_vma); 609 } 610 611 if (vp->file) { 612 i_mmap_unlock_write(vp->mapping); 613 uprobe_mmap(vp->vma); 614 615 if (vp->adj_next) 616 uprobe_mmap(vp->adj_next); 617 } 618 619 if (vp->remove) { 620 again: 621 vma_mark_detached(vp->remove, true); 622 if (vp->file) { 623 uprobe_munmap(vp->remove, vp->remove->vm_start, 624 vp->remove->vm_end); 625 fput(vp->file); 626 } 627 if (vp->remove->anon_vma) 628 anon_vma_merge(vp->vma, vp->remove); 629 mm->map_count--; 630 mpol_put(vma_policy(vp->remove)); 631 if (!vp->remove2) 632 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 633 vm_area_free(vp->remove); 634 635 /* 636 * In mprotect's case 6 (see comments on vma_merge), 637 * we are removing both mid and next vmas 638 */ 639 if (vp->remove2) { 640 vp->remove = vp->remove2; 641 vp->remove2 = NULL; 642 goto again; 643 } 644 } 645 if (vp->insert && vp->file) 646 uprobe_mmap(vp->insert); 647 } 648 649 /* 650 * vms_complete_munmap_vmas() - Finish the munmap() operation 651 * @vms: The vma munmap struct 652 * @mas_detach: The maple state of the detached vmas 653 * 654 * This updates the mm_struct, unmaps the region, frees the resources 655 * used for the munmap() and may downgrade the lock - if requested. Everything 656 * needed to be done once the vma maple tree is updated. 657 */ 658 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 659 struct ma_state *mas_detach) 660 { 661 struct vm_area_struct *vma; 662 struct mm_struct *mm; 663 664 mm = vms->mm; 665 mm->map_count -= vms->vma_count; 666 mm->locked_vm -= vms->locked_vm; 667 if (vms->unlock) 668 mmap_write_downgrade(mm); 669 670 /* 671 * We can free page tables without write-locking mmap_lock because VMAs 672 * were isolated before we downgraded mmap_lock. 673 */ 674 mas_set(mas_detach, 1); 675 unmap_region(mm, mas_detach, vms->vma, vms->prev, vms->next, 676 vms->start, vms->end, vms->vma_count, !vms->unlock); 677 /* Update high watermark before we lower total_vm */ 678 update_hiwater_vm(mm); 679 /* Stat accounting */ 680 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 681 /* Paranoid bookkeeping */ 682 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 683 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 684 VM_WARN_ON(vms->data_vm > mm->data_vm); 685 mm->exec_vm -= vms->exec_vm; 686 mm->stack_vm -= vms->stack_vm; 687 mm->data_vm -= vms->data_vm; 688 689 /* Remove and clean up vmas */ 690 mas_set(mas_detach, 0); 691 mas_for_each(mas_detach, vma, ULONG_MAX) 692 remove_vma(vma, false); 693 694 vm_unacct_memory(vms->nr_accounted); 695 validate_mm(mm); 696 if (vms->unlock) 697 mmap_read_unlock(mm); 698 699 __mt_destroy(mas_detach->tree); 700 } 701 702 /* 703 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 704 * for removal at a later date. Handles splitting first and last if necessary 705 * and marking the vmas as isolated. 706 * 707 * @vms: The vma munmap struct 708 * @mas_detach: The maple state tracking the detached tree 709 * 710 * Return: 0 on success, -EPERM on mseal vmas, -ENOMEM otherwise 711 */ 712 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 713 struct ma_state *mas_detach) 714 { 715 struct vm_area_struct *next = NULL; 716 int error = -ENOMEM; 717 718 /* 719 * If we need to split any vma, do it now to save pain later. 720 * 721 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially 722 * unmapped vm_area_struct will remain in use: so lower split_vma 723 * places tmp vma above, and higher split_vma places tmp vma below. 724 */ 725 726 /* Does it split the first one? */ 727 if (vms->start > vms->vma->vm_start) { 728 729 /* 730 * Make sure that map_count on return from munmap() will 731 * not exceed its limit; but let map_count go just above 732 * its limit temporarily, to help free resources as expected. 733 */ 734 if (vms->end < vms->vma->vm_end && 735 vms->mm->map_count >= sysctl_max_map_count) 736 goto map_count_exceeded; 737 738 /* Don't bother splitting the VMA if we can't unmap it anyway */ 739 if (!can_modify_vma(vms->vma)) { 740 error = -EPERM; 741 goto start_split_failed; 742 } 743 744 if (__split_vma(vms->vmi, vms->vma, vms->start, 1)) 745 goto start_split_failed; 746 } 747 vms->prev = vma_prev(vms->vmi); 748 749 /* 750 * Detach a range of VMAs from the mm. Using next as a temp variable as 751 * it is always overwritten. 752 */ 753 for_each_vma_range(*(vms->vmi), next, vms->end) { 754 long nrpages; 755 756 if (!can_modify_vma(next)) { 757 error = -EPERM; 758 goto modify_vma_failed; 759 } 760 /* Does it split the end? */ 761 if (next->vm_end > vms->end) { 762 if (__split_vma(vms->vmi, next, vms->end, 0)) 763 goto end_split_failed; 764 } 765 vma_start_write(next); 766 mas_set(mas_detach, vms->vma_count++); 767 if (mas_store_gfp(mas_detach, next, GFP_KERNEL)) 768 goto munmap_gather_failed; 769 770 vma_mark_detached(next, true); 771 nrpages = vma_pages(next); 772 773 vms->nr_pages += nrpages; 774 if (next->vm_flags & VM_LOCKED) 775 vms->locked_vm += nrpages; 776 777 if (next->vm_flags & VM_ACCOUNT) 778 vms->nr_accounted += nrpages; 779 780 if (is_exec_mapping(next->vm_flags)) 781 vms->exec_vm += nrpages; 782 else if (is_stack_mapping(next->vm_flags)) 783 vms->stack_vm += nrpages; 784 else if (is_data_mapping(next->vm_flags)) 785 vms->data_vm += nrpages; 786 787 if (unlikely(vms->uf)) { 788 /* 789 * If userfaultfd_unmap_prep returns an error the vmas 790 * will remain split, but userland will get a 791 * highly unexpected error anyway. This is no 792 * different than the case where the first of the two 793 * __split_vma fails, but we don't undo the first 794 * split, despite we could. This is unlikely enough 795 * failure that it's not worth optimizing it for. 796 */ 797 if (userfaultfd_unmap_prep(next, vms->start, vms->end, 798 vms->uf)) 799 goto userfaultfd_error; 800 } 801 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 802 BUG_ON(next->vm_start < vms->start); 803 BUG_ON(next->vm_start > vms->end); 804 #endif 805 } 806 807 vms->next = vma_next(vms->vmi); 808 809 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 810 /* Make sure no VMAs are about to be lost. */ 811 { 812 MA_STATE(test, mas_detach->tree, 0, 0); 813 struct vm_area_struct *vma_mas, *vma_test; 814 int test_count = 0; 815 816 vma_iter_set(vms->vmi, vms->start); 817 rcu_read_lock(); 818 vma_test = mas_find(&test, vms->vma_count - 1); 819 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 820 BUG_ON(vma_mas != vma_test); 821 test_count++; 822 vma_test = mas_next(&test, vms->vma_count - 1); 823 } 824 rcu_read_unlock(); 825 BUG_ON(vms->vma_count != test_count); 826 } 827 #endif 828 829 while (vma_iter_addr(vms->vmi) > vms->start) 830 vma_iter_prev_range(vms->vmi); 831 832 return 0; 833 834 userfaultfd_error: 835 munmap_gather_failed: 836 end_split_failed: 837 modify_vma_failed: 838 abort_munmap_vmas(mas_detach); 839 start_split_failed: 840 map_count_exceeded: 841 return error; 842 } 843 844 /* 845 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 846 * @vmi: The vma iterator 847 * @vma: The starting vm_area_struct 848 * @mm: The mm_struct 849 * @start: The aligned start address to munmap. 850 * @end: The aligned end address to munmap. 851 * @uf: The userfaultfd list_head 852 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 853 * success. 854 * 855 * Return: 0 on success and drops the lock if so directed, error and leaves the 856 * lock held otherwise. 857 */ 858 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 859 struct mm_struct *mm, unsigned long start, unsigned long end, 860 struct list_head *uf, bool unlock) 861 { 862 struct maple_tree mt_detach; 863 MA_STATE(mas_detach, &mt_detach, 0, 0); 864 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 865 mt_on_stack(mt_detach); 866 struct vma_munmap_struct vms; 867 int error; 868 869 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 870 error = vms_gather_munmap_vmas(&vms, &mas_detach); 871 if (error) 872 goto gather_failed; 873 874 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 875 if (error) 876 goto clear_tree_failed; 877 878 /* Point of no return */ 879 vms_complete_munmap_vmas(&vms, &mas_detach); 880 return 0; 881 882 clear_tree_failed: 883 abort_munmap_vmas(&mas_detach); 884 gather_failed: 885 validate_mm(mm); 886 return error; 887 } 888 889 /* 890 * do_vmi_munmap() - munmap a given range. 891 * @vmi: The vma iterator 892 * @mm: The mm_struct 893 * @start: The start address to munmap 894 * @len: The length of the range to munmap 895 * @uf: The userfaultfd list_head 896 * @unlock: set to true if the user wants to drop the mmap_lock on success 897 * 898 * This function takes a @mas that is either pointing to the previous VMA or set 899 * to MA_START and sets it up to remove the mapping(s). The @len will be 900 * aligned. 901 * 902 * Return: 0 on success and drops the lock if so directed, error and leaves the 903 * lock held otherwise. 904 */ 905 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 906 unsigned long start, size_t len, struct list_head *uf, 907 bool unlock) 908 { 909 unsigned long end; 910 struct vm_area_struct *vma; 911 912 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 913 return -EINVAL; 914 915 end = start + PAGE_ALIGN(len); 916 if (end == start) 917 return -EINVAL; 918 919 /* Find the first overlapping VMA */ 920 vma = vma_find(vmi, end); 921 if (!vma) { 922 if (unlock) 923 mmap_write_unlock(mm); 924 return 0; 925 } 926 927 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 928 } 929 930 /* 931 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name), 932 * figure out whether that can be merged with its predecessor or its 933 * successor. Or both (it neatly fills a hole). 934 * 935 * In most cases - when called for mmap, brk or mremap - [addr,end) is 936 * certain not to be mapped by the time vma_merge is called; but when 937 * called for mprotect, it is certain to be already mapped (either at 938 * an offset within prev, or at the start of next), and the flags of 939 * this area are about to be changed to vm_flags - and the no-change 940 * case has already been eliminated. 941 * 942 * The following mprotect cases have to be considered, where **** is 943 * the area passed down from mprotect_fixup, never extending beyond one 944 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts 945 * at the same address as **** and is of the same or larger span, and 946 * NNNN the next vma after ****: 947 * 948 * **** **** **** 949 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC 950 * cannot merge might become might become 951 * PPNNNNNNNNNN PPPPPPPPPPCC 952 * mmap, brk or case 4 below case 5 below 953 * mremap move: 954 * **** **** 955 * PPPP NNNN PPPPCCCCNNNN 956 * might become might become 957 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or 958 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or 959 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8 960 * 961 * It is important for case 8 that the vma CCCC overlapping the 962 * region **** is never going to extended over NNNN. Instead NNNN must 963 * be extended in region **** and CCCC must be removed. This way in 964 * all cases where vma_merge succeeds, the moment vma_merge drops the 965 * rmap_locks, the properties of the merged vma will be already 966 * correct for the whole merged range. Some of those properties like 967 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must 968 * be correct for the whole merged range immediately after the 969 * rmap_locks are released. Otherwise if NNNN would be removed and 970 * CCCC would be extended over the NNNN range, remove_migration_ptes 971 * or other rmap walkers (if working on addresses beyond the "end" 972 * parameter) may establish ptes with the wrong permissions of CCCC 973 * instead of the right permissions of NNNN. 974 * 975 * In the code below: 976 * PPPP is represented by *prev 977 * CCCC is represented by *curr or not represented at all (NULL) 978 * NNNN is represented by *next or not represented at all (NULL) 979 * **** is not represented - it will be merged and the vma containing the 980 * area is returned, or the function will return NULL 981 */ 982 static struct vm_area_struct 983 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev, 984 struct vm_area_struct *src, unsigned long addr, unsigned long end, 985 unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy, 986 struct vm_userfaultfd_ctx vm_userfaultfd_ctx, 987 struct anon_vma_name *anon_name) 988 { 989 struct mm_struct *mm = src->vm_mm; 990 struct anon_vma *anon_vma = src->anon_vma; 991 struct file *file = src->vm_file; 992 struct vm_area_struct *curr, *next, *res; 993 struct vm_area_struct *vma, *adjust, *remove, *remove2; 994 struct vm_area_struct *anon_dup = NULL; 995 struct vma_prepare vp; 996 pgoff_t vma_pgoff; 997 int err = 0; 998 bool merge_prev = false; 999 bool merge_next = false; 1000 bool vma_expanded = false; 1001 unsigned long vma_start = addr; 1002 unsigned long vma_end = end; 1003 pgoff_t pglen = (end - addr) >> PAGE_SHIFT; 1004 long adj_start = 0; 1005 1006 /* 1007 * We later require that vma->vm_flags == vm_flags, 1008 * so this tests vma->vm_flags & VM_SPECIAL, too. 1009 */ 1010 if (vm_flags & VM_SPECIAL) 1011 return NULL; 1012 1013 /* Does the input range span an existing VMA? (cases 5 - 8) */ 1014 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end); 1015 1016 if (!curr || /* cases 1 - 4 */ 1017 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */ 1018 next = vma_lookup(mm, end); 1019 else 1020 next = NULL; /* case 5 */ 1021 1022 if (prev) { 1023 vma_start = prev->vm_start; 1024 vma_pgoff = prev->vm_pgoff; 1025 1026 /* Can we merge the predecessor? */ 1027 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy) 1028 && can_vma_merge_after(prev, vm_flags, anon_vma, file, 1029 pgoff, vm_userfaultfd_ctx, anon_name)) { 1030 merge_prev = true; 1031 vma_prev(vmi); 1032 } 1033 } 1034 1035 /* Can we merge the successor? */ 1036 if (next && mpol_equal(policy, vma_policy(next)) && 1037 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen, 1038 vm_userfaultfd_ctx, anon_name)) { 1039 merge_next = true; 1040 } 1041 1042 /* Verify some invariant that must be enforced by the caller. */ 1043 VM_WARN_ON(prev && addr <= prev->vm_start); 1044 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end)); 1045 VM_WARN_ON(addr >= end); 1046 1047 if (!merge_prev && !merge_next) 1048 return NULL; /* Not mergeable. */ 1049 1050 if (merge_prev) 1051 vma_start_write(prev); 1052 1053 res = vma = prev; 1054 remove = remove2 = adjust = NULL; 1055 1056 /* Can we merge both the predecessor and the successor? */ 1057 if (merge_prev && merge_next && 1058 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) { 1059 vma_start_write(next); 1060 remove = next; /* case 1 */ 1061 vma_end = next->vm_end; 1062 err = dup_anon_vma(prev, next, &anon_dup); 1063 if (curr) { /* case 6 */ 1064 vma_start_write(curr); 1065 remove = curr; 1066 remove2 = next; 1067 /* 1068 * Note that the dup_anon_vma below cannot overwrite err 1069 * since the first caller would do nothing unless next 1070 * has an anon_vma. 1071 */ 1072 if (!next->anon_vma) 1073 err = dup_anon_vma(prev, curr, &anon_dup); 1074 } 1075 } else if (merge_prev) { /* case 2 */ 1076 if (curr) { 1077 vma_start_write(curr); 1078 if (end == curr->vm_end) { /* case 7 */ 1079 /* 1080 * can_vma_merge_after() assumed we would not be 1081 * removing prev vma, so it skipped the check 1082 * for vm_ops->close, but we are removing curr 1083 */ 1084 if (curr->vm_ops && curr->vm_ops->close) 1085 err = -EINVAL; 1086 remove = curr; 1087 } else { /* case 5 */ 1088 adjust = curr; 1089 adj_start = (end - curr->vm_start); 1090 } 1091 if (!err) 1092 err = dup_anon_vma(prev, curr, &anon_dup); 1093 } 1094 } else { /* merge_next */ 1095 vma_start_write(next); 1096 res = next; 1097 if (prev && addr < prev->vm_end) { /* case 4 */ 1098 vma_start_write(prev); 1099 vma_end = addr; 1100 adjust = next; 1101 adj_start = -(prev->vm_end - addr); 1102 err = dup_anon_vma(next, prev, &anon_dup); 1103 } else { 1104 /* 1105 * Note that cases 3 and 8 are the ONLY ones where prev 1106 * is permitted to be (but is not necessarily) NULL. 1107 */ 1108 vma = next; /* case 3 */ 1109 vma_start = addr; 1110 vma_end = next->vm_end; 1111 vma_pgoff = next->vm_pgoff - pglen; 1112 if (curr) { /* case 8 */ 1113 vma_pgoff = curr->vm_pgoff; 1114 vma_start_write(curr); 1115 remove = curr; 1116 err = dup_anon_vma(next, curr, &anon_dup); 1117 } 1118 } 1119 } 1120 1121 /* Error in anon_vma clone. */ 1122 if (err) 1123 goto anon_vma_fail; 1124 1125 if (vma_start < vma->vm_start || vma_end > vma->vm_end) 1126 vma_expanded = true; 1127 1128 if (vma_expanded) { 1129 vma_iter_config(vmi, vma_start, vma_end); 1130 } else { 1131 vma_iter_config(vmi, adjust->vm_start + adj_start, 1132 adjust->vm_end); 1133 } 1134 1135 if (vma_iter_prealloc(vmi, vma)) 1136 goto prealloc_fail; 1137 1138 init_multi_vma_prep(&vp, vma, adjust, remove, remove2); 1139 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 1140 vp.anon_vma != adjust->anon_vma); 1141 1142 vma_prepare(&vp); 1143 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start); 1144 vma_set_range(vma, vma_start, vma_end, vma_pgoff); 1145 1146 if (vma_expanded) 1147 vma_iter_store(vmi, vma); 1148 1149 if (adj_start) { 1150 adjust->vm_start += adj_start; 1151 adjust->vm_pgoff += adj_start >> PAGE_SHIFT; 1152 if (adj_start < 0) { 1153 WARN_ON(vma_expanded); 1154 vma_iter_store(vmi, next); 1155 } 1156 } 1157 1158 vma_complete(&vp, vmi, mm); 1159 validate_mm(mm); 1160 khugepaged_enter_vma(res, vm_flags); 1161 return res; 1162 1163 prealloc_fail: 1164 if (anon_dup) 1165 unlink_anon_vmas(anon_dup); 1166 1167 anon_vma_fail: 1168 vma_iter_set(vmi, addr); 1169 vma_iter_load(vmi); 1170 return NULL; 1171 } 1172 1173 /* 1174 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1175 * context and anonymous VMA name within the range [start, end). 1176 * 1177 * As a result, we might be able to merge the newly modified VMA range with an 1178 * adjacent VMA with identical properties. 1179 * 1180 * If no merge is possible and the range does not span the entirety of the VMA, 1181 * we then need to split the VMA to accommodate the change. 1182 * 1183 * The function returns either the merged VMA, the original VMA if a split was 1184 * required instead, or an error if the split failed. 1185 */ 1186 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 1187 struct vm_area_struct *prev, 1188 struct vm_area_struct *vma, 1189 unsigned long start, unsigned long end, 1190 unsigned long vm_flags, 1191 struct mempolicy *policy, 1192 struct vm_userfaultfd_ctx uffd_ctx, 1193 struct anon_vma_name *anon_name) 1194 { 1195 pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1196 struct vm_area_struct *merged; 1197 1198 merged = vma_merge(vmi, prev, vma, start, end, vm_flags, 1199 pgoff, policy, uffd_ctx, anon_name); 1200 if (merged) 1201 return merged; 1202 1203 if (vma->vm_start < start) { 1204 int err = split_vma(vmi, vma, start, 1); 1205 1206 if (err) 1207 return ERR_PTR(err); 1208 } 1209 1210 if (vma->vm_end > end) { 1211 int err = split_vma(vmi, vma, end, 0); 1212 1213 if (err) 1214 return ERR_PTR(err); 1215 } 1216 1217 return vma; 1218 } 1219 1220 /* 1221 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller 1222 * must ensure that [start, end) does not overlap any existing VMA. 1223 */ 1224 struct vm_area_struct 1225 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev, 1226 struct vm_area_struct *vma, unsigned long start, 1227 unsigned long end, pgoff_t pgoff) 1228 { 1229 return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff, 1230 vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 1231 } 1232 1233 /* 1234 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1235 * VMA with identical properties. 1236 */ 1237 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1238 struct vm_area_struct *vma, 1239 unsigned long delta) 1240 { 1241 pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma); 1242 1243 /* vma is specified as prev, so case 1 or 2 will apply. */ 1244 return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta, 1245 vma->vm_flags, pgoff, vma_policy(vma), 1246 vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 1247 } 1248 1249 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1250 { 1251 vb->count = 0; 1252 } 1253 1254 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1255 { 1256 struct address_space *mapping; 1257 int i; 1258 1259 mapping = vb->vmas[0]->vm_file->f_mapping; 1260 i_mmap_lock_write(mapping); 1261 for (i = 0; i < vb->count; i++) { 1262 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1263 __remove_shared_vm_struct(vb->vmas[i], mapping); 1264 } 1265 i_mmap_unlock_write(mapping); 1266 1267 unlink_file_vma_batch_init(vb); 1268 } 1269 1270 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1271 struct vm_area_struct *vma) 1272 { 1273 if (vma->vm_file == NULL) 1274 return; 1275 1276 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1277 vb->count == ARRAY_SIZE(vb->vmas)) 1278 unlink_file_vma_batch_process(vb); 1279 1280 vb->vmas[vb->count] = vma; 1281 vb->count++; 1282 } 1283 1284 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1285 { 1286 if (vb->count > 0) 1287 unlink_file_vma_batch_process(vb); 1288 } 1289 1290 /* 1291 * Unlink a file-based vm structure from its interval tree, to hide 1292 * vma from rmap and vmtruncate before freeing its page tables. 1293 */ 1294 void unlink_file_vma(struct vm_area_struct *vma) 1295 { 1296 struct file *file = vma->vm_file; 1297 1298 if (file) { 1299 struct address_space *mapping = file->f_mapping; 1300 1301 i_mmap_lock_write(mapping); 1302 __remove_shared_vm_struct(vma, mapping); 1303 i_mmap_unlock_write(mapping); 1304 } 1305 } 1306 1307 void vma_link_file(struct vm_area_struct *vma) 1308 { 1309 struct file *file = vma->vm_file; 1310 struct address_space *mapping; 1311 1312 if (file) { 1313 mapping = file->f_mapping; 1314 i_mmap_lock_write(mapping); 1315 __vma_link_file(vma, mapping); 1316 i_mmap_unlock_write(mapping); 1317 } 1318 } 1319 1320 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1321 { 1322 VMA_ITERATOR(vmi, mm, 0); 1323 1324 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1325 if (vma_iter_prealloc(&vmi, vma)) 1326 return -ENOMEM; 1327 1328 vma_start_write(vma); 1329 vma_iter_store(&vmi, vma); 1330 vma_link_file(vma); 1331 mm->map_count++; 1332 validate_mm(mm); 1333 return 0; 1334 } 1335 1336 /* 1337 * Copy the vma structure to a new location in the same mm, 1338 * prior to moving page table entries, to effect an mremap move. 1339 */ 1340 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1341 unsigned long addr, unsigned long len, pgoff_t pgoff, 1342 bool *need_rmap_locks) 1343 { 1344 struct vm_area_struct *vma = *vmap; 1345 unsigned long vma_start = vma->vm_start; 1346 struct mm_struct *mm = vma->vm_mm; 1347 struct vm_area_struct *new_vma, *prev; 1348 bool faulted_in_anon_vma = true; 1349 VMA_ITERATOR(vmi, mm, addr); 1350 1351 /* 1352 * If anonymous vma has not yet been faulted, update new pgoff 1353 * to match new location, to increase its chance of merging. 1354 */ 1355 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1356 pgoff = addr >> PAGE_SHIFT; 1357 faulted_in_anon_vma = false; 1358 } 1359 1360 new_vma = find_vma_prev(mm, addr, &prev); 1361 if (new_vma && new_vma->vm_start < addr + len) 1362 return NULL; /* should never get here */ 1363 1364 new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff); 1365 if (new_vma) { 1366 /* 1367 * Source vma may have been merged into new_vma 1368 */ 1369 if (unlikely(vma_start >= new_vma->vm_start && 1370 vma_start < new_vma->vm_end)) { 1371 /* 1372 * The only way we can get a vma_merge with 1373 * self during an mremap is if the vma hasn't 1374 * been faulted in yet and we were allowed to 1375 * reset the dst vma->vm_pgoff to the 1376 * destination address of the mremap to allow 1377 * the merge to happen. mremap must change the 1378 * vm_pgoff linearity between src and dst vmas 1379 * (in turn preventing a vma_merge) to be 1380 * safe. It is only safe to keep the vm_pgoff 1381 * linear if there are no pages mapped yet. 1382 */ 1383 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1384 *vmap = vma = new_vma; 1385 } 1386 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1387 } else { 1388 new_vma = vm_area_dup(vma); 1389 if (!new_vma) 1390 goto out; 1391 vma_set_range(new_vma, addr, addr + len, pgoff); 1392 if (vma_dup_policy(vma, new_vma)) 1393 goto out_free_vma; 1394 if (anon_vma_clone(new_vma, vma)) 1395 goto out_free_mempol; 1396 if (new_vma->vm_file) 1397 get_file(new_vma->vm_file); 1398 if (new_vma->vm_ops && new_vma->vm_ops->open) 1399 new_vma->vm_ops->open(new_vma); 1400 if (vma_link(mm, new_vma)) 1401 goto out_vma_link; 1402 *need_rmap_locks = false; 1403 } 1404 return new_vma; 1405 1406 out_vma_link: 1407 if (new_vma->vm_ops && new_vma->vm_ops->close) 1408 new_vma->vm_ops->close(new_vma); 1409 1410 if (new_vma->vm_file) 1411 fput(new_vma->vm_file); 1412 1413 unlink_anon_vmas(new_vma); 1414 out_free_mempol: 1415 mpol_put(vma_policy(new_vma)); 1416 out_free_vma: 1417 vm_area_free(new_vma); 1418 out: 1419 return NULL; 1420 } 1421 1422 /* 1423 * Rough compatibility check to quickly see if it's even worth looking 1424 * at sharing an anon_vma. 1425 * 1426 * They need to have the same vm_file, and the flags can only differ 1427 * in things that mprotect may change. 1428 * 1429 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1430 * we can merge the two vma's. For example, we refuse to merge a vma if 1431 * there is a vm_ops->close() function, because that indicates that the 1432 * driver is doing some kind of reference counting. But that doesn't 1433 * really matter for the anon_vma sharing case. 1434 */ 1435 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1436 { 1437 return a->vm_end == b->vm_start && 1438 mpol_equal(vma_policy(a), vma_policy(b)) && 1439 a->vm_file == b->vm_file && 1440 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1441 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1442 } 1443 1444 /* 1445 * Do some basic sanity checking to see if we can re-use the anon_vma 1446 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1447 * the same as 'old', the other will be the new one that is trying 1448 * to share the anon_vma. 1449 * 1450 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1451 * the anon_vma of 'old' is concurrently in the process of being set up 1452 * by another page fault trying to merge _that_. But that's ok: if it 1453 * is being set up, that automatically means that it will be a singleton 1454 * acceptable for merging, so we can do all of this optimistically. But 1455 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1456 * 1457 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1458 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1459 * is to return an anon_vma that is "complex" due to having gone through 1460 * a fork). 1461 * 1462 * We also make sure that the two vma's are compatible (adjacent, 1463 * and with the same memory policies). That's all stable, even with just 1464 * a read lock on the mmap_lock. 1465 */ 1466 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1467 struct vm_area_struct *a, 1468 struct vm_area_struct *b) 1469 { 1470 if (anon_vma_compatible(a, b)) { 1471 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1472 1473 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1474 return anon_vma; 1475 } 1476 return NULL; 1477 } 1478 1479 /* 1480 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1481 * neighbouring vmas for a suitable anon_vma, before it goes off 1482 * to allocate a new anon_vma. It checks because a repetitive 1483 * sequence of mprotects and faults may otherwise lead to distinct 1484 * anon_vmas being allocated, preventing vma merge in subsequent 1485 * mprotect. 1486 */ 1487 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1488 { 1489 struct anon_vma *anon_vma = NULL; 1490 struct vm_area_struct *prev, *next; 1491 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1492 1493 /* Try next first. */ 1494 next = vma_iter_load(&vmi); 1495 if (next) { 1496 anon_vma = reusable_anon_vma(next, vma, next); 1497 if (anon_vma) 1498 return anon_vma; 1499 } 1500 1501 prev = vma_prev(&vmi); 1502 VM_BUG_ON_VMA(prev != vma, vma); 1503 prev = vma_prev(&vmi); 1504 /* Try prev next. */ 1505 if (prev) 1506 anon_vma = reusable_anon_vma(prev, prev, vma); 1507 1508 /* 1509 * We might reach here with anon_vma == NULL if we can't find 1510 * any reusable anon_vma. 1511 * There's no absolute need to look only at touching neighbours: 1512 * we could search further afield for "compatible" anon_vmas. 1513 * But it would probably just be a waste of time searching, 1514 * or lead to too many vmas hanging off the same anon_vma. 1515 * We're trying to allow mprotect remerging later on, 1516 * not trying to minimize memory used for anon_vmas. 1517 */ 1518 return anon_vma; 1519 } 1520 1521 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1522 { 1523 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1524 } 1525 1526 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1527 { 1528 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1529 (VM_WRITE | VM_SHARED); 1530 } 1531 1532 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1533 { 1534 /* No managed pages to writeback. */ 1535 if (vma->vm_flags & VM_PFNMAP) 1536 return false; 1537 1538 return vma->vm_file && vma->vm_file->f_mapping && 1539 mapping_can_writeback(vma->vm_file->f_mapping); 1540 } 1541 1542 /* 1543 * Does this VMA require the underlying folios to have their dirty state 1544 * tracked? 1545 */ 1546 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1547 { 1548 /* Only shared, writable VMAs require dirty tracking. */ 1549 if (!vma_is_shared_writable(vma)) 1550 return false; 1551 1552 /* Does the filesystem need to be notified? */ 1553 if (vm_ops_needs_writenotify(vma->vm_ops)) 1554 return true; 1555 1556 /* 1557 * Even if the filesystem doesn't indicate a need for writenotify, if it 1558 * can writeback, dirty tracking is still required. 1559 */ 1560 return vma_fs_can_writeback(vma); 1561 } 1562 1563 /* 1564 * Some shared mappings will want the pages marked read-only 1565 * to track write events. If so, we'll downgrade vm_page_prot 1566 * to the private version (using protection_map[] without the 1567 * VM_SHARED bit). 1568 */ 1569 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1570 { 1571 /* If it was private or non-writable, the write bit is already clear */ 1572 if (!vma_is_shared_writable(vma)) 1573 return false; 1574 1575 /* The backer wishes to know when pages are first written to? */ 1576 if (vm_ops_needs_writenotify(vma->vm_ops)) 1577 return true; 1578 1579 /* The open routine did something to the protections that pgprot_modify 1580 * won't preserve? */ 1581 if (pgprot_val(vm_page_prot) != 1582 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1583 return false; 1584 1585 /* 1586 * Do we need to track softdirty? hugetlb does not support softdirty 1587 * tracking yet. 1588 */ 1589 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1590 return true; 1591 1592 /* Do we need write faults for uffd-wp tracking? */ 1593 if (userfaultfd_wp(vma)) 1594 return true; 1595 1596 /* Can the mapping track the dirty pages? */ 1597 return vma_fs_can_writeback(vma); 1598 } 1599 1600 unsigned long count_vma_pages_range(struct mm_struct *mm, 1601 unsigned long addr, unsigned long end) 1602 { 1603 VMA_ITERATOR(vmi, mm, addr); 1604 struct vm_area_struct *vma; 1605 unsigned long nr_pages = 0; 1606 1607 for_each_vma_range(vmi, vma, end) { 1608 unsigned long vm_start = max(addr, vma->vm_start); 1609 unsigned long vm_end = min(end, vma->vm_end); 1610 1611 nr_pages += PHYS_PFN(vm_end - vm_start); 1612 } 1613 1614 return nr_pages; 1615 } 1616 1617 static DEFINE_MUTEX(mm_all_locks_mutex); 1618 1619 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1620 { 1621 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1622 /* 1623 * The LSB of head.next can't change from under us 1624 * because we hold the mm_all_locks_mutex. 1625 */ 1626 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1627 /* 1628 * We can safely modify head.next after taking the 1629 * anon_vma->root->rwsem. If some other vma in this mm shares 1630 * the same anon_vma we won't take it again. 1631 * 1632 * No need of atomic instructions here, head.next 1633 * can't change from under us thanks to the 1634 * anon_vma->root->rwsem. 1635 */ 1636 if (__test_and_set_bit(0, (unsigned long *) 1637 &anon_vma->root->rb_root.rb_root.rb_node)) 1638 BUG(); 1639 } 1640 } 1641 1642 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 1643 { 1644 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1645 /* 1646 * AS_MM_ALL_LOCKS can't change from under us because 1647 * we hold the mm_all_locks_mutex. 1648 * 1649 * Operations on ->flags have to be atomic because 1650 * even if AS_MM_ALL_LOCKS is stable thanks to the 1651 * mm_all_locks_mutex, there may be other cpus 1652 * changing other bitflags in parallel to us. 1653 */ 1654 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 1655 BUG(); 1656 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 1657 } 1658 } 1659 1660 /* 1661 * This operation locks against the VM for all pte/vma/mm related 1662 * operations that could ever happen on a certain mm. This includes 1663 * vmtruncate, try_to_unmap, and all page faults. 1664 * 1665 * The caller must take the mmap_lock in write mode before calling 1666 * mm_take_all_locks(). The caller isn't allowed to release the 1667 * mmap_lock until mm_drop_all_locks() returns. 1668 * 1669 * mmap_lock in write mode is required in order to block all operations 1670 * that could modify pagetables and free pages without need of 1671 * altering the vma layout. It's also needed in write mode to avoid new 1672 * anon_vmas to be associated with existing vmas. 1673 * 1674 * A single task can't take more than one mm_take_all_locks() in a row 1675 * or it would deadlock. 1676 * 1677 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 1678 * mapping->flags avoid to take the same lock twice, if more than one 1679 * vma in this mm is backed by the same anon_vma or address_space. 1680 * 1681 * We take locks in following order, accordingly to comment at beginning 1682 * of mm/rmap.c: 1683 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 1684 * hugetlb mapping); 1685 * - all vmas marked locked 1686 * - all i_mmap_rwsem locks; 1687 * - all anon_vma->rwseml 1688 * 1689 * We can take all locks within these types randomly because the VM code 1690 * doesn't nest them and we protected from parallel mm_take_all_locks() by 1691 * mm_all_locks_mutex. 1692 * 1693 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 1694 * that may have to take thousand of locks. 1695 * 1696 * mm_take_all_locks() can fail if it's interrupted by signals. 1697 */ 1698 int mm_take_all_locks(struct mm_struct *mm) 1699 { 1700 struct vm_area_struct *vma; 1701 struct anon_vma_chain *avc; 1702 VMA_ITERATOR(vmi, mm, 0); 1703 1704 mmap_assert_write_locked(mm); 1705 1706 mutex_lock(&mm_all_locks_mutex); 1707 1708 /* 1709 * vma_start_write() does not have a complement in mm_drop_all_locks() 1710 * because vma_start_write() is always asymmetrical; it marks a VMA as 1711 * being written to until mmap_write_unlock() or mmap_write_downgrade() 1712 * is reached. 1713 */ 1714 for_each_vma(vmi, vma) { 1715 if (signal_pending(current)) 1716 goto out_unlock; 1717 vma_start_write(vma); 1718 } 1719 1720 vma_iter_init(&vmi, mm, 0); 1721 for_each_vma(vmi, vma) { 1722 if (signal_pending(current)) 1723 goto out_unlock; 1724 if (vma->vm_file && vma->vm_file->f_mapping && 1725 is_vm_hugetlb_page(vma)) 1726 vm_lock_mapping(mm, vma->vm_file->f_mapping); 1727 } 1728 1729 vma_iter_init(&vmi, mm, 0); 1730 for_each_vma(vmi, vma) { 1731 if (signal_pending(current)) 1732 goto out_unlock; 1733 if (vma->vm_file && vma->vm_file->f_mapping && 1734 !is_vm_hugetlb_page(vma)) 1735 vm_lock_mapping(mm, vma->vm_file->f_mapping); 1736 } 1737 1738 vma_iter_init(&vmi, mm, 0); 1739 for_each_vma(vmi, vma) { 1740 if (signal_pending(current)) 1741 goto out_unlock; 1742 if (vma->anon_vma) 1743 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 1744 vm_lock_anon_vma(mm, avc->anon_vma); 1745 } 1746 1747 return 0; 1748 1749 out_unlock: 1750 mm_drop_all_locks(mm); 1751 return -EINTR; 1752 } 1753 1754 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 1755 { 1756 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1757 /* 1758 * The LSB of head.next can't change to 0 from under 1759 * us because we hold the mm_all_locks_mutex. 1760 * 1761 * We must however clear the bitflag before unlocking 1762 * the vma so the users using the anon_vma->rb_root will 1763 * never see our bitflag. 1764 * 1765 * No need of atomic instructions here, head.next 1766 * can't change from under us until we release the 1767 * anon_vma->root->rwsem. 1768 */ 1769 if (!__test_and_clear_bit(0, (unsigned long *) 1770 &anon_vma->root->rb_root.rb_root.rb_node)) 1771 BUG(); 1772 anon_vma_unlock_write(anon_vma); 1773 } 1774 } 1775 1776 static void vm_unlock_mapping(struct address_space *mapping) 1777 { 1778 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1779 /* 1780 * AS_MM_ALL_LOCKS can't change to 0 from under us 1781 * because we hold the mm_all_locks_mutex. 1782 */ 1783 i_mmap_unlock_write(mapping); 1784 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 1785 &mapping->flags)) 1786 BUG(); 1787 } 1788 } 1789 1790 /* 1791 * The mmap_lock cannot be released by the caller until 1792 * mm_drop_all_locks() returns. 1793 */ 1794 void mm_drop_all_locks(struct mm_struct *mm) 1795 { 1796 struct vm_area_struct *vma; 1797 struct anon_vma_chain *avc; 1798 VMA_ITERATOR(vmi, mm, 0); 1799 1800 mmap_assert_write_locked(mm); 1801 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 1802 1803 for_each_vma(vmi, vma) { 1804 if (vma->anon_vma) 1805 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 1806 vm_unlock_anon_vma(avc->anon_vma); 1807 if (vma->vm_file && vma->vm_file->f_mapping) 1808 vm_unlock_mapping(vma->vm_file->f_mapping); 1809 } 1810 1811 mutex_unlock(&mm_all_locks_mutex); 1812 } 1813