xref: /linux/mm/vma.c (revision cfc4ca8986bb1f6182da6cd7bb57f228590b4643)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 struct mmap_state {
11 	struct mm_struct *mm;
12 	struct vma_iterator *vmi;
13 
14 	unsigned long addr;
15 	unsigned long end;
16 	pgoff_t pgoff;
17 	unsigned long pglen;
18 	unsigned long flags;
19 	struct file *file;
20 	pgprot_t page_prot;
21 
22 	/* User-defined fields, perhaps updated by .mmap_prepare(). */
23 	const struct vm_operations_struct *vm_ops;
24 	void *vm_private_data;
25 
26 	unsigned long charged;
27 
28 	struct vm_area_struct *prev;
29 	struct vm_area_struct *next;
30 
31 	/* Unmapping state. */
32 	struct vma_munmap_struct vms;
33 	struct ma_state mas_detach;
34 	struct maple_tree mt_detach;
35 };
36 
37 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
38 	struct mmap_state name = {					\
39 		.mm = mm_,						\
40 		.vmi = vmi_,						\
41 		.addr = addr_,						\
42 		.end = (addr_) + (len_),				\
43 		.pgoff = pgoff_,					\
44 		.pglen = PHYS_PFN(len_),				\
45 		.flags = flags_,					\
46 		.file = file_,						\
47 		.page_prot = vm_get_page_prot(flags_),			\
48 	}
49 
50 #define VMG_MMAP_STATE(name, map_, vma_)				\
51 	struct vma_merge_struct name = {				\
52 		.mm = (map_)->mm,					\
53 		.vmi = (map_)->vmi,					\
54 		.start = (map_)->addr,					\
55 		.end = (map_)->end,					\
56 		.flags = (map_)->flags,					\
57 		.pgoff = (map_)->pgoff,					\
58 		.file = (map_)->file,					\
59 		.prev = (map_)->prev,					\
60 		.middle = vma_,						\
61 		.next = (vma_) ? NULL : (map_)->next,			\
62 		.state = VMA_MERGE_START,				\
63 	}
64 
65 /*
66  * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain
67  * more than one anon_vma_chain connecting it to more than one anon_vma. A merge
68  * would mean a wider range of folios sharing the root anon_vma lock, and thus
69  * potential lock contention, we do not wish to encourage merging such that this
70  * scales to a problem.
71  */
72 static bool vma_had_uncowed_parents(struct vm_area_struct *vma)
73 {
74 	/*
75 	 * The list_is_singular() test is to avoid merging VMA cloned from
76 	 * parents. This can improve scalability caused by anon_vma lock.
77 	 */
78 	return vma && vma->anon_vma && !list_is_singular(&vma->anon_vma_chain);
79 }
80 
81 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
82 {
83 	struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
84 
85 	if (!mpol_equal(vmg->policy, vma_policy(vma)))
86 		return false;
87 	/*
88 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
89 	 * match the flags but dirty bit -- the caller should mark
90 	 * merged VMA as dirty. If dirty bit won't be excluded from
91 	 * comparison, we increase pressure on the memory system forcing
92 	 * the kernel to generate new VMAs when old one could be
93 	 * extended instead.
94 	 */
95 	if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
96 		return false;
97 	if (vma->vm_file != vmg->file)
98 		return false;
99 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
100 		return false;
101 	if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
102 		return false;
103 	return true;
104 }
105 
106 static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
107 {
108 	struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
109 	struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */
110 	struct anon_vma *tgt_anon = tgt->anon_vma;
111 	struct anon_vma *src_anon = vmg->anon_vma;
112 
113 	/*
114 	 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
115 	 * will remove the existing VMA's anon_vma's so there's no scalability
116 	 * concerns.
117 	 */
118 	VM_WARN_ON(src && src_anon != src->anon_vma);
119 
120 	/* Case 1 - we will dup_anon_vma() from src into tgt. */
121 	if (!tgt_anon && src_anon)
122 		return !vma_had_uncowed_parents(src);
123 	/* Case 2 - we will simply use tgt's anon_vma. */
124 	if (tgt_anon && !src_anon)
125 		return !vma_had_uncowed_parents(tgt);
126 	/* Case 3 - the anon_vma's are already shared. */
127 	return src_anon == tgt_anon;
128 }
129 
130 /*
131  * init_multi_vma_prep() - Initializer for struct vma_prepare
132  * @vp: The vma_prepare struct
133  * @vma: The vma that will be altered once locked
134  * @vmg: The merge state that will be used to determine adjustment and VMA
135  *       removal.
136  */
137 static void init_multi_vma_prep(struct vma_prepare *vp,
138 				struct vm_area_struct *vma,
139 				struct vma_merge_struct *vmg)
140 {
141 	struct vm_area_struct *adjust;
142 	struct vm_area_struct **remove = &vp->remove;
143 
144 	memset(vp, 0, sizeof(struct vma_prepare));
145 	vp->vma = vma;
146 	vp->anon_vma = vma->anon_vma;
147 
148 	if (vmg && vmg->__remove_middle) {
149 		*remove = vmg->middle;
150 		remove = &vp->remove2;
151 	}
152 	if (vmg && vmg->__remove_next)
153 		*remove = vmg->next;
154 
155 	if (vmg && vmg->__adjust_middle_start)
156 		adjust = vmg->middle;
157 	else if (vmg && vmg->__adjust_next_start)
158 		adjust = vmg->next;
159 	else
160 		adjust = NULL;
161 
162 	vp->adj_next = adjust;
163 	if (!vp->anon_vma && adjust)
164 		vp->anon_vma = adjust->anon_vma;
165 
166 	VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
167 		   vp->anon_vma != adjust->anon_vma);
168 
169 	vp->file = vma->vm_file;
170 	if (vp->file)
171 		vp->mapping = vma->vm_file->f_mapping;
172 }
173 
174 /*
175  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
176  * in front of (at a lower virtual address and file offset than) the vma.
177  *
178  * We cannot merge two vmas if they have differently assigned (non-NULL)
179  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
180  *
181  * We don't check here for the merged mmap wrapping around the end of pagecache
182  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
183  * wrap, nor mmaps which cover the final page at index -1UL.
184  *
185  * We assume the vma may be removed as part of the merge.
186  */
187 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
188 {
189 	pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
190 
191 	if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
192 	    is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
193 		if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
194 			return true;
195 	}
196 
197 	return false;
198 }
199 
200 /*
201  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
202  * beyond (at a higher virtual address and file offset than) the vma.
203  *
204  * We cannot merge two vmas if they have differently assigned (non-NULL)
205  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
206  *
207  * We assume that vma is not removed as part of the merge.
208  */
209 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
210 {
211 	if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
212 	    is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
213 		if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
214 			return true;
215 	}
216 	return false;
217 }
218 
219 static void __vma_link_file(struct vm_area_struct *vma,
220 			    struct address_space *mapping)
221 {
222 	if (vma_is_shared_maywrite(vma))
223 		mapping_allow_writable(mapping);
224 
225 	flush_dcache_mmap_lock(mapping);
226 	vma_interval_tree_insert(vma, &mapping->i_mmap);
227 	flush_dcache_mmap_unlock(mapping);
228 }
229 
230 /*
231  * Requires inode->i_mapping->i_mmap_rwsem
232  */
233 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
234 				      struct address_space *mapping)
235 {
236 	if (vma_is_shared_maywrite(vma))
237 		mapping_unmap_writable(mapping);
238 
239 	flush_dcache_mmap_lock(mapping);
240 	vma_interval_tree_remove(vma, &mapping->i_mmap);
241 	flush_dcache_mmap_unlock(mapping);
242 }
243 
244 /*
245  * vma has some anon_vma assigned, and is already inserted on that
246  * anon_vma's interval trees.
247  *
248  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
249  * vma must be removed from the anon_vma's interval trees using
250  * anon_vma_interval_tree_pre_update_vma().
251  *
252  * After the update, the vma will be reinserted using
253  * anon_vma_interval_tree_post_update_vma().
254  *
255  * The entire update must be protected by exclusive mmap_lock and by
256  * the root anon_vma's mutex.
257  */
258 static void
259 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
260 {
261 	struct anon_vma_chain *avc;
262 
263 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
264 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
265 }
266 
267 static void
268 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
269 {
270 	struct anon_vma_chain *avc;
271 
272 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
273 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
274 }
275 
276 /*
277  * vma_prepare() - Helper function for handling locking VMAs prior to altering
278  * @vp: The initialized vma_prepare struct
279  */
280 static void vma_prepare(struct vma_prepare *vp)
281 {
282 	if (vp->file) {
283 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
284 
285 		if (vp->adj_next)
286 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
287 				      vp->adj_next->vm_end);
288 
289 		i_mmap_lock_write(vp->mapping);
290 		if (vp->insert && vp->insert->vm_file) {
291 			/*
292 			 * Put into interval tree now, so instantiated pages
293 			 * are visible to arm/parisc __flush_dcache_page
294 			 * throughout; but we cannot insert into address
295 			 * space until vma start or end is updated.
296 			 */
297 			__vma_link_file(vp->insert,
298 					vp->insert->vm_file->f_mapping);
299 		}
300 	}
301 
302 	if (vp->anon_vma) {
303 		anon_vma_lock_write(vp->anon_vma);
304 		anon_vma_interval_tree_pre_update_vma(vp->vma);
305 		if (vp->adj_next)
306 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
307 	}
308 
309 	if (vp->file) {
310 		flush_dcache_mmap_lock(vp->mapping);
311 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
312 		if (vp->adj_next)
313 			vma_interval_tree_remove(vp->adj_next,
314 						 &vp->mapping->i_mmap);
315 	}
316 
317 }
318 
319 /*
320  * vma_complete- Helper function for handling the unlocking after altering VMAs,
321  * or for inserting a VMA.
322  *
323  * @vp: The vma_prepare struct
324  * @vmi: The vma iterator
325  * @mm: The mm_struct
326  */
327 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
328 			 struct mm_struct *mm)
329 {
330 	if (vp->file) {
331 		if (vp->adj_next)
332 			vma_interval_tree_insert(vp->adj_next,
333 						 &vp->mapping->i_mmap);
334 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
335 		flush_dcache_mmap_unlock(vp->mapping);
336 	}
337 
338 	if (vp->remove && vp->file) {
339 		__remove_shared_vm_struct(vp->remove, vp->mapping);
340 		if (vp->remove2)
341 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
342 	} else if (vp->insert) {
343 		/*
344 		 * split_vma has split insert from vma, and needs
345 		 * us to insert it before dropping the locks
346 		 * (it may either follow vma or precede it).
347 		 */
348 		vma_iter_store_new(vmi, vp->insert);
349 		mm->map_count++;
350 	}
351 
352 	if (vp->anon_vma) {
353 		anon_vma_interval_tree_post_update_vma(vp->vma);
354 		if (vp->adj_next)
355 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
356 		anon_vma_unlock_write(vp->anon_vma);
357 	}
358 
359 	if (vp->file) {
360 		i_mmap_unlock_write(vp->mapping);
361 		uprobe_mmap(vp->vma);
362 
363 		if (vp->adj_next)
364 			uprobe_mmap(vp->adj_next);
365 	}
366 
367 	if (vp->remove) {
368 again:
369 		vma_mark_detached(vp->remove);
370 		if (vp->file) {
371 			uprobe_munmap(vp->remove, vp->remove->vm_start,
372 				      vp->remove->vm_end);
373 			fput(vp->file);
374 		}
375 		if (vp->remove->anon_vma)
376 			anon_vma_merge(vp->vma, vp->remove);
377 		mm->map_count--;
378 		mpol_put(vma_policy(vp->remove));
379 		if (!vp->remove2)
380 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
381 		vm_area_free(vp->remove);
382 
383 		/*
384 		 * In mprotect's case 6 (see comments on vma_merge),
385 		 * we are removing both mid and next vmas
386 		 */
387 		if (vp->remove2) {
388 			vp->remove = vp->remove2;
389 			vp->remove2 = NULL;
390 			goto again;
391 		}
392 	}
393 	if (vp->insert && vp->file)
394 		uprobe_mmap(vp->insert);
395 }
396 
397 /*
398  * init_vma_prep() - Initializer wrapper for vma_prepare struct
399  * @vp: The vma_prepare struct
400  * @vma: The vma that will be altered once locked
401  */
402 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
403 {
404 	init_multi_vma_prep(vp, vma, NULL);
405 }
406 
407 /*
408  * Can the proposed VMA be merged with the left (previous) VMA taking into
409  * account the start position of the proposed range.
410  */
411 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
412 
413 {
414 	return vmg->prev && vmg->prev->vm_end == vmg->start &&
415 		can_vma_merge_after(vmg);
416 }
417 
418 /*
419  * Can the proposed VMA be merged with the right (next) VMA taking into
420  * account the end position of the proposed range.
421  *
422  * In addition, if we can merge with the left VMA, ensure that left and right
423  * anon_vma's are also compatible.
424  */
425 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
426 				bool can_merge_left)
427 {
428 	struct vm_area_struct *next = vmg->next;
429 	struct vm_area_struct *prev;
430 
431 	if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
432 		return false;
433 
434 	if (!can_merge_left)
435 		return true;
436 
437 	/*
438 	 * If we can merge with prev (left) and next (right), indicating that
439 	 * each VMA's anon_vma is compatible with the proposed anon_vma, this
440 	 * does not mean prev and next are compatible with EACH OTHER.
441 	 *
442 	 * We therefore check this in addition to mergeability to either side.
443 	 */
444 	prev = vmg->prev;
445 	return !prev->anon_vma || !next->anon_vma ||
446 		prev->anon_vma == next->anon_vma;
447 }
448 
449 /*
450  * Close a vm structure and free it.
451  */
452 void remove_vma(struct vm_area_struct *vma)
453 {
454 	might_sleep();
455 	vma_close(vma);
456 	if (vma->vm_file)
457 		fput(vma->vm_file);
458 	mpol_put(vma_policy(vma));
459 	vm_area_free(vma);
460 }
461 
462 /*
463  * Get rid of page table information in the indicated region.
464  *
465  * Called with the mm semaphore held.
466  */
467 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
468 		struct vm_area_struct *prev, struct vm_area_struct *next)
469 {
470 	struct mm_struct *mm = vma->vm_mm;
471 	struct mmu_gather tlb;
472 
473 	tlb_gather_mmu(&tlb, mm);
474 	update_hiwater_rss(mm);
475 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
476 		   /* mm_wr_locked = */ true);
477 	mas_set(mas, vma->vm_end);
478 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
479 		      next ? next->vm_start : USER_PGTABLES_CEILING,
480 		      /* mm_wr_locked = */ true);
481 	tlb_finish_mmu(&tlb);
482 }
483 
484 /*
485  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
486  * has already been checked or doesn't make sense to fail.
487  * VMA Iterator will point to the original VMA.
488  */
489 static __must_check int
490 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
491 	    unsigned long addr, int new_below)
492 {
493 	struct vma_prepare vp;
494 	struct vm_area_struct *new;
495 	int err;
496 
497 	WARN_ON(vma->vm_start >= addr);
498 	WARN_ON(vma->vm_end <= addr);
499 
500 	if (vma->vm_ops && vma->vm_ops->may_split) {
501 		err = vma->vm_ops->may_split(vma, addr);
502 		if (err)
503 			return err;
504 	}
505 
506 	new = vm_area_dup(vma);
507 	if (!new)
508 		return -ENOMEM;
509 
510 	if (new_below) {
511 		new->vm_end = addr;
512 	} else {
513 		new->vm_start = addr;
514 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
515 	}
516 
517 	err = -ENOMEM;
518 	vma_iter_config(vmi, new->vm_start, new->vm_end);
519 	if (vma_iter_prealloc(vmi, new))
520 		goto out_free_vma;
521 
522 	err = vma_dup_policy(vma, new);
523 	if (err)
524 		goto out_free_vmi;
525 
526 	err = anon_vma_clone(new, vma);
527 	if (err)
528 		goto out_free_mpol;
529 
530 	if (new->vm_file)
531 		get_file(new->vm_file);
532 
533 	if (new->vm_ops && new->vm_ops->open)
534 		new->vm_ops->open(new);
535 
536 	vma_start_write(vma);
537 	vma_start_write(new);
538 
539 	init_vma_prep(&vp, vma);
540 	vp.insert = new;
541 	vma_prepare(&vp);
542 	vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL);
543 
544 	if (new_below) {
545 		vma->vm_start = addr;
546 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
547 	} else {
548 		vma->vm_end = addr;
549 	}
550 
551 	/* vma_complete stores the new vma */
552 	vma_complete(&vp, vmi, vma->vm_mm);
553 	validate_mm(vma->vm_mm);
554 
555 	/* Success. */
556 	if (new_below)
557 		vma_next(vmi);
558 	else
559 		vma_prev(vmi);
560 
561 	return 0;
562 
563 out_free_mpol:
564 	mpol_put(vma_policy(new));
565 out_free_vmi:
566 	vma_iter_free(vmi);
567 out_free_vma:
568 	vm_area_free(new);
569 	return err;
570 }
571 
572 /*
573  * Split a vma into two pieces at address 'addr', a new vma is allocated
574  * either for the first part or the tail.
575  */
576 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
577 		     unsigned long addr, int new_below)
578 {
579 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
580 		return -ENOMEM;
581 
582 	return __split_vma(vmi, vma, addr, new_below);
583 }
584 
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
587  * instance that the destination VMA has no anon_vma but the source does.
588  *
589  * @dst: The destination VMA
590  * @src: The source VMA
591  * @dup: Pointer to the destination VMA when successful.
592  *
593  * Returns: 0 on success.
594  */
595 static int dup_anon_vma(struct vm_area_struct *dst,
596 			struct vm_area_struct *src, struct vm_area_struct **dup)
597 {
598 	/*
599 	 * There are three cases to consider for correctly propagating
600 	 * anon_vma's on merge.
601 	 *
602 	 * The first is trivial - neither VMA has anon_vma, we need not do
603 	 * anything.
604 	 *
605 	 * The second where both have anon_vma is also a no-op, as they must
606 	 * then be the same, so there is simply nothing to copy.
607 	 *
608 	 * Here we cover the third - if the destination VMA has no anon_vma,
609 	 * that is it is unfaulted, we need to ensure that the newly merged
610 	 * range is referenced by the anon_vma's of the source.
611 	 */
612 	if (src->anon_vma && !dst->anon_vma) {
613 		int ret;
614 
615 		vma_assert_write_locked(dst);
616 		dst->anon_vma = src->anon_vma;
617 		ret = anon_vma_clone(dst, src);
618 		if (ret)
619 			return ret;
620 
621 		*dup = dst;
622 	}
623 
624 	return 0;
625 }
626 
627 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
628 void validate_mm(struct mm_struct *mm)
629 {
630 	int bug = 0;
631 	int i = 0;
632 	struct vm_area_struct *vma;
633 	VMA_ITERATOR(vmi, mm, 0);
634 
635 	mt_validate(&mm->mm_mt);
636 	for_each_vma(vmi, vma) {
637 #ifdef CONFIG_DEBUG_VM_RB
638 		struct anon_vma *anon_vma = vma->anon_vma;
639 		struct anon_vma_chain *avc;
640 #endif
641 		unsigned long vmi_start, vmi_end;
642 		bool warn = 0;
643 
644 		vmi_start = vma_iter_addr(&vmi);
645 		vmi_end = vma_iter_end(&vmi);
646 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
647 			warn = 1;
648 
649 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
650 			warn = 1;
651 
652 		if (warn) {
653 			pr_emerg("issue in %s\n", current->comm);
654 			dump_stack();
655 			dump_vma(vma);
656 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
657 				 vmi_start, vmi_end - 1);
658 			vma_iter_dump_tree(&vmi);
659 		}
660 
661 #ifdef CONFIG_DEBUG_VM_RB
662 		if (anon_vma) {
663 			anon_vma_lock_read(anon_vma);
664 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
665 				anon_vma_interval_tree_verify(avc);
666 			anon_vma_unlock_read(anon_vma);
667 		}
668 #endif
669 		/* Check for a infinite loop */
670 		if (++i > mm->map_count + 10) {
671 			i = -1;
672 			break;
673 		}
674 	}
675 	if (i != mm->map_count) {
676 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
677 		bug = 1;
678 	}
679 	VM_BUG_ON_MM(bug, mm);
680 }
681 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
682 
683 /*
684  * Based on the vmg flag indicating whether we need to adjust the vm_start field
685  * for the middle or next VMA, we calculate what the range of the newly adjusted
686  * VMA ought to be, and set the VMA's range accordingly.
687  */
688 static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
689 {
690 	struct vm_area_struct *adjust;
691 	pgoff_t pgoff;
692 
693 	if (vmg->__adjust_middle_start) {
694 		adjust = vmg->middle;
695 		pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
696 	} else if (vmg->__adjust_next_start) {
697 		adjust = vmg->next;
698 		pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
699 	} else {
700 		return;
701 	}
702 
703 	vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff);
704 }
705 
706 /*
707  * Actually perform the VMA merge operation.
708  *
709  * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
710  * modify any VMAs or cause inconsistent state should an OOM condition arise.
711  *
712  * Returns 0 on success, or an error value on failure.
713  */
714 static int commit_merge(struct vma_merge_struct *vmg)
715 {
716 	struct vm_area_struct *vma;
717 	struct vma_prepare vp;
718 
719 	if (vmg->__adjust_next_start) {
720 		/* We manipulate middle and adjust next, which is the target. */
721 		vma = vmg->middle;
722 		vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end);
723 	} else {
724 		vma = vmg->target;
725 		 /* Note: vma iterator must be pointing to 'start'. */
726 		vma_iter_config(vmg->vmi, vmg->start, vmg->end);
727 	}
728 
729 	init_multi_vma_prep(&vp, vma, vmg);
730 
731 	/*
732 	 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
733 	 * manipulate any VMAs until we succeed at preallocation.
734 	 *
735 	 * Past this point, we will not return an error.
736 	 */
737 	if (vma_iter_prealloc(vmg->vmi, vma))
738 		return -ENOMEM;
739 
740 	vma_prepare(&vp);
741 	/*
742 	 * THP pages may need to do additional splits if we increase
743 	 * middle->vm_start.
744 	 */
745 	vma_adjust_trans_huge(vma, vmg->start, vmg->end,
746 			      vmg->__adjust_middle_start ? vmg->middle : NULL);
747 	vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff);
748 	vmg_adjust_set_range(vmg);
749 	vma_iter_store_overwrite(vmg->vmi, vmg->target);
750 
751 	vma_complete(&vp, vmg->vmi, vma->vm_mm);
752 
753 	return 0;
754 }
755 
756 /* We can only remove VMAs when merging if they do not have a close hook. */
757 static bool can_merge_remove_vma(struct vm_area_struct *vma)
758 {
759 	return !vma->vm_ops || !vma->vm_ops->close;
760 }
761 
762 /*
763  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
764  * attributes modified.
765  *
766  * @vmg: Describes the modifications being made to a VMA and associated
767  *       metadata.
768  *
769  * When the attributes of a range within a VMA change, then it might be possible
770  * for immediately adjacent VMAs to be merged into that VMA due to having
771  * identical properties.
772  *
773  * This function checks for the existence of any such mergeable VMAs and updates
774  * the maple tree describing the @vmg->middle->vm_mm address space to account
775  * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
776  * merge.
777  *
778  * As part of this operation, if a merge occurs, the @vmg object will have its
779  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
780  * calls to this function should reset these fields.
781  *
782  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
783  *
784  * ASSUMPTIONS:
785  * - The caller must assign the VMA to be modifed to @vmg->middle.
786  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
787  * - The caller must not set @vmg->next, as we determine this.
788  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
789  * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
790  */
791 static __must_check struct vm_area_struct *vma_merge_existing_range(
792 		struct vma_merge_struct *vmg)
793 {
794 	struct vm_area_struct *middle = vmg->middle;
795 	struct vm_area_struct *prev = vmg->prev;
796 	struct vm_area_struct *next;
797 	struct vm_area_struct *anon_dup = NULL;
798 	unsigned long start = vmg->start;
799 	unsigned long end = vmg->end;
800 	bool left_side = middle && start == middle->vm_start;
801 	bool right_side = middle && end == middle->vm_end;
802 	int err = 0;
803 	bool merge_left, merge_right, merge_both;
804 
805 	mmap_assert_write_locked(vmg->mm);
806 	VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
807 	VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
808 	VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
809 	VM_WARN_ON_VMG(start >= end, vmg);
810 
811 	/*
812 	 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
813 	 * not, we must span a portion of the VMA.
814 	 */
815 	VM_WARN_ON_VMG(middle &&
816 		       ((middle != prev && vmg->start != middle->vm_start) ||
817 			vmg->end > middle->vm_end), vmg);
818 	/* The vmi must be positioned within vmg->middle. */
819 	VM_WARN_ON_VMG(middle &&
820 		       !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
821 			 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
822 
823 	vmg->state = VMA_MERGE_NOMERGE;
824 
825 	/*
826 	 * If a special mapping or if the range being modified is neither at the
827 	 * furthermost left or right side of the VMA, then we have no chance of
828 	 * merging and should abort.
829 	 */
830 	if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
831 		return NULL;
832 
833 	if (left_side)
834 		merge_left = can_vma_merge_left(vmg);
835 	else
836 		merge_left = false;
837 
838 	if (right_side) {
839 		next = vmg->next = vma_iter_next_range(vmg->vmi);
840 		vma_iter_prev_range(vmg->vmi);
841 
842 		merge_right = can_vma_merge_right(vmg, merge_left);
843 	} else {
844 		merge_right = false;
845 		next = NULL;
846 	}
847 
848 	if (merge_left)		/* If merging prev, position iterator there. */
849 		vma_prev(vmg->vmi);
850 	else if (!merge_right)	/* If we have nothing to merge, abort. */
851 		return NULL;
852 
853 	merge_both = merge_left && merge_right;
854 	/* If we span the entire VMA, a merge implies it will be deleted. */
855 	vmg->__remove_middle = left_side && right_side;
856 
857 	/*
858 	 * If we need to remove middle in its entirety but are unable to do so,
859 	 * we have no sensible recourse but to abort the merge.
860 	 */
861 	if (vmg->__remove_middle && !can_merge_remove_vma(middle))
862 		return NULL;
863 
864 	/*
865 	 * If we merge both VMAs, then next is also deleted. This implies
866 	 * merge_will_delete_vma also.
867 	 */
868 	vmg->__remove_next = merge_both;
869 
870 	/*
871 	 * If we cannot delete next, then we can reduce the operation to merging
872 	 * prev and middle (thereby deleting middle).
873 	 */
874 	if (vmg->__remove_next && !can_merge_remove_vma(next)) {
875 		vmg->__remove_next = false;
876 		merge_right = false;
877 		merge_both = false;
878 	}
879 
880 	/* No matter what happens, we will be adjusting middle. */
881 	vma_start_write(middle);
882 
883 	if (merge_right) {
884 		vma_start_write(next);
885 		vmg->target = next;
886 	}
887 
888 	if (merge_left) {
889 		vma_start_write(prev);
890 		vmg->target = prev;
891 	}
892 
893 	if (merge_both) {
894 		/*
895 		 * |<-------------------->|
896 		 * |-------********-------|
897 		 *   prev   middle   next
898 		 *  extend  delete  delete
899 		 */
900 
901 		vmg->start = prev->vm_start;
902 		vmg->end = next->vm_end;
903 		vmg->pgoff = prev->vm_pgoff;
904 
905 		/*
906 		 * We already ensured anon_vma compatibility above, so now it's
907 		 * simply a case of, if prev has no anon_vma object, which of
908 		 * next or middle contains the anon_vma we must duplicate.
909 		 */
910 		err = dup_anon_vma(prev, next->anon_vma ? next : middle,
911 				   &anon_dup);
912 	} else if (merge_left) {
913 		/*
914 		 * |<------------>|      OR
915 		 * |<----------------->|
916 		 * |-------*************
917 		 *   prev     middle
918 		 *  extend shrink/delete
919 		 */
920 
921 		vmg->start = prev->vm_start;
922 		vmg->pgoff = prev->vm_pgoff;
923 
924 		if (!vmg->__remove_middle)
925 			vmg->__adjust_middle_start = true;
926 
927 		err = dup_anon_vma(prev, middle, &anon_dup);
928 	} else { /* merge_right */
929 		/*
930 		 *     |<------------->| OR
931 		 * |<----------------->|
932 		 * *************-------|
933 		 *    middle     next
934 		 * shrink/delete extend
935 		 */
936 
937 		pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
938 
939 		VM_WARN_ON_VMG(!merge_right, vmg);
940 		/* If we are offset into a VMA, then prev must be middle. */
941 		VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
942 
943 		if (vmg->__remove_middle) {
944 			vmg->end = next->vm_end;
945 			vmg->pgoff = next->vm_pgoff - pglen;
946 		} else {
947 			/* We shrink middle and expand next. */
948 			vmg->__adjust_next_start = true;
949 			vmg->start = middle->vm_start;
950 			vmg->end = start;
951 			vmg->pgoff = middle->vm_pgoff;
952 		}
953 
954 		err = dup_anon_vma(next, middle, &anon_dup);
955 	}
956 
957 	if (err)
958 		goto abort;
959 
960 	err = commit_merge(vmg);
961 	if (err) {
962 		VM_WARN_ON(err != -ENOMEM);
963 
964 		if (anon_dup)
965 			unlink_anon_vmas(anon_dup);
966 
967 		/*
968 		 * We've cleaned up any cloned anon_vma's, no VMAs have been
969 		 * modified, no harm no foul if the user requests that we not
970 		 * report this and just give up, leaving the VMAs unmerged.
971 		 */
972 		if (!vmg->give_up_on_oom)
973 			vmg->state = VMA_MERGE_ERROR_NOMEM;
974 		return NULL;
975 	}
976 
977 	khugepaged_enter_vma(vmg->target, vmg->flags);
978 	vmg->state = VMA_MERGE_SUCCESS;
979 	return vmg->target;
980 
981 abort:
982 	vma_iter_set(vmg->vmi, start);
983 	vma_iter_load(vmg->vmi);
984 
985 	/*
986 	 * This means we have failed to clone anon_vma's correctly, but no
987 	 * actual changes to VMAs have occurred, so no harm no foul - if the
988 	 * user doesn't want this reported and instead just wants to give up on
989 	 * the merge, allow it.
990 	 */
991 	if (!vmg->give_up_on_oom)
992 		vmg->state = VMA_MERGE_ERROR_NOMEM;
993 	return NULL;
994 }
995 
996 /*
997  * vma_merge_new_range - Attempt to merge a new VMA into address space
998  *
999  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
1000  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
1001  *
1002  * We are about to add a VMA to the address space starting at @vmg->start and
1003  * ending at @vmg->end. There are three different possible scenarios:
1004  *
1005  * 1. There is a VMA with identical properties immediately adjacent to the
1006  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1007  *    EXPAND that VMA:
1008  *
1009  * Proposed:       |-----|  or  |-----|
1010  * Existing:  |----|                  |----|
1011  *
1012  * 2. There are VMAs with identical properties immediately adjacent to the
1013  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1014  *    EXPAND the former and REMOVE the latter:
1015  *
1016  * Proposed:       |-----|
1017  * Existing:  |----|     |----|
1018  *
1019  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1020  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
1021  *
1022  * In instances where we can merge, this function returns the expanded VMA which
1023  * will have its range adjusted accordingly and the underlying maple tree also
1024  * adjusted.
1025  *
1026  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1027  *          to the VMA we expanded.
1028  *
1029  * This function adjusts @vmg to provide @vmg->next if not already specified,
1030  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1031  *
1032  * ASSUMPTIONS:
1033  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1034  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1035      other than VMAs that will be unmapped should the operation succeed.
1036  * - The caller must have specified the previous vma in @vmg->prev.
1037  * - The caller must have specified the next vma in @vmg->next.
1038  * - The caller must have positioned the vmi at or before the gap.
1039  */
1040 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1041 {
1042 	struct vm_area_struct *prev = vmg->prev;
1043 	struct vm_area_struct *next = vmg->next;
1044 	unsigned long end = vmg->end;
1045 	bool can_merge_left, can_merge_right;
1046 
1047 	mmap_assert_write_locked(vmg->mm);
1048 	VM_WARN_ON_VMG(vmg->middle, vmg);
1049 	/* vmi must point at or before the gap. */
1050 	VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1051 
1052 	vmg->state = VMA_MERGE_NOMERGE;
1053 
1054 	/* Special VMAs are unmergeable, also if no prev/next. */
1055 	if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
1056 		return NULL;
1057 
1058 	can_merge_left = can_vma_merge_left(vmg);
1059 	can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1060 
1061 	/* If we can merge with the next VMA, adjust vmg accordingly. */
1062 	if (can_merge_right) {
1063 		vmg->end = next->vm_end;
1064 		vmg->middle = next;
1065 	}
1066 
1067 	/* If we can merge with the previous VMA, adjust vmg accordingly. */
1068 	if (can_merge_left) {
1069 		vmg->start = prev->vm_start;
1070 		vmg->middle = prev;
1071 		vmg->pgoff = prev->vm_pgoff;
1072 
1073 		/*
1074 		 * If this merge would result in removal of the next VMA but we
1075 		 * are not permitted to do so, reduce the operation to merging
1076 		 * prev and vma.
1077 		 */
1078 		if (can_merge_right && !can_merge_remove_vma(next))
1079 			vmg->end = end;
1080 
1081 		/* In expand-only case we are already positioned at prev. */
1082 		if (!vmg->just_expand) {
1083 			/* Equivalent to going to the previous range. */
1084 			vma_prev(vmg->vmi);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Now try to expand adjacent VMA(s). This takes care of removing the
1090 	 * following VMA if we have VMAs on both sides.
1091 	 */
1092 	if (vmg->middle && !vma_expand(vmg)) {
1093 		khugepaged_enter_vma(vmg->middle, vmg->flags);
1094 		vmg->state = VMA_MERGE_SUCCESS;
1095 		return vmg->middle;
1096 	}
1097 
1098 	return NULL;
1099 }
1100 
1101 /*
1102  * vma_expand - Expand an existing VMA
1103  *
1104  * @vmg: Describes a VMA expansion operation.
1105  *
1106  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
1107  * Will expand over vmg->next if it's different from vmg->middle and vmg->end ==
1108  * vmg->next->vm_end.  Checking if the vmg->middle can expand and merge with
1109  * vmg->next needs to be handled by the caller.
1110  *
1111  * Returns: 0 on success.
1112  *
1113  * ASSUMPTIONS:
1114  * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock.
1115  * - The caller must have set @vmg->middle and @vmg->next.
1116  */
1117 int vma_expand(struct vma_merge_struct *vmg)
1118 {
1119 	struct vm_area_struct *anon_dup = NULL;
1120 	bool remove_next = false;
1121 	struct vm_area_struct *middle = vmg->middle;
1122 	struct vm_area_struct *next = vmg->next;
1123 
1124 	mmap_assert_write_locked(vmg->mm);
1125 
1126 	vma_start_write(middle);
1127 	if (next && (middle != next) && (vmg->end == next->vm_end)) {
1128 		int ret;
1129 
1130 		remove_next = true;
1131 		/* This should already have been checked by this point. */
1132 		VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1133 		vma_start_write(next);
1134 		/*
1135 		 * In this case we don't report OOM, so vmg->give_up_on_mm is
1136 		 * safe.
1137 		 */
1138 		ret = dup_anon_vma(middle, next, &anon_dup);
1139 		if (ret)
1140 			return ret;
1141 	}
1142 
1143 	/* Not merging but overwriting any part of next is not handled. */
1144 	VM_WARN_ON_VMG(next && !remove_next &&
1145 		       next != middle && vmg->end > next->vm_start, vmg);
1146 	/* Only handles expanding */
1147 	VM_WARN_ON_VMG(middle->vm_start < vmg->start ||
1148 		       middle->vm_end > vmg->end, vmg);
1149 
1150 	vmg->target = middle;
1151 	if (remove_next)
1152 		vmg->__remove_next = true;
1153 
1154 	if (commit_merge(vmg))
1155 		goto nomem;
1156 
1157 	return 0;
1158 
1159 nomem:
1160 	if (anon_dup)
1161 		unlink_anon_vmas(anon_dup);
1162 	/*
1163 	 * If the user requests that we just give upon OOM, we are safe to do so
1164 	 * here, as commit merge provides this contract to us. Nothing has been
1165 	 * changed - no harm no foul, just don't report it.
1166 	 */
1167 	if (!vmg->give_up_on_oom)
1168 		vmg->state = VMA_MERGE_ERROR_NOMEM;
1169 	return -ENOMEM;
1170 }
1171 
1172 /*
1173  * vma_shrink() - Reduce an existing VMAs memory area
1174  * @vmi: The vma iterator
1175  * @vma: The VMA to modify
1176  * @start: The new start
1177  * @end: The new end
1178  *
1179  * Returns: 0 on success, -ENOMEM otherwise
1180  */
1181 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1182 	       unsigned long start, unsigned long end, pgoff_t pgoff)
1183 {
1184 	struct vma_prepare vp;
1185 
1186 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1187 
1188 	if (vma->vm_start < start)
1189 		vma_iter_config(vmi, vma->vm_start, start);
1190 	else
1191 		vma_iter_config(vmi, end, vma->vm_end);
1192 
1193 	if (vma_iter_prealloc(vmi, NULL))
1194 		return -ENOMEM;
1195 
1196 	vma_start_write(vma);
1197 
1198 	init_vma_prep(&vp, vma);
1199 	vma_prepare(&vp);
1200 	vma_adjust_trans_huge(vma, start, end, NULL);
1201 
1202 	vma_iter_clear(vmi);
1203 	vma_set_range(vma, start, end, pgoff);
1204 	vma_complete(&vp, vmi, vma->vm_mm);
1205 	validate_mm(vma->vm_mm);
1206 	return 0;
1207 }
1208 
1209 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1210 		    struct ma_state *mas_detach, bool mm_wr_locked)
1211 {
1212 	struct mmu_gather tlb;
1213 
1214 	if (!vms->clear_ptes) /* Nothing to do */
1215 		return;
1216 
1217 	/*
1218 	 * We can free page tables without write-locking mmap_lock because VMAs
1219 	 * were isolated before we downgraded mmap_lock.
1220 	 */
1221 	mas_set(mas_detach, 1);
1222 	tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1223 	update_hiwater_rss(vms->vma->vm_mm);
1224 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1225 		   vms->vma_count, mm_wr_locked);
1226 
1227 	mas_set(mas_detach, 1);
1228 	/* start and end may be different if there is no prev or next vma. */
1229 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1230 		      vms->unmap_end, mm_wr_locked);
1231 	tlb_finish_mmu(&tlb);
1232 	vms->clear_ptes = false;
1233 }
1234 
1235 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1236 		struct ma_state *mas_detach)
1237 {
1238 	struct vm_area_struct *vma;
1239 
1240 	if (!vms->nr_pages)
1241 		return;
1242 
1243 	vms_clear_ptes(vms, mas_detach, true);
1244 	mas_set(mas_detach, 0);
1245 	mas_for_each(mas_detach, vma, ULONG_MAX)
1246 		vma_close(vma);
1247 }
1248 
1249 /*
1250  * vms_complete_munmap_vmas() - Finish the munmap() operation
1251  * @vms: The vma munmap struct
1252  * @mas_detach: The maple state of the detached vmas
1253  *
1254  * This updates the mm_struct, unmaps the region, frees the resources
1255  * used for the munmap() and may downgrade the lock - if requested.  Everything
1256  * needed to be done once the vma maple tree is updated.
1257  */
1258 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1259 		struct ma_state *mas_detach)
1260 {
1261 	struct vm_area_struct *vma;
1262 	struct mm_struct *mm;
1263 
1264 	mm = current->mm;
1265 	mm->map_count -= vms->vma_count;
1266 	mm->locked_vm -= vms->locked_vm;
1267 	if (vms->unlock)
1268 		mmap_write_downgrade(mm);
1269 
1270 	if (!vms->nr_pages)
1271 		return;
1272 
1273 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
1274 	/* Update high watermark before we lower total_vm */
1275 	update_hiwater_vm(mm);
1276 	/* Stat accounting */
1277 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1278 	/* Paranoid bookkeeping */
1279 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1280 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1281 	VM_WARN_ON(vms->data_vm > mm->data_vm);
1282 	mm->exec_vm -= vms->exec_vm;
1283 	mm->stack_vm -= vms->stack_vm;
1284 	mm->data_vm -= vms->data_vm;
1285 
1286 	/* Remove and clean up vmas */
1287 	mas_set(mas_detach, 0);
1288 	mas_for_each(mas_detach, vma, ULONG_MAX)
1289 		remove_vma(vma);
1290 
1291 	vm_unacct_memory(vms->nr_accounted);
1292 	validate_mm(mm);
1293 	if (vms->unlock)
1294 		mmap_read_unlock(mm);
1295 
1296 	__mt_destroy(mas_detach->tree);
1297 }
1298 
1299 /*
1300  * reattach_vmas() - Undo any munmap work and free resources
1301  * @mas_detach: The maple state with the detached maple tree
1302  *
1303  * Reattach any detached vmas and free up the maple tree used to track the vmas.
1304  */
1305 static void reattach_vmas(struct ma_state *mas_detach)
1306 {
1307 	struct vm_area_struct *vma;
1308 
1309 	mas_set(mas_detach, 0);
1310 	mas_for_each(mas_detach, vma, ULONG_MAX)
1311 		vma_mark_attached(vma);
1312 
1313 	__mt_destroy(mas_detach->tree);
1314 }
1315 
1316 /*
1317  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1318  * for removal at a later date.  Handles splitting first and last if necessary
1319  * and marking the vmas as isolated.
1320  *
1321  * @vms: The vma munmap struct
1322  * @mas_detach: The maple state tracking the detached tree
1323  *
1324  * Return: 0 on success, error otherwise
1325  */
1326 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1327 		struct ma_state *mas_detach)
1328 {
1329 	struct vm_area_struct *next = NULL;
1330 	int error;
1331 
1332 	/*
1333 	 * If we need to split any vma, do it now to save pain later.
1334 	 * Does it split the first one?
1335 	 */
1336 	if (vms->start > vms->vma->vm_start) {
1337 
1338 		/*
1339 		 * Make sure that map_count on return from munmap() will
1340 		 * not exceed its limit; but let map_count go just above
1341 		 * its limit temporarily, to help free resources as expected.
1342 		 */
1343 		if (vms->end < vms->vma->vm_end &&
1344 		    vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1345 			error = -ENOMEM;
1346 			goto map_count_exceeded;
1347 		}
1348 
1349 		/* Don't bother splitting the VMA if we can't unmap it anyway */
1350 		if (!can_modify_vma(vms->vma)) {
1351 			error = -EPERM;
1352 			goto start_split_failed;
1353 		}
1354 
1355 		error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1356 		if (error)
1357 			goto start_split_failed;
1358 	}
1359 	vms->prev = vma_prev(vms->vmi);
1360 	if (vms->prev)
1361 		vms->unmap_start = vms->prev->vm_end;
1362 
1363 	/*
1364 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
1365 	 * it is always overwritten.
1366 	 */
1367 	for_each_vma_range(*(vms->vmi), next, vms->end) {
1368 		long nrpages;
1369 
1370 		if (!can_modify_vma(next)) {
1371 			error = -EPERM;
1372 			goto modify_vma_failed;
1373 		}
1374 		/* Does it split the end? */
1375 		if (next->vm_end > vms->end) {
1376 			error = __split_vma(vms->vmi, next, vms->end, 0);
1377 			if (error)
1378 				goto end_split_failed;
1379 		}
1380 		vma_start_write(next);
1381 		mas_set(mas_detach, vms->vma_count++);
1382 		error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1383 		if (error)
1384 			goto munmap_gather_failed;
1385 
1386 		vma_mark_detached(next);
1387 		nrpages = vma_pages(next);
1388 
1389 		vms->nr_pages += nrpages;
1390 		if (next->vm_flags & VM_LOCKED)
1391 			vms->locked_vm += nrpages;
1392 
1393 		if (next->vm_flags & VM_ACCOUNT)
1394 			vms->nr_accounted += nrpages;
1395 
1396 		if (is_exec_mapping(next->vm_flags))
1397 			vms->exec_vm += nrpages;
1398 		else if (is_stack_mapping(next->vm_flags))
1399 			vms->stack_vm += nrpages;
1400 		else if (is_data_mapping(next->vm_flags))
1401 			vms->data_vm += nrpages;
1402 
1403 		if (vms->uf) {
1404 			/*
1405 			 * If userfaultfd_unmap_prep returns an error the vmas
1406 			 * will remain split, but userland will get a
1407 			 * highly unexpected error anyway. This is no
1408 			 * different than the case where the first of the two
1409 			 * __split_vma fails, but we don't undo the first
1410 			 * split, despite we could. This is unlikely enough
1411 			 * failure that it's not worth optimizing it for.
1412 			 */
1413 			error = userfaultfd_unmap_prep(next, vms->start,
1414 						       vms->end, vms->uf);
1415 			if (error)
1416 				goto userfaultfd_error;
1417 		}
1418 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1419 		BUG_ON(next->vm_start < vms->start);
1420 		BUG_ON(next->vm_start > vms->end);
1421 #endif
1422 	}
1423 
1424 	vms->next = vma_next(vms->vmi);
1425 	if (vms->next)
1426 		vms->unmap_end = vms->next->vm_start;
1427 
1428 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1429 	/* Make sure no VMAs are about to be lost. */
1430 	{
1431 		MA_STATE(test, mas_detach->tree, 0, 0);
1432 		struct vm_area_struct *vma_mas, *vma_test;
1433 		int test_count = 0;
1434 
1435 		vma_iter_set(vms->vmi, vms->start);
1436 		rcu_read_lock();
1437 		vma_test = mas_find(&test, vms->vma_count - 1);
1438 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1439 			BUG_ON(vma_mas != vma_test);
1440 			test_count++;
1441 			vma_test = mas_next(&test, vms->vma_count - 1);
1442 		}
1443 		rcu_read_unlock();
1444 		BUG_ON(vms->vma_count != test_count);
1445 	}
1446 #endif
1447 
1448 	while (vma_iter_addr(vms->vmi) > vms->start)
1449 		vma_iter_prev_range(vms->vmi);
1450 
1451 	vms->clear_ptes = true;
1452 	return 0;
1453 
1454 userfaultfd_error:
1455 munmap_gather_failed:
1456 end_split_failed:
1457 modify_vma_failed:
1458 	reattach_vmas(mas_detach);
1459 start_split_failed:
1460 map_count_exceeded:
1461 	return error;
1462 }
1463 
1464 /*
1465  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1466  * @vms: The vma munmap struct
1467  * @vmi: The vma iterator
1468  * @vma: The first vm_area_struct to munmap
1469  * @start: The aligned start address to munmap
1470  * @end: The aligned end address to munmap
1471  * @uf: The userfaultfd list_head
1472  * @unlock: Unlock after the operation.  Only unlocked on success
1473  */
1474 static void init_vma_munmap(struct vma_munmap_struct *vms,
1475 		struct vma_iterator *vmi, struct vm_area_struct *vma,
1476 		unsigned long start, unsigned long end, struct list_head *uf,
1477 		bool unlock)
1478 {
1479 	vms->vmi = vmi;
1480 	vms->vma = vma;
1481 	if (vma) {
1482 		vms->start = start;
1483 		vms->end = end;
1484 	} else {
1485 		vms->start = vms->end = 0;
1486 	}
1487 	vms->unlock = unlock;
1488 	vms->uf = uf;
1489 	vms->vma_count = 0;
1490 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1491 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1492 	vms->unmap_start = FIRST_USER_ADDRESS;
1493 	vms->unmap_end = USER_PGTABLES_CEILING;
1494 	vms->clear_ptes = false;
1495 }
1496 
1497 /*
1498  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1499  * @vmi: The vma iterator
1500  * @vma: The starting vm_area_struct
1501  * @mm: The mm_struct
1502  * @start: The aligned start address to munmap.
1503  * @end: The aligned end address to munmap.
1504  * @uf: The userfaultfd list_head
1505  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1506  * success.
1507  *
1508  * Return: 0 on success and drops the lock if so directed, error and leaves the
1509  * lock held otherwise.
1510  */
1511 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1512 		struct mm_struct *mm, unsigned long start, unsigned long end,
1513 		struct list_head *uf, bool unlock)
1514 {
1515 	struct maple_tree mt_detach;
1516 	MA_STATE(mas_detach, &mt_detach, 0, 0);
1517 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1518 	mt_on_stack(mt_detach);
1519 	struct vma_munmap_struct vms;
1520 	int error;
1521 
1522 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1523 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
1524 	if (error)
1525 		goto gather_failed;
1526 
1527 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1528 	if (error)
1529 		goto clear_tree_failed;
1530 
1531 	/* Point of no return */
1532 	vms_complete_munmap_vmas(&vms, &mas_detach);
1533 	return 0;
1534 
1535 clear_tree_failed:
1536 	reattach_vmas(&mas_detach);
1537 gather_failed:
1538 	validate_mm(mm);
1539 	return error;
1540 }
1541 
1542 /*
1543  * do_vmi_munmap() - munmap a given range.
1544  * @vmi: The vma iterator
1545  * @mm: The mm_struct
1546  * @start: The start address to munmap
1547  * @len: The length of the range to munmap
1548  * @uf: The userfaultfd list_head
1549  * @unlock: set to true if the user wants to drop the mmap_lock on success
1550  *
1551  * This function takes a @mas that is either pointing to the previous VMA or set
1552  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1553  * aligned.
1554  *
1555  * Return: 0 on success and drops the lock if so directed, error and leaves the
1556  * lock held otherwise.
1557  */
1558 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1559 		  unsigned long start, size_t len, struct list_head *uf,
1560 		  bool unlock)
1561 {
1562 	unsigned long end;
1563 	struct vm_area_struct *vma;
1564 
1565 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1566 		return -EINVAL;
1567 
1568 	end = start + PAGE_ALIGN(len);
1569 	if (end == start)
1570 		return -EINVAL;
1571 
1572 	/* Find the first overlapping VMA */
1573 	vma = vma_find(vmi, end);
1574 	if (!vma) {
1575 		if (unlock)
1576 			mmap_write_unlock(mm);
1577 		return 0;
1578 	}
1579 
1580 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1581 }
1582 
1583 /*
1584  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1585  * context and anonymous VMA name within the range [start, end).
1586  *
1587  * As a result, we might be able to merge the newly modified VMA range with an
1588  * adjacent VMA with identical properties.
1589  *
1590  * If no merge is possible and the range does not span the entirety of the VMA,
1591  * we then need to split the VMA to accommodate the change.
1592  *
1593  * The function returns either the merged VMA, the original VMA if a split was
1594  * required instead, or an error if the split failed.
1595  */
1596 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1597 {
1598 	struct vm_area_struct *vma = vmg->middle;
1599 	unsigned long start = vmg->start;
1600 	unsigned long end = vmg->end;
1601 	struct vm_area_struct *merged;
1602 
1603 	/* First, try to merge. */
1604 	merged = vma_merge_existing_range(vmg);
1605 	if (merged)
1606 		return merged;
1607 	if (vmg_nomem(vmg))
1608 		return ERR_PTR(-ENOMEM);
1609 
1610 	/*
1611 	 * Split can fail for reasons other than OOM, so if the user requests
1612 	 * this it's probably a mistake.
1613 	 */
1614 	VM_WARN_ON(vmg->give_up_on_oom &&
1615 		   (vma->vm_start != start || vma->vm_end != end));
1616 
1617 	/* Split any preceding portion of the VMA. */
1618 	if (vma->vm_start < start) {
1619 		int err = split_vma(vmg->vmi, vma, start, 1);
1620 
1621 		if (err)
1622 			return ERR_PTR(err);
1623 	}
1624 
1625 	/* Split any trailing portion of the VMA. */
1626 	if (vma->vm_end > end) {
1627 		int err = split_vma(vmg->vmi, vma, end, 0);
1628 
1629 		if (err)
1630 			return ERR_PTR(err);
1631 	}
1632 
1633 	return vma;
1634 }
1635 
1636 struct vm_area_struct *vma_modify_flags(
1637 	struct vma_iterator *vmi, struct vm_area_struct *prev,
1638 	struct vm_area_struct *vma, unsigned long start, unsigned long end,
1639 	unsigned long new_flags)
1640 {
1641 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1642 
1643 	vmg.flags = new_flags;
1644 
1645 	return vma_modify(&vmg);
1646 }
1647 
1648 struct vm_area_struct
1649 *vma_modify_flags_name(struct vma_iterator *vmi,
1650 		       struct vm_area_struct *prev,
1651 		       struct vm_area_struct *vma,
1652 		       unsigned long start,
1653 		       unsigned long end,
1654 		       unsigned long new_flags,
1655 		       struct anon_vma_name *new_name)
1656 {
1657 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1658 
1659 	vmg.flags = new_flags;
1660 	vmg.anon_name = new_name;
1661 
1662 	return vma_modify(&vmg);
1663 }
1664 
1665 struct vm_area_struct
1666 *vma_modify_policy(struct vma_iterator *vmi,
1667 		   struct vm_area_struct *prev,
1668 		   struct vm_area_struct *vma,
1669 		   unsigned long start, unsigned long end,
1670 		   struct mempolicy *new_pol)
1671 {
1672 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1673 
1674 	vmg.policy = new_pol;
1675 
1676 	return vma_modify(&vmg);
1677 }
1678 
1679 struct vm_area_struct
1680 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1681 		       struct vm_area_struct *prev,
1682 		       struct vm_area_struct *vma,
1683 		       unsigned long start, unsigned long end,
1684 		       unsigned long new_flags,
1685 		       struct vm_userfaultfd_ctx new_ctx,
1686 		       bool give_up_on_oom)
1687 {
1688 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1689 
1690 	vmg.flags = new_flags;
1691 	vmg.uffd_ctx = new_ctx;
1692 	if (give_up_on_oom)
1693 		vmg.give_up_on_oom = true;
1694 
1695 	return vma_modify(&vmg);
1696 }
1697 
1698 /*
1699  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1700  * VMA with identical properties.
1701  */
1702 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1703 					struct vm_area_struct *vma,
1704 					unsigned long delta)
1705 {
1706 	VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1707 
1708 	vmg.next = vma_iter_next_rewind(vmi, NULL);
1709 	vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1710 
1711 	return vma_merge_new_range(&vmg);
1712 }
1713 
1714 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1715 {
1716 	vb->count = 0;
1717 }
1718 
1719 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1720 {
1721 	struct address_space *mapping;
1722 	int i;
1723 
1724 	mapping = vb->vmas[0]->vm_file->f_mapping;
1725 	i_mmap_lock_write(mapping);
1726 	for (i = 0; i < vb->count; i++) {
1727 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1728 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1729 	}
1730 	i_mmap_unlock_write(mapping);
1731 
1732 	unlink_file_vma_batch_init(vb);
1733 }
1734 
1735 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1736 			       struct vm_area_struct *vma)
1737 {
1738 	if (vma->vm_file == NULL)
1739 		return;
1740 
1741 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1742 	    vb->count == ARRAY_SIZE(vb->vmas))
1743 		unlink_file_vma_batch_process(vb);
1744 
1745 	vb->vmas[vb->count] = vma;
1746 	vb->count++;
1747 }
1748 
1749 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1750 {
1751 	if (vb->count > 0)
1752 		unlink_file_vma_batch_process(vb);
1753 }
1754 
1755 /*
1756  * Unlink a file-based vm structure from its interval tree, to hide
1757  * vma from rmap and vmtruncate before freeing its page tables.
1758  */
1759 void unlink_file_vma(struct vm_area_struct *vma)
1760 {
1761 	struct file *file = vma->vm_file;
1762 
1763 	if (file) {
1764 		struct address_space *mapping = file->f_mapping;
1765 
1766 		i_mmap_lock_write(mapping);
1767 		__remove_shared_vm_struct(vma, mapping);
1768 		i_mmap_unlock_write(mapping);
1769 	}
1770 }
1771 
1772 void vma_link_file(struct vm_area_struct *vma)
1773 {
1774 	struct file *file = vma->vm_file;
1775 	struct address_space *mapping;
1776 
1777 	if (file) {
1778 		mapping = file->f_mapping;
1779 		i_mmap_lock_write(mapping);
1780 		__vma_link_file(vma, mapping);
1781 		i_mmap_unlock_write(mapping);
1782 	}
1783 }
1784 
1785 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1786 {
1787 	VMA_ITERATOR(vmi, mm, 0);
1788 
1789 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1790 	if (vma_iter_prealloc(&vmi, vma))
1791 		return -ENOMEM;
1792 
1793 	vma_start_write(vma);
1794 	vma_iter_store_new(&vmi, vma);
1795 	vma_link_file(vma);
1796 	mm->map_count++;
1797 	validate_mm(mm);
1798 	return 0;
1799 }
1800 
1801 /*
1802  * Copy the vma structure to a new location in the same mm,
1803  * prior to moving page table entries, to effect an mremap move.
1804  */
1805 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1806 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1807 	bool *need_rmap_locks)
1808 {
1809 	struct vm_area_struct *vma = *vmap;
1810 	unsigned long vma_start = vma->vm_start;
1811 	struct mm_struct *mm = vma->vm_mm;
1812 	struct vm_area_struct *new_vma;
1813 	bool faulted_in_anon_vma = true;
1814 	VMA_ITERATOR(vmi, mm, addr);
1815 	VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1816 
1817 	/*
1818 	 * If anonymous vma has not yet been faulted, update new pgoff
1819 	 * to match new location, to increase its chance of merging.
1820 	 */
1821 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1822 		pgoff = addr >> PAGE_SHIFT;
1823 		faulted_in_anon_vma = false;
1824 	}
1825 
1826 	new_vma = find_vma_prev(mm, addr, &vmg.prev);
1827 	if (new_vma && new_vma->vm_start < addr + len)
1828 		return NULL;	/* should never get here */
1829 
1830 	vmg.middle = NULL; /* New VMA range. */
1831 	vmg.pgoff = pgoff;
1832 	vmg.next = vma_iter_next_rewind(&vmi, NULL);
1833 	new_vma = vma_merge_new_range(&vmg);
1834 
1835 	if (new_vma) {
1836 		/*
1837 		 * Source vma may have been merged into new_vma
1838 		 */
1839 		if (unlikely(vma_start >= new_vma->vm_start &&
1840 			     vma_start < new_vma->vm_end)) {
1841 			/*
1842 			 * The only way we can get a vma_merge with
1843 			 * self during an mremap is if the vma hasn't
1844 			 * been faulted in yet and we were allowed to
1845 			 * reset the dst vma->vm_pgoff to the
1846 			 * destination address of the mremap to allow
1847 			 * the merge to happen. mremap must change the
1848 			 * vm_pgoff linearity between src and dst vmas
1849 			 * (in turn preventing a vma_merge) to be
1850 			 * safe. It is only safe to keep the vm_pgoff
1851 			 * linear if there are no pages mapped yet.
1852 			 */
1853 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1854 			*vmap = vma = new_vma;
1855 		}
1856 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1857 	} else {
1858 		new_vma = vm_area_dup(vma);
1859 		if (!new_vma)
1860 			goto out;
1861 		vma_set_range(new_vma, addr, addr + len, pgoff);
1862 		if (vma_dup_policy(vma, new_vma))
1863 			goto out_free_vma;
1864 		if (anon_vma_clone(new_vma, vma))
1865 			goto out_free_mempol;
1866 		if (new_vma->vm_file)
1867 			get_file(new_vma->vm_file);
1868 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1869 			new_vma->vm_ops->open(new_vma);
1870 		if (vma_link(mm, new_vma))
1871 			goto out_vma_link;
1872 		*need_rmap_locks = false;
1873 	}
1874 	return new_vma;
1875 
1876 out_vma_link:
1877 	fixup_hugetlb_reservations(new_vma);
1878 	vma_close(new_vma);
1879 
1880 	if (new_vma->vm_file)
1881 		fput(new_vma->vm_file);
1882 
1883 	unlink_anon_vmas(new_vma);
1884 out_free_mempol:
1885 	mpol_put(vma_policy(new_vma));
1886 out_free_vma:
1887 	vm_area_free(new_vma);
1888 out:
1889 	return NULL;
1890 }
1891 
1892 /*
1893  * Rough compatibility check to quickly see if it's even worth looking
1894  * at sharing an anon_vma.
1895  *
1896  * They need to have the same vm_file, and the flags can only differ
1897  * in things that mprotect may change.
1898  *
1899  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1900  * we can merge the two vma's. For example, we refuse to merge a vma if
1901  * there is a vm_ops->close() function, because that indicates that the
1902  * driver is doing some kind of reference counting. But that doesn't
1903  * really matter for the anon_vma sharing case.
1904  */
1905 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1906 {
1907 	return a->vm_end == b->vm_start &&
1908 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1909 		a->vm_file == b->vm_file &&
1910 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1911 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1912 }
1913 
1914 /*
1915  * Do some basic sanity checking to see if we can re-use the anon_vma
1916  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1917  * the same as 'old', the other will be the new one that is trying
1918  * to share the anon_vma.
1919  *
1920  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1921  * the anon_vma of 'old' is concurrently in the process of being set up
1922  * by another page fault trying to merge _that_. But that's ok: if it
1923  * is being set up, that automatically means that it will be a singleton
1924  * acceptable for merging, so we can do all of this optimistically. But
1925  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1926  *
1927  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1928  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1929  * is to return an anon_vma that is "complex" due to having gone through
1930  * a fork).
1931  *
1932  * We also make sure that the two vma's are compatible (adjacent,
1933  * and with the same memory policies). That's all stable, even with just
1934  * a read lock on the mmap_lock.
1935  */
1936 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1937 					  struct vm_area_struct *a,
1938 					  struct vm_area_struct *b)
1939 {
1940 	if (anon_vma_compatible(a, b)) {
1941 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1942 
1943 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1944 			return anon_vma;
1945 	}
1946 	return NULL;
1947 }
1948 
1949 /*
1950  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1951  * neighbouring vmas for a suitable anon_vma, before it goes off
1952  * to allocate a new anon_vma.  It checks because a repetitive
1953  * sequence of mprotects and faults may otherwise lead to distinct
1954  * anon_vmas being allocated, preventing vma merge in subsequent
1955  * mprotect.
1956  */
1957 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1958 {
1959 	struct anon_vma *anon_vma = NULL;
1960 	struct vm_area_struct *prev, *next;
1961 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1962 
1963 	/* Try next first. */
1964 	next = vma_iter_load(&vmi);
1965 	if (next) {
1966 		anon_vma = reusable_anon_vma(next, vma, next);
1967 		if (anon_vma)
1968 			return anon_vma;
1969 	}
1970 
1971 	prev = vma_prev(&vmi);
1972 	VM_BUG_ON_VMA(prev != vma, vma);
1973 	prev = vma_prev(&vmi);
1974 	/* Try prev next. */
1975 	if (prev)
1976 		anon_vma = reusable_anon_vma(prev, prev, vma);
1977 
1978 	/*
1979 	 * We might reach here with anon_vma == NULL if we can't find
1980 	 * any reusable anon_vma.
1981 	 * There's no absolute need to look only at touching neighbours:
1982 	 * we could search further afield for "compatible" anon_vmas.
1983 	 * But it would probably just be a waste of time searching,
1984 	 * or lead to too many vmas hanging off the same anon_vma.
1985 	 * We're trying to allow mprotect remerging later on,
1986 	 * not trying to minimize memory used for anon_vmas.
1987 	 */
1988 	return anon_vma;
1989 }
1990 
1991 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1992 {
1993 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1994 }
1995 
1996 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1997 {
1998 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1999 		(VM_WRITE | VM_SHARED);
2000 }
2001 
2002 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2003 {
2004 	/* No managed pages to writeback. */
2005 	if (vma->vm_flags & VM_PFNMAP)
2006 		return false;
2007 
2008 	return vma->vm_file && vma->vm_file->f_mapping &&
2009 		mapping_can_writeback(vma->vm_file->f_mapping);
2010 }
2011 
2012 /*
2013  * Does this VMA require the underlying folios to have their dirty state
2014  * tracked?
2015  */
2016 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2017 {
2018 	/* Only shared, writable VMAs require dirty tracking. */
2019 	if (!vma_is_shared_writable(vma))
2020 		return false;
2021 
2022 	/* Does the filesystem need to be notified? */
2023 	if (vm_ops_needs_writenotify(vma->vm_ops))
2024 		return true;
2025 
2026 	/*
2027 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
2028 	 * can writeback, dirty tracking is still required.
2029 	 */
2030 	return vma_fs_can_writeback(vma);
2031 }
2032 
2033 /*
2034  * Some shared mappings will want the pages marked read-only
2035  * to track write events. If so, we'll downgrade vm_page_prot
2036  * to the private version (using protection_map[] without the
2037  * VM_SHARED bit).
2038  */
2039 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2040 {
2041 	/* If it was private or non-writable, the write bit is already clear */
2042 	if (!vma_is_shared_writable(vma))
2043 		return false;
2044 
2045 	/* The backer wishes to know when pages are first written to? */
2046 	if (vm_ops_needs_writenotify(vma->vm_ops))
2047 		return true;
2048 
2049 	/* The open routine did something to the protections that pgprot_modify
2050 	 * won't preserve? */
2051 	if (pgprot_val(vm_page_prot) !=
2052 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2053 		return false;
2054 
2055 	/*
2056 	 * Do we need to track softdirty? hugetlb does not support softdirty
2057 	 * tracking yet.
2058 	 */
2059 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2060 		return true;
2061 
2062 	/* Do we need write faults for uffd-wp tracking? */
2063 	if (userfaultfd_wp(vma))
2064 		return true;
2065 
2066 	/* Can the mapping track the dirty pages? */
2067 	return vma_fs_can_writeback(vma);
2068 }
2069 
2070 static DEFINE_MUTEX(mm_all_locks_mutex);
2071 
2072 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2073 {
2074 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2075 		/*
2076 		 * The LSB of head.next can't change from under us
2077 		 * because we hold the mm_all_locks_mutex.
2078 		 */
2079 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2080 		/*
2081 		 * We can safely modify head.next after taking the
2082 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2083 		 * the same anon_vma we won't take it again.
2084 		 *
2085 		 * No need of atomic instructions here, head.next
2086 		 * can't change from under us thanks to the
2087 		 * anon_vma->root->rwsem.
2088 		 */
2089 		if (__test_and_set_bit(0, (unsigned long *)
2090 				       &anon_vma->root->rb_root.rb_root.rb_node))
2091 			BUG();
2092 	}
2093 }
2094 
2095 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2096 {
2097 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2098 		/*
2099 		 * AS_MM_ALL_LOCKS can't change from under us because
2100 		 * we hold the mm_all_locks_mutex.
2101 		 *
2102 		 * Operations on ->flags have to be atomic because
2103 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2104 		 * mm_all_locks_mutex, there may be other cpus
2105 		 * changing other bitflags in parallel to us.
2106 		 */
2107 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2108 			BUG();
2109 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2110 	}
2111 }
2112 
2113 /*
2114  * This operation locks against the VM for all pte/vma/mm related
2115  * operations that could ever happen on a certain mm. This includes
2116  * vmtruncate, try_to_unmap, and all page faults.
2117  *
2118  * The caller must take the mmap_lock in write mode before calling
2119  * mm_take_all_locks(). The caller isn't allowed to release the
2120  * mmap_lock until mm_drop_all_locks() returns.
2121  *
2122  * mmap_lock in write mode is required in order to block all operations
2123  * that could modify pagetables and free pages without need of
2124  * altering the vma layout. It's also needed in write mode to avoid new
2125  * anon_vmas to be associated with existing vmas.
2126  *
2127  * A single task can't take more than one mm_take_all_locks() in a row
2128  * or it would deadlock.
2129  *
2130  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2131  * mapping->flags avoid to take the same lock twice, if more than one
2132  * vma in this mm is backed by the same anon_vma or address_space.
2133  *
2134  * We take locks in following order, accordingly to comment at beginning
2135  * of mm/rmap.c:
2136  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2137  *     hugetlb mapping);
2138  *   - all vmas marked locked
2139  *   - all i_mmap_rwsem locks;
2140  *   - all anon_vma->rwseml
2141  *
2142  * We can take all locks within these types randomly because the VM code
2143  * doesn't nest them and we protected from parallel mm_take_all_locks() by
2144  * mm_all_locks_mutex.
2145  *
2146  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2147  * that may have to take thousand of locks.
2148  *
2149  * mm_take_all_locks() can fail if it's interrupted by signals.
2150  */
2151 int mm_take_all_locks(struct mm_struct *mm)
2152 {
2153 	struct vm_area_struct *vma;
2154 	struct anon_vma_chain *avc;
2155 	VMA_ITERATOR(vmi, mm, 0);
2156 
2157 	mmap_assert_write_locked(mm);
2158 
2159 	mutex_lock(&mm_all_locks_mutex);
2160 
2161 	/*
2162 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
2163 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
2164 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2165 	 * is reached.
2166 	 */
2167 	for_each_vma(vmi, vma) {
2168 		if (signal_pending(current))
2169 			goto out_unlock;
2170 		vma_start_write(vma);
2171 	}
2172 
2173 	vma_iter_init(&vmi, mm, 0);
2174 	for_each_vma(vmi, vma) {
2175 		if (signal_pending(current))
2176 			goto out_unlock;
2177 		if (vma->vm_file && vma->vm_file->f_mapping &&
2178 				is_vm_hugetlb_page(vma))
2179 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2180 	}
2181 
2182 	vma_iter_init(&vmi, mm, 0);
2183 	for_each_vma(vmi, vma) {
2184 		if (signal_pending(current))
2185 			goto out_unlock;
2186 		if (vma->vm_file && vma->vm_file->f_mapping &&
2187 				!is_vm_hugetlb_page(vma))
2188 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2189 	}
2190 
2191 	vma_iter_init(&vmi, mm, 0);
2192 	for_each_vma(vmi, vma) {
2193 		if (signal_pending(current))
2194 			goto out_unlock;
2195 		if (vma->anon_vma)
2196 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2197 				vm_lock_anon_vma(mm, avc->anon_vma);
2198 	}
2199 
2200 	return 0;
2201 
2202 out_unlock:
2203 	mm_drop_all_locks(mm);
2204 	return -EINTR;
2205 }
2206 
2207 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2208 {
2209 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2210 		/*
2211 		 * The LSB of head.next can't change to 0 from under
2212 		 * us because we hold the mm_all_locks_mutex.
2213 		 *
2214 		 * We must however clear the bitflag before unlocking
2215 		 * the vma so the users using the anon_vma->rb_root will
2216 		 * never see our bitflag.
2217 		 *
2218 		 * No need of atomic instructions here, head.next
2219 		 * can't change from under us until we release the
2220 		 * anon_vma->root->rwsem.
2221 		 */
2222 		if (!__test_and_clear_bit(0, (unsigned long *)
2223 					  &anon_vma->root->rb_root.rb_root.rb_node))
2224 			BUG();
2225 		anon_vma_unlock_write(anon_vma);
2226 	}
2227 }
2228 
2229 static void vm_unlock_mapping(struct address_space *mapping)
2230 {
2231 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2232 		/*
2233 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2234 		 * because we hold the mm_all_locks_mutex.
2235 		 */
2236 		i_mmap_unlock_write(mapping);
2237 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2238 					&mapping->flags))
2239 			BUG();
2240 	}
2241 }
2242 
2243 /*
2244  * The mmap_lock cannot be released by the caller until
2245  * mm_drop_all_locks() returns.
2246  */
2247 void mm_drop_all_locks(struct mm_struct *mm)
2248 {
2249 	struct vm_area_struct *vma;
2250 	struct anon_vma_chain *avc;
2251 	VMA_ITERATOR(vmi, mm, 0);
2252 
2253 	mmap_assert_write_locked(mm);
2254 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2255 
2256 	for_each_vma(vmi, vma) {
2257 		if (vma->anon_vma)
2258 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2259 				vm_unlock_anon_vma(avc->anon_vma);
2260 		if (vma->vm_file && vma->vm_file->f_mapping)
2261 			vm_unlock_mapping(vma->vm_file->f_mapping);
2262 	}
2263 
2264 	mutex_unlock(&mm_all_locks_mutex);
2265 }
2266 
2267 /*
2268  * We account for memory if it's a private writeable mapping,
2269  * not hugepages and VM_NORESERVE wasn't set.
2270  */
2271 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2272 {
2273 	/*
2274 	 * hugetlb has its own accounting separate from the core VM
2275 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2276 	 */
2277 	if (file && is_file_hugepages(file))
2278 		return false;
2279 
2280 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2281 }
2282 
2283 /*
2284  * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2285  * operation.
2286  * @vms: The vma unmap structure
2287  * @mas_detach: The maple state with the detached maple tree
2288  *
2289  * Reattach any detached vmas, free up the maple tree used to track the vmas.
2290  * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2291  * have been called), then a NULL is written over the vmas and the vmas are
2292  * removed (munmap() completed).
2293  */
2294 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2295 		struct ma_state *mas_detach)
2296 {
2297 	struct ma_state *mas = &vms->vmi->mas;
2298 
2299 	if (!vms->nr_pages)
2300 		return;
2301 
2302 	if (vms->clear_ptes)
2303 		return reattach_vmas(mas_detach);
2304 
2305 	/*
2306 	 * Aborting cannot just call the vm_ops open() because they are often
2307 	 * not symmetrical and state data has been lost.  Resort to the old
2308 	 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2309 	 */
2310 	mas_set_range(mas, vms->start, vms->end - 1);
2311 	mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2312 	/* Clean up the insertion of the unfortunate gap */
2313 	vms_complete_munmap_vmas(vms, mas_detach);
2314 }
2315 
2316 /*
2317  * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2318  * unmapped once the map operation is completed, check limits, account mapping
2319  * and clean up any pre-existing VMAs.
2320  *
2321  * @map: Mapping state.
2322  * @uf:  Userfaultfd context list.
2323  *
2324  * Returns: 0 on success, error code otherwise.
2325  */
2326 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2327 {
2328 	int error;
2329 	struct vma_iterator *vmi = map->vmi;
2330 	struct vma_munmap_struct *vms = &map->vms;
2331 
2332 	/* Find the first overlapping VMA and initialise unmap state. */
2333 	vms->vma = vma_find(vmi, map->end);
2334 	init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2335 			/* unlock = */ false);
2336 
2337 	/* OK, we have overlapping VMAs - prepare to unmap them. */
2338 	if (vms->vma) {
2339 		mt_init_flags(&map->mt_detach,
2340 			      vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2341 		mt_on_stack(map->mt_detach);
2342 		mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2343 		/* Prepare to unmap any existing mapping in the area */
2344 		error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2345 		if (error) {
2346 			/* On error VMAs will already have been reattached. */
2347 			vms->nr_pages = 0;
2348 			return error;
2349 		}
2350 
2351 		map->next = vms->next;
2352 		map->prev = vms->prev;
2353 	} else {
2354 		map->next = vma_iter_next_rewind(vmi, &map->prev);
2355 	}
2356 
2357 	/* Check against address space limit. */
2358 	if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages))
2359 		return -ENOMEM;
2360 
2361 	/* Private writable mapping: check memory availability. */
2362 	if (accountable_mapping(map->file, map->flags)) {
2363 		map->charged = map->pglen;
2364 		map->charged -= vms->nr_accounted;
2365 		if (map->charged) {
2366 			error = security_vm_enough_memory_mm(map->mm, map->charged);
2367 			if (error)
2368 				return error;
2369 		}
2370 
2371 		vms->nr_accounted = 0;
2372 		map->flags |= VM_ACCOUNT;
2373 	}
2374 
2375 	/*
2376 	 * Clear PTEs while the vma is still in the tree so that rmap
2377 	 * cannot race with the freeing later in the truncate scenario.
2378 	 * This is also needed for mmap_file(), which is why vm_ops
2379 	 * close function is called.
2380 	 */
2381 	vms_clean_up_area(vms, &map->mas_detach);
2382 
2383 	return 0;
2384 }
2385 
2386 
2387 static int __mmap_new_file_vma(struct mmap_state *map,
2388 			       struct vm_area_struct *vma)
2389 {
2390 	struct vma_iterator *vmi = map->vmi;
2391 	int error;
2392 
2393 	vma->vm_file = get_file(map->file);
2394 
2395 	if (!map->file->f_op->mmap)
2396 		return 0;
2397 
2398 	error = mmap_file(vma->vm_file, vma);
2399 	if (error) {
2400 		fput(vma->vm_file);
2401 		vma->vm_file = NULL;
2402 
2403 		vma_iter_set(vmi, vma->vm_end);
2404 		/* Undo any partial mapping done by a device driver. */
2405 		unmap_region(&vmi->mas, vma, map->prev, map->next);
2406 
2407 		return error;
2408 	}
2409 
2410 	/* Drivers cannot alter the address of the VMA. */
2411 	WARN_ON_ONCE(map->addr != vma->vm_start);
2412 	/*
2413 	 * Drivers should not permit writability when previously it was
2414 	 * disallowed.
2415 	 */
2416 	VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2417 			!(map->flags & VM_MAYWRITE) &&
2418 			(vma->vm_flags & VM_MAYWRITE));
2419 
2420 	map->flags = vma->vm_flags;
2421 
2422 	return 0;
2423 }
2424 
2425 /*
2426  * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2427  * possible.
2428  *
2429  * @map:  Mapping state.
2430  * @vmap: Output pointer for the new VMA.
2431  *
2432  * Returns: Zero on success, or an error.
2433  */
2434 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2435 {
2436 	struct vma_iterator *vmi = map->vmi;
2437 	int error = 0;
2438 	struct vm_area_struct *vma;
2439 
2440 	/*
2441 	 * Determine the object being mapped and call the appropriate
2442 	 * specific mapper. the address has already been validated, but
2443 	 * not unmapped, but the maps are removed from the list.
2444 	 */
2445 	vma = vm_area_alloc(map->mm);
2446 	if (!vma)
2447 		return -ENOMEM;
2448 
2449 	vma_iter_config(vmi, map->addr, map->end);
2450 	vma_set_range(vma, map->addr, map->end, map->pgoff);
2451 	vm_flags_init(vma, map->flags);
2452 	vma->vm_page_prot = map->page_prot;
2453 
2454 	if (vma_iter_prealloc(vmi, vma)) {
2455 		error = -ENOMEM;
2456 		goto free_vma;
2457 	}
2458 
2459 	if (map->file)
2460 		error = __mmap_new_file_vma(map, vma);
2461 	else if (map->flags & VM_SHARED)
2462 		error = shmem_zero_setup(vma);
2463 	else
2464 		vma_set_anonymous(vma);
2465 
2466 	if (error)
2467 		goto free_iter_vma;
2468 
2469 #ifdef CONFIG_SPARC64
2470 	/* TODO: Fix SPARC ADI! */
2471 	WARN_ON_ONCE(!arch_validate_flags(map->flags));
2472 #endif
2473 
2474 	/* Lock the VMA since it is modified after insertion into VMA tree */
2475 	vma_start_write(vma);
2476 	vma_iter_store_new(vmi, vma);
2477 	map->mm->map_count++;
2478 	vma_link_file(vma);
2479 
2480 	/*
2481 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2482 	 * call covers the non-merge case.
2483 	 */
2484 	if (!vma_is_anonymous(vma))
2485 		khugepaged_enter_vma(vma, map->flags);
2486 	ksm_add_vma(vma);
2487 	*vmap = vma;
2488 	return 0;
2489 
2490 free_iter_vma:
2491 	vma_iter_free(vmi);
2492 free_vma:
2493 	vm_area_free(vma);
2494 	return error;
2495 }
2496 
2497 /*
2498  * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2499  *                     statistics, handle locking and finalise the VMA.
2500  *
2501  * @map: Mapping state.
2502  * @vma: Merged or newly allocated VMA for the mmap()'d region.
2503  */
2504 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2505 {
2506 	struct mm_struct *mm = map->mm;
2507 	unsigned long vm_flags = vma->vm_flags;
2508 
2509 	perf_event_mmap(vma);
2510 
2511 	/* Unmap any existing mapping in the area. */
2512 	vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2513 
2514 	vm_stat_account(mm, vma->vm_flags, map->pglen);
2515 	if (vm_flags & VM_LOCKED) {
2516 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2517 					is_vm_hugetlb_page(vma) ||
2518 					vma == get_gate_vma(mm))
2519 			vm_flags_clear(vma, VM_LOCKED_MASK);
2520 		else
2521 			mm->locked_vm += map->pglen;
2522 	}
2523 
2524 	if (vma->vm_file)
2525 		uprobe_mmap(vma);
2526 
2527 	/*
2528 	 * New (or expanded) vma always get soft dirty status.
2529 	 * Otherwise user-space soft-dirty page tracker won't
2530 	 * be able to distinguish situation when vma area unmapped,
2531 	 * then new mapped in-place (which must be aimed as
2532 	 * a completely new data area).
2533 	 */
2534 	vm_flags_set(vma, VM_SOFTDIRTY);
2535 
2536 	vma_set_page_prot(vma);
2537 }
2538 
2539 /*
2540  * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2541  * specifies it.
2542  *
2543  * This is called prior to any merge attempt, and updates whitelisted fields
2544  * that are permitted to be updated by the caller.
2545  *
2546  * All but user-defined fields will be pre-populated with original values.
2547  *
2548  * Returns 0 on success, or an error code otherwise.
2549  */
2550 static int call_mmap_prepare(struct mmap_state *map)
2551 {
2552 	int err;
2553 	struct vm_area_desc desc = {
2554 		.mm = map->mm,
2555 		.start = map->addr,
2556 		.end = map->end,
2557 
2558 		.pgoff = map->pgoff,
2559 		.file = map->file,
2560 		.vm_flags = map->flags,
2561 		.page_prot = map->page_prot,
2562 	};
2563 
2564 	/* Invoke the hook. */
2565 	err = __call_mmap_prepare(map->file, &desc);
2566 	if (err)
2567 		return err;
2568 
2569 	/* Update fields permitted to be changed. */
2570 	map->pgoff = desc.pgoff;
2571 	map->file = desc.file;
2572 	map->flags = desc.vm_flags;
2573 	map->page_prot = desc.page_prot;
2574 	/* User-defined fields. */
2575 	map->vm_ops = desc.vm_ops;
2576 	map->vm_private_data = desc.private_data;
2577 
2578 	return 0;
2579 }
2580 
2581 static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2582 		struct mmap_state *map)
2583 {
2584 	if (map->vm_ops)
2585 		vma->vm_ops = map->vm_ops;
2586 	vma->vm_private_data = map->vm_private_data;
2587 }
2588 
2589 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2590 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2591 		struct list_head *uf)
2592 {
2593 	struct mm_struct *mm = current->mm;
2594 	struct vm_area_struct *vma = NULL;
2595 	int error;
2596 	bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2597 	VMA_ITERATOR(vmi, mm, addr);
2598 	MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2599 
2600 	error = __mmap_prepare(&map, uf);
2601 	if (!error && have_mmap_prepare)
2602 		error = call_mmap_prepare(&map);
2603 	if (error)
2604 		goto abort_munmap;
2605 
2606 	/* Attempt to merge with adjacent VMAs... */
2607 	if (map.prev || map.next) {
2608 		VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2609 
2610 		vma = vma_merge_new_range(&vmg);
2611 	}
2612 
2613 	/* ...but if we can't, allocate a new VMA. */
2614 	if (!vma) {
2615 		error = __mmap_new_vma(&map, &vma);
2616 		if (error)
2617 			goto unacct_error;
2618 	}
2619 
2620 	if (have_mmap_prepare)
2621 		set_vma_user_defined_fields(vma, &map);
2622 
2623 	__mmap_complete(&map, vma);
2624 
2625 	return addr;
2626 
2627 	/* Accounting was done by __mmap_prepare(). */
2628 unacct_error:
2629 	if (map.charged)
2630 		vm_unacct_memory(map.charged);
2631 abort_munmap:
2632 	vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2633 	return error;
2634 }
2635 
2636 /**
2637  * mmap_region() - Actually perform the userland mapping of a VMA into
2638  * current->mm with known, aligned and overflow-checked @addr and @len, and
2639  * correctly determined VMA flags @vm_flags and page offset @pgoff.
2640  *
2641  * This is an internal memory management function, and should not be used
2642  * directly.
2643  *
2644  * The caller must write-lock current->mm->mmap_lock.
2645  *
2646  * @file: If a file-backed mapping, a pointer to the struct file describing the
2647  * file to be mapped, otherwise NULL.
2648  * @addr: The page-aligned address at which to perform the mapping.
2649  * @len: The page-aligned, non-zero, length of the mapping.
2650  * @vm_flags: The VMA flags which should be applied to the mapping.
2651  * @pgoff: If @file is specified, the page offset into the file, if not then
2652  * the virtual page offset in memory of the anonymous mapping.
2653  * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2654  * events.
2655  *
2656  * Returns: Either an error, or the address at which the requested mapping has
2657  * been performed.
2658  */
2659 unsigned long mmap_region(struct file *file, unsigned long addr,
2660 			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2661 			  struct list_head *uf)
2662 {
2663 	unsigned long ret;
2664 	bool writable_file_mapping = false;
2665 
2666 	mmap_assert_write_locked(current->mm);
2667 
2668 	/* Check to see if MDWE is applicable. */
2669 	if (map_deny_write_exec(vm_flags, vm_flags))
2670 		return -EACCES;
2671 
2672 	/* Allow architectures to sanity-check the vm_flags. */
2673 	if (!arch_validate_flags(vm_flags))
2674 		return -EINVAL;
2675 
2676 	/* Map writable and ensure this isn't a sealed memfd. */
2677 	if (file && is_shared_maywrite(vm_flags)) {
2678 		int error = mapping_map_writable(file->f_mapping);
2679 
2680 		if (error)
2681 			return error;
2682 		writable_file_mapping = true;
2683 	}
2684 
2685 	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2686 
2687 	/* Clear our write mapping regardless of error. */
2688 	if (writable_file_mapping)
2689 		mapping_unmap_writable(file->f_mapping);
2690 
2691 	validate_mm(current->mm);
2692 	return ret;
2693 }
2694 
2695 /*
2696  * do_brk_flags() - Increase the brk vma if the flags match.
2697  * @vmi: The vma iterator
2698  * @addr: The start address
2699  * @len: The length of the increase
2700  * @vma: The vma,
2701  * @flags: The VMA Flags
2702  *
2703  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2704  * do not match then create a new anonymous VMA.  Eventually we may be able to
2705  * do some brk-specific accounting here.
2706  */
2707 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2708 		 unsigned long addr, unsigned long len, unsigned long flags)
2709 {
2710 	struct mm_struct *mm = current->mm;
2711 
2712 	/*
2713 	 * Check against address space limits by the changed size
2714 	 * Note: This happens *after* clearing old mappings in some code paths.
2715 	 */
2716 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2717 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2718 		return -ENOMEM;
2719 
2720 	if (mm->map_count > sysctl_max_map_count)
2721 		return -ENOMEM;
2722 
2723 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2724 		return -ENOMEM;
2725 
2726 	/*
2727 	 * Expand the existing vma if possible; Note that singular lists do not
2728 	 * occur after forking, so the expand will only happen on new VMAs.
2729 	 */
2730 	if (vma && vma->vm_end == addr) {
2731 		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
2732 
2733 		vmg.prev = vma;
2734 		/* vmi is positioned at prev, which this mode expects. */
2735 		vmg.just_expand = true;
2736 
2737 		if (vma_merge_new_range(&vmg))
2738 			goto out;
2739 		else if (vmg_nomem(&vmg))
2740 			goto unacct_fail;
2741 	}
2742 
2743 	if (vma)
2744 		vma_iter_next_range(vmi);
2745 	/* create a vma struct for an anonymous mapping */
2746 	vma = vm_area_alloc(mm);
2747 	if (!vma)
2748 		goto unacct_fail;
2749 
2750 	vma_set_anonymous(vma);
2751 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2752 	vm_flags_init(vma, flags);
2753 	vma->vm_page_prot = vm_get_page_prot(flags);
2754 	vma_start_write(vma);
2755 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2756 		goto mas_store_fail;
2757 
2758 	mm->map_count++;
2759 	validate_mm(mm);
2760 	ksm_add_vma(vma);
2761 out:
2762 	perf_event_mmap(vma);
2763 	mm->total_vm += len >> PAGE_SHIFT;
2764 	mm->data_vm += len >> PAGE_SHIFT;
2765 	if (flags & VM_LOCKED)
2766 		mm->locked_vm += (len >> PAGE_SHIFT);
2767 	vm_flags_set(vma, VM_SOFTDIRTY);
2768 	return 0;
2769 
2770 mas_store_fail:
2771 	vm_area_free(vma);
2772 unacct_fail:
2773 	vm_unacct_memory(len >> PAGE_SHIFT);
2774 	return -ENOMEM;
2775 }
2776 
2777 /**
2778  * unmapped_area() - Find an area between the low_limit and the high_limit with
2779  * the correct alignment and offset, all from @info. Note: current->mm is used
2780  * for the search.
2781  *
2782  * @info: The unmapped area information including the range [low_limit -
2783  * high_limit), the alignment offset and mask.
2784  *
2785  * Return: A memory address or -ENOMEM.
2786  */
2787 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2788 {
2789 	unsigned long length, gap;
2790 	unsigned long low_limit, high_limit;
2791 	struct vm_area_struct *tmp;
2792 	VMA_ITERATOR(vmi, current->mm, 0);
2793 
2794 	/* Adjust search length to account for worst case alignment overhead */
2795 	length = info->length + info->align_mask + info->start_gap;
2796 	if (length < info->length)
2797 		return -ENOMEM;
2798 
2799 	low_limit = info->low_limit;
2800 	if (low_limit < mmap_min_addr)
2801 		low_limit = mmap_min_addr;
2802 	high_limit = info->high_limit;
2803 retry:
2804 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2805 		return -ENOMEM;
2806 
2807 	/*
2808 	 * Adjust for the gap first so it doesn't interfere with the
2809 	 * later alignment. The first step is the minimum needed to
2810 	 * fulill the start gap, the next steps is the minimum to align
2811 	 * that. It is the minimum needed to fulill both.
2812 	 */
2813 	gap = vma_iter_addr(&vmi) + info->start_gap;
2814 	gap += (info->align_offset - gap) & info->align_mask;
2815 	tmp = vma_next(&vmi);
2816 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2817 		if (vm_start_gap(tmp) < gap + length - 1) {
2818 			low_limit = tmp->vm_end;
2819 			vma_iter_reset(&vmi);
2820 			goto retry;
2821 		}
2822 	} else {
2823 		tmp = vma_prev(&vmi);
2824 		if (tmp && vm_end_gap(tmp) > gap) {
2825 			low_limit = vm_end_gap(tmp);
2826 			vma_iter_reset(&vmi);
2827 			goto retry;
2828 		}
2829 	}
2830 
2831 	return gap;
2832 }
2833 
2834 /**
2835  * unmapped_area_topdown() - Find an area between the low_limit and the
2836  * high_limit with the correct alignment and offset at the highest available
2837  * address, all from @info. Note: current->mm is used for the search.
2838  *
2839  * @info: The unmapped area information including the range [low_limit -
2840  * high_limit), the alignment offset and mask.
2841  *
2842  * Return: A memory address or -ENOMEM.
2843  */
2844 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2845 {
2846 	unsigned long length, gap, gap_end;
2847 	unsigned long low_limit, high_limit;
2848 	struct vm_area_struct *tmp;
2849 	VMA_ITERATOR(vmi, current->mm, 0);
2850 
2851 	/* Adjust search length to account for worst case alignment overhead */
2852 	length = info->length + info->align_mask + info->start_gap;
2853 	if (length < info->length)
2854 		return -ENOMEM;
2855 
2856 	low_limit = info->low_limit;
2857 	if (low_limit < mmap_min_addr)
2858 		low_limit = mmap_min_addr;
2859 	high_limit = info->high_limit;
2860 retry:
2861 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
2862 		return -ENOMEM;
2863 
2864 	gap = vma_iter_end(&vmi) - info->length;
2865 	gap -= (gap - info->align_offset) & info->align_mask;
2866 	gap_end = vma_iter_end(&vmi);
2867 	tmp = vma_next(&vmi);
2868 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2869 		if (vm_start_gap(tmp) < gap_end) {
2870 			high_limit = vm_start_gap(tmp);
2871 			vma_iter_reset(&vmi);
2872 			goto retry;
2873 		}
2874 	} else {
2875 		tmp = vma_prev(&vmi);
2876 		if (tmp && vm_end_gap(tmp) > gap) {
2877 			high_limit = tmp->vm_start;
2878 			vma_iter_reset(&vmi);
2879 			goto retry;
2880 		}
2881 	}
2882 
2883 	return gap;
2884 }
2885 
2886 /*
2887  * Verify that the stack growth is acceptable and
2888  * update accounting. This is shared with both the
2889  * grow-up and grow-down cases.
2890  */
2891 static int acct_stack_growth(struct vm_area_struct *vma,
2892 			     unsigned long size, unsigned long grow)
2893 {
2894 	struct mm_struct *mm = vma->vm_mm;
2895 	unsigned long new_start;
2896 
2897 	/* address space limit tests */
2898 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2899 		return -ENOMEM;
2900 
2901 	/* Stack limit test */
2902 	if (size > rlimit(RLIMIT_STACK))
2903 		return -ENOMEM;
2904 
2905 	/* mlock limit tests */
2906 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2907 		return -ENOMEM;
2908 
2909 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2910 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2911 			vma->vm_end - size;
2912 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2913 		return -EFAULT;
2914 
2915 	/*
2916 	 * Overcommit..  This must be the final test, as it will
2917 	 * update security statistics.
2918 	 */
2919 	if (security_vm_enough_memory_mm(mm, grow))
2920 		return -ENOMEM;
2921 
2922 	return 0;
2923 }
2924 
2925 #if defined(CONFIG_STACK_GROWSUP)
2926 /*
2927  * PA-RISC uses this for its stack.
2928  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2929  */
2930 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2931 {
2932 	struct mm_struct *mm = vma->vm_mm;
2933 	struct vm_area_struct *next;
2934 	unsigned long gap_addr;
2935 	int error = 0;
2936 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2937 
2938 	if (!(vma->vm_flags & VM_GROWSUP))
2939 		return -EFAULT;
2940 
2941 	mmap_assert_write_locked(mm);
2942 
2943 	/* Guard against exceeding limits of the address space. */
2944 	address &= PAGE_MASK;
2945 	if (address >= (TASK_SIZE & PAGE_MASK))
2946 		return -ENOMEM;
2947 	address += PAGE_SIZE;
2948 
2949 	/* Enforce stack_guard_gap */
2950 	gap_addr = address + stack_guard_gap;
2951 
2952 	/* Guard against overflow */
2953 	if (gap_addr < address || gap_addr > TASK_SIZE)
2954 		gap_addr = TASK_SIZE;
2955 
2956 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2957 	if (next && vma_is_accessible(next)) {
2958 		if (!(next->vm_flags & VM_GROWSUP))
2959 			return -ENOMEM;
2960 		/* Check that both stack segments have the same anon_vma? */
2961 	}
2962 
2963 	if (next)
2964 		vma_iter_prev_range_limit(&vmi, address);
2965 
2966 	vma_iter_config(&vmi, vma->vm_start, address);
2967 	if (vma_iter_prealloc(&vmi, vma))
2968 		return -ENOMEM;
2969 
2970 	/* We must make sure the anon_vma is allocated. */
2971 	if (unlikely(anon_vma_prepare(vma))) {
2972 		vma_iter_free(&vmi);
2973 		return -ENOMEM;
2974 	}
2975 
2976 	/* Lock the VMA before expanding to prevent concurrent page faults */
2977 	vma_start_write(vma);
2978 	/* We update the anon VMA tree. */
2979 	anon_vma_lock_write(vma->anon_vma);
2980 
2981 	/* Somebody else might have raced and expanded it already */
2982 	if (address > vma->vm_end) {
2983 		unsigned long size, grow;
2984 
2985 		size = address - vma->vm_start;
2986 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2987 
2988 		error = -ENOMEM;
2989 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2990 			error = acct_stack_growth(vma, size, grow);
2991 			if (!error) {
2992 				if (vma->vm_flags & VM_LOCKED)
2993 					mm->locked_vm += grow;
2994 				vm_stat_account(mm, vma->vm_flags, grow);
2995 				anon_vma_interval_tree_pre_update_vma(vma);
2996 				vma->vm_end = address;
2997 				/* Overwrite old entry in mtree. */
2998 				vma_iter_store_overwrite(&vmi, vma);
2999 				anon_vma_interval_tree_post_update_vma(vma);
3000 
3001 				perf_event_mmap(vma);
3002 			}
3003 		}
3004 	}
3005 	anon_vma_unlock_write(vma->anon_vma);
3006 	vma_iter_free(&vmi);
3007 	validate_mm(mm);
3008 	return error;
3009 }
3010 #endif /* CONFIG_STACK_GROWSUP */
3011 
3012 /*
3013  * vma is the first one with address < vma->vm_start.  Have to extend vma.
3014  * mmap_lock held for writing.
3015  */
3016 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3017 {
3018 	struct mm_struct *mm = vma->vm_mm;
3019 	struct vm_area_struct *prev;
3020 	int error = 0;
3021 	VMA_ITERATOR(vmi, mm, vma->vm_start);
3022 
3023 	if (!(vma->vm_flags & VM_GROWSDOWN))
3024 		return -EFAULT;
3025 
3026 	mmap_assert_write_locked(mm);
3027 
3028 	address &= PAGE_MASK;
3029 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3030 		return -EPERM;
3031 
3032 	/* Enforce stack_guard_gap */
3033 	prev = vma_prev(&vmi);
3034 	/* Check that both stack segments have the same anon_vma? */
3035 	if (prev) {
3036 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
3037 		    vma_is_accessible(prev) &&
3038 		    (address - prev->vm_end < stack_guard_gap))
3039 			return -ENOMEM;
3040 	}
3041 
3042 	if (prev)
3043 		vma_iter_next_range_limit(&vmi, vma->vm_start);
3044 
3045 	vma_iter_config(&vmi, address, vma->vm_end);
3046 	if (vma_iter_prealloc(&vmi, vma))
3047 		return -ENOMEM;
3048 
3049 	/* We must make sure the anon_vma is allocated. */
3050 	if (unlikely(anon_vma_prepare(vma))) {
3051 		vma_iter_free(&vmi);
3052 		return -ENOMEM;
3053 	}
3054 
3055 	/* Lock the VMA before expanding to prevent concurrent page faults */
3056 	vma_start_write(vma);
3057 	/* We update the anon VMA tree. */
3058 	anon_vma_lock_write(vma->anon_vma);
3059 
3060 	/* Somebody else might have raced and expanded it already */
3061 	if (address < vma->vm_start) {
3062 		unsigned long size, grow;
3063 
3064 		size = vma->vm_end - address;
3065 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
3066 
3067 		error = -ENOMEM;
3068 		if (grow <= vma->vm_pgoff) {
3069 			error = acct_stack_growth(vma, size, grow);
3070 			if (!error) {
3071 				if (vma->vm_flags & VM_LOCKED)
3072 					mm->locked_vm += grow;
3073 				vm_stat_account(mm, vma->vm_flags, grow);
3074 				anon_vma_interval_tree_pre_update_vma(vma);
3075 				vma->vm_start = address;
3076 				vma->vm_pgoff -= grow;
3077 				/* Overwrite old entry in mtree. */
3078 				vma_iter_store_overwrite(&vmi, vma);
3079 				anon_vma_interval_tree_post_update_vma(vma);
3080 
3081 				perf_event_mmap(vma);
3082 			}
3083 		}
3084 	}
3085 	anon_vma_unlock_write(vma->anon_vma);
3086 	vma_iter_free(&vmi);
3087 	validate_mm(mm);
3088 	return error;
3089 }
3090 
3091 int __vm_munmap(unsigned long start, size_t len, bool unlock)
3092 {
3093 	int ret;
3094 	struct mm_struct *mm = current->mm;
3095 	LIST_HEAD(uf);
3096 	VMA_ITERATOR(vmi, mm, start);
3097 
3098 	if (mmap_write_lock_killable(mm))
3099 		return -EINTR;
3100 
3101 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3102 	if (ret || !unlock)
3103 		mmap_write_unlock(mm);
3104 
3105 	userfaultfd_unmap_complete(mm, &uf);
3106 	return ret;
3107 }
3108 
3109 
3110 /* Insert vm structure into process list sorted by address
3111  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3112  * then i_mmap_rwsem is taken here.
3113  */
3114 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3115 {
3116 	unsigned long charged = vma_pages(vma);
3117 
3118 
3119 	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3120 		return -ENOMEM;
3121 
3122 	if ((vma->vm_flags & VM_ACCOUNT) &&
3123 	     security_vm_enough_memory_mm(mm, charged))
3124 		return -ENOMEM;
3125 
3126 	/*
3127 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3128 	 * until its first write fault, when page's anon_vma and index
3129 	 * are set.  But now set the vm_pgoff it will almost certainly
3130 	 * end up with (unless mremap moves it elsewhere before that
3131 	 * first wfault), so /proc/pid/maps tells a consistent story.
3132 	 *
3133 	 * By setting it to reflect the virtual start address of the
3134 	 * vma, merges and splits can happen in a seamless way, just
3135 	 * using the existing file pgoff checks and manipulations.
3136 	 * Similarly in do_mmap and in do_brk_flags.
3137 	 */
3138 	if (vma_is_anonymous(vma)) {
3139 		BUG_ON(vma->anon_vma);
3140 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3141 	}
3142 
3143 	if (vma_link(mm, vma)) {
3144 		if (vma->vm_flags & VM_ACCOUNT)
3145 			vm_unacct_memory(charged);
3146 		return -ENOMEM;
3147 	}
3148 
3149 	return 0;
3150 }
3151