xref: /linux/mm/vma.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 struct mmap_state {
11 	struct mm_struct *mm;
12 	struct vma_iterator *vmi;
13 
14 	unsigned long addr;
15 	unsigned long end;
16 	pgoff_t pgoff;
17 	unsigned long pglen;
18 	unsigned long flags;
19 	struct file *file;
20 
21 	unsigned long charged;
22 	bool retry_merge;
23 
24 	struct vm_area_struct *prev;
25 	struct vm_area_struct *next;
26 
27 	/* Unmapping state. */
28 	struct vma_munmap_struct vms;
29 	struct ma_state mas_detach;
30 	struct maple_tree mt_detach;
31 };
32 
33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
34 	struct mmap_state name = {					\
35 		.mm = mm_,						\
36 		.vmi = vmi_,						\
37 		.addr = addr_,						\
38 		.end = (addr_) + len,					\
39 		.pgoff = pgoff_,					\
40 		.pglen = PHYS_PFN(len_),				\
41 		.flags = flags_,					\
42 		.file = file_,						\
43 	}
44 
45 #define VMG_MMAP_STATE(name, map_, vma_)				\
46 	struct vma_merge_struct name = {				\
47 		.mm = (map_)->mm,					\
48 		.vmi = (map_)->vmi,					\
49 		.start = (map_)->addr,					\
50 		.end = (map_)->end,					\
51 		.flags = (map_)->flags,					\
52 		.pgoff = (map_)->pgoff,					\
53 		.file = (map_)->file,					\
54 		.prev = (map_)->prev,					\
55 		.vma = vma_,						\
56 		.next = (vma_) ? NULL : (map_)->next,			\
57 		.state = VMA_MERGE_START,				\
58 		.merge_flags = VMG_FLAG_DEFAULT,			\
59 	}
60 
61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
62 {
63 	struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
64 
65 	if (!mpol_equal(vmg->policy, vma_policy(vma)))
66 		return false;
67 	/*
68 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
69 	 * match the flags but dirty bit -- the caller should mark
70 	 * merged VMA as dirty. If dirty bit won't be excluded from
71 	 * comparison, we increase pressure on the memory system forcing
72 	 * the kernel to generate new VMAs when old one could be
73 	 * extended instead.
74 	 */
75 	if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
76 		return false;
77 	if (vma->vm_file != vmg->file)
78 		return false;
79 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
80 		return false;
81 	if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
82 		return false;
83 	return true;
84 }
85 
86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
87 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
88 {
89 	/*
90 	 * The list_is_singular() test is to avoid merging VMA cloned from
91 	 * parents. This can improve scalability caused by anon_vma lock.
92 	 */
93 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
94 		list_is_singular(&vma->anon_vma_chain)))
95 		return true;
96 	return anon_vma1 == anon_vma2;
97 }
98 
99 /* Are the anon_vma's belonging to each VMA compatible with one another? */
100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
101 					    struct vm_area_struct *vma2)
102 {
103 	return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
104 }
105 
106 /*
107  * init_multi_vma_prep() - Initializer for struct vma_prepare
108  * @vp: The vma_prepare struct
109  * @vma: The vma that will be altered once locked
110  * @next: The next vma if it is to be adjusted
111  * @remove: The first vma to be removed
112  * @remove2: The second vma to be removed
113  */
114 static void init_multi_vma_prep(struct vma_prepare *vp,
115 				struct vm_area_struct *vma,
116 				struct vm_area_struct *next,
117 				struct vm_area_struct *remove,
118 				struct vm_area_struct *remove2)
119 {
120 	memset(vp, 0, sizeof(struct vma_prepare));
121 	vp->vma = vma;
122 	vp->anon_vma = vma->anon_vma;
123 	vp->remove = remove;
124 	vp->remove2 = remove2;
125 	vp->adj_next = next;
126 	if (!vp->anon_vma && next)
127 		vp->anon_vma = next->anon_vma;
128 
129 	vp->file = vma->vm_file;
130 	if (vp->file)
131 		vp->mapping = vma->vm_file->f_mapping;
132 
133 }
134 
135 /*
136  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
137  * in front of (at a lower virtual address and file offset than) the vma.
138  *
139  * We cannot merge two vmas if they have differently assigned (non-NULL)
140  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
141  *
142  * We don't check here for the merged mmap wrapping around the end of pagecache
143  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
144  * wrap, nor mmaps which cover the final page at index -1UL.
145  *
146  * We assume the vma may be removed as part of the merge.
147  */
148 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
149 {
150 	pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
151 
152 	if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
153 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
154 		if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
155 			return true;
156 	}
157 
158 	return false;
159 }
160 
161 /*
162  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
163  * beyond (at a higher virtual address and file offset than) the vma.
164  *
165  * We cannot merge two vmas if they have differently assigned (non-NULL)
166  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
167  *
168  * We assume that vma is not removed as part of the merge.
169  */
170 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
171 {
172 	if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
173 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
174 		if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
175 			return true;
176 	}
177 	return false;
178 }
179 
180 static void __vma_link_file(struct vm_area_struct *vma,
181 			    struct address_space *mapping)
182 {
183 	if (vma_is_shared_maywrite(vma))
184 		mapping_allow_writable(mapping);
185 
186 	flush_dcache_mmap_lock(mapping);
187 	vma_interval_tree_insert(vma, &mapping->i_mmap);
188 	flush_dcache_mmap_unlock(mapping);
189 }
190 
191 /*
192  * Requires inode->i_mapping->i_mmap_rwsem
193  */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 				      struct address_space *mapping)
196 {
197 	if (vma_is_shared_maywrite(vma))
198 		mapping_unmap_writable(mapping);
199 
200 	flush_dcache_mmap_lock(mapping);
201 	vma_interval_tree_remove(vma, &mapping->i_mmap);
202 	flush_dcache_mmap_unlock(mapping);
203 }
204 
205 /*
206  * vma_prepare() - Helper function for handling locking VMAs prior to altering
207  * @vp: The initialized vma_prepare struct
208  */
209 static void vma_prepare(struct vma_prepare *vp)
210 {
211 	if (vp->file) {
212 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
213 
214 		if (vp->adj_next)
215 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
216 				      vp->adj_next->vm_end);
217 
218 		i_mmap_lock_write(vp->mapping);
219 		if (vp->insert && vp->insert->vm_file) {
220 			/*
221 			 * Put into interval tree now, so instantiated pages
222 			 * are visible to arm/parisc __flush_dcache_page
223 			 * throughout; but we cannot insert into address
224 			 * space until vma start or end is updated.
225 			 */
226 			__vma_link_file(vp->insert,
227 					vp->insert->vm_file->f_mapping);
228 		}
229 	}
230 
231 	if (vp->anon_vma) {
232 		anon_vma_lock_write(vp->anon_vma);
233 		anon_vma_interval_tree_pre_update_vma(vp->vma);
234 		if (vp->adj_next)
235 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
236 	}
237 
238 	if (vp->file) {
239 		flush_dcache_mmap_lock(vp->mapping);
240 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
241 		if (vp->adj_next)
242 			vma_interval_tree_remove(vp->adj_next,
243 						 &vp->mapping->i_mmap);
244 	}
245 
246 }
247 
248 /*
249  * vma_complete- Helper function for handling the unlocking after altering VMAs,
250  * or for inserting a VMA.
251  *
252  * @vp: The vma_prepare struct
253  * @vmi: The vma iterator
254  * @mm: The mm_struct
255  */
256 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
257 			 struct mm_struct *mm)
258 {
259 	if (vp->file) {
260 		if (vp->adj_next)
261 			vma_interval_tree_insert(vp->adj_next,
262 						 &vp->mapping->i_mmap);
263 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
264 		flush_dcache_mmap_unlock(vp->mapping);
265 	}
266 
267 	if (vp->remove && vp->file) {
268 		__remove_shared_vm_struct(vp->remove, vp->mapping);
269 		if (vp->remove2)
270 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
271 	} else if (vp->insert) {
272 		/*
273 		 * split_vma has split insert from vma, and needs
274 		 * us to insert it before dropping the locks
275 		 * (it may either follow vma or precede it).
276 		 */
277 		vma_iter_store(vmi, vp->insert);
278 		mm->map_count++;
279 	}
280 
281 	if (vp->anon_vma) {
282 		anon_vma_interval_tree_post_update_vma(vp->vma);
283 		if (vp->adj_next)
284 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
285 		anon_vma_unlock_write(vp->anon_vma);
286 	}
287 
288 	if (vp->file) {
289 		i_mmap_unlock_write(vp->mapping);
290 		uprobe_mmap(vp->vma);
291 
292 		if (vp->adj_next)
293 			uprobe_mmap(vp->adj_next);
294 	}
295 
296 	if (vp->remove) {
297 again:
298 		vma_mark_detached(vp->remove, true);
299 		if (vp->file) {
300 			uprobe_munmap(vp->remove, vp->remove->vm_start,
301 				      vp->remove->vm_end);
302 			fput(vp->file);
303 		}
304 		if (vp->remove->anon_vma)
305 			anon_vma_merge(vp->vma, vp->remove);
306 		mm->map_count--;
307 		mpol_put(vma_policy(vp->remove));
308 		if (!vp->remove2)
309 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
310 		vm_area_free(vp->remove);
311 
312 		/*
313 		 * In mprotect's case 6 (see comments on vma_merge),
314 		 * we are removing both mid and next vmas
315 		 */
316 		if (vp->remove2) {
317 			vp->remove = vp->remove2;
318 			vp->remove2 = NULL;
319 			goto again;
320 		}
321 	}
322 	if (vp->insert && vp->file)
323 		uprobe_mmap(vp->insert);
324 }
325 
326 /*
327  * init_vma_prep() - Initializer wrapper for vma_prepare struct
328  * @vp: The vma_prepare struct
329  * @vma: The vma that will be altered once locked
330  */
331 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
332 {
333 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
334 }
335 
336 /*
337  * Can the proposed VMA be merged with the left (previous) VMA taking into
338  * account the start position of the proposed range.
339  */
340 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
341 
342 {
343 	return vmg->prev && vmg->prev->vm_end == vmg->start &&
344 		can_vma_merge_after(vmg);
345 }
346 
347 /*
348  * Can the proposed VMA be merged with the right (next) VMA taking into
349  * account the end position of the proposed range.
350  *
351  * In addition, if we can merge with the left VMA, ensure that left and right
352  * anon_vma's are also compatible.
353  */
354 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
355 				bool can_merge_left)
356 {
357 	if (!vmg->next || vmg->end != vmg->next->vm_start ||
358 	    !can_vma_merge_before(vmg))
359 		return false;
360 
361 	if (!can_merge_left)
362 		return true;
363 
364 	/*
365 	 * If we can merge with prev (left) and next (right), indicating that
366 	 * each VMA's anon_vma is compatible with the proposed anon_vma, this
367 	 * does not mean prev and next are compatible with EACH OTHER.
368 	 *
369 	 * We therefore check this in addition to mergeability to either side.
370 	 */
371 	return are_anon_vmas_compatible(vmg->prev, vmg->next);
372 }
373 
374 /*
375  * Close a vm structure and free it.
376  */
377 void remove_vma(struct vm_area_struct *vma, bool unreachable)
378 {
379 	might_sleep();
380 	vma_close(vma);
381 	if (vma->vm_file)
382 		fput(vma->vm_file);
383 	mpol_put(vma_policy(vma));
384 	if (unreachable)
385 		__vm_area_free(vma);
386 	else
387 		vm_area_free(vma);
388 }
389 
390 /*
391  * Get rid of page table information in the indicated region.
392  *
393  * Called with the mm semaphore held.
394  */
395 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
396 		struct vm_area_struct *prev, struct vm_area_struct *next)
397 {
398 	struct mm_struct *mm = vma->vm_mm;
399 	struct mmu_gather tlb;
400 
401 	lru_add_drain();
402 	tlb_gather_mmu(&tlb, mm);
403 	update_hiwater_rss(mm);
404 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
405 		   /* mm_wr_locked = */ true);
406 	mas_set(mas, vma->vm_end);
407 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
408 		      next ? next->vm_start : USER_PGTABLES_CEILING,
409 		      /* mm_wr_locked = */ true);
410 	tlb_finish_mmu(&tlb);
411 }
412 
413 /*
414  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
415  * has already been checked or doesn't make sense to fail.
416  * VMA Iterator will point to the original VMA.
417  */
418 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
419 		       unsigned long addr, int new_below)
420 {
421 	struct vma_prepare vp;
422 	struct vm_area_struct *new;
423 	int err;
424 
425 	WARN_ON(vma->vm_start >= addr);
426 	WARN_ON(vma->vm_end <= addr);
427 
428 	if (vma->vm_ops && vma->vm_ops->may_split) {
429 		err = vma->vm_ops->may_split(vma, addr);
430 		if (err)
431 			return err;
432 	}
433 
434 	new = vm_area_dup(vma);
435 	if (!new)
436 		return -ENOMEM;
437 
438 	if (new_below) {
439 		new->vm_end = addr;
440 	} else {
441 		new->vm_start = addr;
442 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
443 	}
444 
445 	err = -ENOMEM;
446 	vma_iter_config(vmi, new->vm_start, new->vm_end);
447 	if (vma_iter_prealloc(vmi, new))
448 		goto out_free_vma;
449 
450 	err = vma_dup_policy(vma, new);
451 	if (err)
452 		goto out_free_vmi;
453 
454 	err = anon_vma_clone(new, vma);
455 	if (err)
456 		goto out_free_mpol;
457 
458 	if (new->vm_file)
459 		get_file(new->vm_file);
460 
461 	if (new->vm_ops && new->vm_ops->open)
462 		new->vm_ops->open(new);
463 
464 	vma_start_write(vma);
465 	vma_start_write(new);
466 
467 	init_vma_prep(&vp, vma);
468 	vp.insert = new;
469 	vma_prepare(&vp);
470 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
471 
472 	if (new_below) {
473 		vma->vm_start = addr;
474 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
475 	} else {
476 		vma->vm_end = addr;
477 	}
478 
479 	/* vma_complete stores the new vma */
480 	vma_complete(&vp, vmi, vma->vm_mm);
481 	validate_mm(vma->vm_mm);
482 
483 	/* Success. */
484 	if (new_below)
485 		vma_next(vmi);
486 	else
487 		vma_prev(vmi);
488 
489 	return 0;
490 
491 out_free_mpol:
492 	mpol_put(vma_policy(new));
493 out_free_vmi:
494 	vma_iter_free(vmi);
495 out_free_vma:
496 	vm_area_free(new);
497 	return err;
498 }
499 
500 /*
501  * Split a vma into two pieces at address 'addr', a new vma is allocated
502  * either for the first part or the tail.
503  */
504 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
505 		     unsigned long addr, int new_below)
506 {
507 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
508 		return -ENOMEM;
509 
510 	return __split_vma(vmi, vma, addr, new_below);
511 }
512 
513 /*
514  * vma has some anon_vma assigned, and is already inserted on that
515  * anon_vma's interval trees.
516  *
517  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
518  * vma must be removed from the anon_vma's interval trees using
519  * anon_vma_interval_tree_pre_update_vma().
520  *
521  * After the update, the vma will be reinserted using
522  * anon_vma_interval_tree_post_update_vma().
523  *
524  * The entire update must be protected by exclusive mmap_lock and by
525  * the root anon_vma's mutex.
526  */
527 void
528 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
529 {
530 	struct anon_vma_chain *avc;
531 
532 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
533 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
534 }
535 
536 void
537 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
538 {
539 	struct anon_vma_chain *avc;
540 
541 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
542 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
543 }
544 
545 /*
546  * dup_anon_vma() - Helper function to duplicate anon_vma
547  * @dst: The destination VMA
548  * @src: The source VMA
549  * @dup: Pointer to the destination VMA when successful.
550  *
551  * Returns: 0 on success.
552  */
553 static int dup_anon_vma(struct vm_area_struct *dst,
554 			struct vm_area_struct *src, struct vm_area_struct **dup)
555 {
556 	/*
557 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
558 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
559 	 * anon pages imported.
560 	 */
561 	if (src->anon_vma && !dst->anon_vma) {
562 		int ret;
563 
564 		vma_assert_write_locked(dst);
565 		dst->anon_vma = src->anon_vma;
566 		ret = anon_vma_clone(dst, src);
567 		if (ret)
568 			return ret;
569 
570 		*dup = dst;
571 	}
572 
573 	return 0;
574 }
575 
576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
577 void validate_mm(struct mm_struct *mm)
578 {
579 	int bug = 0;
580 	int i = 0;
581 	struct vm_area_struct *vma;
582 	VMA_ITERATOR(vmi, mm, 0);
583 
584 	mt_validate(&mm->mm_mt);
585 	for_each_vma(vmi, vma) {
586 #ifdef CONFIG_DEBUG_VM_RB
587 		struct anon_vma *anon_vma = vma->anon_vma;
588 		struct anon_vma_chain *avc;
589 #endif
590 		unsigned long vmi_start, vmi_end;
591 		bool warn = 0;
592 
593 		vmi_start = vma_iter_addr(&vmi);
594 		vmi_end = vma_iter_end(&vmi);
595 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
596 			warn = 1;
597 
598 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
599 			warn = 1;
600 
601 		if (warn) {
602 			pr_emerg("issue in %s\n", current->comm);
603 			dump_stack();
604 			dump_vma(vma);
605 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
606 				 vmi_start, vmi_end - 1);
607 			vma_iter_dump_tree(&vmi);
608 		}
609 
610 #ifdef CONFIG_DEBUG_VM_RB
611 		if (anon_vma) {
612 			anon_vma_lock_read(anon_vma);
613 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
614 				anon_vma_interval_tree_verify(avc);
615 			anon_vma_unlock_read(anon_vma);
616 		}
617 #endif
618 		/* Check for a infinite loop */
619 		if (++i > mm->map_count + 10) {
620 			i = -1;
621 			break;
622 		}
623 	}
624 	if (i != mm->map_count) {
625 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
626 		bug = 1;
627 	}
628 	VM_BUG_ON_MM(bug, mm);
629 }
630 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
631 
632 /* Actually perform the VMA merge operation. */
633 static int commit_merge(struct vma_merge_struct *vmg,
634 			struct vm_area_struct *adjust,
635 			struct vm_area_struct *remove,
636 			struct vm_area_struct *remove2,
637 			long adj_start,
638 			bool expanded)
639 {
640 	struct vma_prepare vp;
641 
642 	init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
643 
644 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
645 		   vp.anon_vma != adjust->anon_vma);
646 
647 	if (expanded) {
648 		/* Note: vma iterator must be pointing to 'start'. */
649 		vma_iter_config(vmg->vmi, vmg->start, vmg->end);
650 	} else {
651 		vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
652 				adjust->vm_end);
653 	}
654 
655 	if (vma_iter_prealloc(vmg->vmi, vmg->vma))
656 		return -ENOMEM;
657 
658 	vma_prepare(&vp);
659 	vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
660 	vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
661 
662 	if (expanded)
663 		vma_iter_store(vmg->vmi, vmg->vma);
664 
665 	if (adj_start) {
666 		adjust->vm_start += adj_start;
667 		adjust->vm_pgoff += PHYS_PFN(adj_start);
668 		if (adj_start < 0) {
669 			WARN_ON(expanded);
670 			vma_iter_store(vmg->vmi, adjust);
671 		}
672 	}
673 
674 	vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
675 
676 	return 0;
677 }
678 
679 /* We can only remove VMAs when merging if they do not have a close hook. */
680 static bool can_merge_remove_vma(struct vm_area_struct *vma)
681 {
682 	return !vma->vm_ops || !vma->vm_ops->close;
683 }
684 
685 /*
686  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
687  * attributes modified.
688  *
689  * @vmg: Describes the modifications being made to a VMA and associated
690  *       metadata.
691  *
692  * When the attributes of a range within a VMA change, then it might be possible
693  * for immediately adjacent VMAs to be merged into that VMA due to having
694  * identical properties.
695  *
696  * This function checks for the existence of any such mergeable VMAs and updates
697  * the maple tree describing the @vmg->vma->vm_mm address space to account for
698  * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
699  *
700  * As part of this operation, if a merge occurs, the @vmg object will have its
701  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
702  * calls to this function should reset these fields.
703  *
704  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
705  *
706  * ASSUMPTIONS:
707  * - The caller must assign the VMA to be modifed to @vmg->vma.
708  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
709  * - The caller must not set @vmg->next, as we determine this.
710  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
711  * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
712  */
713 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
714 {
715 	struct vm_area_struct *vma = vmg->vma;
716 	struct vm_area_struct *prev = vmg->prev;
717 	struct vm_area_struct *next, *res;
718 	struct vm_area_struct *anon_dup = NULL;
719 	struct vm_area_struct *adjust = NULL;
720 	unsigned long start = vmg->start;
721 	unsigned long end = vmg->end;
722 	bool left_side = vma && start == vma->vm_start;
723 	bool right_side = vma && end == vma->vm_end;
724 	int err = 0;
725 	long adj_start = 0;
726 	bool merge_will_delete_vma, merge_will_delete_next;
727 	bool merge_left, merge_right, merge_both;
728 	bool expanded;
729 
730 	mmap_assert_write_locked(vmg->mm);
731 	VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
732 	VM_WARN_ON(vmg->next); /* We set this. */
733 	VM_WARN_ON(prev && start <= prev->vm_start);
734 	VM_WARN_ON(start >= end);
735 	/*
736 	 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
737 	 * not, we must span a portion of the VMA.
738 	 */
739 	VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
740 			   vmg->end > vma->vm_end));
741 	/* The vmi must be positioned within vmg->vma. */
742 	VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
743 			    vma_iter_addr(vmg->vmi) < vma->vm_end));
744 
745 	vmg->state = VMA_MERGE_NOMERGE;
746 
747 	/*
748 	 * If a special mapping or if the range being modified is neither at the
749 	 * furthermost left or right side of the VMA, then we have no chance of
750 	 * merging and should abort.
751 	 */
752 	if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
753 		return NULL;
754 
755 	if (left_side)
756 		merge_left = can_vma_merge_left(vmg);
757 	else
758 		merge_left = false;
759 
760 	if (right_side) {
761 		next = vmg->next = vma_iter_next_range(vmg->vmi);
762 		vma_iter_prev_range(vmg->vmi);
763 
764 		merge_right = can_vma_merge_right(vmg, merge_left);
765 	} else {
766 		merge_right = false;
767 		next = NULL;
768 	}
769 
770 	if (merge_left)		/* If merging prev, position iterator there. */
771 		vma_prev(vmg->vmi);
772 	else if (!merge_right)	/* If we have nothing to merge, abort. */
773 		return NULL;
774 
775 	merge_both = merge_left && merge_right;
776 	/* If we span the entire VMA, a merge implies it will be deleted. */
777 	merge_will_delete_vma = left_side && right_side;
778 
779 	/*
780 	 * If we need to remove vma in its entirety but are unable to do so,
781 	 * we have no sensible recourse but to abort the merge.
782 	 */
783 	if (merge_will_delete_vma && !can_merge_remove_vma(vma))
784 		return NULL;
785 
786 	/*
787 	 * If we merge both VMAs, then next is also deleted. This implies
788 	 * merge_will_delete_vma also.
789 	 */
790 	merge_will_delete_next = merge_both;
791 
792 	/*
793 	 * If we cannot delete next, then we can reduce the operation to merging
794 	 * prev and vma (thereby deleting vma).
795 	 */
796 	if (merge_will_delete_next && !can_merge_remove_vma(next)) {
797 		merge_will_delete_next = false;
798 		merge_right = false;
799 		merge_both = false;
800 	}
801 
802 	/* No matter what happens, we will be adjusting vma. */
803 	vma_start_write(vma);
804 
805 	if (merge_left)
806 		vma_start_write(prev);
807 
808 	if (merge_right)
809 		vma_start_write(next);
810 
811 	if (merge_both) {
812 		/*
813 		 *         |<----->|
814 		 * |-------*********-------|
815 		 *   prev     vma     next
816 		 *  extend   delete  delete
817 		 */
818 
819 		vmg->vma = prev;
820 		vmg->start = prev->vm_start;
821 		vmg->end = next->vm_end;
822 		vmg->pgoff = prev->vm_pgoff;
823 
824 		/*
825 		 * We already ensured anon_vma compatibility above, so now it's
826 		 * simply a case of, if prev has no anon_vma object, which of
827 		 * next or vma contains the anon_vma we must duplicate.
828 		 */
829 		err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
830 	} else if (merge_left) {
831 		/*
832 		 *         |<----->| OR
833 		 *         |<--------->|
834 		 * |-------*************
835 		 *   prev       vma
836 		 *  extend shrink/delete
837 		 */
838 
839 		vmg->vma = prev;
840 		vmg->start = prev->vm_start;
841 		vmg->pgoff = prev->vm_pgoff;
842 
843 		if (!merge_will_delete_vma) {
844 			adjust = vma;
845 			adj_start = vmg->end - vma->vm_start;
846 		}
847 
848 		err = dup_anon_vma(prev, vma, &anon_dup);
849 	} else { /* merge_right */
850 		/*
851 		 *     |<----->| OR
852 		 * |<--------->|
853 		 * *************-------|
854 		 *      vma       next
855 		 * shrink/delete extend
856 		 */
857 
858 		pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
859 
860 		VM_WARN_ON(!merge_right);
861 		/* If we are offset into a VMA, then prev must be vma. */
862 		VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
863 
864 		if (merge_will_delete_vma) {
865 			vmg->vma = next;
866 			vmg->end = next->vm_end;
867 			vmg->pgoff = next->vm_pgoff - pglen;
868 		} else {
869 			/*
870 			 * We shrink vma and expand next.
871 			 *
872 			 * IMPORTANT: This is the ONLY case where the final
873 			 * merged VMA is NOT vmg->vma, but rather vmg->next.
874 			 */
875 
876 			vmg->start = vma->vm_start;
877 			vmg->end = start;
878 			vmg->pgoff = vma->vm_pgoff;
879 
880 			adjust = next;
881 			adj_start = -(vma->vm_end - start);
882 		}
883 
884 		err = dup_anon_vma(next, vma, &anon_dup);
885 	}
886 
887 	if (err)
888 		goto abort;
889 
890 	/*
891 	 * In nearly all cases, we expand vmg->vma. There is one exception -
892 	 * merge_right where we partially span the VMA. In this case we shrink
893 	 * the end of vmg->vma and adjust the start of vmg->next accordingly.
894 	 */
895 	expanded = !merge_right || merge_will_delete_vma;
896 
897 	if (commit_merge(vmg, adjust,
898 			 merge_will_delete_vma ? vma : NULL,
899 			 merge_will_delete_next ? next : NULL,
900 			 adj_start, expanded)) {
901 		if (anon_dup)
902 			unlink_anon_vmas(anon_dup);
903 
904 		vmg->state = VMA_MERGE_ERROR_NOMEM;
905 		return NULL;
906 	}
907 
908 	res = merge_left ? prev : next;
909 	khugepaged_enter_vma(res, vmg->flags);
910 
911 	vmg->state = VMA_MERGE_SUCCESS;
912 	return res;
913 
914 abort:
915 	vma_iter_set(vmg->vmi, start);
916 	vma_iter_load(vmg->vmi);
917 	vmg->state = VMA_MERGE_ERROR_NOMEM;
918 	return NULL;
919 }
920 
921 /*
922  * vma_merge_new_range - Attempt to merge a new VMA into address space
923  *
924  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
925  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
926  *
927  * We are about to add a VMA to the address space starting at @vmg->start and
928  * ending at @vmg->end. There are three different possible scenarios:
929  *
930  * 1. There is a VMA with identical properties immediately adjacent to the
931  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
932  *    EXPAND that VMA:
933  *
934  * Proposed:       |-----|  or  |-----|
935  * Existing:  |----|                  |----|
936  *
937  * 2. There are VMAs with identical properties immediately adjacent to the
938  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
939  *    EXPAND the former and REMOVE the latter:
940  *
941  * Proposed:       |-----|
942  * Existing:  |----|     |----|
943  *
944  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
945  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
946  *
947  * In instances where we can merge, this function returns the expanded VMA which
948  * will have its range adjusted accordingly and the underlying maple tree also
949  * adjusted.
950  *
951  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
952  *          to the VMA we expanded.
953  *
954  * This function adjusts @vmg to provide @vmg->next if not already specified,
955  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
956  *
957  * ASSUMPTIONS:
958  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
959  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
960      other than VMAs that will be unmapped should the operation succeed.
961  * - The caller must have specified the previous vma in @vmg->prev.
962  * - The caller must have specified the next vma in @vmg->next.
963  * - The caller must have positioned the vmi at or before the gap.
964  */
965 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
966 {
967 	struct vm_area_struct *prev = vmg->prev;
968 	struct vm_area_struct *next = vmg->next;
969 	unsigned long end = vmg->end;
970 	bool can_merge_left, can_merge_right;
971 	bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
972 
973 	mmap_assert_write_locked(vmg->mm);
974 	VM_WARN_ON(vmg->vma);
975 	/* vmi must point at or before the gap. */
976 	VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
977 
978 	vmg->state = VMA_MERGE_NOMERGE;
979 
980 	/* Special VMAs are unmergeable, also if no prev/next. */
981 	if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
982 		return NULL;
983 
984 	can_merge_left = can_vma_merge_left(vmg);
985 	can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
986 
987 	/* If we can merge with the next VMA, adjust vmg accordingly. */
988 	if (can_merge_right) {
989 		vmg->end = next->vm_end;
990 		vmg->vma = next;
991 	}
992 
993 	/* If we can merge with the previous VMA, adjust vmg accordingly. */
994 	if (can_merge_left) {
995 		vmg->start = prev->vm_start;
996 		vmg->vma = prev;
997 		vmg->pgoff = prev->vm_pgoff;
998 
999 		/*
1000 		 * If this merge would result in removal of the next VMA but we
1001 		 * are not permitted to do so, reduce the operation to merging
1002 		 * prev and vma.
1003 		 */
1004 		if (can_merge_right && !can_merge_remove_vma(next))
1005 			vmg->end = end;
1006 
1007 		/* In expand-only case we are already positioned at prev. */
1008 		if (!just_expand) {
1009 			/* Equivalent to going to the previous range. */
1010 			vma_prev(vmg->vmi);
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Now try to expand adjacent VMA(s). This takes care of removing the
1016 	 * following VMA if we have VMAs on both sides.
1017 	 */
1018 	if (vmg->vma && !vma_expand(vmg)) {
1019 		khugepaged_enter_vma(vmg->vma, vmg->flags);
1020 		vmg->state = VMA_MERGE_SUCCESS;
1021 		return vmg->vma;
1022 	}
1023 
1024 	return NULL;
1025 }
1026 
1027 /*
1028  * vma_expand - Expand an existing VMA
1029  *
1030  * @vmg: Describes a VMA expansion operation.
1031  *
1032  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
1033  * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
1034  * vmg->next->vm_end.  Checking if the vmg->vma can expand and merge with
1035  * vmg->next needs to be handled by the caller.
1036  *
1037  * Returns: 0 on success.
1038  *
1039  * ASSUMPTIONS:
1040  * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1041  * - The caller must have set @vmg->vma and @vmg->next.
1042  */
1043 int vma_expand(struct vma_merge_struct *vmg)
1044 {
1045 	struct vm_area_struct *anon_dup = NULL;
1046 	bool remove_next = false;
1047 	struct vm_area_struct *vma = vmg->vma;
1048 	struct vm_area_struct *next = vmg->next;
1049 
1050 	mmap_assert_write_locked(vmg->mm);
1051 
1052 	vma_start_write(vma);
1053 	if (next && (vma != next) && (vmg->end == next->vm_end)) {
1054 		int ret;
1055 
1056 		remove_next = true;
1057 		/* This should already have been checked by this point. */
1058 		VM_WARN_ON(!can_merge_remove_vma(next));
1059 		vma_start_write(next);
1060 		ret = dup_anon_vma(vma, next, &anon_dup);
1061 		if (ret)
1062 			return ret;
1063 	}
1064 
1065 	/* Not merging but overwriting any part of next is not handled. */
1066 	VM_WARN_ON(next && !remove_next &&
1067 		  next != vma && vmg->end > next->vm_start);
1068 	/* Only handles expanding */
1069 	VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
1070 
1071 	if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1072 		goto nomem;
1073 
1074 	return 0;
1075 
1076 nomem:
1077 	vmg->state = VMA_MERGE_ERROR_NOMEM;
1078 	if (anon_dup)
1079 		unlink_anon_vmas(anon_dup);
1080 	return -ENOMEM;
1081 }
1082 
1083 /*
1084  * vma_shrink() - Reduce an existing VMAs memory area
1085  * @vmi: The vma iterator
1086  * @vma: The VMA to modify
1087  * @start: The new start
1088  * @end: The new end
1089  *
1090  * Returns: 0 on success, -ENOMEM otherwise
1091  */
1092 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1093 	       unsigned long start, unsigned long end, pgoff_t pgoff)
1094 {
1095 	struct vma_prepare vp;
1096 
1097 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1098 
1099 	if (vma->vm_start < start)
1100 		vma_iter_config(vmi, vma->vm_start, start);
1101 	else
1102 		vma_iter_config(vmi, end, vma->vm_end);
1103 
1104 	if (vma_iter_prealloc(vmi, NULL))
1105 		return -ENOMEM;
1106 
1107 	vma_start_write(vma);
1108 
1109 	init_vma_prep(&vp, vma);
1110 	vma_prepare(&vp);
1111 	vma_adjust_trans_huge(vma, start, end, 0);
1112 
1113 	vma_iter_clear(vmi);
1114 	vma_set_range(vma, start, end, pgoff);
1115 	vma_complete(&vp, vmi, vma->vm_mm);
1116 	validate_mm(vma->vm_mm);
1117 	return 0;
1118 }
1119 
1120 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1121 		    struct ma_state *mas_detach, bool mm_wr_locked)
1122 {
1123 	struct mmu_gather tlb;
1124 
1125 	if (!vms->clear_ptes) /* Nothing to do */
1126 		return;
1127 
1128 	/*
1129 	 * We can free page tables without write-locking mmap_lock because VMAs
1130 	 * were isolated before we downgraded mmap_lock.
1131 	 */
1132 	mas_set(mas_detach, 1);
1133 	lru_add_drain();
1134 	tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1135 	update_hiwater_rss(vms->vma->vm_mm);
1136 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1137 		   vms->vma_count, mm_wr_locked);
1138 
1139 	mas_set(mas_detach, 1);
1140 	/* start and end may be different if there is no prev or next vma. */
1141 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1142 		      vms->unmap_end, mm_wr_locked);
1143 	tlb_finish_mmu(&tlb);
1144 	vms->clear_ptes = false;
1145 }
1146 
1147 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1148 		struct ma_state *mas_detach)
1149 {
1150 	struct vm_area_struct *vma;
1151 
1152 	if (!vms->nr_pages)
1153 		return;
1154 
1155 	vms_clear_ptes(vms, mas_detach, true);
1156 	mas_set(mas_detach, 0);
1157 	mas_for_each(mas_detach, vma, ULONG_MAX)
1158 		vma_close(vma);
1159 }
1160 
1161 /*
1162  * vms_complete_munmap_vmas() - Finish the munmap() operation
1163  * @vms: The vma munmap struct
1164  * @mas_detach: The maple state of the detached vmas
1165  *
1166  * This updates the mm_struct, unmaps the region, frees the resources
1167  * used for the munmap() and may downgrade the lock - if requested.  Everything
1168  * needed to be done once the vma maple tree is updated.
1169  */
1170 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1171 		struct ma_state *mas_detach)
1172 {
1173 	struct vm_area_struct *vma;
1174 	struct mm_struct *mm;
1175 
1176 	mm = current->mm;
1177 	mm->map_count -= vms->vma_count;
1178 	mm->locked_vm -= vms->locked_vm;
1179 	if (vms->unlock)
1180 		mmap_write_downgrade(mm);
1181 
1182 	if (!vms->nr_pages)
1183 		return;
1184 
1185 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
1186 	/* Update high watermark before we lower total_vm */
1187 	update_hiwater_vm(mm);
1188 	/* Stat accounting */
1189 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1190 	/* Paranoid bookkeeping */
1191 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1192 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1193 	VM_WARN_ON(vms->data_vm > mm->data_vm);
1194 	mm->exec_vm -= vms->exec_vm;
1195 	mm->stack_vm -= vms->stack_vm;
1196 	mm->data_vm -= vms->data_vm;
1197 
1198 	/* Remove and clean up vmas */
1199 	mas_set(mas_detach, 0);
1200 	mas_for_each(mas_detach, vma, ULONG_MAX)
1201 		remove_vma(vma, /* unreachable = */ false);
1202 
1203 	vm_unacct_memory(vms->nr_accounted);
1204 	validate_mm(mm);
1205 	if (vms->unlock)
1206 		mmap_read_unlock(mm);
1207 
1208 	__mt_destroy(mas_detach->tree);
1209 }
1210 
1211 /*
1212  * reattach_vmas() - Undo any munmap work and free resources
1213  * @mas_detach: The maple state with the detached maple tree
1214  *
1215  * Reattach any detached vmas and free up the maple tree used to track the vmas.
1216  */
1217 static void reattach_vmas(struct ma_state *mas_detach)
1218 {
1219 	struct vm_area_struct *vma;
1220 
1221 	mas_set(mas_detach, 0);
1222 	mas_for_each(mas_detach, vma, ULONG_MAX)
1223 		vma_mark_detached(vma, false);
1224 
1225 	__mt_destroy(mas_detach->tree);
1226 }
1227 
1228 /*
1229  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1230  * for removal at a later date.  Handles splitting first and last if necessary
1231  * and marking the vmas as isolated.
1232  *
1233  * @vms: The vma munmap struct
1234  * @mas_detach: The maple state tracking the detached tree
1235  *
1236  * Return: 0 on success, error otherwise
1237  */
1238 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1239 		struct ma_state *mas_detach)
1240 {
1241 	struct vm_area_struct *next = NULL;
1242 	int error;
1243 
1244 	/*
1245 	 * If we need to split any vma, do it now to save pain later.
1246 	 * Does it split the first one?
1247 	 */
1248 	if (vms->start > vms->vma->vm_start) {
1249 
1250 		/*
1251 		 * Make sure that map_count on return from munmap() will
1252 		 * not exceed its limit; but let map_count go just above
1253 		 * its limit temporarily, to help free resources as expected.
1254 		 */
1255 		if (vms->end < vms->vma->vm_end &&
1256 		    vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1257 			error = -ENOMEM;
1258 			goto map_count_exceeded;
1259 		}
1260 
1261 		/* Don't bother splitting the VMA if we can't unmap it anyway */
1262 		if (!can_modify_vma(vms->vma)) {
1263 			error = -EPERM;
1264 			goto start_split_failed;
1265 		}
1266 
1267 		error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1268 		if (error)
1269 			goto start_split_failed;
1270 	}
1271 	vms->prev = vma_prev(vms->vmi);
1272 	if (vms->prev)
1273 		vms->unmap_start = vms->prev->vm_end;
1274 
1275 	/*
1276 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
1277 	 * it is always overwritten.
1278 	 */
1279 	for_each_vma_range(*(vms->vmi), next, vms->end) {
1280 		long nrpages;
1281 
1282 		if (!can_modify_vma(next)) {
1283 			error = -EPERM;
1284 			goto modify_vma_failed;
1285 		}
1286 		/* Does it split the end? */
1287 		if (next->vm_end > vms->end) {
1288 			error = __split_vma(vms->vmi, next, vms->end, 0);
1289 			if (error)
1290 				goto end_split_failed;
1291 		}
1292 		vma_start_write(next);
1293 		mas_set(mas_detach, vms->vma_count++);
1294 		error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1295 		if (error)
1296 			goto munmap_gather_failed;
1297 
1298 		vma_mark_detached(next, true);
1299 		nrpages = vma_pages(next);
1300 
1301 		vms->nr_pages += nrpages;
1302 		if (next->vm_flags & VM_LOCKED)
1303 			vms->locked_vm += nrpages;
1304 
1305 		if (next->vm_flags & VM_ACCOUNT)
1306 			vms->nr_accounted += nrpages;
1307 
1308 		if (is_exec_mapping(next->vm_flags))
1309 			vms->exec_vm += nrpages;
1310 		else if (is_stack_mapping(next->vm_flags))
1311 			vms->stack_vm += nrpages;
1312 		else if (is_data_mapping(next->vm_flags))
1313 			vms->data_vm += nrpages;
1314 
1315 		if (vms->uf) {
1316 			/*
1317 			 * If userfaultfd_unmap_prep returns an error the vmas
1318 			 * will remain split, but userland will get a
1319 			 * highly unexpected error anyway. This is no
1320 			 * different than the case where the first of the two
1321 			 * __split_vma fails, but we don't undo the first
1322 			 * split, despite we could. This is unlikely enough
1323 			 * failure that it's not worth optimizing it for.
1324 			 */
1325 			error = userfaultfd_unmap_prep(next, vms->start,
1326 						       vms->end, vms->uf);
1327 			if (error)
1328 				goto userfaultfd_error;
1329 		}
1330 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1331 		BUG_ON(next->vm_start < vms->start);
1332 		BUG_ON(next->vm_start > vms->end);
1333 #endif
1334 	}
1335 
1336 	vms->next = vma_next(vms->vmi);
1337 	if (vms->next)
1338 		vms->unmap_end = vms->next->vm_start;
1339 
1340 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1341 	/* Make sure no VMAs are about to be lost. */
1342 	{
1343 		MA_STATE(test, mas_detach->tree, 0, 0);
1344 		struct vm_area_struct *vma_mas, *vma_test;
1345 		int test_count = 0;
1346 
1347 		vma_iter_set(vms->vmi, vms->start);
1348 		rcu_read_lock();
1349 		vma_test = mas_find(&test, vms->vma_count - 1);
1350 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1351 			BUG_ON(vma_mas != vma_test);
1352 			test_count++;
1353 			vma_test = mas_next(&test, vms->vma_count - 1);
1354 		}
1355 		rcu_read_unlock();
1356 		BUG_ON(vms->vma_count != test_count);
1357 	}
1358 #endif
1359 
1360 	while (vma_iter_addr(vms->vmi) > vms->start)
1361 		vma_iter_prev_range(vms->vmi);
1362 
1363 	vms->clear_ptes = true;
1364 	return 0;
1365 
1366 userfaultfd_error:
1367 munmap_gather_failed:
1368 end_split_failed:
1369 modify_vma_failed:
1370 	reattach_vmas(mas_detach);
1371 start_split_failed:
1372 map_count_exceeded:
1373 	return error;
1374 }
1375 
1376 /*
1377  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1378  * @vms: The vma munmap struct
1379  * @vmi: The vma iterator
1380  * @vma: The first vm_area_struct to munmap
1381  * @start: The aligned start address to munmap
1382  * @end: The aligned end address to munmap
1383  * @uf: The userfaultfd list_head
1384  * @unlock: Unlock after the operation.  Only unlocked on success
1385  */
1386 static void init_vma_munmap(struct vma_munmap_struct *vms,
1387 		struct vma_iterator *vmi, struct vm_area_struct *vma,
1388 		unsigned long start, unsigned long end, struct list_head *uf,
1389 		bool unlock)
1390 {
1391 	vms->vmi = vmi;
1392 	vms->vma = vma;
1393 	if (vma) {
1394 		vms->start = start;
1395 		vms->end = end;
1396 	} else {
1397 		vms->start = vms->end = 0;
1398 	}
1399 	vms->unlock = unlock;
1400 	vms->uf = uf;
1401 	vms->vma_count = 0;
1402 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1403 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1404 	vms->unmap_start = FIRST_USER_ADDRESS;
1405 	vms->unmap_end = USER_PGTABLES_CEILING;
1406 	vms->clear_ptes = false;
1407 }
1408 
1409 /*
1410  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1411  * @vmi: The vma iterator
1412  * @vma: The starting vm_area_struct
1413  * @mm: The mm_struct
1414  * @start: The aligned start address to munmap.
1415  * @end: The aligned end address to munmap.
1416  * @uf: The userfaultfd list_head
1417  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1418  * success.
1419  *
1420  * Return: 0 on success and drops the lock if so directed, error and leaves the
1421  * lock held otherwise.
1422  */
1423 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1424 		struct mm_struct *mm, unsigned long start, unsigned long end,
1425 		struct list_head *uf, bool unlock)
1426 {
1427 	struct maple_tree mt_detach;
1428 	MA_STATE(mas_detach, &mt_detach, 0, 0);
1429 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1430 	mt_on_stack(mt_detach);
1431 	struct vma_munmap_struct vms;
1432 	int error;
1433 
1434 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1435 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
1436 	if (error)
1437 		goto gather_failed;
1438 
1439 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1440 	if (error)
1441 		goto clear_tree_failed;
1442 
1443 	/* Point of no return */
1444 	vms_complete_munmap_vmas(&vms, &mas_detach);
1445 	return 0;
1446 
1447 clear_tree_failed:
1448 	reattach_vmas(&mas_detach);
1449 gather_failed:
1450 	validate_mm(mm);
1451 	return error;
1452 }
1453 
1454 /*
1455  * do_vmi_munmap() - munmap a given range.
1456  * @vmi: The vma iterator
1457  * @mm: The mm_struct
1458  * @start: The start address to munmap
1459  * @len: The length of the range to munmap
1460  * @uf: The userfaultfd list_head
1461  * @unlock: set to true if the user wants to drop the mmap_lock on success
1462  *
1463  * This function takes a @mas that is either pointing to the previous VMA or set
1464  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1465  * aligned.
1466  *
1467  * Return: 0 on success and drops the lock if so directed, error and leaves the
1468  * lock held otherwise.
1469  */
1470 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1471 		  unsigned long start, size_t len, struct list_head *uf,
1472 		  bool unlock)
1473 {
1474 	unsigned long end;
1475 	struct vm_area_struct *vma;
1476 
1477 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1478 		return -EINVAL;
1479 
1480 	end = start + PAGE_ALIGN(len);
1481 	if (end == start)
1482 		return -EINVAL;
1483 
1484 	/* Find the first overlapping VMA */
1485 	vma = vma_find(vmi, end);
1486 	if (!vma) {
1487 		if (unlock)
1488 			mmap_write_unlock(mm);
1489 		return 0;
1490 	}
1491 
1492 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1493 }
1494 
1495 /*
1496  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1497  * context and anonymous VMA name within the range [start, end).
1498  *
1499  * As a result, we might be able to merge the newly modified VMA range with an
1500  * adjacent VMA with identical properties.
1501  *
1502  * If no merge is possible and the range does not span the entirety of the VMA,
1503  * we then need to split the VMA to accommodate the change.
1504  *
1505  * The function returns either the merged VMA, the original VMA if a split was
1506  * required instead, or an error if the split failed.
1507  */
1508 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1509 {
1510 	struct vm_area_struct *vma = vmg->vma;
1511 	struct vm_area_struct *merged;
1512 
1513 	/* First, try to merge. */
1514 	merged = vma_merge_existing_range(vmg);
1515 	if (merged)
1516 		return merged;
1517 
1518 	/* Split any preceding portion of the VMA. */
1519 	if (vma->vm_start < vmg->start) {
1520 		int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1521 
1522 		if (err)
1523 			return ERR_PTR(err);
1524 	}
1525 
1526 	/* Split any trailing portion of the VMA. */
1527 	if (vma->vm_end > vmg->end) {
1528 		int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1529 
1530 		if (err)
1531 			return ERR_PTR(err);
1532 	}
1533 
1534 	return vma;
1535 }
1536 
1537 struct vm_area_struct *vma_modify_flags(
1538 	struct vma_iterator *vmi, struct vm_area_struct *prev,
1539 	struct vm_area_struct *vma, unsigned long start, unsigned long end,
1540 	unsigned long new_flags)
1541 {
1542 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1543 
1544 	vmg.flags = new_flags;
1545 
1546 	return vma_modify(&vmg);
1547 }
1548 
1549 struct vm_area_struct
1550 *vma_modify_flags_name(struct vma_iterator *vmi,
1551 		       struct vm_area_struct *prev,
1552 		       struct vm_area_struct *vma,
1553 		       unsigned long start,
1554 		       unsigned long end,
1555 		       unsigned long new_flags,
1556 		       struct anon_vma_name *new_name)
1557 {
1558 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1559 
1560 	vmg.flags = new_flags;
1561 	vmg.anon_name = new_name;
1562 
1563 	return vma_modify(&vmg);
1564 }
1565 
1566 struct vm_area_struct
1567 *vma_modify_policy(struct vma_iterator *vmi,
1568 		   struct vm_area_struct *prev,
1569 		   struct vm_area_struct *vma,
1570 		   unsigned long start, unsigned long end,
1571 		   struct mempolicy *new_pol)
1572 {
1573 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1574 
1575 	vmg.policy = new_pol;
1576 
1577 	return vma_modify(&vmg);
1578 }
1579 
1580 struct vm_area_struct
1581 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1582 		       struct vm_area_struct *prev,
1583 		       struct vm_area_struct *vma,
1584 		       unsigned long start, unsigned long end,
1585 		       unsigned long new_flags,
1586 		       struct vm_userfaultfd_ctx new_ctx)
1587 {
1588 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1589 
1590 	vmg.flags = new_flags;
1591 	vmg.uffd_ctx = new_ctx;
1592 
1593 	return vma_modify(&vmg);
1594 }
1595 
1596 /*
1597  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1598  * VMA with identical properties.
1599  */
1600 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1601 					struct vm_area_struct *vma,
1602 					unsigned long delta)
1603 {
1604 	VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1605 
1606 	vmg.next = vma_iter_next_rewind(vmi, NULL);
1607 	vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1608 
1609 	return vma_merge_new_range(&vmg);
1610 }
1611 
1612 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1613 {
1614 	vb->count = 0;
1615 }
1616 
1617 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1618 {
1619 	struct address_space *mapping;
1620 	int i;
1621 
1622 	mapping = vb->vmas[0]->vm_file->f_mapping;
1623 	i_mmap_lock_write(mapping);
1624 	for (i = 0; i < vb->count; i++) {
1625 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1626 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1627 	}
1628 	i_mmap_unlock_write(mapping);
1629 
1630 	unlink_file_vma_batch_init(vb);
1631 }
1632 
1633 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1634 			       struct vm_area_struct *vma)
1635 {
1636 	if (vma->vm_file == NULL)
1637 		return;
1638 
1639 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1640 	    vb->count == ARRAY_SIZE(vb->vmas))
1641 		unlink_file_vma_batch_process(vb);
1642 
1643 	vb->vmas[vb->count] = vma;
1644 	vb->count++;
1645 }
1646 
1647 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1648 {
1649 	if (vb->count > 0)
1650 		unlink_file_vma_batch_process(vb);
1651 }
1652 
1653 /*
1654  * Unlink a file-based vm structure from its interval tree, to hide
1655  * vma from rmap and vmtruncate before freeing its page tables.
1656  */
1657 void unlink_file_vma(struct vm_area_struct *vma)
1658 {
1659 	struct file *file = vma->vm_file;
1660 
1661 	if (file) {
1662 		struct address_space *mapping = file->f_mapping;
1663 
1664 		i_mmap_lock_write(mapping);
1665 		__remove_shared_vm_struct(vma, mapping);
1666 		i_mmap_unlock_write(mapping);
1667 	}
1668 }
1669 
1670 void vma_link_file(struct vm_area_struct *vma)
1671 {
1672 	struct file *file = vma->vm_file;
1673 	struct address_space *mapping;
1674 
1675 	if (file) {
1676 		mapping = file->f_mapping;
1677 		i_mmap_lock_write(mapping);
1678 		__vma_link_file(vma, mapping);
1679 		i_mmap_unlock_write(mapping);
1680 	}
1681 }
1682 
1683 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1684 {
1685 	VMA_ITERATOR(vmi, mm, 0);
1686 
1687 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1688 	if (vma_iter_prealloc(&vmi, vma))
1689 		return -ENOMEM;
1690 
1691 	vma_start_write(vma);
1692 	vma_iter_store(&vmi, vma);
1693 	vma_link_file(vma);
1694 	mm->map_count++;
1695 	validate_mm(mm);
1696 	return 0;
1697 }
1698 
1699 /*
1700  * Copy the vma structure to a new location in the same mm,
1701  * prior to moving page table entries, to effect an mremap move.
1702  */
1703 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1704 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1705 	bool *need_rmap_locks)
1706 {
1707 	struct vm_area_struct *vma = *vmap;
1708 	unsigned long vma_start = vma->vm_start;
1709 	struct mm_struct *mm = vma->vm_mm;
1710 	struct vm_area_struct *new_vma;
1711 	bool faulted_in_anon_vma = true;
1712 	VMA_ITERATOR(vmi, mm, addr);
1713 	VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1714 
1715 	/*
1716 	 * If anonymous vma has not yet been faulted, update new pgoff
1717 	 * to match new location, to increase its chance of merging.
1718 	 */
1719 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1720 		pgoff = addr >> PAGE_SHIFT;
1721 		faulted_in_anon_vma = false;
1722 	}
1723 
1724 	new_vma = find_vma_prev(mm, addr, &vmg.prev);
1725 	if (new_vma && new_vma->vm_start < addr + len)
1726 		return NULL;	/* should never get here */
1727 
1728 	vmg.vma = NULL; /* New VMA range. */
1729 	vmg.pgoff = pgoff;
1730 	vmg.next = vma_iter_next_rewind(&vmi, NULL);
1731 	new_vma = vma_merge_new_range(&vmg);
1732 
1733 	if (new_vma) {
1734 		/*
1735 		 * Source vma may have been merged into new_vma
1736 		 */
1737 		if (unlikely(vma_start >= new_vma->vm_start &&
1738 			     vma_start < new_vma->vm_end)) {
1739 			/*
1740 			 * The only way we can get a vma_merge with
1741 			 * self during an mremap is if the vma hasn't
1742 			 * been faulted in yet and we were allowed to
1743 			 * reset the dst vma->vm_pgoff to the
1744 			 * destination address of the mremap to allow
1745 			 * the merge to happen. mremap must change the
1746 			 * vm_pgoff linearity between src and dst vmas
1747 			 * (in turn preventing a vma_merge) to be
1748 			 * safe. It is only safe to keep the vm_pgoff
1749 			 * linear if there are no pages mapped yet.
1750 			 */
1751 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1752 			*vmap = vma = new_vma;
1753 		}
1754 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1755 	} else {
1756 		new_vma = vm_area_dup(vma);
1757 		if (!new_vma)
1758 			goto out;
1759 		vma_set_range(new_vma, addr, addr + len, pgoff);
1760 		if (vma_dup_policy(vma, new_vma))
1761 			goto out_free_vma;
1762 		if (anon_vma_clone(new_vma, vma))
1763 			goto out_free_mempol;
1764 		if (new_vma->vm_file)
1765 			get_file(new_vma->vm_file);
1766 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1767 			new_vma->vm_ops->open(new_vma);
1768 		if (vma_link(mm, new_vma))
1769 			goto out_vma_link;
1770 		*need_rmap_locks = false;
1771 	}
1772 	return new_vma;
1773 
1774 out_vma_link:
1775 	vma_close(new_vma);
1776 
1777 	if (new_vma->vm_file)
1778 		fput(new_vma->vm_file);
1779 
1780 	unlink_anon_vmas(new_vma);
1781 out_free_mempol:
1782 	mpol_put(vma_policy(new_vma));
1783 out_free_vma:
1784 	vm_area_free(new_vma);
1785 out:
1786 	return NULL;
1787 }
1788 
1789 /*
1790  * Rough compatibility check to quickly see if it's even worth looking
1791  * at sharing an anon_vma.
1792  *
1793  * They need to have the same vm_file, and the flags can only differ
1794  * in things that mprotect may change.
1795  *
1796  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1797  * we can merge the two vma's. For example, we refuse to merge a vma if
1798  * there is a vm_ops->close() function, because that indicates that the
1799  * driver is doing some kind of reference counting. But that doesn't
1800  * really matter for the anon_vma sharing case.
1801  */
1802 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1803 {
1804 	return a->vm_end == b->vm_start &&
1805 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1806 		a->vm_file == b->vm_file &&
1807 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1808 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1809 }
1810 
1811 /*
1812  * Do some basic sanity checking to see if we can re-use the anon_vma
1813  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1814  * the same as 'old', the other will be the new one that is trying
1815  * to share the anon_vma.
1816  *
1817  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1818  * the anon_vma of 'old' is concurrently in the process of being set up
1819  * by another page fault trying to merge _that_. But that's ok: if it
1820  * is being set up, that automatically means that it will be a singleton
1821  * acceptable for merging, so we can do all of this optimistically. But
1822  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1823  *
1824  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1825  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1826  * is to return an anon_vma that is "complex" due to having gone through
1827  * a fork).
1828  *
1829  * We also make sure that the two vma's are compatible (adjacent,
1830  * and with the same memory policies). That's all stable, even with just
1831  * a read lock on the mmap_lock.
1832  */
1833 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1834 					  struct vm_area_struct *a,
1835 					  struct vm_area_struct *b)
1836 {
1837 	if (anon_vma_compatible(a, b)) {
1838 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1839 
1840 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1841 			return anon_vma;
1842 	}
1843 	return NULL;
1844 }
1845 
1846 /*
1847  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1848  * neighbouring vmas for a suitable anon_vma, before it goes off
1849  * to allocate a new anon_vma.  It checks because a repetitive
1850  * sequence of mprotects and faults may otherwise lead to distinct
1851  * anon_vmas being allocated, preventing vma merge in subsequent
1852  * mprotect.
1853  */
1854 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1855 {
1856 	struct anon_vma *anon_vma = NULL;
1857 	struct vm_area_struct *prev, *next;
1858 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1859 
1860 	/* Try next first. */
1861 	next = vma_iter_load(&vmi);
1862 	if (next) {
1863 		anon_vma = reusable_anon_vma(next, vma, next);
1864 		if (anon_vma)
1865 			return anon_vma;
1866 	}
1867 
1868 	prev = vma_prev(&vmi);
1869 	VM_BUG_ON_VMA(prev != vma, vma);
1870 	prev = vma_prev(&vmi);
1871 	/* Try prev next. */
1872 	if (prev)
1873 		anon_vma = reusable_anon_vma(prev, prev, vma);
1874 
1875 	/*
1876 	 * We might reach here with anon_vma == NULL if we can't find
1877 	 * any reusable anon_vma.
1878 	 * There's no absolute need to look only at touching neighbours:
1879 	 * we could search further afield for "compatible" anon_vmas.
1880 	 * But it would probably just be a waste of time searching,
1881 	 * or lead to too many vmas hanging off the same anon_vma.
1882 	 * We're trying to allow mprotect remerging later on,
1883 	 * not trying to minimize memory used for anon_vmas.
1884 	 */
1885 	return anon_vma;
1886 }
1887 
1888 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1889 {
1890 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1891 }
1892 
1893 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1894 {
1895 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1896 		(VM_WRITE | VM_SHARED);
1897 }
1898 
1899 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1900 {
1901 	/* No managed pages to writeback. */
1902 	if (vma->vm_flags & VM_PFNMAP)
1903 		return false;
1904 
1905 	return vma->vm_file && vma->vm_file->f_mapping &&
1906 		mapping_can_writeback(vma->vm_file->f_mapping);
1907 }
1908 
1909 /*
1910  * Does this VMA require the underlying folios to have their dirty state
1911  * tracked?
1912  */
1913 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1914 {
1915 	/* Only shared, writable VMAs require dirty tracking. */
1916 	if (!vma_is_shared_writable(vma))
1917 		return false;
1918 
1919 	/* Does the filesystem need to be notified? */
1920 	if (vm_ops_needs_writenotify(vma->vm_ops))
1921 		return true;
1922 
1923 	/*
1924 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1925 	 * can writeback, dirty tracking is still required.
1926 	 */
1927 	return vma_fs_can_writeback(vma);
1928 }
1929 
1930 /*
1931  * Some shared mappings will want the pages marked read-only
1932  * to track write events. If so, we'll downgrade vm_page_prot
1933  * to the private version (using protection_map[] without the
1934  * VM_SHARED bit).
1935  */
1936 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1937 {
1938 	/* If it was private or non-writable, the write bit is already clear */
1939 	if (!vma_is_shared_writable(vma))
1940 		return false;
1941 
1942 	/* The backer wishes to know when pages are first written to? */
1943 	if (vm_ops_needs_writenotify(vma->vm_ops))
1944 		return true;
1945 
1946 	/* The open routine did something to the protections that pgprot_modify
1947 	 * won't preserve? */
1948 	if (pgprot_val(vm_page_prot) !=
1949 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1950 		return false;
1951 
1952 	/*
1953 	 * Do we need to track softdirty? hugetlb does not support softdirty
1954 	 * tracking yet.
1955 	 */
1956 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1957 		return true;
1958 
1959 	/* Do we need write faults for uffd-wp tracking? */
1960 	if (userfaultfd_wp(vma))
1961 		return true;
1962 
1963 	/* Can the mapping track the dirty pages? */
1964 	return vma_fs_can_writeback(vma);
1965 }
1966 
1967 static DEFINE_MUTEX(mm_all_locks_mutex);
1968 
1969 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1970 {
1971 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1972 		/*
1973 		 * The LSB of head.next can't change from under us
1974 		 * because we hold the mm_all_locks_mutex.
1975 		 */
1976 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1977 		/*
1978 		 * We can safely modify head.next after taking the
1979 		 * anon_vma->root->rwsem. If some other vma in this mm shares
1980 		 * the same anon_vma we won't take it again.
1981 		 *
1982 		 * No need of atomic instructions here, head.next
1983 		 * can't change from under us thanks to the
1984 		 * anon_vma->root->rwsem.
1985 		 */
1986 		if (__test_and_set_bit(0, (unsigned long *)
1987 				       &anon_vma->root->rb_root.rb_root.rb_node))
1988 			BUG();
1989 	}
1990 }
1991 
1992 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1993 {
1994 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1995 		/*
1996 		 * AS_MM_ALL_LOCKS can't change from under us because
1997 		 * we hold the mm_all_locks_mutex.
1998 		 *
1999 		 * Operations on ->flags have to be atomic because
2000 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2001 		 * mm_all_locks_mutex, there may be other cpus
2002 		 * changing other bitflags in parallel to us.
2003 		 */
2004 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2005 			BUG();
2006 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2007 	}
2008 }
2009 
2010 /*
2011  * This operation locks against the VM for all pte/vma/mm related
2012  * operations that could ever happen on a certain mm. This includes
2013  * vmtruncate, try_to_unmap, and all page faults.
2014  *
2015  * The caller must take the mmap_lock in write mode before calling
2016  * mm_take_all_locks(). The caller isn't allowed to release the
2017  * mmap_lock until mm_drop_all_locks() returns.
2018  *
2019  * mmap_lock in write mode is required in order to block all operations
2020  * that could modify pagetables and free pages without need of
2021  * altering the vma layout. It's also needed in write mode to avoid new
2022  * anon_vmas to be associated with existing vmas.
2023  *
2024  * A single task can't take more than one mm_take_all_locks() in a row
2025  * or it would deadlock.
2026  *
2027  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2028  * mapping->flags avoid to take the same lock twice, if more than one
2029  * vma in this mm is backed by the same anon_vma or address_space.
2030  *
2031  * We take locks in following order, accordingly to comment at beginning
2032  * of mm/rmap.c:
2033  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2034  *     hugetlb mapping);
2035  *   - all vmas marked locked
2036  *   - all i_mmap_rwsem locks;
2037  *   - all anon_vma->rwseml
2038  *
2039  * We can take all locks within these types randomly because the VM code
2040  * doesn't nest them and we protected from parallel mm_take_all_locks() by
2041  * mm_all_locks_mutex.
2042  *
2043  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2044  * that may have to take thousand of locks.
2045  *
2046  * mm_take_all_locks() can fail if it's interrupted by signals.
2047  */
2048 int mm_take_all_locks(struct mm_struct *mm)
2049 {
2050 	struct vm_area_struct *vma;
2051 	struct anon_vma_chain *avc;
2052 	VMA_ITERATOR(vmi, mm, 0);
2053 
2054 	mmap_assert_write_locked(mm);
2055 
2056 	mutex_lock(&mm_all_locks_mutex);
2057 
2058 	/*
2059 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
2060 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
2061 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2062 	 * is reached.
2063 	 */
2064 	for_each_vma(vmi, vma) {
2065 		if (signal_pending(current))
2066 			goto out_unlock;
2067 		vma_start_write(vma);
2068 	}
2069 
2070 	vma_iter_init(&vmi, mm, 0);
2071 	for_each_vma(vmi, vma) {
2072 		if (signal_pending(current))
2073 			goto out_unlock;
2074 		if (vma->vm_file && vma->vm_file->f_mapping &&
2075 				is_vm_hugetlb_page(vma))
2076 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2077 	}
2078 
2079 	vma_iter_init(&vmi, mm, 0);
2080 	for_each_vma(vmi, vma) {
2081 		if (signal_pending(current))
2082 			goto out_unlock;
2083 		if (vma->vm_file && vma->vm_file->f_mapping &&
2084 				!is_vm_hugetlb_page(vma))
2085 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2086 	}
2087 
2088 	vma_iter_init(&vmi, mm, 0);
2089 	for_each_vma(vmi, vma) {
2090 		if (signal_pending(current))
2091 			goto out_unlock;
2092 		if (vma->anon_vma)
2093 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2094 				vm_lock_anon_vma(mm, avc->anon_vma);
2095 	}
2096 
2097 	return 0;
2098 
2099 out_unlock:
2100 	mm_drop_all_locks(mm);
2101 	return -EINTR;
2102 }
2103 
2104 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2105 {
2106 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2107 		/*
2108 		 * The LSB of head.next can't change to 0 from under
2109 		 * us because we hold the mm_all_locks_mutex.
2110 		 *
2111 		 * We must however clear the bitflag before unlocking
2112 		 * the vma so the users using the anon_vma->rb_root will
2113 		 * never see our bitflag.
2114 		 *
2115 		 * No need of atomic instructions here, head.next
2116 		 * can't change from under us until we release the
2117 		 * anon_vma->root->rwsem.
2118 		 */
2119 		if (!__test_and_clear_bit(0, (unsigned long *)
2120 					  &anon_vma->root->rb_root.rb_root.rb_node))
2121 			BUG();
2122 		anon_vma_unlock_write(anon_vma);
2123 	}
2124 }
2125 
2126 static void vm_unlock_mapping(struct address_space *mapping)
2127 {
2128 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2129 		/*
2130 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2131 		 * because we hold the mm_all_locks_mutex.
2132 		 */
2133 		i_mmap_unlock_write(mapping);
2134 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2135 					&mapping->flags))
2136 			BUG();
2137 	}
2138 }
2139 
2140 /*
2141  * The mmap_lock cannot be released by the caller until
2142  * mm_drop_all_locks() returns.
2143  */
2144 void mm_drop_all_locks(struct mm_struct *mm)
2145 {
2146 	struct vm_area_struct *vma;
2147 	struct anon_vma_chain *avc;
2148 	VMA_ITERATOR(vmi, mm, 0);
2149 
2150 	mmap_assert_write_locked(mm);
2151 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2152 
2153 	for_each_vma(vmi, vma) {
2154 		if (vma->anon_vma)
2155 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2156 				vm_unlock_anon_vma(avc->anon_vma);
2157 		if (vma->vm_file && vma->vm_file->f_mapping)
2158 			vm_unlock_mapping(vma->vm_file->f_mapping);
2159 	}
2160 
2161 	mutex_unlock(&mm_all_locks_mutex);
2162 }
2163 
2164 /*
2165  * We account for memory if it's a private writeable mapping,
2166  * not hugepages and VM_NORESERVE wasn't set.
2167  */
2168 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2169 {
2170 	/*
2171 	 * hugetlb has its own accounting separate from the core VM
2172 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2173 	 */
2174 	if (file && is_file_hugepages(file))
2175 		return false;
2176 
2177 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2178 }
2179 
2180 /*
2181  * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2182  * operation.
2183  * @vms: The vma unmap structure
2184  * @mas_detach: The maple state with the detached maple tree
2185  *
2186  * Reattach any detached vmas, free up the maple tree used to track the vmas.
2187  * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2188  * have been called), then a NULL is written over the vmas and the vmas are
2189  * removed (munmap() completed).
2190  */
2191 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2192 		struct ma_state *mas_detach)
2193 {
2194 	struct ma_state *mas = &vms->vmi->mas;
2195 
2196 	if (!vms->nr_pages)
2197 		return;
2198 
2199 	if (vms->clear_ptes)
2200 		return reattach_vmas(mas_detach);
2201 
2202 	/*
2203 	 * Aborting cannot just call the vm_ops open() because they are often
2204 	 * not symmetrical and state data has been lost.  Resort to the old
2205 	 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2206 	 */
2207 	mas_set_range(mas, vms->start, vms->end - 1);
2208 	mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2209 	/* Clean up the insertion of the unfortunate gap */
2210 	vms_complete_munmap_vmas(vms, mas_detach);
2211 }
2212 
2213 /*
2214  * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2215  * unmapped once the map operation is completed, check limits, account mapping
2216  * and clean up any pre-existing VMAs.
2217  *
2218  * @map: Mapping state.
2219  * @uf:  Userfaultfd context list.
2220  *
2221  * Returns: 0 on success, error code otherwise.
2222  */
2223 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2224 {
2225 	int error;
2226 	struct vma_iterator *vmi = map->vmi;
2227 	struct vma_munmap_struct *vms = &map->vms;
2228 
2229 	/* Find the first overlapping VMA and initialise unmap state. */
2230 	vms->vma = vma_find(vmi, map->end);
2231 	init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2232 			/* unlock = */ false);
2233 
2234 	/* OK, we have overlapping VMAs - prepare to unmap them. */
2235 	if (vms->vma) {
2236 		mt_init_flags(&map->mt_detach,
2237 			      vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2238 		mt_on_stack(map->mt_detach);
2239 		mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2240 		/* Prepare to unmap any existing mapping in the area */
2241 		error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2242 		if (error) {
2243 			/* On error VMAs will already have been reattached. */
2244 			vms->nr_pages = 0;
2245 			return error;
2246 		}
2247 
2248 		map->next = vms->next;
2249 		map->prev = vms->prev;
2250 	} else {
2251 		map->next = vma_iter_next_rewind(vmi, &map->prev);
2252 	}
2253 
2254 	/* Check against address space limit. */
2255 	if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages))
2256 		return -ENOMEM;
2257 
2258 	/* Private writable mapping: check memory availability. */
2259 	if (accountable_mapping(map->file, map->flags)) {
2260 		map->charged = map->pglen;
2261 		map->charged -= vms->nr_accounted;
2262 		if (map->charged) {
2263 			error = security_vm_enough_memory_mm(map->mm, map->charged);
2264 			if (error)
2265 				return error;
2266 		}
2267 
2268 		vms->nr_accounted = 0;
2269 		map->flags |= VM_ACCOUNT;
2270 	}
2271 
2272 	/*
2273 	 * Clear PTEs while the vma is still in the tree so that rmap
2274 	 * cannot race with the freeing later in the truncate scenario.
2275 	 * This is also needed for mmap_file(), which is why vm_ops
2276 	 * close function is called.
2277 	 */
2278 	vms_clean_up_area(vms, &map->mas_detach);
2279 
2280 	return 0;
2281 }
2282 
2283 
2284 static int __mmap_new_file_vma(struct mmap_state *map,
2285 			       struct vm_area_struct *vma)
2286 {
2287 	struct vma_iterator *vmi = map->vmi;
2288 	int error;
2289 
2290 	vma->vm_file = get_file(map->file);
2291 	error = mmap_file(vma->vm_file, vma);
2292 	if (error) {
2293 		fput(vma->vm_file);
2294 		vma->vm_file = NULL;
2295 
2296 		vma_iter_set(vmi, vma->vm_end);
2297 		/* Undo any partial mapping done by a device driver. */
2298 		unmap_region(&vmi->mas, vma, map->prev, map->next);
2299 
2300 		return error;
2301 	}
2302 
2303 	/* Drivers cannot alter the address of the VMA. */
2304 	WARN_ON_ONCE(map->addr != vma->vm_start);
2305 	/*
2306 	 * Drivers should not permit writability when previously it was
2307 	 * disallowed.
2308 	 */
2309 	VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2310 			!(map->flags & VM_MAYWRITE) &&
2311 			(vma->vm_flags & VM_MAYWRITE));
2312 
2313 	/* If the flags change (and are mergeable), let's retry later. */
2314 	map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL);
2315 	map->flags = vma->vm_flags;
2316 
2317 	return 0;
2318 }
2319 
2320 /*
2321  * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2322  * possible.
2323  *
2324  * @map:  Mapping state.
2325  * @vmap: Output pointer for the new VMA.
2326  *
2327  * Returns: Zero on success, or an error.
2328  */
2329 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2330 {
2331 	struct vma_iterator *vmi = map->vmi;
2332 	int error = 0;
2333 	struct vm_area_struct *vma;
2334 
2335 	/*
2336 	 * Determine the object being mapped and call the appropriate
2337 	 * specific mapper. the address has already been validated, but
2338 	 * not unmapped, but the maps are removed from the list.
2339 	 */
2340 	vma = vm_area_alloc(map->mm);
2341 	if (!vma)
2342 		return -ENOMEM;
2343 
2344 	vma_iter_config(vmi, map->addr, map->end);
2345 	vma_set_range(vma, map->addr, map->end, map->pgoff);
2346 	vm_flags_init(vma, map->flags);
2347 	vma->vm_page_prot = vm_get_page_prot(map->flags);
2348 
2349 	if (vma_iter_prealloc(vmi, vma)) {
2350 		error = -ENOMEM;
2351 		goto free_vma;
2352 	}
2353 
2354 	if (map->file)
2355 		error = __mmap_new_file_vma(map, vma);
2356 	else if (map->flags & VM_SHARED)
2357 		error = shmem_zero_setup(vma);
2358 	else
2359 		vma_set_anonymous(vma);
2360 
2361 	if (error)
2362 		goto free_iter_vma;
2363 
2364 #ifdef CONFIG_SPARC64
2365 	/* TODO: Fix SPARC ADI! */
2366 	WARN_ON_ONCE(!arch_validate_flags(map->flags));
2367 #endif
2368 
2369 	/* Lock the VMA since it is modified after insertion into VMA tree */
2370 	vma_start_write(vma);
2371 	vma_iter_store(vmi, vma);
2372 	map->mm->map_count++;
2373 	vma_link_file(vma);
2374 
2375 	/*
2376 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2377 	 * call covers the non-merge case.
2378 	 */
2379 	khugepaged_enter_vma(vma, map->flags);
2380 	ksm_add_vma(vma);
2381 	*vmap = vma;
2382 	return 0;
2383 
2384 free_iter_vma:
2385 	vma_iter_free(vmi);
2386 free_vma:
2387 	vm_area_free(vma);
2388 	return error;
2389 }
2390 
2391 /*
2392  * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2393  *                     statistics, handle locking and finalise the VMA.
2394  *
2395  * @map: Mapping state.
2396  * @vma: Merged or newly allocated VMA for the mmap()'d region.
2397  */
2398 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2399 {
2400 	struct mm_struct *mm = map->mm;
2401 	unsigned long vm_flags = vma->vm_flags;
2402 
2403 	perf_event_mmap(vma);
2404 
2405 	/* Unmap any existing mapping in the area. */
2406 	vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2407 
2408 	vm_stat_account(mm, vma->vm_flags, map->pglen);
2409 	if (vm_flags & VM_LOCKED) {
2410 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2411 					is_vm_hugetlb_page(vma) ||
2412 					vma == get_gate_vma(mm))
2413 			vm_flags_clear(vma, VM_LOCKED_MASK);
2414 		else
2415 			mm->locked_vm += map->pglen;
2416 	}
2417 
2418 	if (vma->vm_file)
2419 		uprobe_mmap(vma);
2420 
2421 	/*
2422 	 * New (or expanded) vma always get soft dirty status.
2423 	 * Otherwise user-space soft-dirty page tracker won't
2424 	 * be able to distinguish situation when vma area unmapped,
2425 	 * then new mapped in-place (which must be aimed as
2426 	 * a completely new data area).
2427 	 */
2428 	vm_flags_set(vma, VM_SOFTDIRTY);
2429 
2430 	vma_set_page_prot(vma);
2431 }
2432 
2433 unsigned long __mmap_region(struct file *file, unsigned long addr,
2434 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2435 		struct list_head *uf)
2436 {
2437 	struct mm_struct *mm = current->mm;
2438 	struct vm_area_struct *vma = NULL;
2439 	int error;
2440 	VMA_ITERATOR(vmi, mm, addr);
2441 	MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2442 
2443 	error = __mmap_prepare(&map, uf);
2444 	if (error)
2445 		goto abort_munmap;
2446 
2447 	/* Attempt to merge with adjacent VMAs... */
2448 	if (map.prev || map.next) {
2449 		VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2450 
2451 		vma = vma_merge_new_range(&vmg);
2452 	}
2453 
2454 	/* ...but if we can't, allocate a new VMA. */
2455 	if (!vma) {
2456 		error = __mmap_new_vma(&map, &vma);
2457 		if (error)
2458 			goto unacct_error;
2459 	}
2460 
2461 	/* If flags changed, we might be able to merge, so try again. */
2462 	if (map.retry_merge) {
2463 		VMG_MMAP_STATE(vmg, &map, vma);
2464 
2465 		vma_iter_config(map.vmi, map.addr, map.end);
2466 		vma_merge_existing_range(&vmg);
2467 	}
2468 
2469 	__mmap_complete(&map, vma);
2470 
2471 	return addr;
2472 
2473 	/* Accounting was done by __mmap_prepare(). */
2474 unacct_error:
2475 	if (map.charged)
2476 		vm_unacct_memory(map.charged);
2477 abort_munmap:
2478 	vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2479 	return error;
2480 }
2481